1
|
Xu Z, Pan Z, Jin Y, Gao Z, Jiang F, Fu H, Chen X, Zhang X, Yan H, Yang X, Yang B, He Q, Luo P. Inhibition of PRKAA/AMPK (Ser485/491) phosphorylation by crizotinib induces cardiotoxicity via perturbing autophagosome-lysosome fusion. Autophagy 2024; 20:416-436. [PMID: 37733896 PMCID: PMC10813574 DOI: 10.1080/15548627.2023.2259216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/23/2023] Open
Abstract
Crizotinib, a small-molecule tyrosine kinase inhibitor targeting ALK, MET and ROS1, is the first-line drug for ALK-positive metastatic non-small cell lung cancer and is associated with severe, sometimes fatal, cases of cardiac failure, which increases the risk of mortality. However, the underlying mechanism remains unclear, which causes the lack of therapeutic strategy. We established in vitro and in vivo models for crizotinib-induced cardiotoxicity and found that crizotinib caused left ventricular dysfunction, myocardial injury and pathological remodeling in mice and induced cardiomyocyte apoptosis and mitochondrial injury. In addition, we found that crizotinib prevented the degradation of MET protein by interrupting autophagosome-lysosome fusion and silence of MET or re-activating macroautophagy/autophagy flux rescued the cardiomyocytes death and mitochondrial injury caused by crizotinib, suggesting that impaired autophagy activity is the key reason for crizotinib-induced cardiotoxicity. We further confirmed that recovering the phosphorylation of PRKAA/AMPK (Ser485/491) by metformin re-activated autophagy flux in cardiomyocytes and metformin rescued crizotinib-induced cardiomyocyte injury and cardiac complications. In summary, we revealed a novel mechanism for crizotinib-induced cardiotoxicity, wherein the crizotinib-impaired autophagy process causes cardiomyocyte death and cardiac injury by inhibiting the degradation of MET protein, demonstrated a new function of impeded autophagosome-lysosome fusion in drugs-induced cardiotoxicity, pointed out the essential role of the phosphorylation of PRKAA (Ser485/491) in autophagosome-lysosome fusion and confirmed metformin as a potential therapeutic strategy for crizotinib-induced cardiotoxicity.Abbreviations and Acronyms: AAV: adeno-associated virus; ACAC/ACC: acetyl-Co A carboxylase; AMP: adenosine monophosphate; AMPK: AMP-activated protein kinase; ATG5: autophagy related 5; ATG7: autophagy related 7; CHX: cycloheximide; CKMB: creatine kinase myocardial band; CQ: chloroquine; c-PARP: cleaved poly (ADP-ribose) polymerase; DAPI: 4'6-diamidino-2-phenylindole; EF: ejection fraction; FOXO: forkhead box O; FS: fractional shortening; GSEA: gene set enrichment analysis; H&E: hematoxylin and eosin; HF: heart failure; HW: TL: ratio of heart weight to tibia length; IR: ischemia-reperfusion; KEGG: Kyoto encyclopedia of genes and genomes; LAMP2: lysosomal-associated membrane protein 2; LDH: lactate dehydrogenase; MCMs: mouse cardiomyocytes; MMP: mitochondrial membrane potential; mtDNA: mitochondrial DNA; MYH6: myosin, heavy peptide 6, cardiac muscle, alpha; MYH7: myosin, heavy peptide 7, cardiac muscle, beta; NPPA: natriuretic peptide type A; NPPB: natriuretic peptide type B; PI: propidium iodide; PI3K: phosphoinositide 3-kinase; PRKAA/AMPKα: protein kinase AMP-activated catalytic subunit alpha; qPCR: quantitative real-time PCR; SD: standard deviation; SRB: sulforhodamine B; TKI: tyrosine kinase inhibitor; WGA: wheat germ agglutinin.
Collapse
Affiliation(s)
- Zhifei Xu
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R.China
| | - Zezheng Pan
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R.China
| | - Ying Jin
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R.China
| | - Zizheng Gao
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R.China
| | - Feng Jiang
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R.China
| | - Huangxi Fu
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R.China
| | - Xueqin Chen
- Department of Oncology, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R.China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, P.R.China
| | - Xiaochen Zhang
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R.China
| | - Hao Yan
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R.China
| | - Xiaochun Yang
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R.China
| | - Bo Yang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R.China
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R.China
- Department of Cardiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R.China
- Deparment of Pharmaceutical and Translational Toxicology, Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, Zhejiang, P.R.China
| | - Peihua Luo
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R.China
- Department of Cardiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R.China
- Department of Pharmacology and Toxicology, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R.China
| |
Collapse
|
2
|
Gao M, Cai Q, Si H, Shi S, Wei H, Lv M, Wang X, Dong T. Isoliquiritigenin attenuates pathological cardiac hypertrophy via regulating AMPKα in vivo and in vitro. J Mol Histol 2022; 53:679-689. [PMID: 35834120 DOI: 10.1007/s10735-022-10090-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 06/07/2022] [Indexed: 11/29/2022]
Abstract
Isoliquiritigenin (ISL) is a type of flavonoid, derived from the root of the legume plant Glycyrrhiza, that has multiple pharmacological properties. However, its role in cardiac remodeling induced by pressure overload has yet to be fully elucidated. Aortic banding (AB) surgery was used to establish a cardiac hypertrophy model in male C57BL/6 mice. Mice were randomly divided into four groups (n = 20 per group) as follows: Sham + vehicle, sham + ISL, AB + vehicle and AB + ISL. ISL was administered to the mice intragastrically for 1 week after the operation. To evaluate the role of ISL in mice challenged with AB, echocardiography, histological analysis and molecular biochemistry examinations were performed. ISL treatment decreased cardiac hypertrophy and improved cardiac dysfunction induced by pressure overload. In addition, ISL decreased the cross-sectional area of cardiomyocytes. Furthermore, ISL reversed the AB-mediated increase in phosphorylated (p-)mTOR and p-ERK protein levels and further increased the protein expression of p-AMP-activated protein kinase (AMPK)α in response to AB, whereas knockout of AMPKα abolished the protective effects of ISL. The present study suggested that ISL could suppress pressure overload-induced cardiac hypertrophy through the activation of AMPKα. Therefore, ISL may serve as a therapeutic target for cardiac remodeling.
Collapse
Affiliation(s)
- Meiling Gao
- Department of Anesthesiology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qiang Cai
- Department of Orthopedics, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Haichao Si
- Department of Anesthesiology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Si Shi
- Department of Anesthesiology, Hubei Provincial Peoples Hospital affiliated to Wuhan University, Wuhan, China
| | - Huixia Wei
- Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Miaomiao Lv
- Department of Anesthesiology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaofan Wang
- Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Tieli Dong
- Department of Anesthesiology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
3
|
Chen Y, Li L, Hu C, Zhao X, Zhang P, Chang Y, Shang Y, Pang Y, Qian W, Qiu X, Zhang H, Zhang D, Zhang S, Li Y. Lingguizhugan decoction dynamically regulates MAPKs and AKT signaling pathways to retrogress the pathological progression of cardiac hypertrophy to heart failure. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 98:153951. [PMID: 35131606 DOI: 10.1016/j.phymed.2022.153951] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/08/2022] [Accepted: 01/15/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Heart failure (HF) is a grave health concern, with high morbidity and mortality, calling for the urgent need for new and alternative pharmacotherapies. Lingguizhugan decoction (LD) is a classic Chinese formula clinically used to treat HF. However, the underlying mechanisms involved are not fully elucidated. PURPOSE Based on that, this study aims to investigate the effects and underlying mechanisms of LD on HF. METHODS After confirming the therapeutic benefits of LD in transverse aortic constriction (TAC)-induced HF mice, network pharmacology and transcriptomic analyzes were utilized to predict the potential molecular targets and pathways of LD treatment in failing hearts, which were evaluated at 3 and 9 w after TAC. UHPLC-QE-MS analysis was utilized to detect bioactive ingredients from LD and plasma of LD-treated rats. RESULTS Our results showed that LD markedly alleviated cardiac dysfunction via down-regulating CH-related genes and proteins expression in TAC mice. Significantly, cardiac hypertrophy signaling, including AKT and MAPKs signaling pathways, were identified, suggesting the pathways as likely regulatory targets for LD treatment. LD inhibited p38 and ERK phosphorylated expression levels, with the latter effect likely dependent on regulation of AMPK. Interestingly, LD exerted a dual modulatory role in the AKT-GSK3β/mTOR/P70S6K signaling pathway's regulation, which was characterized by stimulatory activity at 3 w and inhibitory effects at 9 w. Finally, 15 bioactive compounds detected from plasma were predicted as the potential regulators of the AKT-GSK3β/mTOR and MAPKs signaling pathways. CONCLUSION Our study shows LD's therapeutic efficacy in failing hearts, signifies LD as HF medication that acts dynamically by balancing AKT-GSK3β/mTOR/P70S6K and MAPKs pathways, and reveals possible bioactive compounds responsible for LD effects on HF.
Collapse
Affiliation(s)
- Yao Chen
- Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, Jing Hai, Tianjin 301617, China
| | - Lin Li
- Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, Jing Hai, Tianjin 301617, China; Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, Jing Hai, Tianjin 301617, China
| | - Cunyu Hu
- Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, Jing Hai, Tianjin 301617, China
| | - Xin Zhao
- Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, Jing Hai, Tianjin 301617, China; Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, Jing Hai, Tianjin 301617, China
| | - Peng Zhang
- Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, Jing Hai, Tianjin 301617, China
| | - Yanxu Chang
- Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, Jing Hai, Tianjin 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, Jing Hai, Tianjin 301617, China
| | - Ye Shang
- Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, Jing Hai, Tianjin 301617, China
| | - Yafen Pang
- Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, Jing Hai, Tianjin 301617, China
| | - Weiqiang Qian
- Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, Jing Hai, Tianjin 301617, China
| | - Xianzhe Qiu
- Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, Jing Hai, Tianjin 301617, China
| | - Hongxia Zhang
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, 69 Zeng Chan Road, He Bei, Tianjin 300250, China
| | - Deqin Zhang
- Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, Jing Hai, Tianjin 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, Jing Hai, Tianjin 301617, China
| | - Shukun Zhang
- Institute of Acute Abdominal Diseases of Integrated Traditional Chinese and Western Medicine, Tianjin Nankai Hospital, 6 Chang Jiang Road, Nan Kai, Tianjin 300100, China.
| | - Yuhong Li
- Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, Jing Hai, Tianjin 301617, China; Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, Jing Hai, Tianjin 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, Jing Hai, Tianjin 301617, China.
| |
Collapse
|
4
|
Heidary Moghaddam R, Samimi Z, Asgary S, Mohammadi P, Hozeifi S, Hoseinzadeh-Chahkandak F, Xu S, Farzaei MH. Natural AMPK Activators in Cardiovascular Disease Prevention. Front Pharmacol 2022; 12:738420. [PMID: 35046800 PMCID: PMC8762275 DOI: 10.3389/fphar.2021.738420] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/03/2021] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular diseases (CVD), as a life-threatening global disease, is receiving worldwide attention. Seeking novel therapeutic strategies and agents is of utmost importance to curb CVD. AMP-activated protein kinase (AMPK) activators derived from natural products are promising agents for cardiovascular drug development owning to regulatory effects on physiological processes and diverse cardiometabolic disorders. In the past decade, different therapeutic agents from natural products and herbal medicines have been explored as good templates of AMPK activators. Hereby, we overviewed the role of AMPK signaling in the cardiovascular system, as well as evidence implicating AMPK activators as potential therapeutic tools. In the present review, efforts have been made to compile and update relevant information from both preclinical and clinical studies, which investigated the role of natural products as AMPK activators in cardiovascular therapeutics.
Collapse
Affiliation(s)
- Reza Heidary Moghaddam
- Clinical Research Development Center, Imam Ali and Taleghani Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zeinab Samimi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sedigheh Asgary
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute,.Isfahan University of Medical Sciences, Isfahan, Iran
| | - Pantea Mohammadi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Soroush Hozeifi
- School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | | | - Suowen Xu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Medical Technology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
5
|
Effects of Metformin in Heart Failure: From Pathophysiological Rationale to Clinical Evidence. Biomolecules 2021; 11:biom11121834. [PMID: 34944478 PMCID: PMC8698925 DOI: 10.3390/biom11121834] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/26/2021] [Accepted: 12/01/2021] [Indexed: 12/20/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a worldwide major health burden and heart failure (HF) is the most common cardiovascular (CV) complication in affected patients. Therefore, identifying the best pharmacological approach for glycemic control, which is also useful to prevent and ameliorate the prognosis of HF, represents a crucial issue. Currently, the choice is between the new drugs sodium/glucose co-transporter 2 inhibitors that have consistently shown in large CV outcome trials (CVOTs) to reduce the risk of HF-related outcomes in T2DM, and metformin, an old medicament that might end up relegated to the background while exerting interesting protective effects on multiple organs among which include heart failure. When compared with other antihyperglycemic medications, metformin has been demonstrated to be safe and to lower morbidity and mortality for HF, even if these results are difficult to interpret as they emerged mainly from observational studies. Meta-analyses of randomized controlled clinical trials have not produced positive results on the risk or clinical course of HF and sadly, large CV outcome trials are lacking. The point of force of metformin with respect to new diabetic drugs is the amount of data from experimental investigations that, for more than twenty years, still continues to provide mechanistic explanations of the several favorable actions in heart failure such as, the improvement of the myocardial energy metabolic status by modulation of glucose and lipid metabolism, the attenuation of oxidative stress and inflammation, and the inhibition of myocardial cell apoptosis, leading to reduced cardiac remodeling and preserved left ventricular function. In the hope that specific large-scale trials will be carried out to definitively establish the metformin benefit in terms of HF failure outcomes, we reviewed the literature in this field, summarizing the available evidence from experimental and clinical studies reporting on effects in heart metabolism, function, and structure, and the prominent pathophysiological mechanisms involved.
