1
|
Putthanbut N, Lee JY, Borlongan CV. Extracellular vesicle therapy in neurological disorders. J Biomed Sci 2024; 31:85. [PMID: 39183263 PMCID: PMC11346291 DOI: 10.1186/s12929-024-01075-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/16/2024] [Indexed: 08/27/2024] Open
Abstract
Extracellular vesicles (EVs) are vital for cell-to-cell communication, transferring proteins, lipids, and nucleic acids in various physiological and pathological processes. They play crucial roles in immune modulation and tissue regeneration but are also involved in pathogenic conditions like inflammation and degenerative disorders. EVs have heterogeneous populations and cargo, with numerous subpopulations currently under investigations. EV therapy shows promise in stimulating tissue repair and serving as a drug delivery vehicle, offering advantages over cell therapy, such as ease of engineering and minimal risk of tumorigenesis. However, challenges remain, including inconsistent nomenclature, complex characterization, and underdeveloped large-scale production protocols. This review highlights the recent advances and significance of EVs heterogeneity, emphasizing the need for a better understanding of their roles in disease pathologies to develop tailored EV therapies for clinical applications in neurological disorders.
Collapse
Affiliation(s)
- Napasiri Putthanbut
- Department of Neurosurgery, Center of Aging and Brain Repair, University of South Florida, Tampa, USA
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Salaya, Thailand
| | - Jea Young Lee
- Department of Neurosurgery, Center of Aging and Brain Repair, University of South Florida, Tampa, USA
| | - Cesario V Borlongan
- Department of Neurosurgery, Center of Aging and Brain Repair, University of South Florida, Tampa, USA.
| |
Collapse
|
2
|
Xin GD, Liu XY, Fan XD, Zhao GJ. Exosomes repairment for sciatic nerve injury: a cell-free therapy. Stem Cell Res Ther 2024; 15:214. [PMID: 39020385 PMCID: PMC11256477 DOI: 10.1186/s13287-024-03837-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/05/2024] [Indexed: 07/19/2024] Open
Abstract
Sciatic nerve injury (SNI) is a common type of peripheral nerve injury typically resulting from trauma, such as contusion, sharp force injuries, drug injections, pelvic fractures, or hip dislocations. It leads to both sensory and motor dysfunctions, characterized by pain, numbness, loss of sensation, muscle atrophy, reduced muscle tone, and limb paralysis. These symptoms can significantly diminish a patient's quality of life. Following SNI, Wallerian degeneration occurs, which activates various signaling pathways, inflammatory factors, and epigenetic regulators. Despite the availability of several surgical and nonsurgical treatments, their effectiveness remains suboptimal. Exosomes are extracellular vesicles with diameters ranging from 30 to 150 nm, originating from the endoplasmic reticulum. They play a crucial role in facilitating intercellular communication and have emerged as highly promising vehicles for drug delivery. Increasing evidence supports the significant potential of exosomes in repairing SNI. This review delves into the pathological progression of SNI, techniques for generating exosomes, the molecular mechanisms behind SNI recovery with exosomes, the effectiveness of combining exosomes with other approaches for SNI repair, and the changes and future outlook for utilizing exosomes in SNI recovery.
Collapse
Affiliation(s)
- Guang-Da Xin
- Nephrology Department, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, 130000, China
| | - Xue-Yan Liu
- Cardiology Department, China-Japan Union Hospital of Jilin Universit, Changchun, Jilin Province, 130000, China
| | - Xiao-Di Fan
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, 130000, China
| | - Guan-Jie Zhao
- Nephrology Department, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, 130000, China.
