1
|
Fan G, Yu Y, Zhang X, Jiang J, Wang S, Zhou B, Jiang T. Comprehensive analysis of the stress associated protein (SAP) family and the function of PagSAP9 from Populus alba × P. glandulosa in salt stress. PHYTOCHEMISTRY 2025; 232:114367. [PMID: 39701200 DOI: 10.1016/j.phytochem.2024.114367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/13/2024] [Accepted: 12/15/2024] [Indexed: 12/21/2024]
Abstract
Poplar tree growth is frequently hindered by environmental stressors, particularly soil salinization. Enhancing salt tolerance is essential for improving their adaptability and biomass under these conditions. The Stress-Associated Protein (SAP) family, characterized by A20/AN1 zinc finger domains, plays a crucial role in plants' tolerance to abiotic stress. However, functional investigations on SAP proteins in poplar are limited. In our study, we identified 19 SAP members in poplar, distributed unevenly across ten chromosomes and classified them into two major groups based on phylogenetic relationship and structure characteristics. Notably, only three segmental duplications were found, while no tandem duplications were detected. The PagSAP9 gene from Populus alba x P. glandulosa, featured both A20 and AN1 domains, was successfully characterized and localized to both cytoplasm and nucleus. It was predominantly expressed in roots and leaves and showed significantly upregulation under salt stress. And the overexpressing PagSAP9 transgenic poplars enhanced the activities of peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT), alongside reduced malondialdehyde (MDA) content. Additionally, DAB and NBT histological stainings further confirmed the positive effects of PagSAP9 gene. Collectively, these findings highlight the potential of the PagSAP9 gene to improve salt tolerance in poplar, emphasizing the broader applicability of SAP genes in plant stress resistance and providing valuable genetic resources for developing resilient plant varieties.
Collapse
Affiliation(s)
- Gaofeng Fan
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Yingying Yu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Xiao Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Jiahui Jiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Shuang Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Boru Zhou
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China.
| | - Tingbo Jiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
2
|
Ben Saad R, Ben Romdhane W, Čmiková N, Baazaoui N, Bouteraa MT, Ben Akacha B, Chouaibi Y, Maisto M, Ben Hsouna A, Garzoli S, Wiszniewska A, Kačániová M. Research progress on plant stress-associated protein (SAP) family: Master regulators to deal with environmental stresses. Bioessays 2024; 46:e2400097. [PMID: 39248672 DOI: 10.1002/bies.202400097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 09/10/2024]
Abstract
Every year, unfavorable environmental factors significantly affect crop productivity and threaten food security. Plants are sessile; they cannot move to escape unfavorable environmental conditions, and therefore, they activate a variety of defense pathways. Among them are processes regulated by stress-associated proteins (SAPs). SAPs have a specific zinc finger domain (A20) at the N-terminus and either AN1 or C2H2 at the C-terminus. SAP proteins are involved in many biological processes and in response to various abiotic or biotic constraints. Most SAPs play a role in conferring transgenic stress resistance and are stress-inducible. The emerging field of SAPs in abiotic or biotic stress response regulation has attracted the attention of researchers. Although SAPs interact with various proteins to perform their functions, the exact mechanisms of these interactions remain incompletely understood. This review aims to provide a comprehensive understanding of SAPs, covering their diversity, structure, expression, and subcellular localization. SAPs play a pivotal role in enabling crosstalk between abiotic and biotic stress signaling pathways, making them essential for developing stress-tolerant crops without yield penalties. Collectively, understanding the complex regulation of SAPs in stress responses can contribute to enhancing tolerance against various environmental stresses through several techniques such as transgenesis, classical breeding, or gene editing.
Collapse
Affiliation(s)
- Rania Ben Saad
- Center of Biotechnology of Sfax, Biotechnology and Plant Improvement Laboratory, University of Sfax, Sfax, Tunisia
| | - Walid Ben Romdhane
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Natália Čmiková
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Nitra, Slovakia
| | - Narjes Baazaoui
- Biology department, College of Sciences and Arts Muhayil Assir, King Khalid University, Abha, Saudi Arabia
| | - Mohamed Taieb Bouteraa
- Center of Biotechnology of Sfax, Biotechnology and Plant Improvement Laboratory, University of Sfax, Sfax, Tunisia
| | - Bouthaina Ben Akacha
- Center of Biotechnology of Sfax, Biotechnology and Plant Improvement Laboratory, University of Sfax, Sfax, Tunisia
| | - Yosra Chouaibi
- Center of Biotechnology of Sfax, Biotechnology and Plant Improvement Laboratory, University of Sfax, Sfax, Tunisia
| | - Maria Maisto
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Anis Ben Hsouna
- Center of Biotechnology of Sfax, Biotechnology and Plant Improvement Laboratory, University of Sfax, Sfax, Tunisia
- Department of Environmental Sciences and Nutrition, Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir, Mahdia, Tunisia
| | - Stefania Garzoli
- Department of Chemistry and Technologies of Drug, Sapienza University, Rome, Italy
| | - Alina Wiszniewska
- Department of Botany, Physiology and Plant Protection, University of Agriculture in Kraków, Kraków, Poland
| | - Miroslava Kačániová
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Nitra, Slovakia
- School of Medical & Health Sciences, University of Economics and Human Sciences in Warsaw, Warszawa, Poland
| |
Collapse
|
3
|
Dücker R, Lümmen P, Wolf T, Brabetz V, Beffa R. An intronless tau class glutathione transferase detoxifies several herbicides in flufenacet-resistant ryegrass. PLANT PHYSIOLOGY 2024; 196:1254-1267. [PMID: 38848314 DOI: 10.1093/plphys/kiae330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/04/2024] [Accepted: 05/06/2024] [Indexed: 06/09/2024]
Abstract
Resistance to preemergence herbicides, e.g. inhibitors of the biosynthesis of very-long-chain fatty acids (VLCFAs), is evolving in response to increased use of these compounds. Grass weeds such as ryegrasses (Lolium spp.) have accumulated resistance to various herbicide modes of action. Here, an RNA-seq analysis was conducted using 3 ryegrass populations resistant to the VLCFA biosynthesis inhibitor flufenacet to investigate this phenomenon. Besides various transcripts, including putative long noncoding RNAs (lncRNAs), a single putatively functional tau class glutathione transferase (GST) was constitutively differentially expressed. It was further induced by herbicide application. This GST was expressed as a recombinant protein in Escherichia coli along with other GSTs and detoxified flufenacet rapidly in vitro. Detoxification rates of other herbicides tested in vitro were in accordance with cross-resistance patterns previously determined in vivo. A genome-wide GST analysis revealed that the candidate GST was located in a cluster of 3 intronless GSTs. Their intronless nature possibly results from the retroposition of cellular mRNAs followed by tandem duplication and may affect gene expression. The large number of GSTs (≥195) in the genome of rigid ryegrass (Lolium rigidum) compared with other plant organisms is likely a key factor in the ability of this weed to evolve resistance to different herbicide chemistries. However, in the case of flufenacet resistance, a single upregulated GST with high affinity for the substrate flufenacet possibly contributes overproportionally to rapid herbicide detoxification in planta. The regulation of this gene and the role of differentially expressed transcripts, including various putative lncRNAs, require further investigation.
Collapse
Affiliation(s)
- Rebecka Dücker
- Department of Crop Sciences, Division of Plant Pathology and Crop Protection, Georg-August Universität Göttingen, Göttingen 37077, Germany
| | - Peter Lümmen
- CropScience Division, Bayer AG, Frankfurt/Main 65926, Germany
| | - Thomas Wolf
- CropScience Division, Bayer AG, Frankfurt/Main 65926, Germany
| | | | - Roland Beffa
- Executive Department, Senior Scientist Consultant, Liederbach 65835, Germany
| |
Collapse
|
4
|
Reder AT, Goel A, Garcia T, Feng X. Alternative Splicing of RNA Is Excessive in Multiple Sclerosis and Not Linked to Gene Expression Levels: Dysregulation Is Corrected by IFN-β. J Interferon Cytokine Res 2024; 44:355-371. [PMID: 38695855 DOI: 10.1089/jir.2024.0032] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024] Open
Affiliation(s)
- Anthony T Reder
- Department of Neurology MC-2030, University of Chicago Biological Sciences Division, Chicago, Illinois, USA
| | - Aika Goel
- Department of Neurology MC-2030, University of Chicago Biological Sciences Division, Chicago, Illinois, USA
| | - Tzintzuni Garcia
- Center for Translational Data Sciences, University of Chicago Biological Sciences Division, Chicago, Illinois, USA
| | - Xuan Feng
- Department of Neurology MC-2030, University of Chicago Biological Sciences Division, Chicago, Illinois, USA
| |
Collapse
|
5
|
Lin J, Ruan S, Guo Q, Zhang Y, Fang M, Li T, Luo G, Tian Z, Zhang Y, Tandayu E, Chen C, Lu J, Ma C, Si H. Comprehensive genome-wide analysis of wheat xylanase inhibitor protein (XIP) genes: unveiling their role in Fusarium head blight resistance and plant immune mechanisms. BMC PLANT BIOLOGY 2024; 24:462. [PMID: 38802731 PMCID: PMC11129392 DOI: 10.1186/s12870-024-05176-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/20/2024] [Indexed: 05/29/2024]
Abstract
In this comprehensive genome-wide study, we identified and classified 83 Xylanase Inhibitor Protein (XIP) genes in wheat, grouped into five distinct categories, to enhance understanding of wheat's resistance to Fusarium head blight (FHB), a significant fungal threat to global wheat production. Our analysis reveals the unique distribution of XIP genes across wheat chromosomes, particularly at terminal regions, suggesting their role in the evolutionary expansion of the gene family. Several XIP genes lack signal peptides, indicating potential alternative secretion pathways that could be pivotal in plant defense against FHB. The study also uncovers the sequence homology between XIPs and chitinases, hinting at a functional diversification within the XIP gene family. Additionally, the research explores the association of XIP genes with plant immune mechanisms, particularly their linkage with plant hormone signaling pathways like abscisic acid and jasmonic acid. XIP-7A3, in particular, demonstrates a significant increase in expression upon FHB infection, highlighting its potential as a key candidate gene for enhancing wheat's resistance to this disease. This research not only enriches our understanding of the XIP gene family in wheat but also provides a foundation for future investigations into their role in developing FHB-resistant wheat cultivars. The findings offer significant implications for wheat genomics and breeding, contributing to the development of more resilient crops against fungal diseases.
Collapse
Affiliation(s)
- Juan Lin
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
- Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, China
| | - Shuang Ruan
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
- Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, China
| | - Qi Guo
- Faculty of Science and Engineering, Southern Cross University, Lismore, NSW, 2480, Australia
| | - Yonglin Zhang
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
- Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, China
| | - Mengyuan Fang
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
- Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, China
| | - Tiantian Li
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
- Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, China
| | - Gan Luo
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
- Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, China
| | - Zhuangbo Tian
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
- Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, China
| | - Yi Zhang
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
- Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, China
| | - Erwin Tandayu
- Faculty of Science and Engineering, Southern Cross University, Lismore, NSW, 2480, Australia
| | - Can Chen
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
- Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, China
| | - Jie Lu
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
- Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, China
| | - Chuanxi Ma
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
- Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, China
| | - Hongqi Si
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, China.
- Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, China.
| |
Collapse
|
6
|
Aleshina YA, Aleshin VA. Evolutionary Changes in Primate Glutamate Dehydrogenases 1 and 2 Influence the Protein Regulation by Ligands, Targeting and Posttranslational Modifications. Int J Mol Sci 2024; 25:4341. [PMID: 38673928 PMCID: PMC11050691 DOI: 10.3390/ijms25084341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
There are two paralogs of glutamate dehydrogenase (GDH) in humans encoded by the GLUD1 and GLUD2 genes as a result of a recent retroposition during the evolution of primates. The two human GDHs possess significantly different regulation by allosteric ligands, which is not fully characterized at the structural level. Recent advances in identification of the GDH ligand binding sites provide a deeper perspective on the significance of the accumulated substitutions within the two GDH paralogs. In this review, we describe the evolution of GLUD1 and GLUD2 after the duplication event in primates using the accumulated sequencing and structural data. A new gibbon GLUD2 sequence questions the indispensability of ancestral R496S and G509A mutations for GLUD2 irresponsiveness to GTP, providing an alternative with potentially similar regulatory features. The data of both GLUD1 and GLUD2 evolution not only confirm substitutions enhancing GLUD2 mitochondrial targeting, but also reveal a conserved mutation in ape GLUD1 mitochondrial targeting sequence that likely reduces its transport to mitochondria. Moreover, the information of GDH interactors, posttranslational modification and subcellular localization are provided for better understanding of the GDH mutations. Medically significant point mutations causing deregulation of GDH are considered from the structural and regulatory point of view.
Collapse
Affiliation(s)
- Yulia A. Aleshina
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov First Moscow State Medical University, 119435 Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Vasily A. Aleshin
- Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
- Department of Biochemistry, Sechenov First Moscow State Medical University, 119048 Moscow, Russia
| |
Collapse
|
7
|
Engal E, Zhang Z, Geminder O, Jaffe-Herman S, Kay G, Ben-Hur A, Salton M. The spectrum of pre-mRNA splicing in autism. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1838. [PMID: 38509732 DOI: 10.1002/wrna.1838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/22/2024]
Abstract
Disruptions in spatiotemporal gene expression can result in atypical brain function. Specifically, autism spectrum disorder (ASD) is characterized by abnormalities in pre-mRNA splicing. Abnormal splicing patterns have been identified in the brains of individuals with ASD, and mutations in splicing factors have been found to contribute to neurodevelopmental delays associated with ASD. Here we review studies that shed light on the importance of splicing observed in ASD and that explored the intricate relationship between splicing factors and ASD, revealing how disruptions in pre-mRNA splicing may underlie ASD pathogenesis. We provide an overview of the research regarding all splicing factors associated with ASD and place a special emphasis on five specific splicing factors-HNRNPH2, NOVA2, WBP4, SRRM2, and RBFOX1-known to impact the splicing of ASD-related genes. In the discussion of the molecular mechanisms influenced by these splicing factors, we lay the groundwork for a deeper understanding of ASD's complex etiology. Finally, we discuss the potential benefit of unraveling the connection between splicing and ASD for the development of more precise diagnostic tools and targeted therapeutic interventions. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Evolution and Genomics > RNA and Ribonucleoprotein Evolution RNA Evolution and Genomics > Computational Analyses of RNA RNA-Based Catalysis > RNA Catalysis in Splicing and Translation.
