1
|
Mandal S, Nag S, Mukherjee O, Das N, Banerjee P, Majumdar T, Mukhopadhyay S, Maedler K, Kundu R. CD36 inhibition corrects lipid-FetuinA mediated insulin secretory defects by preventing intracellular lipid accumulation and inflammation in the pancreatic beta cells. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167580. [PMID: 39561856 DOI: 10.1016/j.bbadis.2024.167580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/03/2024] [Accepted: 11/13/2024] [Indexed: 11/21/2024]
Abstract
CD36 is a multifunctional protein involved in long chain fatty acid uptake and immune modulation in different cells. Recently it was reported that increased expression of CD36 is evident in the islets of diabetic obese individuals. In this present study we investigated the role of CD36 in regulating intracellular lipid accumulation and inflammation in beta cells and its implication on secretory dysfunction. Additionally, we have elucidated the potential role of fetuinA, a circulatory glycoprotein and an endogenous ligand of TLR4, for aggravating lipid accumulation and insulin secretory defects in beta cells. MIN6 mouse insulinoma cells when incubated with palmitate and fetuinA together showed activation of TLR4-NFkB inflammatory cascade and increased uptake of palmitate, which was rescued by CD36 functional inhibition or knockdown. Moreover, glucose stimulated insulin secretion was restored with consequent downregulation of IL-1β secretion. TLR4 inhibition also decreased intracellular lipid content with a reduction of CD36, suggesting functional crosstalk between them. At physiological level, excess fetuinA in the islet milieu of HFD fed C57BL/6J mice or exogenous fetuinA administration (i.p.) promoted lipid accumulation in the islets resulting in decreased insulin secretion with increased CD36 expression. Interestingly, CD36 inhibition in HFD mice with a pharmacological inhibitor Salvianolic acid B attenuated inflammation, reduced intracellular lipid accumulation in beta cells and restored insulin secretory function. Therefore, our results suggest that inhibition of CD36 protects beta cells from the derogatory effects of lipid and fetuinA and restores secretory function and can be considered as a therapeutic target for obesity mediated beta cell dysfunction.
Collapse
Affiliation(s)
- Samanwita Mandal
- Cell Signaling Laboratory, Department of Zoology, Siksha Bhavana (Institute of Science), Visva-Bharati University, Santiniketan 731235, India
| | - Snehasish Nag
- Cell Signaling Laboratory, Department of Zoology, Siksha Bhavana (Institute of Science), Visva-Bharati University, Santiniketan 731235, India
| | - Oindrila Mukherjee
- Cell Signaling Laboratory, Department of Zoology, Siksha Bhavana (Institute of Science), Visva-Bharati University, Santiniketan 731235, India
| | - Nandita Das
- Cell Signaling Laboratory, Department of Zoology, Siksha Bhavana (Institute of Science), Visva-Bharati University, Santiniketan 731235, India
| | - Priyajit Banerjee
- Department of Biotechnology, School of Life Sciences, Swami Vivekananda University, Barrackpore 700121, India
| | - Tanmay Majumdar
- National Institute of Immunology (NII), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Satinath Mukhopadhyay
- Department of Endocrinology & Metabolism, Institute of Post-Graduate Medical Education & Research-Seth Sukhlal Karnani Memorial Hospital (IPGME&R-SSKM), Kolkata 700020, India
| | - Kathrin Maedler
- Centre for Biomolecular Interactions Bremen, University of Bremen, Bremen 28359, Germany
| | - Rakesh Kundu
- Cell Signaling Laboratory, Department of Zoology, Siksha Bhavana (Institute of Science), Visva-Bharati University, Santiniketan 731235, India.
| |
Collapse
|
2
|
Park IR, Chung YG, Won KC. Overcoming β-Cell Dysfunction in Type 2 Diabetes Mellitus: CD36 Inhibition and Antioxidant System. Diabetes Metab J 2025; 49:1-12. [PMID: 39828973 DOI: 10.4093/dmj.2024.0796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 12/24/2024] [Indexed: 01/22/2025] Open
Abstract
Type 2 diabetes mellitus (T2DM) is marked by chronic hyperglycemia, gradually worsening β-cell failure, and insulin resistance. Glucotoxicity and oxidative stress cause β-cell failure by increasing reactive oxygen species (ROS) production, impairing insulin secretion, and disrupting transcription factors such as pancreatic and duodenal homeobox 1 (PDX-1) and musculoaponeurotic fibrosarcoma oncogene family A (MafA). Cluster determinant 36 (CD36), an essential glycoprotein responsible for fatty acid uptake, exacerbates oxidative stress and induces the apoptosis of β-cells under hyperglycemic conditions through pathways involving ceramide, thioredoxin-interacting protein (TXNIP), and Rac1-nicotinamide adenine dinucleotide phosphate oxidase (NOX)-mediated redoxosome formation. Targeting CD36 pathways has emerged as a promising therapeutic strategy. Oral hypoglycemic agents, such as metformin, teneligliptin, and pioglitazone, have shown protective effects on β-cells by enhancing antioxidant defenses. These agents reduce glucotoxicity via mechanisms such as suppressing CD36 expression and stabilizing mitochondrial function. Additionally, novel insights into the glutathione antioxidant system and its role in β-cell survival underscore its therapeutic potential. This review focuses on the key contribution of oxidative stress and CD36 to β-cell impairment, the therapeutic promise of antioxidants, and the need for further research to apply these findings in clinical practice. Promising strategies targeting these mechanisms may help preserve β-cell function and slow T2DM progression.
Collapse
Affiliation(s)
- Il Rae Park
- Department of Internal Medicine, Yeungnam University College of Medicine, Daegu, Korea
| | - Yong Geun Chung
- Department of Internal Medicine, Yeungnam University College of Medicine, Daegu, Korea
| | - Kyu Chang Won
- Department of Internal Medicine, Yeungnam University College of Medicine, Daegu, Korea
| |
Collapse
|
3
|
Kim YK, Won KC, Sussel L. Glucose metabolism partially regulates β-cell function through epigenomic changes. J Diabetes Investig 2024; 15:649-655. [PMID: 38436511 PMCID: PMC11143420 DOI: 10.1111/jdi.14173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 03/05/2024] Open
Abstract
The β-cell relies predominantly on glucose utilization to generate adenosine triphosphate, which is crucial for both cell viability and insulin secretion. The β-cell has evolved remarkable metabolic flexibility to productively respond to shifts in environmental conditions and changes in glucose availability. Although these adaptive responses are important for maintaining optimal cellular function, there is emerging evidence that the resulting changes in cellular metabolites can impact the epigenome, causing transient and lasting alterations in gene expression. This review explores the intricate interplay between metabolism and the epigenome, providing valuable insights into the molecular mechanisms leading to β-cell dysfunction in diabetes. Understanding these mechanisms will be critical for developing targeted therapeutic strategies to preserve and enhance β-cell function, offering potential avenues for interventions to improve glycemic control in individuals with diabetes.
Collapse
Affiliation(s)
- Yong Kyung Kim
- Barbara Davis Center for DiabetesUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Kyu Chang Won
- Department of Internal MedicineYeungnam University College of MedicineDaeguKorea
| | - Lori Sussel
- Barbara Davis Center for DiabetesUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| |
Collapse
|
4
|
Bianchetti G, Clementi ME, Sampaolese B, Serantoni C, Abeltino A, De Spirito M, Sasson S, Maulucci G. Metabolic Imaging and Molecular Biology Reveal the Interplay between Lipid Metabolism and DHA-Induced Modulation of Redox Homeostasis in RPE Cells. Antioxidants (Basel) 2023; 12:339. [PMID: 36829896 PMCID: PMC9952658 DOI: 10.3390/antiox12020339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/25/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
Diabetes-induced oxidative stress induces the development of vascular complications, which are significant causes of morbidity and mortality in diabetic patients. Among these, diabetic retinopathy (DR) is often caused by functional changes in the blood-retinal barrier (BRB) due to harmful oxidative stress events in lipids, proteins, and DNA. Docosahexaenoic acid (DHA) has a potential therapeutic effect against hyperglycemia-induced oxidative damage and apoptotic pathways in the main constituents of BRB, retinal pigment epithelium cells (ARPE-19). Effective antioxidant response elicited by DHA is driven by the activation of the Nrf2/Nqo1 signaling cascade, which leads to the formation of NADH, a reductive agent found in the cytoplasm. Nrf2 also induces the expression of genes encoding enzymes involved in lipid metabolism. This study, therefore, aims at investigating the modulation of lipid metabolism induced by high-glucose (HG) on ARPE-19 cells through the integration of metabolic imaging and molecular biology to provide a comprehensive functional and molecular characterization of the mechanisms activated in the disease, as well the therapeutic role of DHA. This study shows that HG augments RPE metabolic processes by enhancing lipid metabolism, from fatty acid uptake and turnover to lipid biosynthesis and β-oxidation. DHA exerts its beneficial effect by ameliorating lipid metabolism and reducing the increased ROS production under HG conditions. This investigation may provide novel insight for formulating novel treatments for DR by targeting lipid metabolism pathways.