Collapse
|
6
|
Tokarska-Schlattner M, Kay L, Perret P, Isola R, Attia S, Lamarche F, Tellier C, Cottet-Rousselle C, Uneisi A, Hininger-Favier I, Foretz M, Dubouchaud H, Ghezzi C, Zuppinger C, Viollet B, Schlattner U. Role of Cardiac AMP-Activated Protein Kinase in a Non-pathological Setting: Evidence From Cardiomyocyte-Specific, Inducible AMP-Activated Protein Kinase α1α2-Knockout Mice. Front Cell Dev Biol 2021; 9:731015. [PMID: 34733845 PMCID: PMC8558539 DOI: 10.3389/fcell.2021.731015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/24/2021] [Indexed: 12/25/2022] Open
Abstract
AMP-activated protein kinase (AMPK) is a key regulator of energy homeostasis under conditions of energy stress. Though heart is one of the most energy requiring organs and depends on a perfect match of energy supply with high and fluctuating energy demand to maintain its contractile performance, the role of AMPK in this organ is still not entirely clear, in particular in a non-pathological setting. In this work, we characterized cardiomyocyte-specific, inducible AMPKα1 and α2 knockout mice (KO), where KO was induced at the age of 8 weeks, and assessed their phenotype under physiological conditions. In the heart of KO mice, both AMPKα isoforms were strongly reduced and thus deleted in a large part of cardiomyocytes already 2 weeks after tamoxifen administration, persisting during the entire study period. AMPK KO had no effect on heart function at baseline, but alterations were observed under increased workload induced by dobutamine stress, consistent with lower endurance exercise capacity observed in AMPK KO mice. AMPKα deletion also induced a decrease in basal metabolic rate (oxygen uptake, energy expenditure) together with a trend to lower locomotor activity of AMPK KO mice 12 months after tamoxifen administration. Loss of AMPK resulted in multiple alterations of cardiac mitochondria: reduced respiration with complex I substrates as measured in isolated mitochondria, reduced activity of complexes I and IV, and a shift in mitochondrial cristae morphology from lamellar to mixed lamellar-tubular. A strong tendency to diminished ATP and glycogen level was observed in older animals, 1 year after tamoxifen administration. Our study suggests important roles of cardiac AMPK at increased cardiac workload, potentially limiting exercise performance. This is at least partially due to impaired mitochondrial function and bioenergetics which degrades with age.
Collapse
Affiliation(s)
- Malgorzata Tokarska-Schlattner
- Inserm U1055, Laboratory of Fundamental and Applied Bioenergetics (LBFA), University of Grenoble Alpes, Grenoble, France
| | - Laurence Kay
- Inserm U1055, Laboratory of Fundamental and Applied Bioenergetics (LBFA), University of Grenoble Alpes, Grenoble, France
| | - Pascale Perret
- Inserm U1039, Radiopharmaceutiques Biocliniques, Faculté de Médecine, University of Grenoble Alpes, Grenoble, France
| | - Raffaella Isola
- Department of Biomedical Sciences, Division of Cytomorphology, University of Cagliari, Cagliari, Italy
| | - Stéphane Attia
- Inserm U1055, Laboratory of Fundamental and Applied Bioenergetics (LBFA), University of Grenoble Alpes, Grenoble, France
| | - Frédéric Lamarche
- Inserm U1055, Laboratory of Fundamental and Applied Bioenergetics (LBFA), University of Grenoble Alpes, Grenoble, France
| | - Cindy Tellier
- Inserm U1055, Laboratory of Fundamental and Applied Bioenergetics (LBFA), University of Grenoble Alpes, Grenoble, France
| | - Cécile Cottet-Rousselle
- Inserm U1055, Laboratory of Fundamental and Applied Bioenergetics (LBFA), University of Grenoble Alpes, Grenoble, France
| | - Amjad Uneisi
- Inserm U1055, Laboratory of Fundamental and Applied Bioenergetics (LBFA), University of Grenoble Alpes, Grenoble, France
| | - Isabelle Hininger-Favier
- Inserm U1055, Laboratory of Fundamental and Applied Bioenergetics (LBFA), University of Grenoble Alpes, Grenoble, France
| | - Marc Foretz
- Institut Cochin, CNRS, INSERM, Université de Paris, Paris, France
| | - Hervé Dubouchaud
- Inserm U1055, Laboratory of Fundamental and Applied Bioenergetics (LBFA), University of Grenoble Alpes, Grenoble, France
| | - Catherine Ghezzi
- Inserm U1039, Radiopharmaceutiques Biocliniques, Faculté de Médecine, University of Grenoble Alpes, Grenoble, France
| | - Christian Zuppinger
- Department of Cardiology, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Benoit Viollet
- Institut Cochin, CNRS, INSERM, Université de Paris, Paris, France
| | - Uwe Schlattner
- Inserm U1055, Laboratory of Fundamental and Applied Bioenergetics (LBFA), University of Grenoble Alpes, Grenoble, France.,Institut Universitaire de France, Paris, France
| |
Collapse
|
7
|
Role of metabolomics in identifying cardiac hypertrophy: an overview of the past 20 years of development and future perspective. Expert Rev Mol Med 2021; 23:e8. [PMID: 34376261 DOI: 10.1017/erm.2021.12] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cardiac hypertrophy (CH) is an augmentation of either the right ventricular or the left ventricular mass in order to compensate for the increase of work load on the heart. Metabolic abnormalities lead to histological changes of cardiac myocytes and turn into CH. The molecular mechanisms that lead to initiate CH have been of widespread concern, hence the development of the new field of research, metabolomics: one 'omics' approach that can reveal comprehensive information of the paradigm shift of metabolic pathways network in contrast to individual enzymatic reaction-based metabolites, have attempted and until now only 19 studies have been conducted using experimental animal and human specimens. Nuclear magnetic resonance spectroscopy and mass spectrometry-based metabolomics studies have found that CH is a metabolic disease and is mainly linked to the harmonic imbalance of glycolysis, citric acid cycle, amino acids and lipid metabolism. The current review will summarise the main outcomes of the above mentioned 19 studies that have expanded our understanding of the molecular mechanisms that may lead to CH and eventually to heart failure.
Collapse
|
8
|
Perez DM. Targeting Adrenergic Receptors in Metabolic Therapies for Heart Failure. Int J Mol Sci 2021; 22:5783. [PMID: 34071350 PMCID: PMC8198887 DOI: 10.3390/ijms22115783] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/20/2021] [Accepted: 05/22/2021] [Indexed: 12/14/2022] Open
Abstract
The heart has a reduced capacity to generate sufficient energy when failing, resulting in an energy-starved condition with diminished functions. Studies have identified numerous changes in metabolic pathways in the failing heart that result in reduced oxidation of both glucose and fatty acid substrates, defects in mitochondrial functions and oxidative phosphorylation, and inefficient substrate utilization for the ATP that is produced. Recent early-phase clinical studies indicate that inhibitors of fatty acid oxidation and antioxidants that target the mitochondria may improve heart function during failure by increasing compensatory glucose oxidation. Adrenergic receptors (α1 and β) are a key sympathetic nervous system regulator that controls cardiac function. β-AR blockers are an established treatment for heart failure and α1A-AR agonists have potential therapeutic benefit. Besides regulating inotropy and chronotropy, α1- and β-adrenergic receptors also regulate metabolic functions in the heart that underlie many cardiac benefits. This review will highlight recent studies that describe how adrenergic receptor-mediated metabolic pathways may be able to restore cardiac energetics to non-failing levels that may offer promising therapeutic strategies.
Collapse
Affiliation(s)
- Dianne M Perez
- The Lerner Research Institute, The Cleveland Clinic Foundation, 9500 Euclid Ave, Cleveland, OH 44195, USA
| |
Collapse
|
9
|
Marino A, Hausenloy DJ, Andreadou I, Horman S, Bertrand L, Beauloye C. AMP-activated protein kinase: A remarkable contributor to preserve a healthy heart against ROS injury. Free Radic Biol Med 2021; 166:238-254. [PMID: 33675956 DOI: 10.1016/j.freeradbiomed.2021.02.047] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/13/2021] [Accepted: 02/26/2021] [Indexed: 12/19/2022]
Abstract
Heart failure is one of the leading causes of death and disability worldwide. Left ventricle remodeling, fibrosis, and ischemia/reperfusion injury all contribute to the deterioration of cardiac function and predispose to the onset of heart failure. Adenosine monophosphate-activated protein kinase (AMPK) is the universally recognized energy sensor which responds to low ATP levels and restores cellular metabolism. AMPK activation controls numerous cellular processes and, in the heart, it plays a pivotal role in preventing onset and progression of disease. Excessive reactive oxygen species (ROS) generation, known as oxidative stress, can activate AMPK, conferring an additional role of AMPK as a redox-sensor. In this review, we discuss recent insights into the crosstalk between ROS and AMPK. We describe the molecular mechanisms by which ROS activate AMPK and how AMPK signaling can further prevent heart failure progression. Ultimately, we review the potential therapeutic approaches to target AMPK for the treatment of cardiovascular disease and prevention of heart failure.
Collapse
Affiliation(s)
- Alice Marino
- Pôle de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Derek J Hausenloy
- Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore; National Heart Research Institute Singapore, National Heart Centre, Singapore; Yong Loo Lin School of Medicine, National University Singapore, Singapore; The Hatter Cardiovascular Institute, University College London, London, UK; Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan
| | - Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Sandrine Horman
- Pôle de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Luc Bertrand
- Pôle de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Christophe Beauloye
- Pôle de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium; Division of Cardiology, Cliniques universitaires Saint Luc, Brussels, Belgium.
| |
Collapse
|
10
|
Kindlovits R, Bertoldi JMCRJ, Rocha HNM, Bento-Bernardes T, Gomes JLP, de Oliveira EM, Muniz IC, Pereira JF, Fernandes-Santos C, Rocha NG, Nóbrega ACLD, Medeiros RF. Molecular mechanisms underlying fructose-induced cardiovascular disease: exercise, metabolic pathways and microRNAs. Exp Physiol 2021; 106:1224-1234. [PMID: 33608966 DOI: 10.1113/ep088845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 02/11/2021] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? What are the mechanisms underlying the cardiac protective effect of aerobic training in the progression of a high fructose-induced cardiometabolic disease in Wistar rats? What is the main finding and its importance? At the onset of cardiovascular disease, aerobic training activates the p-p70S6K, ERK and IRβ-PI3K-AKT pathways, without changing the miR-126 and miR-195 levels, thereby providing evidence that aerobic training modulates the insulin signalling pathway. These data contribute to the understanding of the molecular cardiac changes that are associated with physiological left ventricular hypertrophy during the development of a cardiovascular disease. ABSTRACT During the onset of cardiovascular disease (CVD), disturbances in myocardial vascularization, cell proliferation and protein expression are observed. Aerobic training prevents CVD, but the underlying mechanisms behind left ventricle (LV) hypertrophy are not fully elucidated. The aim of this study was to investigate the mechanisms by which aerobic training protects the heart from LV hypertrophy during the onset of fructose-induced cardiometabolic disease. Male Wistar rats were allocated to four groups (n = 8/group): control sedentary (C), control training (CT), fructose sedentary (F) and fructose training (FT). The C and CT groups received drinking water, and the F and FT groups received d-fructose (10% in water). After 2 weeks, the CT and FT rats were assigned to a treadmill training protocol at moderate intensity for 8 weeks (60 min/day, 4 days/week). After 10 weeks, LV morphological remodelling, cardiomyocyte apoptosis, microRNAs and the insulin signalling pathway were investigated. The F group had systemic cardiometabolic alterations, which were normalised by aerobic training. The LV weight increased in the FT group, myocardium vascularisation decreased in the F group, and the cardiomyocyte area increased in the CT, F and FT groups. Regarding protein expression, total insulin receptor β-subunit (IRβ) decreased in the F group; phospho (p)-IRβ and phosphoinositide 3-kinase (PI3K) increased in the FT group; total-AKT and p-AKT increased in all of the groups; p-p70S6 kinase (p70S6K) protein was higher in the CT group; and p-extracellular signal-regulated kinase (ERK) increased in the CT and FT groups. MiR-126, miR-195 and cardiomyocyte apoptosis did not differ among the groups. Aerobic training activates p-p70S6K and p-ERK, and during the onset of a CVD, it can activate the IRβ-PI3K-AKT pathway.
Collapse
Affiliation(s)
- Raquel Kindlovits
- Laboratory of Exercise Sciences, Department of Physiology and Pharmacology, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil.,National Institute for Science and Technology - INCT Physical (In)activity and Exercise, CNPq -, Niterói, Rio de Janeiro, Brazil
| | - Julia Maria Cabral Relvas Jacome Bertoldi
- Laboratory of Exercise Sciences, Department of Physiology and Pharmacology, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil.,National Institute for Science and Technology - INCT Physical (In)activity and Exercise, CNPq -, Niterói, Rio de Janeiro, Brazil
| | - Helena Naly Miguens Rocha
- Laboratory of Exercise Sciences, Department of Physiology and Pharmacology, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil.,National Institute for Science and Technology - INCT Physical (In)activity and Exercise, CNPq -, Niterói, Rio de Janeiro, Brazil
| | - Thais Bento-Bernardes
- Laboratory of Exercise Sciences, Department of Physiology and Pharmacology, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - João Lucas Penteado Gomes
- National Institute for Science and Technology - INCT Physical (In)activity and Exercise, CNPq -, Niterói, Rio de Janeiro, Brazil.,Laboratory of Biochemistry and Molecular Biology of Exercise, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Edilamar Menezes de Oliveira
- National Institute for Science and Technology - INCT Physical (In)activity and Exercise, CNPq -, Niterói, Rio de Janeiro, Brazil.,Laboratory of Biochemistry and Molecular Biology of Exercise, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Ingrid Cristina Muniz
- Laboratory of Exercise Sciences, Department of Physiology and Pharmacology, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil.,National Institute for Science and Technology - INCT Physical (In)activity and Exercise, CNPq -, Niterói, Rio de Janeiro, Brazil
| | - Juliana Frota Pereira
- Laboratory of Exercise Sciences, Department of Physiology and Pharmacology, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil.,National Institute for Science and Technology - INCT Physical (In)activity and Exercise, CNPq -, Niterói, Rio de Janeiro, Brazil
| | | | - Natália Galito Rocha
- Laboratory of Exercise Sciences, Department of Physiology and Pharmacology, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil.,National Institute for Science and Technology - INCT Physical (In)activity and Exercise, CNPq -, Niterói, Rio de Janeiro, Brazil
| | - Antonio Claudio Lucas da Nóbrega
- Laboratory of Exercise Sciences, Department of Physiology and Pharmacology, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil.,National Institute for Science and Technology - INCT Physical (In)activity and Exercise, CNPq -, Niterói, Rio de Janeiro, Brazil
| | - Renata Frauches Medeiros
- National Institute for Science and Technology - INCT Physical (In)activity and Exercise, CNPq -, Niterói, Rio de Janeiro, Brazil.,Department of Nutrition and Dietetics, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| |
Collapse
|
11
|
Dufeys C, Daskalopoulos EP, Castanares-Zapatero D, Conway SJ, Ginion A, Bouzin C, Ambroise J, Bearzatto B, Gala JL, Heymans S, Papageorgiou AP, Vinckier S, Cumps J, Balligand JL, Vanhaverbeke M, Sinnaeve P, Janssens S, Bertrand L, Beauloye C, Horman S. AMPKα1 deletion in myofibroblasts exacerbates post-myocardial infarction fibrosis by a connexin 43 mechanism. Basic Res Cardiol 2021; 116:10. [PMID: 33564961 PMCID: PMC7873123 DOI: 10.1007/s00395-021-00846-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 01/08/2021] [Indexed: 02/07/2023]
Abstract
We have previously demonstrated that systemic AMP-activated protein kinase α1 (AMPKα1) invalidation enhanced adverse LV remodelling by increasing fibroblast proliferation, while myodifferentiation and scar maturation were impaired. We thus hypothesised that fibroblastic AMPKα1 was a key signalling element in regulating fibrosis in the infarcted myocardium and an attractive target for therapeutic intervention. The present study investigates the effects of myofibroblast (MF)-specific deletion of AMPKα1 on left ventricular (LV) adaptation following myocardial infarction (MI), and the underlying molecular mechanisms. MF-restricted AMPKα1 conditional knockout (cKO) mice were subjected to permanent ligation of the left anterior descending coronary artery. cKO hearts exhibit exacerbated post-MI adverse LV remodelling and are characterised by exaggerated fibrotic response, compared to wild-type (WT) hearts. Cardiac fibroblast proliferation and MF content significantly increase in cKO infarcted hearts, coincident with a significant reduction of connexin 43 (Cx43) expression in MFs. Mechanistically, AMPKα1 influences Cx43 expression by both a transcriptional and a post-transcriptional mechanism involving miR-125b-5p. Collectively, our data demonstrate that MF-AMPKα1 functions as a master regulator of cardiac fibrosis and remodelling and might constitute a novel potential target for pharmacological anti-fibrotic applications.
