1
|
Ksouri R, Aksel H, Saghrouchni H, Saygideger Y. Biocompatible and Safe Decellularized Spinach With Antibacterial and Wound Healing Activity. J Biomed Mater Res B Appl Biomater 2024; 112:e35489. [PMID: 39377466 DOI: 10.1002/jbm.b.35489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/09/2024] [Accepted: 09/12/2024] [Indexed: 10/09/2024]
Abstract
Creating acellular vascularized constructs from animal and plant tissue is one of the well-known strategies for scaffold assembly. Decellularization takes an important position among these strategies. The most common method is chemical decellularization. This approach employs high concentrations of detergents, primarily Triton X-100, sodium dodecyl sulfate (SDS), and sodium hypochlorite (SH). In this work, novel techniques for decellularizing spinach were developed using detergents frequently utilized in laboratories. Spinach leaves were decellularized using Tween-20, SDS, and SH at low concentrations to generate an acellular plant matrix for tissue engineering. We measured the quantities of DNA and protein, as well as the decellularization using hematoxylin and eosin (H&E) staining. The biocompatibility and capacity of the biostructures to stimulate fibroblast wound healing were assessed using MTT and the Scratch assay. The antibacterial activity of the scaffolds was also tested against a gram-positive bacterium, Staphilococcus aureus, which is a common pathogen associated with wound healing. The best shape, evident vascularization, and good biocompatibility were seen in the Tween-20 decellularized samples at 1% concentration at 21°C and 37°C through the enhancement of cell proliferation and wound healing. In terms of antibacterial activity, all scaffold samples had a significant effect on Staphilococcus aureus, where the number of bacterial colonies in all six scaffold groups became zero after 4 h of treatment. The scaffolds also showed a 100% kill rate on Staphilococcus aureus, which could avoid wound infection during the repair process, and that can be suggested as a scaffold for tissue engineering applications and an important constituent for pharmacological activities.
Collapse
Affiliation(s)
- Rihab Ksouri
- Department of Biotechnology, Institute of Natural and Applied Sciences, Çukurova University, Balcalı, Adana, Türkiye
| | - Hamide Aksel
- Department of Biotechnology, Institute of Natural and Applied Sciences, Çukurova University, Balcalı, Adana, Türkiye
| | - Hamza Saghrouchni
- Department of Biotechnology, Institute of Natural and Applied Sciences, Çukurova University, Balcalı, Adana, Türkiye
| | - Yasemin Saygideger
- Department of Biotechnology, Institute of Natural and Applied Sciences, Çukurova University, Balcalı, Adana, Türkiye
- Department of Translational Medicine, Faculty of Medicine, Cukurova University, Balcali, Adana, Türkiye
| |
Collapse
|
2
|
Gokhan I, Blum TS, Campbell SG. Engineered heart tissue: Design considerations and the state of the art. BIOPHYSICS REVIEWS 2024; 5:021308. [PMID: 38912258 PMCID: PMC11192576 DOI: 10.1063/5.0202724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/29/2024] [Indexed: 06/25/2024]
Abstract
Originally developed more than 20 years ago, engineered heart tissue (EHT) has become an important tool in cardiovascular research for applications such as disease modeling and drug screening. Innovations in biomaterials, stem cell biology, and bioengineering, among other fields, have enabled EHT technologies to recapitulate many aspects of cardiac physiology and pathophysiology. While initial EHT designs were inspired by the isolated-trabecula culture system, current designs encompass a variety of formats, each of which have unique strengths and limitations. In this review, we describe the most common EHT formats, and then systematically evaluate each aspect of their design, emphasizing the rational selection of components for each application.
Collapse
Affiliation(s)
| | - Thomas S. Blum
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06511, USA
| | | |
Collapse
|
3
|
Elkhoury K, Kodeih S, Enciso‐Martínez E, Maziz A, Bergaud C. Advancing Cardiomyocyte Maturation: Current Strategies and Promising Conductive Polymer-Based Approaches. Adv Healthc Mater 2024; 13:e2303288. [PMID: 38349615 PMCID: PMC11468390 DOI: 10.1002/adhm.202303288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/31/2024] [Indexed: 02/21/2024]
Abstract
Cardiovascular diseases are a leading cause of mortality and pose a significant burden on healthcare systems worldwide. Despite remarkable progress in medical research, the development of effective cardiovascular drugs has been hindered by high failure rates and escalating costs. One contributing factor is the limited availability of mature cardiomyocytes (CMs) for accurate disease modeling and drug screening. Human induced pluripotent stem cell-derived CMs offer a promising source of CMs; however, their immature phenotype presents challenges in translational applications. This review focuses on the road to achieving mature CMs by summarizing the major differences between immature and mature CMs, discussing the importance of adult-like CMs for drug discovery, highlighting the limitations of current strategies, and exploring potential solutions using electro-mechano active polymer-based scaffolds based on conductive polymers. However, critical considerations such as the trade-off between 3D systems and nutrient exchange, biocompatibility, degradation, cell adhesion, longevity, and integration into wider systems must be carefully evaluated. Continued advancements in these areas will contribute to a better understanding of cardiac diseases, improved drug discovery, and the development of personalized treatment strategies for patients with cardiovascular disorders.
Collapse
Affiliation(s)
- Kamil Elkhoury
- LAAS‐CNRS, Université de Toulouse, CNRSToulouseF‐31400France
| | - Sacha Kodeih
- Faculty of Medicine and Medical SciencesUniversity of BalamandTripoliP.O. Box 100Lebanon
| | | | - Ali Maziz
- LAAS‐CNRS, Université de Toulouse, CNRSToulouseF‐31400France
| | | |
Collapse
|
4
|
Seguret M, Davidson P, Robben S, Jouve C, Pereira C, Lelong Q, Deshayes L, Cerveau C, Le Berre M, Rodrigues Ribeiro RS, Hulot JS. A versatile high-throughput assay based on 3D ring-shaped cardiac tissues generated from human induced pluripotent stem cell-derived cardiomyocytes. eLife 2024; 12:RP87739. [PMID: 38578976 PMCID: PMC11001295 DOI: 10.7554/elife.87739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024] Open
Abstract
We developed a 96-well plate assay which allows fast, reproducible, and high-throughput generation of 3D cardiac rings around a deformable optically transparent hydrogel (polyethylene glycol [PEG]) pillar of known stiffness. Human induced pluripotent stem cell-derived cardiomyocytes, mixed with normal human adult dermal fibroblasts in an optimized 3:1 ratio, self-organized to form ring-shaped cardiac constructs. Immunostaining showed that the fibroblasts form a basal layer in contact with the glass, stabilizing the muscular fiber above. Tissues started contracting around the pillar at D1 and their fractional shortening increased until D7, reaching a plateau at 25±1%, that was maintained up to 14 days. The average stress, calculated from the compaction of the central pillar during contractions, was 1.4±0.4 mN/mm2. The cardiac constructs recapitulated expected inotropic responses to calcium and various drugs (isoproterenol, verapamil) as well as the arrhythmogenic effects of dofetilide. This versatile high-throughput assay allows multiple in situ mechanical and structural readouts.
Collapse
|
5
|
Toker-Bayraktar M, Ertugrul Mİ, Odabas S, Garipcan B. A typical method for decellularization of plants as biomaterials. MethodsX 2023; 11:102385. [PMID: 37817976 PMCID: PMC10561109 DOI: 10.1016/j.mex.2023.102385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 09/16/2023] [Indexed: 10/12/2023] Open
Abstract
Decellularization is a process by which cells are removed from tissues or organs, leaving behind the extracellular matrix (ECM) structure. This process has gained interest in the fields of tissue engineering and regenerative medicine as a way to prepare suitable scaffolds for tissue reconstruction. Although the initial efforts come with the animal tissues, this technique can also be applied to various plant tissues with simple modifications, as plant-derived biomaterials have the benefit of being biocompatible and serving as a safe, all-natural substitute for synthetic or animal originated materials. Additionally, plant-derived biomaterials may help cells grow and differentiate, creating a three-dimensional environment for tissue regeneration and repair. Here we demonstrate a general method for plant tissue decellularization, including already experienced approaches and techniques.•Exhibit the basic steps for plant decellularization, which may be applied to several other plant tissues.•The proposed approach may be optimized considering various intended uses.•Gives basic information for the determination of decellularization efficiency.
Collapse
Affiliation(s)
- Melis Toker-Bayraktar
- Biomimetics and Bioinspired Biomaterials Research Laboratory, Institute of Biomedical Engineering, Boğaziçi University, Çengelköy, Istanbul 34684, Turkey
| | - Melek İpek Ertugrul
- Faculty of Science, Department of Chemistry, Biomaterials and Tissue Engineering Laboratory (bteLAB), Ankara University, Ankara 06560, Turkey
- Interdisciplinary Research Unit for Advanced Materials (INTRAM), Ankara University, Ankara 06560, Turkey
| | - Sedat Odabas
- Faculty of Science, Department of Chemistry, Biomaterials and Tissue Engineering Laboratory (bteLAB), Ankara University, Ankara 06560, Turkey
- Interdisciplinary Research Unit for Advanced Materials (INTRAM), Ankara University, Ankara 06560, Turkey
| | - Bora Garipcan
- Biomimetics and Bioinspired Biomaterials Research Laboratory, Institute of Biomedical Engineering, Boğaziçi University, Çengelköy, Istanbul 34684, Turkey
| |
Collapse
|
6
|
Rajendran AK, Sankar D, Amirthalingam S, Kim HD, Rangasamy J, Hwang NS. Trends in mechanobiology guided tissue engineering and tools to study cell-substrate interactions: a brief review. Biomater Res 2023; 27:55. [PMID: 37264479 DOI: 10.1186/s40824-023-00393-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/09/2023] [Indexed: 06/03/2023] Open
Abstract
Sensing the mechanical properties of the substrates or the matrix by the cells and the tissues, the subsequent downstream responses at the cellular, nuclear and epigenetic levels and the outcomes are beginning to get unraveled more recently. There have been various instances where researchers have established the underlying connection between the cellular mechanosignalling pathways and cellular physiology, cellular differentiation, and also tissue pathology. It has been now accepted that mechanosignalling, alone or in combination with classical pathways, could play a significant role in fate determination, development, and organization of cells and tissues. Furthermore, as mechanobiology is gaining traction, so do the various techniques to ponder and gain insights into the still unraveled pathways. This review would briefly discuss some of the interesting works wherein it has been shown that specific alteration of the mechanical properties of the substrates would lead to fate determination of stem cells into various differentiated cells such as osteoblasts, adipocytes, tenocytes, cardiomyocytes, and neurons, and how these properties are being utilized for the development of organoids. This review would also cover various techniques that have been developed and employed to explore the effects of mechanosignalling, including imaging of mechanosensing proteins, atomic force microscopy (AFM), quartz crystal microbalance with dissipation measurements (QCMD), traction force microscopy (TFM), microdevice arrays, Spatio-temporal image analysis, optical tweezer force measurements, mechanoscanning ion conductance microscopy (mSICM), acoustofluidic interferometric device (AID) and so forth. This review would provide insights to the researchers who work on exploiting various mechanical properties of substrates to control the cellular and tissue functions for tissue engineering and regenerative applications, and also will shed light on the advancements of various techniques that could be utilized to unravel the unknown in the field of cellular mechanobiology.
Collapse
Affiliation(s)
- Arun Kumar Rajendran
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Deepthi Sankar
- Polymeric Biomaterials Lab, School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, 682041, India
| | - Sivashanmugam Amirthalingam
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
- Institute of Engineering Research, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hwan D Kim
- Department of Polymer Science and Engineering, Korea National University of Transportation, Chungju, 27469, Republic of Korea
- Department of Biomedical Engineering, Korea National University of Transportation, Chungju, 27469, Republic of Korea
| | - Jayakumar Rangasamy
- Polymeric Biomaterials Lab, School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, 682041, India.
| | - Nathaniel S Hwang
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea.
- Institute of Engineering Research, Seoul National University, Seoul, 08826, Republic of Korea.
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea.