| |
Collapse
|
3
|
Shevela EY, Loginova TA, Munkuev AS, Volskaya TE, Sergeeva SA, Rashchupkin IM, Kafanova MY, Degtyareva VG, Sosnovskaya AV, Ostanin AA, Chernykh ER. Intranasal Immunotherapy with M2 Macrophage Secretome Ameliorates Language Impairments and Autistic-like Behavior in Children. J Clin Med 2024; 13:3079. [PMID: 38892790 PMCID: PMC11173137 DOI: 10.3390/jcm13113079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Background/Objectives: The intranasal delivery of various neurotropic substances is considered a new attractive therapeutic approach for treating neuropathologies associated with neuroinflammation and altered regeneration. Specific language impairment (SLI) that arises as a result of damage to the cortical speech zones during the developmental period is one of the most common problems in preschool children, and it is characterized by persistent difficulties in the acquisition, understanding, and use of language. This study's objective is to evaluate the efficacy and safety of intranasal immunotherapy using the M2 macrophage secretome as a rich source of immunoregulatory and neurotrophic factors for the treatment of severe language impairment in children. Methods: Seventy-one children (54 boys and 17 girls, aged 3 to 13 years) were recruited to participate in a clinical trial (NCT04689282) in two medical centers. The children were examined before, 1 month after, and 6 months after the start of therapy. In the vast majority of children (55/71), language impairment was associated with autistic-like symptoms and attention deficit hyperactivity disorder (ADHD). Results: Daily intranasal inhalations of M2 macrophage-conditioned medium (for 30 days) were well tolerated and led to a decrease in the severity of language impairments, autistic-like behavior, and ADHD symptoms. The clinical effect appeared within a month after the first procedure and persisted or intensified during a 6-month follow-up. Two-thirds of the children showed a clear clinical improvement, while the rest had less pronounced improvement. Conclusions: Thus, the use of the M2 macrophage secretome and its intranasal delivery is safe, well tolerated, and clinically effective in children with severe language impairments.
Collapse
Affiliation(s)
- Ekaterina Ya. Shevela
- Laboratory of Cellular Immunotherapy, Research Institute of Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia; (I.M.R.); (A.A.O.); (E.R.C.)
| | - Tatiana A. Loginova
- Medical Center “Almadeya”, 194223 Saint-Petersburgh, Russia; (T.A.L.); (A.S.M.); (T.E.V.); (S.A.S.)
| | - Alexandr S. Munkuev
- Medical Center “Almadeya”, 194223 Saint-Petersburgh, Russia; (T.A.L.); (A.S.M.); (T.E.V.); (S.A.S.)
| | - Tatiana E. Volskaya
- Medical Center “Almadeya”, 194223 Saint-Petersburgh, Russia; (T.A.L.); (A.S.M.); (T.E.V.); (S.A.S.)
| | - Svetlana A. Sergeeva
- Medical Center “Almadeya”, 194223 Saint-Petersburgh, Russia; (T.A.L.); (A.S.M.); (T.E.V.); (S.A.S.)
| | - Ivan M. Rashchupkin
- Laboratory of Cellular Immunotherapy, Research Institute of Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia; (I.M.R.); (A.A.O.); (E.R.C.)
| | - Marina Yu. Kafanova
- Department of Pediatrics, Medical Faculty, Federal State Budgetary Educational Institution of Higher Education “Novosibirsk State Medical University” of the Ministry of Health of Russia, 630091 Novosibirsk, Russia;
| | | | | | - Alexandr A. Ostanin
- Laboratory of Cellular Immunotherapy, Research Institute of Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia; (I.M.R.); (A.A.O.); (E.R.C.)
| | - Elena R. Chernykh
- Laboratory of Cellular Immunotherapy, Research Institute of Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia; (I.M.R.); (A.A.O.); (E.R.C.)
| |
Collapse
|
4
|
Izhiman Y, Esfandiari L. Emerging role of extracellular vesicles and exogenous stimuli in molecular mechanisms of peripheral nerve regeneration. Front Cell Neurosci 2024; 18:1368630. [PMID: 38572074 PMCID: PMC10989355 DOI: 10.3389/fncel.2024.1368630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/29/2024] [Indexed: 04/05/2024] Open
Abstract
Peripheral nerve injuries lead to significant morbidity and adversely affect quality of life. The peripheral nervous system harbors the unique trait of autonomous regeneration; however, achieving successful regeneration remains uncertain. Research continues to augment and expedite successful peripheral nerve recovery, offering promising strategies for promoting peripheral nerve regeneration (PNR). These include leveraging extracellular vesicle (EV) communication and harnessing cellular activation through electrical and mechanical stimulation. Small extracellular vesicles (sEVs), 30-150 nm in diameter, play a pivotal role in regulating intercellular communication within the regenerative cascade, specifically among nerve cells, Schwann cells, macrophages, and fibroblasts. Furthermore, the utilization of exogenous stimuli, including electrical stimulation (ES), ultrasound stimulation (US), and extracorporeal shock wave therapy (ESWT), offers remarkable advantages in accelerating and augmenting PNR. Moreover, the application of mechanical and electrical stimuli can potentially affect the biogenesis and secretion of sEVs, consequently leading to potential improvements in PNR. In this review article, we comprehensively delve into the intricacies of cell-to-cell communication facilitated by sEVs and the key regulatory signaling pathways governing PNR. Additionally, we investigated the broad-ranging impacts of ES, US, and ESWT on PNR.
