1
|
Banigo AT, Nauta L, Zoetebier B, Karperien M. Coaxial Bioprinting of Enzymatically Crosslinkable Hyaluronic Acid-Tyramine Bioinks for Tissue Regeneration. Polymers (Basel) 2024; 16:2470. [PMID: 39274103 PMCID: PMC11398246 DOI: 10.3390/polym16172470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/20/2024] [Accepted: 08/23/2024] [Indexed: 09/16/2024] Open
Abstract
Three-dimensional (3D) bioprinting has emerged as an important technique for fabricating tissue constructs with precise structural and compositional control. However, developing suitable bioinks with biocompatible crosslinking mechanisms remains a significant challenge. This study investigates extrusion-based bioprinting (EBB) using uniaxial or coaxial nozzles with enzymatic crosslinking (EC) to produce 3D tissue constructs in vitro. Initially, low-molecular-weight dextran-tyramine and hyaluronic acid-tyramine (LMW Dex-TA/HA-TA) bioink prepolymers were evaluated. Enzymatically pre-crosslinking these prepolymers, achieved by the addition of horseradish peroxidase and hydrogen peroxide, produced viscous polymer solutions. However, this approach resulted in inconsistent bioprinting outcomes (uniaxial) due to inhomogeneous crosslinking, leading to irreproducible properties and suboptimal shear recovery behavior of the hydrogel inks. To address these challenges, we explored a one-step coaxial bioprinting system consisting of enzymatically crosslinkable high-molecular-weight hyaluronic acid-tyramine conjugates (HMW HA-TA) mixed with horseradish peroxidase (HRP) in the inner core and a mixture of Pluronic F127 and hydrogen peroxide in the outer shell. This configuration resulted in nearly instantaneous gelation by diffusion of the hydrogen peroxide into the core. Stable hydrogel fibers with desirable properties, including appropriate swelling ratios and controlled degradation rates, were obtained. The optimized bioink and printing parameters included 1.3% w/v HMW HA-TA and 5.5 U/mL HRP (bioink, inner core), and 27.5% w/v Pluronic F127 and 0.1% H2O2 (sacrificial ink, outer shell). Additionally, optimal pressures for the inner core and outer shell were 45 and 80 kPa, combined with a printing speed of 300 mm/min and a bed temperature of 30 °C. The extruded HMW HA-TA core filaments, containing bovine primary chondrocytes (BPCs) or 3T3 fibroblasts (3T3 Fs), exhibited good cell viabilities and were successfully cultured for up to seven days. This study serves as a proof-of-concept for the one-step generation of core filaments using a rapidly gelling bioink with an enzymatic crosslinking mechanism, and a coaxial bioprinter nozzle system. The results demonstrate significant potential for developing designed, printed, and organized 3D tissue fiber constructs.
Collapse
Affiliation(s)
- Alma Tamunonengiofori Banigo
- Department of Developmental BioEngineering, Faculty of Science and Technology, TechMed Centre, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands
| | - Laura Nauta
- Department of Developmental BioEngineering, Faculty of Science and Technology, TechMed Centre, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands
| | - Bram Zoetebier
- Department of Developmental BioEngineering, Faculty of Science and Technology, TechMed Centre, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands
| | - Marcel Karperien
- Department of Developmental BioEngineering, Faculty of Science and Technology, TechMed Centre, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands
| |
Collapse
|
2
|
Ye H, Zhang R, Zhang C, Xia Y, Jin L. Advances in hyaluronic acid: Bioactivity, complexed biomaterials and biological application: A review. Asian J Surg 2024:S1015-9584(24)01841-4. [PMID: 39217010 DOI: 10.1016/j.asjsur.2024.08.100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/02/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
Hyaluronic acid (HA) is a natural glycosaminoglycan found in the human body, particularly in the extracellular matrix of body fluids and tissues. It plays a critical role in cellular processes of living organisms by maintaining tissue hydration, cell proliferation, differentiation, and inflammatory response. HA exhibits significant biological activity in skin care, aesthetic anti-aging, medical orthopedic repair, gynecological cancer monitoring, and other pathological conditions. Due to its exceptional biocompatibility, biodegradability, lack of toxicity, non-immunogenicity, and its capacity to bond with other substances, various HA-based biomedical products like hydrogels, microneedles, and microspheres have been developed. These innovations have also been applied in various medical and health fields, such as bone and tissue regeneration, gels for medical aesthetic fillers, and gynecology-related cancer treatment, utilizing the HA drug delivery pathway. The interest in HA and its products is increasing due to their biological functions. Therefore, this review aimed to summarize the biological properties of HA and to focus on its applications in the bone tissue engineering and healthcare, for HA has some practical applications of HA-based complexes in biomedical materials, tissue repair, medical aesthetics, and gynecology. Through this review, we seek to offer theoretical research assistance for the development of HA-based bioproducts in the healthcare domain and provide innovative insights for human health.
Collapse
Affiliation(s)
- Huijun Ye
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, No.318 Chaowang Road, Hangzhou, 310005, Zhejiang, China
| | - Ruijuan Zhang
- Center for Peak of Excellence on Biological Science and Food Engineering, National University of Singapore (Suzhou) Research Institute, Suzhou, 215004, Jiangsu, China
| | - Chunye Zhang
- Center for Peak of Excellence on Biological Science and Food Engineering, National University of Singapore (Suzhou) Research Institute, Suzhou, 215004, Jiangsu, China
| | - Yujie Xia
- Center for Peak of Excellence on Biological Science and Food Engineering, National University of Singapore (Suzhou) Research Institute, Suzhou, 215004, Jiangsu, China.
| | - Lihua Jin
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, No.318 Chaowang Road, Hangzhou, 310005, Zhejiang, China.
| |
Collapse
|
3
|
Zhao N, Qin L, Liu Y, Zhai M, Li D. Improved new bone formation capacity of hyaluronic acid-bone substitute compound in rat calvarial critical size defect. BMC Oral Health 2024; 24:994. [PMID: 39182066 PMCID: PMC11344309 DOI: 10.1186/s12903-024-04679-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 07/29/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND Bone loss of residual alveolar ridges is a great challenge in the field of dental implantology. Deproteinized bovine bone mineral (DBBM) is commonly used for bone regeneration, however, it is loose and difficult to handle in clinical practice. Hyaluronic acid (HA) shows viscoelasticity, permeability and excellent biocompatibility. The aim of this study is to evaluate whether high-molecular-weight (MW) HA combined with DBBM could promote new bone formation in rat calvarial critical size defects (CSDs). MATERIALS AND METHODS Rat calvarial CSDs (5 mm in diameter) were created. Rats (n = 45) were randomly divided into 3 groups: HA-DBBM compound grafting group, DBBM particles only grafting group and no graft group. Defect healing was assessed by hematoxylin-eosin staining and histomorphometry 2, 4 and 8 weeks postop, followed by Micro-CT scanning 8 weeks postop. Statistical analyses were performed by ANOVA followed by Tukey's post hoc test with P < 0.05 indicating statistical significance. RESULTS All rats survived after surgery. Histomorphometric evaluation revealed that at 2, 4 and 8 weeks postop, the percentage of newly formed bone was significantly greater in HA-DBBM compound grafting group than in the other two groups. Consistently, Micro-CT assessment revealed significantly more trabecular bone (BV/TV and Tb.N) in HA-DBBM compound group than in the other two groups, respectively (P < 0.05). Moreover, the trabecular bone was significantly more continuous (Tb.Pf) in HA-DBBM compound group than in the other two groups, respectively (P < 0.05). CONCLUSION HA not only significantly promoted new bone formation in rats calvarial CSDs but also improved the handling ability of DBBM.
Collapse
Affiliation(s)
- Ningbo Zhao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, 98 XiWu Road, Xi'an, Shaanxi, 710004, People's Republic of China
- Department of Implant Dentistry, College of Stomatology, Xi'an Jiaotong University, 98 XiWu Road, Xi'an, Shaanxi, 710004, People's Republic of China
| | - Lei Qin
- DeLun Dental, Baiyun District, Guangzhou, Guangdong Province, 510080, People's Republic of China
| | - Yi Liu
- State Key Laboratory of Military Stomatology, Department of Oral Implants, School of Stomatology, Fourth Military Medical University, No. 145 Changle West Road, Xi'an, Shaanxi, 710032, People's Republic of China
| | - Min Zhai
- Department of Stomatology, General Hospital of the Tibet Military Area Command, Lhasa, Tibet, 850007, People's Republic of China
| | - Dehua Li
- State Key Laboratory of Military Stomatology, Department of Oral Implants, School of Stomatology, Fourth Military Medical University, No. 145 Changle West Road, Xi'an, Shaanxi, 710032, People's Republic of China.
| |
Collapse
|
4
|
Chen X, Wang Y, Li H, Deng Y, Giang C, Song A, Liu Y, Wang QA, Zhu Y. Hyaluronan Mediates Cold-Induced Adipose Tissue Beiging. Cells 2024; 13:1233. [PMID: 39120264 PMCID: PMC11311271 DOI: 10.3390/cells13151233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 08/10/2024] Open
Abstract
Adipose tissue beiging refers to the process by which beige adipocytes emerge in classical white adipose tissue depots. Beige adipocytes dissipate chemical energy and secrete adipokines, such as classical brown adipocytes, to improve systemic metabolism, which is beneficial for people with obesity and metabolic diseases. Cold exposure and β3-adrenergic receptor (AR) agonist treatment are two commonly used stimuli for increasing beige adipocytes in mice; however, their underlying biological processes are different. Transcriptional analysis of inguinal white adipose tissue (iWAT) has revealed that changes in extracellular matrix (ECM) pathway genes are specific to cold exposure. Hyaluronic acid (HA), a non-sulfated linear polysaccharide produced by nearly all cells, is one of the most common components of ECM. We found that cold exposure significantly increased iWAT HA levels, whereas the β3-AR agonist CL316,243 did not. Increasing HA levels in iWAT by Has2 overexpression significantly increases cold-induced adipose tissue beiging; in contrast, decreasing HA by Spam1 overexpression, which encodes a hyaluronidase that digests HA, significantly decreases cold-induced iWAT beiging. All these data implicate a role of HA in promoting adipose tissue beiging, which is unique to cold exposure. Given the failure of β3-AR agonists in clinical trials for obesity and metabolic diseases, increasing HA could serve as a new approach for recruiting more beige adipocytes to combat metabolic diseases.
Collapse
Affiliation(s)
- Xi Chen
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yifan Wang
- Department of Molecular Endocrinology, Diabetes and Metabolism Institute, City of Hope Medical Center, Duarte, CA 91010, USA
| | - Huiqiao Li
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yanru Deng
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Charlise Giang
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Anying Song
- Department of Molecular Endocrinology, Diabetes and Metabolism Institute, City of Hope Medical Center, Duarte, CA 91010, USA
| | - Yu’e Liu
- Tongji University Cancer Center, School of Medicine, Tongji University, Shanghai 200092, China
| | - Qiong A. Wang
- Department of Molecular Endocrinology, Diabetes and Metabolism Institute, City of Hope Medical Center, Duarte, CA 91010, USA
| | - Yi Zhu
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
5
|
Ibrahim Almusi BJ, Al-Kamali RK. Effect of Platelet-Rich Fibrin Combined With Hyaluronic Acid on Bone Formation in Dental Implant Sockets: An In Vivo Study in Sheep. Cureus 2024; 16:e64651. [PMID: 39015217 PMCID: PMC11251443 DOI: 10.7759/cureus.64651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2024] [Indexed: 07/18/2024] Open
Abstract
OBJECTIVES The goal was to evaluate the effect of the combined growth factor of hyaluronic acid (HA) and advanced platelet-rich fibrin (A-PRF) on acceleration and maturation of bone formation around titanium dental implants in the bone-free space (jumping distance) of an over-preparation socket. MATERIALS AND METHODS Thirty-two titanium dental implants were placed in four sheep and distributed into one control group (A) and three experimental groups (B, C, and D) in two different time periods. Each sheep received eight implants. The eight implants in each sheep were distributed into four groups. The first period was one month after the initial placement, 16 implants were used in two sheep. The second period was three months after the initial placement; another 16 implants were used in the other two sheep. All implants were placed in over-prepared implant sockets, resulting in minimal primary stability. In Group A: the space between the dental implant and the bone of the inner wall of the socket was left without a growth substrate material. In Group B: we added HA between the dental implant and the bone of the inner wall of the socket. In Group C: we added A-PRF between the dental implant and the bone of the inner wall of the socket. In Group D: we added a combination of HA and A-PRF between the dental implant and the bone of the inner wall of the socket. Data was collected for each group at one month and three months at the same time. A high-resolution, desktop micro-CT system (Bruker Skyscan 1275, Kontich, Belgium) was used to scan the specimens. The NRecon software (ver. 1.6.10.4, SkyScan) and CTAn (SkyScan) were used for the visualization and quantitative measurement of the samples. One-way analysis of variance (ANOVA) was used to compare the means of the four study groups in the same period. A post hoc test was used after ANOVA to compare the means of two samples at the same time. A p-value of ≤ 0.05 was considered statistically significant. RESULTS After one month and three months of using combined HA and A-PRF on Group D, significant acceleration was observed in bone formation in all tests around dental implants compared with other groups, while no significant acceleration was observed when they were used separately; all three study groups showed significant results when compared with the control group. CONCLUSION Our data showed that using a combination of HA and A-PRF had a significant effect on the acceleration of the bone formation and ossification process when added to bone-free space (jumping distance) around implants while leaving space without any growth substrates might delay the bone ossification process.
Collapse
Affiliation(s)
- Blend J Ibrahim Almusi
- Department of Oral Surgery, Khanazad Teaching Center, Erbil Health Care Institute, Ministry of Health, Erbil, IRQ
| | - Reiadh K Al-Kamali
- Department of Oral and Maxillofacial Surgery, College of Dentistry, Hawler Medical University, Erbil, IRQ
| |
Collapse
|
6
|
Lee H, Lee S, Seong KY, Kang S, Seo MS, Shin SR, Nam KH, Yang SY. Enhanced Dural Repair Using Biodegradable Sealants Based on Photocurable Hyaluronic Acid. Macromol Biosci 2024; 24:e2300359. [PMID: 38011541 DOI: 10.1002/mabi.202300359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/22/2023] [Indexed: 11/29/2023]
Abstract
Cerebrospinal fluid (CSF) leakage is a common complication of intradural surgery or incidental durotomy in neurosurgery. Dural suturing is a common method for durotomy repair, but this technique requires a long operation time and includes the risk of CSF leakage by incomplete sealing. Glue-type sealants are effective for watertight dural closure. However, unresolved shortcomings include insufficient sealing performance, poor biocompatibility, and excessive swelling. Here, a dural sealant using light-activated hyaluronic acid (HA) with multi-networks (HA photosealant) that provides fast sealing performance and high biocompatibility is reported. The HA photosealants form a watertight hydrogel barrier with multilength networks under low-energy visible light exposure (405 nm, <1 J cm-2) for 5 s and allow firm tissue adhesion on the wet dural surface. In a rabbit model of craniectomy and durotomy, HA photosealants exhibit the faster sealing performance of dural tears and enhance dural repair with accelerated bone formation compared to commercial surgical glues, with no degenerative changes, such as inflammation or necrosis, in histopathological evaluation. This biocompatible HA photosealant can be applied in a variety of clinical settings that require fast wound closure as a promising potential.
