1
|
Sabe H, Yahara Y, Ishii M. Cell fusion dynamics: mechanisms of multinucleation in osteoclasts and macrophages. Inflamm Regen 2024; 44:49. [PMID: 39605032 PMCID: PMC11600601 DOI: 10.1186/s41232-024-00360-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024] Open
Abstract
Cell-cell fusion is a vital biological process where the membranes of two or more cells merge to form a syncytium. This phenomenon is critical in various physiological and pathological contexts, including embryonic development, tissue repair, immune responses, and the progression of several diseases. Osteoclasts, which are cells from the monocyte/macrophage lineage responsible for bone resorption, have enhanced functionality due to cell fusion. Additionally, other multinucleated giant cells (MGCs) also arise from the fusion of monocytes and macrophages, typically during chronic inflammation and reactions to foreign materials such as prostheses or medical devices. Foreign body giant cells (FBGCs) and Langhans giant cells (LGCs) emerge only under pathological conditions and are involved in phagocytosis, antigen presentation, and the secretion of inflammatory mediators. This review provides a comprehensive overview of the mechanisms underlying the formation of multinucleated cells, with a particular emphasis on macrophages and osteoclasts. Elucidating the intracellular structures, signaling cascades, and fusion-mediating proteins involved in cell-cell fusion enhances our understanding of this fundamental biological process and helps identify potential therapeutic targets for disorders mediated by cell fusion.
Collapse
Affiliation(s)
- Hideaki Sabe
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan
- WPI-Immunology Frontier Research Center, Osaka University, Suita, Osaka, 565-0871, Japan
- Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Yasuhito Yahara
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan.
- WPI-Immunology Frontier Research Center, Osaka University, Suita, Osaka, 565-0871, Japan.
| | - Masaru Ishii
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan
- WPI-Immunology Frontier Research Center, Osaka University, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
2
|
Iwanowska M, Kochman M, Szatko A, Zgliczyński W, Glinicki P. Bone Disease in Primary Hyperparathyroidism-Changes Occurring in Bone Metabolism and New Potential Treatment Strategies. Int J Mol Sci 2024; 25:11639. [PMID: 39519190 PMCID: PMC11546563 DOI: 10.3390/ijms252111639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/15/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024] Open
Abstract
Primary hyperparathyroidism (PHPT) is a common endocrinopathy, predominantly caused by a single parathyroid adenoma that is responsible for the excessive secretion of parathyroid hormone (PTH)-the hallmark of disease. Excess of this hormone causes remarkable changes in bone metabolism, including an increased level of bone remodeling with a predominance of bone resorption. Those changes lead to deterioration of bone structure and density, especially in cortical bone. The main treatment for PHPT is surgical removal of the adenoma, which normalizes PTH levels and terminates the progression of bone disease and leads to its regeneration. However, because not all the patients are suitable candidates for surgery, alternative therapies are needed. Current non-surgical treatments targeting bone disease secondary to PHPT include bisphosphonates and denosumab. Those antiresorptives prevent further bone loss, but they lack the ability to regenerate already degraded bone. There is ongoing research to find targeted drugs capable of halting resorption alongside stimulating bone formation. This review presents the advancements in understanding the molecular mechanisms responsible for bone disease in PHPT and assesses the efficacy of new potential therapeutic approaches (e.g., allosteric inhibitors of the PTH receptor, V-ATPase, or cathepsin inhibitors) aimed at mitigating bone loss and enhancing bone regeneration in affected patients.
Collapse
Affiliation(s)
- Mirella Iwanowska
- Department of Endocrinology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland
| | - Magdalena Kochman
- Department of Endocrinology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland
| | - Alicja Szatko
- Department of Endocrinology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland
- EndoLab Laboratory, Centre of Postgraduate Medical Education, 01-809 Warsaw, Poland
| | - Wojciech Zgliczyński
- Department of Endocrinology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland
| | - Piotr Glinicki
- Department of Endocrinology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland
- EndoLab Laboratory, Centre of Postgraduate Medical Education, 01-809 Warsaw, Poland
| |
Collapse
|
3
|
Pongtiwattanakul S, Leethanakul C, Rattanaporn O, Thammanichanon P, Tannukit S. Effect of compressive force combined with vibration on CCL2 and CCL5 in human periodontal ligament cells. J Oral Biol Craniofac Res 2024; 14:626-630. [PMID: 39252795 PMCID: PMC11381868 DOI: 10.1016/j.jobcr.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/14/2024] [Indexed: 09/11/2024] Open
Abstract
Purpose To investigate the effect of compressive force combined with vibration on expression of CC-chemokine ligand 2 (CCL2) and 5 (CCL5) in human periodontal ligament (hPDL) cells. Methods Human PDL cells were cultured and assigned into four groups: control (Con), compressive force 2.0 g/cm2 for 24 h and 48 h (C), vibration 0.3 g 30 Hz for 20 min every 24 h (V), and compressive force combined with vibration (VC). At 24 h and 48 h, mRNA and protein levels of CCL2 and CCL5 were examined by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA), respectively. Results At 24 h and 48 h, CCL2 mRNA and protein levels in C and VC were significantly higher than Con. At 24 h, VC showed significantly higher CCL2 mRNA expression than C. However, there was no significant difference between CCL2 protein in C and VC at both time points. At 24 h and 48 h, CCL5 mRNA expression was significantly down-regulated in V and VC, whereas CCL5 protein was undetectable in all groups. Conclusions Application of compressive force combined with vibration resulted in the upregulation of CCL2 mRNA and protein levels, whereas CCL5 mRNA expression was down-regulated.
Collapse
Affiliation(s)
- Supunsa Pongtiwattanakul
- Orthodontic Section, Department of Preventive Dentistry, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Chidchanok Leethanakul
- Orthodontic Section, Department of Preventive Dentistry, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
- Center of Excellence for Oral Health, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Onnicha Rattanaporn
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | | | - Sissada Tannukit
- Department of Oral Biology and Occlusion, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| |
Collapse
|
4
|
Kim JH, Kim K, Kim I, Seong S, Koh JT, Kim N. MCP-5 suppresses osteoclast differentiation through Ccr5 upregulation. J Cell Physiol 2024; 239:e31171. [PMID: 38214098 DOI: 10.1002/jcp.31171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/24/2023] [Accepted: 12/04/2023] [Indexed: 01/13/2024]
Abstract
Human monocyte chemoattractant protein-1 (MCP-1) in mice has two orthologs, MCP-1 and MCP-5. MCP-1, which is highly expressed in osteoclasts rather than in osteoclast precursor cells, is an important factor in osteoclast differentiation. However, the roles of MCP-5 in osteoclasts are completely unknown. In this study, contrary to MCP-1, MCP-5 was downregulated during receptor activator of nuclear factor kappa B ligand (RANKL)-induced osteoclast differentiation and was considered an inhibitory factor in osteoclast differentiation. The inhibitory role of MCP-5 in osteoclast differentiation was closely related to the increase in Ccr5 expression and the inhibition of IκB degradation by RANKL. Transgenic mice expressing MCP-5 controlled by Mx-1 promoter exhibited an increased bone mass because of a decrease in osteoclasts. This result strongly supported that MCP-5 negatively regulated osteoclast differentiation. MCP-5 also prevented severe bone loss caused by RANKL.
Collapse
Affiliation(s)
- Jung Ha Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju, Republic of Korea
- Hard-Tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Kabsun Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Inyoung Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Semun Seong
- Department of Pharmacology, Chonnam National University Medical School, Gwangju, Republic of Korea
- Hard-Tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Jeong-Tae Koh
- Hard-Tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Nacksung Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju, Republic of Korea
- Hard-Tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
5
|
Shimizu M, Hojo M, Ikushima K, Yamamoto Y, Maeno A, Sakamoto Y, Ishimaru N, Taquahashi Y, Kanno J, Hirose A, Suzuki J, Inomata A, Nakae D. Continuous infiltration of small peritoneal macrophages in the mouse peritoneum through CCR2-dependent and -independent routes during fibrosis and mesothelioma development induced by a multiwalled carbon nanotube, MWNT-7. J Toxicol Sci 2023; 48:617-639. [PMID: 38044124 DOI: 10.2131/jts.48.617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Although toxicities of multiwalled carbon nanotube (MWCNT) have been found to be related with activities of macrophages phagocytosing the fibers, the exact relationship between macrophage population and pathogenesis of fibrosis and mesotheliomas induced by MWCNTs is largely unknown. CCL2-CCR2 axis, a major monocyte/macrophage infiltration route, is thought to be involved in not only acute inflammation but also the formation of tumor microenvironment. We therefore described a time-course of alteration of macrophage population in an attempt to clarify the contribution of the Ccr2 gene to mesotheliomagenesis. Wild-type (WT) C57BL/6 mice and Ccr2-knockout (KO) mice were intraperitoneally administered with MWNT-7 and were sequentially necropsied at 1, 7, 28, 90, and 245 day(s) after the injection. Peritoneal fibrosis was prominent in all MWCNT-treated mice, with a lower severity in the KO mice. No differences were observed in the incidences of neoplastic lesions of mesothelia between WT and KO mice. A flow cytometric analysis revealed that after gross disappearance of macrophages after MWCNT exposure, small peritoneal macrophages (SPMs) were exclusively refurbished by the CCR2-dependent route at day 1 (as Ly-6C+MHC class II- cells), followed by additional CCR2-independent routes (as Ly-6C-MHC class II- cells); i.e., the only route in KO mice; with a delay of 1-7 days. The SPMs derived from both routes appeared to differentiate into maturated cells as Ly-6C-MHC class II+, whose ratio increased in a time-dependent manner among the total SPM population. Additionally, most macrophages expressed M1-like features, but a small fraction of macrophages exhibited an M1/M2 mixed status in MWCNT-treated animals. Our findings demonstrate a long-persistent activation of the CCL2-CCR2 axis after MWCNT exposure and enable a better understanding of the participation and potential roles of SPMs in fibrous material-induced chronic toxicities.
Collapse
Affiliation(s)
- Motomu Shimizu
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health
| | - Motoki Hojo
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health
| | - Kiyomi Ikushima
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health
| | - Yukio Yamamoto
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health
| | - Ai Maeno
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health
| | - Yoshimitsu Sakamoto
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health
| | - Naozumi Ishimaru
- Department of Oral Molecular Pathology, Tokushima University Graduate School of Biomedical Sciences
| | - Yuhji Taquahashi
- Division of Cellular and Molecular Toxicology, Center for Biological Safety and Research, National Institute of Health Sciences
| | - Jun Kanno
- Division of Cellular and Molecular Toxicology, Center for Biological Safety and Research, National Institute of Health Sciences
| | - Akihiko Hirose
- Chemicals Assessment and Research Center, Chemicals Evaluation and Research Institute, Japan
| | - Jin Suzuki
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health
| | - Akiko Inomata
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health
| | - Dai Nakae
- Department of Medical Sports, Faculty of Health Care and Medical Sports, Teikyo Heisei University
| |
Collapse
|
6
|
Ahmadzadeh K, Vanoppen M, Rose CD, Matthys P, Wouters CH. Multinucleated Giant Cells: Current Insights in Phenotype, Biological Activities, and Mechanism of Formation. Front Cell Dev Biol 2022; 10:873226. [PMID: 35478968 PMCID: PMC9035892 DOI: 10.3389/fcell.2022.873226] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/17/2022] [Indexed: 12/21/2022] Open
Abstract
Monocytes and macrophages are innate immune cells with diverse functions ranging from phagocytosis of microorganisms to forming a bridge with the adaptive immune system. A lesser-known attribute of macrophages is their ability to fuse with each other to form multinucleated giant cells. Based on their morphology and functional characteristics, there are in general three types of multinucleated giant cells including osteoclasts, foreign body giant cells and Langhans giant cells. Osteoclasts are bone resorbing cells and under physiological conditions they participate in bone remodeling. However, under pathological conditions such as rheumatoid arthritis and osteoporosis, osteoclasts are responsible for bone destruction and bone loss. Foreign body giant cells and Langhans giant cells appear only under pathological conditions. While foreign body giant cells are found in immune reactions against foreign material, including implants, Langhans giant cells are associated with granulomas in infectious and non-infectious diseases. The functionality and fusion mechanism of osteoclasts are being elucidated, however, our knowledge on the functions of foreign body giant cells and Langhans giant cells is limited. In this review, we describe and compare the phenotypic aspects, biological and functional activities of the three types of multinucleated giant cells. Furthermore, we provide an overview of the multinucleation process and highlight key molecules in the different phases of macrophage fusion.
Collapse
Affiliation(s)
- Kourosh Ahmadzadeh
- Laboratory of Immunobiology, Department Microbiology and Immunology, Rega Institute, KU Leuven – University of Leuven, Leuven, Belgium
- *Correspondence: Kourosh Ahmadzadeh, ; Carine Helena Wouters,
| | - Margot Vanoppen
- Laboratory of Immunobiology, Department Microbiology and Immunology, Rega Institute, KU Leuven – University of Leuven, Leuven, Belgium
| | - Carlos D. Rose
- Division of Pediatric Rheumatology Nemours Children’s Hospital, Thomas Jefferson University, Philadelphia, PA, United States
| | - Patrick Matthys
- Laboratory of Immunobiology, Department Microbiology and Immunology, Rega Institute, KU Leuven – University of Leuven, Leuven, Belgium
| | - Carine Helena Wouters
- Laboratory of Immunobiology, Department Microbiology and Immunology, Rega Institute, KU Leuven – University of Leuven, Leuven, Belgium
- Division Pediatric Rheumatology, UZ Leuven, Leuven, Belgium
- European Reference Network for Rare Immunodeficiency, Autoinflammatory and Autoimmune Diseases (RITA) at University Hospital Leuven, Leuven, Belgium
- *Correspondence: Kourosh Ahmadzadeh, ; Carine Helena Wouters,
| |
Collapse
|
7
|
Kang CM, Shin MK, Jeon M, Lee YH, Song JS, Lee JH. Distinctive cytokine profiles of stem cells from human exfoliated deciduous teeth and dental pulp stem cells. J Dent Sci 2022; 17:276-283. [PMID: 35028048 PMCID: PMC8739254 DOI: 10.1016/j.jds.2021.03.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/28/2021] [Indexed: 12/14/2022] Open
Abstract
Background/purpose SHED and DPSC have stem cell regenerative potential, but comparative research on their cytokine profile is rare. This study aimed to investigate and compare cytokine profiles secreted from stem cells from human exfoliated deciduous teeth (SHED) and dental pulp stem cells (DPSCs). Materials and methods SHED-conditioned medium (CM) and DPSC-CM were extracted using seven primary and permanent teeth each. Cytokine membrane array was performed for each CM to quantify and compare the secretomes of 120 cytokines. Enzyme-linked immunosorbent assay, immunocytochemistry, and immunohistochemistry analysis were performed to demonstrate cytokine membrane array analysis. Results Significant differences were observed in the expression levels of 68 cytokines–27 and 41 cytokines were 1.3-fold more strongly expressed in SHED-CM and DPSC-CM, respectively. Cytokines involved in immunomodulation, odontogenesis and osteogenesis were more strongly expressed in SHED-CM. Cytokines involved in angiogenesis were detected more strongly in DPSCs-CM. SHED and DPSCs have distinctive cytokine profiles and characteristics in terms of their stem cell regenerative potential. Conclusion These observations suggest that SHED may have a better cytokine profile related to inflammatory, proliferative, osteogenic, and odontogenic potential.