- Bio-MAX/N-Bio Institute, Institute of Bio-Engineering, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
7
|
Uscategui Calderon M, Gonzalez BA, Yutzey KE. Cardiomyocyte-fibroblast crosstalk in the postnatal heart. Front Cell Dev Biol 2023; 11:1163331. [PMID: 37077417 PMCID: PMC10106698 DOI: 10.3389/fcell.2023.1163331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/22/2023] [Indexed: 04/05/2023] Open
Abstract
During the postnatal period in mammals, the heart undergoes significant remodeling in response to increased circulatory demands. In the days after birth, cardiac cells, including cardiomyocytes and fibroblasts, progressively lose embryonic characteristics concomitant with the loss of the heart’s ability to regenerate. Moreover, postnatal cardiomyocytes undergo binucleation and cell cycle arrest with induction of hypertrophic growth, while cardiac fibroblasts proliferate and produce extracellular matrix (ECM) that transitions from components that support cellular maturation to production of the mature fibrous skeleton of the heart. Recent studies have implicated interactions of cardiac fibroblasts and cardiomyocytes within the maturing ECM environment to promote heart maturation in the postnatal period. Here, we review the relationships of different cardiac cell types and the ECM as the heart undergoes both structural and functional changes during development. Recent advances in the field, particularly in several recently published transcriptomic datasets, have highlighted specific signaling mechanisms that underlie cellular maturation and demonstrated the biomechanical interdependence of cardiac fibroblast and cardiomyocyte maturation. There is increasing evidence that postnatal heart development in mammals is dependent on particular ECM components and that resulting changes in biomechanics influence cell maturation. These advances, in definition of cardiac fibroblast heterogeneity and function in relation to cardiomyocyte maturation and the extracellular environment provide, support for complex cell crosstalk in the postnatal heart with implications for heart regeneration and disease mechanisms.
Collapse
Affiliation(s)
- Maria Uscategui Calderon
- Division of Molecular Cardiovascular Biology, The Heart Institute, Cincinnati Children’s Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Brittany A. Gonzalez
- Division of Molecular Cardiovascular Biology, The Heart Institute, Cincinnati Children’s Medical Center, Cincinnati, OH, United States
| | - Katherine E. Yutzey
- Division of Molecular Cardiovascular Biology, The Heart Institute, Cincinnati Children’s Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- *Correspondence: Katherine E. Yutzey,
| |
Collapse
|
8
|
Kort-Mascort J, Flores-Torres S, Peza-Chavez O, Jang JH, Pardo LA, Tran SD, Kinsella J. Decellularized ECM hydrogels: prior use considerations, applications, and opportunities in tissue engineering and biofabrication. Biomater Sci 2023; 11:400-431. [PMID: 36484344 DOI: 10.1039/d2bm01273a] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Tissue development, wound healing, pathogenesis, regeneration, and homeostasis rely upon coordinated and dynamic spatial and temporal remodeling of extracellular matrix (ECM) molecules. ECM reorganization and normal physiological tissue function, require the establishment and maintenance of biological, chemical, and mechanical feedback mechanisms directed by cell-matrix interactions. To replicate the physical and biological environment provided by the ECM in vivo, methods have been developed to decellularize and solubilize tissues which yield organ and tissue-specific bioactive hydrogels. While these biomaterials retain several important traits of the native ECM, the decellularizing process, and subsequent sterilization, and solubilization result in fragmented, cleaved, or partially denatured macromolecules. The final product has decreased viscosity, moduli, and yield strength, when compared to the source tissue, limiting the compatibility of isolated decellularized ECM (dECM) hydrogels with fabrication methods such as extrusion bioprinting. This review describes the physical and bioactive characteristics of dECM hydrogels and their role as biomaterials for biofabrication. In this work, critical variables when selecting the appropriate tissue source and extraction methods are identified. Common manual and automated fabrication techniques compatible with dECM hydrogels are described and compared. Fabrication and post-manufacturing challenges presented by the dECM hydrogels decreased mechanical and structural stability are discussed as well as circumvention strategies. We further highlight and provide examples of the use of dECM hydrogels in tissue engineering and their role in fabricating complex in vitro 3D microenvironments.
Collapse
Affiliation(s)
| | | | - Omar Peza-Chavez
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada.
| | - Joyce H Jang
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada.
| | | | - Simon D Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Joseph Kinsella
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
9
|
Kuwabara JT, Hara A, Heckl JR, Peña B, Bhutada S, DeMaris R, Ivey MJ, DeAngelo LP, Liu X, Park J, Jahansooz JR, Mestroni L, McKinsey TA, Apte SS, Tallquist MD. Regulation of extracellular matrix composition by fibroblasts during perinatal cardiac maturation. J Mol Cell Cardiol 2022; 169:84-95. [PMID: 35569524 PMCID: PMC10149041 DOI: 10.1016/j.yjmcc.2022.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 05/05/2022] [Accepted: 05/08/2022] [Indexed: 01/18/2023]
Abstract
BACKGROUND Cardiac fibroblasts are the main non-myocyte population responsible for extracellular matrix (ECM) production. During perinatal development, fibroblast expansion coincides with the transition from hyperplastic to hypertrophic myocardial growth. Therefore, we investigated the consequences of fibroblast loss at the time of cardiomyocyte maturation by depleting fibroblasts in the perinatal mouse. METHODS AND RESULTS We evaluated the microenvironment of the perinatal heart in the absence of fibroblasts and the potential functional impact of fibroblast loss in regulation of cardiomyocyte cell cycle arrest and binucleation. Cre-mediated expression of diphtheria toxin A in PDGFRα expressing cells immediately after birth eliminated 70-80% of the cardiac fibroblasts. At postnatal day 5, hearts lacking fibroblasts appeared similar to controls with normal morphology and comparable numbers of endothelial and smooth muscle cells, despite a pronounced reduction in fibrillar collagen. Immunoblotting and proteomic analysis of control and fibroblast-deficient hearts identified differential abundance of several ECM proteins. In addition, fibroblast loss decreased tissue stiffness and resulted in increased cardiomyocyte mitotic index, DNA synthesis, and cytokinesis. Moreover, decellularized matrix from fibroblast-deficient hearts promoted cardiomyocyte DNA replication. While cardiac architecture was not overtly affected by fibroblast reduction, few pups survived past postnatal day 11, suggesting an overall requirement for PDGFRα expressing fibroblasts. CONCLUSIONS These studies demonstrate the key role of fibroblasts in matrix production and cardiomyocyte cross-talk during mouse perinatal heart maturation and revealed that fibroblast-derived ECM may modulate cardiomyocyte maturation in vivo. Neonatal depletion of fibroblasts demonstrated that although hearts can tolerate reduced ECM composition, fibroblast loss eventually leads to perinatal death as the approach simultaneously reduced fibroblast populations in other organs.
Collapse
Affiliation(s)
- Jill T Kuwabara
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, United States of America; Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, United States of America
| | - Akitoshi Hara
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, United States of America
| | - Jack R Heckl
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, United States of America; Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, United States of America
| | - Brisa Peña
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America; Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America; Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America
| | - Sumit Bhutada
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, United States of America
| | - Regan DeMaris
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, United States of America
| | - Malina J Ivey
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, United States of America; Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, United States of America; Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH 45267, United States of America
| | - Lydia P DeAngelo
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, United States of America
| | - Xiaoting Liu
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, United States of America
| | - Juwon Park
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, United States of America
| | - Julia R Jahansooz
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, United States of America
| | - Luisa Mestroni
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America
| | - Timothy A McKinsey
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America; Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America
| | - Suneel S Apte
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, United States of America
| | - Michelle D Tallquist
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, United States of America.
| |
Collapse
|
10
|
Querceto S, Santoro R, Gowran A, Grandinetti B, Pompilio G, Regnier M, Tesi C, Poggesi C, Ferrantini C, Pioner JM. The harder the climb the better the view: The impact of substrate stiffness on cardiomyocyte fate. J Mol Cell Cardiol 2022; 166:36-49. [PMID: 35139328 PMCID: PMC11270945 DOI: 10.1016/j.yjmcc.2022.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 12/22/2021] [Accepted: 02/02/2022] [Indexed: 12/27/2022]
Abstract
The quest for novel methods to mature human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) for cardiac regeneration, modelling and drug testing has emphasized a need to create microenvironments with physiological features. Many studies have reported on how cardiomyocytes sense substrate stiffness and adapt their morphological and functional properties. However, these observations have raised new biological questions and a shared vision to translate it into a tissue or organ context is still elusive. In this review, we will focus on the relevance of substrates mimicking cardiac extracellular matrix (cECM) rigidity for the understanding of the biomechanical crosstalk between the extracellular and intracellular environment. The ability to opportunely modulate these pathways could be a key to regulate in vitro hiPSC-CM maturation. Therefore, both hiPSC-CM models and substrate stiffness appear as intriguing tools for the investigation of cECM-cell interactions. More understanding of these mechanisms may provide novel insights on how cECM affects cardiac cell function in the context of genetic cardiomyopathies.
Collapse
Affiliation(s)
- Silvia Querceto
- Division of Physiology, Department of Experimental and Clinical Medicine, Università degli Studi di Firenze, Florence, Italy
| | - Rosaria Santoro
- Unità di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino IRCCS, via Carlo Parea 4, Milan, Italy; Department of Electronics, Information and Biomedical Engineering, Politecnico di Milano, Milan, Italy
| | - Aoife Gowran
- Unità di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino IRCCS, via Carlo Parea 4, Milan, Italy
| | - Bruno Grandinetti
- European Laboratory for Non-Linear Spectroscopy (LENS), Sesto Fiorentino, FI, Italy
| | - Giulio Pompilio
- Unità di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino IRCCS, via Carlo Parea 4, Milan, Italy; Department of Biomedical, Surgical and Dental Sciences, University of Milan, Italy
| | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Chiara Tesi
- Division of Physiology, Department of Experimental and Clinical Medicine, Università degli Studi di Firenze, Florence, Italy
| | - Corrado Poggesi
- Division of Physiology, Department of Experimental and Clinical Medicine, Università degli Studi di Firenze, Florence, Italy
| | - Cecilia Ferrantini
- Division of Physiology, Department of Experimental and Clinical Medicine, Università degli Studi di Firenze, Florence, Italy
| | - Josè Manuel Pioner
- Department of Biology, Università degli Studi di Firenze, Florence, Italy.
| |
Collapse
|
11
|
Zancla A, Mozetic P, Orsini M, Forte G, Rainer A. A primer to traction force microscopy. J Biol Chem 2022; 298:101867. [PMID: 35351517 PMCID: PMC9092999 DOI: 10.1016/j.jbc.2022.101867] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 12/24/2022] Open
Abstract
Traction force microscopy (TFM) has emerged as a versatile technique for the measurement of single-cell-generated forces. TFM has gained wide use among mechanobiology laboratories, and several variants of the original methodology have been proposed. However, issues related to the experimental setup and, most importantly, data analysis of cell traction datasets may restrain the adoption of TFM by a wider community. In this review, we summarize the state of the art in TFM-related research, with a focus on the analytical methods underlying data analysis. We aim to provide the reader with a friendly compendium underlying the potential of TFM and emphasizing the methodological framework required for a thorough understanding of experimental data. We also compile a list of data analytics tools freely available to the scientific community for the furtherance of knowledge on this powerful technique.
Collapse
Affiliation(s)
- Andrea Zancla
- Department of Engineering, Università degli Studi Roma Tre, Rome, Italy; Department of Engineering, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Pamela Mozetic
- Institute of Nanotechnology (NANOTEC), National Research Council, Lecce, Italy; Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy
| | - Monica Orsini
- Department of Engineering, Università degli Studi Roma Tre, Rome, Italy
| | - Giancarlo Forte
- Center for Translational Medicine (CTM), International Clinical Research Center (ICRC), St Anne's University Hospital, Brno, Czechia.
| | - Alberto Rainer
- Department of Engineering, Università Campus Bio-Medico di Roma, Rome, Italy; Institute of Nanotechnology (NANOTEC), National Research Council, Lecce, Italy.
| |
Collapse
|
12
|
Decellularized Alstroemeria flower stem modified with chitosan for tissue engineering purposes: A cellulose/chitosan scaffold. Int J Biol Macromol 2022; 204:321-332. [PMID: 35149092 DOI: 10.1016/j.ijbiomac.2022.02.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 12/18/2022]
Abstract
Utilizing plant-based scaffolds has pulled in the consideration of tissue engineers. Plant tissues own different structures with particular porosity and structure. In this study, the stem of the Alstroemeria flower was designated for decellularization to fabricate a new scaffold. The stems were decellularized and called AFSP and then modified by chitosan and named AFSPC. Osteoblast precursor cell line was employed to assess the biological potential of the final scaffolds. The results uncovered that AFSP owns linear microchannels with a smooth surface. AFSPC delineated uniform chitosan coating on the walls with appropriate roughness. AFSPC showed higher potential in swelling, degradation, diffusion, and having a porous structure than AFSP. Modification with chitosan improved mechanical behavior. Biological assays depicted no cytotoxicity for AFSP and AFSPC. AFSPC showed good cell attachment, proliferation, and migration. In conclusion, modified tissue plants can be a good candidate for tissue engineering of both soft and hard tissues.