Collapse
Affiliation(s)
- Yara Izhiman
- Esfandiari Laboratory, Department of Biomedical Engineering, College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, OH, United States
| | - Leyla Esfandiari
- Esfandiari Laboratory, Department of Biomedical Engineering, College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, OH, United States
- Department of Environmental and Public Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
- Department of Electrical and Computer Engineering, College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
5
|
Zhao X, Deng H, Feng Y, Wang Y, Yao X, Ma Y, Zhang L, Jie J, Yang P, Yang Y. Immune-cell-mediated tissue engineering strategies for peripheral nerve injury and regeneration. J Mater Chem B 2024; 12:2217-2235. [PMID: 38345580 DOI: 10.1039/d3tb02557h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
During the process of peripheral nerve repair, there are many complex pathological and physiological changes, including multi-cellular responses and various signaling molecules, and all these events establish a dynamic microenvironment for axon repair, regeneration, and target tissue/organ reinnervation. The immune system plays an indispensable role in the process of nerve repair and function recovery. An effective immune response not only involves innate-immune and adaptive-immune cells but also consists of chemokines and cytokines released by these immune cells. The elucidation of the orchestrated interplay of immune cells with nerve regeneration and functional restoration is meaningful for the exploration of therapeutic strategies. This review mainly enumerates the general immune cell response to peripheral nerve injury and focuses on their contributions to functional recovery. The tissue engineering-mediated strategies to regulate macrophages and T cells through physical and biochemical factors combined with scaffolds are discussed. The dynamic immune responses during peripheral nerve repair and immune-cell-mediated tissue engineering methods are presented, which provide a new insight and inspiration for immunomodulatory therapies in peripheral nerve regeneration.
Collapse
Affiliation(s)
- Xueying Zhao
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 226001, Nantong, P. R. China.
| | - Hui Deng
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 226001, Nantong, P. R. China.
| | - Yuan Feng
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 226001, Nantong, P. R. China.
| | - Yuehan Wang
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 226001, Nantong, P. R. China.
| | - Xiaomin Yao
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 226001, Nantong, P. R. China.
| | - Yuyang Ma
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 226001, Nantong, P. R. China.
| | - Luzhong Zhang
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 226001, Nantong, P. R. China.
| | - Jing Jie
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nantong University, 226001, Nantong, P. R. China.
| | - Pengxiang Yang
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 226001, Nantong, P. R. China.
| | - Yumin Yang
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 226001, Nantong, P. R. China.
| |
Collapse
|
6
|
Wang Y, Mao J, Wang Y, Jiang N, Shi X. Multifunctional Exosomes Derived from M2 Macrophages with Enhanced Odontogenesis, Neurogenesis and Angiogenesis for Regenerative Endodontic Therapy: An In Vitro and In Vivo Investigation. Biomedicines 2024; 12:441. [PMID: 38398043 PMCID: PMC10886856 DOI: 10.3390/biomedicines12020441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/02/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
INTRODUCTION Exosomes derived from M2 macrophages (M2-Exos) exhibit tremendous potential for inducing tissue repair and regeneration. Herein, this study was designed to elucidate the biological roles of M2-Exos in regenerative endodontic therapy (RET) compared with exosomes from M1 macrophages (M1-Exos). METHODS The internalization of M1-Exos and M2-Exos by dental pulp stem cells (DPSCs) and human umbilical vein endothelial cells (HUVECs) was detected by uptake assay. The effects of M1-Exos and M2-Exos on DPSC and HUVEC behaviors, including migration, proliferation, odonto/osteogenesis, neurogenesis, and angiogenesis were determined in vitro. Then, Matrigel plugs incorporating M2-Exos were transplanted subcutaneously into nude mice. Immunostaining for vascular endothelial growth factor (VEGF) and CD31 was performed to validate capillary-like networks. RESULTS M1-Exos and M2-Exos were effectively absorbed by DPSCs and HUVECs. Compared with M1-Exos, M2-Exos considerably facilitated the proliferation and migration of DPSCs and HUVECs. Furthermore, M2-Exos robustly promoted ALP activity, mineral nodule deposition, and the odonto/osteogenic marker expression of DPSCs, indicating the powerful odonto/osteogenic potential of M2-Exos. In sharp contrast with M1-Exos, which inhibited the neurogenic capacity of DPSCs, M2-Exos contributed to a significantly augmented expression of neurogenic genes and the stronger immunostaining of Nestin. Consistent with remarkably enhanced angiogenic markers and tubular structure formation in DPSCs and HUVECs in vitro, the employment of M2-Exos gave rise to more abundant vascular networks, dramatically higher VEGF expression, and widely spread CD31+ tubular lumens in vivo, supporting the enormous pro-angiogenic capability of M2-Exos. CONCLUSIONS The multifaceted roles of M2-Exos in ameliorating DPSC and HUVEC functions potentially contribute to complete functional pulp-dentin complex regeneration.