Collapse
Affiliation(s)
- Cécile Dufeys
- Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), 55, Avenue Hippocrate, 1200, Brussels, Belgium
| | - Evangelos-Panagiotis Daskalopoulos
- Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), 55, Avenue Hippocrate, 1200, Brussels, Belgium
| | - Diego Castanares-Zapatero
- Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), 55, Avenue Hippocrate, 1200, Brussels, Belgium
| | - Simon J Conway
- HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Audrey Ginion
- Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), 55, Avenue Hippocrate, 1200, Brussels, Belgium
| | - Caroline Bouzin
- IREC Imaging Platform, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Jérôme Ambroise
- Centre de Technologies Moléculaires Appliquées, Institut de Recherche Expérimentale et Clinique, UCL, Brussels, Belgium
| | - Bertrand Bearzatto
- Centre de Technologies Moléculaires Appliquées, Institut de Recherche Expérimentale et Clinique, UCL, Brussels, Belgium
| | - Jean-Luc Gala
- Centre de Technologies Moléculaires Appliquées, Institut de Recherche Expérimentale et Clinique, UCL, Brussels, Belgium
| | - Stephane Heymans
- Center for Heart Failure Research, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Anna-Pia Papageorgiou
- Center for Heart Failure Research, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
- Department of Cardiovascular Sciences, KU Leuven, Louvain, Belgium
| | - Stefan Vinckier
- Center for Cancer Biology, University of Leuven and VIB, Louvain, Belgium
| | - Julien Cumps
- Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), 55, Avenue Hippocrate, 1200, Brussels, Belgium
| | - Jean-Luc Balligand
- Pôle de Pharmacologie et de Thérapeutique (FATH), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Maarten Vanhaverbeke
- Department of Cardiovascular Sciences, KU Leuven, Louvain, Belgium
- Department of Cardiovascular Medicine, Leuven University Hospitals, Louvain, Belgium
| | - Peter Sinnaeve
- Department of Cardiovascular Sciences, KU Leuven, Louvain, Belgium
- Department of Cardiovascular Medicine, Leuven University Hospitals, Louvain, Belgium
| | - Stefan Janssens
- Department of Cardiovascular Sciences, KU Leuven, Louvain, Belgium
- Department of Cardiovascular Medicine, Leuven University Hospitals, Louvain, Belgium
| | - Luc Bertrand
- Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), 55, Avenue Hippocrate, 1200, Brussels, Belgium
| | - Christophe Beauloye
- Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), 55, Avenue Hippocrate, 1200, Brussels, Belgium
- Division of Cardiology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Sandrine Horman
- Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), 55, Avenue Hippocrate, 1200, Brussels, Belgium.
| |
Collapse
|
12
|
Haye A, Ansari MA, Rahman SO, Shamsi Y, Ahmed D, Sharma M. Role of AMP-activated protein kinase on cardio-metabolic abnormalities in the development of diabetic cardiomyopathy: A molecular landscape. Eur J Pharmacol 2020; 888:173376. [PMID: 32810493 DOI: 10.1016/j.ejphar.2020.173376] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 12/13/2022]
Abstract
Cardiovascular complications associated with diabetes mellitus remains a leading cause of morbidity and mortality across the world. Diabetic cardiomyopathy is a descriptive pathology that in absence of co-morbidities such as hypertension, dyslipidemia initially characterized by cardiac stiffness, myocardial fibrosis, ventricular hypertrophy, and remodeling. These abnormalities further contribute to diastolic dysfunctions followed by systolic dysfunctions and eventually results in clinical heart failure (HF). The clinical outcomes associated with HF are considerably worse in patients with diabetes. The complexity of the pathogenesis and clinical features of diabetic cardiomyopathy raises serious questions in developing a therapeutic strategy to manage cardio-metabolic abnormalities. Despite extensive research in the past decade the compelling approaches to manage and treat diabetic cardiomyopathy are limited. AMP-Activated Protein Kinase (AMPK), a serine-threonine kinase, often referred to as cellular "metabolic master switch". During the development and progression of diabetic cardiomyopathy, a plethora of evidence demonstrate the beneficial role of AMPK on cardio-metabolic abnormalities including altered substrate utilization, impaired cardiac insulin metabolic signaling, mitochondrial dysfunction and oxidative stress, myocardial inflammation, increased accumulation of advanced glycation end-products, impaired cardiac calcium handling, maladaptive activation of the renin-angiotensin-aldosterone system, endoplasmic reticulum stress, myocardial fibrosis, ventricular hypertrophy, cardiac apoptosis, and impaired autophagy. Therefore, in this review, we have summarized the findings from pre-clinical and clinical studies and provided a collective overview of the pathophysiological mechanism and the regulatory role of AMPK on cardio-metabolic abnormalities during the development of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Abdul Haye
- Pharmaceutical Medicine, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohd Asif Ansari
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Syed Obaidur Rahman
- Pharmaceutical Medicine, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Yasmeen Shamsi
- Department of Moalejat, School of Unani Medical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Danish Ahmed
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, Sam Higginbottom University of Agriculture Technology and Sciences, Allahabad, Uttar Pradesh, India
| | - Manju Sharma
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
13
|
Takano APC, Senger N, Barreto-Chaves MLM. The endocrinological component and signaling pathways associated to cardiac hypertrophy. Mol Cell Endocrinol 2020; 518:110972. [PMID: 32777452 DOI: 10.1016/j.mce.2020.110972] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 07/14/2020] [Accepted: 07/30/2020] [Indexed: 02/06/2023]
Abstract
Although myocardial growth corresponds to an adaptive response to maintain cardiac contractile function, the cardiac hypertrophy is a condition that occurs in many cardiovascular diseases and typically precedes the onset of heart failure. Different endocrine factors such as thyroid hormones, insulin, insulin-like growth factor 1 (IGF-1), angiotensin II (Ang II), endothelin (ET-1), catecholamines, estrogen, among others represent important stimuli to cardiomyocyte hypertrophy. Thus, numerous endocrine disorders manifested as changes in the local environment or multiple organ systems are especially important in the context of progression from cardiac hypertrophy to heart failure. Based on that information, this review summarizes experimental findings regarding the influence of such hormones upon signalling pathways associated with cardiac hypertrophy. Understanding mechanisms through which hormones differentially regulate cardiac hypertrophy could open ways to obtain therapeutic approaches that contribute to prevent or delay the onset of heart failure related to endocrine diseases.
Collapse
Affiliation(s)
| | - Nathalia Senger
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | | |
Collapse
|
14
|
McCommis KS, Kovacs A, Weinheimer CJ, Shew TM, Koves TR, Ilkayeva OR, Kamm DR, Pyles KD, King MT, Veech RL, DeBosch BJ, Muoio DM, Gross RW, Finck BN. Nutritional modulation of heart failure in mitochondrial pyruvate carrier-deficient mice. Nat Metab 2020; 2:1232-1247. [PMID: 33106690 PMCID: PMC7957960 DOI: 10.1038/s42255-020-00296-1] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 09/10/2020] [Indexed: 01/04/2023]
Abstract
The myocardium is metabolically flexible; however, impaired flexibility is associated with cardiac dysfunction in conditions including diabetes and heart failure. The mitochondrial pyruvate carrier (MPC) complex, composed of MPC1 and MPC2, is required for pyruvate import into the mitochondria. Here we show that MPC1 and MPC2 expression is downregulated in failing human and mouse hearts. Mice with cardiac-specific deletion of Mpc2 (CS-MPC2-/-) exhibited normal cardiac size and function at 6 weeks old, but progressively developed cardiac dilation and contractile dysfunction, which was completely reversed by a high-fat, low-carbohydrate ketogenic diet. Diets with higher fat content, but enough carbohydrate to limit ketosis, also improved heart failure, while direct ketone body provisioning provided only minor improvements in cardiac remodelling in CS-MPC2-/- mice. An acute fast also improved cardiac remodelling. Together, our results reveal a critical role for mitochondrial pyruvate use in cardiac function, and highlight the potential of dietary interventions to enhance cardiac fat metabolism to prevent or reverse cardiac dysfunction and remodelling in the setting of MPC deficiency.
Collapse
Affiliation(s)
- Kyle S McCommis
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Biochemistry & Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, USA.
| | - Attila Kovacs
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Carla J Weinheimer
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Trevor M Shew
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Timothy R Koves
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
| | - Olga R Ilkayeva
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
| | - Dakota R Kamm
- Department of Biochemistry & Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Kelly D Pyles
- Department of Biochemistry & Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - M Todd King
- Laboratory of Metabolic Control, National Institute on Alcohol Abuse and Alcoholism, National Institute of Health, Bethesda, MD, USA
| | - Richard L Veech
- Laboratory of Metabolic Control, National Institute on Alcohol Abuse and Alcoholism, National Institute of Health, Bethesda, MD, USA
| | - Brian J DeBosch
- Departments of Pediatrics and Cell Biology & Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Deborah M Muoio
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
| | - Richard W Gross
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Chemistry, Washington University, St. Louis, MO, USA
| | - Brian N Finck
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
15
|
Zhao Y, Sun D, Chen Y, Zhan K, Meng Q, Zhang X, Zhu L, Yao X. Si-Miao-Yong-An Decoction attenuates isoprenaline-induced myocardial fibrosis in AMPK-driven Akt/mTOR and TGF-β/SMAD3 pathways. Biomed Pharmacother 2020; 130:110522. [PMID: 32736236 DOI: 10.1016/j.biopha.2020.110522] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 07/06/2020] [Accepted: 07/11/2020] [Indexed: 12/30/2022] Open
Abstract
Myocardial fibrosis is well-known to be the aberrant deposition of extracellular matrix (ECM), which may cause cardiac dysfunction, morbidity, and death. Traditional Chinese medicine formula Si-Miao-Yong-An Decoction (SMYAD), which is used clinically in cardiovascular diseases has been recently reported to able to resist myocardial fibrosis. The anti-fibrosis effects of SMYAD have been evaluated; however, its intricate mechanisms remain to be clarified. Here, we found that SMYAD treatment reduced the fibrosis injury and collagen fiber deposition that could improve cardiac function in isoprenaline (ISO)-induced fibrosis rat models. Combined with our systematic RNA-seq data of SMYAD treatment, we demonstrated that the remarkable up-regulation or down-regulation of several genes were closely related to the functional enrichment of TGF-β and AMPK pathways that were involved in myocardial fibrosis. Accordingly, we further explored the molecular mechanisms of SMYAD were mainly caused by AMPK activation and thereby suppressing its downstream Akt/mTOR and TGF-β/SMAD3 pathways. Moreover, we showed that the ECM deposition and secretion process were attenuated, suggesting that the fibrosis pathological features are changed. Interestingly, we found the similar AMPK-driven pathways in NIH-3T3 mouse fibroblasts treated with ISO. Taken together, these results demonstrate that SMYAD may be a new candidate agent by regulating AMPK-driven Akt/mTOR and TGF-β/SMAD3 pathways for potential therapeutic implications of myocardial fibrosis.
Collapse
Affiliation(s)
- Yuqian Zhao
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Dejuan Sun
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Yanmei Chen
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Kaixuan Zhan
- Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang 110847, China.
| | - Qu Meng
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Xue Zhang
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Lingjuan Zhu
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China; Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang 110847, China.
| | - Xinsheng Yao
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China; Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
16
|
Dubois-Deruy E, Gelinas R, Beauloye C, Esfahani H, Michel LYM, Dessy C, Bertrand L, Balligand JL. Beta 3 adrenoreceptors protect from hypertrophic remodelling through AMP-activated protein kinase and autophagy. ESC Heart Fail 2020; 7:920-932. [PMID: 32154661 PMCID: PMC7261558 DOI: 10.1002/ehf2.12648] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 01/07/2020] [Accepted: 02/04/2020] [Indexed: 12/31/2022] Open
Abstract
Aims The abundance of beta 3‐adrenergic receptors (β3‐ARs) is upregulated in diseased human myocardium. We previously showed that cardiac‐specific expression of β3‐AR inhibits the hypertrophic response to neurohormonal stimulation. Here, we further analysed signalling pathways involved in the anti‐hypertrophic effect of β3‐AR. Methods and results In vitro hypertrophic responses to phenylephrine (PE) were analysed in neonatal rat ventricular myocytes (NRVM) infected with a recombinant adenovirus expressing the human β3‐AR (AdVhβ3). We confirmed results in mice with cardiomyocyte‐specific moderate expression of human β3‐AR (β3‐TG) and wild‐type (WT) littermates submitted to thoracic transverse aortic constriction (TAC) for 9 weeks. We observed a colocalization of β3‐AR with the AMP‐activated protein kinase (AMPK) both in neonatal rat and in adult mouse cardiomyocytes. Treatment of NRVM with PE induced hypertrophy and a decrease in phosphorylation of Thr172‐AMPK (/2, P = 0.0487) and phosphorylation of Ser79‐acetyl‐CoA carboxylase (ACC) (/2.6, P = 0.0317), inducing an increase in phosphorylated Ser235/236 S6 protein (×2.5, P = 0.0367) known to be involved in protein synthesis. These effects were reproduced by TAC in WT mice but restored to basal levels in β3‐AR expressing cells/mice. siRNA targeting of AMPK partly abrogated the anti‐hypertrophic effect of β3‐AR in response to PE in NRVM. Concomitant with hypertrophy, autophagy was decreased by PE, as measured by microtubule‐associated protein 1 light chain 3 (LC3)‐II/LC3‐I ratio (/2.6, P = 0.0010) and p62 abundance (×3, P = 0.0016) in NRVM or by TAC in WT mice (LC3‐II/LC3‐I ratio: /5.4, P = 0.0159), but preserved in human β3‐AR expressing cells and mice, together with reduced hypertrophy. Conclusions Cardiac‐specific moderate expression of β3‐AR inhibits the hypertrophic response in part through AMPK activation followed by inhibition of protein synthesis and preservation of autophagy. Activation of the cardiac β3‐AR pathway may provide future therapeutic avenues for the modulation of hypertrophic remodelling.