Collapse
Affiliation(s)
- Chung-Min Kang
- Department of Pediatric Dentistry, College of Dentistry, Yonsei University, Seoul, Republic of Korea.,Oral Science Research Center, College of Dentistry, Yonsei University, Seoul, Republic of Korea
| | - Min Kyung Shin
- Department of Pediatric Dentistry, College of Dentistry, Yonsei University, Seoul, Republic of Korea
| | - Mijeong Jeon
- Oral Science Research Center, College of Dentistry, Yonsei University, Seoul, Republic of Korea
| | - Yong-Hyuk Lee
- Oral Science Research Center, College of Dentistry, Yonsei University, Seoul, Republic of Korea
| | - Je Seon Song
- Department of Pediatric Dentistry, College of Dentistry, Yonsei University, Seoul, Republic of Korea.,Oral Science Research Center, College of Dentistry, Yonsei University, Seoul, Republic of Korea
| | - Jae-Ho Lee
- Department of Pediatric Dentistry, College of Dentistry, Yonsei University, Seoul, Republic of Korea.,Oral Science Research Center, College of Dentistry, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
8
|
Gambari L, Grigolo B, Grassi F. Dietary organosulfur compounds: Emerging players in the regulation of bone homeostasis by plant-derived molecules. Front Endocrinol (Lausanne) 2022; 13:937956. [PMID: 36187121 PMCID: PMC9521401 DOI: 10.3389/fendo.2022.937956] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
The progressive decline of bone mass and the deterioration of bone microarchitecture are hallmarks of the bone aging. The resulting increase in bone fragility is the leading cause of bone fractures, a major cause of disability. As the frontline pharmacological treatments for osteoporosis suffer from low patients' adherence and occasional side effects, the importance of diet regimens for the prevention of excessive bone fragility has been increasingly recognized. Indeed, certain diet components have been already associated to a reduced fracture risk. Organosulfur compounds are a broad class of molecules containing sulfur. Among them, several molecules of potential therapeutic interest are found in edible plants belonging to the Allium and Brassica botanical genera. Polysulfides derived from Alliaceae and isothiocyanates derived from Brassicaceae hold remarkable nutraceutical potential as anti-inflammatory, antioxidants, vasorelaxant and hypolipemic. Some of these effects are linked to the ability to release the gasotrasmitter hydrogen sulfide (H2S). Recent preclinical studies have investigated the effect of organosulfur compounds in bone wasting and metabolic bone diseases, revealing a strong potential to preserve skeletal health by exerting cytoprotection and stimulating the bone forming activity by osteoblasts and attenuating bone resorption by osteoclasts. This review is intended for revising evidence from preclinical and epidemiological studies on the skeletal effects of organosulfur molecules of dietary origin, with emphasis on the direct regulation of bone cells by plant-derived polysulfides, glucosinolates and isothiocyanates. Moreover, we highlight the potential molecular mechanisms underlying the biological role of these compounds and revise the importance of the so-called 'H2S-system' on the regulation of bone homeostasis.
Collapse
|
9
|
Plantz M, Lyons J, Yamaguchi JT, Greene AC, Ellenbogen DJ, Hallman MJ, Shah V, Yun C, Jakus AE, Procissi D, Minardi S, Shah RN, Hsu WK, Hsu EL. Preclinical Safety of a 3D-Printed Hydroxyapatite-Demineralized Bone Matrix Scaffold for Spinal Fusion. Spine (Phila Pa 1976) 2022; 47:82-89. [PMID: 34115714 PMCID: PMC8765284 DOI: 10.1097/brs.0000000000004142] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Prospective, randomized, controlled preclinical study. OBJECTIVE The objective of this study was to compare the host inflammatory response of our previously described hyperelastic, 3D-printed (3DP) hydroxyapatite (HA)-demineralized bone matrix (DBM) composite scaffold to the response elicited with the use of recombinant human bone morphogenetic protein-2 (rhBMP-2) in a preclinical rat posterolateral lumbar fusion model. SUMMARY OF BACKGROUND DATA Our group previously found that this 3D-printed HA-DBM composite material shows promise as a bone graft substitute in a preclinical rodent model, but its safety profile had yet to be assessed. METHODS Sixty female Sprague-Dawley rats underwent bilateral posterolateral intertransverse lumbar spinal fusion using with the following implants: 1) type I absorbable collagen sponge (ACS) alone; 2) 10 μg rhBMP-2/ACS; or 3) the 3DP HA-DBM composite scaffold (n = 20). The host inflammatory response was assessed using magnetic resonance imaging, while the local and circulating cytokine expression levels were evaluated by enzyme-linked immunosorbent assays at subsequent postoperative time points (N = 5/time point). RESULTS At both 2 and 5 days postoperatively, treatment with the HA-DBM scaffold produced significantly less soft tissue edema at the fusion bed site relative to rhBMP-2-treated animals as quantified on magnetic resonance imaging. At every postoperative time point evaluated, the level of soft tissue edema in HA-DBM-treated animals was comparable to that of the ACS control group. At 2 days postoperatively, serum concentrations of tumor necrosis factor-α and macrophage chemoattractant protein-1 were significantly elevated in the rhBMP-2 treatment group relative to ACS controls, whereas these cytokines were not elevated in the HA-DBM-treated animals. CONCLUSION The 3D-printed HA-DBM composite induces a significantly reduced host inflammatory response in a preclinical spinal fusion model relative to rhBMP-2.Level of Evidence: N/A.
Collapse
Affiliation(s)
- Mark Plantz
- Department of Orthopaedic Surgery, Northwestern University, Chicago, IL
- Center for Regenerative Nanomedicine, Simpson Querrey Institute, Chicago, IL
| | - Joseph Lyons
- Department of Orthopaedic Surgery, Northwestern University, Chicago, IL
- Center for Regenerative Nanomedicine, Simpson Querrey Institute, Chicago, IL
| | - Jonathan T. Yamaguchi
- Department of Orthopaedic Surgery, Northwestern University, Chicago, IL
- Center for Regenerative Nanomedicine, Simpson Querrey Institute, Chicago, IL
| | - Allison C. Greene
- Department of Orthopaedic Surgery, Northwestern University, Chicago, IL
- Center for Regenerative Nanomedicine, Simpson Querrey Institute, Chicago, IL
| | - David J. Ellenbogen
- Department of Orthopaedic Surgery, Northwestern University, Chicago, IL
- Center for Regenerative Nanomedicine, Simpson Querrey Institute, Chicago, IL
| | - Mitchell J. Hallman
- Department of Orthopaedic Surgery, Northwestern University, Chicago, IL
- Center for Regenerative Nanomedicine, Simpson Querrey Institute, Chicago, IL
| | - Vivek Shah
- Department of Orthopaedic Surgery, Northwestern University, Chicago, IL
- Center for Regenerative Nanomedicine, Simpson Querrey Institute, Chicago, IL
| | - Chawon Yun
- Department of Orthopaedic Surgery, Northwestern University, Chicago, IL
- Center for Regenerative Nanomedicine, Simpson Querrey Institute, Chicago, IL
| | | | | | - Silvia Minardi
- Department of Orthopaedic Surgery, Northwestern University, Chicago, IL
- Center for Regenerative Nanomedicine, Simpson Querrey Institute, Chicago, IL
| | - Ramille N. Shah
- Center for Regenerative Nanomedicine, Simpson Querrey Institute, Chicago, IL
- Dimension Inx Corp, Chicago, IL
| | - Wellington K. Hsu
- Department of Orthopaedic Surgery, Northwestern University, Chicago, IL
- Center for Regenerative Nanomedicine, Simpson Querrey Institute, Chicago, IL
| | - Erin L. Hsu
- Department of Orthopaedic Surgery, Northwestern University, Chicago, IL
- Center for Regenerative Nanomedicine, Simpson Querrey Institute, Chicago, IL
| |
Collapse
|
10
|
McConaghy K, Kunze KN, Murray T, Molloy R, Piuzzi NS. Smoking Cessation Initiatives in Total Joint Arthroplasty: An Evidence-Based Review. JBJS Rev 2021; 9:01874474-202108000-00012. [PMID: 34449441 DOI: 10.2106/jbjs.rvw.21.00009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
» As smoking increases the risk of adverse events and leads to increased hospital costs following total joint arthroplasty (TJA), many institutions have introduced perioperative smoking cessation initiatives. Although such programs have been demonstrated to improve outcomes for smokers undergoing TJA, the optimal approach, duration, and timing of smoking cessation models have not been well-defined. » Overall, initiating a smoking cessation program 4 weeks preoperatively is likely adequate to provide clinically meaningful reductions in postoperative complications for smokers following TJA, although longer periods of cessation should be encouraged if feasible. » Patients brought in for emergency surgical treatment who cannot participate in a preoperative intervention may still benefit from an intervention instituted in the immediate postoperative period. » Cotinine testing may provide some benefit for encouraging successful smoking cessation and validating self-reported smoking status, although its utility is limited by its short half-life. Further study is needed to determine the value of other measures of cessation such as carbon monoxide breath testing. » Smoking cessation programs instituted prior to TJA have been demonstrated to be cost-effective over both the short and long term.
Collapse
Affiliation(s)
- Kara McConaghy
- Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Kyle N Kunze
- Department of Orthopedic Surgery, Hospital for Special Surgery, New York, NY
| | - Trevor Murray
- Department of Orthopaedic Surgery, Cleveland Clinic, Cleveland, Ohio
| | - Robert Molloy
- Department of Orthopaedic Surgery, Cleveland Clinic, Cleveland, Ohio
| | - Nicolas S Piuzzi
- Department of Orthopaedic Surgery, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
11
|
Tanaka M, Dykes SS, Siemann DW. Inhibition of the Axl pathway impairs breast and prostate cancer metastasis to the bones and bone remodeling. Clin Exp Metastasis 2021; 38:321-335. [PMID: 33791875 PMCID: PMC8179919 DOI: 10.1007/s10585-021-10093-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 03/22/2021] [Indexed: 12/13/2022]
Abstract
Approximately 90% of cancer-related deaths result from cancer metastasis. In prostate and breast cancers, bone is the most common site of cancer cell dissemination. Key steps in the metastatic cascade are promoted through upregulation of critical cell signaling pathways in neoplastic cells. The present study assessed the role of the receptor tyrosine kinase Axl in prostate and breast cancer cell metastasis to bones using (i) Axl knockdown neoplastic cells and osteoclast progenitor cells in vitro, (ii) intracardiac injection of Axl knockdown tumor cells in vivo, and (iii) selective Axl inhibitor BGB324. Axl inhibition in neoplastic cells significantly decreased their metastatic potential, and suppression of Axl signaling in osteoclast precursor cells also reduced the formation of mature osteoclasts. In vivo, Axl knockdown in prostate and breast cancer cells significantly suppressed the formation and progression of bone metastases. Hence, therapeutic targeting of Axl may impair tumor metastasis to the bones through neoplastic and host cell signaling axes.
Collapse
Affiliation(s)
- Mai Tanaka
- Department of Radiation Oncology, College of Medicine, University of Florida, Gainesville, FL, 32610, USA.
| | - Samantha S Dykes
- Department of Radiation Oncology, College of Medicine, University of Florida, Gainesville, FL, 32610, USA.,GenCure, a Subsidiary of BioBridge Global, San Antonio, TX, 78201, USA
| | - Dietmar W Siemann
- Department of Radiation Oncology, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| |
Collapse
|
12
|
Zhu S, Liu M, Bennett S, Wang Z, Pfleger KDG, Xu J. The molecular structure and role of CCL2 (MCP-1) and C-C chemokine receptor CCR2 in skeletal biology and diseases. J Cell Physiol 2021; 236:7211-7222. [PMID: 33782965 DOI: 10.1002/jcp.30375] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/23/2021] [Accepted: 03/12/2021] [Indexed: 12/12/2022]
Abstract
Monocyte chemoattractant protein-1, also called chemokine (C-C motif) ligand 2 (CCL2) or small inducible cytokine A2, is an inflammatory mediator capable of recruiting monocytes, memory T cells, and dendritic cells. CCL2 is a member of the CC chemokine superfamily, which binds to its receptor, C-C motif chemokine receptor-2 (CCR2), for the induction of chemotactic activity and an increase of calcium influx. It exerts multiple effects on a variety of cells, including monocytes, macrophages, osteoclasts, basophils, and endothelial cells, and is involved in a diverse range of diseases. This review discusses the molecular structure and role of CCL2 and CCR2 in skeletal biology and disease. Molecular structure analyses reveal that CCL2 shares a conserved C-C motif; however, it has only limited sequence homology with other CCL family members. Likewise, CCR2, as a member of the G-protein-coupled seven-transmembrane receptor superfamily, shares conserved cysteine residues, but exhibits very limited sequence homology with other CCR family members. In the skeletal system, the expression of CCL2 is regulated by a variety of factors, such as parathyroid hormone/parathyroid hormone-related peptide, interleukin 1b, tumor necrosis factor-α and transforming growth factor-beta, RANKL, and mechanical forces. The interaction of CCL2 and CCR2 activates several signaling cascades, including PI3K/Akt/ERK/NF-κB, PI3K/MAPKs, and JAK/STAT-1/STAT-3. Understanding the role of CCL2 and CCR2 will facilitate the development of novel therapies for skeletal disorders, including rheumatoid arthritis, osteolysis and other inflammatory diseases related to abnormal chemotaxis.
