1
|
Hameed H, Khan MA, Paiva-Santos AC, Faheem S, Khalid A, Majid MS, Adnan A, Rana F. Liposomes like advanced drug carriers: from fundamentals to pharmaceutical applications. J Microencapsul 2024; 41:456-478. [PMID: 38990129 DOI: 10.1080/02652048.2024.2376116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 07/01/2024] [Indexed: 07/12/2024]
Abstract
AIMS There are around 24 distinct lipid vesicles described in the literature that are similar to vesicular systems such as liposomes. Liposome-like structures are formed by combining certain amphiphilic lipids with a suitable stabiliser. Since their discovery and classification, self-assembled liposome-like structures as active drug delivery vehicles captured researchers' curiosity. METHODOLOGY This comprehensive study included an in-depth literature search using electronic databases such as PubMed, ScienceDirect and Google Scholar, focusing on studies on liposome and liposomes like structure, discussed in literature till 2024, their sizes, benefits, drawback, method of preparation, characterisation and pharmaceutical applications. RESULTS Pharmacosomes, cubosomes, ethosomes, transethosomes, and genosomes, all liposome-like structures, have the most potential due to their smaller size with high loading capacity, ease of absorption, and ability to treat inflammatory illnesses. Genosomes are futuristic because of its affinity for DNA/gene transport, which is an area of focus in today's treatments. CONCLUSION This review will critically analyse the composition, preparation procedures, drug encapsulating technologies, drug loading, release mechanism, and related applications of all liposome-like structures, highlighting their potential benefits with enhanced efficacy over each other and over traditional carriers by paving the way for exploring novel drug delivery systems in the Pharma industry.
Collapse
Affiliation(s)
- Huma Hameed
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, Pakistan
| | - Mahtab Ahmad Khan
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, Pakistan
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| | - Saleha Faheem
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, Pakistan
| | - Aleena Khalid
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, Pakistan
| | | | - Aiman Adnan
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, Pakistan
| | - Fizza Rana
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, Pakistan
| |
Collapse
|
2
|
Vidakovic I, Kornmueller K, Fiedler D, Khinast J, Fröhlich E, Leitinger G, Horn C, Quehenberger J, Spadiut O, Prassl R. Archaeosomes for Oral Drug Delivery: From Continuous Microfluidics Production to Powdered Formulations. Pharmaceutics 2024; 16:694. [PMID: 38931818 PMCID: PMC11206520 DOI: 10.3390/pharmaceutics16060694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/08/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
Archaeosomes were manufactured from natural archaeal lipids by a microfluidics-assisted single-step production method utilizing a mixture of di- and tetraether lipids extracted from Sulfolobus acidocaldarius. The primary aim of this study was to investigate the exceptional stability of archaeosomes as potential carriers for oral drug delivery, with a focus on powdered formulations. The archaeosomes were negatively charged with a size of approximately 100 nm and a low polydispersity index. To assess their suitability for oral delivery, the archaeosomes were loaded with two model drugs: calcein, a fluorescent compound, and insulin, a peptide hormone. The archaeosomes demonstrated high stability in simulated intestinal fluids, with only 5% of the encapsulated compounds being released after 24 h, regardless of the presence of degrading enzymes or extremely acidic pH values such as those found in the stomach. In a co-culture cell model system mimicking the intestinal barrier, the archaeosomes showed strong adhesion to the cell membranes, facilitating a slow release of contents. The archaeosomes were loaded with insulin in a single-step procedure achieving an encapsulation efficiency of approximately 35%. These particles have been exposed to extreme manufacturing temperatures during freeze-drying and spray-drying processes, demonstrating remarkable resilience under these harsh conditions. The fabrication of stable dry powder formulations of archaeosomes represents a promising advancement toward the development of solid dosage forms for oral delivery of biological drugs.
Collapse
Affiliation(s)
- Ivan Vidakovic
- Division of Medical Physics and Biophysics, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, 8010 Graz, Austria; (I.V.); (K.K.)
| | - Karin Kornmueller
- Division of Medical Physics and Biophysics, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, 8010 Graz, Austria; (I.V.); (K.K.)
| | - Daniela Fiedler
- Institute of Process and Particle Engineering, Graz University of Technology, 8010 Graz, Austria;
| | | | - Eleonore Fröhlich
- Center for Medical Research, Medical University of Graz, 8010 Graz, Austria;
| | - Gerd Leitinger
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, 8010 Graz, Austria;
| | | | - Julian Quehenberger
- NovoArc GmbH, 1120 Vienna, Austria; (C.H.); (J.Q.)
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, 1060 Vienna, Austria;
| | - Oliver Spadiut
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, 1060 Vienna, Austria;
| | - Ruth Prassl
- Division of Medical Physics and Biophysics, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, 8010 Graz, Austria; (I.V.); (K.K.)
| |
Collapse
|
3
|
Chavda VP, Balar PC, Dodiya P, Bojarska J. Nanocarrier-based delivery of peptides: challenges and way forward. Nanomedicine (Lond) 2023; 18:1903-1906. [PMID: 37955577 DOI: 10.2217/nnm-2023-0273] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023] Open
Affiliation(s)
- Vivek P Chavda
- Department of Pharmaceutics & Pharmaceutical Technology, L.M. College of Pharmacy, Ahmedabad, 380009, India
| | - Pankti C Balar
- Pharmacy section, L.M. College of Pharmacy, Ahmedabad, 380009, India
| | - Payal Dodiya
- Pharmacy section, L.M. College of Pharmacy, Ahmedabad, 380009, India
| | - Joanna Bojarska
- Institute of General & Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology,116 Zeromski St., 90-924 Lodz, Poland
| |
Collapse
|
4
|
Sedlmayr V, Horn C, Wurm DJ, Spadiut O, Quehenberger J. Archaeosomes facilitate storage and oral delivery of cannabidiol. Int J Pharm 2023; 645:123434. [PMID: 37739097 DOI: 10.1016/j.ijpharm.2023.123434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/15/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023]
Abstract
Cannabidiol (CBD) has received great scientific interest due to its numerous therapeutic applications. Degradation in the gastrointestinal (GI) tract, first-pass metabolism, and low water solubility restrain bioavailability of CBD to only 6% in current oral administration. Lipid-based nanocarriers are delivery systems that may enhance accessibility and solubility of hydrophobic payloads, such as CBD. Conventional lecithin-derived liposomes, however, have limitations regarding stability in the GI tract and long-term storage. Ether lipid-based archaeosomes may have the potential to overcome these problems due to chemical and structural uniqueness. In this study, we compared lecithin-derived liposomes with archaeosomes in their applicability as an oral delivery system of CBD. We evaluated drug load, storage stability, stability in a simulated GI tract, and in vitro particle uptake in Caco-2 cells. Loading capacity was 6-fold higher in archaeosomes than conventional liposomes while providing a stable formulation over six months after lyophilization. In a simulated GI tract, CBD recovery in archaeosomes was 57 ± 3% compared to only 34 ± 1% in conventional liposomes and particle uptake in Caco-2 cells was enhanced up to 6-fold. Our results demonstrate that archaeosomes present an interesting solution to tackle current issues of oral CBD formulations due to improved stability and endocytosis.
Collapse
Affiliation(s)
- Viktor Sedlmayr
- TU Wien, Institute of Chemical, Environmental and Bioscience Engineering, Vienna, Austria
| | | | | | - Oliver Spadiut
- TU Wien, Institute of Chemical, Environmental and Bioscience Engineering, Vienna, Austria
| | - Julian Quehenberger
- TU Wien, Institute of Chemical, Environmental and Bioscience Engineering, Vienna, Austria; NovoArc GmbH, Vienna, Austria.
| |
Collapse
|
5
|
Aparici-Carratalá D, Esclapez J, Bautista V, Bonete MJ, Camacho M. Archaea: current and potential biotechnological applications. Res Microbiol 2023; 174:104080. [PMID: 37196775 DOI: 10.1016/j.resmic.2023.104080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/19/2023]
Abstract
Archaea are microorganisms with great ability to colonize some of the most inhospitable environments in nature, managing to survive in places with extreme characteristics for most microorganisms. Its proteins and enzymes are stable and can act under extreme conditions in which other proteins and enzymes would degrade. These attributes make them ideal candidates for use in a wide range of biotechnological applications. This review describes the most important applications, both current and potential, that archaea present in Biotechnology, classifying them according to the sector to which the application is directed. It also analyzes the advantages and disadvantages of its use.
