1
|
Liu H, Dang R, Zhang W, Hong J, Li X. SNARE proteins: Core engines of membrane fusion in cancer. Biochim Biophys Acta Rev Cancer 2024:189148. [PMID: 38960006 DOI: 10.1016/j.bbcan.2024.189148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/23/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024]
Abstract
Vesicles are loaded with a variety of cargoes, including membrane proteins, secreted proteins, signaling molecules, and various enzymes, etc. Not surprisingly, vesicle transport is essential for proper cellular life activities including growth, division, movement and cellular communication. Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) mediate membrane fusion of vesicles with their target compartments that is fundamental for cargo delivery. Recent studies have shown that multiple SNARE family members are aberrantly expressed in human cancers and actively contribute to malignant proliferation, invasion, metastasis, immune evasion and treatment resistance. Here, the localization and function of SNARE proteins in eukaryotic cells are firstly mapped. Then we summarize the expression and regulation of SNAREs in cancer, and describe their contribution to cancer progression and mechanisms, and finally we propose engineering botulinum toxin as a strategy to target SNAREs for cancer treatment.
Collapse
Affiliation(s)
- Hongyi Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China; Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Ruiyue Dang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Wei Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China; Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Jidong Hong
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China.
| | - Xuejun Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China; Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
2
|
Lv N, Zhang Y, Wang L, Suo Y, Zeng W, Yu Q, Yu B, Jiang X. LncRNA/CircRNA-miRNA-mRNA Axis in Atherosclerotic Inflammation: Research Progress. Curr Pharm Biotechnol 2024; 25:1021-1040. [PMID: 37842894 DOI: 10.2174/0113892010267577231005102901] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/09/2023] [Accepted: 08/21/2023] [Indexed: 10/17/2023]
Abstract
Atherosclerosis is characterized by chronic inflammation of the arterial wall. However, the exact mechanism underlying atherosclerosis-related inflammation has not been fully elucidated. To gain insight into the mechanisms underlying the inflammatory process that leads to atherosclerosis, there is need to identify novel molecular markers. Non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-protein-coding RNAs (lncRNAs) and circular RNAs (circRNAs) have gained prominence in recent years. LncRNAs/circRNAs act as competing endogenous RNAs (ceRNAs) that bind to miRNAs via microRNA response elements (MREs), thereby inhibiting the silencing of miRNA target mRNAs. Inflammatory mediators and inflammatory signaling pathways are closely regulated by ceRNA regulatory networks in atherosclerosis. In this review, we discuss the role of LncRNA/CircRNA-miRNA-mRNA axis in atherosclerotic inflammation and how it can be targeted for early clinical detection and treatment.
Collapse
Affiliation(s)
- Nuan Lv
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yilin Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Luming Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yanrong Suo
- Traditional Chinese Medicine Department, Ganzhou People's Hospital, Ganzhou, China
| | - Wenyun Zeng
- Oncology Department, Ganzhou People's Hospital, Ganzhou, China
| | - Qun Yu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Bin Yu
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
3
|
Barillaro M, Schuurman M, Wang R. β1-Integrin-A Key Player in Controlling Pancreatic Beta-Cell Insulin Secretion via Interplay With SNARE Proteins. Endocrinology 2022; 164:6772824. [PMID: 36282882 DOI: 10.1210/endocr/bqac179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Indexed: 01/16/2023]
Abstract
Shortcomings in cell-based therapies for patients with diabetes have been revealed to be, in part, a result of an improper extracellular matrix (ECM) environment. In vivo, pancreatic islets are emersed in a diverse ECM that provides physical support and is crucial for healthy function. β1-Integrin receptors have been determined to be responsible for modulation of beneficial interactions with ECM proteins influencing beta-cell development, proliferation, maturation, and function. β1-Integrin signaling has been demonstrated to augment insulin secretion by impacting the actin cytoskeleton via activation of focal adhesion kinase and downstream signaling pathways. In other secretory cells, evidence of a bidirectional relationship between integrins and exocytotic machinery has been demonstrated, and, thus, this relationship could be present in pancreatic beta cells. In this review, we will discuss the role of ECM-β1-integrin interplay with exocytotic proteins in controlling pancreatic beta-cell insulin secretion through their dynamic and unique signaling pathway.
Collapse
Affiliation(s)
- Malina Barillaro
- Children's Health Research Institute, University of Western Ontario, London, ON N6C 2V5, Canada
- Department of Physiology & Pharmacology, University of Western Ontario, London, ON N6C 2V5, Canada
| | - Meg Schuurman
- Children's Health Research Institute, University of Western Ontario, London, ON N6C 2V5, Canada
- Department of Physiology & Pharmacology, University of Western Ontario, London, ON N6C 2V5, Canada
| | - Rennian Wang
- Children's Health Research Institute, University of Western Ontario, London, ON N6C 2V5, Canada
- Department of Physiology & Pharmacology, University of Western Ontario, London, ON N6C 2V5, Canada
- Department of Medicine, University of Western Ontario, London, ON N6C 2V5, Canada
| |
Collapse
|
4
|
Kumar G, Sudhagar A, Shivam S, Nilsen F, Bartholomew JL, El-Matbouli M. Identification of in vivo induced antigens of the malacosporean parasite Tetracapsuloides bryosalmonae (Cnidaria) using in vivo induced antigen technology. Front Cell Infect Microbiol 2022; 12:1032347. [DOI: 10.3389/fcimb.2022.1032347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/30/2022] [Indexed: 11/13/2022] Open
Abstract
Tetracapsuloides bryosalmonae is a malacosporean endoparasite that causes proliferative kidney disease (PKD) in wild and farmed salmonids in Europe and North America. The life cycle of T. bryosalmonae completes between invertebrate bryozoan and vertebrate fish hosts. Inside the fish, virulence factors of T. bryosalmonae are induced during infection or interactions with host cells. T. bryosalmonae genes expressed in vivo are likely to be important in fish pathogenesis. Herein, we identify in vivo induced antigens of T. bryosalmonae during infection in brown trout (Salmo trutta) using in vivo induced antigen technology (IVIAT). Brown trout were exposed to the spores of T. bryosalmonae and were sampled at different time points. The pooled sera were first pre-adsorbed with antigens to remove false positive results. Subsequently, adsorbed sera were used to screen a T. bryosalmonae cDNA phage expression library. Immunoscreening analysis revealed 136 immunogenic T. bryosalmonae proteins induced in brown trout during parasite development. They are involved in signal transduction, transport, metabolism, ion-protein binding, protein folding, and also include hypothetical proteins, of so far unknown functions. The identified in vivo induced antigens will be useful in the understanding of T. bryosalmonae pathogenesis during infection in susceptible hosts. Some of the antigens found may have significant implications for the discovery of candidate molecules for the development of potential therapies and preventive measures against T. bryosalmonae in salmonids.
Collapse
|
5
|
Yan C, Liu Q, Jia R. Construction and Validation of a Prognostic Risk Model for Triple-Negative Breast Cancer Based on Autophagy-Related Genes. Front Oncol 2022; 12:829045. [PMID: 35186763 PMCID: PMC8854264 DOI: 10.3389/fonc.2022.829045] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 01/10/2022] [Indexed: 01/14/2023] Open
Abstract
Background Autophagy plays an important role in triple-negative breast cancer (TNBC). However, the prognostic value of autophagy-related genes (ARGs) in TNBC remains unknown. In this study, we established a survival model to evaluate the prognosis of TNBC patients using ARGs signature. Methods A total of 222 autophagy-related genes were downloaded from The Human Autophagy Database. The RNA-sequencing data and corresponding clinical data of TNBC were obtained from The Cancer Genome Atlas (TCGA) database. Differentially expressed autophagy-related genes (DE-ARGs) between normal samples and TNBC samples were determined by the DESeq2 package. Then, univariate Cox, least absolute shrinkage and selection operator (LASSO), and multivariate Cox regression analyses were performed. According to the LASSO regression results based on univariate Cox, we identified a prognostic signature for overall survival (OS), which was further validated by using the Gene Expression Omnibus (GEO) cohort. We also found an independent prognostic marker that can predict the clinicopathological features of TNBC. Furthermore, a nomogram was drawn to predict the survival probability of TNBC patients, which could help in clinical decision for TNBC treatment. Finally, we validated the requirement of an ARG in our model for TNBC cell survival and metastasis. Results There are 43 DE-ARGs identified between normal and tumor samples. A risk model for OS using CDKN1A, CTSD, CTSL, EIF4EBP1, TMEM74, and VAMP3 was established based on univariate Cox regression and LASSO regression analysis. Overall survival of TNBC patients was significantly shorter in the high-risk group than in the low-risk group for both the training and validation cohorts. Using the Kaplan–Meier curves and receiver operating characteristic (ROC) curves, we demonstrated the accuracy of the prognostic model. Multivariate Cox regression analysis was used to verify risk score as an independent predictor. Subsequently, a nomogram was proposed to predict 1-, 3-, and 5-year survival for TNBC patients. The calibration curves showed great accuracy of the model for survival prediction. Finally, we found that depletion of EIF4EBP1, one of the ARGs in our model, significantly reduced cell proliferation and metastasis of TNBC cells. Conclusion Based on six ARGs (CDKN1A, CTSD, CTSL, EIF4EBP1, TMEM74, and VAMP3), we developed a risk prediction model that can help clinical doctors effectively predict the survival status of TNBC patients. Our data suggested that EIF4EBP1 might promote the proliferation and migration in TNBC cell lines. These findings provided a novel insight into the vital role of the autophagy-related genes in TNBC and may provide new therapeutic targets for TNBC.