Collapse
Affiliation(s)
- Hyeseon Lee
- Department of Biomaterials Science (BK21 Four Program), Life and Industry Convergence Institute, Pusan National University, Miryang, 50463, Republic of Korea
| | - Sijoon Lee
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, 41061, Republic of Korea
| | - Keum-Yong Seong
- Department of Biomaterials Science (BK21 Four Program), Life and Industry Convergence Institute, Pusan National University, Miryang, 50463, Republic of Korea
| | - Subin Kang
- Department of Biomaterials Science (BK21 Four Program), Life and Industry Convergence Institute, Pusan National University, Miryang, 50463, Republic of Korea
| | - Min-Soo Seo
- College of Veterinary Medicine, Kyunpook National University, Daegu, 41566, Republic of Korea
| | - Su Ryon Shin
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Cambridge, MA, 02139, USA
| | - Kyoung Hyup Nam
- Department of Neurosurgery, Medical Research Institute, Pusan National University Hospital, Pusan National University School of Medicine, Busan, 49241, Republic of Korea
| | - Seung Yun Yang
- Department of Biomaterials Science (BK21 Four Program), Life and Industry Convergence Institute, Pusan National University, Miryang, 50463, Republic of Korea
| |
Collapse
|
7
|
Mansour A, Acharya AB, Alliot C, Eid N, Badran Z, Kareem Y, Rahman B. Hyaluronic acid in Dentoalveolar regeneration: Biological rationale and clinical applications. J Oral Biol Craniofac Res 2024; 14:230-235. [PMID: 38510340 PMCID: PMC10950752 DOI: 10.1016/j.jobcr.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 01/17/2024] [Accepted: 02/23/2024] [Indexed: 03/22/2024] Open
Abstract
Background Hyaluronic acid (HA) is found in different locations in the periodontium, including mineralized tissues (i.e., cementum and alveolar bone) and non-mineralized tissues (i.e., gingiva and periodontal ligament). In addition, it seems to play an essential part in regulating the underlying mechanisms involved in tissue inflammatory reactions and wound healing. HA has the potential to regulate periodontal tissue regeneration and treat periodontal disease. Aim The current review of the literature was conducted to assess how HA plays its part in periodontal therapy and examine the contemporary literature's viewpoint on its use in periodontal regeneration. Conclusion HA has a multifunctional character in periodontal regeneration, and healing and appears to provide promising outcomes in different periodontal regenerative applications.
Collapse
Affiliation(s)
- Alaa Mansour
- Periodontology Unit, Department of Preventive and Restorative Dentistry, College of Dentistry, Sharjah University, United Arab Emirates
| | - Anirudh Balakrishna Acharya
- Periodontology Unit, Department of Preventive and Restorative Dentistry, College of Dentistry, Sharjah University, United Arab Emirates
| | - Charles Alliot
- Department of Periodontology, Faculty of Dental Surgery, University of Nantes, Nantes, France
| | - Nael Eid
- Prosthodontics Unit, Department of Preventive and Restorative Dentistry, College of Dentistry, Sharjah University, United Arab Emirates
| | - Zahi Badran
- Periodontology Unit, Department of Preventive and Restorative Dentistry, College of Dentistry, Sharjah University, United Arab Emirates
| | - Yousef Kareem
- College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - Betul Rahman
- Periodontology Unit, Department of Preventive and Restorative Dentistry, College of Dentistry, Sharjah University, United Arab Emirates
| |
Collapse
|
8
|
Pangjantuk A, Kaokaen P, Kunhorm P, Chaicharoenaudomrung N, Noisa P. 3D culture of alginate-hyaluronic acid hydrogel supports the stemness of human mesenchymal stem cells. Sci Rep 2024; 14:4436. [PMID: 38396088 PMCID: PMC10891100 DOI: 10.1038/s41598-024-54912-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 02/18/2024] [Indexed: 02/25/2024] Open
Abstract
The three-dimensional (3D) cell culture system is being employed more frequently to investigate cell engineering and tissue repair due to its close mimicry of in vivo microenvironments. In this study, we developed natural biomaterials, including hyaluronic acid, alginate, and gelatin, to mimic the creation of a 3D human mesenchymal stem cell (hMSC) extracellular environment and selected hydrogels with high proliferation capacity for 3D MSC culture. Human mesenchymal stem cells were encapsulated within hydrogels, and an investigation was conducted into the effects on cell viability and proliferation, stemness properties, and telomere activity compared to the 2D monolayer culture. Hydrogel characterization, cell proliferation, Live/Dead cell viability assay, gene expression, telomere relative length, and MSC stemness-related proteins by immunofluorescence staining were examined. The results showed that 3D alginate-hyaluronic acid (AL-HA) hydrogels increased cell proliferation, and the cells were grown as cellular spheroids within hydrogels and presented a high survival rate of 77.36% during the culture period of 14 days. Furthermore, the 3D alginate-hyaluronic acid (AL-HA) hydrogels increased the expression of stemness-related genes (OCT-4, NANOG, SOX2, and SIRT1), tissue growth and development genes (YAP and TAZ), and cell proliferation gene (Ki67) after culture for 14 days. Moreover, the telomere activity of the 3D MSCs was enhanced, as indicated by the upregulation of the human telomerase reverse transcriptase gene (hTERT) and the relative telomere length (T/S ratio) compared to the 2D monolayer culture. Altogether, these data suggest that the 3D alginate-hyaluronic acid (AL-HA) hydrogels could serve as a promising material for maintaining stem cell properties and might be a suitable carrier for tissue engineering proposals.
Collapse
Affiliation(s)
- Amorn Pangjantuk
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Nakhon Ratchasima, 30000, Thailand
| | - Palakorn Kaokaen
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Nakhon Ratchasima, 30000, Thailand
| | - Phongsakorn Kunhorm
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Nakhon Ratchasima, 30000, Thailand
| | - Nipha Chaicharoenaudomrung
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Nakhon Ratchasima, 30000, Thailand
| | - Parinya Noisa
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Nakhon Ratchasima, 30000, Thailand.
| |
Collapse
|
9
|
Schmidt J, Pavlík V, Suchánek J, Nešporová K, Soukup T, Kapitán M, Pilbauerová N. Low, medium, and high molecular weight hyaluronic acid effects on human dental pulp stem cells in vitro. Int J Biol Macromol 2023; 253:127220. [PMID: 37827401 DOI: 10.1016/j.ijbiomac.2023.127220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/20/2023] [Accepted: 10/01/2023] [Indexed: 10/14/2023]
Abstract
Hyaluronic acid (HA), an extracellular biopolymer found throughout the human body, holds promise as a biocompatible and biodegradable scaffold material. High molecular weight (HMW) HA degrades, generating low molecular weight (LMW) fragments with distinct properties. These fragments can influence the behaviour of cells, including human dental pulp stem cells (hDPSCs) incorporated into HA-containing hydrogels or scaffolds. Therefore, a comprehensive examination of the impact of a range of HA molecular weights on hDPSCs is essential before designing HA-based scaffolds for these cells. hDPSC lines were cultured with LMW HA (800 Da, 1600 Da, 15 kDa), medium molecular weight HA (237 kDa), or HMW HA (1500 kDa) over six passages. The various molecular weights had negligible effects on hDPSCs viability, morphology, adhesion, or relative telomere length. Furthermore, the expression of key surface stemness markers (CD29, CD44, CD73, CD90) remained unaltered. HA did not induce osteogenic, chondrogenic, or adipogenic differentiation. Moreover, the potential for chondrogenic and osteogenic differentiation was not adversely affected by LMW or HMW HA. Various molecular weights of HA seem safe, biocompatible and therefore suitable components for hDPSCs-containing scaffolds. These findings affirm that the hDPCSs will not be negatively affected by HA fragments resulting from scaffold degradation.
Collapse
Affiliation(s)
- Jan Schmidt
- Department of Dentistry, Charles University, Faculty of Medicine in Hradec Kralove and University Hospital Hradec Kralove, 500 05 Hradec Kralove, Czech Republic
| | - Vojtěch Pavlík
- Cell Physiology Research Group, Contipro a.s., 561 02 Dolni Dobrouc, Czech Republic.
| | - Jakub Suchánek
- Department of Dentistry, Charles University, Faculty of Medicine in Hradec Kralove and University Hospital Hradec Kralove, 500 05 Hradec Kralove, Czech Republic
| | - Kristina Nešporová
- Cell Physiology Research Group, Contipro a.s., 561 02 Dolni Dobrouc, Czech Republic
| | - Tomáš Soukup
- Department of Histology and Embryology, Charles University, Faculty of Medicine in Hradec Kralove, 500 03 Hradec Kralove, Czech Republic
| | - Martin Kapitán
- Department of Dentistry, Charles University, Faculty of Medicine in Hradec Kralove and University Hospital Hradec Kralove, 500 05 Hradec Kralove, Czech Republic
| | - Nela Pilbauerová
- Department of Dentistry, Charles University, Faculty of Medicine in Hradec Kralove and University Hospital Hradec Kralove, 500 05 Hradec Kralove, Czech Republic
| |
Collapse
|
10
|
Alhasan MA, Tomokiyo A, Hamano S, Sugii H, Ono T, Ipposhi K, Yamashita K, Mardini B, Minowa F, Maeda H. Hyaluronic Acid Induction Promotes the Differentiation of Human Neural Crest-like Cells into Periodontal Ligament Stem-like Cells. Cells 2023; 12:2743. [PMID: 38067170 PMCID: PMC10705959 DOI: 10.3390/cells12232743] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/26/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Periodontal ligament (PDL) stem-like cells (PDLSCs) are promising for regeneration of the periodontium because they demonstrate multipotency, high proliferative capacity, and the potential to regenerate bone, cementum, and PDL tissue. However, the transplantation of autologous PDLSCs is restricted by limited availability. Since PDLSCs are derived from neural crest cells (NCs) and NCs persist in adult PDL tissue, we devised to promote the regeneration of the periodontium by activating NCs to differentiate into PDLSCs. SK-N-SH cells, a neuroblastoma cell line that reportedly has NC-like features, seeded on the extracellular matrix of PDL cells for 2 weeks, resulted in the significant upregulation of PDL marker expression. SK-N-SH cell-derived PDLSCs (SK-PDLSCs) presented phenotypic characteristics comparable to induced pluripotent stem cell (iPSC)-derived PDLSCs (iPDLSCs). The expression levels of various hyaluronic acid (HA)-related genes were upregulated in iPDLSCs and SK-PDLSCs compared with iPSC-derived NCs and SK-N-SH cells, respectively. The knockdown of CD44 in SK-N-SH cells significantly inhibited their ability to differentiate into SK-PDLSCs, while low-molecular HA (LMWHA) induction enhanced SK-PDLSC differentiation. Our findings suggest that SK-N-SH cells could be applied as a new model to induce the differentiation of NCs into PDLSCs and that the LMWHA-CD44 relationship is important for the differentiation of NCs into PDLSCs.
Collapse
Affiliation(s)
- M. Anas Alhasan
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan; (M.A.A.); (S.H.); (H.S.); (T.O.); (K.I.); (K.Y.); (B.M.); (F.M.); (H.M.)
| | - Atsushi Tomokiyo
- Department of Restorative Dentistry, Faculty of Dental Medicine, Hokkaido University, Kita13 Nishi7, Kita-ku, Sapporo 060-8586, Japan
| | - Sayuri Hamano
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan; (M.A.A.); (S.H.); (H.S.); (T.O.); (K.I.); (K.Y.); (B.M.); (F.M.); (H.M.)
- OBT Research Center, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Hideki Sugii
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan; (M.A.A.); (S.H.); (H.S.); (T.O.); (K.I.); (K.Y.); (B.M.); (F.M.); (H.M.)
| | - Taiga Ono
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan; (M.A.A.); (S.H.); (H.S.); (T.O.); (K.I.); (K.Y.); (B.M.); (F.M.); (H.M.)
| | - Keita Ipposhi
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan; (M.A.A.); (S.H.); (H.S.); (T.O.); (K.I.); (K.Y.); (B.M.); (F.M.); (H.M.)
| | - Kozue Yamashita
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan; (M.A.A.); (S.H.); (H.S.); (T.O.); (K.I.); (K.Y.); (B.M.); (F.M.); (H.M.)
| | - Bara Mardini
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan; (M.A.A.); (S.H.); (H.S.); (T.O.); (K.I.); (K.Y.); (B.M.); (F.M.); (H.M.)
| | - Fumiko Minowa
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan; (M.A.A.); (S.H.); (H.S.); (T.O.); (K.I.); (K.Y.); (B.M.); (F.M.); (H.M.)
| | - Hidefumi Maeda
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan; (M.A.A.); (S.H.); (H.S.); (T.O.); (K.I.); (K.Y.); (B.M.); (F.M.); (H.M.)
- Department of Endodontology, Kyushu University Hospital, Fukuoka 812-8582, Japan
| |
Collapse
|
11
|
Neunzehn J, Alt F, Wiesmann HP, Kruppke B. Osteogenic stimulation of osteoprogenitors by putamen ovi peptides and hyaluronic acid. Head Face Med 2023; 19:34. [PMID: 37553683 PMCID: PMC10410967 DOI: 10.1186/s13005-023-00380-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/26/2023] [Indexed: 08/10/2023] Open
Abstract
Eggshell peptides (EP) majorly contribute to rapid bone building in chicks, wherefore this paper investigated their potential for stimulating osteogenesis in vitro. In this study, the effects of EP, also called putamen ovi peptides and a combination of hyaluronic acid with EP in cell culture medium were tested towards proliferation, differentiation, gene expression and mineralization of bovine osteoprogenitors and primary human osteoblasts. The influence of EP at concentrations of 0.005 g/L, 0.5 g/L and 0.5 g/L with 0.25% hyaluronic acid was analyzed using immunocytochemical staining of bone-specific matrix proteins, namely collagen type I, osteonectin, osteopontin and osteocalcin, to prove osteoblastic differentiation. Additionally, Richardson-staining was performed. All tests revealed a superior osteoblastic differentiation with EP at 0.5 g/L after 5 days of cultivation. Hyaluronic acid alone showed controversial results and partially constrained osteoblastic differentiation in combination with EP to a level as low as for pure EP at 0.005 g/L. Of particular interest is the osteoblast-typical mineralization, as an important indicator of bone formation, which was measured indirectly via the calcium concentration after cultivation over 4 weeks. The mineralization showed an increase by a factor of 286 during the cultivation of primary human osteoblasts with hyaluronic acid and EP. Meanwhile, cell cultures treated with EP (0.5 g/L) only showed an 80-fold increase in calcium concentration.The influence of EP (0.5 g/L) on primary human osteoblasts was investigated by gene expression after 2 weeks of cultivation. Microarray and qRT-PCR analysis showed a strongly increased expression of main important genes in bone formation, bone regeneration and the physiological bone remodelling processes. Namely, BMP 2, osteopontin and the matrix metalloproteinases 1 and 9, were present during in vitro osteoprogenitor culture with EP. By explicitly underlining the potential of eggshell peptides for stimulating osteogenesis, as well as emphasizing complex and controversial interaction with hyaluronan, this manuscript is relevant for developing new functionalized biomaterials for bone regeneration.