Collapse
Affiliation(s)
- Giada Bianchetti
- Department of Neuroscience, Biophysics Sections, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy
- Fondazione Policlinico Universitario "A. Gemelli" IRCCS, 00168 Rome, Italy
| | - Maria Elisabetta Clementi
- Institute of Chemical Sciences and Technologies "Giulio Natta" (SCITEC)-CNR, Largo Francesco Vito, 1, 00168 Rome, Italy
| | - Beatrice Sampaolese
- Institute of Chemical Sciences and Technologies "Giulio Natta" (SCITEC)-CNR, Largo Francesco Vito, 1, 00168 Rome, Italy
| | - Cassandra Serantoni
- Department of Neuroscience, Biophysics Sections, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy
- Fondazione Policlinico Universitario "A. Gemelli" IRCCS, 00168 Rome, Italy
| | - Alessio Abeltino
- Department of Neuroscience, Biophysics Sections, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy
- Fondazione Policlinico Universitario "A. Gemelli" IRCCS, 00168 Rome, Italy
| | - Marco De Spirito
- Department of Neuroscience, Biophysics Sections, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy
- Fondazione Policlinico Universitario "A. Gemelli" IRCCS, 00168 Rome, Italy
| | - Shlomo Sasson
- Faculty of Medicine, Institute for Drug Research, The Hebrew University, Jerusalem 911210, Israel
| | - Giuseppe Maulucci
- Department of Neuroscience, Biophysics Sections, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy
- Fondazione Policlinico Universitario "A. Gemelli" IRCCS, 00168 Rome, Italy
| |
Collapse
|
5
|
Song DK, Kim YW. Beneficial effects of intermittent fasting: a narrative review. JOURNAL OF YEUNGNAM MEDICAL SCIENCE 2022; 40:4-11. [PMID: 35368155 PMCID: PMC9946909 DOI: 10.12701/jyms.2022.00010] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/28/2022] [Indexed: 11/04/2022]
Abstract
Caloric restriction is a popular approach to treat obesity and its associated chronic illnesses but is difficult to maintain for a long time. Intermittent fasting is an alternative and easily applicable dietary intervention for caloric restriction. Moreover, intermittent fasting has beneficial effects equivalent to those of caloric restriction in terms of body weight control, improvements in glucose homeostasis and lipid profiles, and anti-inflammatory effects. In this review, the beneficial effects of intermittent fasting are discussed.
Collapse
Affiliation(s)
- Dae-Kyu Song
- Department of Physiology & Obesity-mediated Disease Research Center, Keimyung University School of Medicine, Daegu, Korea
| | - Yong-Woon Kim
- Department of Physiology, Yeungnam University College of Medicine, Daegu, Korea,Corresponding author: Yong-Woon Kim, MD, PhD Department of Physiology, Yeungnam University College of Medicine, 170 Hyeonchung-ro, Nam-gu, Daegu 42415, Korea Tel: +82-53-640-6922 • Fax: +82-53-629-7093 • E-mail:
| |
Collapse
|
6
|
Zhang Y, Li L, Zhang Y, Yan S, Huang L. Improvement of Lipotoxicity-Induced Islet β Cellular Insulin Secretion Disorder by Osteocalcin. J Diabetes Res 2022; 2022:3025538. [PMID: 35313683 PMCID: PMC8934231 DOI: 10.1155/2022/3025538] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/10/2021] [Accepted: 02/26/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Osteocalcin (OCN) has been proved to be closely related with the development of type 2 diabetes mellitus (T2DM). We aimed to study if OCN could improve the disorder of islet cell caused by lipotoxicity. METHODS Alizarin red staining was used to investigate the mineralization. Western blotting and ELISA methods were used to measure protein expression. Immunofluorescence staining was used to investigate the protein nuclear transfer. RESULTS High glucose and high fat inhibited the differentiation of osteoblast precursors. Overexpression of insulin receptor (InsROE) significantly promoted the Runx2 and OCN expression. The increase of insulin, Gprc6a, and Glut2 by osteoblast culture medium overexpressing insulin receptor was reversed by osteocalcin neutralizing antibody. Undercarboxylated osteocalcin (ucOC) suppressed the lipotoxic islet β-cell damage caused by palmitic acid. The FOXO1 from intranuclear to extranuclear was also significantly increased after ucOC treatment compared with the group PA. Knockdown of Gprc6a or suppression of PI3K/AKT signal pathway could reverse the upregulation of GPRC6A/PI3K/AKT/FoxO1/Pdx1 caused by ucOC. CONCLUSION OCN could activate the FOXO1 signaling pathway to regulate GLUT2 expression and improve the insulin secretion disorder caused by lipotoxicity.
Collapse
Affiliation(s)
- Yafang Zhang
- Department of Endocrinology, The First Affiliated Hospital of Fujian Medical University, No 20 Chazhong Road, Fuzhou, 350004 Fujian province, China
| | - Ling Li
- Department of Endocrinology, The First Affiliated Hospital of Fujian Medical University, No 20 Chazhong Road, Fuzhou, 350004 Fujian province, China
| | - Yongze Zhang
- Department of Endocrinology, The First Affiliated Hospital of Fujian Medical University, No 20 Chazhong Road, Fuzhou, 350004 Fujian province, China
- Diabetes Research Institute of Fujian Province, No 20 Chazhong Road, Fuzhou, 350004 Fujian province, China
- Institute of Metabolic Diseases of Fujian Medical University, No 20 Chazhong Road, Fuzhou, 350004 Fujian province, China
| | - Sunjie Yan
- Department of Endocrinology, The First Affiliated Hospital of Fujian Medical University, No 20 Chazhong Road, Fuzhou, 350004 Fujian province, China
- Diabetes Research Institute of Fujian Province, No 20 Chazhong Road, Fuzhou, 350004 Fujian province, China
- Institute of Metabolic Diseases of Fujian Medical University, No 20 Chazhong Road, Fuzhou, 350004 Fujian province, China
| | - Lingning Huang
- Department of Endocrinology, The First Affiliated Hospital of Fujian Medical University, No 20 Chazhong Road, Fuzhou, 350004 Fujian province, China
- Diabetes Research Institute of Fujian Province, No 20 Chazhong Road, Fuzhou, 350004 Fujian province, China
- Institute of Metabolic Diseases of Fujian Medical University, No 20 Chazhong Road, Fuzhou, 350004 Fujian province, China
| |
Collapse
|
7
|
Karunakaran U, Elumalai S, Moon JS, Won KC. CD36 Signal Transduction in Metabolic Diseases: Novel Insights and Therapeutic Targeting. Cells 2021; 10:cells10071833. [PMID: 34360006 PMCID: PMC8305429 DOI: 10.3390/cells10071833] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/14/2021] [Accepted: 07/17/2021] [Indexed: 12/24/2022] Open
Abstract
The cluster of differentiation 36 (CD36) is a scavenger receptor present on various types of cells and has multiple biological functions that may be important in inflammation and in the pathogenesis of metabolic diseases, including diabetes. Here, we consider recent insights into how the CD36 response becomes deregulated under metabolic conditions, as well as the therapeutic benefits of CD36 inhibition, which may provide clues for developing strategies aimed at the treatment or prevention of diabetes associated with metabolic diseases. To facilitate this process further, it is important to pinpoint regulatory mechanisms that are relevant under physiological and pathological conditions. In particular, understanding the mechanisms involved in dictating specific CD36 downstream cellular outcomes will aid in the discovery of potent compounds that target specific CD36 downstream signaling cascades.