Collapse
Affiliation(s)
- Yujie Wang
- Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.W.); (J.M.); (Y.W.)
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Jing Mao
- Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.W.); (J.M.); (Y.W.)
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Yifan Wang
- Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.W.); (J.M.); (Y.W.)
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Nan Jiang
- Central Laboratory, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing 100081, China;
| | - Xin Shi
- Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.W.); (J.M.); (Y.W.)
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| |
Collapse
|
7
|
Wang Y, Shi G, Huang TCT, Li J, Long Z, Reisdorf R, Shin AY, Amadio P, Behfar A, Zhao C, Moran SL. Enhancing Functional Recovery after Segmental Nerve Defect Using Nerve Allograft Treated with Plasma-Derived Exosome. Plast Reconstr Surg 2023; 152:1247-1258. [PMID: 36912739 DOI: 10.1097/prs.0000000000010389] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
BACKGROUND Nerve injuries can result in detrimental functional outcomes. Currently, autologous nerve graft offers the best outcome for segmental peripheral nerve injury. Allografts are alternatives, but do not have comparable results. This study evaluated whether plasma-derived exosome can improve nerve regeneration and functional recovery when combined with decellularized nerve allografts. METHODS The effect of exosomes on Schwann cell proliferation and migration were evaluated. A rat model of sciatic nerve repair was used to evaluate the effect on nerve regeneration and functional recovery. A fibrin sealant was used as the scaffold for exosome. Eighty-four Lewis rats were divided into autograft, allograft, and allograft with exosome groups. Gene expression of nerve regeneration factors was analyzed on postoperative day 7. At 12 and 16 weeks, rats were subjected to maximum isometric tetanic force and compound muscle action potential. Nerve specimens were then analyzed by means of histology and immunohistochemistry. RESULTS Exosomes were readily taken up by Schwann cells that resulted in improved Schwann cell viability and migration. The treated allograft group had functional recovery (compound muscle action potential, isometric tetanic force) comparable to that of the autograft group. Similar results were observed in gene expression analysis of nerve regenerating factors. Histologic analysis showed no statistically significant differences between treated allograft and autograft groups in terms of axonal density, fascicular area, and myelin sheath thickness. CONCLUSIONS Plasma-derived exosome treatment of decellularized nerve allograft may provide comparable clinical outcomes to that of an autograft. This can be a promising strategy in the future as an alternative for segmental peripheral nerve repair. CLINICAL RELEVANCE STATEMENT Off-the-shelf exosomes may improve recovery in nerve allografts.
Collapse
Affiliation(s)
- Yicun Wang
- From the Department of Orthopedics, Jinling Hospital, School of Medicine, Nanjing University
- Division of Plastic Surgery, Department of Surgery
- Department of Orthopedic Surgery
| | - Guidong Shi
- Department of Orthopedic Surgery
- Tianjin Medical University
| | | | - Jialun Li
- Division of Plastic Surgery, Department of Surgery
- Department of Plastic Surgery, Wuhan Union Hospital, Huazhong University of Science and Technology
| | | | | | | | | | - Atta Behfar
- Center for Regenerative Medicine
- Department of Cardiovascular Medicine, Mayo Clinic
| | | | | |
Collapse
|
8
|
Zhang WJ, Liu SC, Ming LG, Yu JW, Zuo C, Hu DX, Luo HL, Zhang Q. Potential role of Schwann cells in neuropathic pain. Eur J Pharmacol 2023; 956:175955. [PMID: 37541365 DOI: 10.1016/j.ejphar.2023.175955] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/26/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
Neuropathic pain (NPP) is a common syndrome associated with most forms of disease, which poses a serious threat to human health. NPP may persist even after the nociceptive stimulation is eliminated, and treatment is extremely challenging in such cases. Schwann cells (SCs) form the myelin sheaths around neuronal axons and play a crucial role in neural information transmission. SCs can secrete trophic factors to nourish and protect axons, and can further secrete pain-related factors to induce pain. SCs may be activated by peripheral nerve injury, triggering the transformation of myelinated and non-myelinated SCs into cell phenotypes that specifically promote repair. These differentiated SCs provide necessary signals and spatial clues for survival, axonal regeneration, and nerve regeneration of damaged neurons. They can further change the microenvironment around the regions of nerve injury, and relieve the pain by repairing the injured nerve. Herein, we provide a comprehensive overview of the biological characteristics of SCs, discuss the relationship between SCs and nerve injury, and explore the potential mechanism of SCs and the occurrence of NPP. Moreover, we summarize the feasible strategies of SCs in the treatment of NPP, and attempt to elucidate the deficiencies and defects of SCs in the treatment of NPP.