Collapse
Affiliation(s)
- Cheng Yan
- School of Pharmacy, Xinxiang University, Xinxiang, China
- Key Laboratory of Nano-Carbon Modified Film Technology of Henan Province, Xinxiang University, Xinxiang, China
- Diagnostic Laboratory of Animal Diseases, Xinxiang University, Xinxiang, China
| | - Qingling Liu
- School of Pharmacy, Xinxiang University, Xinxiang, China
| | - Ruoling Jia
- School of Pharmacy, Xinxiang University, Xinxiang, China
- *Correspondence: Ruoling Jia,
| |
Collapse
|
6
|
Li R, Jiang Q, Zheng Y. Circ_0002984 induces proliferation, migration and inflammation response of VSMCs induced by ox-LDL through miR-326-3p/VAMP3 axis in atherosclerosis. J Cell Mol Med 2021; 25:8028-8038. [PMID: 34169652 PMCID: PMC8358879 DOI: 10.1111/jcmm.16734] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 05/22/2021] [Accepted: 05/25/2021] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis can result in multiple cardiovascular diseases. Circular RNAs (CircRNAs) have been reported as significant non-coding RNAs in atherosclerosis progression. Dysfunction of vascular smooth muscle cells (VSMCs) is involved in atherosclerosis. However, up to now, the effect of circ_0002984 in atherosclerosis is still unknown. Currently, we aimed to investigate the function of circ_0002984 in VSMCs incubated by oxidized low-density lipoprotein (ox-LDL). Firstly, our findings indicated that the expression levels of circ_0002984 were significantly up-regulated in the serum of atherosclerosis patients and ox-LDL-incubated VSMCs. Loss of circ_0002984 suppressed VSMC viability, cell cycle distribution and migration capacity. Then, we carried out ELISA assay to determine TNF-α and IL-6 levels. The data implied that lack of circ_0002984 obviously repressed ox-LDL-stimulated VSMC inflammation. Meanwhile, miR-326-3p, which was predicted as a target of circ_0002984, was obviously down-regulated in VSMCs treated by ox-LDL. Additionally, after overexpression circ_0002984 in VSMCs, a decrease in miR-326-3p was observed. Subsequently, miR-326-3p was demonstrated to target vesicle-associated membrane protein 3 (VAMP3). Therefore, we hypothesized that circ_0002984 could modulate expression of VAMP3 through sponging miR-326-3p. Furthermore, we confirmed that up-regulation of miR-326-3p rescued the circ_0002984 overexpressing-mediated effects on VMSC viability, migration and inflammation. Additionally, miR-326-3p inhibitor-mediated functions on VSMCs were reversed by knockdown of VAMP3. In conclusion, circ_0002984 mediated cell proliferation, migration and inflammation through modulating miR-326-3p and VAMP3 in VSMCs, which suggested that circ_0002984 might hold great promise as a therapeutic strategy for atherosclerosis.
Collapse
MESH Headings
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Cell Movement/physiology
- Cell Proliferation/physiology
- Cells, Cultured
- Female
- Humans
- Inflammation/chemically induced
- Inflammation/immunology
- Inflammation/metabolism
- Inflammation/pathology
- Lipoproteins, LDL/toxicity
- Male
- MicroRNAs/genetics
- Middle Aged
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/immunology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- RNA, Circular/genetics
- Signal Transduction
- Vesicle-Associated Membrane Protein 3/genetics
- Vesicle-Associated Membrane Protein 3/metabolism
Collapse
Affiliation(s)
- Ruogu Li
- Department of Cardiovascular SurgeryShanghai Chest HospitalShanghai Jiao Tong UniversityShanghaiChina
| | - Qiliang Jiang
- Department of AnesthesiologyShanghai Chest HospitalShanghai Jiao Tong UniversityShanghaiChina
| | - Yue Zheng
- Department of Cardiovascular SurgeryShanghai Chest HospitalShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
7
|
LncRNA LINC00518 Acts as an Oncogene in Uveal Melanoma by Regulating an RNA-Based Network. Cancers (Basel) 2020; 12:cancers12123867. [PMID: 33371395 PMCID: PMC7767460 DOI: 10.3390/cancers12123867] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Uveal melanoma (UM) is the most frequent primary tumor of the eye in adults. Although molecular alterations on protein-coding genes have been associated with the development of UM, the role of non-coding RNAs and their competitive endogenous networks remain poorly investigated. Starting from a computational analysis on UM expression dataset deposited in The Cancer Genome Atlas, we identified the long non-coding RNA LINC00518 as a potential oncogene. We then experimentally evaluated LINC00518 and its supposed RNA signaling in human biopsies and in vitro functional assays. The results obtained suggest that LINC00518, under potential transcriptional control by MITF, regulates an RNA–RNA network promoting cancer-related processes (i.e., cell proliferation and migration). These findings open the way to the characterization of the unknown RNA signaling associated with UM and pave the way to the exploitation of a potential target for RNA-based therapeutics. Abstract Uveal melanoma (UM) is the most common primary intraocular malignant tumor in adults; little is known about the contribution of non-coding RNAs (ncRNAs) to UM pathogenesis. Competitive endogenous RNA (ceRNA) networks based on RNA–RNA interactions regulate physiological and pathological processes. Through a combined approach of in silico and experimental biology, we investigated the expression of a set of long non-coding RNAs (lncRNAs) in patient biopsies, identifying LINC00518 as a potential oncogene in UM. The detection of LINC00518 dysregulation associated with several in vitro functional assays allowed us to investigate its ceRNA regulatory network and shed light on its potential involvement in cancer-related processes, such as epithelial to mesenchymal transition (EMT) and CoCl2-induced hypoxia-like response. In vitro transient silencing of LINC00518 impaired cell proliferation and migration, and affected mRNA expression of LINGO2, NFIA, OTUD7B, SEC22C, and VAMP3. A “miRNA sponge” and “miRNA protector” model have been hypothesized for LINC00518-induced regulation of mRNAs. In vitro inhibition of MITF suggested its role as a potential activator of LINC00518 expression. Comprehensively, LINC00518 may be considered a new oncogene in UM and a potential target for RNA-based therapeutic approaches.
Collapse
|
8
|
Han P, Lei Y, Li D, Liu J, Yan W, Tian D. Ten years of research on the role of BVES/ POPDC1 in human disease: a review. Onco Targets Ther 2019; 12:1279-1291. [PMID: 30863095 PMCID: PMC6388986 DOI: 10.2147/ott.s192364] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Since the blood vessel epicardial substance or Popeye domain-containing protein 1 (BVES/POPDC1) was first identified in the developing heart by two independent laboratories in 1999, an increasing number of studies have investigated the structure, function, and related diseases of BVES/POPDC1. During the first 10 years following the discovery of BVES/POPDC1, studies focused mainly on its structure, expression patterns, and functions. Based on these studies, further investigations conducted over the previous decade examined the role of BVES/POPDC1 in human diseases, such as colitis, heart diseases, and human cancers. This review provides an overview of the structure and expression of BVES/POPDC1, mainly focusing on its potential role and mechanism through which it is involved in human cancers.
Collapse
Affiliation(s)
- Ping Han
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China, ;
| | - Yu Lei
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China, ;
| | - Dongxiao Li
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China, ;
| | - Jingmei Liu
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China, ;
| | - Wei Yan
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China, ;
| | - Dean Tian
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China, ;
| |
Collapse
|
9
|
Parang B, Thompson JJ, Williams CS. Blood Vessel Epicardial Substance (BVES) in junctional signaling and cancer. Tissue Barriers 2018; 6:1-12. [PMID: 30307367 DOI: 10.1080/21688370.2018.1499843] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Blood vessel epicardial substance (BVES) is a tight-junction associated protein that was originally discovered from a cDNA screen of the developing heart. Research over the last decade has shown that not only is BVES is expressed in cardiac and skeletal tissue, but BVES is also is expressed throughout the gastrointestinal epithelium. Mice lacking BVES sustain worse intestinal injury and inflammation. Furthermore, BVES is suppressed in gastrointestinal cancers, and mouse modeling has shown that loss of BVES promotes tumor formation. Recent work from multiple laboratories has revealed that BVES can regulate several molecular pathways, including cAMP, WNT, and promoting the degradation of the oncogene, c-Myc. This review will summarize our current understanding of how BVES regulates the intestinal epithelium and discuss how BVES functions at the molecular level to preserve epithelial phenotypes and suppress tumorigenesis.