Collapse
Affiliation(s)
- Udayakumar Karunakaran
- Innovative Center for Aging Research, Yeungnam University Medical Center, Daegu 42415, Korea; (U.K.); (S.E.)
| | - Suma Elumalai
- Innovative Center for Aging Research, Yeungnam University Medical Center, Daegu 42415, Korea; (U.K.); (S.E.)
| | - Jun-Sung Moon
- Innovative Center for Aging Research, Yeungnam University Medical Center, Daegu 42415, Korea; (U.K.); (S.E.)
- Yeungnam University College of Medicine, Daegu 42415, Korea
- Correspondence: (J.-S.M.); (K.-C.W.); Tel.: +82-53-620-3825 (J.-S.M.); +82-53-620-3846 (K.-C.W.)
| | - Kyu-Chang Won
- Innovative Center for Aging Research, Yeungnam University Medical Center, Daegu 42415, Korea; (U.K.); (S.E.)
- Yeungnam University College of Medicine, Daegu 42415, Korea
- Correspondence: (J.-S.M.); (K.-C.W.); Tel.: +82-53-620-3825 (J.-S.M.); +82-53-620-3846 (K.-C.W.)
| |
Collapse
|
8
|
Elumalai S, Karunakaran U, Moon JS, Won KC. NADPH Oxidase (NOX) Targeting in Diabetes: A Special Emphasis on Pancreatic β-Cell Dysfunction. Cells 2021; 10:cells10071573. [PMID: 34206537 PMCID: PMC8307876 DOI: 10.3390/cells10071573] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/12/2021] [Accepted: 06/16/2021] [Indexed: 12/24/2022] Open
Abstract
In type 2 diabetes, metabolic stress has a negative impact on pancreatic β-cell function and survival (T2D). Although the pathogenesis of metabolic stress is complex, an imbalance in redox homeostasis causes abnormal tissue damage and β-cell death due to low endogenous antioxidant expression levels in β-cells. Under diabetogenic conditions, the susceptibility of β-cells to oxidative damage by NADPH oxidase has been related to contributing to β-cell dysfunction. Here, we consider recent insights into how the redox response becomes deregulated under diabetic conditions by NADPH oxidase, as well as the therapeutic benefits of NOX inhibitors, which may provide clues for understanding the pathomechanisms and developing strategies aimed at the treatment or prevention of metabolic stress associated with β-cell failure.
Collapse
Affiliation(s)
- Suma Elumalai
- Innovative Center for Aging Research, Yeungnam University Medical Center, Daegu 42415, Korea; (S.E.); (U.K.)
| | - Udayakumar Karunakaran
- Innovative Center for Aging Research, Yeungnam University Medical Center, Daegu 42415, Korea; (S.E.); (U.K.)
| | - Jun-Sung Moon
- Innovative Center for Aging Research, Yeungnam University Medical Center, Daegu 42415, Korea; (S.E.); (U.K.)
- Department of Internal Medicine, Yeungnam Universtiy College of Medicine, Daegu 42415, Korea
- Correspondence: (J.-S.M.); (K.-C.W.); Tel.: +82-53-620-3825 (J.-S.W.); +82-53-620-3846 (K.-C.W.)
| | - Kyu-Chang Won
- Innovative Center for Aging Research, Yeungnam University Medical Center, Daegu 42415, Korea; (S.E.); (U.K.)
- Department of Internal Medicine, Yeungnam Universtiy College of Medicine, Daegu 42415, Korea
- Correspondence: (J.-S.M.); (K.-C.W.); Tel.: +82-53-620-3825 (J.-S.W.); +82-53-620-3846 (K.-C.W.)
| |
Collapse
|
9
|
Losada-Barragán M. Physiological effects of nutrients on insulin release by pancreatic beta cells. Mol Cell Biochem 2021; 476:3127-3139. [PMID: 33844157 DOI: 10.1007/s11010-021-04146-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 03/31/2021] [Indexed: 10/21/2022]
Abstract
Obesity and type 2 diabetes (T2D) are growing health problems associated with a loss of insulin sensitivity. Both conditions arise from a long-term energy imbalance, and frequently, lifestyle measures can be useful in its prevention, including physical activity and a healthy diet. Pancreatic β-cells are determinant nutrient sensors that participate in energetic homeostasis needs. However, when pancreatic β-cells are incapable of secreting enough insulin to counteract the reduced sensitivity, the pathology evolves to an insulin resistance condition. The primary nutrient that stimulates insulin secretion is glucose, but also, there are multiple dietary and hormonal factors influencing that response. Many studies of the physiology of β-cells have highlighted the importance of glucose, fructose, amino acids, and free fatty acids on insulin secretion. The present review summarizes recent research on how β-cells respond to the most abundant nutrients that influence insulin secretion. Taken together, understand the subjacent mechanisms of each nutrient on β-cells can help to unravel the effects of mixed variables and complexity in the context of β-cell pathology.
Collapse
Affiliation(s)
- Monica Losada-Barragán
- Grupo de investigación en Biología celular y funcional e ingeniería de biomoléculas, Universidad Antonio Nariño-Sede Circunvalar. Cra, 3 Este # 47A - 15, Bl 5, Bogotá, Colombia.
| |
Collapse
|
10
|
Lipotoxic Impairment of Mitochondrial Function in β-Cells: A Review. Antioxidants (Basel) 2021; 10:antiox10020293. [PMID: 33672062 PMCID: PMC7919463 DOI: 10.3390/antiox10020293] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/06/2021] [Accepted: 02/11/2021] [Indexed: 02/08/2023] Open
Abstract
Lipotoxicity is a major contributor to type 2 diabetes mainly promoting mitochondrial dysfunction. Lipotoxic stress is mediated by elevated levels of free fatty acids through various mechanisms and pathways. Impaired peroxisome proliferator-activated receptor (PPAR) signaling, enhanced oxidative stress levels, and uncoupling of the respiratory chain result in ATP deficiency, while β-cell viability can be severely impaired by lipotoxic modulation of PI3K/Akt and mitogen-activated protein kinase (MAPK)/extracellular-signal-regulated kinase (ERK) pathways. However, fatty acids are physiologically required for an unimpaired β-cell function. Thus, preparation, concentration, and treatment duration determine whether the outcome is beneficial or detrimental when fatty acids are employed in experimental setups. Further, ageing is a crucial contributor to β-cell decay. Cellular senescence is connected to loss of function in β-cells and can further be promoted by lipotoxicity. The potential benefit of nutrients has been broadly investigated, and particularly polyphenols were shown to be protective against both lipotoxicity and cellular senescence, maintaining the physiology of β-cells. Positive effects on blood glucose regulation, mitigation of oxidative stress by radical scavenging properties or regulation of antioxidative enzymes, and modulation of apoptotic factors were reported. This review summarizes the significance of lipotoxicity and cellular senescence for mitochondrial dysfunction in the pancreatic β-cell and outlines potential beneficial effects of plant-based nutrients by the example of polyphenols.
Collapse
|
11
|
Puchałowicz K, Rać ME. The Multifunctionality of CD36 in Diabetes Mellitus and Its Complications-Update in Pathogenesis, Treatment and Monitoring. Cells 2020; 9:cells9081877. [PMID: 32796572 PMCID: PMC7465275 DOI: 10.3390/cells9081877] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/04/2020] [Accepted: 08/09/2020] [Indexed: 02/08/2023] Open
Abstract
CD36 is a multiligand receptor contributing to glucose and lipid metabolism, immune response, inflammation, thrombosis, and fibrosis. A wide range of tissue expression includes cells sensitive to metabolic abnormalities associated with metabolic syndrome and diabetes mellitus (DM), such as monocytes and macrophages, epithelial cells, adipocytes, hepatocytes, skeletal and cardiac myocytes, pancreatic β-cells, kidney glomeruli and tubules cells, pericytes and pigment epithelium cells of the retina, and Schwann cells. These features make CD36 an important component of the pathogenesis of DM and its complications, but also a promising target in the treatment of these disorders. The detrimental effects of CD36 signaling are mediated by the uptake of fatty acids and modified lipoproteins, deposition of lipids and their lipotoxicity, alterations in insulin response and the utilization of energy substrates, oxidative stress, inflammation, apoptosis, and fibrosis leading to the progressive, often irreversible organ dysfunction. This review summarizes the extensive knowledge of the contribution of CD36 to DM and its complications, including nephropathy, retinopathy, peripheral neuropathy, and cardiomyopathy.