Collapse
Affiliation(s)
- Wen-Jun Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| | - Si-Cheng Liu
- Department of Gastrointestinal surgery, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| | - Li-Guo Ming
- Department of Gastrointestinal surgery, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| | - Jian-Wen Yu
- Department of Gastrointestinal surgery, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| | - Cheng Zuo
- Department of Gastrointestinal surgery, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| | - Dong-Xia Hu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| | - Hong-Liang Luo
- Department of Gastrointestinal surgery, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China.
| | - Qiao Zhang
- Orthopedics Department, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China.
| |
Collapse
|
9
|
Lauterbach AL, Wallace RP, Alpar AT, Refvik KC, Reda JW, Ishihara A, Beckman TN, Slezak AJ, Mizukami Y, Mansurov A, Gomes S, Ishihara J, Hubbell JA. Topically-applied collagen-binding serum albumin-fused interleukin-4 modulates wound microenvironment in non-healing wounds. NPJ Regen Med 2023; 8:49. [PMID: 37696884 PMCID: PMC10495343 DOI: 10.1038/s41536-023-00326-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 08/31/2023] [Indexed: 09/13/2023] Open
Abstract
Non-healing wounds have a negative impact on quality of life and account for many cases of amputation and even early death among patients. Diabetic patients are the predominate population affected by these non-healing wounds. Despite the significant clinical demand, treatment with biologics has not broadly impacted clinical care. Interleukin-4 (IL-4) is a potent modulator of the immune system, capable of skewing macrophages towards a pro-regeneration phenotype (M2) and promoting angiogenesis, but can be toxic after frequent administration and is limited by its short half-life and low bioavailability. Here, we demonstrate the design and characterization of an engineered recombinant interleukin-4 construct. We utilize this collagen-binding, serum albumin-fused IL-4 variant (CBD-SA-IL-4) delivered in a hyaluronic acid (HA)-based gel for localized application of IL-4 to dermal wounds in a type 2 diabetic mouse model known for poor healing as proof-of-concept for improved tissue repair. Our studies indicate that CBD-SA-IL-4 is retained within the wound and can modulate the wound microenvironment through induction of M2 macrophages and angiogenesis. CBD-SA-IL-4 treatment significantly accelerated wound healing compared to native IL-4 and HA vehicle treatment without inducing systemic side effects. This CBD-SA-IL-4 construct can address the underlying immune dysfunction present in the non-healing wound, leading to more effective tissue healing in the clinic.
Collapse
Affiliation(s)
- Abigail L Lauterbach
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Rachel P Wallace
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Aaron T Alpar
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Kirsten C Refvik
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Joseph W Reda
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Ako Ishihara
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
- Department of Bioengineering, Imperial College London, London, W12 0BZ, UK
| | - Taryn N Beckman
- Committee on Molecular Metabolism and Nutrition, University of Chicago, Chicago, IL, 60637, USA
| | - Anna J Slezak
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Yukari Mizukami
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Honjo, Kumamoto, Japan
| | - Aslan Mansurov
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Suzana Gomes
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Jun Ishihara
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA.
- Department of Bioengineering, Imperial College London, London, W12 0BZ, UK.
| | - Jeffrey A Hubbell
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA.
- Committee on Cancer Biology, University of Chicago, Chicago, IL, 60637, USA.