Collapse
Affiliation(s)
- Bobak Parang
- a Department of Medicine , Cornell University , New York , NY , USA
| | - Joshua J Thompson
- b Department of Medicine, Division of Gastroenterology , Vanderbilt University , Nashville , TN , USA
| | - Christopher S Williams
- b Department of Medicine, Division of Gastroenterology , Vanderbilt University , Nashville , TN , USA.,c Veterans Affairs Tennessee Valley Health Care System , Nashville , TN , USA
| |
Collapse
|
10
|
Naydenov NG, Joshi S, Feygin A, Saini S, Litovchick L, Ivanov AI. A membrane fusion protein, Ykt6, regulates epithelial cell migration via microRNA-mediated suppression of Junctional Adhesion Molecule A. Cell Cycle 2018; 17:1812-1831. [PMID: 30010460 DOI: 10.1080/15384101.2018.1496755] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Vesicle trafficking regulates epithelial cell migration by remodeling matrix adhesions and delivering signaling molecules to the migrating leading edge. Membrane fusion, which is driven by soluble N-ethylmaleimide-sensitive factor associated receptor (SNARE) proteins, is an essential step of vesicle trafficking. Mammalian SNAREs represent a large group of proteins, but few have been implicated in the regulation of cell migration. Ykt6 is a unique SNARE existing in equilibrium between active membrane-bound and inactive cytoplasmic pools, and mediating vesicle trafficking between different intracellular compartments. The biological functions of this protein remain poorly understood. In the present study, we found that Ykt6 acts as a negative regulator of migration and invasion of human prostate epithelial cells. Furthermore, Ykt6 regulates the integrity of epithelial adherens and tight junctions. The observed anti-migratory activity of Ykt6 is mediated by a unique mechanism involving the expressional upregulation of microRNA 145, which selectively decreases the cellular level of Junctional Adhesion Molecule (JAM) A. This decreased JAM-A expression limits the activity of Rap1 and Rac1 small GTPases, thereby attenuating cell spreading and motility. The described novel functions of Ykt6 could be essential for the regulation of epithelial barriers, epithelial repair, and metastatic dissemination of cancer cells.
Collapse
Affiliation(s)
- Nayden G Naydenov
- a Department of Inflammation and Immunity , Lerner Research Institute of Cleveland Clinic Foundation , Cleveland , OH , USA.,b Department of Human and Molecular Genetics , Virginia Commonwealth University , Richmond , VA , USA
| | - Supriya Joshi
- b Department of Human and Molecular Genetics , Virginia Commonwealth University , Richmond , VA , USA
| | - Alex Feygin
- b Department of Human and Molecular Genetics , Virginia Commonwealth University , Richmond , VA , USA
| | - Siddharth Saini
- c Department of Internal Medicine , Virginia Commonwealth University , Richmond , VA , USA
| | - Larisa Litovchick
- c Department of Internal Medicine , Virginia Commonwealth University , Richmond , VA , USA
| | - Andrei I Ivanov
- a Department of Inflammation and Immunity , Lerner Research Institute of Cleveland Clinic Foundation , Cleveland , OH , USA.,b Department of Human and Molecular Genetics , Virginia Commonwealth University , Richmond , VA , USA
| |
Collapse
|
11
|
Deshar R, Moon S, Yoo W, Cho EB, Yoon SK, Yoon JB. RNF167 targets Arl8B for degradation to regulate lysosome positioning and endocytic trafficking. FEBS J 2016; 283:4583-4599. [PMID: 27808481 DOI: 10.1111/febs.13947] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 10/03/2016] [Accepted: 10/31/2016] [Indexed: 12/18/2022]
Abstract
The protease-associated (PA) domain-containing E3 ubiquitin ligases are transmembrane proteins located in intracellular organelles such as the endoplasmic reticulum, endosomes, or lysosomes. The functional roles of these ubiquitin ligases are not well defined. To understand the function of E3 ubiquitin ligases, identification of their substrates is of critical importance. In this study, we describe a newly devised method based on proximity-dependent biotin labeling to identify substrates of ubiquitin ligases. Application of this method to RING finger protein 167 (RNF167), a member of the PA domain-containing E3 family, led to identification of Arl8B as its substrate. We demonstrated that RNF167 ubiquitinates Arl8B at the lysine residue K141 and reduces the level of the Arl8B protein. Overexpression and knockdown of RNF167 revealed its regulatory role in Arl8B-dependent lysosome positioning and endocytic trafficking to lysosomes. Furthermore, we found that the ubiquitination-defective Arl8B K141R mutant counteracts RNF167 in these cellular events. These results indicate that RNF167 plays a crucial role as an E3 ubiquitin ligase targeting Arl8B to regulate lysosome positioning and endocytic trafficking.
Collapse
Affiliation(s)
- Rakesh Deshar
- Department of Medical Lifesciences, The Catholic University of Korea, Seoul, Korea
| | - Song Moon
- Department of Biochemistry and Translational Research Center for Protein Function Control, Yonsei University, Seoul, Korea
| | - Wonjin Yoo
- Department of Biochemistry and Translational Research Center for Protein Function Control, Yonsei University, Seoul, Korea
| | - Eun-Bee Cho
- Department of Biochemistry and Translational Research Center for Protein Function Control, Yonsei University, Seoul, Korea
| | - Sungjoo K Yoon
- Department of Medical Lifesciences, The Catholic University of Korea, Seoul, Korea
| | - Jong-Bok Yoon
- Department of Biochemistry and Translational Research Center for Protein Function Control, Yonsei University, Seoul, Korea
| |
Collapse
|
12
|
Amunjela JN, Tucker SJ. POPDC proteins as potential novel therapeutic targets in cancer. Drug Discov Today 2016; 21:1920-1927. [PMID: 27458118 DOI: 10.1016/j.drudis.2016.07.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 07/10/2016] [Accepted: 07/18/2016] [Indexed: 02/08/2023]
Abstract
Popeye domain-containing (POPDC) proteins are a novel class of cAMP-binding molecules that affect cancer cell behaviour and correlate with poor clinical outcomes. They are encoded by the POPDC genes POPDC1, POPDC2, and POPDC3. The deletion of POPDC genes and the suppression of POPDC proteins correlate with enhanced cancer cell proliferation, migration, invasion, metastasis, drug resistance, and poor patient survival in various human cancers. Overexpression of POPDC proteins inhibits cancer cell migration and invasion in vitro. POPDC proteins present promising anticancer therapeutic targets and here we review their roles in promoting cancer progression and highlight their potential as anticancer therapeutic targets.
Collapse
Affiliation(s)
- Johanna N Amunjela
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Steven J Tucker
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK.
| |
Collapse
|
13
|
Schindler RF, Scotton C, French V, Ferlini A, Brand T. The Popeye Domain Containing Genes and their Function in Striated Muscle. J Cardiovasc Dev Dis 2016; 3. [PMID: 27347491 PMCID: PMC4918794 DOI: 10.3390/jcdd3020022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 05/31/2016] [Accepted: 06/13/2016] [Indexed: 01/06/2023] Open
Abstract
The Popeye domain containing (POPDC) genes encode a novel class of cAMP effector proteins, which are abundantly expressed in heart and skeletal muscle. Here, we will review their role in striated muscle as deduced from work in cell and animal models and the recent analysis of patients carrying a missense mutation in POPDC1. Evidence suggests that POPDC proteins control membrane trafficking of interacting proteins. Furthermore, we will discuss the current catalogue of established protein-protein interactions. In recent years, the number of POPDC-interacting proteins has been rising and currently includes ion channels (TREK-1), sarcolemma-associated proteins serving functions in mechanical stability (dystrophin), compartmentalization (caveolin 3), scaffolding (ZO-1), trafficking (NDRG4, VAMP2/3) and repair (dysferlin) or acting as a guanine nucleotide exchange factor for Rho-family GTPases (GEFT). Recent evidence suggests that POPDC proteins might also control the cellular level of the nuclear proto-oncoprotein c-Myc. These data suggest that this family of cAMP-binding proteins probably serves multiple roles in striated muscle.
Collapse
Affiliation(s)
- Roland Fr Schindler
- Developmental Dynamics, Harefield Heart Science Centre, National Heart and Lung Institute, Imperial College London, Hill End Road, Harefield, UB9 6JH, United Kingdom
| | - Chiara Scotton
- Medical Genetics Unit, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Vanessa French
- Developmental Dynamics, Harefield Heart Science Centre, National Heart and Lung Institute, Imperial College London, Hill End Road, Harefield, UB9 6JH, United Kingdom
| | - Alessandra Ferlini
- Medical Genetics Unit, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Thomas Brand
- Developmental Dynamics, Harefield Heart Science Centre, National Heart and Lung Institute, Imperial College London, Hill End Road, Harefield, UB9 6JH, United Kingdom
| |
Collapse
|
14
|
Schindler RFR, Brand T. The Popeye domain containing protein family--A novel class of cAMP effectors with important functions in multiple tissues. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 120:28-36. [PMID: 26772438 PMCID: PMC4821176 DOI: 10.1016/j.pbiomolbio.2016.01.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 12/03/2015] [Accepted: 01/04/2016] [Indexed: 12/12/2022]
Abstract
Popeye domain containing (Popdc) proteins are a unique family, which combine several different properties and functions in a surprisingly complex fashion. They are expressed in multiple tissues and cell types, present in several subcellular compartments, interact with different classes of proteins, and are associated with a variety of physiological and pathophysiological processes. Moreover, Popdc proteins bind the second messenger cAMP with high affinity and it is thought that they act as a novel class of cAMP effector proteins. Here, we will review the most important findings about the Popdc family, which accumulated since its discovery about 15 years ago. We will be focussing on Popdc protein interaction and function in striated muscle tissue. However, as a full picture only emerges if all aspects are taken into account, we will also describe what is currently known about the role of Popdc proteins in epithelial cells and in various types of cancer, and discuss these findings with regard to their relevance for cardiac and skeletal muscle.