Collapse
|
12
|
Moon JS, Karunakaran U, Suma E, Chung SM, Won KC. The Role of CD36 in Type 2 Diabetes Mellitus: β-Cell Dysfunction and Beyond. Diabetes Metab J 2020; 44:222-233. [PMID: 32347024 PMCID: PMC7188969 DOI: 10.4093/dmj.2020.0053] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 03/25/2020] [Indexed: 12/24/2022] Open
Abstract
Impaired β-cell function is the key pathophysiology of type 2 diabetes mellitus, and chronic exposure of nutrient excess could lead to this tragedy. For preserving β-cell function, it is essential to understand the cause and mechanisms about the progression of β-cells failure. Glucotoxicity, lipotoxicity, and glucolipotoxicity have been suggested to be a major cause of β-cell dysfunction for decades, but not yet fully understood. Fatty acid translocase cluster determinant 36 (CD36), which is part of the free fatty acid (FFA) transporter system, has been identified in several tissues such as muscle, liver, and insulin-producing cells. Several studies have reported that induction of CD36 increases uptake of FFA in several cells, suggesting the functional interplay between glucose and FFA in terms of insulin secretion and oxidative metabolism. However, we do not currently know the regulating mechanism and physiological role of CD36 on glucolipotoxicity in pancreatic β-cells. Also, the downstream and upstream targets of CD36 related signaling have not been defined. In the present review, we will focus on the expression and function of CD36 related signaling in the pancreatic β-cells in response to hyperglycemia and hyperlipidemia (ceramide) along with the clinical studies on the association between CD36 and metabolic disorders.
Collapse
Affiliation(s)
- Jun Sung Moon
- Department of Internal Medicine, Yeungnam University College of Medicine, Daegu, Korea
| | | | - Elumalai Suma
- Department of Internal Medicine, Yeungnam University College of Medicine, Daegu, Korea
| | - Seung Min Chung
- Department of Internal Medicine, Yeungnam University College of Medicine, Daegu, Korea
| | - Kyu Chang Won
- Department of Internal Medicine, Yeungnam University College of Medicine, Daegu, Korea.
| |
Collapse
|
13
|
López-Noriega L, Capilla-González V, Cobo-Vuilleumier N, Martin-Vazquez E, Lorenzo PI, Martinez-Force E, Soriano-Navarro M, García-Fernández M, Romero-Zerbo SY, Bermúdez-Silva FJ, Díaz-Contreras I, Sánchez-Cuesta A, Santos-Ocaña C, Hmadcha A, Soria B, Martín F, Gauthier BR, Martin-Montalvo A. Inadequate control of thyroid hormones sensitizes to hepatocarcinogenesis and unhealthy aging. Aging (Albany NY) 2019; 11:7746-7779. [PMID: 31518338 PMCID: PMC6781991 DOI: 10.18632/aging.102285] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 09/05/2019] [Indexed: 12/15/2022]
Abstract
An inverse correlation between thyroid hormone levels and longevity has been reported in several species and reduced thyroid hormone levels have been proposed as a biomarker for healthy aging and metabolic fitness. However, hypothyroidism is a medical condition associated with compromised health and reduced life expectancy. Herein, we show, using wild-type and the Pax8 ablated model of hypothyroidism in mice, that hyperthyroidism and severe hypothyroidism are associated with an overall unhealthy status and shorter lifespan. Mild hypothyroid Pax8 +/- mice were heavier and displayed insulin resistance, hepatic steatosis and increased prevalence of liver cancer yet had normal lifespan. These pathophysiological conditions were precipitated by hepatic mitochondrial dysfunction and oxidative damage accumulation. These findings indicate that individuals carrying mutations on PAX8 may be susceptible to develop liver cancer and/or diabetes and raise concerns regarding the development of interventions aiming to modulate thyroid hormones to promote healthy aging or lifespan in mammals.
Collapse
Affiliation(s)
- Livia López-Noriega
- Department of Regeneration and Cell Therapy, Andalusian Center for Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Vivian Capilla-González
- Department of Regeneration and Cell Therapy, Andalusian Center for Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Nadia Cobo-Vuilleumier
- Department of Regeneration and Cell Therapy, Andalusian Center for Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Eugenia Martin-Vazquez
- Department of Regeneration and Cell Therapy, Andalusian Center for Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Petra Isabel Lorenzo
- Department of Regeneration and Cell Therapy, Andalusian Center for Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | | | | | - María García-Fernández
- Department of Human Physiology, Málaga University, Biomedical Research Institute of Málaga (IBIMA), Málaga, Spain
| | - Silvana Yanina Romero-Zerbo
- Instituto de Investigación Biomédica de Málaga-IBIMA, UGC Endocrinología y Nutrición. Hospital Regional Universitario de Málaga, Málaga, Spain.,Biomedical Research Network on Diabetes and Related Metabolic Diseases-CIBERDEM, Instituto de Salud Carlos III, Madrid, Spain
| | - Francisco Javier Bermúdez-Silva
- Instituto de Investigación Biomédica de Málaga-IBIMA, UGC Endocrinología y Nutrición. Hospital Regional Universitario de Málaga, Málaga, Spain.,Biomedical Research Network on Diabetes and Related Metabolic Diseases-CIBERDEM, Instituto de Salud Carlos III, Madrid, Spain
| | - Irene Díaz-Contreras
- Department of Regeneration and Cell Therapy, Andalusian Center for Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain.,Biomedical Research Network on Diabetes and Related Metabolic Diseases-CIBERDEM, Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Sánchez-Cuesta
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide and CIBERER, Sevilla, Spain
| | - Carlos Santos-Ocaña
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide and CIBERER, Sevilla, Spain
| | - Abdelkrim Hmadcha
- Department of Regeneration and Cell Therapy, Andalusian Center for Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain.,Biomedical Research Network on Diabetes and Related Metabolic Diseases-CIBERDEM, Instituto de Salud Carlos III, Madrid, Spain
| | - Bernat Soria
- Biomedical Research Network on Diabetes and Related Metabolic Diseases-CIBERDEM, Instituto de Salud Carlos III, Madrid, Spain.,Deptartment of Physiology, University Miguel Hernández School of Medicine Sant Joan d'Alacant, Alicante, Spain
| | - Franz Martín
- Department of Regeneration and Cell Therapy, Andalusian Center for Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain.,Biomedical Research Network on Diabetes and Related Metabolic Diseases-CIBERDEM, Instituto de Salud Carlos III, Madrid, Spain
| | - Benoit Raymond Gauthier
- Department of Regeneration and Cell Therapy, Andalusian Center for Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain.,Biomedical Research Network on Diabetes and Related Metabolic Diseases-CIBERDEM, Instituto de Salud Carlos III, Madrid, Spain
| | - Alejandro Martin-Montalvo
- Department of Regeneration and Cell Therapy, Andalusian Center for Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| |
Collapse
|
14
|
Karunakaran U, Elumalai S, Moon JS, Won KC. CD36 dependent redoxosomes promotes ceramide-mediated pancreatic β-cell failure via p66Shc activation. Free Radic Biol Med 2019; 134:505-515. [PMID: 30735834 DOI: 10.1016/j.freeradbiomed.2019.02.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/01/2019] [Accepted: 02/04/2019] [Indexed: 12/14/2022]
Abstract
Altered metabolism is implicated in the pathogenesis of beta-cell failure in type 2 diabetes (T2D). Plasma and tissue levels of ceramide species play positive roles in inflammatory and oxidative stress responses in T2D. However, oxidative targets and mechanisms underlying ceramide signaling are unclear. We investigated the role of CD36-dependent redoxosome (redox-active endosome), a membrane-based signaling agent, in ceramide-induced beta-cell dysfunction and failure. Exposure of beta cells to C2-ceramide (N-acetyl-sphingosine) induced a CD36-dependent non-receptor tyrosine kinase Src-mediated redoxosome (Vav2-Rac1-NOX) formation. Activated Rac1-GTP-NADPH oxidase complex induced c-Jun-N-terminal kinase (JNK) activation and nuclear factor (NF)-kB transcription, which was associated with thioredoxin-interacting protein (TXNIP) upregulation and thioredoxin activity suppression. Upregulated JNK expression induced p66Shc serine36 phosphorylation and peroxiredoxin-3 hyperoxidation, causing beta-cell apoptosis via mitochondrial dysfunction. CD36 inhibition by sulfo-N-succinimidyl oleate (SSO) or CD36 siRNA blocked C2-ceramide-induced redoxosome activation, thereby decreasing JNK-dependent p66Shc serine36 phosphorylation. CD36 inhibition downregulated TXNIP expression and promoted thioredoxin activity via enhanced thioredoxin reductase activity, which prevented peroxiredoxin-3 oxidation. CD36 inhibition potentiated glucose-stimulated insulin secretion and prevented beta-cell apoptosis. Our results reveal a new role of CD36 during early molecular events that lead to Src-mediated redoxosome activation, which contributes to ceramide-induced pancreatic beta-cell dysfunction and failure.