Collapse
Affiliation(s)
- Emilie Dubois-Deruy
- Institut de Recherche Expérimentale et Clinique (IREC), Pole of Pharmacology and Therapeutics (FATH), Université Catholique de Louvain (UCLouvain) and Cliniques Universitaires Saint-Luc, B1.57.04, 57 Avenue Hippocrate, Brussels, 1200, Belgium
| | - Roselle Gelinas
- Institut de Recherche Expérimentale et Clinique (IREC), Pole of Cardiovascular Pathology (CARD), Université Catholique de Louvain (UCLouvain) and Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Christophe Beauloye
- Institut de Recherche Expérimentale et Clinique (IREC), Pole of Cardiovascular Pathology (CARD), Université Catholique de Louvain (UCLouvain) and Cliniques Universitaires Saint-Luc, Brussels, Belgium.,Division of Cardiology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Hrag Esfahani
- Institut de Recherche Expérimentale et Clinique (IREC), Pole of Pharmacology and Therapeutics (FATH), Université Catholique de Louvain (UCLouvain) and Cliniques Universitaires Saint-Luc, B1.57.04, 57 Avenue Hippocrate, Brussels, 1200, Belgium
| | - Lauriane Y M Michel
- Institut de Recherche Expérimentale et Clinique (IREC), Pole of Pharmacology and Therapeutics (FATH), Université Catholique de Louvain (UCLouvain) and Cliniques Universitaires Saint-Luc, B1.57.04, 57 Avenue Hippocrate, Brussels, 1200, Belgium
| | - Chantal Dessy
- Institut de Recherche Expérimentale et Clinique (IREC), Pole of Pharmacology and Therapeutics (FATH), Université Catholique de Louvain (UCLouvain) and Cliniques Universitaires Saint-Luc, B1.57.04, 57 Avenue Hippocrate, Brussels, 1200, Belgium
| | - Luc Bertrand
- Institut de Recherche Expérimentale et Clinique (IREC), Pole of Cardiovascular Pathology (CARD), Université Catholique de Louvain (UCLouvain) and Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Jean-Luc Balligand
- Institut de Recherche Expérimentale et Clinique (IREC), Pole of Pharmacology and Therapeutics (FATH), Université Catholique de Louvain (UCLouvain) and Cliniques Universitaires Saint-Luc, B1.57.04, 57 Avenue Hippocrate, Brussels, 1200, Belgium
| |
Collapse
|
17
|
Jiang H, Zhang B, Jia D, Yang W, Sun A, Ge J. Insights from Exercise-induced Cardioprotection-from Clinical Application to Basic Research. Curr Pharm Des 2019; 25:3751-3761. [PMID: 31593529 DOI: 10.2174/1381612825666191008102047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 10/06/2019] [Indexed: 01/04/2023]
Abstract
Exercise has long been recognized as a beneficial living style for cardiovascular health. It has been applied to be a central component of cardiac rehabilitation for patients with chronic heart failure (CHF), coronary heart disease (CHD), post-acute coronary syndrome (ACS) or primary percutaneous coronary intervention (PCI), post cardiac surgery or transplantation. Although the effect of exercise is multifactorial, in this review, we focus on the specific contribution of regular exercise on the heart and vascular system. We will summarize the known result of clinical findings and possible mechanisms of chronic exercise on the cardiovascular system.
Collapse
Affiliation(s)
- Hao Jiang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Cardiovascular Diseases, Shanghai, China.,NHC Key Laboratory of Viral Heart Diseases, Shanghai, China.,Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Beijian Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Cardiovascular Diseases, Shanghai, China.,NHC Key Laboratory of Viral Heart Diseases, Shanghai, China.,Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Daile Jia
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Cardiovascular Diseases, Shanghai, China.,NHC Key Laboratory of Viral Heart Diseases, Shanghai, China.,Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Wenlong Yang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Cardiovascular Diseases, Shanghai, China.,NHC Key Laboratory of Viral Heart Diseases, Shanghai, China.,Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Aijun Sun
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Cardiovascular Diseases, Shanghai, China.,NHC Key Laboratory of Viral Heart Diseases, Shanghai, China.,Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Beijing, China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Cardiovascular Diseases, Shanghai, China.,NHC Key Laboratory of Viral Heart Diseases, Shanghai, China.,Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Beijing, China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
18
|
Wang L, Yuan D, Zheng J, Wu X, Wang J, Liu X, He Y, Zhang C, Liu C, Wang T, Zhou Z. Chikusetsu saponin IVa attenuates isoprenaline-induced myocardial fibrosis in mice through activation autophagy mediated by AMPK/mTOR/ULK1 signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 58:152764. [PMID: 31005723 DOI: 10.1016/j.phymed.2018.11.024] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 11/17/2018] [Accepted: 11/17/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Myocardial fibrosis is a common pathological manifestation of many cardiovascular diseases at the end stage. Autophagy has been demonstrated to play a protective role in the cardiac fibrosis. Our previous studies have demonstrated that the Saponins from Panax japonicus effectively ameliorated the degree of fibrosis in rat acute myocardial ischemia injury model though the mechanisms are not clear. HYPOTHESIS We hypothesized that Chikusetsusaponin IVa (CS), a major component of Saponins from Panaxjaponicus, may improve isoprenaline induced myocardial fibrosis via AMPK/mTOR/ULK1 mediated autophagy METHODS: Continuous subcutaneous injection of isoproterenol for 21 days was used to induce myocardial fibrosis in mice and high and low doses (15 mg/kg and 5 mg/kg) of CS was administered by oral gavage to observe the efficacy. Animals were sacrificed 12 h after the last administration and samples were collected. H&E staining, Masson staining and wheat germ agglutinin (WGA) staining were used to evaluate histopathological changes, collagen deposition and myocardial cell hypertrophy. Autophagy-related markers (LC3β, Beclin1 and p62) and AMPK/mTOR/ULK1 pathway-related markers were evaluated by western blot. RESULTS CS effectively attenuated isoprenaline-induced myocardial fibrosis in vivo, reduced the heart index, inhibited inflammatory infiltration, decreased collagen deposition and myocardial cell size. CS treatment rescued the expression of autophagy-related markers. CS activated autophagy through the activation of AMPK, which in turn inhibited the phosphorylation of mTOR and ULK1(Ser757), rather than directly phosphorylate ULK1(Ser555) by AMPK. CONCLUSION Our data demonstrated that CS attenuated isoprenaline-induced myocardial fibrosis by activating autophagy through AMPK/mTOR/ULK1 pathway. Our findings suggested that CS is a potential candidate drug against cardiac fibrosis and have identified potential drug targets for the treatment of heart diseases.
Collapse
Affiliation(s)
- Luopei Wang
- Medical College of China Three Gorges University, Yichang 443002, PR China
| | - Ding Yuan
- RENHE Hospital of China Three Gorges University, Yichang 443000, PR China
| | - Jie Zheng
- Medical College of China Three Gorges University, Yichang 443002, PR China
| | - Xuecui Wu
- Medical College of China Three Gorges University, Yichang 443002, PR China
| | - Juntao Wang
- Medical College of China Three Gorges University, Yichang 443002, PR China
| | - Xiu Liu
- Medical College of China Three Gorges University, Yichang 443002, PR China
| | - Yumin He
- Medical College of China Three Gorges University, Yichang 443002, PR China
| | - Changcheng Zhang
- Medical College of China Three Gorges University, Yichang 443002, PR China
| | - Chaoqi Liu
- Medical College of China Three Gorges University, Yichang 443002, PR China
| | - Ting Wang
- Medical College of China Three Gorges University, Yichang 443002, PR China; Yichang Key Laboratory of ischemic cardiovascular and cerebrovascular disease translational medicine (Three Gorges University), Yichang 443000, PR China.
| | - Zhiyong Zhou
- Medical College of China Three Gorges University, Yichang 443002, PR China; Yichang Key Laboratory of ischemic cardiovascular and cerebrovascular disease translational medicine (Three Gorges University), Yichang 443000, PR China.
| |
Collapse
|
19
|
Moral-Sanz J, Lewis SA, MacMillan S, Ross FA, Thomson A, Viollet B, Foretz M, Moran C, Hardie DG, Evans AM. The LKB1-AMPK-α1 signaling pathway triggers hypoxic pulmonary vasoconstriction downstream of mitochondria. Sci Signal 2018; 11:11/550/eaau0296. [PMID: 30279167 DOI: 10.1126/scisignal.aau0296] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Hypoxic pulmonary vasoconstriction (HPV), which aids ventilation-perfusion matching in the lungs, is triggered by mechanisms intrinsic to pulmonary arterial smooth muscles. The unique sensitivity of these muscles to hypoxia is conferred by mitochondrial cytochrome c oxidase subunit 4 isoform 2, the inhibition of which has been proposed to trigger HPV through increased generation of mitochondrial reactive oxygen species. Contrary to this model, we have shown that the LKB1-AMPK-α1 signaling pathway is critical to HPV. Spectral Doppler ultrasound revealed that deletion of the AMPK-α1 catalytic subunit blocked HPV in mice during mild (8% O2) and severe (5% O2) hypoxia, whereas AMPK-α2 deletion attenuated HPV only during severe hypoxia. By contrast, neither of these genetic manipulations affected serotonin-induced reductions in pulmonary vascular flow. HPV was also attenuated by reduced expression of LKB1, a kinase that activates AMPK during energy stress, but not after deletion of CaMKK2, a kinase that activates AMPK in response to increases in cytoplasmic Ca2+ Fluorescence imaging of acutely isolated pulmonary arterial myocytes revealed that AMPK-α1 or AMPK-α2 deletion did not affect mitochondrial membrane potential during normoxia or hypoxia. However, deletion of AMPK-α1, but not of AMPK-α2, blocked hypoxia from inhibiting KV1.5, the classical "oxygen-sensing" K+ channel in pulmonary arterial myocytes. We conclude that LKB1-AMPK-α1 signaling pathways downstream of mitochondria are critical for the induction of HPV, in a manner also supported by AMPK-α2 during severe hypoxia.
Collapse
Affiliation(s)
- Javier Moral-Sanz
- Centre for Discovery Brain Sciences and Cardiovascular Science, College of Medicine and Veterinary Medicine, Hugh Robson Building, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Sophronia A Lewis
- Centre for Discovery Brain Sciences and Cardiovascular Science, College of Medicine and Veterinary Medicine, Hugh Robson Building, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Sandy MacMillan
- Centre for Discovery Brain Sciences and Cardiovascular Science, College of Medicine and Veterinary Medicine, Hugh Robson Building, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Fiona A Ross
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Adrian Thomson
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Benoit Viollet
- Institut Cochin, INSERM U1016, Sorbonne Paris cité, 75014 Paris, France.,CNRS UMR 8104, Sorbonne Paris cité, 75014 Paris, France.,Université Paris Descartes, Sorbonne Paris cité, 75014 Paris, France
| | - Marc Foretz
- Institut Cochin, INSERM U1016, Sorbonne Paris cité, 75014 Paris, France.,CNRS UMR 8104, Sorbonne Paris cité, 75014 Paris, France.,Université Paris Descartes, Sorbonne Paris cité, 75014 Paris, France
| | - Carmel Moran
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - D Grahame Hardie
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - A Mark Evans
- Centre for Discovery Brain Sciences and Cardiovascular Science, College of Medicine and Veterinary Medicine, Hugh Robson Building, University of Edinburgh, Edinburgh EH8 9XD, UK.
| |
Collapse
|
20
|
Li Y, Zhang D, Kong L, Shi H, Tian X, Gao L, Liu Y, Wu L, Du B, Huang Z, Liang C, Wang Z, Yao R, Zhang Y. Aldolase promotes the development of cardiac hypertrophy by targeting AMPK signaling. Exp Cell Res 2018; 370:78-86. [PMID: 29902536 DOI: 10.1016/j.yexcr.2018.06.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 05/27/2018] [Accepted: 06/10/2018] [Indexed: 12/20/2022]
Abstract
Metabolic dysfunction is a hallmark of cardiac hypertrophy and heart failure. During cardiac failure, the metabolism of cardiomyocyte switches from fatty acid oxidation to glycolysis. However, the roles of key metabolic enzymes in cardiac hypertrophy are not understood fully. Here in the present work, we identified Aldolase A (AldoA) as a core regulator of cardiac hypertrophy. The mRNA and protein levels of AldoA were significantly up-regulated in transverse aortic constriction (TAC)- and isoproterenol (ISO)-induced hypertrophic mouse hearts. Overexpression of AldoA in cardiomyocytes promoted ISO-induced cardiomyocyte hypertrophy, whereas AldoA knockdown repressed cardiomyocyte hypertrophy. In addition, adeno-associated virus 9 (AAV9)-mediated in vivo knockdown of AldoA in the hearts rescued ISO-induced decrease in cardiac ejection fraction and fractional shortening and repressed cardiac hypertrophy. Mechanism study revealed that AldoA repressed the activation of AMP-dependent protein kinase (AMPK) signaling in a liver kinase B1 (LKB1)-dependent and AMP-independent manner. Inactivation of AMPK is a core mechanism underlying AldoA-mediated promotion of ISO-induced cardiomyocyte hypertrophy. By contrast, activation of AMPK with metformin and AICAR blocked AldoA function during cardiomyocyte hypertrophy. In summary, our data support the notion that AldoA-AMPK axis is a core regulatory signaling sensing energetic status and participates in cardiac hypertrophy.