Collapse
Affiliation(s)
- Roland F R Schindler
- Heart Science Centre, National Heart and Lung Institute (NHLI), Imperial College London, United Kingdom
| | - Thomas Brand
- Heart Science Centre, National Heart and Lung Institute (NHLI), Imperial College London, United Kingdom.
| |
Collapse
|
15
|
Meng J, Wang J. Role of SNARE proteins in tumourigenesis and their potential as targets for novel anti-cancer therapeutics. Biochim Biophys Acta Rev Cancer 2015; 1856:1-12. [PMID: 25956199 DOI: 10.1016/j.bbcan.2015.04.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Revised: 04/24/2015] [Accepted: 04/28/2015] [Indexed: 12/22/2022]
Abstract
The function of soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) in cellular trafficking, membrane fusion and vesicle release in synaptic nerve terminals is well characterised. Recent studies suggest that SNAREs are also important in the control of tumourigenesis through the regulation of multiple signalling and transportation pathways. The majority of published studies investigated the effects of knockdown/knockout or overexpression of particular SNAREs on the normal function of cells as well as their dysfunction in tumourigenesis promotion. SNAREs are involved in the regulation of cancer cell invasion, chemo-resistance, the transportation of autocrine and paracrine factors, autophagy, apoptosis and the phosphorylation of kinases essential for cancer cell biogenesis. This evidence highlights SNAREs as potential targets for novel cancer therapy. This is the first review to summarise the expression and role of SNAREs in cancer biology at the cellular level, their interaction with non-SNARE proteins and modulation of cellular signalling cascades. Finally, a strategy is proposed for developing novel anti-cancer therapeutics using targeted delivery of a SNARE-inactivating protease into malignant cells.
Collapse
Affiliation(s)
- Jianghui Meng
- Charles Institute of Dermatology, School of Medicine and Medical Sciences, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Jiafu Wang
- International Centre for Neurotherapeutics, Dublin City University, Glasnevin, Dublin 9, Ireland.
| |
Collapse
|
16
|
Kawabata A, Serada S, Naka T, Mori Y. Human herpesvirus 6 gM/gN complex interacts with v-SNARE in infected cells. J Gen Virol 2014; 95:2769-2777. [PMID: 25209806 DOI: 10.1099/vir.0.069336-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Human herpesvirus 6 (HHV-6) glycoprotein M (gM) is an envelope glycoprotein that associates with glycoprotein N (gN), forming the gM/gN protein complex, in a similar manner to the other herpesviruses. Liquid chromatography-MS/MS analysis showed that the HHV-6 gM/gN complex interacts with the v-SNARE protein, vesicle-associated membrane protein 3 (VAMP3). VAMP3 colocalized with the gM/gN complex at the trans-Golgi network and other compartments, possibly the late endosome in HHV-6-infected cells, and its expression gradually increased during the late phase of virus infection. Finally, VAMP3 was incorporated into mature virions and may be transported with the gM/gN complex.
Collapse
Affiliation(s)
- Akiko Kawabata
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Satoshi Serada
- Laboratory of Immune Signal, Division of Biomedical Research, National Institute of Biomedical Innovation, 7-6-8, Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Tetsuji Naka
- Laboratory of Immune Signal, Division of Biomedical Research, National Institute of Biomedical Innovation, 7-6-8, Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Yasuko Mori
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| |
Collapse
|
17
|
Reverter M, Rentero C, Garcia-Melero A, Hoque M, Vilà de Muga S, Alvarez-Guaita A, Conway JRW, Wood P, Cairns R, Lykopoulou L, Grinberg D, Vilageliu L, Bosch M, Heeren J, Blasi J, Timpson P, Pol A, Tebar F, Murray RZ, Grewal T, Enrich C. Cholesterol regulates Syntaxin 6 trafficking at trans-Golgi network endosomal boundaries. Cell Rep 2014; 7:883-97. [PMID: 24746815 DOI: 10.1016/j.celrep.2014.03.043] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 12/30/2013] [Accepted: 03/17/2014] [Indexed: 12/27/2022] Open
Abstract
Inhibition of cholesterol export from late endosomes causes cellular cholesterol imbalance, including cholesterol depletion in the trans-Golgi network (TGN). Here, using Chinese hamster ovary (CHO) Niemann-Pick type C1 (NPC1) mutant cell lines and human NPC1 mutant fibroblasts, we show that altered cholesterol levels at the TGN/endosome boundaries trigger Syntaxin 6 (Stx6) accumulation into VAMP3, transferrin, and Rab11-positive recycling endosomes (REs). This increases Stx6/VAMP3 interaction and interferes with the recycling of αVβ3 and α5β1 integrins and cell migration, possibly in a Stx6-dependent manner. In NPC1 mutant cells, restoration of cholesterol levels in the TGN, but not inhibition of VAMP3, restores the steady-state localization of Stx6 in the TGN. Furthermore, elevation of RE cholesterol is associated with increased amounts of Stx6 in RE. Hence, the fine-tuning of cholesterol levels at the TGN-RE boundaries together with a subset of cholesterol-sensitive SNARE proteins may play a regulatory role in cell migration and invasion.
Collapse
Affiliation(s)
- Meritxell Reverter
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Carles Rentero
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Ana Garcia-Melero
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Monira Hoque
- Faculty of Pharmacy, University of Sydney, Sydney, NSW 2006, Australia
| | - Sandra Vilà de Muga
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Anna Alvarez-Guaita
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
| | - James R W Conway
- Garvan Institute of Medical Research and Kinghorn Cancer Centre, Cancer Research Program, St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - Peta Wood
- Faculty of Pharmacy, University of Sydney, Sydney, NSW 2006, Australia
| | - Rose Cairns
- Faculty of Pharmacy, University of Sydney, Sydney, NSW 2006, Australia
| | - Lilia Lykopoulou
- First Department of Pediatrics, University of Athens, Aghia Sofia Children's Hospital, 11527 Athens, Greece
| | - Daniel Grinberg
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, CIBERER, IBUB, 08028 Barcelona, Spain
| | - Lluïsa Vilageliu
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, CIBERER, IBUB, 08028 Barcelona, Spain
| | - Marta Bosch
- Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Joerg Heeren
- Department of Biochemistry and Molecular Biology II. Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Juan Blasi
- Department of Pathology and Experimental Therapeutics, IDIBELL-University of Barcelona, L'Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Paul Timpson
- Garvan Institute of Medical Research and Kinghorn Cancer Centre, Cancer Research Program, St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - Albert Pol
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain; Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avaçats (ICREA), 08010 Barcelona, Spain
| | - Francesc Tebar
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain; Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Rachael Z Murray
- Tissue Repair and Regeneration Program, Institute of Health and Biomedical, Innovation, Queensland University of Technology, Brisbane, QLD 4095, Australia
| | - Thomas Grewal
- Faculty of Pharmacy, University of Sydney, Sydney, NSW 2006, Australia.
| | - Carlos Enrich
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain; Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain.
| |
Collapse
|
18
|
Naydenov NG, Feygin A, Wang L, Ivanov AI. N-ethylmaleimide-sensitive factor attachment protein α (αSNAP) regulates matrix adhesion and integrin processing in human epithelial cells. J Biol Chem 2013; 289:2424-39. [PMID: 24311785 DOI: 10.1074/jbc.m113.498691] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Integrin-based adhesion to the extracellular matrix (ECM) plays critical roles in controlling differentiation, survival, and motility of epithelial cells. Cells attach to the ECM via dynamic structures called focal adhesions (FA). FA undergo constant remodeling mediated by vesicle trafficking and fusion. A soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein α (αSNAP) is an essential mediator of membrane fusion; however, its roles in regulating ECM adhesion and cell motility remain unexplored. In this study, we found that siRNA-mediated knockdown of αSNAP induced detachment of intestinal epithelial cells, whereas overexpression of αSNAP increased ECM adhesion and inhibited cell invasion. Loss of αSNAP impaired Golgi-dependent glycosylation and trafficking of β1 integrin and decreased phosphorylation of focal adhesion kinase (FAK) and paxillin resulting in FA disassembly. These effects of αSNAP depletion on ECM adhesion were independent of apoptosis and NSF. In agreement with our previous reports that Golgi fragmentation mediates cellular effects of αSNAP knockdown, we found that either pharmacologic or genetic disruption of the Golgi recapitulated all the effects of αSNAP depletion on ECM adhesion. Furthermore, our data implicates β1 integrin, FAK, and paxillin in mediating the observed pro-adhesive effects of αSNAP. These results reveal novel roles for αSNAP in regulating ECM adhesion and motility of epithelial cells.