Collapse
Affiliation(s)
- Udayakumar Karunakaran
- Department of Internal Medicine, Yeungnam University College of Medicine, Daegu, Republic of Korea
| | - Suma Elumalai
- Institute of Medical Science, Yeungnam University College of Medicine, Daegu, Republic of Korea
| | - Jun Sung Moon
- Department of Internal Medicine, Yeungnam University College of Medicine, Daegu, Republic of Korea
| | - Kyu Chang Won
- Department of Internal Medicine, Yeungnam University College of Medicine, Daegu, Republic of Korea; Institute of Medical Science, Yeungnam University College of Medicine, Daegu, Republic of Korea.
| |
Collapse
|
15
|
Palomer X, Pizarro-Delgado J, Barroso E, Vázquez-Carrera M. Palmitic and Oleic Acid: The Yin and Yang of Fatty Acids in Type 2 Diabetes Mellitus. Trends Endocrinol Metab 2018; 29:178-190. [PMID: 29290500 DOI: 10.1016/j.tem.2017.11.009] [Citation(s) in RCA: 341] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/22/2017] [Accepted: 11/30/2017] [Indexed: 12/20/2022]
Abstract
Increased plasma non-esterified fatty acids (NEFAs) link obesity with insulin resistance and type 2 diabetes mellitus (T2DM). However, in contrast to the saturated FA (SFA) palmitic acid, the monounsaturated FA (MUFA) oleic acid elicits beneficial effects on insulin sensitivity, and the dietary palmitic acid:oleic acid ratio impacts diabetes risk in humans. Here we review recent mechanistic insights into the beneficial effects of oleic acid compared with palmitic acid on insulin resistance and T2DM, including its anti-inflammatory actions, and its capacity to inhibit endoplasmic reticulum (ER) stress, prevent attenuation of the insulin signaling pathway, and improve β cell survival. Understanding the molecular mechanisms of the antidiabetic effects of oleic acid may contribute to understanding the benefits of this FA in the prevention or delay of T2DM.
Collapse
Affiliation(s)
- Xavier Palomer
- Department of Pharmacology, Toxicology, and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Institute of Biomedicine of the University of Barcelona (IBUB), Pediatric Research Institute-Hospital Sant Joan de Déu, and Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Avinguda Joan XXIII 27-31, E-08028 Barcelona, Spain
| | - Javier Pizarro-Delgado
- Department of Pharmacology, Toxicology, and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Institute of Biomedicine of the University of Barcelona (IBUB), Pediatric Research Institute-Hospital Sant Joan de Déu, and Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Avinguda Joan XXIII 27-31, E-08028 Barcelona, Spain
| | - Emma Barroso
- Department of Pharmacology, Toxicology, and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Institute of Biomedicine of the University of Barcelona (IBUB), Pediatric Research Institute-Hospital Sant Joan de Déu, and Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Avinguda Joan XXIII 27-31, E-08028 Barcelona, Spain
| | - Manuel Vázquez-Carrera
- Department of Pharmacology, Toxicology, and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Institute of Biomedicine of the University of Barcelona (IBUB), Pediatric Research Institute-Hospital Sant Joan de Déu, and Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Avinguda Joan XXIII 27-31, E-08028 Barcelona, Spain.
| |
Collapse
|
16
|
Kim HJ, Moon JS, Park IR, Kim JH, Yoon JS, Won KC, Lee HW. A Novel Index Using Soluble CD36 Is Associated with the Prevalence of Type 2 Diabetes Mellitus: Comparison Study with Triglyceride-Glucose Index. Endocrinol Metab (Seoul) 2017; 32:375-382. [PMID: 28956368 PMCID: PMC5620035 DOI: 10.3803/enm.2017.32.3.375] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 07/05/2017] [Accepted: 07/06/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Plasma soluble cluster determinant 36 (sCD36) level is closely related with insulin resistance and atherosclerosis, but little is known whether it could be a surrogate for estimating risk of developing diabetes or not. To address this, we evaluated association between sCD36 index, the product of sCD36 and fasting plasma glucose (FPG), and the prevalence of type 2 diabetes mellitus (T2DM), and then compared with triglyceride-glucose (TyG) index which has been suggested simple index for insulin resistance. METHODS This was cross-sectional study, and participants were classified as normal glucose tolerance (NGT), prediabetes, and T2DM according to glucose tolerance. The formula of TyG index was 'ln [FPG (mg/dL)×triglyceride (mg/dL)/2],' and the sCD36 index was 'ln [sCD36 (pg/mL)×FPG (mg/dL)/2].' RESULTS One hundred and fifty-five subjects (mean age, 55.2 years) were enrolled, and patients with T2DM were 75. Both indexes were significantly increased in prediabetes and T2DM rather than NGT, and sCD36 index was positively correlated with both glycosylated hemoglobin and homeostasis model assessment of insulin resistance (r=0.767 and r=0.453, respectively; P<0.05) and negatively with homeostasis model assessment estimate of β-cell function (r=-0.317). The odds ratio (OR) of sCD36 index for T2DM was 4.39 (95% confidential interval, 1.51 to 12.77) after adjusting age, gender, blood pressure, smoking, alcohol, non-high density lipoprotein cholesterol and high-sensitivity C-reactive protein. However, OR of TyG index did not remained significance after adjustment. CONCLUSION sCD36 index has an independent association with the risk of T2DM, and showed better correlation than TyG index. These results suggest sCD36 index might be useful surrogate marker for the risk of diabetes.