Collapse
|
13
|
Park HJ, De Jesus Morales KJ, Bheri S, Kassouf BP, Davis ME. Bidirectional relationship between cardiac extracellular matrix and cardiac cells in ischemic heart disease. Stem Cells 2021; 39:1650-1659. [PMID: 34480804 DOI: 10.1002/stem.3445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 08/10/2021] [Indexed: 11/07/2022]
Abstract
Ischemic heart diseases (IHDs), including myocardial infarction and cardiomyopathies, are a leading cause of mortality and morbidity worldwide. Cardiac-derived stem and progenitor cells have shown promise as a therapeutic for IHD but are limited by poor cell survival, limited retention, and rapid washout. One mechanism to address this is to encapsulate the cells in a matrix or three-dimensional construct, so as to provide structural support and better mimic the cells' physiological microenvironment during administration. More specifically, the extracellular matrix (ECM), the native cellular support network, has been a strong candidate for this purpose. Moreover, there is a strong consensus that the ECM and its residing cells, including cardiac stem cells, have a constant interplay in response to tissue development, aging, disease progression, and repair. When externally stimulated, the cells and ECM work together to mutually maintain the local homeostasis by initially altering the ECM composition and stiffness, which in turn alters the cellular response and behavior. Given this constant interplay, understanding the mechanism of bidirectional cell-ECM interaction is essential to develop better cell implantation matrices to enhance cell engraftment and cardiac tissue repair. This review summarizes current understanding in the field, elucidating the signaling mechanisms between cardiac ECM and residing cells in response to IHD onset. Furthermore, this review highlights recent advances in native ECM-mimicking cardiac matrices as a platform for modulating cardiac cell behavior and inducing cardiac repair.
Collapse
Affiliation(s)
- Hyun-Ji Park
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine & Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Kenneth J De Jesus Morales
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine & Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Sruti Bheri
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine & Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Brandon P Kassouf
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine & Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Michael E Davis
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine & Georgia Institute of Technology, Atlanta, Georgia, USA.,Children's Heart Research and Outcomes (HeRO) Center, Children's Healthcare of Atlanta & Emory University, Atlanta, Georgia, USA
| |
Collapse
|
14
|
Allen SC, Widman JA, Datta A, Suggs LJ. Dynamic extracellular matrix stiffening induces a phenotypic transformation and a migratory shift in epithelial cells. Integr Biol (Camb) 2021; 12:161-174. [PMID: 32472133 DOI: 10.1093/intbio/zyaa012] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 12/10/2019] [Accepted: 05/01/2020] [Indexed: 12/21/2022]
Abstract
Soft tissue tumors, including breast cancer, become stiffer throughout disease progression. This increase in stiffness has been shown to correlate to malignant phenotype and epithelial-to-mesenchymal transition (EMT) in vitro. Unlike current models, utilizing static increases in matrix stiffness, our group has previously created a system that allows for dynamic stiffening of an alginate-matrigel composite hydrogel to mirror the native dynamic process. Here, we utilize this system to evaluate the role of matrix stiffness on EMT and metastasis both in vitro and in vivo. Epithelial cells were seen to lose normal morphology and become protrusive and migratory after stiffening. This shift corresponded to a loss of epithelial markers and gain of mesenchymal markers in both the cell clusters and migrated cells. Furthermore, stiffening in a murine model reduced tumor burden and increased migratory behavior prior to tumor formation. Inhibition of FAK and PI3K in vitro abrogated the morphologic and migratory transformation of epithelial cell clusters. This work demonstrates the key role extracellular matrix stiffening has in tumor progression through integrin signaling and, in particular, its ability to drive EMT-related changes and metastasis.
Collapse
Affiliation(s)
- Shane C Allen
- Department of Biomedical Engineering, The University of Texas, Austin, TX, USA
| | - Jessica A Widman
- Department of Biomedical Engineering, The University of Texas, Austin, TX, USA
| | - Anisha Datta
- Department of Biomedical Engineering, The University of Texas, Austin, TX, USA
| | - Laura J Suggs
- Department of Biomedical Engineering, The University of Texas, Austin, TX, USA
| |
Collapse
|
15
|
Behmer Hansen RA, Wang X, Kaw G, Pierre V, Senyo SE. Accounting for Material Changes in Decellularized Tissue with Underutilized Methodologies. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6696295. [PMID: 34159202 PMCID: PMC8187050 DOI: 10.1155/2021/6696295] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 05/05/2021] [Accepted: 05/21/2021] [Indexed: 11/17/2022]
Abstract
Tissue decellularization has rapidly developed to be a practical approach in tissue engineering research; biological tissue is cleared of cells resulting in a protein-rich husk as a natural scaffold for growing transplanted cells as a donor organ therapy. Minimally processed, acellular extracellular matrix reproduces natural interactions with cells in vitro and for tissue engineering applications in animal models. There are many decellularization techniques that achieve preservation of molecular profile (proteins and sugars), microstructure features such as organization of ECM layers (interstitial matrix and basement membrane) and organ level macrofeatures (vasculature and tissue compartments). While structural and molecular cues receive attention, mechanical and material properties of decellularized tissues are not often discussed. The effects of decellularization on an organ depend on the tissue properties, clearing mechanism, chemical interactions, solubility, temperature, and treatment duration. Physical characterization by a few labs including work from the authors provides evidence that decellularization protocols should be tailored to specific research questions. Physical characterization beyond histology and immunohistochemistry of the decellularized matrix (dECM) extends evaluation of retained functional features of the original tissue. We direct our attention to current technologies that can be employed for structure function analysis of dECM using underutilized tools such as atomic force microscopy (AFM), cryogenic electron microscopy (cryo-EM), dynamic mechanical analysis (DMA), Fourier-transform infrared spectroscopy (FTIR), mass spectrometry, and rheometry. Structural imaging and mechanical functional testing combined with high-throughput molecular analyses opens a new approach for a deeper appreciation of how cellular behavior is influenced by the isolated microenvironment (specifically dECM). Additionally, the impact of these features with different decellularization techniques and generation of synthetic material scaffolds with desired attributes are informed. Ultimately, this mechanical profiling provides a new dimension to our understanding of decellularized matrix and its role in new applications.
Collapse
Affiliation(s)
- Ryan A. Behmer Hansen
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Xinming Wang
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Gitanjali Kaw
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Valinteshley Pierre
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Samuel E. Senyo
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
16
|
Building Organs Using Tissue-Specific Microenvironments: Perspectives from a Bioprosthetic Ovary. Trends Biotechnol 2021; 39:824-837. [PMID: 33593603 DOI: 10.1016/j.tibtech.2021.01.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/21/2021] [Accepted: 01/21/2021] [Indexed: 12/14/2022]
Abstract
Recent research in tissue engineering and regenerative medicine has elucidated the importance of the matrisome. The matrisome, effectively the skeleton of an organ, provides physical and biochemical cues that drive important processes such as differentiation, proliferation, migration, and cellular morphology. Leveraging the matrisome to control these and other tissue-specific processes will be key to developing transplantable bioprosthetics. In the ovary, the physical and biological properties of the matrisome have been implicated in controlling the important processes of follicle quiescence and folliculogenesis. This expanding body of knowledge is being applied in conjunction with new manufacturing processes to enable increasingly complex matrisome engineering, moving closer to emulating tissue structure, composition, and subsequent functions which can be applied to a variety of tissue engineering applications.
Collapse
|
17
|
Bretherton R, Bugg D, Olszewski E, Davis J. Regulators of cardiac fibroblast cell state. Matrix Biol 2020; 91-92:117-135. [PMID: 32416242 PMCID: PMC7789291 DOI: 10.1016/j.matbio.2020.04.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 03/13/2020] [Accepted: 04/13/2020] [Indexed: 02/07/2023]
Abstract
Fibroblasts are the primary regulator of cardiac extracellular matrix (ECM). In response to disease stimuli cardiac fibroblasts undergo cell state transitions to a myofibroblast phenotype, which underlies the fibrotic response in the heart and other organs. Identifying regulators of fibroblast state transitions would inform which pathways could be therapeutically modulated to tactically control maladaptive extracellular matrix remodeling. Indeed, a deeper understanding of fibroblast cell state and plasticity is necessary for controlling its fate for therapeutic benefit. p38 mitogen activated protein kinase (MAPK), which is part of the noncanonical transforming growth factor β (TGFβ) pathway, is a central regulator of fibroblast to myofibroblast cell state transitions that is activated by chemical and mechanical stress signals. Fibroblast intrinsic signaling, local and global cardiac mechanics, and multicellular interactions individually and synergistically impact these state transitions and hence the ECM, which will be reviewed here in the context of cardiac fibrosis.
Collapse
Affiliation(s)
- Ross Bretherton
- Department of Bioengineering, University of Washington, Seattle, WA 98105, United States
| | - Darrian Bugg
- Department of Pathology, University of Washington, 850 Republican, #343, Seattle, WA 98109, United States
| | - Emily Olszewski
- Department of Bioengineering, University of Washington, Seattle, WA 98105, United States
| | - Jennifer Davis
- Department of Bioengineering, University of Washington, Seattle, WA 98105, United States; Department of Pathology, University of Washington, 850 Republican, #343, Seattle, WA 98109, United States; Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA 98109, United States; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, United States.
| |
Collapse
|
18
|
Castillo EA, Lane KV, Pruitt BL. Micromechanobiology: Focusing on the Cardiac Cell-Substrate Interface. Annu Rev Biomed Eng 2020; 22:257-284. [PMID: 32501769 DOI: 10.1146/annurev-bioeng-092019-034950] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Engineered, in vitro cardiac cell and tissue systems provide test beds for the study of cardiac development, cellular disease processes, and drug responses in a dish. Much effort has focused on improving the structure and function of engineered cardiomyocytes and heart tissues. However, these parameters depend critically on signaling through the cellular microenvironment in terms of ligand composition, matrix stiffness, and substrate mechanical properties-that is, matrix micromechanobiology. To facilitate improvements to in vitro microenvironment design, we review how cardiomyocytes and their microenvironment change during development and disease in terms of integrin expression and extracellular matrix (ECM) composition. We also discuss strategies used to bind proteins to common mechanobiology platforms and describe important differences in binding strength to the substrate. Finally, we review example biomaterial approaches designed to support and probe cell-ECM interactions of cardiomyocytes in vitro, as well as open questions and challenges.
Collapse
Affiliation(s)
- Erica A Castillo
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305, USA; .,Department of Mechanical Engineering, University of California, Santa Barbara, California 93106, USA;
| | - Kerry V Lane
- Department of Mechanical Engineering, University of California, Santa Barbara, California 93106, USA;
| | - Beth L Pruitt
- Department of Mechanical Engineering, University of California, Santa Barbara, California 93106, USA; .,Biomolecular Science and Engineering Program, University of California, Santa Barbara, California 93106, USA.,Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California 93117, USA;
| |
Collapse
|
19
|
Peng Y, Huang D, Liu S, Li J, Qing X, Shao Z. Biomaterials-Induced Stem Cells Specific Differentiation Into Intervertebral Disc Lineage Cells. Front Bioeng Biotechnol 2020; 8:56. [PMID: 32117935 PMCID: PMC7019859 DOI: 10.3389/fbioe.2020.00056] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 01/22/2020] [Indexed: 12/11/2022] Open
Abstract
Stem cell therapy, which promotes stem cells differentiation toward specialized cell types, increases the resident population and production of extracellular matrix, and can be used to achieve intervertebral disc (IVD) repair, has drawn great attention for the development of IVD-regenerating materials. Many materials that have been reported in IVD repair have the ability to promote stem cells differentiation. However, due to the limitations of mechanical properties, immunogenicity and uncontrollable deviations in the induction of stem cells differentiation, there are few materials that can currently be translated into clinical applications. In addition to the favorable mechanical properties and biocompatibility of IVD materials, maintaining stem cells activity in the local niche and increasing the ability of stem cells to differentiate into nucleus pulposus (NP) and annulus fibrosus (AF) cells are the basis for promoting the application of IVD-regenerating materials in clinical practice. The purpose of this review is to summarize IVD-regenerating materials that focus on stem cells strategies, analyze the properties of these materials that affect the differentiation of stem cells into IVD-like cells, and then present the limitations of currently used disc materials in the field of stem cell therapy and future research perspectives.