Collapse
|
19
|
Li CD, Ge M, Luo MY, Chen DJ. SiRNA-mediated silencing of the RPL31 gene inhibits proliferation of human pancreatic cancer PANC-1 cells. Shijie Huaren Xiaohua Zazhi 2012; 20:2895-2901. [DOI: 10.11569/wcjd.v20.i30.2895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the impact of small interfering RNA (siRNA)-mediated RPL31 gene silencing on biological behavior of human pancreatic cancer PANC-1 cells, and to explore the feasibility of using the human RPL31 gene as a therapeutic target for pancreatic cancer.
METHODS: Three RPL31-specific siRNAs were designed and transfected into PANC-1 cells using LipofectamineTM 2000. Blank control and negative control groups were run at the same time. After PANC-1 cells were transfected with RPL31-specific siRNA, the levels of RPL31 mRNA and protein were detected by quantitative real-time PCR (qRT-PCR) and Western blot, respectively. Cell proliferation was detected by MTT assay. Cell cycle progression was determined by flow cytometry. Cell migration was determined by Transwell chamber assay. Vascular endothelial growth factor (VEGF) expression in cells was detected by ELISA.
RESULTS: All three RPL31-specific siRNAs could silence the expression of RPL31 at the mRNA and protein levels 48 hours after transfection. MTT assay showed that cell proliferation was significantly inhibited. Flow cytometry analysis revealed that PANC-1 cells transfected with RPL31 siRNA had a more significant cell cycle arrest (G0/G1 phase: 59.85% ± 5.47% vs 45.71% ± 3.44%; S phase: 28.63% ± 4.52% vs 45.13% ± 2.64%, both P < 0.05). RPL31 knockdown significantly suppressed VEGF expression (1563.45 ± 24.95 pg/106 cells/24 h vs 2804.6 ± 40.46 pg/106 cells/24 h, 2791.5 ± 44.77 pg/106 cells/24 h, both P < 0.05) and the migration of PANC-1 cells (178.6 ± 30.3 vs 470.5 ± 22.8, 474.2 ± 20.4, both P < 0.05) compared to the blank control and negative control groups.
CONCLUSION: Transfection of RPL31-specific siRNAs could effectively inhibit RPL31 expression, significantly suppress cell proliferation, and reduce cell migration and VEGF expression. RPL31 might serve as a target for gene therapy of pancreatic cancer.
Collapse
|
20
|
Abstract
Mast cell function and dysregulation is important in the development and progression of allergic and autoimmune disease. Identifying novel proteins involved in mast cell function and disease progression is the first step in the design of new therapeutic strategies. Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) are a family of proteins demonstrated to mediate the transport and fusion of secretory vesicles to the membrane in mast cells, leading to the subsequent release of the vesicle cargo through an exocytotic mechanism. The functional role[s] of specific SNARE family member complexes in mast cell degranulation has not been fully elucidated. Here, we review recent and historical data on the expression, formation and localization of various SNARE proteins and their complexes in murine and human mast cells. We summarize the functional data identifying the key SNARE family members that appear to participate in mast cell degranulation. Furthermore, we discuss the utilization of RNA interference (RNAi) methods to validate SNARE function and the use of siRNA as a therapeutic approach to the treatment of inflammatory disease. These studies provide an overview of the specific SNARE proteins and complexes that serve as novel targets for the development of new therapies to treat allergic and autoimmune disease.
Collapse
Affiliation(s)
- Joseph R Woska
- Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, St. John's University, Jamaica, NY, USA.
| | | |
Collapse
|
21
|
Yamamoto H, Ida T, Tsutsuki H, Mori M, Matsumoto T, Kohda T, Mukamoto M, Goshima N, Kozaki S, Ihara H. Specificity of botulinum protease for human VAMP family proteins. Microbiol Immunol 2012; 56:245-53. [PMID: 22289120 DOI: 10.1111/j.1348-0421.2012.00434.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The botulinum neurotoxin light chain (BoNT-LC) is a zinc-dependent metalloprotease that cleaves neuronal SNARE proteins such as SNAP-25, VAMP2, and Syntaxin1. This cleavage interferes with the neurotransmitter release of peripheral neurons and results in flaccid paralysis. SNAP, VAMP, and Syntaxin are representative of large families of proteins that mediate most membrane fusion reactions, as well as both neuronal and non-neuronal exocytotic events in eukaryotic cells. Neuron-specific SNARE proteins, which are target substrates of BoNT, have been well studied; however, it is unclear whether other SNARE proteins are also proteolyzed by BoNT. Herein, we define the substrate specificity of BoNT-LC/B, /D, and /F towards recombinant human VAMP family proteins. We demonstrate that LC/B, /D, and /F are able to cleave VAMP1, 2, and 3, but no other VAMP family proteins. Kinetic analysis revealed that all LC have higher affinity and catalytic activity for the non-neuronal SNARE isoform VAMP3 than for the neuronal VAMP1 and 2 isoforms. LC/D in particular exhibited extremely low catalytic activity towards VAMP1 relative to other interactions, which we determined through point mutation analysis to be a result of the Ile present at residue 48 of VAMP1. We also identified the VAMP3 cleavage sites to be at the Gln 59-Phe 60 (LC/B), Lys 42-Leu 43 (LC/D), and Gln 41-Lys 42 (LC/F) peptide bonds, which correspond to those of VAMP1 or 2. Understanding the substrate specificity and kinetic characteristics of BoNT towards human SNARE proteins may aid in the development of novel therapeutic uses for BoNT.
Collapse
Affiliation(s)
- Hideyuki Yamamoto
- Department of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka 598-8531, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Granule exocytosis is required for platelet spreading: differential sorting of α-granules expressing VAMP-7. Blood 2012; 120:199-206. [PMID: 22589474 DOI: 10.1182/blood-2011-10-389247] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
There has been recent controversy as to whether platelet α-granules represent a single granule population or are composed of different subpopulations that serve discrete functions. To address this question, we evaluated the localization of vesicle-associated membrane proteins (VAMPs) in spread platelets to determine whether platelets actively sort a specific subpopulation of α-granules to the periphery during spreading. Immunofluorescence microscopy demonstrated that granules expressing VAMP-3 and VAMP-8 localized to the central granulomere of spread platelets along with the granule cargos von Willebrand factor and serotonin. In contrast, α-granules expressing VAMP-7 translocated to the periphery of spread platelets along with the granule cargos TIMP2 and VEFG. Time-lapse microscopy demonstrated that α-granules expressing VAMP-7 actively moved from the granulomere to the periphery during spreading. Platelets from a patient with gray platelet syndrome lacked α-granules and demonstrated only minimal spreading. Similarly, spreading was impaired in platelets obtained from Unc13d(Jinx) mice, which are deficient in Munc13-4 and have an exocytosis defect. These studies identify a new α-granule subtype expressing VAMP-7 that moves to the periphery during spreading, supporting the premise that α-granules are heterogeneous and demonstrating that granule exocytosis is required for platelet spreading.
Collapse
|
23
|
Riggs KA, Hasan N, Humphrey D, Raleigh C, Nevitt C, Corbin D, Hu C. Regulation of integrin endocytic recycling and chemotactic cell migration by syntaxin 6 and VAMP3 interaction. J Cell Sci 2012; 125:3827-39. [PMID: 22573826 DOI: 10.1242/jcs.102566] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Integrins are the primary receptors of cells adhering to the extracellular matrix, and play key roles in various cellular processes including migration, proliferation and survival. The expression and distribution of integrins at the cell surface is controlled by endocytosis and recycling. The present study examines the function of syntaxin 6 (STX6), a t-SNARE located in the trans-Golgi network, in integrin trafficking. STX6 is overexpressed in many types of human cancer. We show that depletion of STX6 inhibits chemotactic cell migration and the delivery of the laminin receptor α3β1 integrin to the cell surface, whereas STX6 overexpression stimulates chemotactic cell migration, integrin delivery, and integrin-initiated activation of focal adhesion kinase. These data indicate that STX6 plays a rate-limiting role in cell migration and integrin trafficking. In STX6-depleted cells, α3β1 integrin is accumulated in recycling endosomes that contain the v-SNARE VAMP3. Importantly, we show that STX6 and VAMP3 form a v-/t-SNARE complex, VAMP3 is required in α3β1 integrin delivery to the cell surface, and endocytosed α3β1 integrin traffics to both VAMP3 and STX6 compartments. Collectively, our data suggest a new integrin trafficking pathway in which endocytosed integrins are transported from VAMP3-containing recycling endosomes to STX6-containing trans-Golgi network before being recycled to the plasma membrane.