Collapse
Affiliation(s)
- Eden Engal
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Zhenwei Zhang
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ophir Geminder
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shiri Jaffe-Herman
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Gillian Kay
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Asa Ben-Hur
- Department of Computer Science, Colorado State University, Fort Collins, Colorado, USA
| | - Maayan Salton
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
8
|
Naro C, Antonioni A, Medici V, Caggiano C, Jolly A, de la Grange P, Bielli P, Paronetto MP, Sette C. Splicing targeting drugs highlight intron retention as an actionable vulnerability in advanced prostate cancer. J Exp Clin Cancer Res 2024; 43:58. [PMID: 38413979 PMCID: PMC10898177 DOI: 10.1186/s13046-024-02986-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/15/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Advanced prostate cancer (PC) is characterized by insensitivity to androgen deprivation therapy and chemotherapy, resulting in poor outcome for most patients. Thus, advanced PC urgently needs novel therapeutic strategies. Mounting evidence points to splicing dysregulation as a hallmark of advanced PC. Moreover, pharmacologic inhibition of the splicing process is emerging as a promising option for this disease. METHOD By using a representative androgen-insensitive PC cell line (22Rv1), we have investigated the genome-wide transcriptomic effects underlying the cytotoxic effects exerted by three splicing-targeting drugs: Pladienolide B, indisulam and THZ531. Bioinformatic analyses were performed to uncover the gene structural features underlying sensitivity to transcriptional and splicing regulation by these treatments. Biological pathways altered by these treatments were annotated by gene ontology analyses and validated by functional experiments in cell models. RESULTS Although eliciting similar cytotoxic effects on advanced PC cells, Pladienolide B, indisulam and THZ531 modulate specific transcriptional and splicing signatures. Drug sensitivity is associated with distinct gene structural features, expression levels and cis-acting sequence elements in the regulated exons and introns. Importantly, we identified PC-relevant genes (i.e. EZH2, MDM4) whose drug-induced splicing alteration exerts an impact on cell survival. Moreover, computational analyses uncovered a widespread impact of splicing-targeting drugs on intron retention, with enrichment in genes implicated in pre-mRNA 3'-end processing (i.e. CSTF3, PCF11). Coherently, advanced PC cells displayed high sensitivity to a specific inhibitor of the cleavage and polyadenylation complex, which enhances the effects of chemotherapeutic drugs that are already in use for this cancer. CONCLUSIONS Our study uncovers intron retention as an actionable vulnerability for advanced PC, which may be exploited to improve therapeutic management of this currently incurable disease.
Collapse
Affiliation(s)
- Chiara Naro
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, Largo Francesco Vito 1, 00168, Rome, Italy
- GSTeP Organoids Research Core Facility, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168, Rome, Italy
| | - Ambra Antonioni
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, Largo Francesco Vito 1, 00168, Rome, Italy
| | - Vanessa Medici
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, Largo Francesco Vito 1, 00168, Rome, Italy
| | - Cinzia Caggiano
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, Largo Francesco Vito 1, 00168, Rome, Italy
- GSTeP Organoids Research Core Facility, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168, Rome, Italy
| | | | | | - Pamela Bielli
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Maria Paola Paronetto
- Laboratory of Molecular and Cellular Neurobiology, IRCCS Fondazione Santa Lucia, 00143, Rome, Italy
- University of Rome Foro Italico, 00135, Rome, Italy
| | - Claudio Sette
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, Largo Francesco Vito 1, 00168, Rome, Italy.
- GSTeP Organoids Research Core Facility, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168, Rome, Italy.
| |
Collapse
|
9
|
Engal E, Oja KT, Maroofian R, Geminder O, Le TL, Marzin P, Guimier A, Mor E, Zvi N, Elefant N, Zaki MS, Gleeson JG, Muru K, Pajusalu S, Wojcik MH, Pachat D, Elmaksoud MA, Chan Jeong W, Lee H, Bauer P, Zifarelli G, Houlden H, Daana M, Elpeleg O, Amiel J, Lyonnet S, Gordon CT, Harel T, Õunap K, Salton M, Mor-Shaked H. Bi-allelic loss-of-function variants in WBP4, encoding a spliceosome protein, result in a variable neurodevelopmental syndrome. Am J Hum Genet 2023; 110:2112-2119. [PMID: 37963460 PMCID: PMC10716347 DOI: 10.1016/j.ajhg.2023.10.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/25/2023] [Accepted: 10/25/2023] [Indexed: 11/16/2023] Open
Abstract
Over two dozen spliceosome proteins are involved in human diseases, also referred to as spliceosomopathies. WW domain-binding protein 4 (WBP4) is part of the early spliceosomal complex and has not been previously associated with human pathologies in the Online Mendelian Inheritance in Man (OMIM) database. Through GeneMatcher, we identified ten individuals from eight families with a severe neurodevelopmental syndrome featuring variable manifestations. Clinical manifestations included hypotonia, global developmental delay, severe intellectual disability, brain abnormalities, musculoskeletal, and gastrointestinal abnormalities. Genetic analysis revealed five different homozygous loss-of-function variants in WBP4. Immunoblotting on fibroblasts from two affected individuals with different genetic variants demonstrated a complete loss of protein, and RNA sequencing analysis uncovered shared abnormal splicing patterns, including in genes associated with abnormalities of the nervous system, potentially underlying the phenotypes of the probands. We conclude that bi-allelic variants in WBP4 cause a developmental disorder with variable presentations, adding to the growing list of human spliceosomopathies.
Collapse
Affiliation(s)
- Eden Engal
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel; Department of Military Medicine and "Tzameret," Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Kaisa Teele Oja
- Genetics and Personalized Medicine Clinic, Tartu University Hospital, Tartu, Estonia; Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Reza Maroofian
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Ophir Geminder
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel; Department of Military Medicine and "Tzameret," Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Thuy-Linh Le
- Laboratory of Embryology and Genetics of Human Malformations, Institut National de La Santé et de La Recherche Médicale (INSERM) UMR 1163, Institut Imagine and Université Paris Cité, 75015 Paris, France
| | - Pauline Marzin
- Service de Médecine Génomique des Maladies Rares, Hôpital Necker-Enfants Malades, AP-HP, 75015 Paris, France
| | - Anne Guimier
- Laboratory of Embryology and Genetics of Human Malformations, Institut National de La Santé et de La Recherche Médicale (INSERM) UMR 1163, Institut Imagine and Université Paris Cité, 75015 Paris, France; Service de Médecine Génomique des Maladies Rares, Hôpital Necker-Enfants Malades, AP-HP, 75015 Paris, France
| | - Evyatar Mor
- Department of Computer Science, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Naama Zvi
- Department of Genetics, Hadassah Medical Organization, Jerusalem, Israel
| | - Naama Elefant
- Department of Genetics, Hadassah Medical Organization, Jerusalem, Israel
| | - Maha S Zaki
- Department of Clinical Genetics, Human Genetics and Genome Research Institute, Cairo, Egypt
| | - Joseph G Gleeson
- Department of Neurosciences, University of California, San Diego, La Jolla, USA; Rady Children's Institute for Genomic Medicine, San Diego, La Jolla, USA
| | - Kai Muru
- Genetics and Personalized Medicine Clinic, Tartu University Hospital, Tartu, Estonia; Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Sander Pajusalu
- Genetics and Personalized Medicine Clinic, Tartu University Hospital, Tartu, Estonia; Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | | | - Divya Pachat
- Department of Medical Genetics, Aster MIMS (Malabar Institute of Medical Sciences)-Calicut, Kerala, India
| | - Marwa Abd Elmaksoud
- Neurology Unit, Department of Pediatrics, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | | | | | - Peter Bauer
- CENTOGENE GmbH, Am Strande 7, 18055 Rostock, Germany
| | | | - Henry Houlden
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Muhannad Daana
- Child Development Centers, Clalit Health Care Services, Jerusalem, Israel
| | - Orly Elpeleg
- Department of Genetics, Hadassah Medical Organization, Jerusalem, Israel; Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Jeanne Amiel
- Laboratory of Embryology and Genetics of Human Malformations, Institut National de La Santé et de La Recherche Médicale (INSERM) UMR 1163, Institut Imagine and Université Paris Cité, 75015 Paris, France; Service de Médecine Génomique des Maladies Rares, Hôpital Necker-Enfants Malades, AP-HP, 75015 Paris, France
| | - Stanislas Lyonnet
- Laboratory of Embryology and Genetics of Human Malformations, Institut National de La Santé et de La Recherche Médicale (INSERM) UMR 1163, Institut Imagine and Université Paris Cité, 75015 Paris, France; Service de Médecine Génomique des Maladies Rares, Hôpital Necker-Enfants Malades, AP-HP, 75015 Paris, France
| | - Christopher T Gordon
- Laboratory of Embryology and Genetics of Human Malformations, Institut National de La Santé et de La Recherche Médicale (INSERM) UMR 1163, Institut Imagine and Université Paris Cité, 75015 Paris, France
| | - Tamar Harel
- Department of Genetics, Hadassah Medical Organization, Jerusalem, Israel; Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Katrin Õunap
- Genetics and Personalized Medicine Clinic, Tartu University Hospital, Tartu, Estonia; Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Maayan Salton
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Hagar Mor-Shaked
- Department of Genetics, Hadassah Medical Organization, Jerusalem, Israel; Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
10
|
Cheng L, Yan H, Liu Y, Guan G, Cheng P. Dissecting multifunctional roles of forkhead box transcription factor D1 in cancers. Biochim Biophys Acta Rev Cancer 2023; 1878:188986. [PMID: 37716516 DOI: 10.1016/j.bbcan.2023.188986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 09/18/2023]
Abstract
As a member of the forkhead box (FOX) family of transcription factors (TF), FOXD1 has recently been implicated as a crucial regulator in a variety of human cancers. Accumulating evidence has established dysregulated and aberrant FOXD1 signaling as a prominent feature in cancer development and progression. However, there is a lack of systematic review on this topic. Here, we summarized the present understanding of FOXD1 functions in cancer biology and reviewed the downstream targets and upstream regulatory mechanisms of FOXD1 as well as the related signaling pathways within the context of current reports. We highlighted the functional features of FOXD1 in cancers to identify the future research consideration of this multifunctional transcription factor and potential therapeutic strategies targeting its oncogenic activity.
Collapse
Affiliation(s)
- Lin Cheng
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Haixu Yan
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yang Liu
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Gefei Guan
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China.
| | - Peng Cheng
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China; Institute of Health Sciences, China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
11
|
Sun L, Wu Z, Lin Y, Xu S, Ye Y, Yin W, Zhou L, Lu J. Genetic polymorphisms of GGT1 gene (rs8135987, rs5751901 and rs2017869) are associated with neoadjuvant chemotherapy efficacy and toxicities in breast cancer patients. BMC Med Genomics 2023; 16:267. [PMID: 37891571 PMCID: PMC10612355 DOI: 10.1186/s12920-023-01685-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Our previous study illustrated the predictive value of serum gamma-glutamyl transpeptidase (GGT) for neoadjuvant chemotherapy (NAC) sensitivity in breast cancer patients. In this study we aim to determine whether single nucleotide polymorphisms (SNPs) in the gamma-glutamyltransferase 1 (GGT1) gene are related to the NAC response and adverse events and to find out a genetic marker in predicting NAC sensitivity. METHODS Three SNP loci (rs8135987, rs5751901, rs2017869) of GGT1 gene were selected and tested among breast cancer patients reciving NAC. Four genotype models were used in SNP analysis: co-dominant model compared AA vs. Aa vs. aa; dominant model compared AA vs. Aa + aa; recessive model compared AA + Aa vs. aa; over-dominant model compared AA + aa vs. Aa. Chi-squared test and multivariable logistic regression analysis were performed between SNP genotypes, haplotypes and pathological complete response(pCR), adverse events as well as serum GGT level. RESULTS A total of 143 patients were included in the study. For SNP rs8135987 (T > C), the TC genotype in over-dominant model was inversely related with pCR (adjusted OR = 0.30, 95% CI 0.10-0.88, p = 0.029) as well as the risk of peripheral neuropathy (adjusted OR = 0.39, 95% CI 0.15-0.96, p = 0.042). The TC genotype in dominant model was significantly associated with elevated serum GGT level (OR = 3.11, 95% CI 1.07-9.02, p = 0.036). For rs2017869 (G > C), the occurrence of grade 2 or greater neutropenia (OR = 0.39, 95% CI 0.08-0.84, p = 0.025) and leukopenia (OR = 0.24, 95% CI 0.08-0.78, p = 0.017) were both significantly reduced in patients with CC genotypes. For rs5751901(T > C), the CC genotype could significantly reduce the risk of grade 2 or greater neutropenia (OR = 0.29, 95% CI 0.09-0.96, p = 0.036) and leukopenia (OR = 0.27, 95% CI 0.09-0.84, p = 0.024) in recessive model. CONCLUSIONS The GGT1 gene SNPs might be an independent risk factor for poor response of NAC in breast cancer patients, providng theoretical basis for further precision therapy.