Collapse
Affiliation(s)
- Yizhong Peng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Donghua Huang
- Musculoskeletal Tumor Center, Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Sheng Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinye Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangcheng Qing
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
20
|
Cardiac Regeneration and Repair: From Mechanisms to Therapeutic Strategies. CONCEPTS AND APPLICATIONS OF STEM CELL BIOLOGY 2020. [DOI: 10.1007/978-3-030-43939-2_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
21
|
Lyra-Leite DM, Andres AM, Cho N, Petersen AP, Ariyasinghe NR, Kim SS, Gottlieb RA, McCain ML. Matrix-guided control of mitochondrial function in cardiac myocytes. Acta Biomater 2019; 97:281-295. [PMID: 31401347 PMCID: PMC6801042 DOI: 10.1016/j.actbio.2019.08.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 07/31/2019] [Accepted: 08/02/2019] [Indexed: 02/08/2023]
Abstract
In ventricular myocardium, extracellular matrix (ECM) remodeling is a hallmark of physiological and pathological growth, coincident with metabolic rewiring of cardiac myocytes. However, the direct impact of the biochemical and mechanical properties of the ECM on the metabolic function of cardiac myocytes is mostly unknown. Furthermore, understanding the impact of distinct biomaterials on cardiac myocyte metabolism is critical for engineering physiologically-relevant models of healthy and diseased myocardium. For these reasons, we systematically measured morphological and metabolic responses of neonatal rat ventricular myocytes cultured on fibronectin- or gelatin-coated polydimethylsiloxane (PDMS) of three elastic moduli and gelatin hydrogels with four elastic moduli. On all substrates, total protein content, cell morphology, and the ratio of mitochondrial DNA to nuclear DNA were preserved. Cytotoxicity was low on all substrates, although slightly higher on PDMS compared to gelatin hydrogels. We also quantified oxygen consumption rates and extracellular acidification rates using a Seahorse extracellular flux analyzer. Our data indicate that several metrics associated with baseline glycolysis and baseline and maximum mitochondrial function are enhanced when cardiac myocytes are cultured on gelatin hydrogels compared to all PDMS substrates, irrespective of substrate rigidity. These results yield new insights into how mechanical and biochemical cues provided by the ECM impact mitochondrial function in cardiac myocytes. STATEMENT OF SIGNIFICANCE: Cardiac development and disease are associated with remodeling of the extracellular matrix coincident with metabolic rewiring of cardiac myocytes. However, little is known about the direct impact of the biochemical and mechanical properties of the extracellular matrix on the metabolic function of cardiac myocytes. In this study, oxygen consumption rates were measured in neonatal rat ventricular myocytes maintained on several commonly-used biomaterial substrates to reveal new relationships between the extracellular matrix and cardiac myocyte metabolism. Several mitochondrial parameters were enhanced on gelatin hydrogels compared to synthetic PDMS substrates. These data are important for comprehensively understanding matrix-regulation of cardiac myocyte physiology. Additionally, these data should be considered when selecting scaffolds for engineering in vitro cardiac tissue models.
Collapse
Affiliation(s)
- Davi M Lyra-Leite
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles CA, 90089, United States
| | - Allen M Andres
- Smidt Heart Institute and Barbra Streisand Women's Heart Center, Cedars-Sinai Medical Center, Los Angeles CA, 90048, United States
| | - Nathan Cho
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles CA, 90089, United States
| | - Andrew P Petersen
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles CA, 90089, United States
| | - Nethika R Ariyasinghe
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles CA, 90089, United States
| | - Suyon Sarah Kim
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles CA, 90089, United States
| | - Roberta A Gottlieb
- Smidt Heart Institute and Barbra Streisand Women's Heart Center, Cedars-Sinai Medical Center, Los Angeles CA, 90048, United States
| | - Megan L McCain
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles CA, 90089, United States; Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles CA, 90033, United States.
| |
Collapse
|
22
|
Ninh VK, El Hajj EC, Mouton AJ, Gardner JD. Prenatal Alcohol Exposure Causes Adverse Cardiac Extracellular Matrix Changes and Dysfunction in Neonatal Mice. Cardiovasc Toxicol 2019; 19:389-400. [PMID: 30684169 PMCID: PMC7261018 DOI: 10.1007/s12012-018-09503-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Fetal alcohol syndrome (FAS) is the most severe condition of fetal alcohol spectrum disorders (FASD) and is associated with congenital heart defects. However, more subtle defects such as ventricular wall thinning and cardiac compliance may be overlooked in FASD. Our studies focus on the role of cardiac fibroblasts in the neonatal heart, and how they are affected by prenatal alcohol exposure (PAE). We hypothesize that PAE affects fibroblast function contributing to dysregulated collagen synthesis, which leads to cardiac dysfunction. To investigate these effects, pregnant C57/BL6 mice were intraperitoneally injected with 2.9 g EtOH/kg dose to achieve a blood alcohol content of approximately 0.35 on gestation days 6.75 and 7.25. Pups were sacrificed on neonatal day 5 following echocardiography measurements of left ventricular (LV) chamber dimension and function. Hearts were used for primary cardiac fibroblast isolation or protein expression analysis. PAE animals had thinner ventricular walls than saline exposed animals, which was associated with increased LV wall stress and decreased ejection fraction. In isolated fibroblasts, PAE decreased collagen I/III ratio and increased gene expression of profibrotic markers, including α-smooth muscle actin and lysyl oxidase. Notch1 signaling was assessed as a possible mechanism for fibroblast activation, and indicated that gene expression of Notch1 receptor and downstream Hey1 transcription factor were increased. Cardiac tissue analysis revealed decreased collagen I/III ratio and increased protein expression of α-smooth muscle actin and lysyl oxidase. However, Notch1 signaling components decreased in whole heart tissue. Our study demonstrates that PAE caused adverse changes in the cardiac collagen profile and a decline in cardiac function in the neonatal heart.
Collapse
Affiliation(s)
- Van K Ninh
- Department of Physiology, LSU Health Sciences Center, 1901 Perdido Street, New Orleans, LA, 70112, USA
| | - Elia C El Hajj
- Department of Physiology, LSU Health Sciences Center, 1901 Perdido Street, New Orleans, LA, 70112, USA
| | - Alan J Mouton
- Department of Physiology, LSU Health Sciences Center, 1901 Perdido Street, New Orleans, LA, 70112, USA
| | - Jason D Gardner
- Department of Physiology, LSU Health Sciences Center, 1901 Perdido Street, New Orleans, LA, 70112, USA.
| |
Collapse
|
23
|
Padhi A, Nain AS. ECM in Differentiation: A Review of Matrix Structure, Composition and Mechanical Properties. Ann Biomed Eng 2019; 48:1071-1089. [PMID: 31485876 DOI: 10.1007/s10439-019-02337-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 07/30/2019] [Indexed: 12/22/2022]
Abstract
Stem cell regenerative potential owing to the capacity to self-renew as well as differentiate into other cell types is a promising avenue in regenerative medicine. Stem cell niche not only provides physical scaffolding but also possess instructional capacity as it provides a milieu of biophysical and biochemical cues. Extracellular matrix (ECM) has been identified as a major dictator of stem cell lineage, thus understanding the structure of in vivo ECM pertaining to specific tissue differentiation will aid in devising in vitro strategies to improve the differentiation efficiency. In this review, we summarize details about the native architecture, composition and mechanical properties of in vivo ECM of the early embryonic stages and the later adult stages. Native ECM from adult tissues categorized on their origin from respective germ layers are discussed while engineering techniques employed to facilitate differentiation of stem cells into particular lineages are noted. Overall, we emphasize that in vitro strategies need to integrate tissue specific ECM biophysical cues for developing accurate artificial environments for optimizing stem cell differentiation.
Collapse
Affiliation(s)
- Abinash Padhi
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Amrinder S Nain
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA, 24061, USA.
| |
Collapse
|
24
|
Das S, Kim SW, Choi YJ, Lee S, Lee SH, Kong JS, Park HJ, Cho DW, Jang J. Decellularized extracellular matrix bioinks and the external stimuli to enhance cardiac tissue development in vitro. Acta Biomater 2019; 95:188-200. [PMID: 30986526 DOI: 10.1016/j.actbio.2019.04.026] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 01/02/2023]
Abstract
Engineered heart tissue (EHT) has ample potential as a model for in vitro tissue modeling or tissue regeneration. Using 3D cell printing technology, various hydrogels have been utilized as bioinks to fabricate EHT to date. However, its efficacy has remained limited due to poor functional properties of the cultured cardiomyocytes stemming from a lack of proper microenvironmental cues. Specifically, the surrounding matrix plays a key role in modulating cardiomyocyte differentiation and maturation. Recently, the use of heart tissue-derived extracellular matrix (hdECM) bioink has come to be seen as one of the most promising candidates due to its functional and structural similarities to native tissue. Here, we demonstrated a correlation between the synthesis of cardiomyocyte-specific proteins and the surrounding microenvironment irrespective of the similar material chemistry. Primary cardiomyocytes isolated from neonatal rats were encapsulated in different composition and concentration of bioinks (hdECM and collagen). The bioinks were sequentially printed using an extrusion-based 3D bioprinter and cultured either statically or dynamically. Qualitative and quantitative evaluation revealed enhanced maturation of cardiomyocytes in hdECM, unlike the collagen group under similar culture conditions. Specifically, 3D-printed EHT using a low concentration of hdECM promoted early differentiation of cardiomyocytes. Hence, the present study provides experimental insights regarding the establishment of a 3D-printed cardiac tissue model, highlighting that the matrix and the culture microenvironment can be decisive factors for cell-material interactions that affect cardiomyocyte maturation. STATEMENT OF SIGNIFICANCE: The regulation of signal transduction and responses to extracellular matrices (ECMs) is of particular relevance in tissue maturation. In particular, there is a clear need to understand the structural and phenotypical modulation in cardiomyocytes with respect to the surrounding microenvironment. Exploration of the key regulators, such as the compositional and the biophysical properties of bioinks associated directly with cell-cell and cell-matrix interactions would assist with the fabrication of cardiac tissue constructs with enhanced functionality. Hence, we documented the synergistic effects of surrounding matrices and culture conditions on the maturation of cardiomyocytes. Additionally, we highlighted the potential of using 3D bioprinting techniques to fabricate uniformly aligned cardiac constructs for mid- to high-throughput drug testing platforms that have great reproducibility and versatility.
Collapse
|
25
|
Sewanan LR, Schwan J, Kluger J, Park J, Jacoby DL, Qyang Y, Campbell SG. Extracellular Matrix From Hypertrophic Myocardium Provokes Impaired Twitch Dynamics in Healthy Cardiomyocytes. JACC Basic Transl Sci 2019; 4:495-505. [PMID: 31468004 PMCID: PMC6712054 DOI: 10.1016/j.jacbts.2019.03.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 03/11/2019] [Accepted: 03/13/2019] [Indexed: 12/16/2022]
Abstract
The goal of this study was to examine the effects of diseased extracellular matrix on the behavior of healthy heart cells. Myocardium was harvested from a genetically engineered miniature pig carrying the hypertrophic cardiomyopathy mutation MYH7 R403Q and from a wild-type littermate. Engineered heart tissues were created by seeding healthy human induced pluripotent stem cell–derived cardiomyocytes onto thin strips of decellularized porcine myocardium. Engineered heart tissues made from the extracellular matrix of hypertrophic cardiomyopathy hearts exhibit increased stiffness, impaired relaxation, and increased force development. This suggests that diseased extracellular matrix can provoke abnormal contractile behavior in otherwise healthy cardiomyocytes.
Hypertrophic cardiomyopathy (HCM) is often caused by single sarcomeric gene mutations that affect muscle contraction. Pharmacological correction of mutation effects prevents but does not reverse disease in mouse models. Suspecting that diseased extracellular matrix is to blame, we obtained myocardium from a miniature swine model of HCM, decellularized thin slices of the tissue, and re-seeded them with healthy human induced pluripotent stem cell–derived cardiomyocytes. Compared with cardiomyocytes grown on healthy extracellular matrix, those grown on the diseased matrix exhibited prolonged contractions and poor relaxation. This outcome suggests that extracellular matrix abnormalities must be addressed in therapies targeting established HCM.