Collapse
Affiliation(s)
- Jörg Neunzehn
- Geistlich Biomaterials Vertriebsgesellschaft mbH, Schöckstraße 4, 76534, Baden-Baden, Germany
| | - Franziska Alt
- Technische Universität Dresden, Institute of Materials Science, Max Bergmann Center of Biomaterials, Budapester Straße 27, Dresden, 01069, Germany
| | - Hans-Peter Wiesmann
- Technische Universität Dresden, Institute of Materials Science, Max Bergmann Center of Biomaterials, Budapester Straße 27, Dresden, 01069, Germany
| | - Benjamin Kruppke
- Technische Universität Dresden, Institute of Materials Science, Max Bergmann Center of Biomaterials, Budapester Straße 27, Dresden, 01069, Germany.
| |
Collapse
|
12
|
Wang R, Damanik F, Kuhnt T, Jaminon A, Hafeez S, Liu H, Ippel H, Dijkstra PJ, Bouvy N, Schurgers L, ten Cate AT, Dias A, Moroni L, Baker MB. Biodegradable Poly(ester) Urethane Acrylate Resins for Digital Light Processing: From Polymer Synthesis to 3D Printed Tissue Engineering Constructs. Adv Healthc Mater 2023; 12:e2202648. [PMID: 36864621 PMCID: PMC11481055 DOI: 10.1002/adhm.202202648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/07/2023] [Indexed: 03/04/2023]
Abstract
Digital light processing (DLP) is an accurate and fast additive manufacturing technique to produce a variety of products, from patient-customized biomedical implants to consumer goods. However, DLP's use in tissue engineering has been hampered due to a lack of biodegradable resin development. Herein, a library of biodegradable poly(esters) capped with urethane acrylate (with variations in molecular weight) is investigated as the basis for DLP printable resins for tissue engineering. The synthesized oligomers show good printability and are capable of creating complex structures with mechanical moduli close to those of medium-soft tissues (1-3 MPa). While fabricated films from different molecular weight resins show few differences in surface topology, wettability, and protein adsorption, the adhesion and metabolic activity of NCTC clone 929 (L929) cells and human dermal fibroblasts (HDFs) are significantly different. Resins from higher molecular weight oligomers provide greater cell adhesion and metabolic activity. Furthermore, these materials show compatibility in a subcutaneous in vivo pig model. These customizable, biodegradable, and biocompatible resins show the importance of molecular tuning and open up new possibilities for the creation of biocompatible constructs for tissue engineering.
Collapse
Affiliation(s)
- Rong Wang
- Department of Complex Tissue RegenerationMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityMaastricht6229 ERThe Netherlands
| | - Febriyani Damanik
- Department of Complex Tissue RegenerationMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityMaastricht6229 ERThe Netherlands
| | - Tobias Kuhnt
- Department of Complex Tissue RegenerationMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityMaastricht6229 ERThe Netherlands
| | - Armand Jaminon
- School for Cardiovascular DiseasesFaculty of Health Medicine and Life SciencesMaastricht UniversityMaastricht6229 ERThe Netherlands
| | - Shahzad Hafeez
- Department of Complex Tissue RegenerationMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityMaastricht6229 ERThe Netherlands
| | - Hong Liu
- Department of SurgeryMaastricht University Medical CenterMaastricht6229 HXThe Netherlands
| | - Hans Ippel
- School for Cardiovascular DiseasesFaculty of Health Medicine and Life SciencesMaastricht UniversityMaastricht6229 ERThe Netherlands
| | - Pieter J. Dijkstra
- Department of Complex Tissue RegenerationMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityMaastricht6229 ERThe Netherlands
| | - Nicole Bouvy
- Department of SurgeryMaastricht University Medical CenterMaastricht6229 HXThe Netherlands
| | - Leon Schurgers
- School for Cardiovascular DiseasesFaculty of Health Medicine and Life SciencesMaastricht UniversityMaastricht6229 ERThe Netherlands
| | - A. Tessa ten Cate
- Department of Materials for Additive ManufacturingTNOP.O. Box 6235Eindhoven5600 HEThe Netherlands
- Department of Additive ManufacturingBrightlands Materials CenterUrmonderbaan 22Geleen6167 RDThe Netherlands
| | - Aylvin Dias
- DSM BiomedicalDSMKoestraat 1Geleen6167 RAThe Netherlands
| | - Lorenzo Moroni
- Department of Complex Tissue RegenerationMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityMaastricht6229 ERThe Netherlands
| | - Matthew B. Baker
- Department of Complex Tissue RegenerationMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityMaastricht6229 ERThe Netherlands
| |
Collapse
|
13
|
Vach Agocsova S, Culenova M, Birova I, Omanikova L, Moncmanova B, Danisovic L, Ziaran S, Bakos D, Alexy P. Resorbable Biomaterials Used for 3D Scaffolds in Tissue Engineering: A Review. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4267. [PMID: 37374451 PMCID: PMC10301242 DOI: 10.3390/ma16124267] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/28/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023]
Abstract
This article provides a thorough overview of the available resorbable biomaterials appropriate for producing replacements for damaged tissues. In addition, their various properties and application possibilities are discussed as well. Biomaterials are fundamental components in tissue engineering (TE) of scaffolds and play a critical role. They need to exhibit biocompatibility, bioactivity, biodegradability, and non-toxicity, to ensure their ability to function effectively with an appropriate host response. With ongoing research and advancements in biomaterials for medical implants, the objective of this review is to explore recently developed implantable scaffold materials for various tissues. The categorization of biomaterials in this paper includes fossil-based materials (e.g., PCL, PVA, PU, PEG, and PPF), natural or bio-based materials (e.g., HA, PLA, PHB, PHBV, chitosan, fibrin, collagen, starch, and hydrogels), and hybrid biomaterials (e.g., PCL/PLA, PCL/PEG, PLA/PEG, PLA/PHB PCL/collagen, PCL/chitosan, PCL/starch, and PLA/bioceramics). The application of these biomaterials in both hard and soft TE is considered, with a particular focus on their physicochemical, mechanical, and biological properties. Furthermore, the interactions between scaffolds and the host immune system in the context of scaffold-driven tissue regeneration are discussed. Additionally, the article briefly mentions the concept of in situ TE, which leverages the self-renewal capacities of affected tissues and highlights the crucial role played by biopolymer-based scaffolds in this strategy.
Collapse
Affiliation(s)
- Sara Vach Agocsova
- Institute of Natural and Synthetic Polymers, Faculty of Chemical and Food Technology, Slovak University of Technology, 812 37 Bratislava, Slovakia; (S.V.A.); (B.M.); (D.B.); (P.A.)
| | - Martina Culenova
- Panara a.s., Krskanska 21, 949 05 Nitra, Slovakia; (I.B.); (L.O.)
| | - Ivana Birova
- Panara a.s., Krskanska 21, 949 05 Nitra, Slovakia; (I.B.); (L.O.)
| | - Leona Omanikova
- Panara a.s., Krskanska 21, 949 05 Nitra, Slovakia; (I.B.); (L.O.)
| | - Barbora Moncmanova
- Institute of Natural and Synthetic Polymers, Faculty of Chemical and Food Technology, Slovak University of Technology, 812 37 Bratislava, Slovakia; (S.V.A.); (B.M.); (D.B.); (P.A.)
| | - Lubos Danisovic
- National Institute of Rheumatic Diseases, Nabrezie I. Krasku 4, 921 12 Piestany, Slovakia; (L.D.); (S.Z.)
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, 811 08 Bratislava, Slovakia
| | - Stanislav Ziaran
- National Institute of Rheumatic Diseases, Nabrezie I. Krasku 4, 921 12 Piestany, Slovakia; (L.D.); (S.Z.)
- Department of Urology, Faculty of Medicine, Comenius University, Limbova 5, 833 05 Bratislava, Slovakia
| | - Dusan Bakos
- Institute of Natural and Synthetic Polymers, Faculty of Chemical and Food Technology, Slovak University of Technology, 812 37 Bratislava, Slovakia; (S.V.A.); (B.M.); (D.B.); (P.A.)
- Panara a.s., Krskanska 21, 949 05 Nitra, Slovakia; (I.B.); (L.O.)
| | - Pavol Alexy
- Institute of Natural and Synthetic Polymers, Faculty of Chemical and Food Technology, Slovak University of Technology, 812 37 Bratislava, Slovakia; (S.V.A.); (B.M.); (D.B.); (P.A.)
- Panara a.s., Krskanska 21, 949 05 Nitra, Slovakia; (I.B.); (L.O.)
| |
Collapse
|
14
|
Drozdova M, Vodyakova M, Tolstova T, Chernogortseva M, Sazhnev N, Demina T, Aksenova N, Timashev P, Kildeeva N, Markvicheva E. Composite Hydrogels Based on Cross-Linked Chitosan and Low Molecular Weight Hyaluronic Acid for Tissue Engineering. Polymers (Basel) 2023; 15:polym15102371. [PMID: 37242945 DOI: 10.3390/polym15102371] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
The objectives of the study were as follows: (1) to develop two methods for the preparation of macroporous composite chitosan/hyaluronic acid (Ch/HA) hydrogels based on covalently cross-linked Ch and low molecular weight (Mw) HA (5 and 30 kDa); (2) to investigate some properties (swelling and in vitro degradation) and structures of the hydrogels; (3) to evaluate the hydrogels in vitro as potential biodegradable matrices for tissue engineering. Chitosan was cross-linked with either genipin (Gen) or glutaraldehyde (GA). Method 1 allowed the distribution of HA macromolecules within the hydrogel (bulk modification). In Method 2, hyaluronic acid formed a polyelectrolyte complex with Ch over the hydrogel surface (surface modification). By varying compositions of the Ch/HA hydrogels, highly porous interconnected structures (with mean pore sizes of 50-450 μm) were fabricated and studied using confocal laser scanning microscopy (CLSM). Mouse fibroblasts (L929) were cultured in the hydrogels for 7 days. Cell growth and proliferation within the hydrogel samples were studied via MTT-assay. The entrapment of low molecular weight HA was found to result in an enhancement of cell growth in the Ch/HA hydrogels compared to that in the Ch matrices. The Ch/HA hydrogels after bulk modification promoted better cell adhesion, growth and proliferation than the samples prepared by using Method 2 (surface modification).
Collapse
Affiliation(s)
- Maria Drozdova
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Str., 117997 Moscow, Russia
| | - Marina Vodyakova
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Str., 117997 Moscow, Russia
| | - Tatiana Tolstova
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Str., 117997 Moscow, Russia
| | - Marina Chernogortseva
- Department of Chemistry and Technology of Polymer Materials and Nanocomposites, The Kosygin Russian State University, 1 Malaya Kaluzhskaya Str., 119071 Moscow, Russia
| | - Nikita Sazhnev
- Department of Chemistry and Technology of Polymer Materials and Nanocomposites, The Kosygin Russian State University, 1 Malaya Kaluzhskaya Str., 119071 Moscow, Russia
| | - Tatiana Demina
- Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, 70 Profsouznaya Str., 117393 Moscow, Russia
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University, 8-2 Trubetskaya Str., 119991 Moscow, Russia
| | - Nadezhda Aksenova
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 4 Kosygina Str., 119991 Moscow, Russia
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, 8-2 Trubetskaya Str., 119991 Moscow, Russia
| | - Peter Timashev
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University, 8-2 Trubetskaya Str., 119991 Moscow, Russia
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, 8-2 Trubetskaya Str., 119991 Moscow, Russia
- Chemistry Department, Lomonosov Moscow State University, 1-3 Leninskie Gory, 119991 Moscow, Russia
| | - Nataliya Kildeeva
- Department of Chemistry and Technology of Polymer Materials and Nanocomposites, The Kosygin Russian State University, 1 Malaya Kaluzhskaya Str., 119071 Moscow, Russia
| | - Elena Markvicheva
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Str., 117997 Moscow, Russia
| |
Collapse
|
15
|
Chen L, Shi K, Ditzel N, Qiu W, Figeac F, Nielsen LHD, Tencerova M, Kowal JM, Ding M, Andreasen CM, Andersen TL, Kassem M. KIAA1199 deficiency enhances skeletal stem cell differentiation to osteoblasts and promotes bone regeneration. Nat Commun 2023; 14:2016. [PMID: 37037828 PMCID: PMC10086002 DOI: 10.1038/s41467-023-37651-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 03/14/2023] [Indexed: 04/12/2023] Open
Abstract
Upon transplantation, skeletal stem cells (also known as bone marrow stromal or mesenchymal stem cells) can regulate bone regeneration by producing secreted factors. Here, we identify KIAA1199 as a bone marrow stromal cell-secreted factor in vitro and in vivo. KIAA1199 plasma levels of patients positively correlate with osteoporotic fracture risk and expression levels of KIAA1199 in patient bone marrow stromal cells negatively correlates with their osteogenic differentiation potential. KIAA1199-deficient bone marrow stromal cells exhibit enhanced osteoblast differentiation in vitro and ectopic bone formation in vivo. Consistently, KIAA1199 knockout mice display increased bone mass and biomechanical strength, as well as an increased bone formation rate. They also exhibit accelerated healing of surgically generated bone defects and are protected from ovariectomy-induced bone loss. Mechanistically, KIAA1199 regulates osteogenesis by inhibiting the production of osteopontin by osteoblasts, via integrin-mediated AKT and ERK-MAPK intracellular signaling. Thus, KIAA1199 is a regulator of osteoblast differentiation and bone regeneration and could be targeted for the treatment or management of low bone mass conditions.
Collapse
Affiliation(s)
- Li Chen
- Department of Endocrinology and Metabolism, Endocrine Research Laboratory (KMEB), Odense University Hospital & University of Southern Denmark, Odense, Denmark.
- Dept. of Pathology and Physiopathology, Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, Guangxi, China.
| | - Kaikai Shi
- Department of Endocrinology and Metabolism, Endocrine Research Laboratory (KMEB), Odense University Hospital & University of Southern Denmark, Odense, Denmark
| | - Nicholas Ditzel
- Department of Endocrinology and Metabolism, Endocrine Research Laboratory (KMEB), Odense University Hospital & University of Southern Denmark, Odense, Denmark
| | - Weimin Qiu
- Department of Endocrinology and Metabolism, Endocrine Research Laboratory (KMEB), Odense University Hospital & University of Southern Denmark, Odense, Denmark
| | - Florence Figeac
- Department of Endocrinology and Metabolism, Endocrine Research Laboratory (KMEB), Odense University Hospital & University of Southern Denmark, Odense, Denmark
| | - Louise Himmelstrup Dreyer Nielsen
- Department of Endocrinology and Metabolism, Endocrine Research Laboratory (KMEB), Odense University Hospital & University of Southern Denmark, Odense, Denmark
| | - Michaela Tencerova
- Department of Endocrinology and Metabolism, Endocrine Research Laboratory (KMEB), Odense University Hospital & University of Southern Denmark, Odense, Denmark
| | - Justyna Magdalena Kowal
- Department of Endocrinology and Metabolism, Endocrine Research Laboratory (KMEB), Odense University Hospital & University of Southern Denmark, Odense, Denmark
| | - Ming Ding
- Department of Orthopaedic Surgery and Traumatology, Odense University Hospital & University of Southern Denmark, Odense, Denmark
| | | | | | - Moustapha Kassem
- Department of Endocrinology and Metabolism, Endocrine Research Laboratory (KMEB), Odense University Hospital & University of Southern Denmark, Odense, Denmark.
- Department of Cellular and Molecular Medicine (ICMM), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
16
|
Abi Zeid Daou C, Korban Z. Hyaluronic Acid in Rhinology: Its Uses, Advantages and Drawbacks-A Review. Indian J Otolaryngol Head Neck Surg 2023; 75:696-704. [PMID: 37206830 PMCID: PMC10188805 DOI: 10.1007/s12070-022-03255-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 10/24/2022] [Indexed: 11/07/2022] Open
Abstract
Hyaluronic acid has been increasingly involved in recent research due to its many chemical and physical properties. This is a review of the literature for studies involving the use of hyaluronic acid in rhinology. Hyaluronic acid washes and irrigation have been increasingly used in chronic sinusitis medical therapy and post-operatively with mixed results. It has also been shown to play a role in the treatment of nasal polyposis, allergic rhinitis, acute rhinosinusitis and empty nose syndrome. Its effect on biofilm in many disease entities has also been studied. HA is being recently used as ancillary treatment for several rhinologic conditions such as post-operative endoscopy care and chronic sinonasal infections. The properties of HA have intrigued researchers over the past years particularly in biofilm management, healing and inflammation.