Collapse
Affiliation(s)
- Yapeng Li
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dianhong Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lingyao Kong
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huiting Shi
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinyu Tian
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lu Gao
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuzhou Liu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Leiming Wu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Binbin Du
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhen Huang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Cui Liang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zheng Wang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Rui Yao
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanzhou Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
21
|
Glosse P, Feger M, Mutig K, Chen H, Hirche F, Hasan AA, Gaballa MMS, Hocher B, Lang F, Föller M. AMP-activated kinase is a regulator of fibroblast growth factor 23 production. Kidney Int 2018; 94:491-501. [PMID: 29861059 DOI: 10.1016/j.kint.2018.03.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 03/01/2018] [Accepted: 03/08/2018] [Indexed: 12/20/2022]
Abstract
Fibroblast growth factor 23 (FGF23) is a proteohormone regulating renal phosphate transport and vitamin D metabolism as well as inducing left heart hypertrophy. FGF23-deficient mice suffer from severe tissue calcification, accelerated aging and a myriad of aging-associated diseases. Bone cells produce FGF23 upon store-operated calcium ion entry (SOCE) through the calcium selective ion channel Orai1. AMP-activated kinase (AMPK) is a powerful energy sensor helping cells survive states of energy deficiency, and AMPK down-regulates Orai1. Here we investigated the role of AMPK in FGF23 production. Fgf23 gene transcription was analyzed by qRT-PCR and SOCE by fluorescence optics in UMR106 osteoblast-like cells while the serum FGF23 concentration and phosphate metabolism were assessed in AMPKα1-knockout and wild-type mice. The AMPK activator, 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) down-regulated, whereas the AMPK inhibitor, dorsomorphin dihydrochloride (compound C) and AMPK gene silencing induced Fgf23 transcription. AICAR decreased membrane abundance of Orai1 and SOCE. SOCE inhibitors lowered Fgf23 gene expression induced by AMPK inhibition. AMPKα1-knockout mice had a higher serum FGF23 concentration compared to wild-type mice. Thus, AMPK participates in the regulation of FGF23 production in vitro and in vivo. The inhibitory effect of AMPK on FGF23 production is at least in part mediated by Orai1-involving SOCE.
Collapse
Affiliation(s)
- Philipp Glosse
- Department of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Martina Feger
- Department of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Kerim Mutig
- Department of Anatomy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Hong Chen
- Department of Physiology I, Eberhard-Karls University of Tübingen, Tübingen, Germany
| | - Frank Hirche
- Department of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | | | | | - Berthold Hocher
- Department of Nutritional Sciences, University of Potsdam, Potsdam, Germany
| | - Florian Lang
- Department of Physiology I, Eberhard-Karls University of Tübingen, Tübingen, Germany
| | - Michael Föller
- Department of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.
| |
Collapse
|
22
|
Cao H, Wang X, Ying S, Huang C. AMPKα2 deficiency enhanced susceptibility to ventricular arrhythmias in mice by the role of β-adrenoceptor signaling. Exp Biol Med (Maywood) 2018; 243:708-714. [PMID: 29597876 DOI: 10.1177/1535370218767389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
AMP-activated protein kinase-α2 is the main catalytic subunit of the heart, which is mainly located in cardiac myocytes. The effect of AMP-activated protein kinase-α2 on the cardiac electrophysiology is barely studied. From the previous study, it is possible that AMP-activated protein kinase-α2 may have some effect on the electrophysiology of the heart. To prove the hypothesis, we used the AMP-activated protein kinase-α2 knockout (AMPKα2-/-) mice to estimate the electrophysiological characteristics of AMPKα2-/- mice and try to find the mechanism between them. We used AMP-activated protein kinase-α2 gene knockout (AMPKα2-/-) mice and control wild-type mice as the experimental animals. In the experiment, we measured the monophasic action potential duration and test the inducibility to ventricular arrhythmia in isolated mice heart with and without β-adrenoceptor antagonist metoprolol. Meanwhile, plasma concentration of catecholamine was collected. We found that AMPKα2-/- significantly shortened 90% repolarization of monophasic action potential (MAP) (MAPD90) than wild-type (47.4 ± 2.6 ms vs. 55.5 ± 2.4 ms, n = 10, P < 0.05) and were more vulnerable to be induced to ventricular arrhythmias (70% (7/10) vs. 10% (1/10), P < 0.05), accompanied by the higher concentration of catecholamine (epinephrine: 1.75 ± 0.18 nmol/L vs. 0.68 ± 0.10 nmol/L n = 10, P < 0.05; norepinephrine: 9.56 ± 0.71 nmol/L vs. 2.52 ± 0.31 nmol/L n = 10, P < 0.05). The shortening of MAPD90 and increased inducibility to ventricular arrhythmias of AMPKα2-/- could almost be abolished when perfusion with β-adrenoceptor antagonist metoprolol. It indicated that the β-adrenoceptor activation resulting from catecholamine release was mainly responsible for the relating changes of electrophysiology of AMPKα2-/-. It had great clinical significance, as in patients who had problem with AMP-activated protein kinase-α2 gene, we might use β-adrenoceptor antagonists as the prevention of arrhythmias in future. Impact statement As far as we know, this is the first time the role of AMP-activated protein kinase-α2 (AMPKα2) on the cardiac electrophysiology is explored, and we found that the β-adrenoceptor activation resulting from catecholamine release was mainly responsible for the changes of electrophysiology related to the absence of AMPKα2. This has great clinical significance, as in patients who have problems with AMPKα2 gene, we may use β-adrenoceptor antagonists for the prevention of arrhythmias in future.
Collapse
Affiliation(s)
- Hong Cao
- 1 Departments of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China.,2 Department of Gerontology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China.,3 Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China.,4 Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Xin Wang
- 1 Departments of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China.,3 Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China.,4 Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Shaozheng Ying
- 1 Departments of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China.,3 Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China.,4 Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Congxin Huang
- 1 Departments of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China.,3 Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China.,4 Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| |
Collapse
|
23
|
Gélinas R, Mailleux F, Dontaine J, Bultot L, Demeulder B, Ginion A, Daskalopoulos EP, Esfahani H, Dubois-Deruy E, Lauzier B, Gauthier C, Olson AK, Bouchard B, Des Rosiers C, Viollet B, Sakamoto K, Balligand JL, Vanoverschelde JL, Beauloye C, Horman S, Bertrand L. AMPK activation counteracts cardiac hypertrophy by reducing O-GlcNAcylation. Nat Commun 2018; 9:374. [PMID: 29371602 PMCID: PMC5785516 DOI: 10.1038/s41467-017-02795-4] [Citation(s) in RCA: 171] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 12/28/2017] [Indexed: 12/11/2022] Open
Abstract
AMP-activated protein kinase (AMPK) has been shown to inhibit cardiac hypertrophy. Here, we show that submaximal AMPK activation blocks cardiomyocyte hypertrophy without affecting downstream targets previously suggested to be involved, such as p70 ribosomal S6 protein kinase, calcineurin/nuclear factor of activated T cells (NFAT) and extracellular signal-regulated kinases. Instead, cardiomyocyte hypertrophy is accompanied by increased protein O-GlcNAcylation, which is reversed by AMPK activation. Decreasing O-GlcNAcylation by inhibitors of the glutamine:fructose-6-phosphate aminotransferase (GFAT), blocks cardiomyocyte hypertrophy, mimicking AMPK activation. Conversely, O-GlcNAcylation-inducing agents counteract the anti-hypertrophic effect of AMPK. In vivo, AMPK activation prevents myocardial hypertrophy and the concomitant rise of O-GlcNAcylation in wild-type but not in AMPKα2-deficient mice. Treatment of wild-type mice with O-GlcNAcylation-inducing agents reverses AMPK action. Finally, we demonstrate that AMPK inhibits O-GlcNAcylation by mainly controlling GFAT phosphorylation, thereby reducing O-GlcNAcylation of proteins such as troponin T. We conclude that AMPK activation prevents cardiac hypertrophy predominantly by inhibiting O-GlcNAcylation.
Collapse
Affiliation(s)
- Roselle Gélinas
- Pole of Cardiovascular Research, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, 1200, Belgium
| | - Florence Mailleux
- Pole of Cardiovascular Research, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, 1200, Belgium
| | - Justine Dontaine
- Pole of Cardiovascular Research, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, 1200, Belgium
| | - Laurent Bultot
- Pole of Cardiovascular Research, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, 1200, Belgium
| | - Bénédicte Demeulder
- Pole of Cardiovascular Research, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, 1200, Belgium
| | - Audrey Ginion
- Pole of Cardiovascular Research, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, 1200, Belgium
| | - Evangelos P Daskalopoulos
- Pole of Cardiovascular Research, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, 1200, Belgium
| | - Hrag Esfahani
- Pole of Pharmacotherapy, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, 1200, Belgium
| | - Emilie Dubois-Deruy
- Pole of Pharmacotherapy, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, 1200, Belgium
| | - Benjamin Lauzier
- l'institut du thorax, INSERM, CNRS, Univ. Nantes, Nantes, 44007, France
| | - Chantal Gauthier
- l'institut du thorax, INSERM, CNRS, Univ. Nantes, Nantes, 44007, France
| | - Aaron K Olson
- Department of Pediatrics, University of Washington School of Medicine and Seattle Children's Research Institute, Seattle, 98105-0371, WA, USA.,Montreal Heart Institute, Montreal, H1T 1C8, Canada
| | | | - Christine Des Rosiers
- Montreal Heart Institute, Montreal, H1T 1C8, Canada.,Department of Nutrition, Université de Montréal, Montreal, H3T 1A8, Canada
| | - Benoit Viollet
- Institut Cochin, INSERM U1016, 75014, Paris, France.,CNRS UMR8104, 75014, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, 75014, France
| | - Kei Sakamoto
- Nestlé Institute of Health Sciences SA, Lausanne, 1015, Switzerland
| | - Jean-Luc Balligand
- Pole of Pharmacotherapy, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, 1200, Belgium
| | - Jean-Louis Vanoverschelde
- Pole of Cardiovascular Research, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, 1200, Belgium.,Division of Cardiology, Cliniques Universitaires Saint-Luc, Brussels, 1200, Belgium
| | - Christophe Beauloye
- Pole of Cardiovascular Research, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, 1200, Belgium.,Division of Cardiology, Cliniques Universitaires Saint-Luc, Brussels, 1200, Belgium
| | - Sandrine Horman
- Pole of Cardiovascular Research, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, 1200, Belgium
| | - Luc Bertrand
- Pole of Cardiovascular Research, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, 1200, Belgium.
| |
Collapse
|
24
|
Feng Y, Zhang Y, Xiao H. AMPK and cardiac remodelling. SCIENCE CHINA-LIFE SCIENCES 2017; 61:14-23. [PMID: 29170891 DOI: 10.1007/s11427-017-9197-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 08/11/2017] [Indexed: 12/17/2022]
Abstract
Cardiac remodelling is generally accepted as a critical process in the progression of heart failure. Myocyte hypertrophy, inflammatory responses and cardiac fibrosis are the main pathological changes associated with cardiac remodelling. AMP-activated protein kinase (AMPK) is known as an energy sensor and a regulator of cardiac metabolism under normal and ischaemic conditions. Additionally, AMPK has been shown to play roles in cardiac remodelling extending well beyond metabolic regulation. In this review, we discuss the currently defined roles of AMPK in cardiac remodelling and summarize the effects of AMPK on cardiac hypertrophy, inflammatory responses and fibrosis and the molecular mechanisms underlying these effects. In addition, we discuss some pharmacological activators of AMPK that are promising treatments for cardiac remodelling.
Collapse
Affiliation(s)
- Yenan Feng
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China
| | - Youyi Zhang
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China
| | - Han Xiao
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China.
| |
Collapse
|
25
|
Li J, Yuan YP, Xu SC, Zhang N, Xu CR, Wan CX, Ren J, Zeng XF, Tang QZ. Arctiin protects against cardiac hypertrophy through inhibiting MAPKs and AKT signaling pathways. J Pharmacol Sci 2017; 135:97-104. [DOI: 10.1016/j.jphs.2017.05.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 05/11/2017] [Accepted: 05/15/2017] [Indexed: 12/20/2022] Open
|
26
|
Wang J, Song Y, Li H, Shen Q, Shen J, An X, Wu J, Zhang J, Wu Y, Xiao H, Zhang Y. Exacerbated cardiac fibrosis induced by β-adrenergic activation in old mice due to decreased AMPK activity. Clin Exp Pharmacol Physiol 2017; 43:1029-1037. [PMID: 27389807 DOI: 10.1111/1440-1681.12622] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 07/03/2016] [Accepted: 07/06/2016] [Indexed: 12/26/2022]
Abstract
Senescent hearts exhibit defective responses to β-adrenergic receptor (β-AR) over-activation upon stress, leading to more severe pathological cardiac remodelling. However, the underlying mechanisms remain unclear. Here, we investigated the role of adenosine monophosphate-activated protein kinase (AMPK) in protecting against ageing-associated cardiac remodelling in mice upon β-AR over-activation. 10-week-old (young) and 18-month-old (old) mice were subcutaneously injected with the β-AR agonist isoproterenol (ISO; 5 mg/kg). More extensive cardiac fibrosis was found in old mice upon ISO exposure than in young mice. Meanwhile, ISO treatment decreased AMPK activity and increased β-arrestin 1, but not β-arrestin 2, expression, and the effects of ISO on AMPK and β-arrestin 1 were greater in old mice than in young mice. Similarly, young AMPKα2-knockout (KO) mice showed more extensive cardiac fibrosis upon ISO exposure than that was observed in age-matched wild-type (WT) littermates. The extent of cardiac fibrosis in WT old mice was similar to that in young KO mice. Additionally, AMPK activities were decreased and β-arrestin 1 expression increased in KO mice. In contrast, the AMPK activator metformin decreased β-arrestin 1 expression and attenuated cardiac fibrosis in both young and old mice upon ISO exposure. In conclusion, more severe cardiac fibrosis is induced by ISO in old mice than in young mice. A decrease in AMPK activity, which further increases β-arrestin 1 expression, is the central mechanism underlying the ageing-related cardiac fibrosis induced by ISO. The AMPK activator metformin is a promising therapeutic agent for treating ageing-related cardiac remodelling upon β-AR over-activation.