Collapse
Affiliation(s)
- Ho Jin Kim
- Department of Internal Medicine, Yeungnam University College of Medicine, Daegu, Korea
| | - Jun Sung Moon
- Department of Internal Medicine, Yeungnam University College of Medicine, Daegu, Korea
| | - Il Rae Park
- Department of Internal Medicine, Yeungnam University College of Medicine, Daegu, Korea
| | - Joong Hee Kim
- Department of Internal Medicine, Yeungnam University College of Medicine, Daegu, Korea
| | - Ji Sung Yoon
- Department of Internal Medicine, Yeungnam University College of Medicine, Daegu, Korea
| | - Kyu Chang Won
- Department of Internal Medicine, Yeungnam University College of Medicine, Daegu, Korea
| | - Hyoung Woo Lee
- Department of Internal Medicine, Yeungnam University College of Medicine, Daegu, Korea.
| |
Collapse
|
17
|
Wen SY, Velmurugan BK, Day CH, Shen CY, Chun LC, Tsai YC, Lin YM, Chen RJ, Kuo CH, Huang CY. High density lipoprotein (HDL) reverses palmitic acid induced energy metabolism imbalance by switching CD36 and GLUT4 signaling pathways in cardiomyocyte. J Cell Physiol 2017; 232:3020-3029. [PMID: 28500736 DOI: 10.1002/jcp.26007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 05/12/2017] [Indexed: 01/16/2023]
Abstract
In our previous study palmitic acid (PA) induced lipotoxicity and switches energy metabolism from CD36 to GLUT4 in H9c2 cells. Low level of high density lipoprotein (HDL) is an independent risk factor for cardiac hypertrophy. Therefore, we in the present study investigated whether HDL can reverse PA induced lipotoxicity in H9c2 cardiomyoblast cells. In this study, we treated H9c2 cells with PA to create a hyperlipidemia model in vitro and analyzed for CD36 and GLUT4 metabolic pathway proteins. CD36 metabolic pathway proteins (phospho-AMPK, SIRT1, PGC1α, PPARα, CPT1β, and CD36) were decreased by high PA (150 and 200 μg/μl) concentration. Interestingly, expression of GLUT4 metabolic pathway proteins (p-PI3K and pAKT) were increased at low concentration (50 μg/μl) and decreased at high PA concentration. Whereas, phospho-PKCζ, GLUT4 and PDH proteins expression was increased in a dose dependent manner. PA treated H9c2 cells were treated with HDL and analyzed for cell viability. Results showed that HDL treatment induced cell proliferation efficiency in PA treated cells. In addition, HDL reversed the metabolic effects of PA: CD36 translocation was increased and reduced GLUT4 translocation, but HDL treatment significantly increased CD36 metabolic pathway proteins and reduced GLUT4 pathway proteins. Rat neonatal cardiomyocytes showed similar results. In conclusion, HDL reversed palmatic acid-induced lipotoxicity and energy metabolism imbalance in H9c2 cardiomyoblast cells and in neonatal rat cardiomyocyte cells.
Collapse
Affiliation(s)
- Su-Ying Wen
- Department of Dermatology, Taipei City Hospital, Renai Branch, Taipei, Taiwan.,Center for General Education, Mackay Junior College of Medicine, Nursing, and Management, Taipei, Taiwan
| | | | | | - Chia-Yao Shen
- Department of Nursing, MeiHo University, Pingtung, Taiwan
| | - Li-Chin Chun
- Department of Hospital and Health Care Administration, Chia Nan University of Pharmacy and Science, Tainan County, Taiwan
| | - Yi-Chieh Tsai
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Yueh-Min Lin
- Department of Pathology, Changhua Christian Hospital, Changhua, Taiwan.,Department of Medical Technology, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli, Taiwan
| | - Ray-Jade Chen
- Department of Surgery, School of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chia-Hua Kuo
- Department of Sports Sciences, University of Taipei, Taipei, Taiwan
| | - Chih-Yang Huang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan.,Graduate Institute of Chinese Medical Science, China Medical University, Taichung, Taiwan.,Department of Biological Science and Technology, Asia University, Taichung, Taiwan
| |
Collapse
|
18
|
Oxidative stress and calcium dysregulation by palmitate in type 2 diabetes. Exp Mol Med 2017; 49:e291. [PMID: 28154371 PMCID: PMC5336562 DOI: 10.1038/emm.2016.157] [Citation(s) in RCA: 227] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 10/07/2016] [Accepted: 10/16/2016] [Indexed: 12/12/2022] Open
Abstract
Free fatty acids (FFAs) are important substrates for mitochondrial oxidative metabolism and ATP synthesis but also cause serious stress to various tissues, contributing to the development of metabolic diseases. CD36 is a major mediator of cellular FFA uptake. Inside the cell, saturated FFAs are able to induce the production of cytosolic and mitochondrial reactive oxygen species (ROS), which can be prevented by co-exposure to unsaturated FFAs. There are close connections between oxidative stress and organellar Ca2+ homeostasis. Highly oxidative conditions induced by palmitate trigger aberrant endoplasmic reticulum (ER) Ca2+ release and thereby deplete ER Ca2+ stores. The resulting ER Ca2+ deficiency impairs chaperones of the protein folding machinery, leading to the accumulation of misfolded proteins. This ER stress may further aggravate oxidative stress by augmenting ER ROS production. Secondary to ER Ca2+ release, cytosolic and mitochondrial matrix Ca2+ concentrations can also be altered. In addition, plasmalemmal ion channels operated by ER Ca2+ depletion mediate persistent Ca2+ influx, further impairing cytosolic and mitochondrial Ca2+ homeostasis. Mitochondrial Ca2+ overload causes superoxide production and functional impairment, culminating in apoptosis. This vicious cycle of lipotoxicity occurs in multiple tissues, resulting in β-cell failure and insulin resistance in target tissues, and further aggravates diabetic complications.
Collapse
|
19
|
Moon JS, Karunakaran U, Elumalai S, Lee IK, Lee HW, Kim YW, Won KC. Metformin prevents glucotoxicity by alleviating oxidative and ER stress-induced CD36 expression in pancreatic beta cells. J Diabetes Complications 2017; 31:21-30. [PMID: 27662780 DOI: 10.1016/j.jdiacomp.2016.09.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/18/2016] [Accepted: 09/05/2016] [Indexed: 12/27/2022]
Abstract
AIM/HYPOTHESIS Cluster determinant 36 (CD36), a fatty acid transporter, was reported to have a pivotal role in glucotoxicity-induced beta cell dysfunction. However, little is known about how glucotoxicity influences CD36 expression, and it is unknown whether this action can be counteracted by metformin. In the present study, we showed that metformin counteracts glucotoxicity by alleviating oxidative and endoplasmic reticulum (ER) stress-induced CD36 expression. METHODS We used primary rat islets as well as INS-1 cells for 72h to 24h with 30mM glucose, respectively. Thapsigargin was used as strong ER stressor, and Sulfo-N-succinimidyl oleate (SSO) and RNA interference were chosen for CD36 inhibition. Free fatty acid uptake was measured by radioisotope tracing technique. RESULTS Exposure of isolated rat islets to high glucose (HG) for 3days decreased insulin and pancreatic duodenal homeobox1 (Pdx1) mRNA expression, with the suppression of glucose-stimulated insulin secretion (GSIS) along with elevation of reactive oxygen species (ROS) levels. Incubation with metformin restored insulin and Pdx1 mRNA expression with significant improvements in GSIS and decrease in ROS production. HG exposure in INS-1 cells increased free fatty acid uptake via induction of CD36 along with impaired insulin and Pdx1 mRNA expression. Moreover, thapsigargin also increased the induction of CD36 expression. Metformin blocked HG- and thapsigargin-induced CD36 expression. In addition, the simultaneous inhibition of intracellular ROS production by metformin or CD36 activation by SSO or CD36 siRNA significantly decreased the apoptotic response in HG-treated INS-1 cells. CONCLUSION/INTERPRETATION In conclusion, metformin conferred protection against HG-induced apoptosis of pancreatic beta cells, largely by interfering with ROS production, and inhibited the CD36-mediated free fatty acid influx. This report provides evidence that the inhibition of CD36 may have potential therapeutic effects against hyperglycemia-induced beta cell damage in diabetes.