Collapse
Affiliation(s)
- Christophe Abi Zeid Daou
- Department of Otolaryngology, Head and Neck Surgery, American University of Beirut Medical Center, P.O. Box 11-0236, Beirut, Lebanon
| | - Zeina Korban
- Department of Otolaryngology, Head and Neck Surgery, American University of Beirut Medical Center, P.O. Box 11-0236, Beirut, Lebanon
| |
Collapse
|
17
|
Ringström N, Edling C, Nalesso G, Jeevaratnam K. Framing Heartaches: The Cardiac ECM and the Effects of Age. Int J Mol Sci 2023; 24:4713. [PMID: 36902143 PMCID: PMC10003270 DOI: 10.3390/ijms24054713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 03/05/2023] Open
Abstract
The cardiac extracellular matrix (ECM) is involved in several pathological conditions, and age itself is also associated with certain changes in the heart: it gets larger and stiffer, and it develops an increased risk of abnormal intrinsic rhythm. This, therefore, makes conditions such as atrial arrythmia more common. Many of these changes are directly related to the ECM, yet the proteomic composition of the ECM and how it changes with age is not fully resolved. The limited research progress in this field is mainly due to the intrinsic challenges in unravelling tightly bound cardiac proteomic components and also the time-consuming and costly dependency on animal models. This review aims to give an overview of the composition of the cardiac ECM, how different components aid the function of the healthy heart, how the ECM is remodelled and how it is affected by ageing.
Collapse
Affiliation(s)
| | | | | | - Kamalan Jeevaratnam
- Faculty of Health and Medical Science, University of Surrey, Guildford GU2 7AL, UK
| |
Collapse
|
18
|
Sekelova T, Danisovic L, Cehakova M. Rejuvenation of Senescent Mesenchymal Stem Cells to Prevent Age-Related Changes in Synovial Joints. Cell Transplant 2023; 32:9636897231200065. [PMID: 37766590 PMCID: PMC10540599 DOI: 10.1177/09636897231200065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/13/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
Mesenchymal/medicinal stem/signaling cells (MSCs), well known for regenerative potential, have been involved in hundreds of clinical trials. Even if equipped with reparative properties, aging significantly decreases their biological activity, representing a major challenge for MSC-based therapies. Age-related joint diseases, such as osteoarthritis, are associated with the accumulation of senescent cells, including synovial MSCs. An impaired ability of MSCs to self-renew and differentiate is one of the main contributors to the human aging process. Moreover, senescent MSCs (sMSCs) are characterized by the senescence-messaging secretome (SMS), which is typically manifested by the release of molecules with an adverse effect. Many factors, from genetic and metabolic pathways to environmental stressors, participate in the regulation of the senescent phenotype of MSCs. To better understand cellular senescence in MSCs, this review discusses the characteristics of sMSCs, their role in cartilage and synovial joint aging, and current rejuvenation approaches to delay/reverse age-related pathological changes, providing evidence from in vivo experiments as well.
Collapse
Affiliation(s)
- Tatiana Sekelova
- National Institute of Rheumatic Diseases, Piestany, Slovakia
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Lubos Danisovic
- National Institute of Rheumatic Diseases, Piestany, Slovakia
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Michaela Cehakova
- National Institute of Rheumatic Diseases, Piestany, Slovakia
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| |
Collapse
|
19
|
Townsend JM, Sanders ME, Kiyotake EA, Detamore MS. Independent Control of Molecular Weight, Concentration, and Stiffness of Hyaluronic Acid Hydrogels. Biomed Mater 2022; 17. [PMID: 36044886 DOI: 10.1088/1748-605x/ac8e41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 08/31/2022] [Indexed: 11/12/2022]
Abstract
Hyaluronic acid (HA) hydrogels have been used for a multitude of applications, perhaps most notably for tissue engineering and regenerative medicine, owing to the versatility of the polymer and its tunable nature. Various groups have investigated the impact of hydrogel parameters (e.g., molecular weight, concentration, stiffness, etc.) in vitro and in vivo to achieve desired material performance characteristics. A limitation in the literature to date has been that altering one hydrogel parameter (a 'manipulated variable') to achieve a given hydrogel characteristic (a 'controlled variable') changes two variables at a time (e.g., altering molecular weight and/or concentration to investigate cell response to stiffness). Therefore, if cell responses differ, it may be possible that more than one variable caused the changes in observed responses. In the current study, we leveraged thiol-ene click chemistry with a crosslinker to develop a method that minimizes material performance changes and permitted multiple material properties to be independently held constant to evaluate a single variable at a time. Independent control was accomplished by tuning the concentration of crosslinker to achieve an effectively constant stiffness for different HA hydrogel molecular weights and polymer concentrations. Specific formulations were thereby identified that enabled the molecular weight (76 - 1550 kDa), concentration (2 - 10%), or stiffness (~1 - 350 kPa) to be varied while the other two were held constant, a key technical achievement. The response of rat mesenchymal stem cells to varying molecular weight, concentration, and stiffness demonstrated consistent upregulation of osteocalcin gene expression. The methodology presented to achieve independent control of hydrogel parameters may potentially be adopted by others for alternative hydrogel polymers, cell types, or cell culture medium compositions to minimize confounding variables in experimental hydrogel designs.
Collapse
Affiliation(s)
- Jakob M Townsend
- Biomedical Engineering, University of Oklahoma, 101 David L Boren Blvd, Norman, Oklahoma, 73019, UNITED STATES
| | - Megan E Sanders
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 925 North Way 56th Terrace, Gainesville, 32611-7011, UNITED STATES
| | - Emi A Kiyotake
- Biomedical Engineering, University of Oklahoma, 101 David L Boren Blvd, Norman, Oklahoma, 73019, UNITED STATES
| | - Michael S Detamore
- Biomedical Engineering, University of Oklahoma, 101 David L Boren Blvd, Norman, Oklahoma, 73019, UNITED STATES
| |
Collapse
|
20
|
Fabrication of Low-Molecular-Weight Hyaluronic Acid-Carboxymethyl Cellulose Hybrid to Promote Bone Growth in Guided Bone Regeneration Surgery: An Animal Study. Polymers (Basel) 2022; 14:polym14153211. [PMID: 35956724 PMCID: PMC9370888 DOI: 10.3390/polym14153211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/31/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022] Open
Abstract
Guided bone regeneration surgery is an important dental operation used to regenerate enough bone to successfully heal dental implants. When this technique is performed on maxilla sinuses, hyaluronic acid (HLA) can be used as an auxiliary material to improve the graft material handling properties. Recent studies have indicated that low-molecular hyaluronic acid (L-HLA) provides a better regeneration ability than high-molecular-weight (H-HLA) analogues. The aim of this study was to fabricate an L-HLA-carboxymethyl cellulose (CMC) hybrid to promote bone regeneration while maintaining viscosity. The proliferation effect of fabricated L-HLA was tested using dental pulp stem cells (DPSCs). The mitogen-activated protein kinase (MAPK) pathway was examined using cells cultured with L-HLA combined with extracellular-signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 inhibitors. The bone growth promotion of fabricated L-HLA/CMC hybrids was tested using an animal model. Micro-computer tomography (Micro-CT) and histological images were evaluated quantitatively to compare the differences in the osteogenesis between the H-HLA and L-HLA. Our results show that the fabricated L-HLA can bind to CD44 on the DPSC cell membranes and affect MAPK pathways, resulting in a prompt proliferation rate increase. Micro CT images show that new bone formation in rabbit calvaria defects treated with L-HLA/CMC was almost two times higher than in defects filled with H-HLA/CMC (p < 0.05) at 4 weeks, a trend that remained at 8 weeks and was confirmed by HE-stained images. According to these findings, it is reasonable to conclude that L-HLA provides better bone healing than H-HLA, and that the L-HLA/CMC fabricated in this study is a potential candidate for improving bone healing efficiency when a guided bone regeneration surgery was performed.
Collapse
|
21
|
Kyyak S, Blatt S, Wiesmann N, Smeets R, Kaemmerer PW. Hyaluronic Acid with Bone Substitutes Enhance Angiogenesis In Vivo. MATERIALS 2022; 15:ma15113839. [PMID: 35683136 PMCID: PMC9181602 DOI: 10.3390/ma15113839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/15/2022] [Accepted: 05/23/2022] [Indexed: 12/04/2022]
Abstract
Introduction: The effective induction of angiogenesis is directly related to the success of bone-substitute materials (BSM) for maxillofacial osseous regeneration. Therefore, the addition of pro-angiogenic properties to a commercially available bovine bone-substitute material in combination with hyaluronic acid (BSM+) was compared to the same bone-substitute material without hyaluronic acid (BSM) in an in-vivo model. Materials and Methods: BSM+ and BSM were incubated for six days on the chorioallantoic membrane (CAM) of fertilized chicken eggs. Microscopically, the number of vessels and branching points, the vessel area and vessel length were evaluated. Subsequently, the total vessel area and brightness integration were assessed after immunohistochemical staining (H&E, alphaSMA). Results: In the BSM+ group, a significantly higher number of vessels (p < 0.001), branching points (p = 0.001), total vessel area (p < 0.001) as well as vessel length (p = 0.001) were found in comparison to the BSM group without hyaluronic acid. Immunohistochemically, a significantly increased total vessel area (p < 0.001 for H&E, p = 0.037 for alphaSMA) and brightness integration (p = 0.047) for BSM+ in comparison to the native material were seen. Conclusions: The combination of a xenogenic bone-substitute material with hyaluronic acid significantly induced angiogenesis in vivo. This might lead to a faster integration and an improved healing in clinical situations.
Collapse
Affiliation(s)
- Solomiya Kyyak
- Department of Oral and Maxillofacial Surgery, University Medical Center Mainz, Augustusplatz 2, 55131 Mainz, Germany; (S.K.); (S.B.); (N.W.)
| | - Sebastian Blatt
- Department of Oral and Maxillofacial Surgery, University Medical Center Mainz, Augustusplatz 2, 55131 Mainz, Germany; (S.K.); (S.B.); (N.W.)
| | - Nadine Wiesmann
- Department of Oral and Maxillofacial Surgery, University Medical Center Mainz, Augustusplatz 2, 55131 Mainz, Germany; (S.K.); (S.B.); (N.W.)
- Department of Otorhinolaryngology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Ralf Smeets
- Division “Regenerative Orofacial Medicine”, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany;
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Peer W. Kaemmerer
- Department of Oral and Maxillofacial Surgery, University Medical Center Mainz, Augustusplatz 2, 55131 Mainz, Germany; (S.K.); (S.B.); (N.W.)
- Correspondence:
| |
Collapse
|
22
|
Efficacy of hyaluronic acid, absorbable collagen sponge, and their combination in minimizing bisphosphonate-related osteonecrosis of the jaws (BRONJ) after dental extraction: a preliminary animal histomorphometric study. Maxillofac Plast Reconstr Surg 2022; 44:8. [PMID: 35230522 PMCID: PMC8888787 DOI: 10.1186/s40902-022-00337-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 02/10/2022] [Indexed: 12/02/2022] Open
Abstract
Introduction There is no study on the effectiveness of hyaluronic acid (HA) placement either with or without absorbable collagen sponge (ACS) in reducing or preventing bisphosphonate-related osteonecrosis of the jaws (BRONJ). This preliminary animal study examined the efficacy of this clinically important treatment. Methods For simulating BRONJ, zoledronic acid was administered to 40 rats for 5 weeks. Two weeks later, a right first molar was extracted from each rat. The rats were randomized into four groups of socket treatments: control (empty extraction socket) or with sockets filled with ACS, HA, or HA+ACS (n=4×10). After 2 weeks, 5 rats in each group were sacrificed and subjected to histopathologic and histomorphometric evaluation. Eight weeks post-surgically, the rest of rats were euthanized and histologically examined. The Kruskal-Wallis test was used to compare the four treatments at each time point (α=0.05). Results Six rats were lost overall. In the second week, vascularization was higher in ACS group (P<0.05); osteoclast activity was not different between groups (P>0.05); empty lacunae were the most and fewest in control and HA+ACS groups, respectively (P<0.05); eosinophil infiltration was maximum in HA group (P<0.05); lymphocyte counts were maximum and minimum in the HA+ACS and ACS groups, respectively (P<0.05); the highest and lowest neutrophil counts were seen in ACS and control groups, respectively (P<0.05); and the extent of live bone did not differ between groups (P>0.05). In the eighth week, vascularization was not different in groups (P>0.05); the highest and lowest osteoclast activities were seen in the control and HA+ACS groups, respectively (P<0.05); empty lacunae were the most and fewest in control and HA+ACS, respectively (P<0.05); maximum and minimum numbers of eosinophils were in control and HA+ACS groups, respectively (P<0.05); HA and control groups exhibited the highest and lowest lymphocyte counts, respectively (P<0.05); the lowest and highest neutrophil counts were observed in HA+ACs and control groups, respectively (P<0.05); and the highest and lowest extents of the live bone were observed in HA+ACS and control groups, respectively (P<0.05). Conclusions Within the limitations of this preliminary animal study, HA and especially HA+ACS seem a proper method for preventing or treating BRONJ.
Collapse
|
23
|
CD44-Targeted Carriers: The Role of Molecular Weight of Hyaluronic Acid in the Uptake of Hyaluronic Acid-Based Nanoparticles. Pharmaceuticals (Basel) 2022; 15:ph15010103. [PMID: 35056160 PMCID: PMC8781203 DOI: 10.3390/ph15010103] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 02/01/2023] Open
Abstract
Nanotechnology offers advanced biomedical tools for diagnosis and drug delivery, stressing the value of investigating the mechanisms by which nanocarriers interact with the biological environment. Herein, the cellular response to CD44-targeted nanoparticles (NPs) was investigated. CD44, the main hyaluronic acid (HA) receptor, is widely exploited as a target for therapeutic purposes. HA NPs were produced by microfluidic platform starting from HA with different molecular weights (Mw, 280, 540, 820 kDa) by polyelectrolyte complexation with chitosan (CS). Thanks to microfluidic technology, HA/CS NPs with the same physical features were produced, and only the effects of HA Mw on CD44-overexpressing cells (human mesenchymal stem cells, hMSCs) were studied. This work provides evidence of the HA/CS NPs biocompatibility regardless the HA Mw and reveals the effect of low Mw HA in improving the cell proliferation. Special attention was paid to the endocytic mechanisms used by HA/CS NPs to enter hMSCs. The results show the notable role of CD44 and the pronounced effect of HA Mw in the NPs’ internalization. HA/CS NPs uptake occurs via different endocytic pathways simultaneously, and most notably, NPs with 280 kDa HA were internalized by clathrin-mediated endocytosis. Instead, NPs with 820 kDa HA revealed a greater contribution of caveolae and cytoskeleton components.