Collapse
Affiliation(s)
- Sipin Zhu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Mei Liu
- School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia.,Jiangsu Key Laboratory for Molecular and Medical Biotechnology and College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Samuel Bennett
- School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Ziyi Wang
- School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Kevin D G Pfleger
- Molecular Endocrinology and Pharmacology, Harry Perkins Institute of Medical Research, Nedlands, Western Australia, Australia.,Centre for Medical Research, The University of Western Australia, Perth, Western Australia, Australia.,UWA Node, Australian Research Council Centre for Personalised Therapeutics Technologies, Melbourne and Perth, Victoria and Western Australia, Australia
| | - Jiake Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
13
|
Staphylococcus aureus Internalization in Osteoblast Cells: Mechanisms, Interactions and Biochemical Processes. What Did We Learn from Experimental Models? Pathogens 2021; 10:pathogens10020239. [PMID: 33669789 PMCID: PMC7922271 DOI: 10.3390/pathogens10020239] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/12/2021] [Accepted: 02/17/2021] [Indexed: 02/07/2023] Open
Abstract
Bacterial internalization is a strategy that non-intracellular microorganisms use to escape the host immune system and survive inside the human body. Among bacterial species, Staphylococcus aureus showed the ability to interact with and infect osteoblasts, causing osteomyelitis as well as bone and joint infection, while also becoming increasingly resistant to antibiotic therapy and a reservoir of bacteria that can make the infection difficult to cure. Despite being a serious issue in orthopedic surgery, little is known about the mechanisms that allow bacteria to enter and survive inside the osteoblasts, due to the lack of consistent experimental models. In this review, we describe the current knowledge about S. aureus internalization mechanisms and various aspects of the interaction between bacteria and osteoblasts (e.g., best experimental conditions, bacteria-induced damages and immune system response), focusing on studies performed using the MG-63 osteoblastic cell line, the best traditional (2D) model for the study of this phenomenon to date. At the same time, as it has been widely demonstrated that 2D culture systems are not completely indicative of the dynamic environment in vivo, and more recent 3D models—representative of bone infection—have also been investigated.
Collapse
|
14
|
Siddiqui JA, Le Henaff C, Johnson J, He Z, Rifkin DB, Partridge NC. Osteoblastic monocyte chemoattractant protein-1 (MCP-1) mediation of parathyroid hormone's anabolic actions in bone implicates TGF-β signaling. Bone 2021; 143:115762. [PMID: 33212319 PMCID: PMC8628523 DOI: 10.1016/j.bone.2020.115762] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 11/12/2020] [Accepted: 11/14/2020] [Indexed: 12/24/2022]
Abstract
Parathyroid hormone (PTH) is necessary for the regulation of calcium homeostasis and PTH (1-34) was the first approved osteoanabolic therapy for osteoporosis. It is well established that intermittent PTH increases bone formation and that bone remodeling and several cytokines and chemokines play an essential role in this process. Earlier, we had established that the chemokine, monocyte chemoattractant protein-1 (MCP-1/CCL2), was the most highly stimulated gene in rat bone after intermittent PTH injections. Nevertheless, MCP-1 function in bone appears to be complicated. To identify the primary cells expressing MCP-1 in response to PTH, we performed in situ hybridization of rat bone sections after hPTH (1-34) injections and showed that bone-lining osteoblasts are the primary cells that express MCP-1 after PTH treatment. We previously demonstrated MCP-1's importance by showing that PTH's anabolic effects are abolished in MCP-1 null mice, further implicating a role for the chemokine in this process. To establish whether rhMCP-1 peptide treatment could rescue the anabolic effect of PTH in MCP-1 null mice, we treated 4-month-old wild-type (WT) mice with hPTH (1-34) and MCP-1-/- mice with rhMCP-1 and/or hPTH (1-34) for 6 weeks. Micro-computed tomography (μCT) analysis of trabecular and cortical bone showed that MCP-1 injections for 6 weeks rescued the PTH anabolic effect in MCP-1-/- mice. In fact, the combination of rhMCP-1 and hPTH (1-34) has a synergistic anabolic effect compared with monotherapies. Mechanistically, PTH-enhanced transforming growth factor-β (TGF-β) signaling is abolished in the absence of MCP-1, while MCP-1 peptide treatment restores TGF-β signaling in the bone marrow. Here, we have shown that PTH regulates the transcription of the chemokine MCP-1 in osteoblasts and determined how MCP-1 affects bone cell function in PTH's anabolic actions. Taken together, our current work indicates that intermittent PTH stimulates osteoblastic secretion of MCP-1, which leads to increased TGF-β signaling, implicating it in PTH's anabolic actions.
Collapse
Affiliation(s)
- Jawed A Siddiqui
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, United States of America
| | - Carole Le Henaff
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, United States of America
| | - Joshua Johnson
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, United States of America
| | - Zhiming He
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, United States of America
| | - Daniel B Rifkin
- Department of Cell Biology, New York University Grossman School of Medicine, New York, United States of America
| | - Nicola C Partridge
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, United States of America.
| |
Collapse
|
15
|
Alavi M, Tavakkol-Afshari J, Shariati-Sarabi Z, Shabgah AG, Ghoryani M, Ghasemi A, Mohammadi M. Intravenous injection of autologous bone marrow-derived mesenchymal stem cells on the gene expression and plasma level of CCL5 in refractory rheumatoid arthritis. JOURNAL OF RESEARCH IN MEDICAL SCIENCES 2020; 25:111. [PMID: 33912221 PMCID: PMC8067892 DOI: 10.4103/jrms.jrms_308_20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 05/21/2020] [Accepted: 07/08/2020] [Indexed: 12/16/2022]
Abstract
Background: Rheumatoid arthritis (RA) is the most prevalent autoimmune disease, in which CCL2 and CCL5 are critically involved. The objective was to evaluate the therapeutic effects of bone marrow-derived mesenchymal stem cells (MSCs) on the foregoing chemokines in RA patients. Materials and Methods: Thirteen RA patients were evaluated in terms of clinical manifestations, paraclinical factors, gene expression, and plasma levels of CCL2 and CCL5 prior to treatment and 1 and 6 months after intervention. Real-time-polymerase chain reaction and enzyme-linked immunosorbent assay were employed to assess the gene expression and plasma levels of CCL2 and CCL5 at different time points after MSC therapy. Statistical analysis was performed by SPSS 16 and Prism 7. Results: The CCL2 gene expression had statistically significantly increased (P = 0.034), and its plasma level had insignificantly reduced after 1 month. Furthermore, the gene expression and plasma level of CCL5 had statistically significantly decreased (P = 0.032, P < 0.001). The CCL5 gene expression had statistically significantly increased after 6 months (P = 0.001) and its plasma level had insignificantly reduced. Conclusion: The most significant inhibitory effects of MSC therapy on the gene expression and plasma level of CCL5 were observed at the end of 1 month. The differences between the gene expression and protein levels during the treatment might be related to microRNA effects or the insufficient number of MSC injection.
Collapse
Affiliation(s)
- Mina Alavi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Allergy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Zhaleh Shariati-Sarabi
- Rheumatic Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Internal Medicine Department, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arezoo Gowhari Shabgah
- Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam, Iran.,School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Mohsen Ghoryani
- Department of Laboratory Sciences, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran.,Research Center of Advanced Technologies in Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Ali Ghasemi
- Department of Pediatric, Hematology and Oncology and Stem cell Transplantation, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mojgan Mohammadi
- Allergy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
16
|
Montaseri A, Giampietri C, Rossi M, Riccioli A, Fattore AD, Filippini A. The Role of Autophagy in Osteoclast Differentiation and Bone Resorption Function. Biomolecules 2020; 10:E1398. [PMID: 33008140 PMCID: PMC7601508 DOI: 10.3390/biom10101398] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 12/11/2022] Open
Abstract
Autophagy is an evolutionary conserved and highly regulated recycling process of cellular wastes. Having a housekeeping role, autophagy through the digestion of domestic cytosolic organelles, proteins, macromolecules, and pathogens, eliminates unnecessary materials and provides nutrients and energy for cell survival and maintenance. The critical role of autophagy and autophagy-related proteins in osteoclast differentiation, bone resorption, and maintenance of bone homeostasis has previously been reported. Increasing evidence reveals that autophagy dysregulation leads to alteration of osteoclast function and enhanced bone loss, which is associated with the onset and progression of osteoporosis. In this review, we briefly consolidate the current state-of-the-art technology regarding the role of autophagy in osteoclast function in both physiologic and pathologic conditions to have a more general view on this issue.
Collapse
Affiliation(s)
- Azadeh Montaseri
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Unit of Histology and Medical Embryology, Sapienza University of Rome, 00161 Rome, Italy; (A.M.); (A.R.); (A.F.)
| | - Claudia Giampietri
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Unit of Human Anatomy, Sapienza University of Rome, 00161 Rome, Italy;
| | - Michela Rossi
- Bone Physiopathology Research Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy;
| | - Anna Riccioli
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Unit of Histology and Medical Embryology, Sapienza University of Rome, 00161 Rome, Italy; (A.M.); (A.R.); (A.F.)
| | - Andrea Del Fattore
- Bone Physiopathology Research Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy;
| | - Antonio Filippini
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Unit of Histology and Medical Embryology, Sapienza University of Rome, 00161 Rome, Italy; (A.M.); (A.R.); (A.F.)
| |
Collapse
|
17
|
Gambari L, Grassi F, Roseti L, Grigolo B, Desando G. Learning from Monocyte-Macrophage Fusion and Multinucleation: Potential Therapeutic Targets for Osteoporosis and Rheumatoid Arthritis. Int J Mol Sci 2020; 21:ijms21176001. [PMID: 32825443 PMCID: PMC7504439 DOI: 10.3390/ijms21176001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 12/13/2022] Open
Abstract
Excessive bone resorption by osteoclasts (OCs) covers an essential role in developing bone diseases, such as osteoporosis (OP) and rheumatoid arthritis (RA). Monocytes or macrophages fusion and multinucleation (M-FM) are key processes for generating multinucleated mature cells with essential roles in bone remodelling. Depending on the phenotypic heterogeneity of monocyte/macrophage precursors and the extracellular milieu, two distinct morphological and functional cell types can arise mature OCs and giant cells (GCs). Despite their biological relevance in several physiological and pathological responses, many gaps exist in our understanding of their formation and role in bone, including the molecular determinants of cell fusion and multinucleation. Here, we outline fusogenic molecules during M-FM involved in OCs and GCs formation in healthy conditions and during OP and RA. Moreover, we discuss the impact of the inflammatory milieu on modulating macrophages phenotype and their differentiation towards mature cells. Methodological approach envisaged searches on Scopus, Web of Science Core Collection, and EMBASE databases to select relevant studies on M-FM, osteoclastogenesis, inflammation, OP, and RA. This review intends to give a state-of-the-art description of mechanisms beyond osteoclastogenesis and M-FM, with a focus on OP and RA, and to highlight potential biological therapeutic targets to prevent extreme bone loss.
Collapse
Affiliation(s)
| | | | - Livia Roseti
- Correspondence: (L.R.); (B.G.); Tel.: +39-051-6366090 (B.G.)
| | | | | |
Collapse
|
18
|
Astaxanthin improves osteopenia caused by aldehyde-stress resulting from Aldh2 mutation due to impaired osteoblastogenesis. Biochem Biophys Res Commun 2020; 527:270-275. [PMID: 32446379 DOI: 10.1016/j.bbrc.2020.04.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 04/07/2020] [Indexed: 11/22/2022]
Abstract
Aldehyde dehydrogenase 2 (ALDH2) plays major roles in aldehyde detoxification and in the catalysis of amino acids. ALDH2∗2, a dominant-negative transgenic expressing aldehyde dehydrogenase 2 (ALDH2) protein, is produced by a single nucleotide polymorphism (rs671) and is involved in the development of osteoporosis and hip fracture with aging. In a previous study, transgenic mice expressing Aldh2∗2(Aldh2∗2 Tg) osteoblastic cells or acetaldehyde -treated MC3T3-E1 showed impaired osteoblastogenesis and caused osteoporosis [1]. In this study, we demonstrated the effects of astaxanthin for differentiation to osteoblasts of MC3T3-E1 by the addition of acetaldehyde and Aldh2∗2 Tg mesenchymal stem cells in bone marrow. Astaxanthin restores the inhibited osteoblastogenesis by acetaldehyde in MC 3T3-E1 and in bone marrow mesenchymal stem cells of Aldh2∗2 Tg mice. Additionally, astaxanthin administration improved femur bone density in Aldh2∗2 Tg mice. Furthermore, astaxanthin improved cell survival and mitochondrial function in acetaldehyde-treated MC 3T3-E1 cells. Our results suggested that astaxanthin had restorative effects on osteoblast formation and provide new insight into the regulation of osteoporosis and suggest a novel strategy to promote bone formation in osteopenic diseases caused by impaired acetaldehyde metabolism.
Collapse
|
19
|
Haider MT, Smit DJ, Taipaleenmäki H. The Endosteal Niche in Breast Cancer Bone Metastasis. Front Oncol 2020; 10:335. [PMID: 32232008 PMCID: PMC7082928 DOI: 10.3389/fonc.2020.00335] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 02/26/2020] [Indexed: 12/16/2022] Open
Abstract
The establishment of bone metastasis remains one of the most frequent complications of patients suffering from advanced breast cancer. Patients with bone metastases experience high morbidity and mortality caused by excessive, tumor-induced and osteoclast-mediated bone resorption. Anti-resorptive treatments, such as bisphosphonates, are available to ease skeletal related events including pain, increased fracture risk, and hypercalcemia. However, the disease remains incurable and 5-year survival rates for these patients are below 25%. Within the bone, disseminated breast cancer cells localize in “metastatic niches,” special microenvironments that are thought to regulate cancer cell colonization and dormancy as well as tumor progression and subsequent development into overt metastases. Precise location and composition of this “metastatic niche” remain poorly defined. However, it is thought to include an “endosteal niche” that is composed of key bone cells that are derived from both, hematopoietic stem cells (osteoclasts), and mesenchymal stromal cells (osteoblasts, fibroblasts, adipocytes). Our knowledge of how osteoclasts drive the late stage of the disease is well-established. In contrast, much less is known about the interaction between osteogenic cells and disseminated tumor cells prior to the initiation of the osteolytic phase. Recent studies suggest that mesenchymal-derived cells, including osteoblasts and fibroblasts, play a key role during the early stages of breast cancer bone metastasis such as tumor cell homing, bone marrow colonization, and tumor cell dormancy. Hence, elucidating the interactions between breast cancer cells and mesenchymal-derived cells that drive metastasis progression could provide novel therapeutic approaches and targets to treat breast cancer bone metastasis. In this review we discuss evidences reporting the interaction between tumor cells and endosteal niche cells during the early stages of breast cancer bone metastasis, with a particular focus on mesenchymal-derived osteoblasts and fibroblasts.