Collapse
Affiliation(s)
- Lu Sun
- Department of Breast Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, NO.160 Pujian Road, Shanghai, 200127, China
- Department of Gynaecologic Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Ziping Wu
- Department of Breast Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, NO.160 Pujian Road, Shanghai, 200127, China
| | - Yanping Lin
- Department of Breast Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, NO.160 Pujian Road, Shanghai, 200127, China
| | - Shuguang Xu
- Department of Breast Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, NO.160 Pujian Road, Shanghai, 200127, China
| | - Yumei Ye
- Department of Breast Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, NO.160 Pujian Road, Shanghai, 200127, China
| | - Wenjin Yin
- Department of Breast Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, NO.160 Pujian Road, Shanghai, 200127, China
| | - Liheng Zhou
- Department of Breast Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, NO.160 Pujian Road, Shanghai, 200127, China.
| | - Jingsong Lu
- Department of Breast Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, NO.160 Pujian Road, Shanghai, 200127, China.
| |
Collapse
|
12
|
Engal E, Oja KT, Maroofian R, Geminder O, Le TL, Mor E, Tzvi N, Elefant N, Zaki MS, Gleeson JG, Muru K, Pajusalu S, Wojcik MH, Pachat D, Elmaksoud MA, Jeong WC, Lee H, Bauer P, Zifarelli G, Houlden H, Elpeleg O, Gordon C, Harel T, Õunap K, Salton M, Mor-Shaked H. Biallelic loss of function variants in WBP4, encoding a spliceosome protein, result in a variable neurodevelopmental delay syndrome. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.06.19.23291425. [PMID: 37425688 PMCID: PMC10327195 DOI: 10.1101/2023.06.19.23291425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Over two dozen spliceosome proteins are involved in human diseases, also referred to as spliceosomopathies. WBP4 (WW Domain Binding Protein 4) is part of the early spliceosomal complex, and was not described before in the context of human pathologies. Ascertained through GeneMatcher we identified eleven patients from eight families, with a severe neurodevelopmental syndrome with variable manifestations. Clinical manifestations included hypotonia, global developmental delay, severe intellectual disability, brain abnormalities, musculoskeletal and gastrointestinal abnormalities. Genetic analysis revealed overall five different homozygous loss-of-function variants in WBP4. Immunoblotting on fibroblasts from two affected individuals with different genetic variants demonstrated complete loss of protein, and RNA sequencing analysis uncovered shared abnormal splicing patterns, including enrichment for abnormalities of the nervous system and musculoskeletal system genes, suggesting that the overlapping differentially spliced genes are related to the common phenotypes of the probands. We conclude that biallelic variants in WBP4 cause a spliceosomopathy. Further functional studies are called for better understanding of the mechanism of pathogenicity.
Collapse
Affiliation(s)
- Eden Engal
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
- Department of Military Medicine and “Tzameret”, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Kaisa Teele Oja
- Genetics and Personalized Medicine Clinic, Tartu University Hospital, Tartu, Estonia
- Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Reza Maroofian
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Ophir Geminder
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
- Department of Military Medicine and “Tzameret”, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Evyatar Mor
- Department of computer science, Ben-Gurion University of the Negev
| | - Naama Tzvi
- Department of Genetics, Hadassah Medical Organization, Jerusalem, Israel
| | - Naama Elefant
- Department of Genetics, Hadassah Medical Organization, Jerusalem, Israel
| | - Maha S. Zaki
- Department of Clinical Genetics, Human Genetics and Genome Research Institute, Cairo, Egypt
| | - Joseph G. Gleeson
- Department of Neurosciences, University of California, San Diego, La Jolla, USA
- Rady Children’s Institute for Genomic Medicine, San Diego, La Jolla, USA
| | - Kai Muru
- Genetics and Personalized Medicine Clinic, Tartu University Hospital, Tartu, Estonia
- Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Sander Pajusalu
- Genetics and Personalized Medicine Clinic, Tartu University Hospital, Tartu, Estonia
- Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | | | | | - Marwa Abd Elmaksoud
- Neurology Unit, Alexandria University Children’s Hospital, Department of Pediatrics, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | | | | | - Peter Bauer
- CENTOGENE N.V., Am Strande 7, 18055 Rostock, Germany
| | | | - Henry Houlden
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Orly Elpeleg
- Department of Genetics, Hadassah Medical Organization, Jerusalem, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Tamar Harel
- Department of Genetics, Hadassah Medical Organization, Jerusalem, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Katrin Õunap
- Genetics and Personalized Medicine Clinic, Tartu University Hospital, Tartu, Estonia
- Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Maayan Salton
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Hagar Mor-Shaked
- Department of Genetics, Hadassah Medical Organization, Jerusalem, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
13
|
Hu H, Dong B, Fan X, Wang M, Wang T, Liu Q. Mutational Bias and Natural Selection Driving the Synonymous Codon Usage of Single-Exon Genes in Rice (Oryza sativa L.). RICE (NEW YORK, N.Y.) 2023; 16:11. [PMID: 36849744 PMCID: PMC9971424 DOI: 10.1186/s12284-023-00627-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
The relative abundance of single-exon genes (SEGs) in higher plants is perplexing. Uncovering the synonymous codon usage pattern of SEGs will benefit for further understanding their underlying evolutionary mechanism in plants. Using internal correspondence analysis (ICA), we reveal a significant difference in synonymous codon usage between SEGs and multiple-exon genes (MEGs) in rice. But the effect is weak, accounting for only 2.61% of the total codon usage variability. SEGs and MEGs contain remarkably different base compositions, and are under clearly differential selective constraints, with the former having higher GC content, and evolving relatively faster during evolution. In the group of SEGs, the variability in synonymous codon usage among genes is partially due to the variations in GC content, gene function, and gene expression level, which accounts for 22.03%, 5.99%, and 3.32% of the total codon usage variability, respectively. Therefore, mutational bias and natural selection should work on affecting the synonymous codon usage of SEGs in rice. These findings may deepen our knowledge for the mechanisms of origination, differentiation and regulation of SEGs in plants.
Collapse
Affiliation(s)
- Huan Hu
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A & F University, Lin'an, Hangzhou, 311300, People's Republic of China
| | - Boran Dong
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A & F University, Lin'an, Hangzhou, 311300, People's Republic of China
| | - Xiaoji Fan
- The Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, 310012, People's Republic of China
| | - Meixia Wang
- The Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, 310012, People's Republic of China
| | - Tingzhang Wang
- The Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, 310012, People's Republic of China.
| | - Qingpo Liu
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A & F University, Lin'an, Hangzhou, 311300, People's Republic of China.
| |
Collapse
|
14
|
Dvorak P, Hanicinec V, Soucek P. The position of the longest intron is related to biological functions in some human genes. Front Genet 2023; 13:1085139. [PMID: 36712854 PMCID: PMC9875286 DOI: 10.3389/fgene.2022.1085139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/27/2022] [Indexed: 01/12/2023] Open
Abstract
The evidence that introns can influence different levels of transfer of genetic information between DNA and the final product is increasing. Longer first introns were found to be a general property of eukaryotic gene structure and shown to contain a higher fraction of conserved sequence and different functional elements. Our work brings more precise information about the position of the longest introns in human protein-coding genes and possible connection with biological function and gene expression. According to our results, the position of the longest intron can be localized to the first third of introns in 64%, the second third in 19%, and the third in 17%, with notable peaks at the middle and last introns of approximately 5% and 6%, respectively. The median lengths of the longest introns decrease with increasing distance from the start of the gene from approximately 15,000 to 5,000 bp. We have shown that the position of the longest intron is in some cases linked to the biological function of the given gene. For example, DNA repair genes have the longest intron more often in the second or third. In the distribution of gene expression according to the position of the longest intron, tissue-specific profiles can be traced with the highest expression usually at the absolute positions of intron 1 and 2. In this work, we present arguments supporting the hypothesis that the position of the longest intron in a gene is another biological factor modulating the transmission of genetic information. The position of the longest intron is related to biological functions in some human genes.
Collapse
Affiliation(s)
- Pavel Dvorak
- Department of Biology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia,Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia,Institute of Medical Genetics, University Hospital Pilsen, Pilsen, Czechia,*Correspondence: Pavel Dvorak,
| | - Vojtech Hanicinec
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Pavel Soucek
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia,Toxicogenomics Unit, National Institute of Public Health, Prague, Czechia
| |
Collapse
|
15
|
SCON-a Short Conditional intrON for conditional knockout with one-step zygote injection. Exp Mol Med 2022; 54:2188-2199. [PMID: 36494589 PMCID: PMC9794761 DOI: 10.1038/s12276-022-00891-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/02/2022] [Indexed: 12/14/2022] Open
Abstract
The generation of conditional alleles using CRISPR technology is still challenging. Here, we introduce a Short Conditional intrON (SCON, 189 bp) that enables the rapid generation of conditional alleles via one-step zygote injection. In this study, a total of 13 SCON mouse lines were successfully generated by 2 different laboratories. SCON has conditional intronic functions in various vertebrate species, and its target insertion is as simple as CRISPR/Cas9-mediated gene tagging.
Collapse
|
16
|
A Truncated Form of the p27 Cyclin-Dependent Kinase Inhibitor Translated from Pre-mRNA Causes G 2-Phase Arrest. Mol Cell Biol 2022; 42:e0021722. [PMID: 36317925 PMCID: PMC9671031 DOI: 10.1128/mcb.00217-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pre-mRNA splicing is an indispensable mechanism for eukaryotic gene expression. Splicing inhibition causes cell cycle arrest at the G1 and G2/M phases, and this is thought to be one of the reasons for the potent antitumor activity of splicing inhibitors. However, the molecular mechanisms underlying the cell cycle arrest have many unknown aspects. In particular, the mechanism of G2/M-phase arrest caused by splicing inhibition is completely unknown. Here, we found that lower and higher concentrations of pladienolide B caused M-phase and G2-phase arrest, respectively. We analyzed protein levels of cell cycle regulators and found that a truncated form of the p27 cyclin-dependent kinase inhibitor, named p27*, accumulated in G2-arrested cells. Overexpression of p27* caused partial G2-phase arrest. Conversely, knockdown of p27* accelerated exit from G2/M phase after washout of splicing inhibitor. These results suggest that p27* contributes to G2/M-phase arrest caused by splicing inhibition. We also found that p27* bound to and inhibited M-phase cyclins, although it is well known that p27 regulates the G1/S transition. Intriguingly, p27*, but not full-length p27, was resistant to proteasomal degradation and remained in G2/M phase. These results suggest that p27*, which is a very stable truncated protein in G2/M phase, contributes to G2-phase arrest caused by splicing inhibition.
Collapse
|
17
|
Steckelings UM, Widdop RE, Sturrock ED, Lubbe L, Hussain T, Kaschina E, Unger T, Hallberg A, Carey RM, Sumners C. The Angiotensin AT 2 Receptor: From a Binding Site to a Novel Therapeutic Target. Pharmacol Rev 2022; 74:1051-1135. [PMID: 36180112 PMCID: PMC9553111 DOI: 10.1124/pharmrev.120.000281] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 05/19/2022] [Accepted: 06/27/2022] [Indexed: 11/22/2022] Open
Abstract
Discovered more than 30 years ago, the angiotensin AT2 receptor (AT2R) has evolved from a binding site with unknown function to a firmly established major effector within the protective arm of the renin-angiotensin system (RAS) and a target for new drugs in development. The AT2R represents an endogenous protective mechanism that can be manipulated in the majority of preclinical models to alleviate lung, renal, cardiovascular, metabolic, cutaneous, and neural diseases as well as cancer. This article is a comprehensive review summarizing our current knowledge of the AT2R, from its discovery to its position within the RAS and its overall functions. This is followed by an in-depth look at the characteristics of the AT2R, including its structure, intracellular signaling, homo- and heterodimerization, and expression. AT2R-selective ligands, from endogenous peptides to synthetic peptides and nonpeptide molecules that are used as research tools, are discussed. Finally, we summarize the known physiological roles of the AT2R and its abundant protective effects in multiple experimental disease models and expound on AT2R ligands that are undergoing development for clinical use. The present review highlights the controversial aspects and gaps in our knowledge of this receptor and illuminates future perspectives for AT2R research. SIGNIFICANCE STATEMENT: The angiotensin AT2 receptor (AT2R) is now regarded as a fully functional and important component of the renin-angiotensin system, with the potential of exerting protective actions in a variety of diseases. This review provides an in-depth view of the AT2R, which has progressed from being an enigma to becoming a therapeutic target.
Collapse
Affiliation(s)
- U Muscha Steckelings
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Robert E Widdop
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Edward D Sturrock
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Lizelle Lubbe
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Tahir Hussain
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Elena Kaschina
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Thomas Unger
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Anders Hallberg
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Robert M Carey
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Colin Sumners
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| |
Collapse
|
18
|
Identification, Phylogeny, Divergence, Structure, and Expression Analysis of A20/AN1 Zinc Finger Domain Containing Stress-Associated Proteins (SAPs) Genes in Jatropha curcas L. Genes (Basel) 2022; 13:genes13101766. [PMID: 36292651 PMCID: PMC9601316 DOI: 10.3390/genes13101766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 09/18/2022] [Accepted: 09/27/2022] [Indexed: 11/04/2022] Open
Abstract
Jatropha is a small woody perennial biofuel-producing shrub. Stress-associated proteins (SAPs) are novel stress regulatory zinc-finger proteins and are mainly associated with tolerance against various environmental abiotic stresses in Jatropha. In the present study, the JcSAP gene family were analyzed comprehensively in Jatropha curcas and 11 JcSAP genes were identified. Phylogenetic analysis classified the JcSAP genes into four groups based on sequence similarity, similar gene structure features, conserved A20 and/or AN1 domains, and their responsive motifs. Moreover, the divergence analysis further evaluated the evolutionary aspects of the JcSAP genes with the predicted time of divergence from 9.1 to 40 MYA. Furthermore, a diverse range of cis-elements including light-responsive elements, hormone-responsive elements, and stress-responsive elements were detected in the promoter region of JcSAP genes while the miRNA target sites predicted the regulation of JcSAP genes via a candid miRNA mediated post-transcriptional regulatory network. In addition, the expression profiles of JcSAP genes in different tissues under stress treatment indicated that many JcSAP genes play functional developmental roles in different tissues, and exhibit significant differential expression under stress treatment. These results collectively laid a foundation for the functional diversification of JcSAP genes.
Collapse
|
19
|
Exploring the roles of the Cdc2-like kinases in cancers. Bioorg Med Chem 2022; 70:116914. [PMID: 35872347 DOI: 10.1016/j.bmc.2022.116914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/27/2022] [Accepted: 06/27/2022] [Indexed: 11/21/2022]
Abstract
The Cdc2-like kinases (CLKs 1-4) are involved in regulating the alternative splicing of a variety of genes. Their activity contributes to important cellular processes such as proliferation, differentiation, apoptosis, migration, and cell cycle regulation. Abnormal expression of CLKs can lead to cancers; therefore, pharmacological inhibition of CLKs may be a useful therapeutic strategy. This review summarises what is known about the roles of each of the CLKs in cancerous cells, as well as the effects of relevant small molecule CLK inhibitors.