Collapse
Key Words
- CM, cardiomyocyte
- ECM, extracellular matrix
- EHT, engineered heart tissue
- H&E, hematoxylin and eosin
- HCM, hypertrophic cardiomyopathy
- MTR, Masson trichrome
- MUT, minipig carrying MYH7 R403Q mutation
- MYH7 mutation
- RT50, time from peak tension to 50% relaxation
- SR, Sirius red
- TTP, time to peak tension
- WT, wild-type
- cDNA, complementary deoxyribonucleic acid
- diastolic dysfunction
- engineered heart tissue
- fibrosis
- hypertrophic cardiomyopathy
- iPSC, induced pluripotent stem cell
- iPSC-derived cardiomyocyte
Collapse
Affiliation(s)
- Lorenzo R Sewanan
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | - Jonas Schwan
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | - Jonathan Kluger
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | - Jinkyu Park
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut.,Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, Connecticut
| | - Daniel L Jacoby
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Yibing Qyang
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut.,Yale Stem Cell Center, Yale University, New Haven, Connecticut.,Department of Pathology, Yale University, New Haven, Connecticut.,Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, Connecticut
| | - Stuart G Campbell
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut.,Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
26
|
Song X, Mei J, Ye G, Wang L, Ananth A, Yu L, Qiu X. In situ pPy-modification of chitosan porous membrane from mussel shell as a cardiac patch to repair myocardial infarction. APPLIED MATERIALS TODAY 2019; 15:87-99. [DOI: 10.1016/j.apmt.2019.01.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2024]
|
27
|
Blazeski A, Lowenthal J, Zhu R, Ewoldt J, Boheler KR, Tung L. Functional Properties of Engineered Heart Slices Incorporating Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Stem Cell Reports 2019; 12:982-995. [PMID: 31056480 PMCID: PMC6524004 DOI: 10.1016/j.stemcr.2019.04.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 04/02/2019] [Accepted: 04/02/2019] [Indexed: 12/18/2022] Open
Abstract
Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) hold great promise for cardiac studies, but their structural and functional immaturity precludes their use as faithful models of adult myocardium. Here we describe engineered heart slices (EHS), preparations of decellularized porcine myocardium repopulated with hiPSC-CMs that exhibit structural and functional improvements over standard culture. EHS exhibited multicellular, aligned bundles of elongated CMs with organized sarcomeres, positive inotropic responses to isoproterenol, anisotropic conduction of action potentials, and electrophysiological functionality for more than 200 days. We developed a new drug assay, GRIDS, that serves as a "fingerprint" of cardiac drug sensitivity for a range of pacing rates and drug concentrations. GRIDS maps characterized differences in drug sensitivity between EHS and monolayers more clearly than changes in action potential durations or conduction velocities. EHS represent a tissue-like model for long-term culture, structural, and functional improvement, and higher fidelity drug response of hiPSC-CMs.
Collapse
Affiliation(s)
- Adriana Blazeski
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD 21205, USA
| | - Justin Lowenthal
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD 21205, USA
| | - Renjun Zhu
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD 21205, USA
| | - Jourdan Ewoldt
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD 21205, USA
| | - Kenneth R Boheler
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD 21205, USA; Stem Cell and Regenerative Medicine Consortium, LKS Faculty of Medicine, Hong Kong University, Hong Kong, SAR; Division of Cardiology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Leslie Tung
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
28
|
Edalat SG, Jang Y, Kim J, Park Y. Collagen Type I Containing Hybrid Hydrogel Enhances Cardiomyocyte Maturation in a 3D Cardiac Model. Polymers (Basel) 2019; 11:polym11040687. [PMID: 30995718 PMCID: PMC6523216 DOI: 10.3390/polym11040687] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/27/2019] [Accepted: 04/12/2019] [Indexed: 12/17/2022] Open
Abstract
In vitro maturation of cardiomyocytes in 3D is essential for the development of viable cardiac models for therapeutic and developmental studies. The method by which cardiomyocytes undergoes maturation has significant implications for understanding cardiomyocytes biology. The regulation of the extracellular matrix (ECM) by changing the composition and stiffness is quintessential for engineering a suitable environment for cardiomyocytes maturation. In this paper, we demonstrate that collagen type I, a component of the ECM, plays a crucial role in the maturation of cardiomyocytes. To this end, embryonic stem-cell derived cardiomyocytes were incorporated into Matrigel-based hydrogels with varying collagen type I concentrations of 0 mg, 3 mg, and 6 mg. Each hydrogel was analyzed by measuring the degree of stiffness, the expression levels of MLC2v, TBX18, and pre-miR-21, and the size of the hydrogels. It was shown that among the hydrogel variants, the Matrigel-based hydrogel with 3 mg of collagen type I facilitates cardiomyocyte maturation by increasing MLC2v expression. The treatment of transforming growth factor β1 (TGF-β1) or fibroblast growth factor 4 (FGF-4) on the hydrogels further enhanced the MLC2v expression and thereby cardiomyocyte maturation.
Collapse
Affiliation(s)
- Sam G Edalat
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Korea.
| | - Yongjun Jang
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Korea.
| | - Jongseong Kim
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Korea.
| | - Yongdoo Park
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Korea.
| |
Collapse
|
29
|
Foyt DA, Taheem DK, Ferreira SA, Norman MDA, Petzold J, Jell G, Grigoriadis AE, Gentleman E. Hypoxia impacts human MSC response to substrate stiffness during chondrogenic differentiation. Acta Biomater 2019; 89:73-83. [PMID: 30844569 PMCID: PMC6481516 DOI: 10.1016/j.actbio.2019.03.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 02/27/2019] [Accepted: 03/03/2019] [Indexed: 12/31/2022]
Abstract
Tissue engineering strategies often aim to direct tissue formation by mimicking conditions progenitor cells experience within native tissues. For example, to create cartilage in vitro, researchers often aim to replicate the biochemical and mechanical milieu cells experience during cartilage formation in the developing limb bud. This includes stimulating progenitors with TGF-β1/3, culturing under hypoxic conditions, and regulating mechanosensory pathways using biomaterials that control substrate stiffness and/or cell shape. However, as progenitors differentiate down the chondrogenic lineage, the pathways that regulate their responses to mechanotransduction, hypoxia and TGF-β may not act independently, but rather also impact one another, influencing overall cell response. Here, to better understand hypoxia's influence on mechanoregulatory-mediated chondrogenesis, we cultured human marrow stromal/mesenchymal stem cells (hMSC) on soft (0.167 kPa) or stiff (49.6 kPa) polyacrylamide hydrogels in chondrogenic medium containing TGF-β3. We then compared cell morphology, phosphorylated myosin light chain 2 staining, and chondrogenic gene expression under normoxic and hypoxic conditions, in the presence and absence of pharmacological inhibition of cytoskeletal tension. We show that on soft compared to stiff substrates, hypoxia prompts hMSC to adopt more spread morphologies, assemble in compact mesenchymal condensation-like colonies, and upregulate NCAM expression, and that inhibition of cytoskeletal tension negates hypoxia-mediated upregulation of molecular markers of chondrogenesis, including COL2A1 and SOX9. Taken together, our findings support a role for hypoxia in regulating hMSC morphology, cytoskeletal tension and chondrogenesis, and that hypoxia's effects are modulated, at least in part, by mechanosensitive pathways. Our insights into how hypoxia impacts mechanoregulation of chondrogenesis in hMSC may improve strategies to develop tissue engineered cartilage. STATEMENT OF SIGNIFICANCE: Cartilage tissue engineering strategies often aim to drive progenitor cell differentiation by replicating the local environment of the native tissue, including by regulating oxygen concentration and mechanical stiffness. However, the pathways that regulate cellular responses to mechanotransduction and hypoxia may not act independently, but rather also impact one another. Here, we show that on soft, but not stiff surfaces, hypoxia impacts human MSC (hMSC) morphology and colony formation, and inhibition of cytoskeletal tension negates the hypoxia-mediated upregulation of molecular markers of chondrogenesis. These observations suggest that hypoxia's effects during hMSC chondrogenesis are modulated, at least in part, by mechanosensitive pathways, and may impact strategies to develop scaffolds for cartilage tissue engineering, as hypoxia's chondrogenic effects may be enhanced on soft materials.
Collapse
Affiliation(s)
- Daniel A Foyt
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK
| | - Dheraj K Taheem
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK
| | - Silvia A Ferreira
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK
| | - Michael D A Norman
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK
| | - Jonna Petzold
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK
| | - Gavin Jell
- Division of Surgery & Interventional Science, University College London, London NW3 2PF, UK
| | | | - Eileen Gentleman
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK.
| |
Collapse
|
30
|
Bejleri D, Davis ME. Decellularized Extracellular Matrix Materials for Cardiac Repair and Regeneration. Adv Healthc Mater 2019; 8:e1801217. [PMID: 30714354 PMCID: PMC7654553 DOI: 10.1002/adhm.201801217] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/20/2018] [Indexed: 12/20/2022]
Abstract
Decellularized extracellular matrix (dECM) is a promising biomaterial for repairing cardiovascular tissue, as dECM most effectively captures the complex array of proteins, glycosaminoglycans, proteoglycans, and many other matrix components that are found in native tissue, providing ideal cues for regeneration and repair of damaged myocardium. dECM can be used in a variety of forms, such as solid scaffolds that maintain native matrix structure, or as soluble materials that can form injectable hydrogels for tissue repair. dECM has found recent success in many regeneration and repair therapies, such as for musculoskeletal, neural, and liver tissues. This review focuses on dECM in the context of cardiovascular applications, with variations in tissue and species sourcing, and specifically discusses advances in solid and soluble dECM development, in vitro studies, in vivo implementation, and clinical translation.
Collapse
Affiliation(s)
- Donald Bejleri
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 1760 Haygood Dr., Atlanta, GA, 30322, USA
| | - Michael E Davis
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 1760 Haygood Dr., Atlanta, GA, 30322, USA
| |
Collapse
|
31
|
Kaiser NJ, Kant RJ, Minor AJ, Coulombe KLK. Optimizing Blended Collagen-Fibrin Hydrogels for Cardiac Tissue Engineering with Human iPSC-derived Cardiomyocytes. ACS Biomater Sci Eng 2018; 5:887-899. [PMID: 30775432 PMCID: PMC6372981 DOI: 10.1021/acsbiomaterials.8b01112] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 12/10/2018] [Indexed: 01/08/2023]
Abstract
![]()
Natural
polymer hydrogels are used ubiquitously as scaffold materials
for cardiac tissue engineering as well as for soft tissue engineering
more broadly because of FDA approval, minimal immunogenicity, and
well-defined physiological clearance pathways. However, the relationships
between natural polymer hydrogels and resident cell populations in
directing the development of engineered tissues are poorly defined.
This interaction is of particular concern for tissues prepared
with iPSC-derived cell populations, in which population purity and
batch-to-batch variability become additional critical factors to consider.
Herein, the design space for a blended fibrin and collagen scaffold
is characterized for applications in creating engineered myocardium
with human iPSC-derived cardiomyocytes. Stiffness values of the acellular
hydrogel formulations approach those of native myocardium in compression,
but deviate significantly in tension when compared to rat myocardium
in both transverse and longitudinal fiber orientations. A response
surface methodology approach to understanding the relationship between
collagen concentration, fibrin concentration, seeding density, and
cardiac purity found a statistically significant predictive model
across three repeated studies that confirms that all of these factors
contribute to tissue compaction. In these constructs, increased fibrin
concentration and seeding density were each associated with increased
compaction, while increased collagen concentration was associated
with decreased compaction. Both the lowest (24.4% cTnT+) and highest (60.2% cTnT+) cardiomyocyte purities evaluated
were associated with decreased compaction, whereas the greatest compaction
was predicted to occur in constructs prepared with a 40–50%
cTnT+ population. Constructs prepared with purified cardiomyocytes
(≥75.5% cTnT+) compacted and formed syncytia well,
although increased fibrin concentration in these groups was associated
with decreased compaction, a reversal of the trend observed in unpurified
cardiomyocytes. This study demonstrates an analytical approach to
understanding cell–scaffold interactions in engineered tissues
and provides a foundation for the development of more sophisticated
and customized scaffold platforms for human cardiac tissue engineering.
Collapse
Affiliation(s)
- Nicholas J Kaiser
- Center for Biomedical Engineering, Brown University, Providence, Rhode Island 02912, United States
| | - Rajeev J Kant
- Center for Biomedical Engineering, Brown University, Providence, Rhode Island 02912, United States
| | - Alicia J Minor
- Center for Biomedical Engineering, Brown University, Providence, Rhode Island 02912, United States
| | - Kareen L K Coulombe
- Center for Biomedical Engineering, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|
32
|
Ariyasinghe NR, Lyra-Leite DM, McCain ML. Engineering cardiac microphysiological systems to model pathological extracellular matrix remodeling. Am J Physiol Heart Circ Physiol 2018; 315:H771-H789. [PMID: 29906229 PMCID: PMC6230901 DOI: 10.1152/ajpheart.00110.2018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/27/2018] [Accepted: 06/08/2018] [Indexed: 12/11/2022]
Abstract
Many cardiovascular diseases are associated with pathological remodeling of the extracellular matrix (ECM) in the myocardium. ECM remodeling is a complex, multifactorial process that often contributes to declines in myocardial function and progression toward heart failure. However, the direct effects of the many forms of ECM remodeling on myocardial cell and tissue function remain elusive, in part because conventional model systems used to investigate these relationships lack robust experimental control over the ECM. To address these shortcomings, microphysiological systems are now being developed and implemented to establish direct relationships between distinct features in the ECM and myocardial function with unprecedented control and resolution in vitro. In this review, we will first highlight the most prominent characteristics of ECM remodeling in cardiovascular disease and describe how these features can be mimicked with synthetic and natural biomaterials that offer independent control over multiple ECM-related parameters, such as rigidity and composition. We will then detail innovative microfabrication techniques that enable precise regulation of cellular architecture in two and three dimensions. We will also describe new approaches for quantifying multiple aspects of myocardial function in vitro, such as contractility, action potential propagation, and metabolism. Together, these collective technologies implemented as cardiac microphysiological systems will continue to uncover important relationships between pathological ECM remodeling and myocardial cell and tissue function, leading to new fundamental insights into cardiovascular disease, improved human disease models, and novel therapeutic approaches.