Collapse
Affiliation(s)
- Marie-Therese Haider
- Molecular Skeletal Biology Laboratory, Department of Trauma, Hand and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Daniel J Smit
- Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hanna Taipaleenmäki
- Molecular Skeletal Biology Laboratory, Department of Trauma, Hand and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
20
|
Abstract
Chemokines are a family of small proteins, subdivided by their conserved cysteine residues and common structural features. Chemokines interact with their cognate G-protein-coupled receptors to elicit downstream signals that result in cell migration, proliferation, and survival. This review presents evidence for how the various CXC and CC subfamily chemokines influence bone hemostasis by acting on osteoclasts, osteoblasts, and progenitor cells. Also discussed are the ways in which chemokines contribute to bone loss as a result of inflammatory diseases such as rheumatoid arthritis, HIV infection, and periodontal infection. Both positive and negative effects of chemokines on bone formation and bone loss are presented. In addition, the role of chemokines in altering the bone microenvironment through effects on angiogenesis and tumor invasion is discussed. Very few therapeutic agents that influence bone formation by targeting chemokines or chemokine receptors are available, although a few are currently being evaluated.
Collapse
Affiliation(s)
- Annette Gilchrist
- Department of Pharmaceutical Sciences, Midwestern University, Downers Grove, IL, USA.
| |
Collapse
|
21
|
Gschwandtner M, Derler R, Midwood KS. More Than Just Attractive: How CCL2 Influences Myeloid Cell Behavior Beyond Chemotaxis. Front Immunol 2019; 10:2759. [PMID: 31921102 PMCID: PMC6923224 DOI: 10.3389/fimmu.2019.02759] [Citation(s) in RCA: 389] [Impact Index Per Article: 64.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 11/11/2019] [Indexed: 12/15/2022] Open
Abstract
Monocyte chemoattractant protein-1 (MCP-1/CCL2) is renowned for its ability to drive the chemotaxis of myeloid and lymphoid cells. It orchestrates the migration of these cell types both during physiological immune defense and in pathological circumstances, such as autoimmune diseases including rheumatoid arthritis and multiple sclerosis, inflammatory diseases including atherosclerosis, as well as infectious diseases, obesity, diabetes, and various types of cancer. However, new data suggest that the scope of CCL2's functions may extend beyond its original characterization as a chemoattractant. Emerging evidence shows that it can impact leukocyte behavior, influencing adhesion, polarization, effector molecule secretion, autophagy, killing, and survival. The direction of these CCL2-induced responses is context dependent and, in some cases, synergistic with other inflammatory stimuli. The involvement of CCL2 signaling in multiple diseases renders it an interesting therapeutic target, although current targeting strategies have not met early expectations in the clinic. A better understanding of how CCL2 affects immune cells will be pivotal to the improvement of existing therapeutic approaches and the development of new drugs. Here, we provide an overview of the pleiotropic effects of CCL2 signaling on cells of the myeloid lineage, beyond chemotaxis, and highlight how these actions might help to shape immune cell behavior and tumor immunity.
Collapse
Affiliation(s)
- Martha Gschwandtner
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Rupert Derler
- Department of Pharmaceutical Chemistry, Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria
| | - Kim S. Midwood
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
22
|
Liu P, Li X, Lv W, Xu Z. Inhibition of CXCL1-CXCR2 axis ameliorates cisplatin-induced acute kidney injury by mediating inflammatory response. Biomed Pharmacother 2019; 122:109693. [PMID: 31812015 DOI: 10.1016/j.biopha.2019.109693] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/11/2019] [Accepted: 11/22/2019] [Indexed: 12/15/2022] Open
Abstract
One of the limiting side effects of cisplatin use in cancer chemotherapy is nephrotoxicity. Inflammation is now believed to play a major role in the pathogenesis of cisplatin-induced acute kidney injury (AKI), and the mediators of inflammation contribute to it. CXCL1 was recently reported to be involved in renal physiology and pathology in ischemia mouse model; however, its roles and mechanisms in cisplatin-induced AKI are completely unknown. We observed that CXCL1 and CXCR2 expression in the kidney was markedly increased on day 7 after cisplatin treatment. Subsequently, we demonstrate that inhibition of CXCL1-CXCR2 signaling axis, using genetic and pharmacological approaches, reduces renal damage following cisplatin treatment as compared with control mice. Specifically, deficiency of CXCL1 or CXCR2 extensively preserved the renal histology and maintained the kidney functions after cisplatin treatment, which was associated with reduced expression of the pro-inflammatory cytokines and infiltration of neutrophils in the kidneys as compared. Furthermore, inhibition of CXCR2 by intragastric administration of repertaxin in mice with AKI reduces kidney injury associated with a reduction of inflammatory cytokines and neutrophils infiltration. Finally, we found that CXCL1/CXCR2 regulated cisplatin-induced inflammatory responses via the P38 and NF-κB signaling pathways in vitro and in vivo. In conclusion, our results indicate that CXCL1-CXCR2 signaling axis plays a crucial role in the pathogenesis of cisplatin-induced AKI through regulation of inflammatory response and maybe a novel therapeutic target for cisplatin-induced AKI.
Collapse
Affiliation(s)
- Peng Liu
- Department of Intensive Care Unit, Hwamei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Xinxiu Li
- Department of Experimental Medical Science, Hwamei Hospital, University of Chinese Academy of Sciences, Ningbo, China; Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo, China.
| | - Weixing Lv
- Department of Intensive Care Unit, Hwamei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Zhaojun Xu
- Department of Intensive Care Unit, Hwamei Hospital, University of Chinese Academy of Sciences, Ningbo, China.
| |
Collapse
|
23
|
Algate K, Haynes D, Fitzsimmons T, Romeo O, Wagner F, Holson E, Reid R, Fairlie D, Bartold P, Cantley M. Histone deacetylases 1 and 2 inhibition suppresses cytokine production and osteoclast bone resorption in vitro. J Cell Biochem 2019; 121:244-258. [DOI: 10.1002/jcb.29137] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 05/07/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Kent Algate
- Bone and Joint Laboratory, Faculty of Health and Medical Sciences, Adelaide Medical School The University of Adelaide Adelaide South Australia Australia
| | - David Haynes
- Bone and Joint Laboratory, Faculty of Health and Medical Sciences, Adelaide Medical School The University of Adelaide Adelaide South Australia Australia
| | - Tracy Fitzsimmons
- Faculty of Health and Medical Sciences, Adelaide Dental School The University of Adelaide Adelaide South Australia Australia
| | - Ornella Romeo
- Bone and Joint Laboratory, Faculty of Health and Medical Sciences, Adelaide Medical School The University of Adelaide Adelaide South Australia Australia
| | - Florence Wagner
- Stanley Center for Psychiatric Research Broad Institute of MIT and Harvard Cambridge Massachusetts
| | - Edward Holson
- Stanley Center for Psychiatric Research Broad Institute of MIT and Harvard Cambridge Massachusetts
| | - Robert Reid
- Division of Chemistry and Structural Biology, ARC Centre of Excellence for Advanced Molecular Imaging, Institute for Molecular Bioscience The University of Queensland Brisbane Queensland Australia
| | - David Fairlie
- Division of Chemistry and Structural Biology, ARC Centre of Excellence for Advanced Molecular Imaging, Institute for Molecular Bioscience The University of Queensland Brisbane Queensland Australia
| | - Peter Bartold
- Faculty of Health and Medical Sciences, Adelaide Dental School The University of Adelaide Adelaide South Australia Australia
| | - Melissa Cantley
- Myeloma Research Laboratory, Faculty of Health and Medical Sciences, Adelaide Medical School The University of Adelaide Adelaide South Australia Australia
- Cancer Theme South Australian Health and Medical Research Institute Adelaide South Australia Australia
| |
Collapse
|
24
|
Ehnert S, Aspera-Werz RH, Ihle C, Trost M, Zirn B, Flesch I, Schröter S, Relja B, Nussler AK. Smoking Dependent Alterations in Bone Formation and Inflammation Represent Major Risk Factors for Complications Following Total Joint Arthroplasty. J Clin Med 2019; 8:jcm8030406. [PMID: 30909629 PMCID: PMC6462941 DOI: 10.3390/jcm8030406] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/15/2019] [Accepted: 03/19/2019] [Indexed: 12/21/2022] Open
Abstract
Numerous studies have described a correlation between smoking and reduced bone mass. This not only increases fracture risk but also impedes reconstruction/fixation of bone. An increased frequency of complications following surgery is common. Here, we investigate the effect of smoking on the clinical outcome following total joint arthroplasty (TJA). 817 patients receiving primary or revision (including clinical transfers) TJA at our level-one trauma center have been randomly interviewed twice (pre- and six months post-surgery). We found that 159 patients developed complications (infections, disturbed healing, revisions, thrombosis, and/or death). Considering nutritional status, alcohol and cigarette consumption as possible risk factors, OR was highest for smoking. Notably, mean age was significantly lower in smokers (59.2 ± 1.0a) than non-smokers (64.6 ± 0.8; p < 0.001). However, the number of comorbidities was comparable between both groups. Compared to non-smokers (17.8 ± 1.9%), the complication rate increases with increasing cigarette consumption (1⁻20 pack-years (PY): 19.2 ± 2.4% and >20 PY: 30.4 ± 3.6%; p = 0.002). Consequently, mean hospital stay was longer in heavy smokers (18.4 ± 1.0 day) than non-smokers (15.3 ± 0.5 day; p = 0.009) or moderate smokers (15.9 ± 0.6 day). In line with delayed healing, bone formation markers (BAP and CICP) were significantly lower in smokers than non-smokers 2 days following TJA. Although, smoking increased serum levels of MCP-1, OPG, sRANKL, and Osteopontin as well as bone resorption markers (TRAP5b and CTX-I) were unaffected. In line with an increased infection rate, smoking reduced 25OH vitamin D3 (immune-modulatory), IL-1β, IL-6, TNF-α, and IFN-γ serum levels. Our data clearly show that smoking not only affects bone formation after TJA but also suppresses the inflammatory response in these patients. Thus, it is feasible that therapies favoring bone formation and immune responses help improve the clinical outcome in smokers following TJA.
Collapse
Affiliation(s)
- Sabrina Ehnert
- Department of Trauma and Reconstructive Surgery, Siegfried Weller Research Institute, Eberhard Karls University Tuebingen, BG Trauma Center Tuebingen, 72076 Tuebingen, Germany.
| | - Romina H Aspera-Werz
- Department of Trauma and Reconstructive Surgery, Siegfried Weller Research Institute, Eberhard Karls University Tuebingen, BG Trauma Center Tuebingen, 72076 Tuebingen, Germany.
| | - Christoph Ihle
- Department of Trauma and Reconstructive Surgery, Siegfried Weller Research Institute, Eberhard Karls University Tuebingen, BG Trauma Center Tuebingen, 72076 Tuebingen, Germany.
| | - Markus Trost
- Department of Trauma and Reconstructive Surgery, Siegfried Weller Research Institute, Eberhard Karls University Tuebingen, BG Trauma Center Tuebingen, 72076 Tuebingen, Germany.
| | - Barbara Zirn
- Department of Trauma and Reconstructive Surgery, Siegfried Weller Research Institute, Eberhard Karls University Tuebingen, BG Trauma Center Tuebingen, 72076 Tuebingen, Germany.
| | - Ingo Flesch
- Department of Trauma and Reconstructive Surgery, Siegfried Weller Research Institute, Eberhard Karls University Tuebingen, BG Trauma Center Tuebingen, 72076 Tuebingen, Germany.
| | - Steffen Schröter
- Department of Trauma and Reconstructive Surgery, Siegfried Weller Research Institute, Eberhard Karls University Tuebingen, BG Trauma Center Tuebingen, 72076 Tuebingen, Germany.
| | - Borna Relja
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Frankfurt, Goethe University, 60590 Frankfurt, Germany.
| | - Andreas K Nussler
- Department of Trauma and Reconstructive Surgery, Siegfried Weller Research Institute, Eberhard Karls University Tuebingen, BG Trauma Center Tuebingen, 72076 Tuebingen, Germany.
| |
Collapse
|
25
|
The Molecular Mechanism of Vitamin E as a Bone-Protecting Agent: A Review on Current Evidence. Int J Mol Sci 2019; 20:ijms20061453. [PMID: 30909398 PMCID: PMC6471965 DOI: 10.3390/ijms20061453] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 03/19/2019] [Accepted: 03/20/2019] [Indexed: 01/16/2023] Open
Abstract
Bone remodelling is a tightly-coordinated and lifelong process of replacing old damaged bone with newly-synthesized healthy bone. In the bone remodelling cycle, bone resorption is coupled with bone formation to maintain the bone volume and microarchitecture. This process is a result of communication between bone cells (osteoclasts, osteoblasts, and osteocytes) with paracrine and endocrine regulators, such as cytokines, reactive oxygen species, growth factors, and hormones. The essential signalling pathways responsible for osteoclastic bone resorption and osteoblastic bone formation include the receptor activator of nuclear factor kappa-B (RANK)/receptor activator of nuclear factor kappa-B ligand (RANKL)/osteoprotegerin (OPG), Wnt/β-catenin, and oxidative stress signalling. The imbalance between bone formation and degradation, in favour of resorption, leads to the occurrence of osteoporosis. Intriguingly, vitamin E has been extensively reported for its anti-osteoporotic properties using various male and female animal models. Thus, understanding the underlying cellular and molecular mechanisms contributing to the skeletal action of vitamin E is vital to promote its use as a potential bone-protecting agent. This review aims to summarize the current evidence elucidating the molecular actions of vitamin E in regulating the bone remodelling cycle.
Collapse
|
26
|
Charoenpong H, Osathanon T, Pavasant P, Limjeerajarus N, Keawprachum B, Limjeerajarus CN, Cheewinthamrongrod V, Palaga T, Lertchirakarn V, Ritprajak P. Mechanical stress induced S100A7 expression in human dental pulp cells to augment osteoclast differentiation. Oral Dis 2019; 25:812-821. [PMID: 30614184 DOI: 10.1111/odi.13033] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 10/02/2018] [Accepted: 10/22/2018] [Indexed: 12/16/2022]
Abstract
OBJECTIVES Mechanical injury of dental pulp leads to root resorption by osteoclasts/odontoclasts. S100 proteins have been demonstrated to be involved in inflammatory processes and bone remodeling. This study aimed to investigate the effect of mechanical stress on S100A7 expression by human dental pulp cells (HDPCs) and the effect of S100A7 proteins on osteoclast differentiation. MATERIALS AND METHODS Isolated HDPCs were stimulated with compressive loading (2 and 6 hr), or shear loading (2, 6, and 16 hr). S100 mRNA expression and S100A7 protein levels were determined by real-time PCR and ELISA, respectively. Osteoclast differentiation was analyzed using primary human monocytes. The differentiation and activity of osteoclasts were examined by TRAcP staining and dentine resorption. In addition, the expression of S100A7 was analyzed in pulp tissues obtained from orthodontically treated teeth. RESULTS Compressive and shear mechanical stress significantly upregulated both mRNA and protein level of S100A7. Dental pulp tissues from orthodontically treated teeth exhibited higher S100A7mRNA levels compared to non-treated control teeth. S100A7 promoted osteoclast differentiation by primary human monocytes. Moreover, S100A7 significantly enhanced dentine resorption by these cells. CONCLUSIONS Mechanical stress induced expression of S100A7 by human dental pulp cells and this may promote root resorption by inducing osteoclast differentiation and activity.