Collapse
|
20
|
López-Rivera JJ, Rodríguez-Salazar L, Soto-Ospina A, Estrada-Serrato C, Serrano D, Chaparro-Solano HM, Londoño O, Rueda PA, Ardila G, Villegas-Lanau A, Godoy-Corredor M, Cuartas M, Vélez JI, Vidal OM, Isaza-Ruget MA, Arcos-Burgos M. Structural Protein Effects Underpinning Cognitive Developmental Delay of the PURA p.Phe233del Mutation Modelled by Artificial Intelligence and the Hybrid Quantum Mechanics–Molecular Mechanics Framework. Brain Sci 2022; 12:brainsci12070871. [PMID: 35884678 PMCID: PMC9313109 DOI: 10.3390/brainsci12070871] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/21/2022] [Accepted: 06/24/2022] [Indexed: 02/06/2023] Open
Abstract
A whole-exome capture and next-generation sequencing was applied to an 11 y/o patient with a clinical history of congenital hypotonia, generalized motor and cognitive neurodevelopmental delay, and severe cognitive deficit, and without any identifiable Syndromic pattern, and to her parents, we disclosed a de novo heterozygous pathogenic mutation, c.697_699del p.Phe233del (rs786204835)(ACMG classification PS2, PM1, PM2, PP5), harbored in the PURA gene (MIM*600473) (5q31.3), associated with Autosomal Dominant Mental Retardation 31 (MIM # 616158). We used the significant improvement in the accuracy of protein structure prediction recently implemented in AlphaFold that incorporates novel neural network architectures and training procedures based on the evolutionary, physical, and geometric constraints of protein structures. The wild-type (WT) sequence and the mutated sequence, missing the Phe233, were reconstructed. The predicted local Distance Difference Test (lDDT) for the PURAwt and the PURA–Phe233del showed that the occurrence of the Phe233del affects between 220–320 amino acids. The distortion in the PURA structural conformation in the ~5 Å surrounding area after the p.Phe233del produces a conspicuous disruption of the repeat III, where the DNA and RNA helix unwinding capability occurs. PURA Protein–DNA docking corroborated these results in an in silico analysis that showed a loss of the contact of the PURA–Phe233del III repeat domain model with the DNA. Together, (i) the energetic and stereochemical, (ii) the hydropathic indexes and polarity surfaces, and (iii) the hybrid Quantum Mechanics–Molecular Mechanics (QM–MM) analyses of the PURA molecular models demarcate, at the atomic resolution, the specific surrounding region affected by these mutations and pave the way for future cell-based functional analysis. To the best of our knowledge, this is the first report of a de novo mutation underpinning a PURA syndrome in a Latin American patient and highlights the importance of predicting the molecular effects in protein structure using artificial intelligence algorithms and molecular and atomic resolution stereochemical analyses.
Collapse
Affiliation(s)
- Juan Javier López-Rivera
- INPAC Research Group, Fundación Universitaria Sanitas, Bogotá 111321, Colombia;
- Grupo de Genética Médica, Clínica Universitaria Colombia y Clínica Pediátrica Colsanitas, Bogotá 111321, Colombia; (C.E.-S.); (D.S.); (H.M.C.-S.); (O.L.)
- Correspondence: (J.J.L.-R.); (M.A.-B.)
| | - Luna Rodríguez-Salazar
- Grupo de Bioinformática, Laboratorio de Clínica Colsanitas, Bogotá 110221, Colombia; (L.R.-S.); (P.A.R.); (G.A.)
| | - Alejandro Soto-Ospina
- Genética Molecular (GenMol), Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Medellín 050012, Colombia; (A.S.-O.); (A.V.-L.)
| | - Carlos Estrada-Serrato
- Grupo de Genética Médica, Clínica Universitaria Colombia y Clínica Pediátrica Colsanitas, Bogotá 111321, Colombia; (C.E.-S.); (D.S.); (H.M.C.-S.); (O.L.)
| | - David Serrano
- Grupo de Genética Médica, Clínica Universitaria Colombia y Clínica Pediátrica Colsanitas, Bogotá 111321, Colombia; (C.E.-S.); (D.S.); (H.M.C.-S.); (O.L.)
| | - Henry Mauricio Chaparro-Solano
- Grupo de Genética Médica, Clínica Universitaria Colombia y Clínica Pediátrica Colsanitas, Bogotá 111321, Colombia; (C.E.-S.); (D.S.); (H.M.C.-S.); (O.L.)
| | - Olga Londoño
- Grupo de Genética Médica, Clínica Universitaria Colombia y Clínica Pediátrica Colsanitas, Bogotá 111321, Colombia; (C.E.-S.); (D.S.); (H.M.C.-S.); (O.L.)
| | - Paula A. Rueda
- Grupo de Bioinformática, Laboratorio de Clínica Colsanitas, Bogotá 110221, Colombia; (L.R.-S.); (P.A.R.); (G.A.)
| | - Geraldine Ardila
- Grupo de Bioinformática, Laboratorio de Clínica Colsanitas, Bogotá 110221, Colombia; (L.R.-S.); (P.A.R.); (G.A.)
| | - Andrés Villegas-Lanau
- Genética Molecular (GenMol), Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Medellín 050012, Colombia; (A.S.-O.); (A.V.-L.)
- Grupo de Neurociencias de Antioquia (GNA), Facultad de Medicina, Universidad de Antioquia, Medellín 050012, Colombia
| | | | - Mauricio Cuartas
- Grupo de Investigación Estudios en Psicología, Departamento de Psicología, Escuela de Humanidades, Universidad EAFIT, Medellín 050022, Colombia;
| | - Jorge I. Vélez
- Universidad del Norte, Barranquilla 080001, Colombia; (J.I.V.); (O.M.V.)
| | - Oscar M. Vidal
- Universidad del Norte, Barranquilla 080001, Colombia; (J.I.V.); (O.M.V.)
| | | | - Mauricio Arcos-Burgos
- Grupo de Investigación en Psiquiatría (GIPSI), Departamento de Psiquiatría, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia, Medellín 050012, Colombia
- Correspondence: (J.J.L.-R.); (M.A.-B.)
| |
Collapse
|
21
|
Identification and Expression Analysis of Zinc Finger A20/AN1 Stress-Associated Genes SmSAP Responding to Abiotic Stress in Eggplant. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8020108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Stress-associated proteins (SAP), a class of zinc-finger proteins, have been identified as novel stress regulatory proteins in stress responses. However, SAP genes in eggplant (SmSAP) have been little reported. It has important significance in identifying SAP members, understanding the molecular mechanisms underlying stress responses, and tolerance. We performed a comprehensive study of the A20/AN1 domains, motifs, gene structures, phylogenetic relationships, chromosomal locations, gene replications, collinearity, cis-acting elements, and expression pattern responses to various abiotic stresses. Twenty-one SAP genes were identified in eggplant (SmSAP) and were localized on 10 chromosomes. A phylogenetic analysis revealed that most of the SmSAP proteins showed a high homology with the tomato SAP members, and 21 members were divided into four groups based on the homology of the SAP members in eggplant, tomato, rice, and Arabidopsis. Further analysis revealed that SmSAP proteins contain the characteristic A20/AN1 domains, the A20 domain composed of motif 2 (ILCINNCGFFGSPATMNLCSKCYKDMJLK). Four pairs of tandem duplications were found in eggplant, and 10 SmSAP genes had collinearity with SAP genes from Arabidopsis, potato, or tomato, but only four SmSAP genes were collinear with SAP genes in the three species mentioned above. Moreover, the promoters of SmSAP genes were predicted to contain many cis-acting elements that respond to abiotic stress and hormones. A qRT-PCR analysis of the four selected SmSAP genes exhibited diverse expression levels in response to various environmental stresses. These results provided a comprehensive analysis of the SmSAP genes and lay a solid foundation for improving the understanding of the functional diversification of SAP genes under various environmental stresses in eggplant.
Collapse
|
22
|
Bae Y, Lim CW, Lee SC. Differential Functions of Pepper Stress-Associated Proteins in Response to Abiotic Stresses. FRONTIERS IN PLANT SCIENCE 2021; 12:756068. [PMID: 34956259 PMCID: PMC8702622 DOI: 10.3389/fpls.2021.756068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/15/2021] [Indexed: 06/14/2023]
Abstract
Stress-associated proteins (SAPs), a group of zinc-finger-type proteins, have been identified as novel regulators of plant abiotic and biotic stresses. However, although they have been discovered in different plant species, their precise functional roles remain unclear. Here, we identified 14 SAP subfamily genes in the pepper genome. An investigation of the promoter regions of these genes for cis-regulatory elements associated with abiotic stress responses revealed the presence of multiple stress-related elements. Domain and phylogenetic analyses using the corresponding protein sequences revealed that the CaSAP genes can be classified into six groups (I-VI) and sorted into two broad types. Expression levels of the CaSAP genes were found to be differentially induced by low temperature, the dehydration stress, or exogenous abscisic acid. Group II and IV genes were highly induced by the low temperature and dehydration treatments, respectively. Moreover, subcellular localization analysis indicated that the proteins in these two groups are distributed in the nucleus, cytoplasm, and plasma membrane. Among the pepper plants silenced with the three identified group II CaSAP genes, the CA02g10410-silenced plants showed tolerance to low temperature, whereas the CA03g17080-silenced plants were found to have temperature-sensitive phenotypes. Interestingly, group IV CaSAP-silenced pepper plants showed drought-tolerant phenotypes. These findings contribute to a preliminary characterization of CaSAP genes and provide directions for future research on the biological role of CaSAPs in response to different abiotic stresses.
Collapse
|
23
|
Haryanyan G, Ozdemir O, Tutkavul K, Dervent A, Ayta S, Ozkara C, Salman B, Yucesan E, Kesim Y, Susgun S, Ozbek U, Baykan B, Ugur Iseri SA, Bebek N. The rare rs769301934 variant in NHLRC1 is a common cause of Lafora disease in Turkey. J Hum Genet 2021; 66:1145-1151. [PMID: 34117373 DOI: 10.1038/s10038-021-00944-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 02/06/2023]
Abstract
Lafora disease (LD) is a severe form of progressive myoclonus epilepsy inherited in an autosomal recessive fashion. It is associated with biallelic pathogenic variations in EPM2A or NHLRC1, which encode laforin and malin, respectively. The disease usually starts with adolescent onset seizures followed by progressive dementia, refractory status epilepticus and eventually death within 10 years of onset. LD is generally accepted as having a homogenous clinical course with no considerable differences between EPM2A or NHLRC1 associated forms. Nevertheless, late-onset and slow progressing forms of the disease have also been reported. Herein, we have performed clinical and genetic analyses of 14 LD patients from 12 different families and identified 8 distinct biallelic variations in these patients. Five of these variations were novel and/or associated with the LD phenotype for the first time. Interestingly, almost half of the cases were homozygous for the rare rs769301934 (NM_198586.3(NHLRC1): c.436 G > A; p.(Asp146Asn)) allele in NHLRC1. A less severe phenotype with an onset at a later age may be the reason for the biased inflation of this variant, which is already present in the human gene pool and can hence arise in the homozygous form in populations with increased parental consanguinity.
Collapse
Affiliation(s)
- Garen Haryanyan
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey.,Graduate School of Health Sciences, Istanbul University, Istanbul, Turkey
| | - Ozkan Ozdemir
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey.,Graduate School of Health Sciences, Istanbul University, Istanbul, Turkey.,Department of Medical Genetics, Faculty of Medicine, Acıbadem Mehmet Ali Aydınlar University, Istanbul, Turkey.,Genome Studies Program, Institute of Health Sciences, Acıbadem Mehmet Ali Aydınlar University, Istanbul, Turkey
| | - Kemal Tutkavul
- Department of Neurology, Istanbul Haydarpasa Numune Education and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Aysin Dervent
- Department of Neurology, Pediatric Neurology, Cerrahpasa Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Semih Ayta
- Department of Pediatrics, Child Neurology Unit, Haseki Training and Research Hospital, Istanbul, Turkey
| | - Cigdem Ozkara
- Department of Neurology and Clinical Neurophysiology, Cerrahpasa Medical Faculty, Istanbul University Cerrahpasa, Istanbul, Turkey
| | - Baris Salman
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey.,Graduate School of Health Sciences, Istanbul University, Istanbul, Turkey
| | - Emrah Yucesan
- Department of Medical Biology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Yesim Kesim
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey.,Graduate School of Health Sciences, Istanbul University, Istanbul, Turkey
| | - Seda Susgun
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey.,Graduate School of Health Sciences, Istanbul University, Istanbul, Turkey.,Department of Medical Biology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Ugur Ozbek
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey.,Department of Medical Genetics, Faculty of Medicine, Acıbadem Mehmet Ali Aydınlar University, Istanbul, Turkey.,Genome Studies Program, Institute of Health Sciences, Acıbadem Mehmet Ali Aydınlar University, Istanbul, Turkey
| | - Betul Baykan
- Department of Neurology and Clinical Neurophysiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Sibel A Ugur Iseri
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey.
| | - Nerses Bebek
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey.,Department of Neurology and Clinical Neurophysiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
24
|
Sun Y, Wei X, Fang F, Shen Y, Wei H, Li J, Ye X, Zhan Y, Ye X, Liu X, Yang W, Li Y, Geng X, Huang X, Ruan Y, Qin Z, Yi S, Lyu J, Fang H, Yu Y. HPDL deficiency causes a neuromuscular disease by impairing the mitochondrial respiration. J Genet Genomics 2021; 48:727-736. [PMID: 34334354 DOI: 10.1016/j.jgg.2021.01.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/11/2021] [Accepted: 01/17/2021] [Indexed: 12/28/2022]
Abstract
Mitochondrial diseases are caused by variants in both mitochondrial and nuclear genomes. A nuclear gene HPDL (4-hydroxyphenylpyruvate dioxygenase-like), which encodes an intermembrane mitochondrial protein, has been recently implicated in causing a neurodegenerative disease characterized by pediatric-onset spastic movement phenotypes. Here, we report six Chinese patients with bi-allelic HPDL pathogenic variants from four unrelated families showing neuropathic symptoms of variable severity, including developmental delay/intellectual disability, spasm, and hypertonia. Seven different pathogenic variants are identified, of which five are novel. Both fibroblasts and immortalized lymphocytes derived from patients show impaired mitochondrial respiratory function, which is also observed in HPDL-knockdown (KD) HeLa cells. In these HeLa cells, overexpression of a wild-type HPDL gene can rescue the respiratory phenotype of oxygen consumption rate. In addition, a decreased activity of the oxidative phosphorylation (OXPHOS) complex II is observed in patient-derived lymphocytes and HPDL-KD HeLa cells, further supporting an essential role of HPDL in the mitochondrial respiratory chain. Collectively, our data expand the clinical and mutational spectra of this mitochondrial neuropathy and further delineate the possible disease mechanism involving the impairment of the OXPHOS complex II activity due to the bi-allelic inactivations of HPDL.