Collapse
|
24
|
Alvarez Echazú MI, Perna O, Olivetti CE, Antezana PE, Municoy S, Tuttolomondo MV, Galdopórpora JM, Alvarez GS, Olmedo DG, Desimone MF. Recent Advances in Synthetic and Natural Biomaterials-Based Therapy for Bone Defects. Macromol Biosci 2022; 22:e2100383. [PMID: 34984818 DOI: 10.1002/mabi.202100383] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/04/2021] [Indexed: 12/31/2022]
Abstract
Synthetic and natural biomaterials are a promising alternative for the treatment of critical-sized bone defects. Several parameters such as their porosity, surface, and mechanical properties are extensively pointed out as key points to recapitulate the bone microenvironment. Many biomaterials with this pursuit are employed to provide a matrix, which can supply the specific environment and architecture for an adequate bone growth. Nevertheless, some queries remain unanswered. This review discusses the recent advances achieved by some synthetic and natural biomaterials to mimic the native structure of bone and the manufacturing technology applied to obtain biomaterial candidates. The focus of this review is placed in the recent advances in the development of biomaterial-based therapy for bone defects in different types of bone. In this context, this review gives an overview of the potentialities of synthetic and natural biomaterials: polyurethanes, polyesters, hyaluronic acid, collagen, titanium, and silica as successful candidates for the treatment of bone defects.
Collapse
Affiliation(s)
- María I Alvarez Echazú
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica, Junín 956, Piso 3°, (1113) Buenos Aires, Argentina., Universidad de Buenos Aires, Junín 956, Piso 3°, Buenos Aires, 1113, Argentina.,Universidad de Buenos Aires, Facultad de Odontología, Cátedra de Anatomía Patológica, Marcelo T. de Alvear 2142 (1122), CABA, Argentina
| | - Oriana Perna
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica, Junín 956, Piso 3°, (1113) Buenos Aires, Argentina., Universidad de Buenos Aires, Junín 956, Piso 3°, Buenos Aires, 1113, Argentina
| | - Christian E Olivetti
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica, Junín 956, Piso 3°, (1113) Buenos Aires, Argentina., Universidad de Buenos Aires, Junín 956, Piso 3°, Buenos Aires, 1113, Argentina
| | - Pablo E Antezana
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica, Junín 956, Piso 3°, (1113) Buenos Aires, Argentina., Universidad de Buenos Aires, Junín 956, Piso 3°, Buenos Aires, 1113, Argentina
| | - Sofia Municoy
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica, Junín 956, Piso 3°, (1113) Buenos Aires, Argentina., Universidad de Buenos Aires, Junín 956, Piso 3°, Buenos Aires, 1113, Argentina
| | - María V Tuttolomondo
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica, Junín 956, Piso 3°, (1113) Buenos Aires, Argentina., Universidad de Buenos Aires, Junín 956, Piso 3°, Buenos Aires, 1113, Argentina
| | - Juan M Galdopórpora
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica, Junín 956, Piso 3°, (1113) Buenos Aires, Argentina., Universidad de Buenos Aires, Junín 956, Piso 3°, Buenos Aires, 1113, Argentina
| | - Gisela S Alvarez
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica, Junín 956, Piso 3°, (1113) Buenos Aires, Argentina., Universidad de Buenos Aires, Junín 956, Piso 3°, Buenos Aires, 1113, Argentina
| | - Daniel G Olmedo
- Universidad de Buenos Aires, Facultad de Odontología, Cátedra de Anatomía Patológica, Marcelo T. de Alvear 2142 (1122), CABA, Argentina.,CONICET, Consejo Nacional de Investigaciones Científicas y Técnicas, Godoy Cruz 2290, Buenos Aires, 1425, Argentina
| | - Martín F Desimone
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica, Junín 956, Piso 3°, (1113) Buenos Aires, Argentina., Universidad de Buenos Aires, Junín 956, Piso 3°, Buenos Aires, 1113, Argentina
| |
Collapse
|
25
|
Liang Y, Ding S, Wang X, Hu C, Zhang Y, Hu Y, Zhang Y, Kong H, Xia W, Jing Q, Hu Y, Zhao C, Wu L. Adipose/Connective Tissue From Thyroid-Associated Ophthalmopathy Uncovers Interdependence Between Methylation and Disease Pathogenesis: A Genome-Wide Methylation Analysis. Front Cell Dev Biol 2021; 9:716871. [PMID: 34568330 PMCID: PMC8457400 DOI: 10.3389/fcell.2021.716871] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 08/19/2021] [Indexed: 11/19/2022] Open
Abstract
In response to pathological stimulation, methylation status conversion of the genome drives changes of cell feature and is able to promote disease development. Yet the role of methylation in the development of thyroid-associated ophthalmopathy (TAO) remains to be evaluated. Overexpansion of orbital tissue is the key feature of TAO. In this study, the methylation profile of orbital adipose/connective tissue from TAO patients and normal individuals were compared. After screening 3,739 differentially methylated probes, the distribution and properties of these probes were analyzed. Furthermore, enriched biological functions of these genes associated with differential methylation and the relationship between their methylation status and expression profile were also identified, including PTPRU and VCAM-1. According to our results, methylation was involved in disregulated immune response and inflammation in TAO and might contribute to activation of fibroblast and adipogenesis, leading to the expansion of orbital tissue. Neuropathy and neurobehavioral symptoms were also potentially associated with methylation. These results may help to extend the understanding of methylation in TAO and provide more insights into diagnosis and treatment of patients.
Collapse
Affiliation(s)
- Yu Liang
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Shanghai, China.,Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Sijia Ding
- Department of Phase 1 Clinical Trial Unit, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Xiying Wang
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Shanghai, China.,Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Chunchun Hu
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Shanghai, China.,Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Yihan Zhang
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Shanghai, China.,Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Yan Hu
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Shanghai, China.,Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Yuye Zhang
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Shanghai, China.,Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Hongyu Kong
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Shanghai, China.,Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Weiyi Xia
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Shanghai, China.,Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Qinghe Jing
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Shanghai, China.,Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Yuxiang Hu
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Shanghai, China.,Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Chen Zhao
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Shanghai, China.,Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Lianqun Wu
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Shanghai, China.,Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| |
Collapse
|
26
|
Chen CH, Cheng YH, Chen SH, Chuang ADC, Chen JP. Functional Hyaluronic Acid-Polylactic Acid/Silver Nanoparticles Core-Sheath Nanofiber Membranes for Prevention of Post-Operative Tendon Adhesion. Int J Mol Sci 2021; 22:ijms22168781. [PMID: 34445516 PMCID: PMC8396318 DOI: 10.3390/ijms22168781] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/13/2021] [Accepted: 08/13/2021] [Indexed: 11/16/2022] Open
Abstract
In this study, we prepared core-sheath nanofiber membranes (CSNFMs) with silver nanoparticles (Ag NPs) embedding in the polylactic acid (PLA) nanofiber sheath and hyaluronic acid (HA) in the nanofiber core. The PLA/Ag NPs sheath provides mechanical support as well as anti-bacterial and anti-inflammatory properties. The controlled release of HA from the core could exert anti-adhesion effects to promote tendon sliding while reducing fibroblast attachment. From the microfibrous structural nature of CSNFMs, they function as barrier membranes to reduce fibroblast penetration without hampering nutrient transports to prevent post-operative peritendinous adhesion. As the anti-adhesion efficacy will depend on release rate of HA from the core as well as Ag NP from the sheath, we fabricated CSNFMs of comparable fiber diameter, but with thick (Tk) or thin (Tn) sheath. Similar CSNFMs with thick (Tk+) and thin (Tn+) sheath but with embedded Ag NPs in the sheath were also prepared. The physico-chemical properties of the barrier membranes were characterized in details, together with their biological response including cell penetration, cell attachment and proliferation, and cytotoxicity. Peritendinous anti-adhesion models in rabbits were used to test the efficacy of CSNFMs as anti-adhesion barriers, from gross observation, histology, and biomechanical tests. Overall, the CSNFM with thin-sheath and Ag NPs (Tn+) shows antibacterial activity with low cytotoxicity, prevents fibroblast penetration, and exerts the highest efficacy in reducing fibroblast attachment in vitro. From in vivo studies, the Tn+ membrane also shows significant improvement in preventing peritendinous adhesions as well as anti-inflammatory efficacy, compared with Tk and Tn CSNFMs and a commercial adhesion barrier film (SurgiWrap®) made from PLA.
Collapse
Affiliation(s)
- Chih-Hao Chen
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital at Keelung, Keelung 20401, Taiwan; (C.-H.C.); (A.D.-C.C.)
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital at Linkou, Collage of Medicine, Chang Gung University, Kwei-San, Taoyuan 33305, Taiwan;
| | - Yuan-Hsun Cheng
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan;
| | - Shih-Heng Chen
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital at Linkou, Collage of Medicine, Chang Gung University, Kwei-San, Taoyuan 33305, Taiwan;
| | - Andy Deng-Chi Chuang
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital at Keelung, Keelung 20401, Taiwan; (C.-H.C.); (A.D.-C.C.)
| | - Jyh-Ping Chen
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital at Linkou, Collage of Medicine, Chang Gung University, Kwei-San, Taoyuan 33305, Taiwan;
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan;
- Research Center for Food and Cosmetic Safety, Research Center for Chinese Herbal Medicine, Linkou Campus, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33305, Taiwan
- Department of Materials Engineering, Ming Chi University of Technology, Tai-Shan, New Taipei City 24301, Taiwan
- Correspondence: ; Tel.: +886-3-2118800
| |
Collapse
|
27
|
Kuo PJ, Yen HJ, Lin CY, Lai HY, Chen CH, Wang SH, Chang WJ, Lee SY, Huang HM. Estimation of the Effect of Accelerating New Bone Formation of High and Low Molecular Weight Hyaluronic Acid Hybrid: An Animal Study. Polymers (Basel) 2021; 13:1708. [PMID: 34073693 PMCID: PMC8197183 DOI: 10.3390/polym13111708] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 01/09/2023] Open
Abstract
Osteoconduction is an important consideration for fabricating bio-active materials for bone regeneration. For years, hydroxyapatite and β-calcium triphosphate (β-TCP) have been used to develop bone grafts for treating bone defects. However, this material can be difficult to handle due to filling material sagging. High molecular weight hyaluronic acid (H-HA) can be used as a carrier to address this problem and improve operability. However, the effect of H-HA on bone formation is still controversial. In this study, low molecular weight hyaluronic acid (L-HA) was fabricated using gamma-ray irradiation. The viscoelastic properties and chemical structure of the fabricated hybrids were evaluated by a rheological analysis nuclear magnetic resonance (NMR) spectrum. The L-MH was mixed with H-HA to produce H-HA/L-HA hybrids at ratios of 80:20, 50:50 and 20:80 (w/w). These HA hybrids were then combined with hydroxyapatite and β-TCP to create a novel bone graft composite. For animal study, artificial bone defects were prepared in rabbit femurs. After 12 weeks of healing, the rabbits were scarified, and the healing statuses were observed and evaluated through micro-computer tomography (CT) and tissue histological images. Our viscoelastic analysis showed that an HA hybrid consisting 20% H-HA is sufficient to maintain elasticity; however, the addition of L-HA dramatically decreases the dynamic viscosity of the HA hybrid. Micro-CT images showed that the new bone formations in the rabbit femur defect model treated with 50% and 80% L-HA were 1.47 (p < 0.05) and 2.26 (p < 0.01) times higher than samples filled with HA free bone graft. In addition, a similar tendency was observed in the results of HE staining. These results lead us to suggest that the material with an H-HA/L-HA ratio of 50:50 exhibited acceptable viscosity and significant new bone formation. Thus, it is reasonable to suggest that it may be a potential candidate to serve as a supporting system for improving the operability of granular bone grafts and enhancing new bone formations.
Collapse
Affiliation(s)
- Po-Jan Kuo
- School of Dentistry, Department of Periodontology, National Defense Medical Center and Tri-Service General Hospital, Taipei 11490, Taiwan;
| | - Hsiu-Ju Yen
- Department of Dentistry, Division of Prosthodontics, Taipei Medical University Hospital, Taipei 11031, Taiwan;
| | - Chi-Yu Lin
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan; (C.-Y.L.); (H.-Y.L.); (W.-J.C.); (S.-Y.L.)
- Center for Tooth Bank and Dental Stem Cell Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Hsuan-Yu Lai
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan; (C.-Y.L.); (H.-Y.L.); (W.-J.C.); (S.-Y.L.)
| | - Chun-Hung Chen
- School of Biomedical Engineering, College of Medical Engineering, Taipei 11031, Taiwan;
| | - Shwu-Huey Wang
- Core Facility Center, Office of Research and Development, Taipei Medical University, Taipei 11031, Taiwan;
| | - Wei-Jen Chang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan; (C.-Y.L.); (H.-Y.L.); (W.-J.C.); (S.-Y.L.)
| | - Sheng-Yang Lee
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan; (C.-Y.L.); (H.-Y.L.); (W.-J.C.); (S.-Y.L.)
- Center for Tooth Bank and Dental Stem Cell Technology, Taipei Medical University, Taipei 11031, Taiwan
- Dental Department, Taipei Municipal Wanfang Hospital, Taipei 11031, Taiwan
| | - Haw-Ming Huang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan; (C.-Y.L.); (H.-Y.L.); (W.-J.C.); (S.-Y.L.)
- Graduate Institute of Biomedical Optomechatronics, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
28
|
Cui X, Huang C, Chen Z, Zhang M, Liu C, Su K, Wang J, Li L, Wang R, Li B, Chen D, Ruan C, Wang D, Lu WW, Pan H. Hyaluronic acid facilitates bone repair effects of calcium phosphate cement by accelerating osteogenic expression. Bioact Mater 2021; 6:3801-3811. [PMID: 33937587 PMCID: PMC8058907 DOI: 10.1016/j.bioactmat.2021.03.028] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/08/2021] [Accepted: 03/16/2021] [Indexed: 02/07/2023] Open
Abstract
Calcium phosphate cements (CPC) are widely anticipated to be an optimum bone repair substitute due to its satisfied biocompatibility and degradability, suitable to be used in minimally invasive treatment of bone defects. However the clinical application of CPC is still not satisfied by its poor cohesiveness and mechanical properties, in particular its osteoinductivity. Hyaluronic acid reinforced calcium phosphate cements (HA/CPC) showed extroadinary potential not only enhancing the compressive strength of the cements but also significantly increasing its osteoinductivity. In our study, the compressive strength of HA/CPC increased significantly when the cement was added 1% hyaluronic acid (denoted as 1-HA/CPC). In the meantime, hyaluronic acid obviously promoted ALP activity, osteogenic related protein and mRNA expression of hBMSCs (human bone marrow mesenchymal stem cells) in vitro, cement group of HA/CPC with 4% hyaluronic acid adding (denoted as 4-HA/CPC) showed optimal enhancement in hBMSCs differentiation. After being implanted in rat tibial defects, 4-HA/CPC group exhibited better bone repair ability and bone growth promoting factors, comparing to pure CPC and 1-HA/CPC groups. The underlying biological mechanism of this stimulation for HA/CPC may be on account of higher osteogenic promoting factors secretion and osteogenic genes expression with hyaluronic acid incorporation. These results indicate that hyaluronic acid is a highly anticipated additive to improve physicochemical properties and osteoinductivity performance of CPCs for minimally invasive healing of bone defects.