Collapse
Affiliation(s)
- Krista A Riggs
- Department of Biochemistry and Molecular Biology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Trakooljul N, Hicks JA, Liu HC. Characterization of miR-10a mediated gene regulation in avian splenocytes. Gene 2012; 500:107-14. [DOI: 10.1016/j.gene.2012.03.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 02/15/2012] [Accepted: 03/04/2012] [Indexed: 11/30/2022]
|
25
|
|
26
|
Fibronectin enhances soluble N-ethylmaleimide-sensitive factor attachment protein receptor protein expression in cultured human islets. Pancreas 2011; 40:1153-5. [PMID: 21926557 DOI: 10.1097/mpa.0b013e318222bcaf] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
|
27
|
Tiwari A, Jung JJ, Inamdar SM, Brown CO, Goel A, Choudhury A. Endothelial cell migration on fibronectin is regulated by syntaxin 6-mediated alpha5beta1 integrin recycling. J Biol Chem 2011; 286:36749-61. [PMID: 21880737 DOI: 10.1074/jbc.m111.260828] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The α5β1 integrin heterodimer regulates many processes that contribute to embryonic development and angiogenesis, in both physiological and pathological contexts. As one of the major adhesion complexes on endothelial cells, it plays a vital role in adhesion and migration along the extracellular matrix. We recently showed that angiogenesis is modulated by syntaxin 6, a Golgi- and endosome-localized t-SNARE, and that it does so by regulating the post-Golgi trafficking of VEGFR2. Here we show that syntaxin 6 is also required for α5β1 integrin-mediated adhesion of endothelial cells to, and migration along, fibronectin. We demonstrate that syntaxin 6 and α5β1 integrin colocalize in EEA1-containing early endosomes, and that functional inhibition of syntaxin 6 leads to misrouting of β1 integrin to the degradation pathway (late endosomes and lysosomes) rather transport along recycling pathway from early endosomes; an increase in the pool of ubiquitinylated α5 integrin and its lysosome-dependent degradation; reduced cell spreading on fibronectin; decreased Rac1 activation; and altered Rac1 localization. Collectively, our data show that functional syntaxin 6 is required for the regulation of α5β1-mediated endothelial cell movement on fibronectin. These syntaxin 6-regulated membrane trafficking events control outside-in signaling via haptotactic and chemotactic mechanisms.
Collapse
Affiliation(s)
- Ajit Tiwari
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | | | | | |
Collapse
|
28
|
Veale KJ, Offenhäuser C, Lei N, Stanley AC, Stow JL, Murray RZ. VAMP3 regulates podosome organisation in macrophages and together with Stx4/SNAP23 mediates adhesion, cell spreading and persistent migration. Exp Cell Res 2011; 317:1817-29. [DOI: 10.1016/j.yexcr.2011.04.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 04/27/2011] [Accepted: 04/30/2011] [Indexed: 11/28/2022]
|
29
|
Veale KJ, Offenhäuser C, Whittaker SP, Estrella RP, Murray RZ. Recycling endosome membrane incorporation into the leading edge regulates lamellipodia formation and macrophage migration. Traffic 2011; 11:1370-9. [PMID: 20604897 DOI: 10.1111/j.1600-0854.2010.01094.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In comparison to our knowledge of the recycling of adhesion receptors and actin assembly, exactly how the cell controls its surface membrane to form a lamellipodium during migration is poorly understood. Here, we show the recycling endosome membrane is incorporated into the leading edge of a migrating cell to expand lamellipodia membrane. We have identified the SNARE complex that is necessary for fusion of the recycling endosome with the cell surface, as consisting of the R-SNARE VAMP3 on the recycling endosome partnering with the surface Q-SNARE Stx4/SNAP23, which was found to translocate and accumulate on the leading edge of migrating cells. Increasing VAMP3-mediated fusion of the recycling endosome with the surface increased membrane ruffling, while inhibition of VAMP3-mediated fusion showed that incorporation of the recycling endosome is necessary for efficient lamellipodia formation. At the same time, insertion of this recycling endosome membrane also delivers its cargo integrin α5β1 to the cell surface. The loss of this extra membrane for lamellipodia expansion and delivery of cargo in cells resulted in macrophages with a diminished capacity to effectively migrate. Thus, the recycling endosome membrane is incorporated into the leading edge and this aids expansion of the lamellipodia and simultaneously delivers integrins necessary for efficient cell migration.
Collapse
Affiliation(s)
- Kelly J Veale
- CHBRI Wound Healing Laboratory, Kids Research Institute, The Children's Hospital at Westmead, Westmead, Sydney, NSW, Australia
| | | | | | | | | |
Collapse
|
30
|
Hasan N, Corbin D, Hu C. Fusogenic pairings of vesicle-associated membrane proteins (VAMPs) and plasma membrane t-SNAREs--VAMP5 as the exception. PLoS One 2010; 5:e14238. [PMID: 21151919 PMCID: PMC2997805 DOI: 10.1371/journal.pone.0014238] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Accepted: 11/12/2010] [Indexed: 12/31/2022] Open
Abstract
Background Intracellular vesicle fusion is mediated by the interactions of SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins on vesicles (v-SNAREs) and on target membranes (t-SNAREs). The vesicle-associated membrane proteins (VAMPs) are v-SNAREs that reside in various post-Golgi vesicular compartments. To fully understand the specific role of each VAMP in vesicle trafficking, it is important to determine if VAMPs have differential membrane fusion activities. Methodology/Principal Findings In this study, we developed a cell fusion assay that quantifies SNARE-mediated membrane fusion events by activated expression of β-galactosidase, and examined fusogenic pairings between the seven VAMPs, i.e., VAMPs 1, 2, 3, 4, 5, 7 and 8, and two plasma membrane t-SNARE complexes, syntaxin1/SNAP-25 and syntaxin4/SNAP-25. VAMPs 1, 2, 3, 4, 7 and 8 drove fusion efficiently, whereas VAMP5 was unable to mediate fusion with the t-SNAREs. By expressing VAMPs 1, 3, 4, 7 and 8 at the same level, we further compared their membrane fusion activities. VAMPs 1 and 3 had comparable and the highest fusion activities, whereas VAMPs 4, 7 and 8 exhibited 30–50% lower fusion activities. Moreover, we determined the dependence of cell fusion activity on VAMP1 expression level. Analysis of the dependence data suggested that there was no cooperativity of VAMP proteins in the cell fusion reaction. Conclusions/Significance These data indicate that VAMPs have differential membrane fusion capacities, and imply that with the exception of VAMP5, VAMPs are essentially redundant in mediating fusion with plasma membrane t-SNAREs.
Collapse
Affiliation(s)
- Nazarul Hasan
- Department of Biochemistry and Molecular Biology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Deborah Corbin
- Department of Biochemistry and Molecular Biology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Chuan Hu
- Department of Biochemistry and Molecular Biology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
31
|
Franke A, McGovern DP, Barrett JC, Wang K, Radford-Smith GL, Ahmad T, Lees CW, Balschun T, Lee J, Roberts R, Anderson CA, Bis JC, Bumpstead S, Ellinghaus D, Festen EM, Georges M, Haritunians T, Jostins L, Latiano A, Mathew CG, Montgomery GW, Prescott NJ, Rotter JI, Schumm P, Sharma Y, Simms LA, Taylor KD, Whiteman D, Wijmenga C, Baldassano RN, Barclay M, Bayless TM, Brand S, Buning C, Cohen A, Colombel JF, Cottone M, Stronati L, Denson T, De Vos M, D’Inca R, Dubinsky M, Edwards C, Florin T, Franchimont D, Gearry R, Glas J, Van Gossum A, Guthery SL, Halfvarson J, Hommes D, Hugot JP, Laukens D, Lawrance I, Lemann M, Levine A, Libioulle C, Louis E, Mowat C, Newman W, Panés J, Phillips A, Proctor DD, Regueiro M, Rutgeerts P, Sanderson J, Sans M, Seibold F, Steinhart AH, Stokkers PC, Torkvist L, Ublick GK, Raychaudhuri S, Green T, Walters T, Targan SR, Brant SR, Rioux JD, D’Amato M, Weersma R, Kugathasan S, Griffiths AM, Mansfield JC, Vermeire S, Duerr RH, Silverberg MS, Satsangi J, Schreiber S, Cho JH, Annese V, Hakonarson H, Daly MJ, Parkes M. Genome-wide meta-analysis increases to 71 the number of confirmed Crohn's disease susceptibility loci. Nat Genet 2010; 42:1118-25. [PMID: 21102463 PMCID: PMC3299551 DOI: 10.1038/ng.717] [Citation(s) in RCA: 1949] [Impact Index Per Article: 139.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Accepted: 10/22/2010] [Indexed: 02/08/2023]
Abstract
We undertook a meta-analysis of six Crohn's disease genome-wide association studies (GWAS) comprising 6,333 affected individuals (cases) and 15,056 controls and followed up the top association signals in 15,694 cases, 14,026 controls and 414 parent-offspring trios. We identified 30 new susceptibility loci meeting genome-wide significance (P < 5 × 10⁻⁸). A series of in silico analyses highlighted particular genes within these loci and, together with manual curation, implicated functionally interesting candidate genes including SMAD3, ERAP2, IL10, IL2RA, TYK2, FUT2, DNMT3A, DENND1B, BACH2 and TAGAP. Combined with previously confirmed loci, these results identify 71 distinct loci with genome-wide significant evidence for association with Crohn's disease.