Collapse
Affiliation(s)
- Hataichanok Charoenpong
- Graduate Program in Oral Biology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Thanaphum Osathanon
- Excellence Center in Regenerative Dentistry and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Prasit Pavasant
- Excellence Center in Regenerative Dentistry and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Nuttapol Limjeerajarus
- Research Center for Advanced Energy Technology, Faculty of Engineering, Thai-Nichi Institute of Technology, Bangkok, Thailand
| | - Boonrit Keawprachum
- Research Center for Advanced Energy Technology, Faculty of Engineering, Thai-Nichi Institute of Technology, Bangkok, Thailand
| | - Chalida N Limjeerajarus
- Excellence Center in Regenerative Dentistry and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.,Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | | | - Tanapat Palaga
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Veera Lertchirakarn
- Research Unit on Oral Microbiology and Immunology and Department of Microbiology and Immunology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Patcharee Ritprajak
- Oral Biology Research Center, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.,Research Unit on Oral Microbiology and Immunology and Department of Microbiology and Immunology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
27
|
Micro-computed tomography for evaluating alveolar bone resorption induced by hyperocclusion. J Prosthodont Res 2018; 62:298-302. [DOI: 10.1016/j.jpor.2017.11.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 11/14/2017] [Accepted: 11/23/2017] [Indexed: 11/18/2022]
|
28
|
Ferland-McCollough D, Maselli D, Spinetti G, Sambataro M, Sullivan N, Blom A, Madeddu P. MCP-1 Feedback Loop Between Adipocytes and Mesenchymal Stromal Cells Causes Fat Accumulation and Contributes to Hematopoietic Stem Cell Rarefaction in the Bone Marrow of Patients With Diabetes. Diabetes 2018; 67:1380-1394. [PMID: 29703845 DOI: 10.2337/db18-0044] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 04/14/2018] [Indexed: 11/13/2022]
Abstract
Fat accumulates in bone marrow (BM) of patients with diabetes. In this study, we investigated the mechanisms and consequences of this phenomenon. BM mesenchymal stromal cells (BM-MSCs) from patients with type 2 diabetes (T2D) constitutively express adipogenic markers and robustly differentiate into adipocytes (ADs) upon in vitro induction as compared with BM-MSCs from subjects without diabetes. Moreover, BM-ADs from subjects with T2D (T2D BM-ADs) paracrinally stimulate a transcriptional adipogenic program in BM-MSCs. Antagonism of MCP-1, a chemokine pivotally expressed in T2D BM-ADs, prevented the T2D BM-AD secretome from converting BM-MSCs into ADs. Mechanistic validation of human data was next performed in an obese T2D mouse model. Systemic antagonism of MCP-1 improved metabolic control, reduced BM fat, and increased osteocyte density. It also indirectly re-established the abundance of long-term versus short-term hematopoietic stem cells. We reveal a diabetic feedback loop in which 1) BM-MSCs are constitutively inclined to make ADs, and 2) mature BM-ADs, via secreted MCP-1, relentlessly fuel BM-MSC determination into new fat. Pharmacological inhibition of MCP-1 signaling can contrast this vicious cycle, restoring, at least in part, the balance between adipogenesis and hematopoiesis in BM from subjects with T2D.
Collapse
Affiliation(s)
- David Ferland-McCollough
- Bristol Heart Institute, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, U.K.
| | - Davide Maselli
- Istituto di Ricovero e Cura a Carattere Scientifico MultiMedica, Milan, Italy
| | - Gaia Spinetti
- Istituto di Ricovero e Cura a Carattere Scientifico MultiMedica, Milan, Italy
| | - Maria Sambataro
- Department of Specialized Medicines, Endocrine, Metabolic and Nutrition Diseases Unit, Santa Maria of Ca' Foncello Hospital, Treviso, Italy
| | - Niall Sullivan
- Avon Orthopaedic Centre, Southmead Hospital, Bristol, U.K
| | - Ashley Blom
- Muscloskeletal Research Unit, School of Clinical Sciences, University of Bristol, Bristol, U.K
| | - Paolo Madeddu
- Bristol Heart Institute, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, U.K.
| |
Collapse
|
29
|
Reinke DC, Starczak Y, Kogawa M, Barratt KR, Morris HA, Anderson PH, Atkins GJ. Evidence for altered osteoclastogenesis in splenocyte cultures from VDR knockout mice. J Steroid Biochem Mol Biol 2018; 177:96-102. [PMID: 28765041 DOI: 10.1016/j.jsbmb.2017.07.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 07/24/2017] [Accepted: 07/26/2017] [Indexed: 12/22/2022]
Abstract
The indirect action of 1α,25(OH)2-vitamin-D3 (1,25D) on the osteoclast through stromal signalling is well established. The role of vitamin D in osteoclasts through direct 1,25D-VDR signalling is less well known. We showed previously that local 1,25D synthesis in osteoclasts modified osteoclastogenesis and osteoclastic resorptive activity. In this study, we hypothesised that osteoclasts lacking VDR expression would display an enhanced resorptive capacity due to the loss of 1,25D signalling. Splenocytes were cultured under osteoclast-differentiating conditions from mice with global deletion of the Vdr gene (VDRKO) and this was compared with age-matched wild-type littermate controls (WT). In VDRKO cultures, osteoclastogenesis was reduced, as indicated by fewer TRAP-positive multinucleated cells at all time points measured (p<0.05) compared to WT levels. However, VDRKO osteoclasts demonstrated greater resorption on a per cell basis than their WT counterparts. VDRKO cultures expressed greatly increased c-Fos mRNA compared to WT. In addition, the ratio of expression of the pro-apoptotic gene Bax to the pro-survival gene Bcl-2 was decreased in VDRKO cultures, implying that these osteoclasts may survive longer than WT osteoclasts. Our data indicate abnormal osteoclastogenesis due to the absence of Vdr expression, consistent with direct effects of vitamin D signalling being important for regulating the maturation and resorptive activities of osteoclasts.
Collapse
Affiliation(s)
- Daniel C Reinke
- Biomedical Orthopaedic Research Group, Centre for Orthopaedic & Trauma Research, University of Adelaide, Australia
| | - Yolandi Starczak
- Biomedical Orthopaedic Research Group, Centre for Orthopaedic & Trauma Research, University of Adelaide, Australia; School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5005, Australia
| | - Masakazu Kogawa
- Biomedical Orthopaedic Research Group, Centre for Orthopaedic & Trauma Research, University of Adelaide, Australia
| | - Kate R Barratt
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5005, Australia
| | - Howard A Morris
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5005, Australia
| | - Paul H Anderson
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5005, Australia
| | - Gerald J Atkins
- Biomedical Orthopaedic Research Group, Centre for Orthopaedic & Trauma Research, University of Adelaide, Australia.
| |
Collapse
|
30
|
Maltby S, Lochrin AJ, Bartlett B, Tay HL, Weaver J, Poulton IJ, Plank MW, Rosenberg HF, Sims NA, Foster PS. Osteoblasts Are Rapidly Ablated by Virus-Induced Systemic Inflammation following Lymphocytic Choriomeningitis Virus or Pneumonia Virus of Mice Infection in Mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 200:632-642. [PMID: 29212906 PMCID: PMC5760340 DOI: 10.4049/jimmunol.1700927] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 11/07/2017] [Indexed: 11/19/2022]
Abstract
A link between inflammatory disease and bone loss is now recognized. However, limited data exist on the impact of virus infection on bone loss and regeneration. Bone loss results from an imbalance in remodeling, the physiological process whereby the skeleton undergoes continual cycles of formation and resorption. The specific molecular and cellular mechanisms linking virus-induced inflammation to bone loss remain unclear. In the current study, we provide evidence that infection of mice with either lymphocytic choriomeningitis virus (LCMV) or pneumonia virus of mice (PVM) resulted in rapid and substantial loss of osteoblasts from the bone surface. Osteoblast ablation was associated with elevated levels of circulating inflammatory cytokines, including TNF-α, IFN-γ, IL-6, and CCL2. Both LCMV and PVM infections resulted in reduced osteoblast-specific gene expression in bone, loss of osteoblasts, and reduced serum markers of bone formation, including osteocalcin and procollagen type 1 N propeptide. Infection of Rag-1-deficient mice (which lack adaptive immune cells) or specific depletion of CD8+ T lymphocytes limited osteoblast loss associated with LCMV infection. By contrast, CD8+ T cell depletion had no apparent impact on osteoblast ablation in association with PVM infection. In summary, our data demonstrate dramatic loss of osteoblasts in response to virus infection and associated systemic inflammation. Further, the inflammatory mechanisms mediating viral infection-induced bone loss depend on the specific inflammatory condition.
Collapse
Affiliation(s)
- Steven Maltby
- Priority Research Centre for Healthy Lungs, Department of Microbiology and Immunology, School of Biomedical Sciences and Pharmacy, Faculty of Health and Hunter Medical Research Institute, The University of Newcastle, Callaghan, New South Wales 2305, Australia;
| | - Alyssa J Lochrin
- Priority Research Centre for Healthy Lungs, Department of Microbiology and Immunology, School of Biomedical Sciences and Pharmacy, Faculty of Health and Hunter Medical Research Institute, The University of Newcastle, Callaghan, New South Wales 2305, Australia
| | - Bianca Bartlett
- Priority Research Centre for Healthy Lungs, Department of Microbiology and Immunology, School of Biomedical Sciences and Pharmacy, Faculty of Health and Hunter Medical Research Institute, The University of Newcastle, Callaghan, New South Wales 2305, Australia
| | - Hock L Tay
- Priority Research Centre for Healthy Lungs, Department of Microbiology and Immunology, School of Biomedical Sciences and Pharmacy, Faculty of Health and Hunter Medical Research Institute, The University of Newcastle, Callaghan, New South Wales 2305, Australia
| | - Jessica Weaver
- Priority Research Centre for Healthy Lungs, Department of Microbiology and Immunology, School of Biomedical Sciences and Pharmacy, Faculty of Health and Hunter Medical Research Institute, The University of Newcastle, Callaghan, New South Wales 2305, Australia
| | - Ingrid J Poulton
- St. Vincent's Institute of Medical Research, The Department of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy, Victoria 3065, Australia; and
| | - Maximilian W Plank
- Priority Research Centre for Healthy Lungs, Department of Microbiology and Immunology, School of Biomedical Sciences and Pharmacy, Faculty of Health and Hunter Medical Research Institute, The University of Newcastle, Callaghan, New South Wales 2305, Australia
| | - Helene F Rosenberg
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Natalie A Sims
- St. Vincent's Institute of Medical Research, The Department of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy, Victoria 3065, Australia; and
| | - Paul S Foster
- Priority Research Centre for Healthy Lungs, Department of Microbiology and Immunology, School of Biomedical Sciences and Pharmacy, Faculty of Health and Hunter Medical Research Institute, The University of Newcastle, Callaghan, New South Wales 2305, Australia;
| |
Collapse
|
31
|
Selan L, Papa R, Ermocida A, Cellini A, Ettorre E, Vrenna G, Campoccia D, Montanaro L, Arciola CR, Artini M. Serratiopeptidase reduces the invasion of osteoblasts by Staphylococcus aureus. Int J Immunopathol Pharmacol 2017; 30:423-428. [PMID: 29212390 PMCID: PMC5806802 DOI: 10.1177/0394632017745762] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Finding new strategies to counteract periprosthetic infection and implant failure is a main target in orthopedics. Staphylococcus aureus, the leading etiologic agent of orthopedic implant infections, is able to enter and kill osteoblasts, to stimulate pro-inflammatory chemokine secretion, to recruit osteoclasts, and to cause inflammatory osteolysis. Moreover, by entering eukaryotic cells, staphylococci hide from the host immune defenses and shelter from the extracellular antibiotics. Thus, infection persists, inflammation thrives, and a highly destructive osteomyelitis occurs around the implant. The ability of serratiopeptidase (SPEP), a metalloprotease by Serratia marcescens, to control S. aureus invasion of osteoblastic MG-63 cells and pro-inflammatory chemokine MCP-1 secretion was evaluated. Human osteoblast cells were infected with staphylococcal strains in the presence and in the absence of SPEP. Cell proliferation and cell viability were also evaluated. The release of pro-inflammatory chemokine MCP-1 was evaluated after the exposure of the osteoblast cells to staphylococcal strains. The significance of the differences in the results of each test and the relative control values was determined with Student's t-test. SPEP impairs their invasiveness into osteoblasts, without affecting the viability and proliferation of bone cells, and tones down their production of MCP-1. We recognize SPEP as a potential tool against S. aureus bone infection and destruction.
Collapse
Affiliation(s)
- Laura Selan
- 1 Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Rosanna Papa
- 1 Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Angela Ermocida
- 1 Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Andrea Cellini
- 1 Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Evaristo Ettorre
- 2 Division of Gerontology, Department of Cardiovascular, Respiratory, Nephrologic, Anesthesiologic, and Geriatric Sciences, Sapienza University of Rome, Rome, Italy
| | - Gianluca Vrenna
- 1 Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Davide Campoccia
- 3 Research Unit on Implant Infections, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Lucio Montanaro
- 3 Research Unit on Implant Infections, Rizzoli Orthopaedic Institute, Bologna, Italy.,4 Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Carla Renata Arciola
- 3 Research Unit on Implant Infections, Rizzoli Orthopaedic Institute, Bologna, Italy.,4 Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Marco Artini
- 1 Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
32
|
Monocyte chemotactic protein-1 deficiency attenuates and high-fat diet exacerbates bone loss in mice with Lewis lung carcinoma. Oncotarget 2017; 8:23303-23311. [PMID: 28177896 PMCID: PMC5410305 DOI: 10.18632/oncotarget.15055] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 12/26/2016] [Indexed: 02/03/2023] Open
Abstract
Bone loss occurs in obesity and cancer-associated complications including wasting. This study determined whether a high-fat diet and a deficiency in monocyte chemotactic protein-1 (MCP-1) altered bone structural defects in male C57BL/6 mice with Lewis lung carcinoma (LLC) metastases in lungs. Compared to non-tumor-bearing mice, LLC reduced bone volume fraction, connectivity density, trabecular number, trabecular thickness and bone mineral density and increased trabecular separation in femurs. Similar changes occurred in vertebrae. The high-fat diet compared to the AIN93G diet exacerbated LLC-induced detrimental structural changes; the exacerbation was greater in femurs than in vertebrae. Mice deficient in MCP-1 compared to wild-type mice exhibited increases in bone volume fraction, connectivity density, trabecular number and decreases in trabecular separation in both femurs and vertebrae, and increases in trabecular thickness and bone mineral density and a decrease in structure model index in vertebrae. Lewis lung carcinoma significantly decreased osteocalcin but increased tartrate-resistant acid phosphatase 5b (TRAP 5b) in plasma. In LLC-bearing mice, the high-fat diet increased and MCP-1 deficiency decreased plasma TRAP 5b; neither the high-fat diet nor MCP-1 deficiency resulted in significant changes in plasma concentration of osteocalcin. In conclusion, pulmonary metastasis of LLC is accompanied by detrimental bone structural changes; MCP-1 deficiency attenuates and high-fat diet exacerbates the metastasis-associated bone wasting.