Collapse
Affiliation(s)
- Xu Cui
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen, 518055, PR China
| | - Chengcheng Huang
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen, 518055, PR China
| | - Zhizhen Chen
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen, 518055, PR China
| | - Meng Zhang
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen, 518055, PR China
| | - Chunyu Liu
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen, 518055, PR China
| | - Kun Su
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen, 518055, PR China
| | - Jianyun Wang
- Shenzhen Healthemes Biotechnology Co. Ltd, Shenzhen, 518102, PR China
| | - Li Li
- Department of Orthopedics, Fourth Affiliated Hospital of Guangxi Medical University/Liu Zhou Worker, Liuzhou, 545005, PR China
| | - Renxian Wang
- Laboratory of Bone Tissue Engineering Beijing, Laboratory of Biomedical Materials, Beijing Research Institute of Orthopaedics and Traumatology, Beijing Jishuitan Hospital, Beijing, 100035, PR China
| | - Bing Li
- Department of Orthopedics, Fourth Affiliated Hospital of Guangxi Medical University/Liu Zhou Worker, Liuzhou, 545005, PR China
| | - Dafu Chen
- Laboratory of Bone Tissue Engineering Beijing, Laboratory of Biomedical Materials, Beijing Research Institute of Orthopaedics and Traumatology, Beijing Jishuitan Hospital, Beijing, 100035, PR China
| | - Changshun Ruan
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen, 518055, PR China
| | - Deping Wang
- Schools of Materials Science and Engineering, Tongji University, Shanghai, 201804, PR China
| | - William W Lu
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen, 518055, PR China.,Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong SAR, PR China
| | - Haobo Pan
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen, 518055, PR China
| |
Collapse
|
29
|
Tam NW, Chung D, Baldwin SJ, Simmons JR, Xu L, Rainey JK, Dellaire G, Frampton JP. Material properties of disulfide-crosslinked hyaluronic acid hydrogels influence prostate cancer cell growth and metabolism. J Mater Chem B 2021; 8:9718-9733. [PMID: 33015692 DOI: 10.1039/d0tb01570a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cells reside in vivo within three dimensional environments in which they interact with extracellular matrices (ECMs) that play an integral role in maintaining tissue homeostasis and preventing tumour growth. Thus, tissue culture approaches that more faithfully reproduce these interactions with the ECM are needed to study cancer development and progression. Many materials exist for modeling tissue environments, and the effects of differing mechanical, physical, and biochemical properties of such materials on cell behaviour are often intricately coupled and difficult to tease apart. Here, an optimized protocol was developed to generate low reaction volume disulfide-crosslinked hyaluronic acid (HA) hydrogels for use in cell culture applications to relate the properties of ECM materials to cell signalling and behaviour. Mechanically, HA hydrogels are comparable to other soft hydrogel materials such as Matrigel and agarose or to tissues lacking type I collagen and other fibrillar ECM components. The diffusion of soluble materials in these hydrogels is affected by unique mass transfer properties. Specifically, HA hydrogel concentration affects the diffusion of anionic particles above 500 kDa, whereas diffusion of smaller particles appears unimpeded by HA content, likely reflecting hydrogel pore size. The HA hydrogels have a strong exclusion effect that limits the movement of proteins into and out of the material once fully formed. Such mass transfer properties have interesting implications for cell culture, as they ultimately affect access to nutrients and the distribution of signalling molecules, affecting nutrient sensing and metabolic activity. The use of disulfide-crosslinked HA hydrogels for the culture of the model prostate cancer cell lines PC3 and LNCaP reveals correlations of protein activation linked to metabolic flux, which parallel and can thus potentially provide insights into cell survival mechanisms in response to starvation that occurs in cancer cell microenvironments.
Collapse
Affiliation(s)
- Nicky W Tam
- School of Biomedical Engineering, Dalhousie University, Halifax, NS, Canada.
| | - Dudley Chung
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Samuel J Baldwin
- School of Biomedical Engineering, Dalhousie University, Halifax, NS, Canada.
| | - Jeffrey R Simmons
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | - Lingling Xu
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | - Jan K Rainey
- School of Biomedical Engineering, Dalhousie University, Halifax, NS, Canada. and Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada and Department of Chemistry, Dalhousie University, Halifax, NS, Canada and Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | - Graham Dellaire
- Department of Pathology, Dalhousie University, Halifax, NS, Canada and Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada and Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | - John P Frampton
- School of Biomedical Engineering, Dalhousie University, Halifax, NS, Canada. and Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada and Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| |
Collapse
|
30
|
Xing F, Zhou C, Hui D, Du C, Wu L, Wang L, Wang W, Pu X, Gu L, Liu L, Xiang Z, Zhang X. Hyaluronic acid as a bioactive component for bone tissue regeneration: Fabrication, modification, properties, and biological functions. NANOTECHNOLOGY REVIEWS 2020. [DOI: 10.1515/ntrev-2020-0084] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Abstract
Hyaluronic acid (HA) is widely distributed in the human body, and it is heavily involved in many physiological functions such as tissue hydration, wound repair, and cell migration. In recent years, HA and its derivatives have been widely used as advanced bioactive polymers for bone regeneration. Many medical products containing HA have been developed because this natural polymer has been proven to be nontoxic, noninflammatory, biodegradable, and biocompatible. Moreover, HA-based composite scaffolds have shown good potential for promoting osteogenesis and mineralization. Recently, many HA-based biomaterials have been fabricated for bone regeneration by combining with electrospinning and 3D printing technology. In this review, the polymer structures, processing, properties, and applications in bone tissue engineering are summarized. The challenges and prospects of HA polymers are also discussed.
Collapse
Affiliation(s)
- Fei Xing
- Department of Orthopaedics, West China Hospital, Sichuan University , 610041 , Chengdu , China
| | - Changchun Zhou
- National Engineering Research Center for Biomaterials, Sichuan University , 610064 , Chengdu , China
- College of Biomedical Engineering, Sichuan University , 610064 , Chengdu , China
| | - Didi Hui
- Innovatus Oral Cosmetic & Surgical Institute , Norman , OK, 73069 , United States of America
| | - Colin Du
- Innovatus Oral Cosmetic & Surgical Institute , Norman , OK, 73069 , United States of America
| | - Lina Wu
- National Engineering Research Center for Biomaterials, Sichuan University , 610064 , Chengdu , China
- College of Biomedical Engineering, Sichuan University , 610064 , Chengdu , China
| | - Linnan Wang
- Department of Orthopaedics, West China Hospital, Sichuan University , 610041 , Chengdu , China
| | - Wenzhao Wang
- Department of Orthopaedics, West China Hospital, Sichuan University , 610041 , Chengdu , China
| | - Xiaobing Pu
- Department of Orthopedics Medical Center, West China School of Public Health and West China Fourth Hospital, Sichuan University , Chengdu , Sichuan , China
| | - Linxia Gu
- Department of Biomedical and Chemical Engineering and Sciences, College of Engineering & Science, Florida Institute of Technology , Melbourne , FL, 32901 , United States of America
| | - Lei Liu
- Department of Orthopaedics, West China Hospital, Sichuan University , 610041 , Chengdu , China
| | - Zhou Xiang
- Department of Orthopaedics, West China Hospital, Sichuan University , 610041 , Chengdu , China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University , 610064 , Chengdu , China
- College of Biomedical Engineering, Sichuan University , 610064 , Chengdu , China
| |
Collapse
|
31
|
Hinsenkamp A, Ézsiás B, Pál É, Hricisák L, Fülöp Á, Besztercei B, Somkuti J, Smeller L, Pinke B, Kardos D, Simon M, Lacza Z, Hornyák I. Crosslinked Hyaluronic Acid Gels with Blood-Derived Protein Components for Soft Tissue Regeneration. Tissue Eng Part A 2020; 27:806-820. [PMID: 32854588 DOI: 10.1089/ten.tea.2020.0197] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Hyaluronic acid (HA) is an ideal initial material for preparing hydrogels, which may be used as scaffolds in soft tissue engineering based on their advantageous physical and biological properties. In this study, two crosslinking agents, divinyl sulfone (DVS) and butanediol diglycidyl ether, were used to investigate their effect on the properties of HA hydrogels. As HA hydrogels alone do not promote cell adhesion on the scaffold, fibrin and serum from platelet-rich fibrin (SPRF) were combined with the scaffold; the aim was to create a material intended to be used as soft tissue implant that facilitates new tissue formation, and degrades over time. The chemical changes were characterized and cell attachment capacity of the protein-containing gels was examined using human mesenchymal stem cells, and viability was assessed using live-dead staining. Fourier-transform infrared measurements revealed that linking fibrin into the gel was more effective than linking SPRF. The scaffolds were found to be able to support cell adherence onto the hydrogels, and the best result was achieved when HA was crosslinked with DVS and contained fibrin. The most promising derivative, 5% DVS-crosslinked fibrin-containing hydrogel, was injected subcutaneously into C57BL/6 mice for 12 weeks. The scaffold was proven to be biocompatible, remodeling, and vascularization occurred, while shape and integrity were maintained. Impact statement Fibrin was combined with crosslinked hyaluronic acid (HA) for regenerative application, the structure of the combination of crosslinked HA with blood-derived protein was analyzed and effective coating was proven. It was observed that the fibrin content led to better mesenchymal stem cell attachment in vitro. The compositions showed biocompatibility, connective tissue and vascularization took place when implanted in vivo. Thus, a biocompatible, injectable gel was produced, which is a potential candidate for soft tissue implantation.
Collapse
Affiliation(s)
- Adél Hinsenkamp
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Bence Ézsiás
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Éva Pál
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - László Hricisák
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Ágnes Fülöp
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Balázs Besztercei
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Judit Somkuti
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - László Smeller
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Balázs Pinke
- Department of Polymer Engineering, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Budapest, Hungary
| | - Dorottya Kardos
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Melinda Simon
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Zsombor Lacza
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary.,Orthosera GmbH, Krems an der Donau, Austria.,Institute of Sport and Health Sciences, University of Physical Education, Budapest, Hungary
| | - István Hornyák
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary.,Orthosera GmbH, Krems an der Donau, Austria
| |
Collapse
|
32
|
Amorim S, Reis CA, Reis RL, Pires RA. Extracellular Matrix Mimics Using Hyaluronan-Based Biomaterials. Trends Biotechnol 2020; 39:90-104. [PMID: 32654775 DOI: 10.1016/j.tibtech.2020.06.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 12/13/2022]
Abstract
Hyaluronan (HA) is a critical element of the extracellular matrix (ECM). The regulated synthesis and degradation of HA modulates the ECM chemical and physical properties that, in turn, influence cellular behavior. HA triggers signaling pathways associated with the adhesion, proliferation, migration, and differentiation of cells, mediated by its interaction with specific cellular receptors or by tuning the mechanical properties of the ECM. This review summarizes the recent advances on strategies used to mimic the HA present in the ECM to study healthy or pathological cellular behavior. This includes the development of HA-based 2D and 3D in vitro tissue models for the seeding and encapsulation of cells, respectively, and HA particles as carriers for the targeted delivery of therapeutic agents.
Collapse
Affiliation(s)
- Sara Amorim
- 3B's Research Group, I3Bs, Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Celso A Reis
- Instituto de Investigação e Inovação em Saúde - i3S, Universidade do Porto, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto, IPATIMUP, Porto, Portugal; Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal; Department of Pathology and Oncology, Faculty of Medicine, Porto University, Porto, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs, Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ricardo A Pires
- 3B's Research Group, I3Bs, Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
33
|
Zhang Y, Hong G, Zhang Y, Sasaki K, Wu H. Minimally invasive procedures for deficient interdental papillae: A review. J ESTHET RESTOR DENT 2020; 32:463-471. [PMID: 32519508 DOI: 10.1111/jerd.12608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 04/11/2020] [Accepted: 05/15/2020] [Indexed: 10/24/2022]
Abstract
OBJECTIVE Deficient interdental papillae cause a series of problems, including food impaction, phonetic difficulties, and esthetic concerns. The purpose of this article is to provide valid clinical recommendations for clinicians to address these problems in a predictable and less invasive way. OVERVIEW Numerous treatments are available for interdental papillae reconstruction, but most of them involve surgery and yield unpredictable outcomes. Minimally invasive treatments have the advantages of being effective, predictable, and involving only slight injury as compared to surgical treatments. We included 66 studies obtained after searching for relevant papers in PubMed and Web of Science. The etiology and classification of deficient interdental papillae are explained and minimally invasive procedures for deficient interdental papillae reconstruction are summarized. CONCLUSIONS Minimally invasive procedures are promising ways to reconstruct deficient interdental papillae, and have the advantages of slight pain and rapid recovery. It should be noticed that some of the minimally invasive treatments still require further long-term observation to confirm their efficacy. CLINICAL SIGNIFICANCE Familiarity with etiology and classification of deficient interdental papillae can help clinicians to choose the appropriate minimally invasive approach as well as help with case collection to enhance esthetics status in patients with deficient interdental papillae.
Collapse
Affiliation(s)
- Yiding Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hosepital of Stomatology, Sichuan University, Chengdu, Sichuan, P.R. China.,Division for Globalization Initiative, Liaison Center for Innovative Dentistry, Graduate School of Dentistry, Tohoku University, Sendai, Japan
| | - Guang Hong
- Division for Globalization Initiative, Liaison Center for Innovative Dentistry, Graduate School of Dentistry, Tohoku University, Sendai, Japan
| | - Yifan Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hosepital of Stomatology, Sichuan University, Chengdu, Sichuan, P.R. China.,Division of Advanced Prosthetic Dentistry, Graduate School of Dentistry, Tohoku University, Sendai, Japan
| | - Keiichi Sasaki
- Division of Advanced Prosthetic Dentistry, Graduate School of Dentistry, Tohoku University, Sendai, Japan
| | - Hongkun Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hosepital of Stomatology, Sichuan University, Chengdu, Sichuan, P.R. China
| |
Collapse
|
34
|
Asparuhova MB, Chappuis V, Stähli A, Buser D, Sculean A. Role of hyaluronan in regulating self-renewal and osteogenic differentiation of mesenchymal stromal cells and pre-osteoblasts. Clin Oral Investig 2020; 24:3923-3937. [PMID: 32236725 PMCID: PMC7544712 DOI: 10.1007/s00784-020-03259-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 03/10/2020] [Indexed: 02/07/2023]
Abstract
Objectives The aim of the study was to investigate the impact of two hyaluronan (HA) formulations on the osteogenic potential of osteoblast precursors. Materials and methods Proliferation rates of HA-treated mesenchymal stromal ST2 and pre-osteoblastic MC3T3-E1 cells were determined by 5-bromo-20-deoxyuridine (BrdU) assay. Expression of genes encoding osteogenic differentiation markers, critical growth, and stemness factors as well as activation of downstream signaling pathways in the HA-treated cells were analyzed by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and immunoblot techniques. Results The investigated HAs strongly stimulated the growth of the osteoprogenitor lines and enhanced the expression of genes encoding bone matrix proteins. However, expression of late osteogenic differentiation markers was significantly inhibited, accompanied by decreased bone morphogenetic protein (BMP) signaling. The expression of genes encoding transforming growth factor-β1 (TGF-β1) and fibroblast growth factor-1 (FGF-1) as well as the phosphorylation of the downstream signaling molecules Smad2 and Erk1/2 were enhanced upon HA treatment. We observed significant upregulation of the transcription factor Sox2 and its direct transcription targets and critical stemness genes, Yap1 and Bmi1, in HA-treated cells. Moreover, prominent targets of the canonical Wnt signaling pathway showed reduced expression, whereas inhibitors of the pathway were considerably upregulated. We detected decrease of active β-catenin levels in HA-treated cells due to β-catenin being phosphorylated and, thus, targeted for degradation. Conclusions HA strongly induces the growth of osteoprogenitors and maintains their stemness, thus potentially regulating the balance between self-renewal and differentiation during bone regeneration following reconstructive oral surgeries. Clinical relevance Addition of HA to deficient bone or bony defects during implant or reconstructive periodontal surgeries may be a viable approach for expanding adult stem cells without losing their replicative and differentiation capabilities. Electronic supplementary material The online version of this article (10.1007/s00784-020-03259-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maria B Asparuhova
- Laboratory of Oral Cell Biology, Dental Research Center, School of Dental Medicine, University of Bern, Freiburgstrasse 3, 3010, Bern, Switzerland. .,Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Bern, Freiburgstrasse 7, 3010, Bern, Switzerland. .,Department of Periodontology, School of Dental Medicine, University of Bern, Freiburgstrasse 7, 3010, Bern, Switzerland.
| | - Vivianne Chappuis
- Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Bern, Freiburgstrasse 7, 3010, Bern, Switzerland
| | - Alexandra Stähli
- Department of Periodontology, School of Dental Medicine, University of Bern, Freiburgstrasse 7, 3010, Bern, Switzerland
| | - Daniel Buser
- Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Bern, Freiburgstrasse 7, 3010, Bern, Switzerland
| | - Anton Sculean
- Department of Periodontology, School of Dental Medicine, University of Bern, Freiburgstrasse 7, 3010, Bern, Switzerland
| |
Collapse
|
35
|
Abi Zeid Daou C, Bassim M. Hyaluronic acid in otology: Its uses, advantages and drawbacks - A review. Am J Otolaryngol 2020; 41:102375. [PMID: 31862122 DOI: 10.1016/j.amjoto.2019.102375] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 12/10/2019] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Review of the literature for studies involving the use of hyaluronic acid (HA) in otology. METHODS Pubmed and OvidMedline were searched using a combination of the following words in different variations: hyaluronic acid, hyaluronate, otolaryngology, otology, ear, tympanic membrane, perforation, tympanostomy, tympanoplasty, myringoplasty, packing, middle ear, cochlea, gene delivery, gene therapy, cochlear implant, hearing loss, meniere, vertigo, otitis and cholesteatoma. RESULTS The papers relevant for this review were triaged based on abstracts and titles and were then categorized based on topic/disease entity/procedure. The papers were read and summarized in order to use their findings in this review. CONCLUSIONS HA is being recently used as adjuvant therapy for multiple inflammatory conditions and in tissue repair. These immunomodulatory properties and biocompatibility have interested researchers specially in the field of otology for repair, gene delivery, immunomodulation etc. Recent data in the field show optimistic results for the use of HA in several conditions especially tympanic membrane perforations and gene delivery. It also establishes the role of HA as ancillary treatment in many other otologic pathologies. This review presents the most recent findings on the use of HA in otology. The results could be used to guide clinical practice and incite further research based on the presented results of the literature.