Collapse
Affiliation(s)
- Jingjing Wang
- Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
| | - Yao Song
- Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
| | - Hao Li
- Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
| | - Qiang Shen
- Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
| | - Jing Shen
- Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
| | - Xiangbo An
- Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
| | - Jimin Wu
- Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
| | - Jianshu Zhang
- Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
| | - Yunong Wu
- Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
| | - Han Xiao
- Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China.
| | - Youyi Zhang
- Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China.
| |
Collapse
|
27
|
Peterzan MA, Lygate CA, Neubauer S, Rider OJ. Metabolic remodeling in hypertrophied and failing myocardium: a review. Am J Physiol Heart Circ Physiol 2017. [PMID: 28646030 DOI: 10.1152/ajpheart.00731.2016] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The energy starvation hypothesis proposes that maladaptive metabolic remodeling antedates, initiates, and maintains adverse contractile dysfunction in heart failure (HF). Better understanding of the cardiac metabolic phenotype and metabolic signaling could help identify the role metabolic remodeling plays within HF and the conditions known to transition toward HF, including "pathological" hypertrophy. In this review, we discuss metabolic phenotype and metabolic signaling in the contexts of pathological hypertrophy and HF. We discuss the significance of alterations in energy supply (substrate utilization, oxidative capacity, and phosphotransfer) and energy sensing using observations from human and animal disease models and models of manipulated energy supply/sensing. We aim to provide ways of thinking about metabolic remodeling that center around metabolic flexibility, capacity (reserve), and efficiency rather than around particular substrate preferences or transcriptomic profiles. We show that maladaptive metabolic remodeling takes multiple forms across multiple energy-handling domains. We suggest that lack of metabolic flexibility and reserve (substrate, oxidative, and phosphotransfer) represents a final common denominator ultimately compromising efficiency and contractile reserve in stressful contexts.
Collapse
Affiliation(s)
- Mark A Peterzan
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Craig A Lygate
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Stefan Neubauer
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Oliver J Rider
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| |
Collapse
|
28
|
Abstract
The AMP-activated protein kinase (AMPK) is a key regulator of cellular and whole-body energy homeostasis, which acts to restore energy homoeostasis whenever cellular energy charge is depleted. Over the last 2 decades, it has become apparent that AMPK regulates several other cellular functions and has specific roles in cardiovascular tissues, acting to regulate cardiac metabolism and contractile function, as well as promoting anticontractile, anti-inflammatory, and antiatherogenic actions in blood vessels. In this review, we discuss the role of AMPK in the cardiovascular system, including the molecular basis of mutations in AMPK that alter cardiac physiology and the proposed mechanisms by which AMPK regulates vascular function under physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- Ian P Salt
- From the Institute of Cardiovascular & Medical Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Scotland, United Kingdom (I.P.S.); and Division of Cell Signalling & Immunology, School of Life Sciences, University of Dundee, Scotland, United Kingdom (D.G.H.).
| | - D Grahame Hardie
- From the Institute of Cardiovascular & Medical Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Scotland, United Kingdom (I.P.S.); and Division of Cell Signalling & Immunology, School of Life Sciences, University of Dundee, Scotland, United Kingdom (D.G.H.)
| |
Collapse
|
29
|
Matsumura N, Robertson IM, Hamza SM, Soltys CLM, Sung MM, Masson G, Beker DL, Dyck JRB. A novel complex I inhibitor protects against hypertension-induced left ventricular hypertrophy. Am J Physiol Heart Circ Physiol 2017; 312:H561-H570. [PMID: 28062414 DOI: 10.1152/ajpheart.00604.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 12/18/2016] [Accepted: 01/03/2017] [Indexed: 11/22/2022]
Abstract
Since left ventricular hypertrophy (LVH) increases the susceptibility for the development of other cardiac conditions, pharmacotherapy that mitigates pathological cardiac remodeling may prove to be beneficial in patients with LVH. Previous work has shown that the activation of the energy-sensing kinase AMP-activated protein kinase (AMPK) can inhibit some of the molecular mechanisms that are involved in LVH. Of interest, metformin activates AMPK through its inhibition of mitochondrial complex I in the electron transport chain and can prevent LVH induced by pressure overload. However, metformin has additional cellular effects unrelated to AMPK activation, raising questions about whether mitochondrial complex I inhibition is sufficient to reduce LVH. Herein, we characterize the cardiac effects of a novel compound (R118), which is a more potent complex I inhibitor than metformin and is thus used at a much lower concentration. We show that R118 activates AMPK in the cardiomyocyte, inhibits multiple signaling pathways involved in LVH, and prevents Gq protein-coupled receptor agonist-induced prohypertrophic signaling. We also show that in vivo administration of R118 prevents LVH in a mouse model of hypertension, suggesting that R118 can directly modulate the response of the cardiomyocyte to stress. Of importance, we also show that while R118 treatment prevents adaptive remodelling in response to elevated afterload, it does so without compromising systolic function, improves myocardial energetics, and prevents a decline in diastolic function in hypertensive mice. Taken together, our data suggest that inhibition of mitochondrial complex I may be worthy of future investigation for the treatment of LVH.NEW & NOTEWORTHY Inhibition of mitochondrial complex I by R118 reduces left ventricular hypertrophy (LVH) and improves myocardial energetics as well as diastolic function without compromising systolic function. Together, these effects demonstrate the therapeutic potential of complex I inhibitors in the treatment of LVH, even in the presence of persistent hypertension.
Collapse
Affiliation(s)
- Nobutoshi Matsumura
- Department of Pediatrics, Faculty of Medicine and Dentistry, Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Ian M Robertson
- Department of Pediatrics, Faculty of Medicine and Dentistry, Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Shereen M Hamza
- Department of Pediatrics, Faculty of Medicine and Dentistry, Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Carrie-Lynn M Soltys
- Department of Pediatrics, Faculty of Medicine and Dentistry, Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Miranda M Sung
- Department of Pediatrics, Faculty of Medicine and Dentistry, Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Grant Masson
- Department of Pediatrics, Faculty of Medicine and Dentistry, Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Donna L Beker
- Department of Pediatrics, Faculty of Medicine and Dentistry, Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Jason R B Dyck
- Department of Pediatrics, Faculty of Medicine and Dentistry, Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
30
|
Ma ZG, Dai J, Zhang WB, Yuan Y, Liao HH, Zhang N, Bian ZY, Tang QZ. Protection against cardiac hypertrophy by geniposide involves the GLP-1 receptor / AMPKα signalling pathway. Br J Pharmacol 2016; 173:1502-16. [PMID: 26845648 DOI: 10.1111/bph.13449] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 01/16/2016] [Accepted: 01/22/2016] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND AND PURPOSE Activation of glucagon-like peptide-1 (GLP-1) receptor exerts a range of cardioprotective effects. Geniposide is an agonist of GLP-1 receptor, but its role in cardiac hypertrophy remains completely unknown. Here, we have investigated its protective effects and clarified the underlying molecular mechanisms. EXPERIMENTAL APPROACH The transverse aorta was constricted in C57/B6 mice and then geniposide was given orally for 7 weeks. Morphological changes, echocardiographic parameters, histological analyses and hypertrophic markers were used to evaluate hypertrophy. KEY RESULTS Geniposide inhibited the hypertrophic response induced by constriction of the transverse aorta or by isoprenaline. Activation of 5'-AMP-activated protein kinase-α (AMPKα) and inhibition of mammalian target of rapamycin, ERK and endoplasmic reticulum stress were observed in hypertrophic hearts that were treated with geniposide. Furthermore, Compound C (CpC) or knock-down of AMPKα restricted protection of geniposide against cell hypertrophy and activation of mammalian target of rapamycin and ERK induced by hypertrophic stimuli. CpC or shAMPKα also abolished the protection of geniposide against endoplasmic reticulum stress induced by thapsigargin or dihtiothreitol. The cardio-protective effects of geniposide were ablated in mice subjected to CpC. GLP-1receptor blockade counteracted the anti-hypertrophic response and activation of AMPKα by geniposide. Knock-down of GLP-1 receptor also offset the inhibitory effects of geniposide on cardiac hypertrophy in vivo. CONCLUSIONS AND IMPLICATIONS Geniposide protected against cardiac hypertrophy via activation of the GLP-1 receptor/AMPKα pathway. Geniposide is a potential therapeutic drug for cardiac hypertrophy.
Collapse
Affiliation(s)
- Zhen-Guo Ma
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, China
| | - Jia Dai
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, China
| | - Wen-Bin Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, China
| | - Yuan Yuan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, China
| | - Hai-Han Liao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, China
| | - Ning Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, China
| | - Zhou-Yan Bian
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, China
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, China
| |
Collapse
|
31
|
AMPK in cardiac fibrosis and repair: Actions beyond metabolic regulation. J Mol Cell Cardiol 2016; 91:188-200. [PMID: 26772531 DOI: 10.1016/j.yjmcc.2016.01.001] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/28/2015] [Accepted: 01/04/2016] [Indexed: 02/06/2023]
Abstract
Fibrosis is a general term encompassing a plethora of pathologies that span all systems and is marked by increased deposition of collagen. Injury of variable etiology gives rise to complex cascades involving several cell-types and molecular signals, leading to the excessive accumulation of extracellular matrix that promotes fibrosis and eventually leads to organ failure. Cardiac fibrosis is a dynamic process associated notably with ischemia, hypertrophy, volume- and pressure-overload, aging and diabetes mellitus. It has profoundly deleterious consequences on the normal architecture and functioning of the myocardium and is associated with considerable mortality and morbidity. The AMP-activated protein kinase (AMPK) is a ubiquitously expressed cellular energy sensor and an essential component of the adaptive response to cardiomyocyte stress that occurs during ischemia. Nevertheless, its actions extend well beyond its energy-regulating role and it appears to possess an essential role in regulating fibrosis of the myocardium. In this review paper, we will summarize the main elements and crucial players of cardiac fibrosis. In addition, we will provide an overview of the diverse roles of AMPK in the heart and discuss in detail its implication in cardiac fibrosis. Lastly, we will highlight the recently published literature concerning AMPK-targeting current therapy and novel strategies aiming to attenuate fibrosis.
Collapse
|
32
|
Daskalopoulos EP, Dufeys C, Beauloye C, Bertrand L, Horman S. AMPK in Cardiovascular Diseases. EXPERIENTIA SUPPLEMENTUM (2012) 2016; 107:179-201. [PMID: 27812981 DOI: 10.1007/978-3-319-43589-3_8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This chapter summarizes the implication of AMP-activated protein kinase (AMPK) in the regulation of various physiological and pathological cellular events of great importance for the maintenance of cardiac function. These include the control of both metabolic and non-metabolic elements targeting the different cellular components of the cardiac tissue, i.e., cardiomyocytes, fibroblasts, and vascular cells. The description of the multifaceted action of the two AMPK catalytic isoforms, α1 and α2, emphasizes the general protective action of this protein kinase against the development of critical pathologies like myocardial ischemia, cardiac hypertrophy, diabetic cardiomyopathy, and heart failure.
Collapse
Affiliation(s)
- Evangelos P Daskalopoulos
- Université catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pole of Cardiovascular Research, Brussels, Belgium.,Cardiovascular Research (Care) Institute, Athens, Ioannina, Greece
| | - Cécile Dufeys
- Université catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pole of Cardiovascular Research, Brussels, Belgium
| | - Christophe Beauloye
- Université catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pole of Cardiovascular Research, Brussels, Belgium.,Division of Cardiology, Cliniques universitaires Saint-Luc, Brussels, Belgium
| | - Luc Bertrand
- Université catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pole of Cardiovascular Research, Brussels, Belgium.
| | - Sandrine Horman
- Université catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pole of Cardiovascular Research, Brussels, Belgium
| |
Collapse
|
33
|
Berberine treatment prevents cardiac dysfunction and remodeling through activation of 5'-adenosine monophosphate-activated protein kinase in type 2 diabetic rats and in palmitate-induced hypertrophic H9c2 cells. Eur J Pharmacol 2015; 769:55-63. [PMID: 26522928 DOI: 10.1016/j.ejphar.2015.10.043] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 10/20/2015] [Accepted: 10/26/2015] [Indexed: 01/04/2023]
Abstract
Diabetic cardiomyopathy is the major cause of death in type 2 diabetic patients. Berberine is an isoquinoline alkaloid extract from traditional chinese herbs and its hypoglycemic and hypolipidemic effects make it a promising drug for treatment of type 2 diabetes. We examined if berberine improved cardiac function and attenuated cardiac hypertrophy and fibrosis in high fat diet and streptozotocin induced-type 2 diabetic rats in vivo and reduced expression of hypertrophy markers in palmitate-induced hypertrophic H9c2 cells in vitro. Treatment of diabetic animals with berberine partially improved cardiac function and restored fasting blood insulin, fasting blood glucose, total cholesterol, and triglyceride levels to that of control. In addition, berberine treatment of diabetic animals increased cardiac 5'-adenosine monophosphate-activated protein kinase (AMPK) and protein kinase B (AKT) activation and reduced glycogen synthase kinase 3 beta (GSK3β) activation compared to control. Palmitate incubation of H9c2 cells resulted in cellular hypertrophy and decreased expression of alpha-myosin heavy chain (α-MHC) and increased expression of beta-myosin heavy chain (β-MHC) compared to controls. Berberine treatment of palmitate-incubated H9c2 cells reduced hypertrophy, increased α-MHC expression and decreased β-MHC expression. In addition, berberine treatment of palmitate-incubated H9c2 cells increased AMPK and AKT activation and reduced GSK3β activation. The presence of the AMPK inhibitor Compound C attenuated the effects of berberine. The results strongly indicate that berberine treatment may be protective against the development of diabetic cardiomyopathy.