Collapse
|
33
|
Xu Z, Tong Z, Neelakantan P, Cai Y, Wei X. Enterococcus faecalis immunoregulates osteoclastogenesis of macrophages. Exp Cell Res 2017; 362:152-158. [PMID: 29129564 DOI: 10.1016/j.yexcr.2017.11.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/07/2017] [Accepted: 11/08/2017] [Indexed: 12/17/2022]
Abstract
Persistent apical periodontitis (PAP) is characterized by refractory inflammation and progressive bone destruction. Enterococcus faecalis infection is considered an important etiological factor for the development of PAP, although the exact mechanisms remain unknown. This study aimed at investigating the role of E. faecalis in cell proliferation, inflammatory reactions and osteoclast differentiation of macrophages using an in vitro infection model of osteoclast precursor RAW264.7 cells. A cell viability assay of cultured RAW264.7 cells exposed to live E. faecalis at a multiplicity of infection of 100 for 2h, indicated that the infection exhibited no cytotoxic effect. Transmission electron microscopy images revealed no apoptotic changes but a rise of metabolic activity and phagocytic features in the infected RAW264.7 cells. Confocal laser scanning microscopic and flow cytometric analysis indicated that the phagocytosis of RAW264.7 cells was activated by E. faecalis infection. Furthermore, quantitative real-time PCR assays demonstrated that the expression of inflammatory cytokines was remarkably elevated in infected RAW264.7 cells. Differentiation of infected RAW264.7 cells into osteoclasts was remarkably attenuated, and expression of osteoclast marker genes as well as fusogenic genes significantly dropped. In summary, E. faecalis appears to attenuate osteoclastic differentiation of RAW264.7 precursor cells, rather stimulates them to function as macrophages.
Collapse
Affiliation(s)
- Zhezhen Xu
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, 56 Lingyuan Xi Road, Guangzhou 510055, Guangdong, China; Guangdong Province Key Laboratory of Stomatology, No. 74, 2nd Zhongshan Road, Guangzhou 510080, Guangdong, China.
| | - Zhongchun Tong
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, 56 Lingyuan Xi Road, Guangzhou 510055, Guangdong, China; Guangdong Province Key Laboratory of Stomatology, No. 74, 2nd Zhongshan Road, Guangzhou 510080, Guangdong, China.
| | - Prasanna Neelakantan
- Discipline of Endodontology, Faculty of Dentistry, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China.
| | - Yanling Cai
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, 56 Lingyuan Xi Road, Guangzhou 510055, Guangdong, China; Guangdong Province Key Laboratory of Stomatology, No. 74, 2nd Zhongshan Road, Guangzhou 510080, Guangdong, China.
| | - Xi Wei
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, 56 Lingyuan Xi Road, Guangzhou 510055, Guangdong, China; Guangdong Province Key Laboratory of Stomatology, No. 74, 2nd Zhongshan Road, Guangzhou 510080, Guangdong, China.
| |
Collapse
|
34
|
Catabolic Effects of Human PTH (1-34) on Bone: Requirement of Monocyte Chemoattractant Protein-1 in Murine Model of Hyperparathyroidism. Sci Rep 2017; 7:15300. [PMID: 29127344 PMCID: PMC5681546 DOI: 10.1038/s41598-017-15563-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 10/30/2017] [Indexed: 01/12/2023] Open
Abstract
The bone catabolic actions of parathyroid hormone (PTH) are seen in patients with hyperparathyroidism, or with infusion of PTH in rodents. We have previously shown that the chemokine, monocyte chemoattractant protein-1 (MCP-1), is a mediator of PTH’s anabolic effects on bone. To determine its role in PTH’s catabolic effects, we continuously infused female wild-type (WT) and MCP-1−/− mice with hPTH or vehicle. Microcomputed tomography (µCT) analysis of cortical bone showed that hPTH-infusion induced significant bone loss in WT mice. Further, μCT analysis of trabecular bone revealed that, compared with the vehicle-treated group, the PTH-treated WT mice had reduced trabecular thickness and trabecular number. Notably, MCP-1−/− mice were protected against PTH-induced cortical and trabecular bone loss as well as from increases in serum CTX (C-terminal crosslinking telopeptide of type I collagen) and TRACP-5b (tartrate-resistant acid phosphatase 5b). In vitro, bone marrow macrophages (BMMs) from MCP-1−/− and WT mice were cultured with M-CSF, RANKL and/or MCP-1. BMMs from MCP-1−/− mice showed decreased multinucleated osteoclast formation compared with WT mice. Taken together, our work demonstrates that MCP-1 has a role in PTH’s catabolic effects on bone including monocyte and macrophage recruitment, osteoclast formation, bone resorption, and cortical and trabecular bone loss.
Collapse
|
35
|
Wang C, Zhang C, Zhou F, Gao L, Wang Y, Wang C, Zhang Y. Angiotensin II induces monocyte chemoattractant protein‑1 expression by increasing reactive oxygen species‑mediated activation of the nuclear factor‑κB signaling pathway in osteoblasts. Mol Med Rep 2017; 17:1166-1172. [PMID: 29115506 DOI: 10.3892/mmr.2017.7971] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 09/09/2017] [Indexed: 11/06/2022] Open
Abstract
The present study investigated the effect of angiotensin II (Ang II) on monocyte chemoattractant protein‑1 (MCP‑1) expression and the underlying mechanism in osteoblasts. MCP‑1 expression levels were analyzed by ELISA and reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR). Ang II type 1 receptor (AT1R) expression levels was examined by RT‑qPCR, western blotting and immunostaining. In addition, the nuclear factor (NF)‑κB signaling pathway was investigated via western blot analysis. Reactive oxygen species (ROS) were also detected by flow cytometry and fluorescent microscopy. The results of the present study ndicated that Ang II upregulated MCP‑1 expression in osteoblasts, which was mitigated by agonists of the AT1R, including olmesartan, a ROS scavenger N‑acetylcysteine (NAC), ammonium pyrrolidinethiocarbamate (PDTC) and nuclear factor (NF)‑κB, but not by the Ang II type 2 receptor antagonist, PD123319. Furthermore, Ang II increased the generation of ROS and activated the NF‑κB signaling pathway. These effects of Ang II were blocked by olmesartan, NAC and PDTC, but not by PD1123319 in osteoblasts. In conclusion, these data indicated that Ang II enhanced ROS production and activated NF‑κB signaling via AT1R, thus upregulating MCP‑1 expression in osteoblasts.
Collapse
Affiliation(s)
- Changyao Wang
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266061, P.R. China
| | - Cailong Zhang
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266061, P.R. China
| | - Feng Zhou
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266061, P.R. China
| | - Lei Gao
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266061, P.R. China
| | - Yingzhen Wang
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266061, P.R. China
| | - Chunsheng Wang
- Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Yongtao Zhang
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266061, P.R. China
| |
Collapse
|
36
|
Sucur A, Jajic Z, Artukovic M, Matijasevic MI, Anic B, Flegar D, Markotic A, Kelava T, Ivcevic S, Kovacic N, Katavic V, Grcevic D. Chemokine signals are crucial for enhanced homing and differentiation of circulating osteoclast progenitor cells. Arthritis Res Ther 2017; 19:142. [PMID: 28619088 PMCID: PMC5472975 DOI: 10.1186/s13075-017-1337-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 05/16/2017] [Indexed: 02/08/2023] Open
Abstract
Background The peripheral blood (PB) monocyte pool contains osteoclast progenitors (OCPs), which contribute to osteoresorption in inflammatory arthritides and are influenced by the cytokine and chemokine milieu. We aimed to define the importance of chemokine signals for migration and activation of OCPs in rheumatoid arthritis (RA) and psoriatic arthritis (PsA). Methods PB and, when applicable, synovial fluid (SF) samples were collected from 129 patients with RA, 53 patients with PsA, and 110 control patients in parallel to clinical parameters of disease activity, autoantibody levels, and applied therapy. Receptors for osteoclastogenic factors (CD115 and receptor activator of nuclear factor-κB [RANK]) and selected chemokines (CC chemokine receptor 1 [CCR1], CCR2, CCR4, CXC chemokine receptor 3 [CXCR3], CXCR4) were determined in an OCP-rich subpopulation (CD3−CD19−CD56−CD11b+CD14+) by flow cytometry. In parallel, levels of CC chemokine ligand 2 (CCL2), CCL3, CCL4, CCL5, CXC chemokine ligand 9 (CXCL9), CXCL10, and CXCL12 were measured using cytometric bead array or enzyme-linked immunosorbent assay. Sorted OCPs were stimulated in culture by macrophage colony-stimulating factor and receptor activator of nuclear factor-κB ligand, and they were differentiated into mature osteoclasts that resorb bone. Selected chemokines (CCL2, CCL5, CXCL10, and CXCL12) were tested for their osteoclastogenic and chemotactic effects on circulatory OCPs in vitro. Results The OCP population was moderately enlarged among PB cells in RA and correlated with levels of tumor necrosis factor-α (TNF-α), rheumatoid factor, CCL2, and CCL5. Compared with PB, the RANK+ subpopulation was expanded in SF and correlated with the number of tender joints. Patients with PsA could be distinguished by increased RANK expression rather than total OCP population. OCPs from patients with arthritis had higher expression of CCR1, CCR2, CCR4, CXCR3, and CXCR4. In parallel, patients with RA had increased levels of CCL2, CCL3, CCL4, CCL5, CXCL9, and CXCL10, with significant elevation in SF vs PB for CXCL10. The subset expressing CXCR4 positively correlated with TNF-α, bone resorption marker, and rheumatoid factor, and it was reduced in patients treated with disease-modifying antirheumatic drugs. The CCR4+ subset showed a significant negative trend during anti-TNF treatment. CCL2, CCL5, and CXCL10 had similar osteoclastogenic effects, with CCL5 showing the greatest chemotactic action on OCPs. Conclusions In our study, we identified distinct effects of selected chemokines on stimulation of OCP mobilization, tissue homing, and maturation. Novel insights into migratory behaviors and functional properties of circulatory OCPs in response to chemotactic signals could open ways to new therapeutic targets in RA. Electronic supplementary material The online version of this article (doi:10.1186/s13075-017-1337-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alan Sucur
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Salata 12, Zagreb, HR 10000, Croatia.,Department of Physiology and Immunology, University of Zagreb School of Medicine, Salata 3b, Zagreb, HR 10000, Croatia
| | - Zrinka Jajic
- Department of Rheumatology, Physical Medicine and Rehabilitation, Clinical Hospital Center "Sestre Milosrdnice", University of Zagreb School of Medicine, Vinogradska cesta 29, Zagreb, HR 10000, Croatia
| | - Marinko Artukovic
- Department of Clinical Immunology and Pulmonology, Clinical Hospital "Sveti Duh", Sveti Duh 64, Zagreb, HR 10000, Croatia
| | - Marina Ikic Matijasevic
- Department of Clinical Immunology and Pulmonology, Clinical Hospital "Sveti Duh", Sveti Duh 64, Zagreb, HR 10000, Croatia
| | - Branimir Anic
- Department of Clinical Immunology and Rheumatology, Clinical Hospital Center "Zagreb", Kispaticeva 12, Zagreb, HR 10000, Croatia
| | - Darja Flegar
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Salata 12, Zagreb, HR 10000, Croatia.,Department of Physiology and Immunology, University of Zagreb School of Medicine, Salata 3b, Zagreb, HR 10000, Croatia
| | - Antonio Markotic
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Salata 12, Zagreb, HR 10000, Croatia.,Department of Physiology and Immunology, University of Zagreb School of Medicine, Salata 3b, Zagreb, HR 10000, Croatia
| | - Tomislav Kelava
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Salata 12, Zagreb, HR 10000, Croatia.,Department of Physiology and Immunology, University of Zagreb School of Medicine, Salata 3b, Zagreb, HR 10000, Croatia
| | - Sanja Ivcevic
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Salata 12, Zagreb, HR 10000, Croatia.,Department of Physiology and Immunology, University of Zagreb School of Medicine, Salata 3b, Zagreb, HR 10000, Croatia
| | - Natasa Kovacic
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Salata 12, Zagreb, HR 10000, Croatia.,Department of Anatomy, University of Zagreb School of Medicine, Salata 11, Zagreb, HR 10000, Croatia
| | - Vedran Katavic
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Salata 12, Zagreb, HR 10000, Croatia.,Department of Anatomy, University of Zagreb School of Medicine, Salata 11, Zagreb, HR 10000, Croatia
| | - Danka Grcevic
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Salata 12, Zagreb, HR 10000, Croatia. .,Department of Physiology and Immunology, University of Zagreb School of Medicine, Salata 3b, Zagreb, HR 10000, Croatia.
| |
Collapse
|
37
|
Nakamura S, Koyama T, Izawa N, Nomura S, Fujita T, Omata Y, Minami T, Matsumoto M, Nakamura M, Fujita-Jimbo E, Momoi T, Miyamoto T, Aburatani H, Tanaka S. Negative feedback loop of bone resorption by NFATc1-dependent induction of Cadm1. PLoS One 2017; 12:e0175632. [PMID: 28414795 PMCID: PMC5393607 DOI: 10.1371/journal.pone.0175632] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 03/29/2017] [Indexed: 11/29/2022] Open
Abstract
Trimethylation of histone H3 lysine 4 and lysine 27 (H3K4me3 and H3K27me3) at gene promoter regions critically regulates gene expression. Key developmental genes tend to exhibit changes in histone modification patterns from the H3K4me3/H3K27me3 bivalent pattern to the H3K4me3 monovalent pattern. Using comprehensive chromatin immunoprecipitation followed by sequencing in bone marrow-derived macrophages (BMMs) and mature osteoclasts, we found that cell surface adhesion molecule 1 (Cadm1) is a direct target of nuclear factor of activated T cells 1 (NFATc1) and exhibits a bivalent histone pattern in BMMs and a monovalent pattern in osteoclasts. Cadm1 expression was upregulated in BMMs by receptor activator of nuclear factor kappa B ligand (RANKL), and blocked by a calcineurin/NFATc1 inhibitor, FK506. Cadm1-deficient mice exhibited significantly reduced bone mass compared with wild-type mice, which was due to the increased osteoclast differentiation, survival and bone-resorbing activity in Cadm1-deficient osteoclasts. These results suggest that Cadm1 is a direct target of NFATc1, which is induced by RANKL through epigenetic modification, and regulates osteoclastic bone resorption in a negative feedback manner.