Collapse
|
36
|
Filho GC, de Sousa A, Viana R, Rocha H, de Medeiros SB, Moreira S. Osteogenic activity of non-genotoxic sulfated polysaccharides from the green seaweed Caulerpa sertularioides. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
37
|
Zhang LT, Liu RM, Luo Y, Zhao YJ, Chen DX, Yu CY, Xiao JH. Hyaluronic acid promotes osteogenic differentiation of human amniotic mesenchymal stem cells via the TGF-β/Smad signalling pathway. Life Sci 2019; 232:116669. [PMID: 31326566 DOI: 10.1016/j.lfs.2019.116669] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/17/2019] [Accepted: 07/17/2019] [Indexed: 12/13/2022]
Abstract
AIMS This study investigated the effects of hyaluronic acid (HA), a commonly used osteogenic medium referred to as DAG, and the combined administration of HA and DAG (CG) on the osteogenic differentiation of human amniotic mesenchymal stem cells (hAMSCs), and the underlying mechanism. MAIN METHODS The phenotype of hAMSCs was detected by flow cytometry and immunocytochemical staining. Alkaline phosphatase (ALP) and calcium deposition assays were employed for evaluating the osteogenic differentiation of hAMSCs. The expression of osteogenesis-related genes and proteins was determined by quantitative reverse transcription PCR (qRT-PCR) and Western blotting, respectively. Meanwhile, the molecular mechanism of osteogenic differentiation of hAMSCs was detected by PCR array and qRT-PCR. KEY FINDINGS The results showed that treatment with CG could significantly stimulate hAMSC ALP activity and calcium deposition compared to treatment with DAG, while HA had little effect. The expression of osteogenesis-related molecules and stemness-related molecules was up-regulated at the mRNA and protein levels in all three groups, and this up-regulation was most significant in the CG group. In addition, treatment with CG significantly increased the gene expressions involved in regulation of the TGF-β/Smad signalling pathway compared to treatment with DAG. Furthermore, the pro-osteogenic differentiation effects as well as the up-regulated expression of genes observed in the CG treatment group were significantly inhibited when the cells were pre-treated with SB431542, an inhibitor of the TGF-β/Smad pathway. SIGNIFICANCE These results suggest that HA in combination with DAG could significantly enhance the osteogenic differentiation of hAMSCs, potentially via the TGF-β/Smad signalling pathway.
Collapse
Affiliation(s)
- Ling-Tao Zhang
- Zunyi Municipal Key Laboratory of Medicinal Biotechnology, Center for Translational Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi 563003, PR China
| | - Ru-Ming Liu
- Zunyi Municipal Key Laboratory of Medicinal Biotechnology, Center for Translational Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi 563003, PR China
| | - Yi Luo
- Zunyi Municipal Key Laboratory of Medicinal Biotechnology, Center for Translational Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi 563003, PR China
| | - Yu-Jie Zhao
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi 563003, PR China
| | - Dai-Xiong Chen
- Zunyi Municipal Key Laboratory of Medicinal Biotechnology, Center for Translational Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi 563003, PR China
| | - Chang-Yin Yu
- Zunyi Municipal Key Laboratory of Medicinal Biotechnology, Center for Translational Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi 563003, PR China; Department of Neurology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi 563003, PR China.
| | - Jian-Hui Xiao
- Zunyi Municipal Key Laboratory of Medicinal Biotechnology, Center for Translational Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi 563003, PR China.
| |
Collapse
|
38
|
Covalently-Linked Hyaluronan versus Acid Etched Titanium Dental Implants: A Crossover RCT in Humans. Int J Mol Sci 2019; 20:ijms20030763. [PMID: 30754668 PMCID: PMC6387289 DOI: 10.3390/ijms20030763] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 01/24/2019] [Accepted: 02/06/2019] [Indexed: 12/11/2022] Open
Abstract
Biochemical modification of titanium surfaces (BMTiS) entails immobilization of biomolecules to implant surfaces in order to induce specific host responses. This crossover randomized clinical trial assesses clinical success and marginal bone resorption of dental implants bearing a surface molecular layer of covalently-linked hyaluronan in comparison with control implants up to 36 months after loading. Patients requiring bilateral implant rehabilitation received hyaluronan covered implants in one side of the mouth and traditional implants in the other side. Two months after the first surgery, a second surgery was undergone to uncover the screw and to place a healing abutment. After two weeks, the operator proceeded with prosthetic procedures. Implants were evaluated by periapical radiographs and the crestal bone level was recorded at mesial and distal sites—at baseline and up to 36 months. One hundred and six implants were positioned, 52 HY-coated, and 48 controls were followed up. No differences were observed in terms of insertion and stability, wound healing, implant success, and crestal bone resorption at any time considered. All interventions had an optimal healing, and no adverse events were recorded. This trial shows, for the first time, a successful use in humans of biochemical-modified implants in routine clinical practice and in healthy patients and tissues with satisfactory outcomes.
Collapse
|
39
|
Hyaluronic acid enhances cell survival of encapsulated insulin-producing cells in alginate-based microcapsules. Int J Pharm 2019; 557:192-198. [DOI: 10.1016/j.ijpharm.2018.12.062] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/13/2018] [Accepted: 12/15/2018] [Indexed: 12/18/2022]
|
40
|
Marine Polysaccharide-Collagen Coatings on Ti6Al4V Alloy Formed by Self-Assembly. MICROMACHINES 2019; 10:mi10010068. [PMID: 30669427 PMCID: PMC6356479 DOI: 10.3390/mi10010068] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/16/2019] [Accepted: 01/18/2019] [Indexed: 12/30/2022]
Abstract
Polysaccharides of marine origin are gaining interest as biomaterial components. Bacteria derived from deep-sea hydrothermal vents can produce sulfated exopolysaccharides (EPS), which can influence cell behavior. The use of such polysaccharides as components of organic, collagen fibril-based coatings on biomaterial surfaces remains unexplored. In this study, collagen fibril coatings enriched with HE800 and GY785 EPS derivatives were deposited on titanium alloy (Ti6Al4V) scaffolds produced by rapid prototyping and subjected to physicochemical and cell biological characterization. Coatings were formed by a self-assembly process whereby polysaccharides were added to acidic collagen molecule solution, followed by neutralization to induced self-assembly of collagen fibrils. Fibril formation resulted in collagen hydrogel formation. Hydrogels formed directly on Ti6Al4V surfaces, and fibrils adsorbed onto the surface. Scanning electron microscopy (SEM) analysis of collagen fibril coatings revealed association of polysaccharides with fibrils. Cell biological characterization revealed good cell adhesion and growth on bare Ti6Al4V surfaces, as well as coatings of collagen fibrils only and collagen fibrils enhanced with HE800 and GY785 EPS derivatives. Hence, the use of both EPS derivatives as coating components is feasible. Further work should focus on cell differentiation.
Collapse
|
41
|
Cañibano-Hernández A, Saenz del Burgo L, Espona-Noguera A, Orive G, Hernández RM, Ciriza J, Pedraz JL. Hyaluronic Acid Promotes Differentiation of Mesenchymal Stem Cells from Different Sources toward Pancreatic Progenitors within Three-Dimensional Alginate Matrixes. Mol Pharm 2019; 16:834-845. [DOI: 10.1021/acs.molpharmaceut.8b01126] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Alberto Cañibano-Hernández
- NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz 01006, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine, CIBER-BBN, Vitoria-Gasteiz 01006, Spain
| | - Laura Saenz del Burgo
- NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz 01006, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine, CIBER-BBN, Vitoria-Gasteiz 01006, Spain
| | - Albert Espona-Noguera
- NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz 01006, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine, CIBER-BBN, Vitoria-Gasteiz 01006, Spain
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz 01006, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine, CIBER-BBN, Vitoria-Gasteiz 01006, Spain
| | - Rosa M. Hernández
- NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz 01006, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine, CIBER-BBN, Vitoria-Gasteiz 01006, Spain
| | - Jesús Ciriza
- NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz 01006, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine, CIBER-BBN, Vitoria-Gasteiz 01006, Spain
| | - José Luis Pedraz
- NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz 01006, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine, CIBER-BBN, Vitoria-Gasteiz 01006, Spain
| |
Collapse
|
42
|
Zhang Y, Xia Q, Li Y, He Z, Li Z, Guo T, Wu Z, Feng N. CD44 Assists the Topical Anti-Psoriatic Efficacy of Curcumin-Loaded Hyaluronan-Modified Ethosomes: A New Strategy for Clustering Drug in Inflammatory Skin. Am J Cancer Res 2019; 9:48-64. [PMID: 30662553 PMCID: PMC6332788 DOI: 10.7150/thno.29715] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 11/13/2018] [Indexed: 01/04/2023] Open
Abstract
Background: Psoriasis is a common chronic inflammatory skin disease. Its treatment is challenged by the limited amount of drug reaching the inflamed skin. The overexpressed CD44 protein in inflamed psoriatic skin can serve as a potential target of novel active-targeting nanocarriers to increase drug accumulation in the skin. Methods: Hyaluronic acid (HA) was linked to propylene glycol-based ethosomes by covalent binding to develop a novel topical drug delivery carrier (HA-ES) for curcumin. An imiquimod-induced psoriasis mouse model was established, and curcumin delivery and anti-psoriatic efficacy using HA-ES were compared with those using plain ethosomes (ES). Results: The HA gel network formed on the surface of HA-ES reduced the leakage and release of poorly water-soluble curcumin. Compared with ES, transdermal curcumin delivery was significantly enhanced by using HA-ES as vehicles; the cumulative transdermal amount and the amount retained in the skin in vitro after 8 h were, respectively, 1.6 and 1.4 times those observed with ES, as well as 3.1 and 3.3 times those observed with a curcumin propylene glycol solution (PGS), respectively. The in vivo psoriatic skin retention of curcumin with HA-ES was 2.3 and 4.0 times that of ES and PGS, respectively. CD44 expression in imiquimod-induced psoriasis-like inflamed skin was 2.7 times that in normal skin. Immunostaining revealed similar results, suggesting that the specific adhesion of HA-ES to CD44 increased drug accumulation in the skin. After topical administration to mice, the HA-ES group showed an alleviation of inflammation symptoms; lower TNF-α, IL-17A, IL-17F, IL-22, and IL-1β mRNA levels; and lower CCR6 protein expression compared to the ES and PGS groups. Conclusion: We demonstrated increased topical drug delivery of curcumin to inflamed tissues using HA-ES targeting the highly expressed CD44 protein. This innovative strategy could be applied for the development of topical drug delivery systems targeting inflamed skin.
Collapse
|
43
|
Kim JJ, Ben Amara H, Park JC, Kim S, Kim TI, Seol YJ, Lee YM, Ku Y, Rhyu IC, Koo KT. Biomodification of compromised extraction sockets using hyaluronic acid and rhBMP-2: An experimental study in dogs. J Periodontol 2018; 90:416-424. [PMID: 30421791 DOI: 10.1002/jper.18-0348] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 09/12/2018] [Accepted: 09/23/2018] [Indexed: 01/03/2023]
Abstract
BACKGROUND This experimental study aims to evaluate the effect of hyaluronic acid on healing of infected extraction sockets compared with recombinant human bone morphogenetic protein-2 (rhBMP-2). METHODS Both third and fourth mandibular premolars of six beagle dogs were hemisected, and the distal roots were extracted at baseline. Subsequently, combined endodontic-periodontic lesions were induced at the remaining mesial roots. After 4 months, the mesial roots on both sides of the mandible were removed. Four sockets per dog were randomly allocated to four groups: Group 1, Control; Group 2, only absorbable collagen sponge (ACS: carrier); Group 3, 1% hyaluronic acid (HA) gel + ACS; and Group 4, rhBMP-2 + ACS. After 3 months of healing, the dogs were euthanized for microcomputed tomography and histologic analysis. RESULTS After the lesion induction period (4 months), communication between the periodontal lesion and endodontic periapical lesion was observed at all remaining mesial roots. Alveolar bone overgrowth was observed in groups 3 and 4, but bone volume density was not significantly different among all groups. At the crestal portion, mineralization, and osteocalcin expression were higher in groups 3 and 4 than in groups 1 and 2. CONCLUSION Treatment with HA can promote bone formation and improve the wound healing rate comparable to rhBMP-2 in infected extraction sockets.