Collapse
|
34
|
Sung MM, Zordoky BN, Bujak AL, Lally JSV, Fung D, Young ME, Horman S, Miller EJ, Light PE, Kemp BE, Steinberg GR, Dyck JRB. AMPK deficiency in cardiac muscle results in dilated cardiomyopathy in the absence of changes in energy metabolism. Cardiovasc Res 2015; 107:235-45. [PMID: 26023060 DOI: 10.1093/cvr/cvv166] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 05/21/2015] [Indexed: 12/25/2022] Open
Abstract
AIMS AMP-activated protein kinase (AMPK) is thought to be a central player in regulating myocardial metabolism and its activation has been shown to inhibit cardiac hypertrophy. Recently, mice with muscle-specific deletion of AMPK β1/β2 subunits (AMPKβ1β2-deficient mice, β1β2M-KO) have been generated and possess <10% of normal AMPK activity in muscle. However, how/if dramatic AMPK deficiency alters cardiac metabolism, function, or morphology has not been investigated. Therefore, the aim of this study was to determine whether a significant loss of AMPK activity alters cardiac function, metabolism, and hypertrophy, and whether this may play a role in the pathogenesis of heart failure. METHODS AND RESULTS β1β2M-KO mice exhibit an approximate 25% reduction in systolic and diastolic function compared with wild-type (WT) littermates. Despite the well-documented role of AMPK in controlling myocardial energy metabolism, there was no difference in basal glucose and fatty acid oxidation rates between β1β2M-KO and WT mice. However, there was reduced AMPK-mediated phosphorylation of troponin I in β1β2M-KO and reduced ventricular cell shortening in the presence of low Ca(2+), which may explain the impaired cardiac function in these mice. Interestingly, β1β2M-KO mice did not display any signs of compensatory cardiac hypertrophy, which could be attributed to impaired activation of p38 MAPK. CONCLUSIONS β1β2M-KO mice display evidence of dilated cardiomyopathy. This is the first mouse model of AMPK deficiency that demonstrates cardiac dysfunction in the absence of pathological stress and provides insights into the role of AMPK in regulating myocardial function, metabolism, hypertrophy, and the progression to heart failure.
Collapse
Affiliation(s)
- Miranda M Sung
- Cardiovascular Research Centre, Department of Pediatrics, Mazankowski Alberta Heart Institute, Faculty of Medicine and Dentistry, University of Alberta, 458 Heritage Medical Research Centre, Edmonton, AB, Canada T6G 2S2
| | - Beshay N Zordoky
- Cardiovascular Research Centre, Department of Pediatrics, Mazankowski Alberta Heart Institute, Faculty of Medicine and Dentistry, University of Alberta, 458 Heritage Medical Research Centre, Edmonton, AB, Canada T6G 2S2
| | - Adam L Bujak
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - James S V Lally
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - David Fung
- Cardiovascular Research Centre, Department of Pediatrics, Mazankowski Alberta Heart Institute, Faculty of Medicine and Dentistry, University of Alberta, 458 Heritage Medical Research Centre, Edmonton, AB, Canada T6G 2S2
| | - Martin E Young
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sandrine Horman
- Institut de Recherche Expérimentale et Clinique, Pôle de Recherche Cardio-Vasculaire, Université catholique de Louvain, Brussels, Belgium
| | | | - Peter E Light
- Alberta Diabetes Institute, Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Bruce E Kemp
- Department of Medicine, St Vincent's Institute of Medical Research, University of Melbourne, Melbourne, Australia
| | | | - Jason R B Dyck
- Cardiovascular Research Centre, Department of Pediatrics, Mazankowski Alberta Heart Institute, Faculty of Medicine and Dentistry, University of Alberta, 458 Heritage Medical Research Centre, Edmonton, AB, Canada T6G 2S2
| |
Collapse
|
35
|
Cai Y, Zhao L, Qin Y, Wu XQ. EGCG Blocked Phenylephrin-Induced Hypertrophy in H9C2 Cardiomyocytes, by Activating AMPK-Dependent Pathway. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2015; 19:203-10. [PMID: 25954124 PMCID: PMC4422959 DOI: 10.4196/kjpp.2015.19.3.203] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 10/02/2014] [Accepted: 01/23/2015] [Indexed: 12/31/2022]
Abstract
AMP-activated protein kinase (AMPK) is a key regulator of energy metabolism. Previous studies have shown that activation of AMPK results in suppression of cardiac myocyte hypertrophy via inhibition of the p70S6 kinase (p70S6K) and eukaryotic elongation factor-2 (eEF2) signaling pathways. Epigallocatechin-3-gallate (EGCG), the major polyphenol found in green tea, possesses multiple protective effects on the cardiovascular system including cardiac hypertrophy. However, the molecular mechanisms has not been well investigated. In this study, we found that EGCG could significantly reduce natriuretic peptides type A (Nppa), brain natriuretic polypeptide (BNP) mRNA expression and decrease cell surface area in H9C2 cardiomyocytes stimulated with phenylephrine (PE). Moreover, we showed that AMPK is activated in H9C2 cardiomyocytes by EGCG, and AMPK-dependent pathway participates in the inhibitory effects of EGCG on cardiac hypertrophy. Taken together, our findings provide the first evidence that the effect of EGCG against cardiac hypertrophy may be attributed to its activation on AMPK-dependent signaling pathway, suggesting the therapeutic potential of EGCG on the prevention of cardiac remodeling in patients with pressure overload hypertrophy.
Collapse
Affiliation(s)
- Yi Cai
- Guangzhou Research Institute of Snake Venom, China
| | - Li Zhao
- Guangzhou Research Institute of Snake Venom, China
| | - Yuan Qin
- Guangzhou Research Institute of Snake Venom, China
| | - Xiao-Qian Wu
- Department of Pharmacology, Guangzhou Medical University, Guangzhou, 510182, Guangdong, P.R. China
| |
Collapse
|
36
|
Malvoisin E, Makhloufi D, Livrozet JM. Searching for biomarkers of comorbidities in sera of treated HIV-infected patients by isoelectric focusing. Electrophoresis 2015; 36:1251-5. [PMID: 25630581 DOI: 10.1002/elps.201400535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Revised: 01/11/2015] [Accepted: 01/11/2015] [Indexed: 11/08/2022]
Abstract
Based on their characteristics, we hypothesized that the following parameters, namely collagen IV, glutathione S-transferase, secretory component (SC), and AMP-activated protein kinase α1α2 may be useful serum markers in the detection of comorbidities in treated HIV-infected patients. These parameters were determined in 204 HIV-infected patients and 35 controls by using IEF and densitometry. Collagen IV was undetectable in controls and the majority of HIV-infected patients. Twenty-two HIV-infected patients presented significantly elevated levels of collagen IV, most of them were coinfected with hepatitis C virus and/or hepatitis B virus. SC was undetectable in controls. SC was significantly increased in 81 HIV-infected patients and significantly correlated with aspartate aminotransferase (r = 0.267, p = 0.0049), alkaline phosphatase (r = 0.309, p = 0.0011), and γ-glutamyl-transferase (r = 0.264, p = 0.0054). Glutathione S-transferase levels of HIV-infected patients were significantly higher than the controls (3779 ± 5860 vs. 785 ± 71 DU, p = 0.0007) and significantly correlated with serum urea (r = 0.204, p = 0.0038), triglycerides (r = 0.209, p = 0.0033), and lipase (r = 0.219, p = 0.0025). AMP-activated protein kinase α1α2 levels of HIV-infected patients were significantly higher than the controls (5676 ± 6248 vs. 1189 ± 6248 DU, p = 0.0009). Further studies are needed to demonstrate the relevance of these results to diagnose non-AIDS-related illnesses in HIV-infected patients.
Collapse
Affiliation(s)
| | - Djamila Makhloufi
- Service des Maladies Infectieuses et Tropicales de l'hôpital Edouard Herriot, Lyon, France
| | - Jean-Michel Livrozet
- Service des Maladies Infectieuses et Tropicales de l'hôpital Edouard Herriot, Lyon, France
| |
Collapse
|
37
|
Tham YK, Bernardo BC, Ooi JYY, Weeks KL, McMullen JR. Pathophysiology of cardiac hypertrophy and heart failure: signaling pathways and novel therapeutic targets. Arch Toxicol 2015; 89:1401-38. [DOI: 10.1007/s00204-015-1477-x] [Citation(s) in RCA: 371] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 02/09/2015] [Indexed: 12/18/2022]
|
38
|
Resveratrol prevents pathological but not physiological cardiac hypertrophy. J Mol Med (Berl) 2014; 93:413-25. [PMID: 25394677 DOI: 10.1007/s00109-014-1220-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 09/16/2014] [Accepted: 10/30/2014] [Indexed: 12/31/2022]
Abstract
UNLABELLED The mechanisms responsible for how resveratrol inhibits pathological left ventricular hypertrophy (LVH) but not physiological LVH have not been elucidated. Herein, we show that in rat cardiomyocytes, lower concentrations of resveratrol (0.1 and 1 μM) are efficient at selectively inhibiting important regulators involved in pathological LVH (such as nuclear factor of activated T cells (NFAT)) while not affecting pathways involved in physiological LVH (Akt and p70S6 kinase (p70S6K)). These differential responses are also observed in both mouse and rat models of in vivo physiological and pathological LVH. Interestingly, in all of the experiments involving a low concentration of resveratrol (1 μM), the observed effects on Akt, p70S6K, and NFAT were independent from AMP-activated protein kinase (AMPK) activation while these effects at higher concentrations of resveratrol (50 μM) were potentiated by AMPK activation. In summary, we show that resveratrol can concentration/dose selectively inhibit various pro-hypertrophic signaling pathways and that resveratrol has differential effects on the modification of these signaling cascades in response to pathological stimuli versus physiological stimuli. This has important clinical implications as our findings support the concept that resveratrol may be useful in the selective treatment of pathological LVH. KEY MESSAGE Resveratrol differentially regulates pathological and physiological cardiac hypertrophy. Resveratrol dose selectively inhibits pathological cardiac signaling pathways. Resveratrol inhibits NFAT-dependent transcription. At low concentrations, effects of resveratrol are AMPK-independent. Resveratrol may be used to selectively treat pathological cardiac hypertrophy.
Collapse
|
39
|
Li H, Lu ZZ, Chen C, Song Y, Xiao H, Zhang YY. Echocardiographic assessment of β-adrenoceptor stimulation-induced heart failure with reduced heart rate in mice. Clin Exp Pharmacol Physiol 2014; 41:58-66. [PMID: 24107096 DOI: 10.1111/1440-1681.12176] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 09/05/2013] [Accepted: 09/11/2013] [Indexed: 12/16/2022]
Abstract
1. Chronic injection with the β-adrenoceptor (β-AR) agonist isoproterenol (ISO) has been commonly used as an animal model of β-AR-induced cardiac remodelling and heart failure. This ISO-treated model usually exhibits significantly decreased conscious heart rate (HR). However, the HR in treatment groups is usually adjusted to the same levels by anaesthesia to assess cardiac geometry and function. In the present study, we report a method of echocardiographic assessment that represents the true cardiac geometry and function under conditions of ISO withdrawal. 2. Briefly, C57BL/6 mice were treated with 5 mg/kg per day ISO for 12 weeks. Cardiac geometry and function were assessed by high-resolution echocardiography in vehicle (saline) - and ISO-treated mice that were either conscious or anaesthetized using different concentrations of isoflurane. 3. The cardiac β-AR response was decreased in ISO-treated mice, as evidenced by markedly decreased conscious HR. Vehicle- and ISO-treated mice did not differ in terms of cardiac geometry or function when HR was adjusted to the same level (400 b.p.m.) in both treatment groups, but cardiac geometry and function did differ when a low (1%) rather than high (1.5% or 2%) isoflurane concentration was used to adjust HR. Furthermore, 3 day ISO withdrawal eliminated the difference in conscious HR between the two groups. In addition, the groups differed in cardiac geometry and function regardless of the isoflurane concentration used. 4. In conclusion, using isoflurane to decrease the HR of treated groups to the same level may mask left ventricular dysfunction in ISO-treated mice. Withdrawal of ISO eliminated the difference in basal HR between the ISO-treated and control groups on echocardiography, allowing a more accurate assessment of cardiac pathological and functional changes.
Collapse
Affiliation(s)
- Hao Li
- Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China; Key Laboratory of Cardiovascular Molecular Biologyand Regulatory Peptide, Ministry of Health, Beijing, China; Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| | | | | | | | | | | |
Collapse
|
40
|
Belge C, Hammond J, Dubois-Deruy E, Manoury B, Hamelet J, Beauloye C, Markl A, Pouleur AC, Bertrand L, Esfahani H, Jnaoui K, Götz KR, Nikolaev VO, Vanderper A, Herijgers P, Lobysheva I, Iaccarino G, Hilfiker-Kleiner D, Tavernier G, Langin D, Dessy C, Balligand JL. Enhanced expression of β3-adrenoceptors in cardiac myocytes attenuates neurohormone-induced hypertrophic remodeling through nitric oxide synthase. Circulation 2013; 129:451-62. [PMID: 24190960 DOI: 10.1161/circulationaha.113.004940] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND β1-2-adrenergic receptors (AR) are key regulators of cardiac contractility and remodeling in response to catecholamines. β3-AR expression is enhanced in diseased human myocardium, but its impact on remodeling is unknown. METHODS AND RESULTS Mice with cardiac myocyte-specific expression of human β3-AR (β3-TG) and wild-type (WT) littermates were used to compare myocardial remodeling in response to isoproterenol (Iso) or Angiotensin II (Ang II). β3-TG and WT had similar morphometric and hemodynamic parameters at baseline. β3-AR colocalized with caveolin-3, endothelial nitric oxide synthase (NOS) and neuronal NOS in adult transgenic myocytes, which constitutively produced more cyclic GMP, detected with a new transgenic FRET sensor. Iso and Ang II produced hypertrophy and fibrosis in WT mice, but not in β3-TG mice, which also had less re-expression of fetal genes and transforming growth factor β1. Protection from Iso-induced hypertrophy was reversed by nonspecific NOS inhibition at low dose Iso, and by preferential neuronal NOS inhibition at high-dose Iso. Adenoviral overexpression of β3-AR in isolated cardiac myocytes also increased NO production and attenuated hypertrophy to Iso and phenylephrine. Hypertrophy was restored on NOS or protein kinase G inhibition. Mechanistically, β3-AR overexpression inhibited phenylephrine-induced nuclear factor of activated T-cell activation. CONCLUSIONS Cardiac-specific overexpression of β3-AR does not affect cardiac morphology at baseline but inhibits the hypertrophic response to neurohormonal stimulation in vivo and in vitro, through a NOS-mediated mechanism. Activation of the cardiac β3-AR pathway may provide future therapeutic avenues for the modulation of hypertrophic remodeling.