Collapse
Affiliation(s)
- Nethika R Ariyasinghe
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California , Los Angeles, California
| | - Davi M Lyra-Leite
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California , Los Angeles, California
| | - Megan L McCain
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California , Los Angeles, California
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California , Los Angeles, California
| |
Collapse
|
33
|
Agnol LD, Gonzalez Dias FT, Nicoletti NF, Falavigna A, Bianchi O. Polyurethane as a strategy for annulus fibrosus repair and regeneration: a systematic review. Regen Med 2018; 13:611-626. [DOI: 10.2217/rme-2018-0003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Aim: Disc herniation is a spine disease that leads to suffering and disability. Discectomy is a Janus-faced approach that relieves pain symptoms but leave the intervertebral discs predisposed to herniation. This systematic review discussed the mechanical and biological requirements for a polyurethane-based biomaterial to be used in annular repair. Methods: Search strategy was performed in PubMed, Web of Science and Scopus databases to define the main mechanical properties, biological findings and follow-up aspects of these biomaterials. The range was limited to articles published from January 2000 to December 2017 in English language. Results: The search identified 82 articles. From these, a total of 18 articles underwent a full-text analysis, and 16 studies were included in the review. Conclusion: The polyurethane presents suitable properties to be used as an engineered solution to re-establish the microenvironment and biomechanical features of the intervertebral disc.
Collapse
Affiliation(s)
- Lucas Dall Agnol
- Health Sciences Postgraduate Program, University of Caxias do Sul (UCS), Caxias do Sul, Rio Grande do Sul, Brazil
| | | | - Natália Fontana Nicoletti
- Cell Therapy Laboratory (LATEC), University of Caxias do Sul (UCS), Caxias do Sul, Rio Grande do Sul, Brazil
| | - Asdrubal Falavigna
- Health Sciences Postgraduate Program, University of Caxias do Sul (UCS), Caxias do Sul, Rio Grande do Sul, Brazil
- Cell Therapy Laboratory (LATEC), University of Caxias do Sul (UCS), Caxias do Sul, Rio Grande do Sul, Brazil
| | - Otávio Bianchi
- Health Sciences Postgraduate Program, University of Caxias do Sul (UCS), Caxias do Sul, Rio Grande do Sul, Brazil
- Materials Science Postgraduate Program, University of Caxias do Sul (UCS), Caxias do Sul, Rio Grande do Sul, Brazil
| |
Collapse
|
34
|
Daley MC, Fenn SL, Black LD. Applications of Cardiac Extracellular Matrix in Tissue Engineering and Regenerative Medicine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1098:59-83. [PMID: 30238366 DOI: 10.1007/978-3-319-97421-7_4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The role of the cardiac extracellular matrix (cECM) in providing biophysical and biochemical cues to the cells housed within during disease and development has become increasingly apparent. These signals have been shown to influence many fundamental cardiac cell behaviors including contractility, proliferation, migration, and differentiation. Consequently, alterations to cell phenotype result in directed remodeling of the cECM. This bidirectional communication means that the cECM can be envisioned as a medium for information storage. As a result, the reprogramming of the cECM is increasingly being employed in tissue engineering and regenerative medicine as a method with which to treat disease. In this chapter, an overview of the composition and structure of the cECM as well as its role in cardiac development and disease will be provided. Additionally, therapeutic modulation of cECM for cardiac regeneration as well as bottom-up and top-down approaches to ECM-based cardiac tissue engineering is discussed. Finally, lingering questions regarding the role of cECM in tissue engineering and regenerative medicine are offered as a catalyst for future research.
Collapse
Affiliation(s)
- Mark C Daley
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Spencer L Fenn
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
- Center for Biomedical Career Development, University of Massachusetts Medical School, Worcester, MA, USA
| | - Lauren D Black
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA.
- Cellular, Molecular and Developmental Biology Program, Sackler School for Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA.
| |
Collapse
|
35
|
Madl CM, LeSavage BL, Dewi RE, Dinh CB, Stowers RS, Khariton M, Lampe KJ, Nguyen D, Chaudhuri O, Enejder A, Heilshorn SC. Maintenance of neural progenitor cell stemness in 3D hydrogels requires matrix remodelling. NATURE MATERIALS 2017; 16:1233-1242. [PMID: 29115291 PMCID: PMC5708569 DOI: 10.1038/nmat5020] [Citation(s) in RCA: 283] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 10/02/2017] [Indexed: 05/07/2023]
Abstract
Neural progenitor cell (NPC) culture within three-dimensional (3D) hydrogels is an attractive strategy for expanding a therapeutically relevant number of stem cells. However, relatively little is known about how 3D material properties such as stiffness and degradability affect the maintenance of NPC stemness in the absence of differentiation factors. Over a physiologically relevant range of stiffness from ∼0.5 to 50 kPa, stemness maintenance did not correlate with initial hydrogel stiffness. In contrast, hydrogel degradation was both correlated with, and necessary for, maintenance of NPC stemness. This requirement for degradation was independent of cytoskeletal tension generation and presentation of engineered adhesive ligands, instead relying on matrix remodelling to facilitate cadherin-mediated cell-cell contact and promote β-catenin signalling. In two additional hydrogel systems, permitting NPC-mediated matrix remodelling proved to be a generalizable strategy for stemness maintenance in 3D. Our findings have identified matrix remodelling, in the absence of cytoskeletal tension generation, as a previously unknown strategy to maintain stemness in 3D.
Collapse
Affiliation(s)
| | - Bauer L. LeSavage
- Department of Bioengineering, Stanford University, Stanford, CA 94305
| | - Ruby E. Dewi
- Department of Materials Science & Engineering, Stanford University, Stanford, CA 94305
| | - Cong B. Dinh
- Department of Materials Science & Engineering, Stanford University, Stanford, CA 94305
| | - Ryan S. Stowers
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305
| | | | - Kyle J. Lampe
- Department of Materials Science & Engineering, Stanford University, Stanford, CA 94305
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA 22904
| | - Duong Nguyen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg SE-412 96, Sweden
| | - Ovijit Chaudhuri
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305
| | - Annika Enejder
- Department of Materials Science & Engineering, Stanford University, Stanford, CA 94305
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg SE-412 96, Sweden
| | - Sarah C. Heilshorn
- Department of Materials Science & Engineering, Stanford University, Stanford, CA 94305
- Corresponding Author: Sarah C. Heilshorn, 476 Lomita Mall, McCullough Room 246, Stanford University, Stanford, CA 94305-4045, USA,
| |
Collapse
|
36
|
Hartman CD, Isenberg BC, Chua SG, Wong JY. Extracellular matrix type modulates cell migration on mechanical gradients. Exp Cell Res 2017; 359:361-366. [PMID: 28821395 PMCID: PMC5603420 DOI: 10.1016/j.yexcr.2017.08.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 07/21/2017] [Accepted: 08/12/2017] [Indexed: 11/25/2022]
Abstract
Extracellular matrix composition and stiffness are known to be critical determinants of cell behavior, modulating processes including differentiation, traction generation, and migration. Recent studies have demonstrated that the ECM composition can modulate how cells migrate in response to gradients in environmental stiffness, altering a cell's ability to undergo durotaxis. These observations were limited to single varieties of extracellular matrix, but typically cells are exposed to environments containing complex mixtures of extracellular matrix proteins. Here, we investigate migration of NIH 3T3 fibroblasts on mechanical gradients coated with one or more type of extracellular matrix protein. Our results show that NIH 3T3 fibroblasts exhibit durotaxis on fibronectin-coated mechanical gradients but not on those coated with laminin, demonstrating that extracellular matrix type can act as a regulator of cell response to mechanical gradients. Interestingly, NIH 3T3 fibroblasts were also observed to migrate randomly on gradients coated with a mixture of both fibronectin and laminin, suggesting that there may be a complex interplay in the cellular response to mechanical gradients in the presence of multiple extracellular matrix signals. These findings indicate that specific composition of available adhesion ligands is a critical determinant of a cell's migratory response to mechanical gradients.
Collapse
Affiliation(s)
- Christopher D Hartman
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, United States
| | - Brett C Isenberg
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, United States
| | - Samantha G Chua
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, United States
| | - Joyce Y Wong
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, United States.
| |
Collapse
|
37
|
Izadifar M, Babyn P, Kelly ME, Chapman D, Chen X. Bioprinting Pattern-Dependent Electrical/Mechanical Behavior of Cardiac Alginate Implants: Characterization and Ex Vivo Phase-Contrast Microtomography Assessment. Tissue Eng Part C Methods 2017; 23:548-564. [PMID: 28726575 DOI: 10.1089/ten.tec.2017.0222] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Three-dimensional (3D)-bioprinting techniques may be used to modulate electrical/mechanical properties and porosity of hydrogel constructs for fabrication of suitable cardiac implants. Notably, characterization of these properties after implantation remains a challenge, raising the need for the development of novel quantitative imaging techniques for monitoring hydrogel implant behavior in situ. This study aims at (i) assessing the influence of hydrogel bioprinting patterns on electrical/mechanical behavior of cardiac implants based on a 3D-printing technique and (ii) investigating the potential of synchrotron X-ray phase-contrast imaging computed tomography (PCI-CT) for estimating elastic modulus/impedance/porosity and microstructural features of 3D-printed cardiac implants in situ via an ex vivo study. Alginate laden with human coronary artery endothelial cells was bioprinted layer by layer, forming cardiac constructs with varying architectures. The elastic modulus, impedance, porosity, and other structural features, along with the cell viability and degradation of printed implants were examined in vitro over 25 days. Two selected cardiac constructs were surgically implanted onto the myocardium of rats and 10 days later, the rat hearts with implants were imaged ex vivo by means of PCI-CT at varying X-ray energies and CT-scan times. The elastic modulus/impedance, porosity, and structural features of the implant were inferred from the PCI-CT images by using statistical models and compared with measured values. The printing patterns had significant effects on implant porosity, elastic modulus, and impedance. A particular 3D-printing pattern with an interstrand distance of 900 μm and strand alignment angle of 0/45/90/135° provided relatively higher stiffness and electrical conductivity with a suitable porosity, maintaining high cell viability over 7 days. The X-ray photon energy of 30-33 keV utilizing a CT-scan time of 1-1.2 h resulted in a low-dose PCI-CT, which provided a good visibility of the low-X-ray absorbent alginate implants. After 10 days postimplantation, the PCI-CT provided a reasonably accurate estimation of implant strand thickness and alignment, pore size and interconnectivity, porosity, elastic modulus, and impedance, which were consistent with our measurements. Findings from this study suggest that 3D-printing patterns can be used to modulate electrical/mechanical behavior of alginate implants, and PCI-CT can be potentially used as a 3D quantitative imaging tool for assessing structural and electrical/mechanical behavior of hydrogel cardiac implants in small animal models.