Collapse
Affiliation(s)
- David Aparici-Carratalá
- Department of Biochemistry and Molecular Biology and Soil Science and Agricultural Chemistry, Biochemistry and Molecular Biology Area, Faculty of Science, University of Alicante, Carretera de San Vicente del Raspeig s/n, San Vicente del Raspeig, Alicante, 03690, Spain.
| | - Julia Esclapez
- Department of Biochemistry and Molecular Biology and Soil Science and Agricultural Chemistry, Biochemistry and Molecular Biology Area, Faculty of Science, University of Alicante, Carretera de San Vicente del Raspeig s/n, San Vicente del Raspeig, Alicante, 03690, Spain.
| | - Vanesa Bautista
- Department of Biochemistry and Molecular Biology and Soil Science and Agricultural Chemistry, Biochemistry and Molecular Biology Area, Faculty of Science, University of Alicante, Carretera de San Vicente del Raspeig s/n, San Vicente del Raspeig, Alicante, 03690, Spain.
| | - María-José Bonete
- Department of Biochemistry and Molecular Biology and Soil Science and Agricultural Chemistry, Biochemistry and Molecular Biology Area, Faculty of Science, University of Alicante, Carretera de San Vicente del Raspeig s/n, San Vicente del Raspeig, Alicante, 03690, Spain.
| | - Mónica Camacho
- Department of Biochemistry and Molecular Biology and Soil Science and Agricultural Chemistry, Biochemistry and Molecular Biology Area, Faculty of Science, University of Alicante, Carretera de San Vicente del Raspeig s/n, San Vicente del Raspeig, Alicante, 03690, Spain.
| |
Collapse
|
6
|
Romero EL, Morilla MJ. Ether lipids from archaeas in nano-drug delivery and vaccination. Int J Pharm 2023; 634:122632. [PMID: 36690132 DOI: 10.1016/j.ijpharm.2023.122632] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/26/2022] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
Archaea are microorganisms more closely related to eukaryotes than bacteria. Almost 50 years after being defined as a new domain of life on earth, new species continue to be discovered and their phylogeny organized. The study of the relationship between their genetics and metabolism and some of their extreme habitats has even positioned them as a model of extraterrestrial life forms. Archaea, however, are deeply connected to the life of our planet: they can be found in arid, acidic, warm areas; on most of the earth's surface, which is cold (below 5 °C), playing a prominent role in the cycles of organic materials on a global scale and they are even part of our microbiota. The constituent materials of these microorganisms differ radically from those produced by eukaryotes and bacteria, and the nanoparticles that can be manufactured using their ether lipids as building blocks exhibit unique properties that are of interest in nanomedicine. Here, we present for the first time a complete overview of the pre-clinical applications of nanomedicines based on ether archaea lipids, focused on drug delivery and adjuvancy over the last 25 years, along with a discussion on their pros, cons and their future industrial implementation.
Collapse
Affiliation(s)
- Eder Lilia Romero
- Nanomedicines Research and Development Centre (NARD), Science and Technology Department, National University of Quilmes, Roque Sáenz Peña 352, Bernal, Buenos Aires, Argentina.
| | - Maria Jose Morilla
- Nanomedicines Research and Development Centre (NARD), Science and Technology Department, National University of Quilmes, Roque Sáenz Peña 352, Bernal, Buenos Aires, Argentina
| |
Collapse
|
7
|
Santhosh PB, Genova J. Archaeosomes: New Generation of Liposomes Based on Archaeal Lipids for Drug Delivery and Biomedical Applications. ACS OMEGA 2023; 8:1-9. [PMID: 36643444 PMCID: PMC9835528 DOI: 10.1021/acsomega.2c06034] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Archaeosomes are a new generation of stable liposomes composed of natural ether lipids extracted from archaea, or synthetic archaeal lipids. Archaea constitute a domain of single-celled microorganisms that are structurally similar to but evolutionarily distinct from bacteria. They synthesize unique membrane lipids with isoprenoid hydrocarbon side chains attached via an ether linkage to the glycerol-phosphate backbone. Compared to the ester linkages found in the lipids of Eukarya and bacteria, the ether linkages in archaeal lipids are more stable in various environmental conditions such as high/low temperatures, acidic or alkaline pH, bile salts, and enzymatic hydrolysis. This feature has intrigued scientists to use archaeal lipids to prepare archaeosomes with superior physicochemical stability and utilize them as effective carriers to deliver various cargos of biomedical importance such as drugs, proteins, peptides, genes, and antioxidants to the target site. Archaeosomes carrying antigens and/or adjuvants are also proven to be better candidates for stimulating antigen-specific, humoral, and cell-mediated immune responses, which broadens their scope in vaccine delivery. These properties associated with excellent biocompatibility and a safety profile provide numerous advantages to the archaeosomes to function as a versatile delivery system. This mini-review will provide an overview of the unique features of archaeal lipids, preparation and characterization of archaeosomes, and emphasize the prospects related to drug delivery and other biomedical applications.
Collapse
|
8
|
Hemetsberger A, Preis E, Engelhardt K, Gutberlet B, Runkel F, Bakowsky U. Highly Stable Liposomes Based on Tetraether Lipids as a Promising and Versatile Drug Delivery System. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6995. [PMID: 36234336 PMCID: PMC9571198 DOI: 10.3390/ma15196995] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Conventional liposomes often lack stability, limiting their applicability and usage apart from intravenous routes. Nevertheless, their advantages in drug encapsulation and physicochemical properties might be helpful in oral and pulmonary drug delivery. This study investigated the feasibility and stability of liposomes containing tetraether lipids (TEL) from Thermoplasma acidophilum. Liposomes composed of different molar ratios of TEL:Phospholipon 100H (Ph) were produced and exposed to various temperature and pH conditions. The effects on size, polydispersity index, and zeta potential were examined by dynamic and electrophoretic light scattering. Autoclaving, which was considered an additional process step after fabrication, could minimize contamination and prolong shelf life, and the stability after autoclaving was tested. Moreover, 5(6)-carboxyfluorescein leakage was measured after incubation in the presence of fetal calf serum (FCS) and lung surfactant (Alveofact). The incorporation of TEL into the liposomes significantly impacted the stability against low pH, higher temperatures, and even sterilization by autoclaving. The stability of liposomes containing TEL was confirmed by atomic force microscopy as images revealed similar sizes and morphology before and after incubation with FCS. It could be concluded that increasing the molar ratio in the TEL:Ph liposome formulations improved the structural stability against high temperature, low pH, sterilization via autoclaving, and the presence of FCS and lung surfactant.
Collapse
Affiliation(s)
- Aybike Hemetsberger
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany
| | - Eduard Preis
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany
| | - Konrad Engelhardt
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany
| | - Bernd Gutberlet
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany
| | - Frank Runkel
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Wiesenstrasse 14, 35390 Giessen, Germany
- Faculty of Biology and Chemistry, Justus-Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Udo Bakowsky
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany
| |
Collapse
|
9
|
Vesicular and Planar Membranes of Archaea Lipids: Unusual Physical Properties and Biomedical Applications. Int J Mol Sci 2022; 23:ijms23147616. [PMID: 35886964 PMCID: PMC9319432 DOI: 10.3390/ijms23147616] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/27/2022] [Accepted: 06/27/2022] [Indexed: 12/12/2022] Open
Abstract
Liposomes and planar membranes made of archaea or archaea-like lipids exhibit many unusual physical properties compared to model membranes composed of conventional diester lipids. Here, we review several recent findings in this research area, which include (1) thermosensitive archaeosomes with the capability to drastically change the membrane surface charge, (2) MthK channel's capability to insert into tightly packed tetraether black lipid membranes and exhibit channel activity with surprisingly high calcium sensitivity, and (3) the intercalation of apolar squalane into the midplane space of diether bilayers to impede proton permeation. We also review the usage of tetraether archaeosomes as nanocarriers of therapeutics and vaccine adjuvants, as well as the biomedical applications of planar archaea lipid membranes. The discussion on archaeosomal therapeutics is focused on partially purified tetraether lipid fractions such as the polar lipid fraction E (PLFE) and glyceryl caldityl tetraether (GCTE), which are the main components of PLFE with the sugar and phosphate removed.