Collapse
Affiliation(s)
- Yu Sun
- Department of Pediatric Endocrinology and Genetics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai 200092, China
| | - Xiujuan Wei
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Fang Fang
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Yiping Shen
- The Maternal and Child Health Care Hospital of Guangxi Zhuang Autonomous Region, Guangxi Birth Defects Prevention and Control Institute, Nanning 530000, China; Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Haiyan Wei
- Department of Endocrinologic and Inherited Metabolic, Henan Childen's Hospital, Zhengzhou Children's Hospital, Zhengzhou 450018, China
| | - Jiuwei Li
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Xianglai Ye
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yongkun Zhan
- Department of Pediatric Endocrinology and Genetics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai 200092, China
| | - Xiantao Ye
- Department of Pediatric Endocrinology and Genetics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai 200092, China
| | - Xiaomin Liu
- Department of Pediatric Endocrinology and Genetics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai 200092, China
| | - Wei Yang
- Department of Endocrinologic and Inherited Metabolic, Henan Childen's Hospital, Zhengzhou Children's Hospital, Zhengzhou 450018, China
| | - Yuhua Li
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Xiangju Geng
- Department of Rehabilitation, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou 450018, China
| | - Xuelin Huang
- The Maternal and Child Health Care Hospital of Guangxi Zhuang Autonomous Region, Guangxi Birth Defects Prevention and Control Institute, Nanning 530000, China
| | - Yiyan Ruan
- The Maternal and Child Health Care Hospital of Guangxi Zhuang Autonomous Region, Guangxi Birth Defects Prevention and Control Institute, Nanning 530000, China
| | - Zailong Qin
- The Maternal and Child Health Care Hospital of Guangxi Zhuang Autonomous Region, Guangxi Birth Defects Prevention and Control Institute, Nanning 530000, China
| | - Shang Yi
- The Maternal and Child Health Care Hospital of Guangxi Zhuang Autonomous Region, Guangxi Birth Defects Prevention and Control Institute, Nanning 530000, China
| | - Jianxin Lyu
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China; Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou 310014, China.
| | - Hezhi Fang
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Yongguo Yu
- Department of Pediatric Endocrinology and Genetics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai 200092, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai 200092, China.
| |
Collapse
|
25
|
Aviña-Padilla K, Ramírez-Rafael JA, Herrera-Oropeza GE, Muley VY, Valdivia DI, Díaz-Valenzuela E, García-García A, Varela-Echavarría A, Hernández-Rosales M. Evolutionary Perspective and Expression Analysis of Intronless Genes Highlight the Conservation of Their Regulatory Role. Front Genet 2021; 12:654256. [PMID: 34306008 PMCID: PMC8302217 DOI: 10.3389/fgene.2021.654256] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 06/01/2021] [Indexed: 11/13/2022] Open
Abstract
The structure of eukaryotic genes is generally a combination of exons interrupted by intragenic non-coding DNA regions (introns) removed by RNA splicing to generate the mature mRNA. A fraction of genes, however, comprise a single coding exon with introns in their untranslated regions or are intronless genes (IGs), lacking introns entirely. The latter code for essential proteins involved in development, growth, and cell proliferation and their expression has been proposed to be highly specialized for neuro-specific functions and linked to cancer, neuropathies, and developmental disorders. The abundant presence of introns in eukaryotic genomes is pivotal for the precise control of gene expression. Notwithstanding, IGs exempting splicing events entail a higher transcriptional fidelity, making them even more valuable for regulatory roles. This work aimed to infer the functional role and evolutionary history of IGs centered on the mouse genome. IGs consist of a subgroup of genes with one exon including coding genes, non-coding genes, and pseudogenes, which conform approximately 6% of a total of 21,527 genes. To understand their prevalence, biological relevance, and evolution, we identified and studied 1,116 IG functional proteins validating their differential expression in transcriptomic data of embryonic mouse telencephalon. Our results showed that overall expression levels of IGs are lower than those of MEGs. However, strongly up-regulated IGs include transcription factors (TFs) such as the class 3 of POU (HMG Box), Neurog1, Olig1, and BHLHe22, BHLHe23, among other essential genes including the β-cluster of protocadherins. Most striking was the finding that IG-encoded BHLH TFs fit the criteria to be classified as microproteins. Finally, predicted protein orthologs in other six genomes confirmed high conservation of IGs associated with regulating neural processes and with chromatin organization and epigenetic regulation in Vertebrata. Moreover, this study highlights that IGs are essential modulators of regulatory processes, such as the Wnt signaling pathway and biological processes as pivotal as sensory organ developing at a transcriptional and post-translational level. Overall, our results suggest that IG proteins have specialized, prevalent, and unique biological roles and that functional divergence between IGs and MEGs is likely to be the result of specific evolutionary constraints.
Collapse
Affiliation(s)
- Katia Aviña-Padilla
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
- Centro de Investigacioìn y de Estudios Avanzados del IPN, Unidad Irapuato, Guanajuato, Mexico
| | | | - Gabriel Emilio Herrera-Oropeza
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, United Kingdom
| | | | - Dulce I. Valdivia
- Centro de Investigacioìn y de Estudios Avanzados del IPN, Unidad Irapuato, Guanajuato, Mexico
| | - Erik Díaz-Valenzuela
- Centro de Investigacioìn y de Estudios Avanzados del IPN, Unidad Irapuato, Guanajuato, Mexico
| | - Andrés García-García
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | | | | |
Collapse
|
26
|
Zhang S, Hama Y, Mizushima N. The evolution of autophagy proteins - diversification in eukaryotes and potential ancestors in prokaryotes. J Cell Sci 2021; 134:270774. [PMID: 34228793 DOI: 10.1242/jcs.233742] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Autophagy is a degradative pathway for cytoplasmic constituents, and is conserved across eukaryotes. Autophagy-related (ATG) genes have undergone extensive multiplications and losses in different eukaryotic lineages, resulting in functional diversification and specialization. Notably, even though bacteria and archaea do not possess an autophagy pathway, they do harbor some remote homologs of Atg proteins, suggesting that preexisting proteins were recruited when the autophagy pathway developed during eukaryogenesis. In this Review, we summarize our current knowledge on the distribution of Atg proteins within eukaryotes and outline the major multiplication and loss events within the eukaryotic tree. We also discuss the potential prokaryotic homologs of Atg proteins identified to date, emphasizing the evolutionary relationships and functional differences between prokaryotic and eukaryotic proteins.
Collapse
Affiliation(s)
- Sidi Zhang
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yutaro Hama
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Noboru Mizushima
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
27
|
Dash S, Brastrom LK, Patel SD, Scott CA, Slusarski DC, Lachke SA. The master transcription factor SOX2, mutated in anophthalmia/microphthalmia, is post-transcriptionally regulated by the conserved RNA-binding protein RBM24 in vertebrate eye development. Hum Mol Genet 2021; 29:591-604. [PMID: 31814023 DOI: 10.1093/hmg/ddz278] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/24/2019] [Accepted: 11/10/2019] [Indexed: 11/14/2022] Open
Abstract
Mutations in the key transcription factor, SOX2, alone account for 20% of anophthalmia (no eye) and microphthalmia (small eye) birth defects in humans-yet its regulation is not well understood, especially on the post-transcription level. We report the unprecedented finding that the conserved RNA-binding motif protein, RBM24, positively controls Sox2 mRNA stability and is necessary for optimal SOX2 mRNA and protein levels in development, perturbation of which causes ocular defects, including microphthalmia and anophthalmia. RNA immunoprecipitation assay indicates that RBM24 protein interacts with Sox2 mRNA in mouse embryonic eye tissue. and electrophoretic mobility shift assay shows that RBM24 directly binds to the Sox2 mRNA 3'UTR, which is dependent on AU-rich elements (ARE) present in the Sox2 mRNA 3'UTR. Further, we demonstrate that Sox2 3'UTR AREs are necessary for RBM24-based elevation of Sox2 mRNA half-life. We find that this novel RBM24-Sox2 regulatory module is essential for early eye development in vertebrates. We show that Rbm24-targeted deletion using a constitutive CMV-driven Cre in mouse, and rbm24a-CRISPR/Cas9-targeted mutation or morpholino knockdown in zebrafish, results in Sox2 downregulation and causes the developmental defects anophthalmia or microphthalmia, similar to human SOX2-deficiency defects. We further show that Rbm24 deficiency leads to apoptotic defects in mouse ocular tissue and downregulation of eye development markers Lhx2, Pax6, Jag1, E-cadherin and gamma-crystallins. These data highlight the exquisite specificity that conserved RNA-binding proteins like RBM24 mediate in the post-transcriptional control of key transcription factors, namely, SOX2, associated with organogenesis and human developmental defects.
Collapse
Affiliation(s)
- Soma Dash
- Department of Biological Sciences, University of Delaware, Newark, DE 19716 USA
| | - Lindy K Brastrom
- Department of Biology, University of Iowa, Iowa City, IA 52242 USA
| | - Shaili D Patel
- Department of Biological Sciences, University of Delaware, Newark, DE 19716 USA
| | - C Anthony Scott
- Department of Biology, University of Iowa, Iowa City, IA 52242 USA.,Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | | | - Salil A Lachke
- Department of Biological Sciences, University of Delaware, Newark, DE 19716 USA.,Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE 19716 USA
| |
Collapse
|
28
|
Tine M, Kuhl H, Teske PR, Reinhardt R. Genome-wide analysis of European sea bass provides insights into the evolution and functions of single-exon genes. Ecol Evol 2021; 11:6546-6557. [PMID: 34141239 PMCID: PMC8207432 DOI: 10.1002/ece3.7507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 01/24/2021] [Accepted: 03/12/2021] [Indexed: 11/17/2022] Open
Abstract
Several studies have attempted to understand the origin and evolution of single-exon genes (SEGs) in eukaryotic organisms, including fishes, but few have examined the functional and evolutionary relationships between SEGs and multiple-exon gene (MEG) paralogs, in particular the conservation of promoter regions. Given that SEGs originate via the reverse transcription of mRNA from a "parental" MEGs, such comparisons may enable identifying evolutionarily-related SEG/MEG paralogs, which might fulfill equivalent physiological functions. Here, the relationship of SEG proportion with MEG count, gene density, intron count, and chromosome size was assessed for the genome of the European sea bass, Dicentrarchus labrax. Then, SEGs with an MEG parent were identified, and promoter sequences of SEG/MEG paralogs were compared, to identify highly conserved functional motifs. The results revealed a total count of 1,585 (8.3% of total genes) SEGs in the European sea bass genome, which was correlated with MEG count but not with gene density. The significant correlation of SEG content with the number of MEGs suggests that SEGs were continuously and independently generated over evolutionary time following species divergence through retrotranscription events, followed by tandem duplications. Functional annotation showed that the majority of SEGs are functional, as is evident from their expression in RNA-seq data used to support homology-based genome annotation. Differences in 5'UTR and 3'UTR lengths between SEG/MEG paralogs observed in this study may contribute to gene expression divergence between them and therefore lead to the emergence of new SEG functions. The comparison of nonsynonymous to synonymous changes (Ka/Ks) between SEG/MEG parents showed that 74 of them are under positive selection (Ka/Ks > 1; p = .0447). An additional fifteen SEGs with an MEG parent have a common promoter, which implies that they are under the influence of common regulatory networks.
Collapse
Affiliation(s)
- Mbaye Tine
- UFR des Sciences Agronomiques, de l'Aquaculture et des Technologies Alimentaires (S2ATA)Université Gaston Berger (UGB)Saint‐LouisSenegal
- Genome Centre at the Max‐Planck Institute for Plant Breeding ResearchKölnGermany
| | - Heiner Kuhl
- Department of Ecophysiology and AquacultureLeibniz‐Institute of Freshwater Ecology and Inland Fisheries (IGB)BerlinGermany
| | - Peter R. Teske
- Department of ZoologyCentre for Ecological Genomics and Wildlife ConservationUniversity of JohannesburgJohannesburgSouth Africa
| | - Richard Reinhardt
- Genome Centre at the Max‐Planck Institute for Plant Breeding ResearchKölnGermany
| |
Collapse
|
29
|
Molitor L, Bacher S, Burczyk S, Niessing D. The Molecular Function of PURA and Its Implications in Neurological Diseases. Front Genet 2021; 12:638217. [PMID: 33777106 PMCID: PMC7990775 DOI: 10.3389/fgene.2021.638217] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/09/2021] [Indexed: 12/19/2022] Open
Abstract
In recent years, genome-wide analyses of patients have resulted in the identification of a number of neurodevelopmental disorders. Several of them are caused by mutations in genes that encode for RNA-binding proteins. One of these genes is PURA, for which in 2014 mutations have been shown to cause the neurodevelopmental disorder PURA syndrome. Besides intellectual disability (ID), patients develop a variety of symptoms, including hypotonia, metabolic abnormalities as well as epileptic seizures. This review aims to provide a comprehensive assessment of research of the last 30 years on PURA and its recently discovered involvement in neuropathological abnormalities. Being a DNA- and RNA-binding protein, PURA has been implicated in transcriptional control as well as in cytoplasmic RNA localization. Molecular interactions are described and rated according to their validation state as physiological targets. This information will be put into perspective with available structural and biophysical insights on PURA’s molecular functions. Two different knock-out mouse models have been reported with partially contradicting observations. They are compared and put into context with cell biological observations and patient-derived information. In addition to PURA syndrome, the PURA protein has been found in pathological, RNA-containing foci of patients with the RNA-repeat expansion diseases such as fragile X-associated tremor ataxia syndrome (FXTAS) and amyotrophic lateral sclerosis (ALS)/fronto-temporal dementia (FTD) spectrum disorder. We discuss the potential role of PURA in these neurodegenerative disorders and existing evidence that PURA might act as a neuroprotective factor. In summary, this review aims at informing researchers as well as clinicians on our current knowledge of PURA’s molecular and cellular functions as well as its implications in very different neuronal disorders.