Collapse
Affiliation(s)
- Mohammad Izadifar
- 1 Division of Biomedical Engineering, College of Engineering, University of Saskatchewan , Saskatoon, Canada .,2 Department of Surgery, College of Medicine, University of Saskatchewan , Saskatoon, Canada .,3 Department of Mechanical Engineering, College of Engineering, University of Saskatchewan , Saskatoon, Canada
| | - Paul Babyn
- 1 Division of Biomedical Engineering, College of Engineering, University of Saskatchewan , Saskatoon, Canada .,4 Department of Medical Imaging, College of Medicine, University of Saskatchewan , Saskatoon, Canada
| | - Michael E Kelly
- 1 Division of Biomedical Engineering, College of Engineering, University of Saskatchewan , Saskatoon, Canada .,2 Department of Surgery, College of Medicine, University of Saskatchewan , Saskatoon, Canada
| | - Dean Chapman
- 1 Division of Biomedical Engineering, College of Engineering, University of Saskatchewan , Saskatoon, Canada .,4 Department of Medical Imaging, College of Medicine, University of Saskatchewan , Saskatoon, Canada .,5 Department of Anatomy and Cell Biology, College of Medicine, University of Saskatchewan , Saskatoon, Canada
| | - Xiongbiao Chen
- 1 Division of Biomedical Engineering, College of Engineering, University of Saskatchewan , Saskatoon, Canada .,3 Department of Mechanical Engineering, College of Engineering, University of Saskatchewan , Saskatoon, Canada
| |
Collapse
|
38
|
Scuderi GJ, Butcher J. Naturally Engineered Maturation of Cardiomyocytes. Front Cell Dev Biol 2017; 5:50. [PMID: 28529939 PMCID: PMC5418234 DOI: 10.3389/fcell.2017.00050] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 04/18/2017] [Indexed: 12/11/2022] Open
Abstract
Ischemic heart disease remains one of the most prominent causes of mortalities worldwide with heart transplantation being the gold-standard treatment option. However, due to the major limitations associated with heart transplants, such as an inadequate supply and heart rejection, there remains a significant clinical need for a viable cardiac regenerative therapy to restore native myocardial function. Over the course of the previous several decades, researchers have made prominent advances in the field of cardiac regeneration with the creation of in vitro human pluripotent stem cell-derived cardiomyocyte tissue engineered constructs. However, these engineered constructs exhibit a functionally immature, disorganized, fetal-like phenotype that is not equivalent physiologically to native adult cardiac tissue. Due to this major limitation, many recent studies have investigated approaches to improve pluripotent stem cell-derived cardiomyocyte maturation to close this large functionality gap between engineered and native cardiac tissue. This review integrates the natural developmental mechanisms of cardiomyocyte structural and functional maturation. The variety of ways researchers have attempted to improve cardiomyocyte maturation in vitro by mimicking natural development, known as natural engineering, is readily discussed. The main focus of this review involves the synergistic role of electrical and mechanical stimulation, extracellular matrix interactions, and non-cardiomyocyte interactions in facilitating cardiomyocyte maturation. Overall, even with these current natural engineering approaches, pluripotent stem cell-derived cardiomyocytes within three-dimensional engineered heart tissue still remain mostly within the early to late fetal stages of cardiomyocyte maturity. Therefore, although the end goal is to achieve adult phenotypic maturity, more emphasis must be placed on elucidating how the in vivo fetal microenvironment drives cardiomyocyte maturation. This information can then be utilized to develop natural engineering approaches that can emulate this fetal microenvironment and thus make prominent progress in pluripotent stem cell-derived maturity toward a more clinically relevant model for cardiac regeneration.
Collapse
Affiliation(s)
- Gaetano J Scuderi
- Meinig School of Biomedical Engineering, Cornell UniversityIthaca, NY, USA
| | - Jonathan Butcher
- Meinig School of Biomedical Engineering, Cornell UniversityIthaca, NY, USA
| |
Collapse
|
39
|
Gershlak JR, Hernandez S, Fontana G, Perreault LR, Hansen KJ, Larson SA, Binder BYK, Dolivo DM, Yang T, Dominko T, Rolle MW, Weathers PJ, Medina-Bolivar F, Cramer CL, Murphy WL, Gaudette GR. Crossing kingdoms: Using decellularized plants as perfusable tissue engineering scaffolds. Biomaterials 2017; 125:13-22. [PMID: 28222326 PMCID: PMC5388455 DOI: 10.1016/j.biomaterials.2017.02.011] [Citation(s) in RCA: 190] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 02/08/2017] [Accepted: 02/09/2017] [Indexed: 11/23/2022]
Abstract
Despite significant advances in the fabrication of bioengineered scaffolds for tissue engineering, delivery of nutrients in complex engineered human tissues remains a challenge. By taking advantage of the similarities in the vascular structure of plant and animal tissues, we developed decellularized plant tissue as a prevascularized scaffold for tissue engineering applications. Perfusion-based decellularization was modified for different plant species, providing different geometries of scaffolding. After decellularization, plant scaffolds remained patent and able to transport microparticles. Plant scaffolds were recellularized with human endothelial cells that colonized the inner surfaces of plant vasculature. Human mesenchymal stem cells and human pluripotent stem cell derived cardiomyocytes adhered to the outer surfaces of plant scaffolds. Cardiomyocytes demonstrated contractile function and calcium handling capabilities over the course of 21 days. These data demonstrate the potential of decellularized plants as scaffolds for tissue engineering, which could ultimately provide a cost-efficient, "green" technology for regenerating large volume vascularized tissue mass.
Collapse
Affiliation(s)
- Joshua R Gershlak
- Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, United States
| | - Sarah Hernandez
- Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, United States
| | - Gianluca Fontana
- Orthopedics and Rehabilitation, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Luke R Perreault
- Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, United States
| | - Katrina J Hansen
- Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, United States
| | - Sara A Larson
- Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, United States
| | - Bernard Y K Binder
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - David M Dolivo
- Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, United States
| | - Tianhong Yang
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR, United States; Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR, United States
| | - Tanja Dominko
- Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, United States; Center for Biomedical Sciences and Engineering, University of Nova Gorica, Slovenia
| | - Marsha W Rolle
- Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, United States
| | - Pamela J Weathers
- Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, United States
| | - Fabricio Medina-Bolivar
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR, United States; Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR, United States
| | - Carole L Cramer
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR, United States; Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR, United States
| | - William L Murphy
- Orthopedics and Rehabilitation, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States; Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States; Material Sciences and Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Glenn R Gaudette
- Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, United States.
| |
Collapse
|
40
|
Lv H, Wang H, Zhang Z, Yang W, Liu W, Li Y, Li L. Biomaterial stiffness determines stem cell fate. Life Sci 2017; 178:42-48. [PMID: 28433510 DOI: 10.1016/j.lfs.2017.04.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 04/11/2017] [Accepted: 04/18/2017] [Indexed: 01/01/2023]
Abstract
Stem cells have potential to develop into numerous cell types, thus they are good cell source for tissue engineering. As an external physical signal, material stiffness is capable of regulating stem cell fate. Biomaterial stiffness is an important parameter in tissue engineering. We summarize main measurements of material stiffness under different condition, then list and compare three main methods of controlling stiffness (material amount, crosslinking density and photopolymeriztion time) which interplay with one another and correlate with stiffness positively, and current advances in effects of biomaterial stiffness on stem cell fate. We discuss the unsolved problems and future directions of biomaterial stiffness in tissue engineering.
Collapse
Affiliation(s)
- Hongwei Lv
- The Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune Medical College, Jilin University, Changchun 130021, China
| | - Heping Wang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, China
| | - Zhijun Zhang
- College of Clinical Medicine, Jilin University, Changchun, China
| | - Wang Yang
- College of Clinical Medicine, Jilin University, Changchun, China
| | - Wenbin Liu
- College of Clinical Medicine, Jilin University, Changchun, China
| | - Yulin Li
- The Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune Medical College, Jilin University, Changchun 130021, China.
| | - Lisha Li
- The Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune Medical College, Jilin University, Changchun 130021, China.
| |
Collapse
|
41
|
Hadden WJ, Choi YS. The extracellular microscape governs mesenchymal stem cell fate. J Biol Eng 2016; 10:16. [PMID: 27895704 PMCID: PMC5117578 DOI: 10.1186/s13036-016-0037-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 11/09/2016] [Indexed: 12/15/2022] Open
Abstract
Each cell forever interacts with its extracellular matrix (ECM); a stem cell relies on this interaction to guide differentiation. The stiffness, nanotopography, protein composition, stress and strain inherent to any given ECM influences stem cell lineage commitment. This interaction is dynamic, multidimensional and reciprocally evolving through time, and from this concerted exchange the macroscopic tissues that comprise living organisms are formed. Mesenchymal stem cells can give rise to bone, cartilage, tendon and muscle; thus attempts to manipulate their differentiation must heed the physical properties of incredibly complex native microenvironments to realize regenerative goals.
Collapse
Affiliation(s)
- William J Hadden
- University of Sydney Medical School & Kolling Institute of Medical Research, Sydney, NSW Australia
| | - Yu Suk Choi
- School of Anatomy, Physiology and Human Biology, University of Western Australia, Entrance 2, Hackett Dr, M309, Level 1, Crawley, WA 6009 Australia
| |
Collapse
|
42
|
Feyen DA, Gaetani R, Doevendans PA, Sluijter JP. Stem cell-based therapy: Improving myocardial cell delivery. Adv Drug Deliv Rev 2016; 106:104-115. [PMID: 27133386 DOI: 10.1016/j.addr.2016.04.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 04/19/2016] [Accepted: 04/20/2016] [Indexed: 12/15/2022]
Abstract
Stem cell-based therapies form an exciting new class of medicine that attempt to provide the body with the building blocks required for the reconstruction of damaged organs. However, delivering cells to the correct location, while preserving their integrity and functional properties, is a complex undertaking. These challenges have led to the development of a highly dynamic interdisciplinary research field, wherein medical, biological, and chemical sciences have collaborated to develop strategies to overcome the physiological barriers imposed on the cellular therapeutics. In this respect, improving the acute retention and subsequent survival of stem cells is key to effectively increase the effect of the therapy, while proper tissue integration is imperative for stem cells to functionally replace lost cells in damaged organs. In this review, we will use the heart as an example to highlight the current knowledge of therapeutic stem cell utilization, the existing pitfalls and limitations, and the approaches that have been developed to overcome them.
Collapse
|
43
|
Stoppel WL, Gao AE, Greaney AM, Partlow BP, Bretherton RC, Kaplan DL, Black LD. Elastic, silk-cardiac extracellular matrix hydrogels exhibit time-dependent stiffening that modulates cardiac fibroblast response. J Biomed Mater Res A 2016; 104:3058-3072. [PMID: 27480328 DOI: 10.1002/jbm.a.35850] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 07/27/2016] [Accepted: 07/28/2016] [Indexed: 12/15/2022]
Abstract
Heart failure is the leading cause of death in the United States and rapidly becoming the leading cause of death worldwide. While pharmacological treatments can reduce progression to heart failure following myocardial infarction, there still exists a need for new therapies that promote better healing postinjury for a more functional cardiac repair and methods to understand how the changes to tissue mechanical properties influence cell phenotype and function following injury. To address this need, we have optimized a silk-based hydrogel platform containing cardiac tissue-derived extracellular matrix (cECM). These silk-cECM hydrogels have tunable mechanical properties, as well as rate-controllable hydrogel stiffening over time. In vitro, silk-cECM scaffolds led to enhanced cardiac fibroblast (CF) cell growth and viability with culture time. cECM incorporation improved expression of integrin an focal adhesion proteins, suggesting that CFs were able to interact with the cECM in the hydrogel. Subcutaneous injection of silk hydrogels in rats demonstrated that addition of the cECM led to endogenous cell infiltration and promoted endothelial cell ingrowth after 4 weeks in vivo. This naturally derived silk fibroin platform is applicable to the development of more physiologically relevant constructs that replicate healthy and diseased tissue in vitro and has the potential to be used as an injectable therapeutic for cardiac repair. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 3058-3072, 2016.
Collapse
Affiliation(s)
- Whitney L Stoppel
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, 02155
| | - Albert E Gao
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, 02155
| | - Allison M Greaney
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, 02155
| | - Benjamin P Partlow
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, 02155
| | - Ross C Bretherton
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, 02155
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, 02155
| | - Lauren D Black
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, 02155. .,Cellular, Molecular and Developmental Biology Program, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, 02111.
| |
Collapse
|
44
|
Agmon G, Christman KL. Controlling stem cell behavior with decellularized extracellular matrix scaffolds. CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE 2016; 20:193-201. [PMID: 27524932 PMCID: PMC4979580 DOI: 10.1016/j.cossms.2016.02.001] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Decellularized tissues have become a common regenerative medicine platform with multiple materials being researched in academic laboratories, tested in animal studies, and used clinically. Ideally, when a tissue is decellularized the native cell niche is maintained with many of the structural and biochemical cues that naturally interact with the cells of that particular tissue. This makes decellularized tissue materials an excellent platform for providing cells with the signals needed to initiate and maintain differentiation into tissue-specific lineages. The extracellular matrix (ECM) that remains after the decellularization process contains the components of a tissue specific microenvironment that is not possible to create synthetically. The ECM of each tissue has a different composition and structure and therefore has unique properties and potential for affecting cell behavior. This review describes the common methods for preparing decellularized tissue materials and the effects that decellularized materials from different tissues have on cell phenotype.