Collapse
Affiliation(s)
- Shinya Nakamura
- Department of Orthopaedic Surgery, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Takuma Koyama
- Department of Orthopaedic Surgery, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Naohiro Izawa
- Department of Orthopaedic Surgery, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Seitaro Nomura
- Genome Science Division, Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo, Japan
| | - Takanori Fujita
- Genome Science Division, Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo, Japan
| | - Yasunori Omata
- Department of Orthopaedic Surgery, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Takashi Minami
- Division of Phenotype Disease Analysis, Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Kumamoto, Japan
| | - Morio Matsumoto
- Department of Orthopedic Surgery, Keio University, Tokyo, Japan
| | - Masaya Nakamura
- Department of Orthopedic Surgery, Keio University, Tokyo, Japan
| | - Eriko Fujita-Jimbo
- Department of Pediatrics, Jichi Medical University School of Medicine, Shimotsuke, Tochigi, Japan
| | - Takashi Momoi
- Department of Pathophysiology, Tokyo Medical University, Shinjuku, Tokyo, Japan
| | - Takeshi Miyamoto
- Department of Orthopaedic Surgery, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Department of Orthopedic Surgery, Keio University, Tokyo, Japan
| | - Hiroyuki Aburatani
- Genome Science Division, Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo, Japan
| | - Sakae Tanaka
- Department of Orthopaedic Surgery, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
38
|
Collins FL, Williams JO, Bloom AC, Singh RK, Jordan L, Stone MD, McCabe LR, Wang ECY, Williams AS. CCL3 and MMP-9 are induced by TL1A during death receptor 3 (TNFRSF25)-dependent osteoclast function and systemic bone loss. Bone 2017; 97:94-104. [PMID: 28062298 PMCID: PMC5378198 DOI: 10.1016/j.bone.2017.01.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 11/23/2016] [Accepted: 01/03/2017] [Indexed: 12/11/2022]
Abstract
Reduced bone density and secondary osteoporosis, resulting in increased risk of fracture, is a significant complicating factor in the inflammatory arthritides. While the exact etiology of systemic bone loss is not fully elucidated, recent insights into the tumor necrosis factor super family (TNFSF) revealed a potential role for death receptor 3 (DR3/TNFRSF25) and one of its ligands, TNF-like protein 1A (TL1A/TNFSF15). The mechanisms by which DR3/TL1A signalling modulates bone loss are unclear. We investigated the effect of DR3/TL1A signalling upon osteoclast-dependent chemokine and MMP production to unravel novel mechanisms whereby this pathway regulates OC formation and OC-dependent bone resorption. Collagen induced arthritis (CIA) was established in DR3wt and DR3ko mice, joints were sectioned and analysed histologically for bone damage while systemic trabecular bone loss distal to the affected joints was compared by micro-CT. Ablation of DR3 protected DBA/1 mice against the development and progression of CIA. In DR3ko, joints of the ankle and mid-foot were almost free of bone erosions and long bones of mice with CIA were protected against systemic trabecular bone loss. In vitro, expression of DR3 was confirmed on primary human CD14+ osteoclast precursors by flow cytometry. These cells were treated with TL1A in osteoclast differentiation medium and TRAP+ osteoclasts, bone resorption, levels of osteoclast-associated chemokines (CCL3, CCL2 and CXCL8) and MMP-9 measured. TL1A intensified human osteoclast differentiation and bone resorption and increased osteoclast-associated production of CCL3 and MMP-9. Our data reveals the DR3 pathway as an attractive therapeutic target to combat adverse bone pathology associated with inflammatory arthritis. We demonstrate that DR3 is critical in the pathogenesis of murine CIA and associated secondary osteoporosis. Furthermore, we identify a novel mechanism by which the DR3/TL1A pathway directly enhances human OC formation and resorptive activity, controlling expression and activation of CCL3 and MMP-9.
Collapse
Affiliation(s)
- Fraser L Collins
- Cardiff Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom; Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Jessica O Williams
- Cardiff Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Anja C Bloom
- Cardiff Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Ravinder K Singh
- Cardiff Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Lauren Jordan
- Cardiff Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Michael D Stone
- University Hospital Llandough, Cardiff & Vale University Health Board, Cardiff, United Kingdom
| | - Laura R McCabe
- Department of Physiology, Michigan State University, East Lansing, MI, USA; Department of Radiology, Michigan State University, East Lansing, MI, USA; Biomedical Imaging Research Centre, Michigan State University, East Lansing, MI, USA
| | - Eddie C Y Wang
- Cardiff Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom.
| | - Anwen S Williams
- Cardiff Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom.
| |
Collapse
|
39
|
Siddiqui JA, Partridge NC. CCL2/Monocyte Chemoattractant Protein 1 and Parathyroid Hormone Action on Bone. Front Endocrinol (Lausanne) 2017; 8:49. [PMID: 28424660 PMCID: PMC5372820 DOI: 10.3389/fendo.2017.00049] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 02/27/2017] [Indexed: 11/13/2022] Open
Abstract
Chemokines are small molecules that play a crucial role as chemoattractants for several cell types, and their components are associated with host immune responses and repair mechanisms. Chemokines selectively recruit monocytes, neutrophils, and lymphocytes and induce chemotaxis through the activation of G protein-coupled receptors. Two well-described chemokine families (CXC and CC) are known to regulate the localization and trafficking of immune cells in cases of injury, infection, and tumors. Monocyte chemoattractant protein 1 (MCP-1/CCL2) is one of the important chemokines from the CC family that controls migration and infiltration of monocytes/macrophages during inflammation. CCL2 is profoundly expressed in osteoporotic bone and prostate cancer-induced bone resorption. CCL2 also regulates physiological bone remodeling in response to hormonal and mechanical stimuli. Parathyroid hormone (PTH) has multifaceted effects on bone, depending on the mode of administration. Intermittent PTH increases bone in vivo by increasing the number and activity of osteoblasts, whereas a continuous infusion of PTH decreases bone mass by stimulating a net increase in bone resorption. CCL2 is essential for both anabolic and catabolic effects of PTH. In this review, we will discuss the pharmacological role of PTH and involvement of CCL2 in the processes of PTH-mediated bone remodeling.
Collapse
Affiliation(s)
- Jawed Akhtar Siddiqui
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, USA
| | - Nicola C. Partridge
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, USA
- *Correspondence: Nicola C. Partridge,
| |
Collapse
|
40
|
Reinke DC, Kogawa M, Barratt KR, Morris HA, Anderson PH, Atkins GJ. Evidence for altered osteoclastogenesis in splenocyte cultures from Cyp27b1 knockout mice. J Steroid Biochem Mol Biol 2016; 164:353-360. [PMID: 26639637 DOI: 10.1016/j.jsbmb.2015.11.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 11/04/2015] [Accepted: 11/25/2015] [Indexed: 11/16/2022]
Abstract
The association between increased serum 25-hydroxyvitamin D (25D) and reduced osteoclastic bone resorption is well known. Previously, we have demonstrated that mechanism by which this occurs, may include the conversion of 25D to 1,25-dihydroxyvitamin D (1,25D) by osteoclasts, catalysed by the CYP27B1 enzyme. Local 1,25D synthesis in osteoclasts was shown to regulate osteoclastogenesis and moderating resorptive activity. Thus, we hypothesised that osteoclasts differentiated from mice with global deletion of the Cyp27b1 gene (Cyp27b1 KO) would display enhanced resorptive capacity due to the lack of an ameliorating effect of 1,25D. Splenocytes isolated from Cyp27b1 KO mice or their wild-type (WT) littermates between 6 and 8 weeks of age were cultured under osteoclast-forming conditions for up to 14 days. Osteoclast formation was measured by staining for the osteoclast marker tartrate resistant acid phosphatase (TRAP). Bone resorption activity was measured by plating the cells on a bone-like substrate. In Cyp27b1 KO cultures, osteoclastogenesis was reduced, as indicated by fewer TRAP-positive multinucleated cells at all time points measured (p<0.05) when compared to wild-type (WT) levels. However, Cyp27b1 KO osteoclasts demonstrated greater resorption on a per cell basis than their WT counterparts (p<0.03). In addition, the ratio of expression of the pro-apoptotic gene Bax to the pro-survival gene Bcl-2 was decreased in Cyp27b1 KO cultures, implying that these smaller osteoclasts survive longer than WT osteoclasts. Our data indicate abnormal osteoclastogenesis due to the absence of CYP27B1 expression, consistent with the notion that endogenous metabolism of 25D optimises osteoclastogenesis and ameliorates the resulting activity of mature osteoclasts.
Collapse
Affiliation(s)
- Daniel C Reinke
- Bone Cell Biology Group, Centre for Orthopaedic & Trauma Research, University of Adelaide, Australia
| | - Masakazu Kogawa
- Bone Cell Biology Group, Centre for Orthopaedic & Trauma Research, University of Adelaide, Australia
| | - Kate R Barratt
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5005, Australia
| | - Howard A Morris
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5005, Australia
| | - Paul H Anderson
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5005, Australia
| | - Gerald J Atkins
- Bone Cell Biology Group, Centre for Orthopaedic & Trauma Research, University of Adelaide, Australia.
| |
Collapse
|
41
|
Khan UA, Hashimi SM, Bakr MM, Forwood MR, Morrison NA. CCL2 and CCR2 are Essential for the Formation of Osteoclasts and Foreign Body Giant Cells. J Cell Biochem 2016. [PMID: 26205994 DOI: 10.1002/jcb.25282] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Osteoclasts are multinucleated cells responsible for bone resorption. They are derived from the fusion of cells in the monocyte/macrophage lineage. Monocytes and macrophages can also fuse to form foreign body giant cells (FBGC). Foreign body giant cells are observed at the interface between a host and a foreign body such as implants during a foreign body reaction. Macrophages are attracted to the site of bone resorption and foreign body reactions by different cytokines. Chemokine (C-C) ligand-2 (CCL2) is an important chemotactic factor and binds to a receptor CCR2. In this study we investigated the importance of CCL2 and the receptor CCR2 in the formation of osteoclasts and FBGC. CCL2 mRNA was more highly expressed in giant cell culture than macrophages, being 9-fold and 16-fold more abundant in osteoclasts and FBGC respectively. Significantly fewer osteoclasts and FBGC were cultured from the bone marrow of CCL2 and CCR2 knockout mice, when compared to wild type. Not only were the number of giant cells reduced but there was a significant reduction in the number of nuclei and the size of these cells in the cultures of CCL2 and CCR2 knockout mice. Formation of osteoclasts and FBGC were recovered in cultures by addition of exogenous CCL2 to the media containing marrow cells from CCL2-/- mice. We conclude that CCL2 and its receptor CCR2 are important for the formation of osteoclasts and FBGC and absence of these genes causes inhibition of osteoclast and FBGC formation.
Collapse
Affiliation(s)
- Usman A Khan
- School of Medical Science, Griffith University Gold Coast Campus, Queensland, 4215, Australia.,Senior Dentist Dalby Dental Clinic, Western Down, Queensland, 4405, Australia
| | - Saeed M Hashimi
- School of Medical Science, Griffith University Gold Coast Campus, Queensland, 4215, Australia.,Regenerative Medicine Centre, Molecular Basis for Disease, School of Dentistry and Oral Health, Menzies Health Institute Queensland, Griffith University Gold Coast Campus, Queensland, 4215, Australia
| | - Mahmoud M Bakr
- Regenerative Medicine Centre, Molecular Basis for Disease, School of Dentistry and Oral Health, Menzies Health Institute Queensland, Griffith University Gold Coast Campus, Queensland, 4215, Australia
| | - Mark R Forwood
- School of Medical Science, Griffith University Gold Coast Campus, Queensland, 4215, Australia
| | - Nigel A Morrison
- School of Medical Science, Griffith University Gold Coast Campus, Queensland, 4215, Australia
| |
Collapse
|
42
|
Ablation of Y1 receptor impairs osteoclast bone-resorbing activity. Sci Rep 2016; 6:33470. [PMID: 27646989 PMCID: PMC5028844 DOI: 10.1038/srep33470] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 08/24/2016] [Indexed: 01/09/2023] Open
Abstract
Y1 receptor (Y1R)-signalling pathway plays a pivotal role in the regulation of bone metabolism. The lack of Y1R-signalling stimulates bone mass accretion that has been mainly attributed to Y1R disruption from bone-forming cells. Still, the involvement of Y1R-signalling in the control of bone-resorbing cells remained to be explored. Therefore, in this study we assessed the role of Y1R deficiency in osteoclast formation and resorption activity. Here we demonstrate that Y1R germline deletion (Y1R−/−) led to increased formation of highly multinucleated (n > 8) osteoclasts and enhanced surface area, possibly due to monocyte chemoattractant protein-1 (MCP-1) overexpression regulated by RANKL-signalling. Interestingly, functional studies revealed that these giant Y1R−/− multinucleated cells produce poorly demineralized eroded pits, which were associated to reduce expression of osteoclast matrix degradation markers, such as tartrate-resistant acid phosphatase-5b (TRAcP5b), matrix metalloproteinase-9 (MMP-9) and cathepsin-K (CTSK). Tridimensional (3D) morphologic analyses of resorption pits, using an in-house developed quantitative computational tool (BonePit), showed that Y1R−/− resorption pits displayed a marked reduction in surface area, volume and depth. Together, these data demonstrates that the lack of Y1Rs stimulates the formation of larger multinucleated osteoclasts in vitro with reduced bone-resorbing activity, unveiling a novel therapeutic option for osteoclastic bone diseases based on Y1R-signalling ablation.