Collapse
Affiliation(s)
- Catharina Belge
- Institut de Recherche Expérimentale et Clinique (IREC), Pole of Pharmacology and Therapeutics (FATH), Université Catholique de Louvain, Brussels, Belgium (C.B., J. Hammond, E.D.-D., B.M., J. Hamelet, A.M., H.E., K.J., I.L., C.D., J.-L.B.); Pole of Cardiovascular Pathology and Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium (C.B., A.-C.P., L.B.); the Division of Cardiology and Pneumology, University of Goettingen, Goettingen, Germany (K.R.G., V.O.N.); the Department of Cardiovascular Sciences, Katholieke Universiteit Leuven, Belgium (A.V., P.H.); the Department of Medicine and Surgery, University of Salerno and RCCS "Multimedica," Milano, Italy (G.I.); Molecular Cardiology, Medizinische Hochschule Hannover, Germany (D.H.-K.); and Université Paul Sabatier, Inserm UMR 1048 - I2MC, Hôpitaux de Toulouse, France (G.T., D.L.)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Schisler JC, Rubel CE, Zhang C, Lockyer P, Cyr DM, Patterson C. CHIP protects against cardiac pressure overload through regulation of AMPK. J Clin Invest 2013; 123:3588-99. [PMID: 23863712 DOI: 10.1172/jci69080] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 05/21/2013] [Indexed: 11/17/2022] Open
Abstract
Protein quality control and metabolic homeostasis are integral to maintaining cardiac function during stress; however, little is known about if or how these systems interact. Here we demonstrate that C terminus of HSC70-interacting protein (CHIP), a regulator of protein quality control, influences the metabolic response to pressure overload by direct regulation of the catalytic α subunit of AMPK. Induction of cardiac pressure overload in Chip-/- mice resulted in robust hypertrophy and decreased cardiac function and energy generation stemming from a failure to activate AMPK. Mechanistically, CHIP promoted LKB1-mediated phosphorylation of AMPK, increased the specific activity of AMPK, and was necessary and sufficient for stress-dependent activation of AMPK. CHIP-dependent effects on AMPK activity were accompanied by conformational changes specific to the α subunit, both in vitro and in vivo, identifying AMPK as the first physiological substrate for CHIP chaperone activity and establishing a link between cardiac proteolytic and metabolic pathways.
Collapse
Affiliation(s)
- Jonathan C Schisler
- McAllister Heart Institute, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7126, USA
| | | | | | | | | | | |
Collapse
|
42
|
Demeulder B, Zarrinpashneh E, Ginion A, Viollet B, Hue L, Rider MH, Vanoverschelde JL, Beauloye C, Horman S, Bertrand L. Differential regulation of eEF2 and p70S6K by AMPKalpha2 in heart. Biochim Biophys Acta Mol Basis Dis 2013; 1832:780-90. [DOI: 10.1016/j.bbadis.2013.02.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 02/17/2013] [Accepted: 02/25/2013] [Indexed: 01/13/2023]
|
43
|
Maillet M, van Berlo JH, Molkentin JD. Molecular basis of physiological heart growth: fundamental concepts and new players. Nat Rev Mol Cell Biol 2013; 14:38-48. [PMID: 23258295 PMCID: PMC4416212 DOI: 10.1038/nrm3495] [Citation(s) in RCA: 380] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The heart hypertrophies in response to developmental signals as well as increased workload. Although adult-onset hypertrophy can ultimately lead to disease, cardiac hypertrophy is not necessarily maladaptive and can even be beneficial. Progress has been made in our understanding of the structural and molecular characteristics of physiological cardiac hypertrophy, as well as of the endocrine effectors and associated signalling pathways that regulate it. Physiological hypertrophy is initiated by finite signals, which include growth hormones (such as thyroid hormone, insulin, insulin-like growth factor 1 and vascular endothelial growth factor) and mechanical forces that converge on a limited number of intracellular signalling pathways (such as PI3K, AKT, AMP-activated protein kinase and mTOR) to affect gene transcription, protein translation and metabolism. Harnessing adaptive signalling mediators to reinvigorate the diseased heart could have important medical ramifications.
Collapse
Affiliation(s)
- Marjorie Maillet
- Department of Pediatrics, University of Cincinnati, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | | | | |
Collapse
|
44
|
Horman S, Beauloye C, Vanoverschelde JL, Bertrand L. AMP-activated Protein Kinase in the Control of Cardiac Metabolism and Remodeling. Curr Heart Fail Rep 2012; 9:164-73. [DOI: 10.1007/s11897-012-0102-z] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
45
|
Song P, Zou MH. Regulation of NAD(P)H oxidases by AMPK in cardiovascular systems. Free Radic Biol Med 2012; 52:1607-19. [PMID: 22357101 PMCID: PMC3341493 DOI: 10.1016/j.freeradbiomed.2012.01.025] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2011] [Revised: 01/25/2012] [Accepted: 01/27/2012] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are ubiquitously produced in cardiovascular systems. Under physiological conditions, ROS/RNS function as signaling molecules that are essential in maintaining cardiovascular function. Aberrant concentrations of ROS/RNS have been demonstrated in cardiovascular diseases owing to increased production or decreased scavenging, which have been considered common pathways for the initiation and progression of cardiovascular diseases such as atherosclerosis, hypertension, (re)stenosis, and congestive heart failure. NAD(P)H oxidases are primary sources of ROS and can be induced or activated by all known cardiovascular risk factors. Stresses, hormones, vasoactive agents, and cytokines via different signaling cascades control the expression and activity of these enzymes and of their regulatory subunits. But the molecular mechanisms by which NAD(P)H oxidase is regulated in cardiovascular systems remain poorly characterized. Investigations by us and others suggest that adenosine monophosphate-activated protein kinase (AMPK), as an energy sensor and modulator, is highly sensitive to ROS/RNS. We have also obtained convincing evidence that AMPK is a physiological suppressor of NAD(P)H oxidase in multiple cardiovascular cell systems. In this review, we summarize our current understanding of how AMPK functions as a physiological repressor of NAD(P)H oxidase.
Collapse
Affiliation(s)
| | - Ming-Hui Zou
- To whom correspondence should be addressed: Ming-Hui Zou, M.D., Ph.D., Department of Medicine, University of Oklahoma Health Science Center, 941 Stanton L. Young Blvd., Oklahoma City, OK 73104, USA, Phone: 405-271-3974, Fax: 405-271-3973,
| |
Collapse
|
46
|
Passariello CL, Gottardi D, Cetrullo S, Zini M, Campana G, Tantini B, Pignatti C, Flamigni F, Guarnieri C, Caldarera CM, Stefanelli C. Evidence that AMP-activated protein kinase can negatively modulate ornithine decarboxylase activity in cardiac myoblasts. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1823:800-7. [PMID: 22230191 DOI: 10.1016/j.bbamcr.2011.12.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 12/21/2011] [Accepted: 12/22/2011] [Indexed: 01/11/2023]
Abstract
The responses of AMP-activated protein kinase (AMPK) and Ornithine decarboxylase (ODC) to isoproterenol have been examined in H9c2 cardiomyoblasts, AMPK represents the link between cell growth and energy availability whereas ODC, the key enzyme in polyamine biosynthesis, is essential for all growth processes and it is thought to have a role in the development of cardiac hypertrophy. Isoproterenol rapidly induced ODC activity in H9c2 cardiomyoblasts by promoting the synthesis of the enzyme protein and this effect was counteracted by inhibitors of the PI3K/Akt pathway. The increase in enzyme activity became significant between 15 and 30min after the treatment. At the same time, isoproterenol stimulated the phosphorylation of AMPKα catalytic subunits (Thr172), that was associated to an increase in acetyl coenzyme A carboxylase (Ser72) phosphorylation. Downregulation of both α1 and α2 isoforms of the AMPK catalytic subunit by siRNA to knockdown AMPK enzymatic activity, led to superinduction of ODC in isoproterenol-treated cardiomyoblasts. Downregulation of AMPKα increased ODC activity even in cells treated with other adrenergic agonists and in control cells. Analogue results were obtained in SH-SY5Y neuroblastoma cells transfected with a shRNA construct against AMPKα. In conclusion, isoproterenol quickly activates in H9c2 cardiomyoblasts two events that seem to contrast one another. The first one, an increase in ODC activity, is linked to cell growth, whereas the second, AMPK activation, is a homeostatic mechanism that negatively modulates the first. The modulation of ODC activity by AMPK represents a mechanism that may contribute to control cell growth processes.
Collapse
|
47
|
Fu YN, Xiao H, Ma XW, Jiang SY, Xu M, Zhang YY. Metformin attenuates pressure overload-induced cardiac hypertrophy via AMPK activation. Acta Pharmacol Sin 2011; 32:879-87. [PMID: 21552292 DOI: 10.1038/aps.2010.229] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
AIM To identify the role of metformin in cardiac hypertrophy and investigate the possible mechanism underlying this effect. METHODS Wild type and AMPKα2 knockout (AMPKα2⁻/⁻) littermates were subjected to left ventricular pressure overload caused by transverse aortic constriction. After administration of metformin (200 mg·kg⁻¹·d⁻¹) for 6 weeks, the degree of cardiac hypertrophy was evaluated using echocardiography and anatomic and histological methods. The antihypertrophic mechanism of metformin was analyzed using Western blotting. RESULTS Metformin significantly attenuated cardiac hypertrophy induced by pressure overload in wild type mice, but the antihypertrophic actions of metformin were ablated in AMPKα2⁻/⁻ mice. Furthermore, metformin suppressed the phosphorylation of Akt/protein kinase B (AKT) and mammalian target of rapamycin (mTOR) in response to pressure overload in wild type mice, but not in AMPKα2⁻/⁻ mice. CONCLUSION Long-term administration of metformin may attenuate cardiac hypertrophy induced by pressure overload in nondiabetic mice, and this attenuation is highly dependent on AMPK activation. These findings may provide a potential therapy for patients at risk of developing pathological cardiac hypertrophy.
Collapse
|
48
|
Calorie restriction and resveratrol in cardiovascular health and disease. Biochim Biophys Acta Mol Basis Dis 2011; 1812:1477-89. [PMID: 21749920 DOI: 10.1016/j.bbadis.2011.06.010] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 06/05/2011] [Accepted: 06/24/2011] [Indexed: 11/24/2022]
Abstract
Calorie restriction is one of the most effective nutritional interventions that reproducibly protects against obesity, diabetes and cardiovascular disease. Recent evidence suggests that even when implemented over a short period, calorie restriction is a safe and effective treatment for cardiovascular disease. Herein, we review the effects of calorie restriction on the cardiovascular system as well as the biological effects of resveratrol, the most widely studied molecule that appears to mimic calorie restriction. An overview of microarray data reveals that the myocardial transcriptional effects of calorie restriction overlap with the transcriptional responses to resveratrol treatment. In addition, calorie restriction and resveratrol modulate similar pathways to improve mitochondrial function, reduce oxidative stress and increase nitric oxide production that are involved in atherosclerosis prevention, blood pressure reduction, attenuation of left-ventricular hypertrophy, resistance to myocardial ischemic injury and heart failure prevention. We also review the data that suggest that the effects of calorie restriction and resveratrol on the cardiovascular system may involve signaling through the silent information regulator of transcription (SIRT), Akt and the AMP-activated protein kinase (AMPK) pathways. While accumulating data demonstrate the health benefits of calorie restriction and resveratrol in experimental animal models, whether these interventions translate to patients with cardiovascular disease remains to be determined.
Collapse
|
49
|
Beauloye C, Bertrand L, Horman S, Hue L. AMPK activation, a preventive therapeutic target in the transition from cardiac injury to heart failure. Cardiovasc Res 2011; 90:224-33. [PMID: 21285292 DOI: 10.1093/cvr/cvr034] [Citation(s) in RCA: 148] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Heart failure is a progressive muscular disorder leading to a deterioration of the heart characterized by a contractile dysfunction and a chronic energy deficit. As a consequence, the failing heart is unable to meet the normal metabolic and energy needs of the body. The transition between compensated left ventricular hypertrophy and the de-compensated heart is multifactorial, although metabolic disturbances are considered to play a significant role. In this respect, the AMP-activated protein kinase (AMPK) could be a potential target in heart failure development. AMPK senses the energy state of the cell and orchestrates a global metabolic response to energy deprivation. We briefly review here the current knowledge about the chronic energy deficit of the failing heart, as well as the role of AMPK in energy homeostasis and in the control of non-metabolic targets in relation to cardiac hypertrophy and heart failure. The relative importance of energetic and non-metabolic effects in the potential cardioprotective action of AMPK is discussed.
Collapse
Affiliation(s)
- Christophe Beauloye
- Institut de Recherche Expérimentale et Clinique, Pôle de Recherche Cardio-Vasculaire, Université catholique de Louvain, Brussels, Belgium
| | | | | | | |
Collapse
|
50
|
Jiang SY, Xu M, Ma XW, Xiao H, Zhang YY. A distinct AMP-activated protein kinase phosphorylation site characterizes cardiac hypertrophy induced by L-thyroxine and angiotensin II. Clin Exp Pharmacol Physiol 2010; 37:919-25. [PMID: 20497424 DOI: 10.1111/j.1440-1681.2010.05404.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
1. The purpose of the present study was to evaluate differences in the AMP-activated protein kinase (AMPK) phosphorylation sites in cardiac hypertrophy induced by L-thyroxine and angiotensin (Ang) II. 2. Cardiac hypertrophy was induced in wild-type and AMPKalpha2-knockout mice by treatment with 1 mg/kg, i.p., thyroxine or 1.44 mg/kg per day AngII for 14 days. The phenotype of the hypertrophy was evaluated using echocardiographic measurements and histological analyses. The phosphorylation of AMPK at alpha-Ser(485/491) and alpha-Thr(172) was determined by western blot analysis. 3. In wild-type mice, the phosphorylation of AMPKalpha-Ser(485/491) was significantly elevated in the AngII-treated group, but not in the thyroxine-treated group, compared with the vehicle control group. In contrast, the phosphorylation of AMPKalpha-Thr(172) was significantly increased by thyroxine, but not AngII, treatment compared with the vehicle control group. Furthermore, knockout of the AMPKalpha2 subunit abolished phosphorylation at the alpha-Ser(485/491) site and significantly suppressed phosphorylation at the alpha-Thr(172) site, resulting in alleviation of thyroxine- but not AngII-induced hypertrophy. 4. In conclusion, L-thyroxine and AngII induce the phosphorylation of distinct sites of AMPK in cardiac hypertrophy. Phosphorylation of AMPK alpha-Thr(172) may contribute to thyroxine-induced cardiac hypertrophy.
Collapse
Affiliation(s)
- Sheng-Yang Jiang
- Institute of Vascular Medicine, Peking University Third Hospital and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | | | | | | | | |
Collapse
|