Collapse
Affiliation(s)
- Jun Sung Moon
- Department of Internal Medicine, Yeungnam University College of Medicine, Daegu, Republic of Korea
| | - Udayakumar Karunakaran
- Institute of Medical Science, Yeungnam University College of Medicine, Daegu, Republic of Korea
| | - Suma Elumalai
- Institute of Medical Science, Yeungnam University College of Medicine, Daegu, Republic of Korea
| | - In-Kyu Lee
- Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu
| | - Hyoung Woo Lee
- Department of Internal Medicine, Yeungnam University College of Medicine, Daegu, Republic of Korea
| | - Yong-Woon Kim
- Department of Physiology, Yeungnam University College of Medicine, Daegu, Republic of Korea
| | - Kyu Chang Won
- Department of Internal Medicine, Yeungnam University College of Medicine, Daegu, Republic of Korea; Institute of Medical Science, Yeungnam University College of Medicine, Daegu, Republic of Korea.
| |
Collapse
|
20
|
Rac1-NADPH oxidase signaling promotes CD36 activation under glucotoxic conditions in pancreatic beta cells. Redox Biol 2016; 11:126-134. [PMID: 27912197 PMCID: PMC5133656 DOI: 10.1016/j.redox.2016.11.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 11/09/2016] [Accepted: 11/10/2016] [Indexed: 01/11/2023] Open
Abstract
We recently reported that cluster determinant 36 (CD36), a fatty acid transporter, plays a pivotal role in glucotoxicity-induced β-cell dysfunction. However, little is known about how glucotoxicity influences CD36 expression. Emerging evidence suggests that the small GTPase Rac1 is involved in the pathogenesis of beta cell dysfunction in type 2 diabetes (T2D). The primary objective of the current study was to determine the role of Rac1 in CD36 activation and its impact on β-cell dysfunction in diabetes mellitus. To address this question, we subjected INS-1 cells and human beta cells (1.1B4) to high glucose conditions (30mM) in the presence or absence of Rac1 inhibition either by NSC23766 (Rac1 GTPase inhibitor) or small interfering RNA. High glucose exposure in INS-1 and human beta cells (1.1b4) resulted in the activation of Rac1 and induced cell apoptosis. Rac1 activation mediates NADPH oxidase (NOX) activation leading to elevated ROS production in both cells. Activation of the Rac1-NOX complex by high glucose levels enhanced CD36 expression in INS-1 and human 1.1b4 beta cell membrane fractions. The inhibition of Rac1 by NSC23766 inhibited NADPH oxidase activity and ROS generation induced by high glucose concentrations in INS-1 & human 1.1b4 beta cells. Inhibition of Rac1-NOX complex activation by NSC23766 significantly reduced CD36 expression in INS-1 and human 1.1b4 beta cell membrane fractions. In addition, Rac1 inhibition by NSC23766 significantly reduced high glucose-induced mitochondrial dysfunction. Furthermore, NADPH oxidase inhibition by VAS2870 also attenuated high glucose-induced ROS generation and cell apoptosis. These results suggest that Rac1-NADPH oxidase dependent CD36 expression contributes to high glucose-induced beta cell dysfunction and cell death.
Collapse
|
21
|
Yoon JS, Moon JS, Kim YW, Won KC, Lee HW. The Glucotoxicity Protecting Effect of Ezetimibe in Pancreatic Beta Cells via Inhibition of CD36. J Korean Med Sci 2016; 31:547-52. [PMID: 27051238 PMCID: PMC4810337 DOI: 10.3346/jkms.2016.31.4.547] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 12/23/2015] [Indexed: 11/20/2022] Open
Abstract
Inhibition of CD36, a fatty acid transporter, has been reported to prevent glucotoxicity and ameliorate high glucose induced beta cell dysfunction. Ezetimibe is a selective cholesterol absorption inhibitor that blocks Niemann Pick C1-like 1 protein, but may exert its effect through suppression of CD36. We attempted to clarify the beneficial effect of ezetimibe on insulin secreting cells and to determine whether this effect is related to change of CD36 expression. mRNA expression of insulin and CD36, intracellular peroxide level and glucose stimulated insulin secretion (GSIS) under normal (5.6 mM) or high glucose (30 mM) condition in INS-1 cells and primary rat islet cells were compared. Changes of the aforementioned factors with treatment with ezetimibe (20 μM) under normal or high glucose condition were also assessed. mRNA expression of insulin was decreased with high glucose, which was reversed by ezetimibe in both INS-1 cells and primary rat islets. CD36 mRNA expression was increased with high glucose, but decreased by ezetimibe in INS-1 cells and primary rat islets. Three-day treatment with high glucose resulted in an increase in intracellular peroxide level; however, it was decreased by treatment with ezetimibe. Decrease in GSIS by three-day treatment with high glucose was reversed by ezetimibe. Palmitate uptake following exposure to high glucose conditions for three days was significantly elevated, which was reversed by ezetimibe in INS-1 cells. Ezetimibe may prevent glucotoxicity in pancreatic β-cells through a decrease in fatty acid influx via inhibition of CD36.
Collapse
Affiliation(s)
- Ji Sung Yoon
- Department of Internal Medicine, Yeungnam University College of Medicine, Daegu, Korea
| | - Jun Sung Moon
- Department of Internal Medicine, Yeungnam University College of Medicine, Daegu, Korea
| | - Yong-Woon Kim
- Department of Physiology, Yeungnam University College of Medicine, Daegu, Korea
| | - Kyu Chang Won
- Department of Internal Medicine, Yeungnam University College of Medicine, Daegu, Korea
| | - Hyoung Woo Lee
- Department of Internal Medicine, Yeungnam University College of Medicine, Daegu, Korea
| |
Collapse
|
22
|
Karunakaran U, Moon JS, Lee HW, Won KC. CD36 initiated signaling mediates ceramide-induced TXNIP expression in pancreatic beta-cells. Biochim Biophys Acta Mol Basis Dis 2015; 1852:2414-22. [PMID: 26297980 DOI: 10.1016/j.bbadis.2015.08.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 08/13/2015] [Accepted: 08/17/2015] [Indexed: 01/25/2023]
Abstract
Diverse mechanisms are involved in the pathogenesis of β-cell failure in type 2 diabetes. Of them, the accumulation of ceramide, a bioactive lipid metabolite, is suggested to play a major role in inflammatory and stress responses that induce diabetes. However, the downstream inflammatory target of ceramide has not been defined. Using rat islets and the INS-1 β-cell line, we hypothesized that activation of the redox sensitive protein TXNIP is involved in ceramide-induced β-cell dysfunction. Incubation of INS-1 cells and primary islets with C2-ceramide (N-acetyl-sphingosine) downregulated insulin and PDX-1 expression and increased β-cell apoptosis. Ceramide treatment induced a time dependent increase in TXNIP gene expression accompanied by activation of nuclear factor (NF)-κB and reduced mitochondrial thioredoxin (TRX) activity. Pretreatment with sulfo-N-succinimidyl oleate (SSO), an irreversible inhibitor of the scavenger receptor CD36, blocked ceramide-induced up-regulation of TXNIP expression and activity of NF-κB. Blockade of NF-κB nuclear translocation by the peptide SN50 prevented ceramide-mediated TXNIP induction. Furthermore, SSO also attenuated ceramide-induced early loss of insulin signaling and apoptosis. Collectively, our results unveil a novel role of CD36 in early molecular events leading to NF-κB activation and TXNIP expression. These data suggest that CD36 dependent NF-κB-TXNIP signaling contributes to the ceramide-induced pathogenesis of pancreatic β-cell dysfunction and failure.
Collapse
Affiliation(s)
- Udayakumar Karunakaran
- Institute of Medical Science, Yeungnam University College of Medicine, Daegu, South Korea
| | - Jun Sung Moon
- Department of Internal Medicine, Yeungnam University College of Medicine, Daegu, South Korea
| | - Hyoung Woo Lee
- Department of Internal Medicine, Yeungnam University College of Medicine, Daegu, South Korea
| | - Kyu Chang Won
- Institute of Medical Science, Yeungnam University College of Medicine, Daegu, South Korea; Department of Internal Medicine, Yeungnam University College of Medicine, Daegu, South Korea.
| |
Collapse
|
23
|
Lee HJ, Choi YJ, Park SY, Kim JY, Won KC, Son JK, Kim YW. Hexane Extract of Orthosiphon stamineus Induces Insulin Expression and Prevents Glucotoxicity in INS-1 Cells. Diabetes Metab J 2015; 39:51-8. [PMID: 25729713 PMCID: PMC4342537 DOI: 10.4093/dmj.2015.39.1.51] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 06/02/2014] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Hyperglycemia, a characteristic feature of diabetes, induces glucotoxicity in pancreatic β-cells, resulting in further impairment of insulin secretion and worsening glycemic control. Thus, preservation of insulin secretory capacity is essential for the management of type 2 diabetes. In this study, we evaluated the ability of an Orthosiphon stamineus (OS) extract to prevent glucotoxicity in insulin-producing cells. METHODS We measured insulin mRNA expression and glucose-stimulated insulin secretion (GSIS) in OS-treated INS-1 cells after exposure to a high glucose (HG; 30 mM) concentration. RESULTS The hexane extract of OS elevated mRNA expression of insulin as well as pancreatic and duodenal homeobox-1 of INS-1 cells in a dose-dependent manner. The hexane OS extract also increased the levels of phosphorylated phosphatidylinositol 3-kinase (PI3K) in a concentration-dependent manner. Additionally, Akt phosphorylation was elevated by treatment with 100 and 200 µmol of the hexane OS extract. Three days of HG exposure suppressed insulin mRNA expression and GSIS; these expressions were restored by treatment with the hexane OS extract. HG elevated peroxide levels in the INS-1 cells. These levels were unaffected by OS treatment under both normal and hyperglycemic conditions. CONCLUSION Our results suggested that the hexane extract of OS elevates insulin mRNA expression and prevents glucotoxicity induced by a 3-day treatment with HG. This was associated with the activation of PI-3K and Akt.