Collapse
Affiliation(s)
- Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University Kiel, Schittenhelmstr. 12, D-24105 Kiel, Germany
| | - Dermot P.B. McGovern
- Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Medical Genetics Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Jeffrey C. Barrett
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Kai Wang
- Center for Applied Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Graham L. Radford-Smith
- Inflammatory Bowel Disease Research Group, Queensland Institute of Medical Research, Brisbane, Australia
| | - Tariq Ahmad
- Peninsula College of Medicine and Dentistry, Barrack Road, Exeter, UK
| | - Charlie W. Lees
- Gastrointestinal Unit, Molecular Medicine Centre, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, UK
| | - Tobias Balschun
- popgen Biobank, Christian-Albrechts University Kiel, D-24105 Kiel, Germany
| | - James Lee
- Inflammatory Bowel Disease Research Group, Addenbrooke’s Hospital, University of Cambridge, Cambridge, UK
| | - Rebecca Roberts
- Department of Medicine, University of Otago, Christchurch 8140, New Zealand
| | - Carl A. Anderson
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Joshua C. Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, USA
| | - Suzanne Bumpstead
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - David Ellinghaus
- Institute of Clinical Molecular Biology, Christian-Albrechts-University Kiel, Schittenhelmstr. 12, D-24105 Kiel, Germany
| | - Eleonora M. Festen
- Department of Genetics, University Medical Center Groningen, Groningen, the Netherlands
| | - Michel Georges
- Department of Genetics, Faculty of Veterinary Medicine, University of Liège B43, 20 Bd de Colonster, 4000 Liège, Belgium
| | - Talin Haritunians
- Medical Genetics Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Luke Jostins
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Anna Latiano
- Unit of Gastroenterology, IRCCS-CSS Hospital, San Giovanni Rotondo, Italy
| | - Christopher G. Mathew
- Department of Medical and Molecular Genetics, King’s College London School of Medicine, Floor 8 Tower Wing, Guy’s Hospital, London, UK
| | - Grant W. Montgomery
- Molecular Epidemiology, Queensland Institute of Medical Research, Brisbane, Australia 4006
| | - Natalie J. Prescott
- Department of Medical and Molecular Genetics, King’s College London School of Medicine, Floor 8 Tower Wing, Guy’s Hospital, London, UK
| | - Jerome I. Rotter
- Medical Genetics Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Philip Schumm
- Department of Health Studies, University of Chicago, Chicago, Illinois, USA
| | - Yashoda Sharma
- Section of Digestive Diseases, Department of Medicine, Yale University, New Haven, Connecticut, USA
| | - Lisa A. Simms
- Inflammatory Bowel Disease Research Group, Queensland Institute of Medical Research, Brisbane, Australia
| | - Kent D. Taylor
- Medical Genetics Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - David Whiteman
- Molecular Epidemiology, Queensland Institute of Medical Research, Brisbane, Australia 4006
| | - Cisca Wijmenga
- Department of Genetics, University Medical Center Groningen, Groningen, the Netherlands
| | - Robert N. Baldassano
- Department of Pediatrics, Center for Pediatric Inflammatory Bowel Disease, The Children’s Hospital of Philadelphia, Philadelphia, USA
| | - Murray Barclay
- Department of Medicine, University of Otago, Christchurch 8140, New Zealand
| | - Theodore M. Bayless
- Inflammatory Bowel Disease Center, Dept. of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, U.S.A
| | - Stephan Brand
- Department of Medicine II, University Hospital MunichGrosshadern, Ludwig-Maximilians-University, Munich, Germany
| | - Carsten Buning
- Department of Gastroenterology, Charité, Campus Mitte, Universitätsmedizin Berlin, Berlin, Germany
| | - Albert Cohen
- Montreal Jewish General Hospital, Montréal, Québec, Canada
| | | | - Mario Cottone
- Unit of Gastroenterology, Cervello Hospital, Palermo, Italy
| | - Laura Stronati
- ENEA, Department of Biology of Radiations and Human Health, Rome, Italy
| | - Ted Denson
- Pediatric Gastroenterology, Cincinnati Children’s Hospital. Medical Center. 3333 Burnet Ave, Cincinnati, USA
| | - Martine De Vos
- Department of Hepatology and Gastroenterology, Ghent University Hospital, Ghent, Belgium
| | - Renata D’Inca
- Division of Gastroenterology, University Hospital Padua, Italy
| | - Marla Dubinsky
- Department of Pediatrics, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | | | - Tim Florin
- Department of Gastroenterology, Mater Health Services, Brisbane, Australia 4101
| | - Denis Franchimont
- Department of Gastroenterology, Erasmus Hospital, Free University of Brussels, Brussels, Belgium
| | - Richard Gearry
- Department of Medicine, University of Otago, Christchurch 8140, New Zealand
| | - Jürgen Glas
- Department of Medicine II, University Hospital MunichGrosshadern, Ludwig-Maximilians-University, Munich, Germany
- Department of Preventive Dentistry and Periodontology, Ludwig-Maximilians-University, Munich, Germany
- Department of Human Genetics, RWTH Aachen, Germany
| | - Andre Van Gossum
- Department of Gastroenterology, Erasmus Hospital, Free University of Brussels, Brussels, Belgium
| | - Stephen L. Guthery
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Jonas Halfvarson
- Department of Medicine, Örebro University Hospital, Örebro, Sweden
| | - Daan Hommes
- Dept of Gastroenterology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Debby Laukens
- Department of Hepatology and Gastroenterology, Ghent University Hospital, Ghent, Belgium
| | - Ian Lawrance
- School of Medicine and Pharmacology, The University of Western Australia, Fremantle, Australia 6160
| | - Marc Lemann
- GETAID group, Université Paris Diderot, Paris, France
| | - Arie Levine
- Pediatric Gastroenterology Unit, Wolfson Medical Center and Sackler School of Medicine, Tel Aviv University, Israel
| | - Cecile Libioulle
- Division of Gastroenterology, CHU, Université de Liège, Liège, Belgium
| | - Edouard Louis
- Division of Gastroenterology, CHU, Université de Liège, Liège, Belgium
| | - Craig Mowat
- Dept of Medicine, Ninewells Hospital and Medical School, Dundee, UK
| | - William Newman
- Department of Medical Genetics, University of Manchester, Manchester, UK
| | - Julián Panés
- Department of Gastroenterology, Hospital Clínic / IDIBAPS. CIBER EHD. Barcelona, Spain
| | - Anne Phillips
- Dept of Medicine, Ninewells Hospital and Medical School, Dundee, UK
| | - Deborah D. Proctor
- Section of Digestive Diseases, Department of Medicine, Yale University, New Haven, Connecticut, USA
| | - Miguel Regueiro
- Division of Gastroenterology, Hepatology and Nutrition, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Paul Rutgeerts
- Division of Gastroenterology, University Hospital Gasthuisberg, Leuven, Belgium
| | - Jeremy Sanderson
- Dept Gastroenterology, Guy’s & St Thomas’ NHS Foundation Trust, St Thomas’ Hospital, London, UK
| | - Miquel Sans
- Department of Gastroenterology, Hospital Clínic / IDIBAPS. CIBER EHD. Barcelona, Spain
| | - Frank Seibold
- Division of Gastroenterology, Inselspital, University of Bern, Bern, Switzerland
| | - A. Hillary Steinhart
- Mount Sinai Hospital Inflammatory Bowel Disease Centre, University of Toronto, Canada
| | - Pieter C.F. Stokkers
- Department of Gastroenterology, Academic Medical Center, Amsterdam, the Netherlands
| | - Leif Torkvist
- Department of Clinical Science Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Gerd Kullak Ublick
- Division of Clinical Pharmacology and Toxicology University Hospital Zurich, CH-8091 Zurich, Switzerland
| | - Soumya Raychaudhuri
- Center for Human Genetic Research, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Todd Green
- Center for Human Genetic Research, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Thomas Walters
- The Hospital for Sick Children, University of Toronto, Ontario, Canada
| | - Stephan R. Targan
- Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Steven R. Brant
- Inflammatory Bowel Disease Center, Dept. of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, U.S.A
| | - John D. Rioux
- Université de Montréal and the Montreal Heart Institute, Research Center, Montréal, Québec, Canada
| | - Mauro D’Amato
- Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden
| | - Rinse Weersma
- Department of Gastroenterology, University Medical Center Groningen, Groningen, The Netherlands
| | - Subra Kugathasan
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Anne M. Griffiths
- Center for Human Genetic Research, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - John C. Mansfield
- Institute of Human Genetics, Newcastle University, Newcastle upon Tyne, UK
| | - Severine Vermeire
- Division of Gastroenterology, University Hospital Gasthuisberg, Leuven, Belgium
| | - Richard H. Duerr
- Division of Gastroenterology, Hepatology and Nutrition, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mark S. Silverberg
- Mount Sinai Hospital Inflammatory Bowel Disease Centre, University of Toronto, Canada
| | - Jack Satsangi
- Gastrointestinal Unit, Molecular Medicine Centre, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, UK
| | - Stefan Schreiber
- Institute of Clinical Molecular Biology, Christian-Albrechts-University Kiel, Schittenhelmstr. 12, D-24105 Kiel, Germany
- Department for General Internal Medicine, Christian-Albrechts-University, Schittenhelmstr. 12, D-24105 Kiel, Germany
| | - Judy H. Cho