Collapse
Affiliation(s)
- Lena Molitor
- Institute of Structural Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Sabrina Bacher
- Institute of Structural Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Sandra Burczyk
- Institute of Pharmaceutical Biotechnology, Ulm University, Ulm, Germany
| | - Dierk Niessing
- Institute of Structural Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.,Institute of Pharmaceutical Biotechnology, Ulm University, Ulm, Germany
| |
Collapse
|
30
|
Jorquera R, González C, Clausen PTLC, Petersen B, Holmes DS. SinEx DB 2.0 update 2020: database for eukaryotic single-exon coding sequences. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2021; 2021:6122466. [PMID: 33507271 PMCID: PMC7904048 DOI: 10.1093/database/baab002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/01/2020] [Accepted: 01/05/2021] [Indexed: 11/27/2022]
Abstract
Single-exon coding sequences (CDSs), also known as ‘single-exon genes’ (SEGs), are defined as nuclear, protein-coding genes that lack introns in their CDSs. They have been studied not only to determine their origin and evolution but also because their expression has been linked to several types of human cancers and neurological/developmental disorders, and many exhibit tissue-specific transcription. We developed SinEx DB that houses DNA and protein sequence information of SEGs from 10 mammalian genomes including human. SinEx DB includes their functional predictions (KOG (euKaryotic Orthologous Groups)) and the relative distribution of these functions within species. Here, we report SinEx 2.0, a major update of SinEx DB that includes information of the occurrence, distribution and functional prediction of SEGs from 60 completely sequenced eukaryotic genomes, representing animals, fungi, protists and plants. The information is stored in a relational database built with MySQL Server 5.7, and the complete dataset of SEG sequences and their GO (Gene Ontology) functional assignations are available for downloading. SinEx DB 2.0 was built with a novel pipeline that helps disambiguate single-exon isoforms from SEGs. SinEx DB 2.0 is the largest available database for SEGs and provides a rich source of information for advancing our understanding of the evolution, function of SEGs and their associations with disorders including cancers and neurological and developmental diseases. Database URL:http://v2.sinex.cl/
Collapse
Affiliation(s)
- R Jorquera
- Center for Bioinformatics and Genome Biology, Fundacion Ciencia & Vida, Zañartu 1482, Ñuñoa Santiago 7780132, Chile
- Laboratorio Medicina Traslacional, Fundación Arturo López Pérez, José Manuel Infante 805, Providencia, Santiago 7500691, Chile
| | - C González
- Center for Bioinformatics and Genome Biology, Fundacion Ciencia & Vida, Zañartu 1482, Ñuñoa Santiago 7780132, Chile
- Centro de Genómica y Bioinformática, Universidad Mayor, Camino la pirámide 5750, Huechuraba, Santiago 8580745, Chile
| | - P T L C Clausen
- Department of Global Surveillance, Technical University of Denmark, Kemitorvet building 204, 2800 Kgs. Lyngby, Denmark
| | - B Petersen
- Section for Evolutionary Genomics, The GLOBE Institute, University of Copenhagen, Hovedstaden, Øster Voldgade 5–7, Copenhagen 1350, Denmark
- Centre of Excellence for Omics-Driven Computational Biodiscovery (COMBio), AIMST University, Batu 3 1/2, Jalan Bukit Air Nasi, 08100 Bedong, Kedah, Malaysia
| | - D S Holmes
- *Corresponding author: Tel: +56 2 22398969;
| |
Collapse
|
31
|
Cancer, Retrogenes, and Evolution. Life (Basel) 2021; 11:life11010072. [PMID: 33478113 PMCID: PMC7835786 DOI: 10.3390/life11010072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/18/2022] Open
Abstract
This review summarizes the knowledge about retrogenes in the context of cancer and evolution. The retroposition, in which the processed mRNA from parental genes undergoes reverse transcription and the resulting cDNA is integrated back into the genome, results in additional copies of existing genes. Despite the initial misconception, retroposition-derived copies can become functional, and due to their role in the molecular evolution of genomes, they have been named the “seeds of evolution”. It is convincing that retrogenes, as important elements involved in the evolution of species, also take part in the evolution of neoplastic tumors at the cell and species levels. The occurrence of specific “resistance mechanisms” to neoplastic transformation in some species has been noted. This phenomenon has been related to additional gene copies, including retrogenes. In addition, the role of retrogenes in the evolution of tumors has been described. Retrogene expression correlates with the occurrence of specific cancer subtypes, their stages, and their response to therapy. Phylogenetic insights into retrogenes show that most cancer-related retrocopies arose in the lineage of primates, and the number of identified cancer-related retrogenes demonstrates that these duplicates are quite important players in human carcinogenesis.
Collapse
|
32
|
Acar MB, Ayaz-Güner Ş, Di Bernardo G, Güner H, Murat A, Peluso G, Özcan S, Galderisi U. Obesity induced by high-fat diet is associated with critical changes in biological and molecular functions of mesenchymal stromal cells present in visceral adipose tissue. Aging (Albany NY) 2020; 12:24894-24913. [PMID: 33361524 PMCID: PMC7803587 DOI: 10.18632/aging.202423] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 11/27/2020] [Indexed: 12/27/2022]
Abstract
The mesenchymal stromal cells (MSCs) residing within the stromal component of visceral adipose tissue appear to be greatly affected by obesity, with impairment of their functions and presence of senescence. To gain further insight into these phenomena, we analyzed the changes in total proteome content and secretome of mouse MSCs after a high-fat diet (HFD) treatment compared to a normal diet (ND). In healthy conditions, MSCs are endowed with functions mainly devoted to vesicle trafficking. These cells have an immunoregulatory role, affecting leukocyte activation and migration, acute inflammation phase response, chemokine signaling, and platelet activities. They also present a robust response to stress. We identified four signaling pathways (TGF-β, VEGFR2, HMGB1, and Leptin) that appear to govern the cells' functions. In the obese mice, MSCs showed a change in their functions. The immunoregulation shifted toward pro-inflammatory tasks with the activation of interleukin-1 pathway and of Granzyme A signaling. Moreover, the methionine degradation pathway and the processing of capped intronless pre-mRNAs may be related to the inflammation process. The signaling pathways we identified in ND MSCs were replaced by MET, WNT, and FGFR2 signal transduction, which may play a role in promoting inflammation, cancer, and aging.
Collapse
Affiliation(s)
- Mustafa Burak Acar
- Genome and Stem Cell Center (GENKÖK) Erciyes University, Kayseri, Turkey
| | - Şerife Ayaz-Güner
- Department of Molecular Biology and Genetics, Faculty of Life and Natural Science, Abdullah Gül University, Kayseri, Turkey
| | - Giovanni Di Bernardo
- Department of Experimental Medicine, Luigi Vanvitelli Campania University, Naples, Italy
| | - Hüseyin Güner
- Department of Molecular Biology and Genetics, Faculty of Life and Natural Science, Abdullah Gül University, Kayseri, Turkey
| | - Ayşegül Murat
- Genome and Stem Cell Center (GENKÖK) Erciyes University, Kayseri, Turkey
| | | | - Servet Özcan
- Genome and Stem Cell Center (GENKÖK) Erciyes University, Kayseri, Turkey.,Department of Biology, Faculty of Science, Erciyes University, Kayseri, Turkey
| | - Umberto Galderisi
- Genome and Stem Cell Center (GENKÖK) Erciyes University, Kayseri, Turkey.,Department of Experimental Medicine, Luigi Vanvitelli Campania University, Naples, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
33
|
Muraoka S, Fukumura K, Hayashi M, Kataoka N, Mayeda A, Kaida D. Rbm38 Reduces the Transcription Elongation Defect of the SMEK2 Gene Caused by Splicing Deficiency. Int J Mol Sci 2020; 21:ijms21228799. [PMID: 33233740 PMCID: PMC7699959 DOI: 10.3390/ijms21228799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/14/2020] [Accepted: 11/19/2020] [Indexed: 11/30/2022] Open
Abstract
Pre-mRNA splicing is an essential mechanism for ensuring integrity of the transcriptome in eukaryotes. Therefore, splicing deficiency might cause a decrease in functional proteins and the production of nonfunctional, aberrant proteins. To prevent the production of such aberrant proteins, eukaryotic cells have several mRNA quality control mechanisms. In addition to the known mechanisms, we previously found that transcription elongation is attenuated to prevent the accumulation of pre-mRNA under splicing-deficient conditions. However, the detailed molecular mechanism behind the defect in transcription elongation remains unknown. Here, we showed that the RNA binding protein Rbm38 reduced the transcription elongation defect of the SMEK2 gene caused by splicing deficiency. This reduction was shown to require the N- and C-terminal regions of Rbm38, along with an important role being played by the RNA-recognition motif of Rbm38. These findings advance our understanding of the molecular mechanism of the transcription elongation defect caused by splicing deficiency.
Collapse
Affiliation(s)
- Shintaro Muraoka
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; (S.M.); (M.H.)
| | - Kazuhiro Fukumura
- Division of Gene Expression Mechanism, Institute for Comprehensive Medical Science, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan; (K.F.); (A.M.)
| | - Megumi Hayashi
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; (S.M.); (M.H.)
| | - Naoyuki Kataoka
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan;
| | - Akila Mayeda
- Division of Gene Expression Mechanism, Institute for Comprehensive Medical Science, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan; (K.F.); (A.M.)
| | - Daisuke Kaida
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; (S.M.); (M.H.)
- Correspondence:
| |
Collapse
|
34
|
Petasny M, Bentata M, Pawellek A, Baker M, Kay G, Salton M. Splicing to Keep Cycling: The Importance of Pre-mRNA Splicing during the Cell Cycle. Trends Genet 2020; 37:266-278. [PMID: 32950269 DOI: 10.1016/j.tig.2020.08.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/09/2020] [Accepted: 08/18/2020] [Indexed: 12/16/2022]
Abstract
Pre-mRNA splicing is a fundamental process in mammalian gene expression, and alternative splicing plays an extensive role in generating protein diversity. Because the majority of genes undergo pre-mRNA splicing, most cellular processes depend on proper spliceosome function. We focus on the cell cycle and describe its dependence on pre-mRNA splicing and accurate alternative splicing. We outline the key cell-cycle factors and their known alternative splicing isoforms. We discuss different levels of pre-mRNA splicing regulation such as post-translational modifications and changes in the expression of splicing factors. We describe the effect of chromatin dynamics on pre-mRNA splicing during the cell cycle. In addition, we focus on spliceosome component SF3B1, which is mutated in many types of cancer, and describe the link between SF3B1 and its inhibitors and the cell cycle.
Collapse
Affiliation(s)
- Mayra Petasny
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Mercedes Bentata
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Andrea Pawellek
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Mai Baker
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Gillian Kay
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Maayan Salton
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel.
| |
Collapse
|
35
|
Bentata M, Morgenstern G, Nevo Y, Kay G, Granit Mizrahi A, Temper M, Maimon O, Monas L, Basheer R, Ben-Hur A, Peretz T, Salton M. Splicing Factor Transcript Abundance in Saliva as a Diagnostic Tool for Breast Cancer. Genes (Basel) 2020; 11:genes11080880. [PMID: 32756364 PMCID: PMC7463790 DOI: 10.3390/genes11080880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/27/2020] [Accepted: 07/30/2020] [Indexed: 11/16/2022] Open
Abstract
Breast cancer is the second leading cause of death in women above 60 years in the US. Screening mammography is recommended for women above 50 years; however, 22% of breast cancer cases are diagnosed in women below this age. We set out to develop a test based on the detection of cell-free RNA from saliva. To this end, we sequenced RNA from a pool of ten women. The 1254 transcripts identified were enriched for genes with an annotation of alternative pre-mRNA splicing. Pre-mRNA splicing is a tightly regulated process and its misregulation in cancer cells promotes the formation of cancer-driving isoforms. For these reasons, we chose to focus on splicing factors as biomarkers for the early detection of breast cancer. We found that the level of the splicing factors is unique to each woman and consistent in the same woman at different time points. Next, we extracted RNA from 36 healthy subjects and 31 breast cancer patients. Recording the mRNA level of seven splicing factors in these samples demonstrated that the combination of all these factors is different in the two groups (p value = 0.005). Our results demonstrate a differential abundance of splicing factor mRNA in the saliva of breast cancer patients.
Collapse
Affiliation(s)
- Mercedes Bentata
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel–Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel; (M.B.); (G.M.); (G.K.)
| | - Guy Morgenstern
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel–Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel; (M.B.); (G.M.); (G.K.)
| | - Yuval Nevo
- Info-CORE, Bioinformatics Unit of the I-CORE at the Hebrew University of Jerusalem and Hadassah Medical Center, Jerusalem 9112102, Israel;
| | - Gillian Kay
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel–Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel; (M.B.); (G.M.); (G.K.)
| | - Avital Granit Mizrahi
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Hebrew University Medical School, Jerusalem 9112102, Israel; (A.G.M.); (M.T.); (O.M.); (L.M.); (R.B.); (T.P.)
| | - Mark Temper
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Hebrew University Medical School, Jerusalem 9112102, Israel; (A.G.M.); (M.T.); (O.M.); (L.M.); (R.B.); (T.P.)
| | - Ofra Maimon
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Hebrew University Medical School, Jerusalem 9112102, Israel; (A.G.M.); (M.T.); (O.M.); (L.M.); (R.B.); (T.P.)
| | - Liza Monas
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Hebrew University Medical School, Jerusalem 9112102, Israel; (A.G.M.); (M.T.); (O.M.); (L.M.); (R.B.); (T.P.)
| | - Reham Basheer
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Hebrew University Medical School, Jerusalem 9112102, Israel; (A.G.M.); (M.T.); (O.M.); (L.M.); (R.B.); (T.P.)
| | - Asa Ben-Hur
- Department of Computer Science, Colorado State University, Fort Collins, CO 80523, USA;
| | - Tamar Peretz
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Hebrew University Medical School, Jerusalem 9112102, Israel; (A.G.M.); (M.T.); (O.M.); (L.M.); (R.B.); (T.P.)
| | - Maayan Salton
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel–Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel; (M.B.); (G.M.); (G.K.)