Collapse
Affiliation(s)
- Jung-Ju Kim
- Department of Periodontology, Graduate school, School of Dentistry, Seoul National University, Seoul, Korea
| | - Heithem Ben Amara
- Department of Periodontology, Graduate school, School of Dentistry, Seoul National University, Seoul, Korea
| | - Jung-Chul Park
- Department of Periodontology, College of Dentistry, Dankook University, Cheonansi, Korea
| | - Sungtae Kim
- Department of Periodontology, Graduate school, School of Dentistry, Seoul National University, Seoul, Korea
| | - Tae-Il Kim
- Department of Periodontology, Graduate school, School of Dentistry, Seoul National University, Seoul, Korea
| | - Yang-Jo Seol
- Department of Periodontology, Graduate school, School of Dentistry, Seoul National University, Seoul, Korea
| | - Yong-Moo Lee
- Department of Periodontology, Graduate school, School of Dentistry, Seoul National University, Seoul, Korea
| | - Young Ku
- Department of Periodontology, Graduate school, School of Dentistry, Seoul National University, Seoul, Korea
| | - In-Chul Rhyu
- Department of Periodontology, Graduate school, School of Dentistry, Seoul National University, Seoul, Korea
| | - Ki-Tae Koo
- Department of Periodontology, Graduate school, School of Dentistry, Seoul National University, Seoul, Korea
| |
Collapse
|
44
|
Monnier A, Al Tawil E, Nguyen QT, Valleton JM, Fatyeyeva K, Deschrevel B. Functionalization of poly(lactic acid) scaffold surface by aminolysis and hyaluronan immobilization: How it affects mesenchymal stem cell proliferation. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.08.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
45
|
Agarwal S, Duffy B, Curtin J, Jaiswal S. Effect of High- and Low-Molecular-Weight Hyaluronic-Acid-Functionalized-AZ31 Mg and Ti Alloys on Proliferation and Differentiation of Osteoblast Cells. ACS Biomater Sci Eng 2018; 4:3874-3884. [PMID: 33429610 DOI: 10.1021/acsbiomaterials.8b00968] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The quality of patient care has increased dramatically in recent years because of the development of lightweight orthopedic metal implants. The success of these orthopedic implants may be compromised by impaired cytocompatibility and osteointegration. Biomimetic surface engineering of metal implants using biomacromolecules including hyaluronic acid (HA) has been used an effective approach to provide conditions favorable for the growth of bone forming cells. To date, there have been limited studies on osteoblasts functions in response to metal substrates modified with the hyaluronic acid of different molecular weight for orthopedic applications. In this study, we evaluated the osteoblasts functions such as adhesion, proliferation, and differentiation in response to high- and low-molecular-weight HA (denoted as h-HA and l-HA, respectively) functionalized on Ti (h-HA-Ti and l-HA-Ti substrates, respectively) and corrosion-resistant silane coated-AZ31 Mg alloys (h-HA-AZ31 and l-HA-AZ31). The DNA quantification study showed that adhesion and proliferation of osteoblasts were significantly decreased by h-HA immobilized on Ti or AZ31 substrates when compared to low-molecular-weight counterpart over a period of 14 days. On the contrary, h-HA significantly increased the osteogenic differentiation of osteoblast over l-HA, as confirmed by the enhanced expression of ALP, total collagen, and mineralization of extracellular matrix. In particular, the h-HA-AZ31 substrates greatly enhanced the osteoblast differentiation among tested samples (l-HA-AZ31, l-HA-Ti, h-HA-Ti, and Ti alone), which is ascribed to the osteoinductive activity of h-HA, relatively up-regulated intracellular Ca2+ ([Ca2+]i) and Mg2+ ([Mg2+]i) concentrations as well as the alkalization of the cell culture medium. This study suggesting that HA of appropriate molecular weight can be successfully used to modify the surface of metal implants for orthopedic applications.
Collapse
Affiliation(s)
- Sankalp Agarwal
- Centre for Research in Engineering and Surface Technology, Dublin Institute of Technology, Kevin Street, Dublin 8, Ireland.,School of Food Science and Environmental Health, Dublin Institute of Technology, Cathal Brugha Street, Dublin 1, Ireland
| | - Brendan Duffy
- Centre for Research in Engineering and Surface Technology, Dublin Institute of Technology, Kevin Street, Dublin 8, Ireland
| | - James Curtin
- School of Food Science and Environmental Health, Dublin Institute of Technology, Cathal Brugha Street, Dublin 1, Ireland
| | - Swarna Jaiswal
- Centre for Research in Engineering and Surface Technology, Dublin Institute of Technology, Kevin Street, Dublin 8, Ireland
| |
Collapse
|
46
|
Asparuhova MB, Kiryak D, Eliezer M, Mihov D, Sculean A. Activity of two hyaluronan preparations on primary human oral fibroblasts. J Periodontal Res 2018; 54:33-45. [PMID: 30264516 PMCID: PMC6586051 DOI: 10.1111/jre.12602] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/20/2018] [Accepted: 08/02/2018] [Indexed: 01/09/2023]
Abstract
Background and Objective The potential benefit of using hyaluronan (HA) in reconstructive periodontal surgery is still a matter of debate. The aim of the present study was to evaluate the effects of two HA formulations on human oral fibroblasts involved in soft tissue wound healing/regeneration. Material and Methods Metabolic, proliferative and migratory abilities of primary human palatal and gingival fibroblasts were examined upon HA treatment. To uncover the mechanisms whereby HA influences cellular behavior, wound healing‐related gene expression and activation of signaling kinases were analyzed by qRT‐PCR and immunoblotting, respectively. Results The investigated HA formulations maintained the viability of oral fibroblasts and increased their proliferative and migratory abilities. They enhanced expression of genes encoding type III collagen and transforming growth factor‐β3, characteristic of scarless wound healing. The HAs upregulated the expression of genes encoding pro‐proliferative, pro‐migratory, and pro‐inflammatory factors, with only a moderate effect on the latter in gingival fibroblasts. In palatal but not gingival fibroblasts, an indirect effect of HA on the expression of matrix metalloproteinases 2 and 3 was detected, potentially exerted through induction of pro‐inflammatory cytokines. Finally, our data pointed on Akt, Erk1/2 and p38 as the signaling molecules whereby the HAs exert their effects on oral fibroblasts. Conclusion Both investigated HA formulations are biocompatible and enhance the proliferative, migratory and wound healing properties of cell types involved in soft tissue wound healing following regenerative periodontal surgery. Our data further suggest that in gingival tissues, the HAs are not likely to impair the healing process by prolonging inflammation or causing excessive MMP expression at the repair site.
Collapse
Affiliation(s)
- Maria B Asparuhova
- Laboratory of Oral Cell Biology, School of Dental Medicine, University of Bern, Bern, Switzerland.,Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Deniz Kiryak
- Laboratory of Oral Cell Biology, School of Dental Medicine, University of Bern, Bern, Switzerland.,Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Meizi Eliezer
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Deyan Mihov
- Biozentrum, University of Basel, Basel, Switzerland
| | - Anton Sculean
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
47
|
Gurruchaga H, Saenz Del Burgo L, Orive G, Hernandez RM, Ciriza J, Pedraz JL. Low molecular-weight hyaluronan as a cryoprotectant for the storage of microencapsulated cells. Int J Pharm 2018; 548:206-216. [PMID: 29969709 DOI: 10.1016/j.ijpharm.2018.06.066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 06/27/2018] [Accepted: 06/29/2018] [Indexed: 10/28/2022]
Abstract
The low-temperature storage of therapeutic cell-based products plays a crucial role in their clinical translation for the treatment of diverse diseases. Although dimethylsulfoxide (DMSO) is the most successful cryoprotectant in slow freezing of microencapsulated cells, it has shown adverse effects after cryopreserved cell-based products implantation. Therefore, the search of alternative non-toxic cryoprotectants for encapsulated cells is continuously investigated to move from bench to the clinic. In this work, we investigated the low molecular-weight hyaluronan (low MW-HA), a natural non-toxic and non-sulfated glycosaminoglycan, as an alternative non-permeant cryoprotectant for the slow freezing cryopreservation of encapsulated cells. Cryopreservation with low MW-HA provided similar metabolic activity, cell dead and early apoptotic cell percentage and membrane integrity after thawing, than encapsulated cells stored with either DMSO 10% or Cryostor 10. However, the beneficial outcomes with low MW-HA were not comparable to DMSO with some encapsulated cell types, such as the human insulin secreting cell line, 1.1B4, maybe explained by the different expression of the CD44 surface receptor. Altogether, we can conclude that low MW-HA represents a non-toxic natural alternative cryoprotectant to DMSO for the cryopreservation of encapsulated cells.
Collapse
Affiliation(s)
- H Gurruchaga
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - L Saenz Del Burgo
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain.
| | - G Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain.
| | - R M Hernandez
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain.
| | - J Ciriza
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain.
| | - J L Pedraz
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain.
| |
Collapse
|
48
|
Agarwal S, Labour MN, Hoey D, Duffy B, Curtin J, Jaiswal S. Enhanced corrosion resistance and cytocompatibility of biomimetic hyaluronic acid functionalised silane coating on AZ31 Mg alloy for orthopaedic applications. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2018; 29:144. [PMID: 30155669 DOI: 10.1007/s10856-018-6150-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 08/12/2018] [Indexed: 06/08/2023]
Abstract
This paper reports the corrosion resistant and cytocompatible properties of the hyaluronic acid-silane coating on AZ31 Mg alloy. In this study, the osteoinductive properties of high molecular weight hyaluronic acid (HA, 1-4 MDa) and the corrosion protection of silane coatings were incorporated as a composite coating on biodegradable AZ31 Mg alloy for orthopaedic applications. The multi-step fabrication of coatings first involved dip coating of a passivated AZ31 Mg alloy with a methyltriethoxysilane-tetraethoxysilane sol-gel to deposit a dense, cross-linked and corrosion resistant silane coating (AZ31-MT). The second step was to create an amine-functionalised surface by treating coated alloy with 3-aminopropyl-triethoxy silane (AZ31-MT-A) which facilitated the immobilisation of HA via EDC-NHS coupling reactions at two different concentrations i.e 1 mg.ml-1 (AZ31-MT-A-HA1) and 2 mg.ml-1 (AZ31-MT-A-HA2). These coatings were characterised by Fourier transform infrared spectroscopy, atomic force microscopy and static contact angle measurements which confirmed the successful assembly of the full coatings onto AZ31 Mg alloy. The influence of HA-silane coating on the corrosion of Mg alloy was investigated by electrical impedance spectroscopy and long-term immersion studies measurements in HEPES buffered DMEM. The results showed an enhanced corrosion resistance of HA functionalised silane coated AZ31 substrate over the uncoated equivalent alloy. Furthermore, the cytocompatibility of MC3T3-E1 osteoblasts was evaluated on HA-coated AZ31-MT-A substrates by live-dead staining, quantification of total cellular DNA content, scanning electron microscope and alkaline phosphatase activity. The results showed HA concentration-dependent improvement of osteoblast cellular response in terms of enhanced cell adhesion, proliferation and differentiation. These findings hold great promise in employing such biomimetic multifunctional coatings to improve the corrosion resistance and cytocompatibility of biodegradable Mg-based alloy for orthopaedic applications.
Collapse
Affiliation(s)
- Sankalp Agarwal
- Centre for Research in Engineering and Surface Technology, Dublin Institute of Technology, Kevin Street, Dublin 8, Ireland
- School of Food Science and Environmental Health, Cathal Brugha Street, Dublin Institute of Technology, Dublin 1, Ireland
| | - Marie-Noelle Labour
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
- Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin 2, Ireland
| | - David Hoey
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
- Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin 2, Ireland
- Advanced Materials and Bioengineering Research Centre, Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin 2, Ireland
| | - Brendan Duffy
- Centre for Research in Engineering and Surface Technology, Dublin Institute of Technology, Kevin Street, Dublin 8, Ireland
| | - James Curtin
- School of Food Science and Environmental Health, Cathal Brugha Street, Dublin Institute of Technology, Dublin 1, Ireland
| | - Swarna Jaiswal
- Centre for Research in Engineering and Surface Technology, Dublin Institute of Technology, Kevin Street, Dublin 8, Ireland.
| |
Collapse
|
49
|
Evaluation of the Effectiveness of Esterified Hyaluronic Acid Fibers on Bone Regeneration in Rat Calvarial Defects. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3874131. [PMID: 30050929 PMCID: PMC6046155 DOI: 10.1155/2018/3874131] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 06/03/2018] [Indexed: 01/26/2023]
Abstract
Hyaluronic acid (HA) constitutes one of the major components of the extracellular matrix domain in almost all mammals. The aim of this study was to evaluate the regenerative capacity of HA matrix in rat calvarial bone defects and compare with those of different combinations of resorbable collagen membrane (M) and bovine-derived xenograft (G). Twenty-four 3-month-old male Sprague-Dawley rats weighing 200-250 g were included. Control group was created by leaving one defect empty from 2 critical size defects with 5 mm diameter formed in the calvarial bones of 8 rats. In the same rats, the other defect was treated with HA matrix alone. One of the 2 defects formed in other 8 rats was treated with HA+G and the other with HA+M. One of the 2 defects formed in the remaining 8 rats was treated with G+M and the other with HA+G+M. The animals were sacrificed at 4 weeks. Histologic, histomorphometric, and immunohistochemical analyses were performed. Both HA matrix alone and its combinations with G and M supported new bone formation (NBF). However, NBF was significantly greater in G+M and HA+G+M groups compared to control and HA alone (P<0.001). Bone morphogenetic protein-2 was expressed with varying degrees in all groups, without any difference among them. Within the limitations of the present study, HA matrix, used alone or in combination with G and M, did not contribute significantly to bone regeneration in rat calvarial bone defects.
Collapse
|
50
|
McAtee CO, Booth C, Elowsky C, Zhao L, Payne J, Fangman T, Caplan S, Henry MD, Simpson MA. Prostate tumor cell exosomes containing hyaluronidase Hyal1 stimulate prostate stromal cell motility by engagement of FAK-mediated integrin signaling. Matrix Biol 2018; 78-79:165-179. [PMID: 29753676 DOI: 10.1016/j.matbio.2018.05.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 03/28/2018] [Accepted: 05/08/2018] [Indexed: 01/22/2023]
Abstract
The hyaluronidase Hyal1 is clinically and functionally implicated in prostate cancer progression and metastasis. Elevated Hyal1 accelerates vesicular trafficking in prostate tumor cells, thereby enhancing their metastatic potential in an autocrine manner through increased motility and proliferation. In this report, we found Hyal1 protein is a component of exosomes produced by prostate tumor cell lines overexpressing Hyal1. We investigated the role of exosomally shed Hyal1 in modulating tumor cell autonomous functions and in modifying the behavior of prostate stromal cells. Catalytic activity of Hyal1 was necessary for enrichment of Hyal1 in the exosome fraction, which was associated with increased presence of LC3BII, an autophagic marker, in the exosomes. Hyal1-positive exosome contents were internalized from the culture medium by WPMY-1 prostate stromal fibroblasts. Treatment of prostate stromal cells with tumor exosomes did not affect proliferation, but robustly stimulated their migration in a manner dependent on Hyal1 catalytic activity. Increased motility of exosome-treated stromal cells was accompanied by enhanced adhesion to a type IV collagen matrix, as well as increased FAK phosphorylation and integrin engagement through dynamic membrane residence of β1 integrins. The presence of Hyal1 in tumor-derived exosomes and its ability to impact the behavior of stromal cells suggests cell-cell communication via exosomes is a novel mechanism by which elevated Hyal1 promotes prostate cancer progression.
Collapse
Affiliation(s)
- Caitlin O McAtee
- Department of Biochemistry, University of Nebraska, Lincoln, NE, United States
| | - Christine Booth
- Department of Biochemistry, University of Nebraska, Lincoln, NE, United States
| | - Christian Elowsky
- Morrison Microscopy Facility, University of Nebraska, Lincoln, NE, United States
| | - Lei Zhao
- Department of Molecular Physiology and Biophysics, Holden Comprehensive Cancer Center, University of Iowa Carver College of Medicine; Iowa City, IA, United States
| | - Jeremy Payne
- Department of Biochemistry, University of Nebraska, Lincoln, NE, United States
| | - Teresa Fangman
- Morrison Microscopy Facility, University of Nebraska, Lincoln, NE, United States
| | - Steve Caplan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States; Fred and Pamela Buffett Cancer Center, Omaha, NE, United States
| | - Michael D Henry
- Department of Molecular Physiology and Biophysics, Holden Comprehensive Cancer Center, University of Iowa Carver College of Medicine; Iowa City, IA, United States
| | - Melanie A Simpson
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, United States.
| |
Collapse
|