Collapse
|
43
|
Usui M, Okamatsu Y, Sato T, Hanatani T, Moritani Y, Sano K, Yamamoto M, Nakashima K. Thymus-expressed chemokine enhances Porphyromonas gingivalis LPS-induced osteoclast formation via NFATc1 activation. Arch Oral Biol 2016; 66:77-85. [DOI: 10.1016/j.archoralbio.2016.02.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 02/08/2016] [Accepted: 02/15/2016] [Indexed: 12/29/2022]
|
44
|
Nevius E, Pinho F, Dhodapkar M, Jin H, Nadrah K, Horowitz MC, Kikuta J, Ishii M, Pereira JP. Oxysterols and EBI2 promote osteoclast precursor migration to bone surfaces and regulate bone mass homeostasis. ACTA ACUST UNITED AC 2015; 212:1931-46. [PMID: 26438360 PMCID: PMC4612084 DOI: 10.1084/jem.20150088] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 08/27/2015] [Indexed: 12/13/2022]
Abstract
The mechanisms guiding cells toward bone surfaces are generally unknown. Here, Nevius et al. show that the Gαi protein–coupled receptor EBI2 is expressed in mouse osteoclast precursors to guide these cells toward bone surfaces. Defective EBI2 signaling increased bone mass in male mice and protected female mice from age- and estrogen deficiency–induced osteoporosis. Bone surfaces attract hematopoietic and nonhematopoietic cells, such as osteoclasts (OCs) and osteoblasts (OBs), and are targeted by bone metastatic cancers. However, the mechanisms guiding cells toward bone surfaces are essentially unknown. Here, we show that the Gαi protein–coupled receptor (GPCR) EBI2 is expressed in mouse monocyte/OC precursors (OCPs) and its oxysterol ligand 7α,25-dihydroxycholesterol (7α,25-OHC) is secreted abundantly by OBs. Using in vitro time-lapse microscopy and intravital two-photon microscopy, we show that EBI2 enhances the development of large OCs by promoting OCP motility, thus facilitating cell–cell interactions and fusion in vitro and in vivo. EBI2 is also necessary and sufficient for guiding OCPs toward bone surfaces. Interestingly, OCPs also secrete 7α,25-OHC, which promotes autocrine EBI2 signaling and reduces OCP migration toward bone surfaces in vivo. Defective EBI2 signaling led to increased bone mass in male mice and protected female mice from age- and estrogen deficiency–induced osteoporosis. This study identifies a novel pathway involved in OCP homing to the bone surface that may have significant therapeutic potential.
Collapse
Affiliation(s)
- Erin Nevius
- Department of Immunobiology and Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT 06510
| | - Flavia Pinho
- Department of Immunobiology and Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT 06510
| | - Meera Dhodapkar
- Department of Immunobiology and Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT 06510
| | - Huiyan Jin
- Department of Immunobiology and Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT 06510
| | - Kristina Nadrah
- Department of Immunobiology and Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT 06510
| | - Mark C Horowitz
- Department of Immunobiology and Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT 06510
| | - Junichi Kikuta
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences and WPI-Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masaru Ishii
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences and WPI-Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - João P Pereira
- Department of Immunobiology and Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT 06510
| |
Collapse
|
45
|
|
46
|
Cantley MD, Fairlie DP, Bartold PM, Marino V, Gupta PK, Haynes DR. Inhibiting histone deacetylase 1 suppresses both inflammation and bone loss in arthritis. Rheumatology (Oxford) 2015; 54:1713-23. [PMID: 25832610 DOI: 10.1093/rheumatology/kev022] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE Histone deacetylase 1 (HDAC1) is highly expressed in the synovium of RA patients. Thus we aimed to investigate a novel HDAC inhibitor (HDACi), NW-21, designed to target HDAC1. The effect of NW-21 on osteoclast formation and activity, cytokine and chemokine expression in vitro and arthritis in mice was assessed. METHODS The effects on human osteoclast formation and activity derived from human blood monocytes stimulated with receptor activator of nuclear factor κB ligand (RANKL) and M-CSF were assessed. The anti-inflammatory activity of NW-21 was assessed using human monocytes stimulated with either TNF-α or lipopolysaccharide for 24 h. mRNA expression of monocyte chemotactic protein 1 (MCP-1), TNF-α, macrophage inflammatory protein 1α (MIP-1α), IL-1 and RANTES (regulated on activation, normal T cell expressed and secreted) was assessed. The effect of NW-21 in the collagen antibody-induced arthritis model was assessed following daily oral administration at 5 mg/kg/day. The HDAC1 inhibitors NW-21 and MS-275 were compared with a broad-acting HDACi, 1179.4b. Effects on inflammation and bone were assessed using paw inflammation scoring, histology and live animal micro-CT. RESULTS NW-21 suppressed osteoclast formation and activity as well as significantly reducing mRNA expression of MCP-1 and MIP-1α in monocytes stimulated by lipopolysaccharide or TNF-α (P < 0.05) in vitro. Only inhibitors that targeted HDAC1 (NW-21 and MS-275) reduced inflammation and bone loss in the arthritis model. CONCLUSION The results indicate that inhibitors targeting HDAC1, such as NW-21 and MS-275, may be useful for treating RA, as such drugs can simultaneously target both inflammation and bone resorption.
Collapse
Affiliation(s)
- Melissa D Cantley
- Discipline of Anatomy and Pathology, School of Medical Sciences, University of Adelaide, Adelaide, SA,
| | - David P Fairlie
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, and
| | - P Mark Bartold
- Colgate Australian Clinical Dental Research Centre, School of Dentistry, University of Adelaide, Adelaide, SA, Australia
| | - Victor Marino
- Colgate Australian Clinical Dental Research Centre, School of Dentistry, University of Adelaide, Adelaide, SA, Australia
| | - Praveer K Gupta
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, and
| | - David R Haynes
- Discipline of Anatomy and Pathology, School of Medical Sciences, University of Adelaide, Adelaide, SA
| |
Collapse
|
47
|
Wang CY, Chyuan IT, Wang YL, Kuo MYP, Chang CW, Wu KJ, Hsu PN, Nagasawa T, Wara-aswapati N, Chen YW. β2-Glycoprotein I-Dependent Anti-Cardiolipin Antibodies Associated With Periodontitis in Patients With Systemic Lupus Erythematosus. J Periodontol 2015; 86:995-1004. [PMID: 25817824 DOI: 10.1902/jop.2015.140664] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND It was reported that patients with systemic lupus erythematosus (SLE) exhibited increased levels of anticardiolipin (anti-CL) antibodies, a class of antiphospholipid antibodies associated with thrombosis. β2-glycoprotein I (β2GPI) has been considered as the actual target antigen for anti-CL antibodies. This study investigates the association of periodontal infection with anti-CL antibodies in patients with SLE. METHODS Fifty-three SLE female patients and 56 healthy female volunteers were recruited in this case-control study. All participants received periodontal examinations. The presence of Porphyromonas gingivalis and Treponema denticola in saliva and plaque samples was detected by polymerase chain reaction. Levels of serum anti-CL and anti-β2GPI antibodies were examined using enzyme-linked immunosorbent assay. RESULTS Patients with SLE exhibited more periodontal attachment loss and increased titers of serum anti-CL and anti-β2GPI antibodies compared with healthy controls. Patients with active SLE who harbored P. gingivalis or P. gingivalis together with T. denticola intraorally exhibited significantly higher anti-CL and anti-β2GPI antibodies than those without these bacteria. Anti-CL and anti-β2GPI antibody levels correlated positively with clinical attachment level. Furthermore, increased anti-β2GPI antibody levels were significantly associated with C-reactive protein and erythrocyte sedimentation rate. CONCLUSIONS Elevated anti-CL and anti-β2GPI antibody levels were associated with periodontopathic bacteria and periodontal breakdown in patients with SLE. Periodontitis might be a modifiable risk factor for SLE.
Collapse
Affiliation(s)
- Chen-Ying Wang
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan.,Department of Periodontology, National Taiwan University Hospital, Taipei, Taiwan
| | - I-Tsu Chyuan
- Department of Internal Medicine, Cathay General Hospital, Taipei, Taiwan
| | - Ya-Li Wang
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan.,Department of Periodontology, National Taiwan University Hospital, Taipei, Taiwan
| | - Mark Yen-Ping Kuo
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan.,Department of Periodontology, National Taiwan University Hospital, Taipei, Taiwan
| | - Ching-Wen Chang
- Department of Periodontology, National Taiwan University Hospital, Taipei, Taiwan
| | - King-Jean Wu
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan.,Department of Periodontology, National Taiwan University Hospital, Taipei, Taiwan
| | - Ping-Ning Hsu
- Graduate Institute of Immunology, College of Medicine, National Taiwan University.,Department of Internal Medicine, National Taiwan University Hospital
| | - Toshiyuki Nagasawa
- Department of Integrated Dental Education, Division of Advanced Clinical Education, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Nawarat Wara-aswapati
- Department of Periodontology, Faculty of Dentistry, Khon Kaen University, Khon Kaen, Thailand
| | - Yi-Wen Chen
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan.,Department of Periodontology, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
48
|
Jin Y, Wang L, Liu D, Lin X. Tamibarotene modulates the local immune response in experimental periodontitis. Int Immunopharmacol 2014; 23:537-45. [DOI: 10.1016/j.intimp.2014.10.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 10/03/2014] [Accepted: 10/03/2014] [Indexed: 02/06/2023]
|
49
|
Bindarit, an inhibitor of monocyte chemotactic protein synthesis, protects against bone loss induced by chikungunya virus infection. J Virol 2014; 89:581-93. [PMID: 25339772 DOI: 10.1128/jvi.02034-14] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED The recent global resurgence of arthritogenic alphaviruses, in particular chikungunya virus (CHIKV), highlights an urgent need for the development of therapeutic intervention strategies. While there has been significant progress in defining the pathophysiology of alphaviral disease, relatively little is known about the mechanisms involved in CHIKV-induced arthritis or potential therapeutic options to treat the severe arthritic symptoms associated with infection. Here, we used microcomputed tomographic (μCT) and histomorphometric analyses to provide previously undescribed evidence of reduced bone volume in the proximal tibial epiphysis of CHIKV-infected mice compared to the results for mock controls. This was associated with a significant increase in the receptor activator of nuclear factor-κB ligand/osteoprotegerin (RANKL/OPG) ratio in infected murine joints and in the serum of CHIKV patients. The expression levels of the monocyte chemoattractant proteins (MCPs), including MCP-1/CCL2, MCP-2/CCL8, and MCP-3/CCL7, were also highly elevated in joints of CHIKV-infected mice, accompanied by increased cellularity within the bone marrow in tibial epiphysis and ankle joints. Both this effect and CHIKV-induced bone loss were significantly reduced by treatment with the MCP inhibitor bindarit. Collectively, these findings demonstrate a unique role for MCPs in promoting CHIKV-induced osteoclastogenesis and bone loss during disease and suggest that inhibition of MCPs with bindarit may be an effective therapy for patients affected with alphavirus-induced bone loss. IMPORTANCE Arthritogenic alphaviruses, including chikungunya virus (CHIKV) and Ross River virus (RRV), cause worldwide outbreaks of polyarthritis, which can persist in patients for months following infection. Previous studies have shown that host proinflammatory soluble factors are associated with CHIKV disease severity. Furthermore, it is established that chemokine (C-C motif) ligand 2 (CCL2/MCP-1) is important in cellular recruitment and inducing bone-resorbing osteoclast (OC) formation. Here, we show that CHIKV replicates in bone and triggers bone loss by increasing the RANKL/OPG ratio. CHIKV infection results in MCP-induced cellular infiltration in the inflamed joints, and bone loss can be ameliorated by treatment with an MCP-inhibiting drug, bindarit. Taken together, our data reveal a previously undescribed role for MCPs in CHIKV-induced bone loss: one of recruiting monocytes/OC precursors to joint sites and thereby favoring a pro-osteoclastic microenvironment. This suggests that bindarit may be an effective treatment for alphavirus-induced bone loss and arthritis in humans.
Collapse
|
50
|
Valerio MS, Herbert BA, Basilakos DS, Browne C, Yu H, Kirkwood KL. Critical role of MKP-1 in lipopolysaccharide-induced osteoclast formation through CXCL1 and CXCL2. Cytokine 2014; 71:71-80. [PMID: 25261746 DOI: 10.1016/j.cyto.2014.08.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 06/30/2014] [Accepted: 08/19/2014] [Indexed: 10/24/2022]
Abstract
UNLABELLED Osteoclast (OC) progenitors (OCP) have been defined in the bone marrow (BM) as CD3(-)CD45R(B220)(-)GR1(-)CD11b(lo/)(-)CD115(+) (dOCP) and more recently in the peripheral blood (PB) as Lym(-)Ly6G(-)CD11b(+)Ly6C(+). These progenitors respond to stimuli, including LPS from periopathogenic Aggregatibacter actinomycetemcomitans, activating MAPK signaling, resulting in cytokine/chemokine-mediated osteoclastogenesis. Intracellular negative signaling pathways, including MAPK phosphatase-1 (MKP-1, gene Dusp1) deactivate MAPK pathways (p-p38 and p-JNK) and reduce inflammatory cytokines/chemokines. OBJECTIVE To delineate the role of MKP-1 in chemokine-mediated OC formation using defined OC progenitor populations. Given its role in innate immune inflammatory signaling, we hypothesize that MKP-1 regulates LPS-induced OC formation from BM OCP through deregulated chemokines. METHODS BM and PB from WT and Dusp1(-/-) female mice (8-12weeks) was obtained and sorted into defined progenitor populations. BM sorted dOCP were primed with MCSF and RANKL (48h), blocked with vehicle or chemokine blocking antibodies and stimulated with LPS (48-96h). TRAP assay and OC activity were measured for OC formation and activity following treatments. NanoString Array and qPCR were utilized for gene expression analysis. RESULTS Dusp1(-/-) dOCPs formed more and larger osteoclasts from CD11b(hi) and dOCP compared to matched WT (P<0.05 each). PB-derived dOCP produced larger and more functional osteoclasts from Dusp1(-/-) mice compared to WT controls. NanoString array data revealed significant deregulation in chemokine expression from Dusp1(-/-) versus WT cells. qPCR validation of target genes revealed that Dusp1 deficient CD11b(+) populations display 1.5-3.5-fold greater expression of CXCL1 and 2-3-fold greater expression of CXCL2 compared to WT in CD11b(hi) and dOCP (P<0.05 each). Antibody blocking studies using anti-CXCL1 and CXCL2 antibodies blunted osteoclastogenesis in Dusp1(-/-) cells. CONCLUSION MKP-1 negatively regulates chemokine-driven OC formation and subsequent bone resorption in response to LPS stimulation. Collectively, these data provide useful insight into mechanisms potentially leading to the development of therapeutic treatment of periodontal disease.
Collapse
Affiliation(s)
- Michael S Valerio
- Department of Oral Health Sciences and the Center for Oral Health Sciences, Medical University of South Carolina, Charleston, SC, USA.
| | - Bethany A Herbert
- Department of Oral Health Sciences and the Center for Oral Health Sciences, Medical University of South Carolina, Charleston, SC, USA.
| | - Dimitrios S Basilakos
- Department of Oral Health Sciences and the Center for Oral Health Sciences, Medical University of South Carolina, Charleston, SC, USA.
| | - Courtney Browne
- Department of Oral Health Sciences and the Center for Oral Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Hong Yu
- Department of Oral Health Sciences and the Center for Oral Health Sciences, Medical University of South Carolina, Charleston, SC, USA.
| | - Keith L Kirkwood
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|