- Correspondence:
| |
Collapse
|
36
|
Booth TJ, Kalaitzis JA, Vuong D, Crombie A, Lacey E, Piggott AM, Wilkinson B. Production of novel pladienolide analogues through native expression of a pathway-specific activator. Chem Sci 2020; 11:8249-8255. [PMID: 34094178 PMCID: PMC8163091 DOI: 10.1039/d0sc01928c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Aberrant splicing of pre-mRNA is implicated in many human genetic disorders. Small molecules that target the spliceosome are important leads as therapeutics and research tools, and one compound of significant interest is the polyketide natural product pladienolide B. Here, we describe the reactivation of quiescent pladienolide B production in the domesticated lab strain Streptomyces platensis AS6200 by overexpression of the pathway-specific activator PldR. The resulting dysregulation of the biosynthetic genes led to the accumulation and isolation of five additional intermediate or shunt metabolites of pladienolide B biosynthesis, including three previously unreported congeners. These compounds likely comprise the entire pladienolide biosynthetic pathway and demonstrate the link between polyketide tailoring reactions and bioactivity, particularly the importance of the 18,19-epoxide. Each congener demonstrated specific inhibitory activity against mammalian cell lines, with successive modifications leading to increased activity (IC50: 8 mM to 5 μM). Reactivation of quiescent polyketide production in a domesticated lab strain.![]()
Collapse
Affiliation(s)
- Thomas J Booth
- Department of Molecular Microbiology, John Innes Centre Norwich Research Park Norwich NR4 7UH UK
| | - John A Kalaitzis
- Department of Molecular Sciences, Macquarie University NSW 2109 Australia
| | - Daniel Vuong
- Microbial Screening Technologies Smithfield NSW 2164 Australia
| | - Andrew Crombie
- Microbial Screening Technologies Smithfield NSW 2164 Australia
| | - Ernest Lacey
- Microbial Screening Technologies Smithfield NSW 2164 Australia
| | - Andrew M Piggott
- Department of Molecular Sciences, Macquarie University NSW 2109 Australia
| | - Barrie Wilkinson
- Department of Molecular Microbiology, John Innes Centre Norwich Research Park Norwich NR4 7UH UK
| |
Collapse
|
37
|
Ueberham U, Arendt T. Genomic Indexing by Somatic Gene Recombination of mRNA/ncRNA - Does It Play a Role in Genomic Mosaicism, Memory Formation, and Alzheimer's Disease? Front Genet 2020; 11:370. [PMID: 32411177 PMCID: PMC7200996 DOI: 10.3389/fgene.2020.00370] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 03/25/2020] [Indexed: 12/26/2022] Open
Abstract
Recent evidence indicates that genomic individuality of neurons, characterized by DNA-content variation, is a common if not universal phenomenon in the human brain that occurs naturally but can also show aberrancies that have been linked to the pathomechanism of Alzheimer’s disease and related neurodegenerative disorders. Etiologically, this genomic mosaic has been suggested to arise from defects of cell cycle regulation that may occur either during brain development or in the mature brain after terminal differentiation of neurons. Here, we aim to draw attention towards another mechanism that can give rise to genomic individuality of neurons, with far-reaching consequences. This mechanism has its origin in the transcriptome rather than in replication defects of the genome, i.e., somatic gene recombination of RNA. We continue to develop the concept that somatic gene recombination of RNA provides a physiological process that, through integration of intronless mRNA/ncRNA into the genome, allows a particular functional state at the level of the individual neuron to be indexed. By insertion of defined RNAs in a somatic recombination process, the presence of specific mRNA transcripts within a definite temporal context can be “frozen” and can serve as an index that can be recalled at any later point in time. This allows information related to a specific neuronal state of differentiation and/or activity relevant to a memory trace to be fixed. We suggest that this process is used throughout the lifetime of each neuron and might have both advantageous and deleterious consequences.
Collapse
Affiliation(s)
- Uwe Ueberham
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
| | - Thomas Arendt
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
| |
Collapse
|
38
|
Cadmium Uptake, MT Gene Activation and Structure of Large-Sized Multi-Domain Metallothioneins in the Terrestrial Door Snail Alinda biplicata (Gastropoda, Clausiliidae). Int J Mol Sci 2020; 21:ijms21051631. [PMID: 32120996 PMCID: PMC7084494 DOI: 10.3390/ijms21051631] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 02/20/2020] [Accepted: 02/24/2020] [Indexed: 02/06/2023] Open
Abstract
Terrestrial snails (Gastropoda) possess Cd-selective metallothioneins (CdMTs) that inactivate Cd2+ with high affinity. Most of these MTs are small Cysteine-rich proteins that bind 6 Cd2+ equivalents within two distinct metal-binding domains, with a binding stoichiometry of 3 Cd2+ ions per domain. Recently, unusually large, so-called multi-domain MTs (md-MTs) were discovered in the terrestrial door snail Alinda biplicata (A.b.). The aim of this study is to evaluate the ability of A.b. to cope with Cd stress and the potential involvement of md-MTs in its detoxification. Snails were exposed to increasing Cd concentrations, and Cd-tissue concentrations were quantified. The gene structure of two md-MTs (9md-MT and 10md-MT) was characterized, and the impact of Cd exposure on MT gene transcription was quantified via qRT PCR. A.b. efficiently accumulates Cd at moderately elevated concentrations in the feed, but avoids food uptake at excessively high Cd levels. The structure and expression of the long md-MT genes of A.b. were characterized. Although both genes are intronless, they are still transcribed, being significantly upregulated upon Cd exposure. Overall, our results contribute new knowledge regarding the metal handling of Alinda biplicata in particular, and the potential role of md-MTs in Cd detoxification of terrestrial snails, in general.
Collapse
|
39
|
Diniz GB, Bittencourt JC. The Melanin-Concentrating Hormone (MCH) System: A Tale of Two Peptides. Front Neurosci 2019; 13:1280. [PMID: 31849590 PMCID: PMC6901935 DOI: 10.3389/fnins.2019.01280] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 11/11/2019] [Indexed: 12/19/2022] Open
Abstract
The melanin-concentrating hormone (MCH) system is a robust integrator of exogenous and endogenous information, modulating arousal and energy balance in mammals. Its predominant function in teleosts, however, is to concentrate melanin in the scales, contributing to the adaptive color change observed in several teleost species. These contrasting functions resulted from a gene duplication that occurred after the teleost divergence, which resulted in the generation of two MCH-coding genes in this clade, which acquired distinctive sequences, distribution, and functions, examined in detail here. We also describe the distribution of MCH immunoreactivity and gene expression in a large number of species, in an attempt to identify its core elements. While initially originated as a periventricular peptide, with an intimate relationship with the third ventricle, multiple events of lateral migration occurred during evolution, making the ventrolateral and dorsolateral hypothalamus the predominant sites of MCH in teleosts and mammals, respectively. Substantial differences between species can be identified, likely reflecting differences in habitat and behavior. This observation aligns well with the idea that MCH is a major integrator of internal and external information, ensuring an appropriate response to ensure the organism’s homeostasis. New studies on the MCH system in species that have not yet been investigated will help us understand more precisely how these habitat changes are connected to the hypothalamic neurochemical circuits, paving the way to new intervention strategies that may be used with pharmacological purposes.
Collapse
Affiliation(s)
- Giovanne B Diniz
- Departamento de Anatomia, Instituto de Ciências Biomedicas, Universidade de São Paulo, São Paulo, Brazil.,Department of Neurosurgery, Yale School of Medicine, New Haven, CT, United States
| | - Jackson C Bittencourt
- Departamento de Anatomia, Instituto de Ciências Biomedicas, Universidade de São Paulo, São Paulo, Brazil.,Nucleo de Neurociencias e Comportamento, Instituto de Psicologia, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
40
|
Abstract
Background As a result of decades of effort by many investigators we now have an advanced level of understanding about several molecular systems involved in the control of gene expression. Examples include CpG islands, promoters, mRNA splicing and epigenetic signals. It is less clear, however, how such systems work together to integrate the functions of a living organism. Here I describe the results of a study to test the idea that a contribution might be made by focusing on genes specifically expressed in a particular tissue, the human testis. Experimental design A database of 239 testis-specific genes was accumulated and each was examined for the presence of features relevant to control of gene expression. These include: (1) the presence of a promoter, (2) the presence of a CpG island (CGI) within the promoter, (3) the presence in the promoter of a transcription factor binding site near the transcription start site, (4) the level of gene expression, and (5) the above features in genes of testis-specific cell types such as spermatocyte and spermatid that differ in their extent of differentiation. Results Of the 107 database genes with an annotated promoter, 56 were found to have one or more transcription factor binding sites near the transcription start site. Three of the binding sites observed, Pax-5, AP-2αA and GRα, stand out in abundance suggesting they may be involved in testis-specific gene expression. Compared to less differentiated testis-specific cells, genes of more differentiated cells were found to be (1) more likely to lack a CGI, (2) more likely to lack introns and (3) higher in expression level. The results suggest genes of more differentiated cells have a reduced need for CGI-based regulatory repression, reduced usage of gene splicing and a smaller set of expressed proteins.
Collapse
|
41
|
Balcerak A, Trebinska-Stryjewska A, Konopinski R, Wakula M, Grzybowska EA. RNA-protein interactions: disorder, moonlighting and junk contribute to eukaryotic complexity. Open Biol 2019; 9:190096. [PMID: 31213136 PMCID: PMC6597761 DOI: 10.1098/rsob.190096] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
RNA-protein interactions are crucial for most biological processes in all organisms. However, it appears that the complexity of RNA-based regulation increases with the complexity of the organism, creating additional regulatory circuits, the scope of which is only now being revealed. It is becoming apparent that previously unappreciated features, such as disordered structural regions in proteins or non-coding regions in DNA leading to higher plasticity and pliability in RNA-protein complexes, are in fact essential for complex, precise and fine-tuned regulation. This review addresses the issue of the role of RNA-protein interactions in generating eukaryotic complexity, focusing on the newly characterized disordered RNA-binding motifs, moonlighting of metabolic enzymes, RNA-binding proteins interactions with different RNA species and their participation in regulatory networks of higher order.
Collapse
Affiliation(s)
- Anna Balcerak
- 1 The Maria Sklodowska-Curie Institute-Oncology Center , Roentgena 5, 02-781 Warsaw , Poland
| | - Alicja Trebinska-Stryjewska
- 1 The Maria Sklodowska-Curie Institute-Oncology Center , Roentgena 5, 02-781 Warsaw , Poland.,2 Biomedical Engineering Centre, Institute of Optoelectronics, Military University of Technology , Sylwestra Kaliskiego 2, 00-908 Warsaw , Poland
| | - Ryszard Konopinski
- 1 The Maria Sklodowska-Curie Institute-Oncology Center , Roentgena 5, 02-781 Warsaw , Poland
| | - Maciej Wakula
- 1 The Maria Sklodowska-Curie Institute-Oncology Center , Roentgena 5, 02-781 Warsaw , Poland
| | - Ewa Anna Grzybowska
- 1 The Maria Sklodowska-Curie Institute-Oncology Center , Roentgena 5, 02-781 Warsaw , Poland
| |
Collapse
|
42
|
Jo SS, Choi SS. Analysis of the Functional Relevance of Epigenetic Chromatin Marks in the First Intron Associated with Specific Gene Expression Patterns. Genome Biol Evol 2019; 11:786-797. [PMID: 30753418 PMCID: PMC6424223 DOI: 10.1093/gbe/evz033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2019] [Indexed: 01/03/2023] Open
Abstract
We previously showed that the first intron of genes exhibits several interesting characteristics not seen in other introns: 1) it is the longest intron on average in almost all eukaryotes, 2) it presents the highest number of conserved sites, and 3) it exhibits the highest density of regulatory chromatin marks. Here, we expand on our previous study by integrating various multiomics data, leading to further evidence supporting the functionality of sites in the first intron. We first show that trait-associated single-nucleotide polymorphisms (TASs) are significantly enriched in the first intron. We also show that within the first intron, the density of epigenetic chromatin signals is higher near TASs than in distant regions. Furthermore, the distribution of several chromatin regulatory marks is investigated in relation to gene expression specificity (i.e., housekeeping vs. tissue-specific expression), essentiality (essential genes vs. nonessential genes), and levels of gene expression; housekeeping genes or essential genes contain greater proportions of active chromatin marks than tissue-specific genes or nonessential genes, and highly expressed genes exhibit a greater density of chromatin regulatory marks than genes with low expression. Moreover, we observe that genes carrying multiple first-intron TASs interact with each other within a large protein-protein interaction network, ultimately connecting to the UBC protein, a well-established protein involved in ubiquitination. We believe that our results shed light on the functionality of first introns as a genomic entity involved in gene expression regulation.