Collapse
Affiliation(s)
- Hae-Jung Lee
- Department of Pediatrics, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea
| | - Yoon-Jung Choi
- Department of Physiology, Yeungnam University College of Medicine, Daegu, Korea
| | - So-Young Park
- Department of Physiology, Yeungnam University College of Medicine, Daegu, Korea
| | - Jong-Yeon Kim
- Department of Physiology, Yeungnam University College of Medicine, Daegu, Korea
| | - Kyu-Chang Won
- Department of Internal Medicine, Yeungnam University College of Medicine, Daegu, Korea
| | - Jong-Keun Son
- Yeungnam University College of Pharmacy, Gyeongsan, Korea
| | - Yong-Woon Kim
- Department of Physiology, Yeungnam University College of Medicine, Daegu, Korea
| |
Collapse
|
24
|
Honka H, Hannukainen JC, Tarkia M, Karlsson H, Saunavaara V, Salminen P, Soinio M, Mikkola K, Kudomi N, Oikonen V, Haaparanta-Solin M, Roivainen A, Parkkola R, Iozzo P, Nuutila P. Pancreatic metabolism, blood flow, and β-cell function in obese humans. J Clin Endocrinol Metab 2014; 99:E981-90. [PMID: 24527718 DOI: 10.1210/jc.2013-4369] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
CONTEXT Glucolipotoxicity is believed to induce pancreatic β-cell dysfunction in obesity. Previously, it has not been possible to study pancreatic metabolism and blood flow in humans. OBJECTIVE The objective of the study was to investigate whether pancreatic metabolism and blood flow are altered in obesity using positron emission tomography (PET). In the preclinical part, the method was validated in animals. DESIGN This was a cross-sectional study. SETTING The study was conducted in a clinical research center. PARTICIPANTS Human studies consisted of 52 morbidly obese and 25 healthy age-matched control subjects. Validation experiments were done with rodents and pigs. INTERVENTIONS PET and magnetic resonance imaging studies using a glucose analog ([(18)F]fluoro-2-deoxy-d-glucose), a palmitate analog [14(R,S)-[(18)F]fluoro-6-thia-heptadecanoic acid], and radiowater ([(15)O]H2O) were performed. In animals, a comparison between ex vivo and in vivo data was performed. MAIN OUTCOME MEASURES Pancreatic glucose/fatty acid (FA) uptake, fat accumulation, and blood flow parameters of β-cell function were measured. RESULTS PET proved to be a feasible method to measure pancreatic metabolism. Compared with healthy participants, obese participants had elevated pancreatic FA uptake (P < .0001), more fat accumulation (P = .0001), lowered glucose uptake both during fasting and euglycemic hyperinsulinemia, and blunted blood flow (P < .01) in the pancreas. Blood flow, FA uptake, and fat accumulation were negatively associated with multiple markers of β-cell function. CONCLUSIONS Obesity leads to changes in pancreatic energy metabolism with a substrate shift from glucose to FAs. In morbidly obese humans, impaired pancreatic blood flow may contribute to β-cell dysfunction and in the pathogenesis of type 2 diabetes.
Collapse
Affiliation(s)
- Henri Honka
- Turku PET Centre (H.H., J.C.H., M.T., H.K., V.S., K.M., V.O., M.H.-S., A.R., R.P., P.N.), University of Turku, Turku 20520, Finland; Division of Digestive Surgery and Urology (P.S.) and Department of Endocrinology (P.N., M.S.), Turku University Hospital, Turku 20520, Finland; Faculty of Medicine (N.K.), University of Kagawa, Kagawa 760-0016, Japan; Department of Radiology (R.P.), University of Tampere, Tampere 33014, Finland; Institute of Biomedical Engineering (P.I.), National Research Council, 35128 Padua, Italy; and Institute of Clinical Physiology (P.I.), National Research Council, 56124 Pisa, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Arndt S, Wacker E, Li YF, Shimizu T, Thomas HM, Morfill GE, Karrer S, Zimmermann JL, Bosserhoff AK. Cold atmospheric plasma, a new strategy to induce senescence in melanoma cells. Exp Dermatol 2013; 22:284-9. [PMID: 23528215 DOI: 10.1111/exd.12127] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2013] [Indexed: 12/12/2022]
Abstract
Over the past few years, the application of cold atmospheric plasma (CAP) in medicine has developed into an innovative field of research of rapidly growing importance. One promising new medical application of CAP is cancer treatment. Different studies revealed that CAP may potentially affect the cell cycle and cause cell apoptosis or necrosis in tumor cells dependent on the CAP device and doses. In this study, we used a novel hand-held and battery-operated CAP device utilizing the surface micro discharge (SMD) technology for plasma production in air and consequently analysed dose-dependent CAP treatment effects on melanoma cells. After 2 min of CAP treatment, we observed irreversible cell inactivation. Phospho-H2AX immunofluorescence staining and Flow cytometric analysis demonstrated that 2 min of CAP treatment induces DNA damage, promotes induction of Sub-G1 phase and strongly increases apoptosis. Further, protein array technology revealed induction of pro-apoptotic events like p53 and Rad17 phosphorylation of Cytochrome c release and activation of Caspase-3. Interestingly, using lower CAP doses with 1 min of treatment, almost no apoptosis was observed but long-term inhibition of proliferation. H3K9 immunofluorescence, SA-ß-Gal staining and p21 expression revealed that especially these low CAP doses induce senescence in melanoma cells. In summary, we observed differences in induction of apoptosis or senescence of tumor cells in respond to different CAP doses using a new CAP device. The mechanism of senescence with regard to plasma therapy was so far not described previously and is of great importance for therapeutic application of CAP.
Collapse
Affiliation(s)
- Stephanie Arndt
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Zou R, Yang L, Xue J, Ke M, Huang Q, Huang Q, Dai Z, Sun J, Xu Y. WITHDRAWN: RIP140 mediates hyperglycemia-induced glucotoxicity in β-cells via the activation of JNK and ERK1/2 signaling pathways. Diabetes Res Clin Pract 2013:S0168-8227(12)00506-2. [PMID: 23290273 DOI: 10.1016/j.diabres.2012.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 10/22/2012] [Accepted: 12/13/2012] [Indexed: 10/27/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
Collapse
Affiliation(s)
- Runmei Zou
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Donghu Road 169#, Wuhan, Hubei 430071, China
| | - Li Yang
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Donghu Road 169#, Wuhan, Hubei 430071, China
| | - Junli Xue
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Donghu Road 169#, Wuhan, Hubei 430071, China
| | - Min Ke
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Donghu Road 169#, Wuhan, Hubei 430071, China
| | - Qian Huang
- Department of Paediatrics, Zhongnan Hospital of Wuhan University, Donghu Road 169#, Wuhan, Hubei 430071, China
| | - Qi Huang
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Donghu Road 169#, Wuhan, Hubei 430071, China
| | - Zhe Dai
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Donghu Road 169#, Wuhan, Hubei 430071, China
| | - Jiazhong Sun
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Donghu Road 169#, Wuhan, Hubei 430071, China
| | - Yancheng Xu
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Donghu Road 169#, Wuhan, Hubei 430071, China.
| |
Collapse
|