Collapse
|
10
|
Yang Y, Lee C, Reddy RR, Huang DJ, Zhong W, Nguyen-Tran VTB, Shen W, Lin Q. Design of Potent and Proteolytically Stable Biaryl-Stapled GLP-1R/GIPR Peptide Dual Agonists. ACS Chem Biol 2022; 17:1249-1258. [PMID: 35417146 DOI: 10.1021/acschembio.2c00175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recent clinical trials have revealed that the chimeric peptide hormones simultaneously activating glucagon-like peptide-1 receptor (GLP-1R) and glucose-dependent insulinotropic polypeptide receptor (GIPR) demonstrate superior efficacy in glycemic control and body weight reduction, better than those activating the GLP-1R alone. However, the linear peptide-based GLP-1R/GIPR dual agonists are susceptible to proteolytic cleavage by common digestive enzymes present in the gastrointestinal tract and thus not suitable for oral administration. Here, we report the design and synthesis of biaryl-stapled peptides, with and without fatty diacid attachment, that showed potent GLP-1R/GIPR dual agonist activities. Compared to a linear peptide dual agonist and semaglutide, the biaryl-stapled peptides displayed drastically improved proteolytic stability against the common digestive enzymes. Furthermore, two stapled peptides showed excellent efficacy in an oral glucose tolerance test in mice, owing to their potent receptor activity in vitro and good pharmacokinetics exposure upon subcutaneous injection. By exploring a more comprehensive set of biaryl staplers, we expect that this stapling method could facilitate the design of the stapled peptide-based dual agonists suitable for oral administration.
Collapse
Affiliation(s)
- Yifang Yang
- Department of Chemistry, State University of New York at Buffalo, Buffalo, New York 14260, United States
- Transira Therapeutics, Baird Research Park, 1576 Sweet Home Road, Amherst, Buffalo, New York 14228, United States
| | - Candy Lee
- Department of Biology, Calibr at Scripps Research, 11119 North Torrey Pines Road, La Jolla, San Diego, California 92037, United States
| | - Reddy Rajasekhar Reddy
- Department of Chemistry, State University of New York at Buffalo, Buffalo, New York 14260, United States
| | - David J. Huang
- Department of Biology, Calibr at Scripps Research, 11119 North Torrey Pines Road, La Jolla, San Diego, California 92037, United States
| | - Weixia Zhong
- Department of Biology, Calibr at Scripps Research, 11119 North Torrey Pines Road, La Jolla, San Diego, California 92037, United States
| | - Vân T. B. Nguyen-Tran
- Department of Biology, Calibr at Scripps Research, 11119 North Torrey Pines Road, La Jolla, San Diego, California 92037, United States
| | - Weijun Shen
- Department of Biology, Calibr at Scripps Research, 11119 North Torrey Pines Road, La Jolla, San Diego, California 92037, United States
| | - Qing Lin
- Department of Chemistry, State University of New York at Buffalo, Buffalo, New York 14260, United States
- Transira Therapeutics, Baird Research Park, 1576 Sweet Home Road, Amherst, Buffalo, New York 14228, United States
| |
Collapse
|
11
|
Moghimipour E, Abedishirehjin S, Baghbadorani MA, Handali S. Bacteria and Archaea: A new era of cancer therapy. J Control Release 2021; 338:1-7. [PMID: 34391833 DOI: 10.1016/j.jconrel.2021.08.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/07/2021] [Accepted: 08/10/2021] [Indexed: 01/20/2023]
Abstract
Cancer is one of the most important mortality in the world. The major drawbacks of chemotherapy are the poor absorption of drugs into tumor tissues and development of resistance against anti-cancer agents. To overcome these limitations, the use of microorganisms has been extensively considered in the treatment of cancer. Microorganisms (bacteria/Archaea) secrete different bioactive compounds that can efficiently inhibit cancer cells growth. Biological nanocarriers derived from microorganisms including outer membrane vesicles (OMVs), bacterial ghosts (BGs) and archaeosomes have also been considered as drug delivery systems. Conjugation of drug loaded nanocarriers to bacteria strongly kills the cancer cells after internalization through the bacteria. Merging of microbiology and nanotechnology may provide versatile microbial nano-hybrids for promising treatment of cancer. This strategy causes more amount of drug to enter into cancer cells. In this review, we present evidence that microorganism, their derivatives as well as their intervention with nanotechnology can be a powerful vehicle for eradication cancer.
Collapse
Affiliation(s)
- Eskandar Moghimipour
- Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Samaneh Abedishirehjin
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Somayeh Handali
- Medical Biomaterial Research Center (MBRC), Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Mühlberg E, Burtscher M, Umstätter F, Fricker G, Mier W, Uhl P. Trends in liposomal nanocarrier strategies for the oral delivery of biologics. Nanomedicine (Lond) 2021; 16:1813-1832. [PMID: 34269068 DOI: 10.2217/nnm-2021-0177] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The number of approved macromolecular drugs such as peptides, proteins and antibodies steadily increases. Since drugs with high molecular weight are commonly not suitable for oral delivery, research on carrier strategies enabling oral administration is of vital interest. In past decades, nanocarriers, in particular liposomes, have been exhaustively investigated as oral drug-delivery platform. Despite their successful application as parenteral delivery vehicles, liposomes have up to date not succeeded for oral administration. However, a plenitude of approaches aiming to increase the oral bioavailability of macromolecular drugs administered by liposomal formulations has been published. Here, we summarize the strategies published in the last 10 years (vaccine strategies excluded) with a main focus on strategies proven efficient in animal models.
Collapse
Affiliation(s)
- Eric Mühlberg
- Department of Nuclear Medicine, Heidelberg University Hospital, Im Neuenheimer Feld 400, Heidelberg, 69120, Germany
| | - Mira Burtscher
- Department of Nuclear Medicine, Heidelberg University Hospital, Im Neuenheimer Feld 400, Heidelberg, 69120, Germany
| | - Florian Umstätter
- Department of Nuclear Medicine, Heidelberg University Hospital, Im Neuenheimer Feld 400, Heidelberg, 69120, Germany
| | - Gert Fricker
- Department of Pharmaceutical Technology & Biopharmacy, Institute for Pharmacy & Molecular Biotechnology, Ruprecht-Karls University, Im Neuenheimer Feld 329, Heidelberg, 69120, Germany
| | - Walter Mier
- Department of Nuclear Medicine, Heidelberg University Hospital, Im Neuenheimer Feld 400, Heidelberg, 69120, Germany
| | - Philipp Uhl
- Department of Nuclear Medicine, Heidelberg University Hospital, Im Neuenheimer Feld 400, Heidelberg, 69120, Germany
| |
Collapse
|
13
|
Poudwal S, Misra A, Shende P. Role of lipid nanocarriers for enhancing oral absorption and bioavailability of insulin and GLP-1 receptor agonists. J Drug Target 2021; 29:834-847. [PMID: 33620269 DOI: 10.1080/1061186x.2021.1894434] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Growing demand for insulin and glucagon-like peptide-1 receptor agonists (GLP-1 RA) is observed, considering the progressive nature of diabetes and the potential therapeutic role of peptides in its treatment. However, chronic parenteral administration is responsible for pain and rashes at the site of injection. Oral delivery of insulin and GLP-1 RA promises better patient compliance owing to their ease of administration and reduction in chances of peripheral hypoglycaemia and weight gain. The review article discusses the potential of lipid carriers in combination with different strategies such as absorption enhancers, PEGylation, lipidisation, etc. The lipid nanocarriers improve the membrane permeability and oral bioavailability of high molecular weight peptides. Additionally, the clinical status of different nanocarriers for anti-diabetic peptides is discussed. Previous research on nanocarriers showed significant hypoglycaemic activity and safety in animal studies; however, extrapolation of the same in human subjects is not validated. With the rising global burden of diabetes, the lipid nanocarriers show the potential to revolutionise treatment with oral delivery of insulin and GLP-1 RA.