- Committee on Immunology, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
10
|
Tian T, Qiao S, Tannous BA. Nanotechnology-Inspired Extracellular Vesicles Theranostics for Diagnosis and Therapy of Central Nervous System Diseases. ACS APPLIED MATERIALS & INTERFACES 2023; 15:182-199. [PMID: 35929960 DOI: 10.1021/acsami.2c07981] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Shuttling various bioactive substances across the blood-brain barrier (BBB) bidirectionally, extracellular vesicles (EVs) have been opening new frontiers for the diagnosis and therapy of central nervous system (CNS) diseases. However, clinical translation of EV-based theranostics remains challenging due to difficulties in effective EV engineering for superior imaging/therapeutic potential, ultrasensitive EV detection for small sample volume, as well as scale-up and standardized EV production. In the past decade, continuous advancement in nanotechnology provided extensive concepts and strategies for EV engineering and analysis, which inspired the application of EVs for CNS diseases. Here we will review the existing types of EV-nanomaterial hybrid systems with improved diagnostic and therapeutic efficacy for CNS diseases. A summary of recent progress in the incorporation of nanomaterials and nanostructures in EV production, separation, and analysis will also be provided. Moreover, the convergence between nanotechnology and microfluidics for integrated EV engineering and liquid biopsy of CNS diseases will be discussed.
Collapse
Affiliation(s)
- Tian Tian
- Department of Neurobiology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Experimental Therapeutics and Molecular Imaging Unit, Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, Boston, Massachusetts 02129, United States
- Neuroscience Program, Harvard Medical School, Boston, Massachusetts 02129, United States
| | - Shuya Qiao
- Department of Neurobiology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Bakhos A Tannous
- Experimental Therapeutics and Molecular Imaging Unit, Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, Boston, Massachusetts 02129, United States
- Neuroscience Program, Harvard Medical School, Boston, Massachusetts 02129, United States
| |
Collapse
|
11
|
Piñero G, Vence M, Aranda ML, Cercato MC, Soto PA, Usach V, Setton-Avruj PC. All the PNS is a Stage: Transplanted Bone Marrow Cells Play an Immunomodulatory Role in Peripheral Nerve Regeneration. ASN Neuro 2023; 15:17590914231167281. [PMID: 37654230 PMCID: PMC10475269 DOI: 10.1177/17590914231167281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 02/28/2023] [Accepted: 03/16/2023] [Indexed: 09/02/2023] Open
Abstract
SUMMARY STATEMENT Bone marrow cell transplant has proven to be an effective therapeutic approach to treat peripheral nervous system injuries as it not only promoted regeneration and remyelination of the injured nerve but also had a potent effect on neuropathic pain.
Collapse
Affiliation(s)
- Gonzalo Piñero
- Departamento de Química Biológica, Cátedra de Química Biológica Patalógica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
- Universidad de Buenos Aires-CONICET, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Ciudad Autónoma de Buenos Aires, Argentina
- Department of Pathology, Mount Sinai Hospital, New York, NY, USA
| | - Marianela Vence
- Universidad de Buenos Aires-CONICET, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Ciudad Autónoma de Buenos Aires, Argentina
| | - Marcos L. Aranda
- Universidad de Buenos Aires-CONICET, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Ciudad Autónoma de Buenos Aires, Argentina
- Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL, USA
| | - Magalí C. Cercato
- Universidad de Buenos Aires-CONICET, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Ciudad Autónoma de Buenos Aires, Argentina
| | - Paula A. Soto
- Departamento de Química Biológica, Cátedra de Química Biológica Patalógica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
- Universidad de Buenos Aires-CONICET, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Ciudad Autónoma de Buenos Aires, Argentina
| | - Vanina Usach
- Departamento de Química Biológica, Cátedra de Química Biológica Patalógica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
- Universidad de Buenos Aires-CONICET, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Ciudad Autónoma de Buenos Aires, Argentina
| | - Patricia C. Setton-Avruj
- Departamento de Química Biológica, Cátedra de Química Biológica Patalógica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
- Universidad de Buenos Aires-CONICET, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
12
|
Lim YJ, Jung GN, Park WT, Seo MS, Lee GW. Therapeutic potential of small extracellular vesicles derived from mesenchymal stem cells for spinal cord and nerve injury. Front Cell Dev Biol 2023; 11:1151357. [PMID: 37035240 PMCID: PMC10073723 DOI: 10.3389/fcell.2023.1151357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/10/2023] [Indexed: 04/11/2023] Open
Abstract
Neural diseases such as compressive, congenital, and traumatic injuries have diverse consequences, from benign mild sequelae to severe life-threatening conditions with associated losses of motor, sensory, and autonomic functions. Several approaches have been adopted to control neuroinflammatory cascades. Traditionally, mesenchymal stem cells (MSCs) have been regarded as therapeutic agents, as they possess growth factors and cytokines with potential anti-inflammatory and regenerative effects. However, several animal model studies have reported conflicting outcomes, and therefore, the role of MSCs as a regenerative source for the treatment of neural pathologies remains debatable. In addition, issues such as heterogeneity and ethical issues limited their use as therapeutic agents. To overcome the obstacles associated with the use of traditional agents, we explored the therapeutic potentials of extracellular vesicles (EVs), which contain nucleic acids, functional proteins, and bioactive lipids, and play crucial roles in immune response regulation, inflammation reduction, and cell-to-cell communication. EVs may surpass MSCs in size issue, immunogenicity, and response to the host environment. However, a comprehensive review is required on the therapeutic potential of EVs for the treatment of neural pathologies. In this review, we discuss the action mechanism of EVs, their potential for treating neural pathologies, and future perspectives regarding their clinical applications.