- Section of Digestive Diseases, Department of Medicine, Yale University, New Haven, Connecticut, USA
- Department of Genetics, Yale School of Medicine, New Haven CT, USA
| | - Vito Annese
- Unit of Gastroenterology, IRCCS-CSS Hospital, San Giovanni Rotondo, Italy
- Unit of Gastroenterology, University Hospital Careggi Florence, Italy
| | - Hakon Hakonarson
- Center for Applied Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, Center for Pediatric Inflammatory Bowel Disease, The Children’s Hospital of Philadelphia, Philadelphia, USA
| | - Mark J. Daly
- Center for Human Genetic Research, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Miles Parkes
- Inflammatory Bowel Disease Research Group, Addenbrooke’s Hospital, University of Cambridge, Cambridge, UK
| |
Collapse
|
32
|
Adams HA, Southey BR, Everts RE, Marjani SL, Tian CX, Lewin HA, Rodriguez-Zas SL. Transferase activity function and system development process are critical in cattle embryo development. Funct Integr Genomics 2010; 11:139-50. [PMID: 20844914 DOI: 10.1007/s10142-010-0189-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Revised: 08/19/2010] [Accepted: 08/24/2010] [Indexed: 01/04/2023]
Abstract
Microarray gene expression experiments often consider specific developmental stages, tissue sources, or reproductive technologies. This focus hinders the understanding of the cattle embryo transcriptome. To address this, four microarray experiments encompassing three developmental stages (7, 25, 280 days), two tissue sources (embryonic or extra-embryonic), and two reproductive technologies (artificial insemination or AI and somatic cell nuclear transfer or NT) were combined using two sets of meta-analyses. The first set of meta-analyses uncovered 434 genes differentially expressed between AI and NT (regardless of stage or source) that were not detected by the individual-experiment analyses. The molecular function of transferase activity was enriched among these genes that included ECE2, SLC22A1, and a gene similar to CAMK2D. Gene POLG2 was over-expressed in AI versus NT 7-day embryos and was under-expressed in AI versus NT 25-day embryos. Gene HAND2 was over-expressed in AI versus NT extra-embryonic samples at 280 days yet under-expressed in AI versus NT embryonic samples at 7 days. The second set of meta-analyses uncovered enrichment of system, organ, and anatomical structure development among the genes differentially expressed between 7- and 25-day embryos from either reproductive technology. Genes PRDX1and SLC16A1 were over-expressed in 7- versus 25-day AI embryos and under-expressed in 7- versus 25-day NT embryos. Changes in stage were associated with high number of differentially expressed genes, followed by technology and source. Genes with transferase activity may hold a clue to the differences in efficiency between reproductive technologies.
Collapse
Affiliation(s)
- Heather A Adams
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Integrins are transmembrane adhesion receptors essential for cell communication with the environment and in particular with the extracellular matrix (ECM). ECM components can be processed by several enzymes; one of the largest families involved in this task being matrix metalloproteinases (MMPs). MT1-MMP (membrane type 1-matrix metalloproteinase) is a membrane-anchored MMP with important roles in processes such as tissue development, tumor invasion, and angiogenesis. In addition to its catalytic-dependent functions, MT1-MMP can interact, via its cytosolic tail, with intracellular components, and trigger signaling pathways that impact cell decisions. These features make MT1-MMP similar to integrins, because both are able to integrate events in the extracellular and intracellular milieus. Accordingly, it is probably no coincidence that MT1-MMP often associates and functionally cooperates with distinct integrins at specific cellular compartments. In this review, we discuss aspects of the molecular and functional interplay between MT1-MMP and integrins in distinct cellular and biological contexts.
Collapse
Affiliation(s)
- Pilar Gonzalo
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | | | | | | |
Collapse
|
34
|
Rapaport D, Lugassy Y, Sprecher E, Horowitz M. Loss of SNAP29 impairs endocytic recycling and cell motility. PLoS One 2010; 5:e9759. [PMID: 20305790 PMCID: PMC2841205 DOI: 10.1371/journal.pone.0009759] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2009] [Accepted: 02/25/2010] [Indexed: 01/20/2023] Open
Abstract
Intracellular membrane trafficking depends on the ordered formation and consumption of transport intermediates and requires that membranes fuse with each other in a tightly regulated and highly specific manner. Membrane anchored SNAREs assemble into SNARE complexes that bring membranes together to promote fusion. SNAP29 is a ubiquitous synaptosomal-associated SNARE protein. It interacts with several syntaxins and with the EH domain containing protein EHD1. Loss of functional SNAP29 results in CEDNIK syndrome (Cerebral Dysgenesis, Neuropathy, Ichthyosis and Keratoderma). Using fibroblast cell lines derived from CEDNIK patients, we show that SNAP29 mediates endocytic recycling of transferrin and β1-integrin. Impaired β1-integrin recycling affected cell motility, as reflected by changes in cell spreading and wound healing. No major changes were detected in exocytosis of VSVG protein from the Golgi apparatus, although the Golgi system acquired a dispersed morphology in SNAP29 deficient cells. Our results emphasize the importance of SNAP29 mediated membrane fusion in endocytic recycling and consequently, in cell motility.
Collapse
Affiliation(s)
- Debora Rapaport
- Department of Cell Research and Immunology, Tel Aviv University, Ramat Aviv, Israel
| | - Yevgenia Lugassy
- Center for Translational Genetics, Rappaport Institute and Technion – Israel Institute of Technology, Haifa, Israel
| | - Eli Sprecher
- Tel Aviv University, Ramat Aviv, Israel
- Department of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Center for Translational Genetics, Rappaport Institute and Technion – Israel Institute of Technology, Haifa, Israel
| | - Mia Horowitz
- Department of Cell Research and Immunology, Tel Aviv University, Ramat Aviv, Israel
- * E-mail:
| |
Collapse
|
35
|
Identification of a novel Bves function: regulation of vesicular transport. EMBO J 2010; 29:532-45. [PMID: 20057356 DOI: 10.1038/emboj.2009.379] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Accepted: 11/13/2009] [Indexed: 12/17/2022] Open
Abstract
Blood vessel/epicardial substance (Bves) is a transmembrane protein that influences cell adhesion and motility through unknown mechanisms. We have discovered that Bves directly interacts with VAMP3, a SNARE protein that facilitates vesicular transport and specifically recycles transferrin and beta-1-integrin. Two independent assays document that cells expressing a mutated form of Bves are severely impaired in the recycling of these molecules, a phenotype consistent with disruption of VAMP3 function. Using Morpholino knockdown in Xenopus laevis, we demonstrate that elimination of Bves function specifically inhibits transferrin receptor recycling, and results in gastrulation defects previously reported with impaired integrin-dependent cell movements. Kymographic analysis of Bves-depleted primary and cultured cells reveals severe impairment of cell spreading and adhesion on fibronectin, indicative of disruption of integrin-mediated adhesion. Taken together, these data demonstrate that Bves interacts with VAMP3 and facilitates receptor recycling both in vitro and during early development. Thus, this study establishes a newly identified role for Bves in vesicular transport and reveals a novel, broadly applied mechanism governing SNARE protein function.
Collapse
|
36
|
Hasan N, Hu C. Vesicle-associated membrane protein 2 mediates trafficking of α5β1 integrin to the plasma membrane. Exp Cell Res 2010; 316:12-23. [DOI: 10.1016/j.yexcr.2009.10.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Revised: 09/02/2009] [Accepted: 10/05/2009] [Indexed: 01/11/2023]
|
37
|
Chaineau M, Danglot L, Galli T. Multiple roles of the vesicular-SNARE TI-VAMP in post-Golgi and endosomal trafficking. FEBS Lett 2009; 583:3817-26. [PMID: 19837067 DOI: 10.1016/j.febslet.2009.10.026] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Revised: 10/09/2009] [Accepted: 10/13/2009] [Indexed: 01/13/2023]
Abstract
SNARE (Soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins are the core machinery of membrane fusion. Vesicular SNAREs (v-SNAREs) interact with their target SNAREs (t-SNAREs) to form SNARE complexes which mediate membrane fusion. Here we review the basic properties and functions of the v-SNARE TI-VAMP/VAMP7 (Tetanus neurotoxin insensitive-vesicle associated membrane protein). TI-VAMP interacts with its t-SNARE partners, particularly plasmalemmal syntaxins, to mediate membrane fusion and with several regulatory proteins especially via its amino-terminal regulatory Longin domain. Partners include AP-3, Hrb/(Human immunodeficiency virus Rev binding) protein, and Varp (Vps9 domain and ankyrin repeats containing protein) and regulate TI-VAMP's function and targeting. TI-VAMP is involved both in secretory and endocytic pathways which mediate neurite outgrowth and synaptic transmission, plasma membrane remodeling and lysosomal secretion.
Collapse
Affiliation(s)
- Mathilde Chaineau
- Membrane Traffic in Neuronal and Epithelial Morphogenesis', INSERM U950, Paris F-75013, France
| | | | | |
Collapse
|