Collapse
Affiliation(s)
- Swapna Poudwal
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Mumbai, India
| | - Ambikanandan Misra
- School of Pharmacy and Technology Management, SVKM'S NMIMS, Dhule, India
| | - Pravin Shende
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Mumbai, India
| |
Collapse
|
14
|
Ahmad R, Srivastava S, Ghosh S, Khare SK. Phytochemical delivery through nanocarriers: a review. Colloids Surf B Biointerfaces 2021; 197:111389. [PMID: 33075659 DOI: 10.1016/j.colsurfb.2020.111389] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 07/17/2020] [Accepted: 09/24/2020] [Indexed: 01/18/2023]
Abstract
In recent times, phytochemicals encapsulated or conjugated with nanocarriers for delivery to the specific sites have gained considerable research interest. Phytochemicals are mostly plant secondary metabolites which reported to be beneficial for human health and in disease theraphy. However, these compound are large size and polar nature of these compounds, make it difficult to cross the blood-brain barrier (BBB), endothelial lining of blood vessels, gastrointestinal tract and mucosa. Moreover, they are enzymatically degraded in the gastrointestinal tract. Therefore, encapsulation or conjugation of these compounds with nanocrriers could be an alternate way to enhance their bioefficacy by influencing their gastrointestinal stability, rate of absorption and dispersion. This review presents an overview of nanocarriers alternatives which improves therapeutic value and avoid toxicity, by releasing bioactive compounds specifically at target tissues with enhanced stability and bioavailability. Future investigations may emphasize on deciphering the structural changes in nanocarriers during digestion and absorption, the difference between in-vitro and in-vivo digestion simulations, and impact of nanocarriers on the metabolism of phytochemicals.
Collapse
Affiliation(s)
- Razi Ahmad
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Sukriti Srivastava
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Shubhrima Ghosh
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Sunil Kumar Khare
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
15
|
Pfeifer K, Ergal İ, Koller M, Basen M, Schuster B, Rittmann SKMR. Archaea Biotechnology. Biotechnol Adv 2020; 47:107668. [PMID: 33271237 DOI: 10.1016/j.biotechadv.2020.107668] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 12/13/2022]
Abstract
Archaea are a domain of prokaryotic organisms with intriguing physiological characteristics and ecological importance. In Microbial Biotechnology, archaea are historically overshadowed by bacteria and eukaryotes in terms of public awareness, industrial application, and scientific studies, although their biochemical and physiological properties show a vast potential for a wide range of biotechnological applications. Today, the majority of microbial cell factories utilized for the production of value-added and high value compounds on an industrial scale are bacterial, fungal or algae based. Nevertheless, archaea are becoming ever more relevant for biotechnology as their cultivation and genetic systems improve. Some of the main advantages of archaeal cell factories are the ability to cultivate many of these often extremophilic organisms under non-sterile conditions, and to utilize inexpensive feedstocks often toxic to other microorganisms, thus drastically reducing cultivation costs. Currently, the only commercially available products of archaeal cell factories are bacterioruberin, squalene, bacteriorhodopsin and diether-/tetraether-lipids, all of which are produced utilizing halophiles. Other archaeal products, such as carotenoids and biohydrogen, as well as polyhydroxyalkanoates and methane are in early to advanced development stages, respectively. The aim of this review is to provide an overview of the current state of Archaea Biotechnology by describing the actual state of research and development as well as the industrial utilization of archaeal cell factories, their role and their potential in the future of sustainable bioprocessing, and to illustrate their physiological and biotechnological potential.
Collapse
Affiliation(s)
- Kevin Pfeifer
- Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, Universität Wien, Wien, Austria; Institute of Synthetic Bioarchitectures, Department of Nanobiotechnology, University of Natural Resources and Life Sciences, Wien, Austria
| | - İpek Ergal
- Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, Universität Wien, Wien, Austria
| | - Martin Koller
- Office of Research Management and Service, c/o Institute of Chemistry, University of Graz, Austria
| | - Mirko Basen
- Microbial Physiology Group, Division of Microbiology, Institute of Biological Sciences, University of Rostock, Rostock, Germany
| | - Bernhard Schuster
- Institute of Synthetic Bioarchitectures, Department of Nanobiotechnology, University of Natural Resources and Life Sciences, Wien, Austria
| | - Simon K-M R Rittmann
- Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, Universität Wien, Wien, Austria.
| |
Collapse
|
16
|
Ayesa U, Chong PLG. Polar Lipid Fraction E from Sulfolobus acidocaldarius and Dipalmitoylphosphatidylcholine Can Form Stable yet Thermo-Sensitive Tetraether/Diester Hybrid Archaeosomes with Controlled Release Capability. Int J Mol Sci 2020; 21:ijms21218388. [PMID: 33182284 PMCID: PMC7664881 DOI: 10.3390/ijms21218388] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/31/2020] [Accepted: 11/04/2020] [Indexed: 12/29/2022] Open
Abstract
Archaeosomes have drawn increasing attention in recent years as novel nano-carriers for therapeutics. The main obstacle of using archaeosomes for therapeutics delivery has been the lack of an efficient method to trigger the release of entrapped content from the otherwise extremely stable structure. Our present study tackles this long-standing problem. We made hybrid archaeosomes composed of tetraether lipids, called the polar lipid fraction E (PLFE) isolated from the thermoacidophilic archaeon Sulfolobus acidocaldarius, and the synthetic diester lipid dipalmitoylphosphatidylcholine (DPPC). Differential polarized phase-modulation and steady-state fluorometry, confocal fluorescence microscopy, zeta potential (ZP) measurements, and biochemical assays were employed to characterize the physical properties and drug behaviors in PLFE/DPPC hybrid archaeosomes in the presence and absence of live cells. We found that PLFE lipids have an ordering effect on fluid DPPC liposomal membranes, which can slow down the release of entrapped drugs, while PLFE provides high negative charges on the outer surface of liposomes, which can increase vesicle stability against coalescence among liposomes or with cells. Furthermore, we found that the zeta potential in hybrid archaeosomes with 30 mol% PLFE and 70 mol% DPPC (designated as PLFE/DPPC(3:7) archaeosomes) undergoes an abrupt increase from −48 mV at 37 °C to −16 mV at 44 °C (termed the ZP transition), which we hypothesize results from DPPC domain melting and PLFE lipid ‘flip-flop’. The anticancer drug doxorubicin (DXO) can be readily incorporated into PLFE/DPPC(3:7) archaeosomes. The rate constant of DXO release from PLFE/DPPC(3:7) archaeosomes into Tris buffer exhibited a sharp increase (~2.5 times), when the temperature was raised from 37 to 42 °C, which is believed to result from the liposomal structural changes associated with the ZP transition. This thermo-induced sharp increase in drug release was not affected by serum proteins as a similar temperature dependence of drug release kinetics was observed in human blood serum. A 15-min pre-incubation of PLFE/DPPC(3:7) archaeosomal DXO with MCF-7 breast cancer cells at 42 °C caused a significant increase in the amount of DXO entering into the nuclei and a considerable increase in the cell’s cytotoxicity under the 37 °C growth temperature. Taken together, our data suggests that PLFE/DPPC(3:7) archaeosomes are stable yet potentially useful thermo-sensitive liposomes wherein the temperature range (from 37 to 42–44 °C) clinically used for mild hyperthermia treatment of tumors can be used to trigger drug release for medical interventions.