Collapse
Affiliation(s)
- Shin-Sang Jo
- Division of Biomedical Convergence, College of Biomedical Science, Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, Korea
| | - Sun Shim Choi
- Division of Biomedical Convergence, College of Biomedical Science, Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, Korea
| |
Collapse
|
43
|
Spliceostatin A treatment inhibits mitotic clonal expansion and adipogenesis. Biochem Biophys Res Commun 2019; 514:848-852. [DOI: 10.1016/j.bbrc.2019.04.180] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 04/27/2019] [Indexed: 12/28/2022]
|
44
|
Zhang XZ, Zheng WJ, Cao XY, Cui XY, Zhao SP, Yu TF, Chen J, Zhou YB, Chen M, Chai SC, Xu ZS, Ma YZ. Genomic Analysis of Stress Associated Proteins in Soybean and the Role of GmSAP16 in Abiotic Stress Responses in Arabidopsis and Soybean. FRONTIERS IN PLANT SCIENCE 2019; 10:1453. [PMID: 31803204 PMCID: PMC6876671 DOI: 10.3389/fpls.2019.01453] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/18/2019] [Indexed: 05/22/2023]
Abstract
Stress associated proteins (SAPs) containing A20/AN1 zinc finger domains have emerged as novel regulators of stress responses. In this study, 27 SAP genes were identified in soybean. The phylogenetic relationships, exon-intron structure, domain structure, chromosomal localization, putative cis-acting elements, and expression patterns of SAPs in various tissues under abiotic stresses were analyzed. Among the soybean SAP genes, GmSAP16 was significantly induced by water deficit stress, salt, and abscisic acid (ABA) and selected for further analysis. GmSAP16 was located in the nucleus and cytoplasm. The overexpression of GmSAP16 in Arabidopsis improved drought and salt tolerance at different developmental stages and increased ABA sensitivity, as indicated by delayed seed germination and stomatal closure. The GmSAP16 transgenic Arabidopsis plants had a higher proline content and a lower water loss rate and malondialdehyde (MDA) content than wild type (WT) plants in response to stresses. The overexpression of GmSAP16 in soybean hairy roots enhanced drought and salt tolerance of soybean seedlings, with higher proline and chlorophyll contents and a lower MDA content than WT. RNA inference (RNAi) of GmSAP16 increased stress sensitivity. Stress-related genes, including GmDREB1B;1, GmNCED3, GmRD22, GmDREB2, GmNHX1, and GmSOS1, showed significant expression alterations in GmSAP16-overexpressing and RNAi plants under stress treatments. These results indicate that soybean SAP genes play important roles in abiotic stress responses.
Collapse
Affiliation(s)
- Xiang-Zhan Zhang
- College of Agronomy, Northwest A&F University/State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Wei-Jun Zheng
- College of Agronomy, Northwest A&F University/State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, China
| | - Xin-You Cao
- Crop Research Institute, Shandong Academy of Agricultural Sciences, National Engineering Laboratory for Wheat and Maize, Key Laboratory of Wheat Biology and Genetic Improvement, Jinan, China
| | - Xi-Yan Cui
- College of Life Sciences, Jilin Agricultural University, Changchun, China
| | - Shu-Ping Zhao
- College of Agronomy, Northwest A&F University/State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, China
| | - Tai-Fei Yu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Jun Chen
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Yong-Bin Zhou
- College of Agronomy, Northwest A&F University/State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, China
| | - Ming Chen
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Shou-Cheng Chai
- College of Agronomy, Northwest A&F University/State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, China
- *Correspondence: Shou-Cheng Chai ; Zhao-Shi Xu,
| | - Zhao-Shi Xu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
- *Correspondence: Shou-Cheng Chai ; Zhao-Shi Xu,
| | - You-Zhi Ma
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| |
Collapse
|
45
|
Wang K, Wang L, Wang J, Chen S, Shi M, Cheng H. Intronless mRNAs transit through nuclear speckles to gain export competence. J Cell Biol 2018; 217:3912-3929. [PMID: 30194269 PMCID: PMC6219727 DOI: 10.1083/jcb.201801184] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 07/04/2018] [Accepted: 08/09/2018] [Indexed: 01/12/2023] Open
Abstract
Nuclear speckles (NSs) store splicing factors. Wang et al. show that many naturally intronless mRNAs associate with NSs and that speckle association enhances their export by facilitating TREX recruitment, suggesting that trafficking to NSs could be an important quality control step in intronless mRNA export. Nuclear speckles (NSs) serve as splicing factor storage sites. In this study, we unexpectedly found that many endogenous intronless mRNAs, which do not undergo splicing, associate with NSs. These associations do not require transcription, polyadenylation, or the polyA tail. Rather, exonic splicing enhancers present in intronless mRNAs and their binding partners, SR proteins, promote intronless mRNA localization to NSs. Significantly, speckle targeting of mRNAs promotes the recruitment of the TREX export complex and their TREX-dependent nuclear export. Furthermore, TREX, which accumulates in NSs, is required for releasing intronless mRNAs from NSs, whereas NXF1, which is mainly detected at nuclear pores, is not. Upon NXF1 depletion, the TREX protein UAP56 loses speckle concentration but coaccumulates with intronless mRNAs and polyA RNAs in the nucleoplasm, and these RNAs are trapped in NSs upon UAP56 codepletion. We propose that the export-competent messenger RNP assembly mainly occurs in NSs for intronless mRNAs and that entering NSs serves as a quality control step in mRNA export.
Collapse
Affiliation(s)
- Ke Wang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lantian Wang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jianshu Wang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Suli Chen
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Min Shi
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hong Cheng
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
46
|
Bioinformatics analysis of Ronin gene and their potential role in pluripotency control. GENE REPORTS 2018. [DOI: 10.1016/j.genrep.2018.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
47
|
Speth C, Szabo EX, Martinho C, Collani S, Zur Oven-Krockhaus S, Richter S, Droste-Borel I, Macek B, Stierhof YD, Schmid M, Liu C, Laubinger S. Arabidopsis RNA processing factor SERRATE regulates the transcription of intronless genes. eLife 2018; 7:37078. [PMID: 30152752 PMCID: PMC6135607 DOI: 10.7554/elife.37078] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 08/22/2018] [Indexed: 01/16/2023] Open
Abstract
Intron splicing increases proteome complexity, promotes RNA stability, and enhances transcription. However, introns and the concomitant need for splicing extend the time required for gene expression and can cause an undesirable delay in the activation of genes. Here, we show that the plant microRNA processing factor SERRATE (SE) plays an unexpected and pivotal role in the regulation of intronless genes. Arabidopsis SE associated with more than 1000, mainly intronless, genes in a transcription-dependent manner. Chromatin-bound SE liaised with paused and elongating polymerase II complexes and promoted their association with intronless target genes. Our results indicate that stress-responsive genes contain no or few introns, which negatively affects their expression strength, but that some genes circumvent this limitation via a novel SE-dependent transcriptional activation mechanism. Transcriptome analysis of a Drosophila mutant defective in ARS2, the metazoan homologue of SE, suggests that SE/ARS2 function in regulating intronless genes might be conserved across kingdoms.
Collapse
Affiliation(s)
- Corinna Speth
- Centre for Plant Molecular Biology (ZMBP), University of Tuebingen, Tuebingen, Germany.,Chemical Genomics Centre (CGC) of the Max Planck Society, Dortmund, Germany.,Max Planck Institute for Developmental Biology, Tuebingen, Germany
| | - Emese Xochitl Szabo
- Centre for Plant Molecular Biology (ZMBP), University of Tuebingen, Tuebingen, Germany.,Chemical Genomics Centre (CGC) of the Max Planck Society, Dortmund, Germany.,Max Planck Institute for Developmental Biology, Tuebingen, Germany.,Institute for Biology and Environmental Science, University of Oldenburg, Oldenburg, Germany
| | - Claudia Martinho
- Centre for Plant Molecular Biology (ZMBP), University of Tuebingen, Tuebingen, Germany.,Chemical Genomics Centre (CGC) of the Max Planck Society, Dortmund, Germany.,Max Planck Institute for Developmental Biology, Tuebingen, Germany
| | - Silvio Collani
- Department of Plant Physiology, Umea Plant Science Centre, Umeå University, Umea, Sweden
| | | | - Sandra Richter
- Centre for Plant Molecular Biology (ZMBP), University of Tuebingen, Tuebingen, Germany
| | | | - Boris Macek
- Proteome Centre, University of Tuebingen, Tuebingen, Germany
| | - York-Dieter Stierhof
- Centre for Plant Molecular Biology (ZMBP), University of Tuebingen, Tuebingen, Germany
| | - Markus Schmid
- Department of Plant Physiology, Umea Plant Science Centre, Umeå University, Umea, Sweden
| | - Chang Liu
- Centre for Plant Molecular Biology (ZMBP), University of Tuebingen, Tuebingen, Germany
| | - Sascha Laubinger
- Centre for Plant Molecular Biology (ZMBP), University of Tuebingen, Tuebingen, Germany.,Chemical Genomics Centre (CGC) of the Max Planck Society, Dortmund, Germany.,Max Planck Institute for Developmental Biology, Tuebingen, Germany.,Institute for Biology and Environmental Science, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
48
|
Nagashimada M, Ueda T, Ishita Y, Sakurai H. TAF7 is a heat‐inducible unstable protein and is required for sustained expression of heat shock protein genes. FEBS J 2018; 285:3215-3224. [DOI: 10.1111/febs.14604] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 05/10/2018] [Accepted: 07/17/2018] [Indexed: 01/09/2023]
Affiliation(s)
- Mayumi Nagashimada
- Division of Health Sciences Kanazawa University Graduate School of Medical Science Ishikawa Japan
| | - Takumi Ueda
- Division of Health Sciences Kanazawa University Graduate School of Medical Science Ishikawa Japan
| | - Yuichiro Ishita
- Division of Health Sciences Kanazawa University Graduate School of Medical Science Ishikawa Japan
| | - Hiroshi Sakurai
- Division of Health Sciences Kanazawa University Graduate School of Medical Science Ishikawa Japan
| |
Collapse
|
49
|
Cheng X, Hou Y, Nie Y, Zhang Y, Huang H, Liu H, Sun X. Nucleosome Positioning of Intronless Genes in the Human Genome. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2018; 15:1111-1121. [PMID: 26415210 DOI: 10.1109/tcbb.2015.2476811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Nucleosomes, the basic units of chromatin, are involved in transcription regulation and DNA replication. Intronless genes, which constitute 3 percent of the human genome, differ from intron-containing genes in evolution and function. Our analysis reveals that nucleosome positioning shows a distinct pattern in intronless and intron-containing genes. The nucleosome occupancy upstream of transcription start sites of intronless genes is lower than that of intron-containing genes. In contrast, high occupancy and well positioned nucleosomes are observed along the gene body of intronless genes, which is perfectly consistent with the barrier nucleosome model. Intronless genes have a significantly lower expression level than intron-containing genes and most of them are not expressed in CD4+ T cell lines and GM12878 cell lines, which results from their tissue specificity. However, the highly expressed genes are at the same expression level between the two types of genes. The highly expressed intronless genes require a higher density of RNA Pol II in an elongating state to compensate for the lack of introns. Additionally, 5' and 3' nucleosome depleted regions of highly expressed intronless genes are deeper than those of highly expressed intron-containing genes.
Collapse
|
50
|
Amigo JD, Opazo JC, Jorquera R, Wichmann IA, Garcia-Bloj BA, Alarcon MA, Owen GI, Corvalán AH. The Reprimo Gene Family: A Novel Gene Lineage in Gastric Cancer with Tumor Suppressive Properties. Int J Mol Sci 2018; 19:E1862. [PMID: 29941787 PMCID: PMC6073456 DOI: 10.3390/ijms19071862] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 04/20/2018] [Accepted: 04/21/2018] [Indexed: 12/18/2022] Open
Abstract
The reprimo (RPRM) gene family is a group of single exon genes present exclusively within the vertebrate lineage. Two out of three members of this family are present in humans: RPRM and RPRM-Like (RPRML). RPRM induces cell cycle arrest at G2/M in response to p53 expression. Loss-of-expression of RPRM is related to increased cell proliferation and growth in gastric cancer. This evidence suggests that RPRM has tumor suppressive properties. However, the molecular mechanisms and signaling partners by which RPRM exerts its functions remain unknown. Moreover, scarce studies have attempted to characterize RPRML, and its functionality is unclear. Herein, we highlight the role of the RPRM gene family in gastric carcinogenesis, as well as its potential applications in clinical settings. In addition, we summarize the current knowledge on the phylogeny and expression patterns of this family of genes in embryonic zebrafish and adult humans. Strikingly, in both species, RPRM is expressed primarily in the digestive tract, blood vessels and central nervous system, supporting the use of zebrafish for further functional characterization of RPRM. Finally, drawing on embryonic and adult expression patterns, we address the potential relevance of RPRM and RPRML in cancer. Active investigation or analytical research in the coming years should contribute to novel translational applications of this poorly understood gene family as potential biomarkers and development of novel cancer therapies.
Collapse
Affiliation(s)
- Julio D Amigo
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8330025 Santiago, Chile.
| | - Juan C Opazo
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, 5090000 Valdivia, Chile.
| | - Roddy Jorquera
- CORE Biodata, Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Católica de Chile, 8330024 Santiago, Chile.
| | - Ignacio A Wichmann
- Laboratory of Oncology, Facultad de Medicina, Pontificia Universidad Católica de Chile, 8330034 Santiago, Chile.
- Departamento de Oncología y Hematología, Facultad de Medicina, Pontificia Universidad Católica de Chile, 8330034 Santiago, Chile.
- CORE Biodata, Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Católica de Chile, 8330024 Santiago, Chile.
| | - Benjamin A Garcia-Bloj
- Laboratory of Oncology, Facultad de Medicina, Pontificia Universidad Católica de Chile, 8330034 Santiago, Chile.
| | - Maria Alejandra Alarcon
- Laboratory of Oncology, Facultad de Medicina, Pontificia Universidad Católica de Chile, 8330034 Santiago, Chile.
- Departamento de Oncología y Hematología, Facultad de Medicina, Pontificia Universidad Católica de Chile, 8330034 Santiago, Chile.
| | - Gareth I Owen
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8330025 Santiago, Chile.
- Laboratory of Oncology, Facultad de Medicina, Pontificia Universidad Católica de Chile, 8330034 Santiago, Chile.
- Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, 8331150 Santiago, Chile.
| | - Alejandro H Corvalán
- Laboratory of Oncology, Facultad de Medicina, Pontificia Universidad Católica de Chile, 8330034 Santiago, Chile.
- Departamento de Oncología y Hematología, Facultad de Medicina, Pontificia Universidad Católica de Chile, 8330034 Santiago, Chile.
- CORE Biodata, Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Católica de Chile, 8330024 Santiago, Chile.
| |
Collapse
|