Collapse
|
45
|
Mozdzen LC, Thorpe S, Screen HR, Harley BA. The Effect of Gradations in Mineral Content, Matrix Alignment, and Applied Strain on Human Mesenchymal Stem Cell Morphology within Collagen Biomaterials. Adv Healthc Mater 2016; 5:1731-9. [PMID: 27245787 PMCID: PMC4978129 DOI: 10.1002/adhm.201600181] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 04/12/2016] [Indexed: 12/19/2022]
Abstract
The tendon-bone junction is a unique, mechanically dynamic, structurally graded anatomical zone, which transmits tensile loads between tendon and bone. Current surgical repair techniques rely on mechanical fixation and can result in high re-failure rates. A new class of collagen biomaterial that contains discrete mineralized and structurally aligned regions linked by a continuous interface to mimic the graded osteotendinous insertion has been recently described. Here the combined influence of graded biomaterial environment and increasing levels of applied strain (0%-20%) on mesenchymal stem cell (MSC) orientation and alignment have been reported. In osteotendinous scaffolds, which contain opposing gradients of mineral content and structural alignment characteristic of the native osteotendinous interface, MSC nuclear, and actin alignment is initially dictated by the local pore architecture, while applied tensile strain enhances cell alignment in the direction of strain. Comparatively, in layered scaffolds that do not contain any structural alignment cues, MSCs are randomly oriented in the unstrained condition, then become oriented in a direction perpendicular to applied strain. These findings provide an initial understanding of how scaffold architecture can provide significant, potentially competitive, feedback influencing MSC orientation under applied strain, and form the basis for future tissue engineering efforts to regenerate the osteotendinous enthesis.
Collapse
Affiliation(s)
- Laura C. Mozdzen
- 193 Roger Adams Laboratory, 600 S. Mathews St., Urbana, IL, 61801, USA
| | - Stephen Thorpe
- Queen Mary University of London, School of Engineering and Materials Science, Mile End Road, E1 4NS, London, UK
| | - Hazel R. Screen
- Queen Mary University of London, School of Engineering and Materials Science, Mile End Road, E1 4NS, London, UK
| | - Brendan A. Harley
- 110 Roger Adams Laboratory, 600 S. Mathews St, Urbana, IL, 61801, USA,
| |
Collapse
|
46
|
Beck EC, Barragan M, Tadros MH, Gehrke SH, Detamore MS. Approaching the compressive modulus of articular cartilage with a decellularized cartilage-based hydrogel. Acta Biomater 2016; 38:94-105. [PMID: 27090590 DOI: 10.1016/j.actbio.2016.04.019] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 04/05/2016] [Accepted: 04/13/2016] [Indexed: 12/22/2022]
Abstract
UNLABELLED ECM-based materials are appealing for tissue engineering strategies because they may promote stem cell recruitment, cell infiltration, and cell differentiation without the need to supplement with additional biological factors. Cartilage ECM has recently shown potential to be chondroinductive, particularly in a hydrogel-based system, which may be revolutionary in orthopedic medicine. However, hydrogels composed of natural materials are often mechanically inferior to synthetic materials, which is a major limitation for load-bearing tissue applications. The objective was therefore to create an unprecedented hydrogel derived entirely from native cartilage ECM that was both mechanically more similar to native cartilage tissue and capable of inducing chondrogenesis. Porcine cartilage was decellularized, solubilized, and then methacrylated and UV photocrosslinked to create methacrylated solubilized decellularized cartilage (MeSDCC) gels. Methacrylated gelatin (GelMA) was employed as a control for both biomechanics and bioactivity. Rat bone marrow-derived mesenchymal stem cells were encapsulated in these networks, which were cultured in vitro for 6weeks, where chondrogenic gene expression, the compressive modulus, swelling, and histology were analyzed. One day after crosslinking, the elastic compressive modulus of the 20% MeSDCC gels was 1070±150kPa. Most notably, the stress strain profile of the 20% MeSDCC gels fell within the 95% confidence interval range of native porcine cartilage. Additionally, MeSDCC gels significantly upregulated chondrogenic genes compared to GelMA as early as day 1 and supported extensive matrix synthesis as observed histologically. Given that these gels approached the mechanics of native cartilage tissue, supported matrix synthesis, and induced chondrogenic gene expression, MeSDCC hydrogels may be promising materials for cartilage tissue engineering applications. Future efforts will focus on improving fracture mechanics as well to benefit overall biomechanical performance. STATEMENT OF SIGNIFICANCE Extracellular matrix (ECM)-based materials are appealing for tissue engineering strategies because they may promote stem cell recruitment, cell infiltration, and cell differentiation without the need to supplement with additional biological factors. One such ECM-based material, cartilage ECM, has recently shown potential to be chondroinductive; however, hydrogels composed of natural materials are often mechanically inferior to synthetic materials, which is a major limitation for load-bearing tissue applications. Therefore, this work is significant because we were the first to create hydrogels derived entirely from cartilage ECM that had mechanical properties similar to that of native cartilage until hydrogel failure. Furthermore, these hydrogels had a compressive modulus of 1070±150kPa, they were chondroinductive, and they supported extensive matrix synthesis. In the current study, we have shown that these new hydrogels may prove to be a promising biomaterial for cartilage tissue engineering applications.
Collapse
|
47
|
Silva AC, Rodrigues SC, Caldeira J, Nunes AM, Sampaio-Pinto V, Resende TP, Oliveira MJ, Barbosa MA, Thorsteinsdóttir S, Nascimento DS, Pinto-do-Ó P. Three-dimensional scaffolds of fetal decellularized hearts exhibit enhanced potential to support cardiac cells in comparison to the adult. Biomaterials 2016; 104:52-64. [PMID: 27424216 DOI: 10.1016/j.biomaterials.2016.06.062] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 06/25/2016] [Accepted: 06/28/2016] [Indexed: 12/11/2022]
Abstract
A main challenge in cardiac tissue engineering is the limited data on microenvironmental cues that sustain survival, proliferation and functional proficiency of cardiac cells. The aim of our study was to evaluate the potential of fetal (E18) and adult myocardial extracellular matrix (ECM) to support cardiac cells. Acellular three-dimensional (3D) bioscaffolds were obtained by parallel decellularization of fetal- and adult-heart explants thereby ensuring reliable comparison. Acellular scaffolds retained main constituents of the cardiac ECM including distinctive biochemical and structural meshwork features of the native equivalents. In vitro, fetal and adult ECM-matrices supported 3D culture of heart-derived Sca-1(+) progenitors and of neonatal cardiomyocytes, which migrated toward the center of the scaffold and displayed elongated morphology and excellent viability. At the culture end-point, more Sca-1(+) cells and cardiomyocytes were found adhered and inside fetal bioscaffolds, compared to the adult. Higher repopulation yields of Sca-1(+) cells on fetal ECM relied on β1-integrin independent mitogenic signals. Sca-1(+) cells on fetal bioscaffolds showed a gene expression profile that anticipates the synthesis of a permissive microenvironment for cardiomyogenesis. Our findings demonstrate the superior potential of the 3D fetal microenvironment to support and instruct cardiac cells. This knowledge should be integrated in the design of next-generation biomimetic materials for heart repair.
Collapse
Affiliation(s)
- A C Silva
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4200-135, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto 4200-135, Portugal; Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto 4050-313, Portugal; Gladstone Institutes, University of California San Francisco, San Francisco 94158, USA
| | - S C Rodrigues
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4200-135, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto 4200-135, Portugal
| | - J Caldeira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4200-135, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto 4200-135, Portugal
| | - A M Nunes
- Centre for Ecology, Evolution and Environmental Change, Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa 1749-016, Portugal
| | - V Sampaio-Pinto
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4200-135, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto 4200-135, Portugal; Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto 4050-313, Portugal
| | - T P Resende
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4200-135, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto 4200-135, Portugal
| | - M J Oliveira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4200-135, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto 4200-135, Portugal; Faculty of Medicine, University of Porto, Porto 4200-319, Portugal
| | - M A Barbosa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4200-135, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto 4200-135, Portugal; Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto 4050-313, Portugal
| | - S Thorsteinsdóttir
- Centre for Ecology, Evolution and Environmental Change, Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa 1749-016, Portugal
| | - D S Nascimento
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4200-135, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto 4200-135, Portugal.
| | - P Pinto-do-Ó
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4200-135, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto 4200-135, Portugal; Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto 4050-313, Portugal; Unit for Lymphopoiesis, Immunology Department, INSERM U668, University Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur. Institut Pasteur, Paris, France.
| |
Collapse
|
48
|
Andrés-Delgado L, Mercader N. Interplay between cardiac function and heart development. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:1707-16. [PMID: 26952935 PMCID: PMC4906158 DOI: 10.1016/j.bbamcr.2016.03.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 02/29/2016] [Accepted: 03/03/2016] [Indexed: 12/24/2022]
Abstract
Mechanotransduction refers to the conversion of mechanical forces into biochemical or electrical signals that initiate structural and functional remodeling in cells and tissues. The heart is a kinetic organ whose form changes considerably during development and disease. This requires cardiomyocytes to be mechanically durable and able to mount coordinated responses to a variety of environmental signals on different time scales, including cardiac pressure loading and electrical and hemodynamic forces. During physiological growth, myocytes, endocardial and epicardial cells have to adaptively remodel to these mechanical forces. Here we review some of the recent advances in the understanding of how mechanical forces influence cardiac development, with a focus on fluid flow forces. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.
Collapse
Affiliation(s)
- Laura Andrés-Delgado
- Development of the Epicardium and Its Role during Regeneration Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC-ISCIII), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Nadia Mercader
- Development of the Epicardium and Its Role during Regeneration Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC-ISCIII), Melchor Fernández Almagro 3, 28029 Madrid, Spain; Institute of Anatomy, University of Bern, Bern, Switzerland.
| |
Collapse
|
49
|
Stoppel WL, Kaplan DL, Black LD. Electrical and mechanical stimulation of cardiac cells and tissue constructs. Adv Drug Deliv Rev 2016; 96:135-55. [PMID: 26232525 DOI: 10.1016/j.addr.2015.07.009] [Citation(s) in RCA: 163] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 07/16/2015] [Accepted: 07/25/2015] [Indexed: 12/19/2022]
Abstract
The field of cardiac tissue engineering has made significant strides over the last few decades, highlighted by the development of human cell derived constructs that have shown increasing functional maturity over time, particularly using bioreactor systems to stimulate the constructs. However, the functionality of these tissues is still unable to match that of native cardiac tissue and many of the stem-cell derived cardiomyocytes display an immature, fetal like phenotype. In this review, we seek to elucidate the biological underpinnings of both mechanical and electrical signaling, as identified via studies related to cardiac development and those related to an evaluation of cardiac disease progression. Next, we review the different types of bioreactors developed to individually deliver electrical and mechanical stimulation to cardiomyocytes in vitro in both two and three-dimensional tissue platforms. Reactors and culture conditions that promote functional cardiomyogenesis in vitro are also highlighted. We then cover the more recent work in the development of bioreactors that combine electrical and mechanical stimulation in order to mimic the complex signaling environment present in vivo. We conclude by offering our impressions on the important next steps for physiologically relevant mechanical and electrical stimulation of cardiac cells and engineered tissue in vitro.
Collapse
|
50
|
Wang RM, Christman KL. Decellularized myocardial matrix hydrogels: In basic research and preclinical studies. Adv Drug Deliv Rev 2016; 96:77-82. [PMID: 26056717 DOI: 10.1016/j.addr.2015.06.002] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 05/19/2015] [Accepted: 06/02/2015] [Indexed: 01/09/2023]
Abstract
A variety of decellularized materials have been developed that have demonstrated potential for treating cardiovascular diseases and improving our understanding of cardiac development. Of these biomaterials, decellularized myocardial matrix hydrogels have shown great promise for creating cellular microenvironments representative of the native cardiac tissue and treating the heart after a myocardial infarction. Decellularized myocardial matrix hydrogels derived from porcine cardiac tissue form a nanofibrous hydrogel once thermally induced at physiological temperatures. Use of isolated cardiac extracellular matrix in 2D and 3D in vitro platforms has demonstrated the capability to provide tissue specific cues for cardiac cell growth and differentiation. Testing of the myocardial matrix hydrogel as a therapy after myocardial infarction in both small and large animal models has demonstrated improved left ventricular function, increased cardiac muscle, and cellular recruitment into the treated infarct. Based on these results, steps are currently being taken to translate these hydrogels into a clinically used injectable biomaterial therapy. In this review, we will focus on the basic science and preclinical studies that have accelerated the development of decellularized myocardial matrix hydrogels into an emerging novel therapy for treating the heart after a myocardial infarction.
Collapse
|