Collapse
|
17
|
The Cell Membrane of Sulfolobus spp.-Homeoviscous Adaption and Biotechnological Applications. Int J Mol Sci 2020; 21:ijms21113935. [PMID: 32486295 PMCID: PMC7312580 DOI: 10.3390/ijms21113935] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 12/20/2022] Open
Abstract
The microbial cell membrane is affected by physicochemical parameters, such as temperature and pH, but also by the specific growth rate of the host organism. Homeoviscous adaption describes the process of maintaining membrane fluidity and permeability throughout these environmental changes. Archaea, and thereby, Sulfolobus spp. exhibit a unique lipid composition of ether lipids, which are altered in regard to the ratio of diether to tetraether lipids, number of cyclopentane rings and type of head groups, as a coping mechanism against environmental changes. The main biotechnological application of the membrane lipids of Sulfolobus spp. are so called archaeosomes. Archaeosomes are liposomes which are fully or partly generated from archaeal lipids and harbor the potential to be used as drug delivery systems for vaccines, proteins, peptides and nucleic acids. This review summarizes the influence of environmental parameters on the cell membrane of Sulfolobus spp. and the biotechnological applications of their membrane lipids.
Collapse
|
18
|
Zhang J, Ye CZ, Liu ZY, Yang Q, Ye Y. Preparation And Antibacterial Effects Of Carboxymethyl Chitosan-Modified Photo-Responsive Camellia Sapogenin Derivative Cationic Liposomes. Int J Nanomedicine 2019; 14:8611-8626. [PMID: 31802873 PMCID: PMC6830381 DOI: 10.2147/ijn.s218101] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 10/04/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Bacterial resistance to antibiotics is a persistent and intractable problem. The sapogenin isolated from the seeds of Camellia oleifera can inhibit antibiotic-resistant bacteria after structural modification. PURPOSE This study aims to improve sapogenin's antibacterial activity and avoid bacterial resistance based on nano-preparation with photo responsiveness. METHODS The liposome shell material of carboxymethyl chitosan-phosphatidyl ethanolamine (CMC-PE) was prepared using amidation reaction, and photo-responsive cationic (PCC) liposomes containing Camellia sapogenin derivative (CSD) and photosensitizer pheophorbide-a were prepared by film dispersion method. Encapsulation efficiency, drug loading, zeta potential, particle size distribution, morphology and stability of the PCC liposomes were determined by HPLC, particle size analyzer, transmission electron microscopy (TEM) and fluorescence microscopy. Photo-responsive release of CSD in the PCC liposomes was determined by laser (0.5 mW/cm2) at 665 nm. Antibacterial activity of the PCC liposomes with or without irradiation was analyzed by MIC50, MBC, MBIC50, and bacterial morphology to evaluate the antibacterial effects on amoxicillin resistant Escherichia coli and Staphylococcus aureus. RESULTS Size distribution, zeta potential, encapsulation efficiency and drug loading of the PCC liposomes were 189.23 ± 2.12 nm, 18.80 ± 1.57 mV, 83.52 ± 1.53% and 2.83 ± 0.05%, respectively. The PCC liposomes had higher storage stability and gastrointestinal stability, and no obvious hemolytic toxicity to rabbit red blood cells and no cytotoxicity after incubation with Hela cells. The photosensitizer pheophorbide-a was uniformly dispersed in the phospholipid layer of the PCC liposomes and increased the CSD release after irradiation. The PCC liposomes could bind to bacteria and impaired their morphology and structure, and had significant bactericidal effect on amoxicillin resistant E. coli and S. aureus. CONCLUSION The photo-responsive PCC liposomes are efficient antibacterial agents for avoidance of bacterial resistance against antibiotics.
Collapse
Affiliation(s)
- Jin Zhang
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou510640, People’s Republic of China
| | - Chuan-Zhen Ye
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou510640, People’s Republic of China
| | - Ze-Yu Liu
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou510640, People’s Republic of China
| | - Qian Yang
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou510640, People’s Republic of China
| | - Yong Ye
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou510640, People’s Republic of China
| |
Collapse
|
19
|
Patil S, Narvekar A, Puranik A, Jain R, Dandekar P. Formulation of Therapeutic Proteins: Strategies for Developing Oral Protein Formulations. ACTA ACUST UNITED AC 2019. [DOI: 10.1002/9783527812172.ch12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
20
|
Bajracharya R, Song JG, Back SY, Han HK. Recent Advancements in Non-Invasive Formulations for Protein Drug Delivery. Comput Struct Biotechnol J 2019; 17:1290-1308. [PMID: 31921395 PMCID: PMC6944732 DOI: 10.1016/j.csbj.2019.09.004] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 09/04/2019] [Accepted: 09/07/2019] [Indexed: 01/14/2023] Open
Abstract
Advancements in biotechnology and protein engineering expand the availability of various therapeutic proteins including vaccines, antibodies, hormones, and growth factors. In addition, protein drugs hold many therapeutic advantages over small synthetic drugs in terms of high specificity and activity. This has led to further R&D investment in protein-based drug products and an increased number of drug approvals for therapeutic proteins. However, there are many biological and biopharmaceutical obstacles inherent to protein drugs including physicochemical and enzymatic destabilization, which limit their development and clinical application. Therefore, effective formulations of therapeutic proteins are needed to overcome the various physicochemical and biological barriers. In current medical practice, protein drugs are predominantly available in injectable formulations, which have disadvantages including pain, the possibility of infection, high cost, and low patient compliance. Consequently, non-invasive drug delivery systems for therapeutic proteins have gained great attention in the research and development of biomedicines. Therefore, this review covers the various formulation approaches to optimizing the delivery properties of protein drugs with an emphasis on improving bioavailability and patient compliance. It provides a comprehensive update on recent advancements in nanotechnologies with regard to non-invasive protein drug delivery systems, which is also categorized by the route of administrations including oral, nasal, transdermal, pulmonary, ocular, and rectal delivery systems.
Collapse
|
21
|
Vishwakarma N, Jain A, Sharma R, Mody N, Vyas S, Vyas SP. Lipid-Based Nanocarriers for Lymphatic Transportation. AAPS PharmSciTech 2019; 20:83. [PMID: 30673895 DOI: 10.1208/s12249-019-1293-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 12/26/2018] [Indexed: 11/30/2022] Open
Abstract
The effectiveness of any drug is dependent on to various factors like drug solubility, bioavailability, selection of appropriate delivery system, and proper route of administration. The oral route for the delivery of drugs is undoubtedly the most convenient, safest and has been widely used from past few decades for the effective delivery of drugs. However, despite of the numerous advantages that oral route offers, it often suffers certain limitations like low bioavailability due to poor water solubility as well as poor permeability of drugs, degradation of the drug in the physiological pH of the stomach, hepatic first-pass metabolism, etc. The researchers have been continuously working extensively to surmount and address appropriately the inherent drawbacks of the oral drug delivery. The constant and continuous efforts have led to the development of lipid-based nano drug delivery system to overcome the aforesaid associated challenges of the oral delivery through lymphatic transportation. The use of lymphatic route has demonstrated its critical and crucial role in overcoming the problem associated and related to low bioavailability of poorly water-soluble and poorly permeable drugs by bypassing intestinal absorption and possible first-pass metabolism. The current review summarizes the bonafide perks of using the lipid-based nanocarriers for the delivery of drugs using the lymphatic route. The lipid-based nanocarriers seem to be a promising delivery system which can be optimized and further explored as an alternative to the conventional dosage forms for the enhancement of oral bioavailability of drugs, with better patient compliance, minimum side effect, and improved the overall quality of life.
Collapse
|
22
|
Straub CT, Counts JA, Nguyen DMN, Wu CH, Zeldes BM, Crosby JR, Conway JM, Otten JK, Lipscomb GL, Schut GJ, Adams MWW, Kelly RM. Biotechnology of extremely thermophilic archaea. FEMS Microbiol Rev 2018; 42:543-578. [PMID: 29945179 DOI: 10.1093/femsre/fuy012] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 06/23/2018] [Indexed: 12/26/2022] Open
Abstract
Although the extremely thermophilic archaea (Topt ≥ 70°C) may be the most primitive extant forms of life, they have been studied to a limited extent relative to mesophilic microorganisms. Many of these organisms have unique biochemical and physiological characteristics with important biotechnological implications. These include methanogens that generate methane, fermentative anaerobes that produce hydrogen gas with high efficiency, and acidophiles that can mobilize base, precious and strategic metals from mineral ores. Extremely thermophilic archaea have also been a valuable source of thermoactive, thermostable biocatalysts, but their use as cellular systems has been limited because of the general lack of facile genetics tools. This situation has changed recently, however, thereby providing an important avenue for understanding their metabolic and physiological details and also opening up opportunities for metabolic engineering efforts. Along these lines, extremely thermophilic archaea have recently been engineered to produce a variety of alcohols and industrial chemicals, in some cases incorporating CO2 into the final product. There are barriers and challenges to these organisms reaching their full potential as industrial microorganisms but, if these can be overcome, a new dimension for biotechnology will be forthcoming that strategically exploits biology at high temperatures.
Collapse
Affiliation(s)
- Christopher T Straub
- Department of Chemical and Biomolecular Engineering North Carolina State University, Raleigh, NC 27695-7905, USA
| | - James A Counts
- Department of Chemical and Biomolecular Engineering North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Diep M N Nguyen
- Department of Biochemistry and Molecular Biology University of Georgia, Athens, GA 30602, USA
| | - Chang-Hao Wu
- Department of Biochemistry and Molecular Biology University of Georgia, Athens, GA 30602, USA
| | - Benjamin M Zeldes
- Department of Chemical and Biomolecular Engineering North Carolina State University, Raleigh, NC 27695-7905, USA
| | - James R Crosby
- Department of Chemical and Biomolecular Engineering North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Jonathan M Conway
- Department of Chemical and Biomolecular Engineering North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Jonathan K Otten
- Department of Chemical and Biomolecular Engineering North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Gina L Lipscomb
- Department of Biochemistry and Molecular Biology University of Georgia, Athens, GA 30602, USA
| | - Gerrit J Schut
- Department of Biochemistry and Molecular Biology University of Georgia, Athens, GA 30602, USA
| | - Michael W W Adams
- Department of Biochemistry and Molecular Biology University of Georgia, Athens, GA 30602, USA
| | - Robert M Kelly
- Department of Chemical and Biomolecular Engineering North Carolina State University, Raleigh, NC 27695-7905, USA
| |
Collapse
|
23
|
Wong CY, Al-Salami H, Dass CR. Recent advancements in oral administration of insulin-loaded liposomal drug delivery systems for diabetes mellitus. Int J Pharm 2018; 549:201-217. [DOI: 10.1016/j.ijpharm.2018.07.041] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 07/14/2018] [Accepted: 07/18/2018] [Indexed: 11/30/2022]
|
24
|
Harloff-Helleberg S, Nielsen LH, Nielsen HM. Animal models for evaluation of oral delivery of biopharmaceuticals. J Control Release 2017; 268:57-71. [DOI: 10.1016/j.jconrel.2017.09.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 09/06/2017] [Accepted: 09/15/2017] [Indexed: 12/20/2022]
|
25
|
Santalices I, Gonella A, Torres D, Alonso MJ. Advances on the formulation of proteins using nanotechnologies. J Drug Deliv Sci Technol 2017. [DOI: 10.1016/j.jddst.2017.06.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
26
|
Liu C, Kou Y, Zhang X, Cheng H, Chen X, Mao S. Strategies and industrial perspectives to improve oral absorption of biological macromolecules. Expert Opin Drug Deliv 2017; 15:223-233. [DOI: 10.1080/17425247.2017.1395853] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Chang Liu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Yongqiang Kou
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Xin Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Hongbo Cheng
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Xianzhi Chen
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Shirui Mao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
27
|
Attar A, Bakir C, Yuce-Dursun B, Demir S, Cakmakci E, Danis O, Birbir M, Ogan A. Preparation, characterization, and in vitro evaluation of isoniazid and rifampicin-loaded archaeosomes. Chem Biol Drug Des 2017; 91:153-161. [DOI: 10.1111/cbdd.13066] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 05/08/2017] [Accepted: 06/10/2017] [Indexed: 11/29/2022]
Affiliation(s)
- Azade Attar
- Department of Bioengineering; Faculty of Chemical and Metallurgical Engineering; Yildiz Technical University; Istanbul Turkey
| | - Ceren Bakir
- Department of Chemistry; Faculty of Arts and Sciences; Marmara University; Istanbul Turkey
| | - Basak Yuce-Dursun
- Department of Chemistry; Faculty of Arts and Sciences; Marmara University; Istanbul Turkey
| | - Serap Demir
- Department of Chemistry; Faculty of Arts and Sciences; Marmara University; Istanbul Turkey
| | - Emrah Cakmakci
- Department of Chemistry; Faculty of Arts and Sciences; Marmara University; Istanbul Turkey
| | - Ozkan Danis
- Department of Chemistry; Faculty of Arts and Sciences; Marmara University; Istanbul Turkey
| | - Meral Birbir
- Department of Biology; Faculty of Arts and Sciences; Marmara University; Istanbul Turkey
| | - Ayse Ogan
- Department of Chemistry; Faculty of Arts and Sciences; Marmara University; Istanbul Turkey
| |
Collapse
|
28
|
Zupančič O, Bernkop-Schnürch A. Lipophilic peptide character – What oral barriers fear the most. J Control Release 2017; 255:242-257. [DOI: 10.1016/j.jconrel.2017.04.038] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 04/21/2017] [Accepted: 04/25/2017] [Indexed: 10/19/2022]
|
29
|
Transfection Studies with Colloidal Systems Containing Highly Purified Bipolar Tetraether Lipids from Sulfolobus acidocaldarius. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2017; 2017:8047149. [PMID: 28239294 PMCID: PMC5292391 DOI: 10.1155/2017/8047149] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 12/04/2016] [Accepted: 12/22/2016] [Indexed: 11/18/2022]
Abstract
Lipid vectors are commonly used to facilitate the transfer of nucleic acids into mammalian cells. In this study, two fractions of tetraether lipids from the archaea Sulfolobus acidocaldarius were extracted and purified using different methods. The purified lipid fractions polar lipid fraction E (PLFE) and hydrolysed glycerol-dialkyl-nonitol tetraether (hGDNT) differ in their structures, charge, size, and miscibility from conventional lipids. Liposomes were prepared by mixing tetraether lipids with cholesterol (CH) and 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) resulting in stable vectors for gene delivery. Lipoplexes were prepared by complexation of liposomes with a luciferase expressing plasmid (pCMV-luc) at certain nitrogen-to-phosphorus (N/P) ratios and optimised for the transient transfection of ovarian adenocarcinoma cells (SK-OV-3). Complexation efficacy was investigated by gel-red fluorescence assay. Biophysical properties, like size, surface charge, and morphology, were investigated by differential light scattering (DLS), atomic force microscopy (AFM), and scanning electron microscopy (Cryo-SEM), respectively, revealing structural differences between liposomes and lipoplexes. A range of stable transfecting agents containing tetraether lipids were obtained by incorporating 5 mol% of tetraether lipids. Lipoplexes showed a decrease in free gel-red with increasing N/P ratios indicating efficient incorporation of plasmid DNA (pDNA) and remarkable stability. Transfection experiments of the lipoplexes revealed successful and superior transfection of SK-OV-3 cell line compared to the commercially available DOTAP and branched polyethyleneimine (25 kDa bPEI).
Collapse
|
30
|
Jacobsen AC, Jensen SM, Fricker G, Brandl M, Treusch AH. Archaeal lipids in oral delivery of therapeutic peptides. Eur J Pharm Sci 2017; 108:101-110. [PMID: 28108360 DOI: 10.1016/j.ejps.2016.12.036] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/01/2016] [Accepted: 12/30/2016] [Indexed: 02/05/2023]
Abstract
Archaea contain membrane lipids that differ from those found in the other domains of life (Eukarya and Bacteria). These lipids consist of isoprenoid chains attached via ether bonds to the glycerol carbons at the sn-2,3 positions. Two types of ether lipids are known, polar diether lipids and bipolar tetraether lipids. The inherent chemical stability and unique membrane-spanning characteristics of tetraether lipids render them interesting for oral drug delivery purposes. Archaeal lipids form liposomes spontaneously (archaeosomes) and may be incorporated in conventional liposomes (mixed vesicles). Both types of liposomes are promising to protect their drug cargo, such as therapeutic peptides, against the acidic environment of the stomach and proteolytic degradation in the intestine. They appear to withstand lipolytic enzymes and bile salts and may thus deliver orally administered therapeutic peptides to distant sections of the intestine or to the colon, where they may be absorbed, eventually by the help of absorption enhancers. Archaeal lipids and their semisynthetic derivatives may thus serve as biological source for the next generation oral drug delivery systems. The aim of this review is to present a systematic overview over existing literature on archaea carrying diether and tetraether lipids, lipid diversity, means of lipid extraction and purification, preparation and in vitro stability studies of archaeal lipid-based liposomal drug carriers and in vivo proof-of concepts studies.
Collapse
Affiliation(s)
- Ann-Christin Jacobsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense DK-5230, Denmark
| | - Sara M Jensen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense DK-5230, Denmark; Department of Biology and Nordic Center for Earth Evolution, University of Southern Denmark, Odense DK-5230, Denmark
| | - Gert Fricker
- Department of Pharmaceutical Technology, Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, Heidelberg D-69120, Germany
| | - Martin Brandl
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense DK-5230, Denmark.
| | - Alexander H Treusch
- Department of Biology and Nordic Center for Earth Evolution, University of Southern Denmark, Odense DK-5230, Denmark
| |
Collapse
|
31
|
P. Sugár I, Lee-Gau Chong P. Monte Carlo simulations of the distributions of intra- and extra-vesicular ions and membrane associated charges in hybrid liposomes composed of negatively charged tetraether and zwitterionic diester phospholipids. AIMS BIOPHYSICS 2017. [DOI: 10.3934/biophy.2017.2.316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
32
|
Abstract
Macromolecules (proteins/peptides) have the potential for the development of new therapeutics. Due to their specific mechanism of action, macromolecules can be administered at relatively low doses compared with small-molecule drugs. Unfortunately, the therapeutic potential and clinical application of macromolecules is hampered by various obstacles including their large size, short in vivo half-life, phagocytic clearance, poor membrane permeability and structural instability. These challenges have encouraged researchers to develop novel strategies for effective delivery of macromolecules. In this review, various routes of macromolecule administration (invasive/noninvasive) are discussed. The advantages/limitations of novel delivery systems and the potential role of nanotechnology for the delivery of macromolecules are elaborated. In addition, fabrication approaches to make nanoformulations in different shapes and sizes are also summarized.
Collapse
|
33
|
Lipid-based nanocarriers for oral peptide delivery. Adv Drug Deliv Rev 2016; 106:337-354. [PMID: 27080735 DOI: 10.1016/j.addr.2016.04.001] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 03/30/2016] [Accepted: 04/03/2016] [Indexed: 12/23/2022]
Abstract
This article is aimed to overview the lipid-based nanostructures designed so far for the oral administration of peptides and proteins, and to analyze the influence of their composition and physicochemical (particle size, zeta potential) and pharmaceutical (drug loading and release) properties, on their interaction with the gastro-intestinal environment, and the subsequent PK/PD profile of the associated drugs. The ultimate goal has been to highlight and comparatively analyze the key factors that may be determinant of the success of these nanocarriers for oral peptide delivery. The article ends with some prospects on the challenges to be addressed for the intended commercial success of these delivery vehicles.
Collapse
|
34
|
Abstract
Oral insulin able to induce an efficient antihyperglycemic effect either to replace or complement diabetes mellitus therapy is the major goal of health providers, governments and diabetic patients. Oral therapy is associated not only with the desire to exclude needles from the daily routine of diabetic patient but also with the physiological provision of insulin they would get. Despite numerous efforts over the past few decades to develop insulin delivery systems, there is still no commercially available oral insulin. The reasons why the formulations developed to administer insulin orally fail to reach clinical trials are critically discussed in this review. The principal features of nanoformulations used so far are also addressed as well as the undergoing clinical trials.
Collapse
|
35
|
Kaur G, Garg T, Rath G, Goyal AK. Archaeosomes: an excellent carrier for drug and cell delivery. Drug Deliv 2015; 23:2497-2512. [DOI: 10.3109/10717544.2015.1019653] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Gurmeet Kaur
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India
| | - Tarun Garg
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India
| | - Goutam Rath
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India
| | - Amit K. Goyal
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India
| |
Collapse
|
36
|
Attar A, Ogan A, Yucel S, Turan K. The potential of archaeosomes as carriers of pDNA into mammalian cells. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2015; 44:710-6. [DOI: 10.3109/21691401.2014.982800] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
37
|
Parmentier J, Hofhaus G, Thomas S, Cuesta LC, Gropp F, Schröder R, Hartmann K, Fricker G. Improved Oral Bioavailability of Human Growth Hormone by a Combination of Liposomes Containing Bio-Enhancers and Tetraether Lipids and Omeprazole. J Pharm Sci 2014; 103:3985-3993. [DOI: 10.1002/jps.24215] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 09/23/2014] [Accepted: 09/23/2014] [Indexed: 01/08/2023]
|
38
|
Sahu KK, Minz S, Kaurav M, Pandey RS. Proteins and peptides: The need to improve them as promising therapeutics for ulcerative colitis. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2014; 44:642-53. [PMID: 25379956 DOI: 10.3109/21691401.2014.975239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The present review briefly describes the nature, type and pathogenesis of ulcerative colitis, and explores the potential use of peptides and proteins in the treatment of inflammatory bowel disease, especially ulcerative colitis. Intestinal absorption and the barrier mechanism of peptide and protein drugs are also discussed, with special emphasis on various strategies which make these drugs better therapeutics having high specificity, potency and molecular targeting ability. However, the limitation of such therapeutics are oral administration, poor pharmacokinetic profile and decreased bioavailability. The recent findings illustrated in this review will be helpful in designing the peptide/protein drugs as a promising treatment of choice for ulcerative colitis.
Collapse
Affiliation(s)
- Kantrol Kumar Sahu
- a Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya , Bilaspur, C.G. , India
| | - Sunita Minz
- a Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya , Bilaspur, C.G. , India
| | - Monika Kaurav
- a Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya , Bilaspur, C.G. , India
| | - Ravi Shankar Pandey
- a Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya , Bilaspur, C.G. , India
| |
Collapse
|
39
|
A review of advanced oral drug delivery technologies facilitating the protection and absorption of protein and peptide molecules. Biotechnol Adv 2014; 32:1269-1282. [DOI: 10.1016/j.biotechadv.2014.07.006] [Citation(s) in RCA: 197] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 07/21/2014] [Accepted: 07/28/2014] [Indexed: 12/26/2022]
|
40
|
Yu J, Wei X, Zhang L, Fang X, Yang T, Huang F, Liang W. Poly(ethylene glycol)-mediated conformational alteration of α-chymotrypsin prevents inactivation of insulin by stabilizing active intermediates. Mol Pharm 2014; 11:3361-70. [PMID: 24720816 DOI: 10.1021/mp500001n] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Proteolytic enzymes in the gut represent one of the biggest barriers against oral delivery of therapeutic proteins and peptides. In the current study, we explored the effect of poly(ethylene glycol) 400 (PEG 400), a commonly used crowding agent, on insulin degradation mediated by α-chymotrypsin (α-CT). Without PEG 400, insulin was quickly cleaved by α-CT to generate inactive degradation products. In comparison, incorporation of PEG 400 resulted in reaction mixtures with retained biological activity. The analysis on the conformation of α-CT and the local environment of the enzyme's active site unraveled that PEG 400 altered the conformation of α-CT to prevent the inactivation of insulin via stabilization of active intermediates. These findings indicated that PEG 400 may provide a promising addition toward oral delivery of insulin.
Collapse
Affiliation(s)
- Jibing Yu
- Protein & Peptide Pharmaceutical Laboratory, Institute of Biophysics, Chinese Academy of Sciences , 15 Datun Road, Beijing 100101, China
| | | | | | | | | | | | | |
Collapse
|
41
|
Babaei M, Ardjmand M, Akbarzadeh A, Seyfkordi A. Efficacy comparison of nanoniosomal and pegylated nanoniosomal Cisplatin on A172 cell line. Tissue Eng Regen Med 2014. [DOI: 10.1007/s13770-014-0024-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
42
|
|
43
|
Gupta S, Jain A, Chakraborty M, Sahni JK, Ali J, Dang S. Oral delivery of therapeutic proteins and peptides: a review on recent developments. Drug Deliv 2013; 20:237-46. [DOI: 10.3109/10717544.2013.819611] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
44
|
Renukuntla J, Vadlapudi AD, Patel A, Boddu SHS, Mitra AK. Approaches for enhancing oral bioavailability of peptides and proteins. Int J Pharm 2013; 447:75-93. [PMID: 23428883 DOI: 10.1016/j.ijpharm.2013.02.030] [Citation(s) in RCA: 399] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 12/28/2012] [Accepted: 02/12/2013] [Indexed: 12/20/2022]
Abstract
Oral delivery of peptide and protein drugs faces immense challenge partially due to the gastrointestinal (GI) environment. In spite of considerable efforts by industrial and academic laboratories, no major breakthrough in the effective oral delivery of polypeptides and proteins has been accomplished. Upon oral administration, gastrointestinal epithelium acts as a physical and biochemical barrier for absorption of proteins resulting in low bioavailability (typically less than 1-2%). An ideal oral drug delivery system should be capable of (a) maintaining the integrity of protein molecules until it reaches the site of absorption, (b) releasing the drug at the target absorption site, where the delivery system appends to that site by virtue of specific interaction, and (c) retaining inside the gastrointestinal tract irrespective of its transitory constraints. Various technologies have been explored to overcome the problems associated with the oral delivery of macromolecules such as insulin, gonadotropin-releasing hormones, calcitonin, human growth factor, vaccines, enkephalins, and interferons, all of which met with limited success. This review article intends to summarize the physiological barriers to oral delivery of peptides and proteins and novel pharmaceutical approaches to circumvent these barriers and enhance oral bioavailability of these macromolecules.
Collapse
Affiliation(s)
- Jwala Renukuntla
- Division of Pharmaceutical Sciences, South College School of Pharmacy, 400 Goody's Lane, Knoxville, TN 37931, USA
| | | | | | | | | |
Collapse
|
45
|
Alavi SE, Mansouri H, Esfahani MKM, Movahedi F, Akbarzadeh A, Chiani M. Archaeosome: as new drug carrier for delivery of Paclitaxel to breast cancer. Indian J Clin Biochem 2013; 29:150-3. [PMID: 24757295 DOI: 10.1007/s12291-013-0305-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 01/24/2013] [Indexed: 01/25/2023]
Abstract
In the present study, paclitaxel was archaeosomed to reduce side effects and improve its therapeutic index. Carriers have made a big evolution in treatment of many diseases in recent years. Lipid carriers are of special importance among carriers. Archaeosome is one of the lipid carriers. Paclitaxel is one of the drugs used to treat breast cancer which has some unwanted side effects despite its therapeutic effects. Archaeosomes were extracted from methanogenic archi bacteria and synthesized with a certain ratio of paclitaxel in PBS. The mean diameter of archaeosomal paclitaxel was measured by Zeta sizer instrument, Drug releasing of archaeosomal paclitaxel was examined within 26 h which results showed that the most drug releasing occurs during first 3 h. The cytotoxicity effect of archaeosomal paclitaxel on breast cancer's cell line was evaluated by MTT assay which results showed that the cytotoxicity effect of archaeosomal paclitaxel on breast cancer's cell line is more than that of the standard paclitaxel formulation. The results indicated that new drug delivery of paclitaxel using archaeosome, increases the therapeutic index of the drug.
Collapse
Affiliation(s)
- Seyed Ebrahim Alavi
- Department of Chemical Engineering, Lamerd Branch, Islamic Azad University, Lamerd, Iran ; Pilot Biotechnology Department, Pasteur Institute of Iran, No 358, 12 Farvardin Street, Jomhoori Avenue, 13169-43551 Tehran, Iran
| | - Hamidreza Mansouri
- Department of Chemical Engineering, Lamerd Branch, Islamic Azad University, Lamerd, Iran
| | - Maedeh Koohi Moftakhari Esfahani
- Department of Chemical Engineering, Lamerd Branch, Islamic Azad University, Lamerd, Iran ; Pilot Biotechnology Department, Pasteur Institute of Iran, No 358, 12 Farvardin Street, Jomhoori Avenue, 13169-43551 Tehran, Iran
| | - Fatemeh Movahedi
- Department of Chemical Engineering, Lamerd Branch, Islamic Azad University, Lamerd, Iran ; Pilot Biotechnology Department, Pasteur Institute of Iran, No 358, 12 Farvardin Street, Jomhoori Avenue, 13169-43551 Tehran, Iran
| | - Azim Akbarzadeh
- Pilot Biotechnology Department, Pasteur Institute of Iran, No 358, 12 Farvardin Street, Jomhoori Avenue, 13169-43551 Tehran, Iran
| | - Mohsen Chiani
- Pilot Biotechnology Department, Pasteur Institute of Iran, No 358, 12 Farvardin Street, Jomhoori Avenue, 13169-43551 Tehran, Iran
| |
Collapse
|
46
|
Li P, Nielsen HM, Müllertz A. Oral delivery of peptides and proteins using lipid-based drug delivery systems. Expert Opin Drug Deliv 2012; 9:1289-304. [PMID: 22897647 DOI: 10.1517/17425247.2012.717068] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION In order to successfully develop lipid-based drug delivery systems (DDS) for oral administration of peptides and proteins, it is important to gain an understanding of the colloid structures formed by these DDS, the mode of peptide and protein incorporation as well as the mechanism by which intestinal absorption of peptides and proteins is promoted. AREAS COVERED The present paper reviews the literature on lipid-based DDS, employed for oral delivery of peptides and proteins and highlights the mechanisms by which the different lipid-based carriers are expected to overcome the two most important barriers (extensive enzymatic degradation and poor transmucosal permeability). This paper also gives a clear-cut idea about advantages and drawbacks of using different lipidic colloidal carriers ((micro)emulsions, solid lipid core particles and liposomes) for oral delivery of peptides and proteins. EXPERT OPINION Lipid-based DDS are safe and suitable for oral delivery of peptides and proteins. Significant progress has been made in this area with several technologies on clinical trials. However, a better understanding of the mechanism of action in vivo is needed in order to improve the design and development of lipid-based DDS with the desired bioavailability and therapeutic profile.
Collapse
Affiliation(s)
- Ping Li
- University of Copenhagen, Faculty of Health and Medical Sciences, Department of Pharmacy, 2100 Copenhagen Ø, Denmark.
| | | | | |
Collapse
|
47
|
|
48
|
Chin J, Foyez Mahmud K, Kim SE, Park K, Byun Y. Insight of current technologies for oral delivery of proteins and peptides. DRUG DISCOVERY TODAY. TECHNOLOGIES 2012; 9:e71-e174. [PMID: 24064270 DOI: 10.1016/j.ddtec.2012.04.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
|
49
|
Parmentier J, Thewes B, Gropp F, Fricker G. Oral peptide delivery by tetraether lipid liposomes. Int J Pharm 2011; 415:150-7. [DOI: 10.1016/j.ijpharm.2011.05.066] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 03/21/2011] [Accepted: 05/26/2011] [Indexed: 10/18/2022]
|
50
|
Li Z, Zhang L, Sun W, Ding Q, Hou Y, Xu Y. Archaeosomes with encapsulated antigens for oral vaccine delivery. Vaccine 2011; 29:5260-6. [DOI: 10.1016/j.vaccine.2011.05.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Revised: 03/19/2011] [Accepted: 05/09/2011] [Indexed: 10/18/2022]
|