Collapse
Affiliation(s)
- Young-Ju Lim
- Department of Orthopedic Surgery, Yeungnam University College of Medicine, Yeungnam University Medical Center, Daegu, Republic of Korea
| | - Gyeong Na Jung
- Department of Orthopedic Surgery, Yeungnam University College of Medicine, Yeungnam University Medical Center, Daegu, Republic of Korea
| | - Wook-Tae Park
- Department of Orthopedic Surgery, Yeungnam University College of Medicine, Yeungnam University Medical Center, Daegu, Republic of Korea
| | - Min-Soo Seo
- Department of Veterinary Tissue Engineering, College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Gun Woo Lee
- Department of Orthopedic Surgery, Yeungnam University College of Medicine, Yeungnam University Medical Center, Daegu, Republic of Korea
- *Correspondence: Gun Woo Lee,
| |
Collapse
|
13
|
Yin G, Lin Y, Wang P, Zhou J, Lin H. Upregulated lncARAT in Schwann cells promotes axonal regeneration by recruiting and activating proregenerative macrophages. Mol Med 2022; 28:76. [PMID: 35768768 PMCID: PMC9245276 DOI: 10.1186/s10020-022-00501-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 06/15/2022] [Indexed: 11/29/2022] Open
Abstract
Background Axonal regeneration following peripheral nerve injury (PNI) depends on the complex interaction between Schwann cells (SCs) and macrophages, but the mechanisms underlying macrophage recruitment and activation in axonal regeneration remain unclear. Methods RNA sequencing (RNA-seq) was conducted to identify differentially expressed long noncoding RNAs (DElncRNAs) between crushed sciatic nerves and intact contralateral nerves. The putative role of lncRNAs in nerve regeneration was analyzed in vitro and in vivo. Results An lncRNA, called axon regeneration-associated transcript (lncARAT), was upregulated in SCs and SC-derived exosomes (SCs-Exo) after sciatic nerve injury. LncARAT contributed to axonal regeneration and improved motor function recovery. Mechanistically, lncARAT epigenetically activated C–C motif ligand 2 (CCL2) expression by recruiting KMT2A to CCL2 promoter, resulting in increased histone 3 lysine 4 trimethylation (H3K4me3) and CCL2 transcription in SCs. CCL2 facilitated the infiltration of macrophages into the injured nerves. Meanwhile, lncARAT-enriched exosomes were released from SCs and incorporated into macrophages. LncARAT functioned as an endogenous sponge to adsorb miRNA-329-5p in macrophages, resulting in increased suppressor of cytokine signaling (SOCS) 2 expression, which induced a proregenerative function of macrophages through a signal transducer and activator of transcription (STAT) 1/6-dependent pathway. Conclusions LncARAT may represent a promising therapeutic avenue for peripheral nerve repair. Supplementary Information The online version contains supplementary material available at 10.1186/s10020-022-00501-9.
Collapse
Affiliation(s)
- Gang Yin
- Department of Orthopedic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Haining Road100, Shanghai, 200080, People's Republic of China
| | - Yaofa Lin
- Department of Orthopedic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Haining Road100, Shanghai, 200080, People's Republic of China
| | - Peilin Wang
- Department of Orthopedic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Haining Road100, Shanghai, 200080, People's Republic of China
| | - Jun Zhou
- Department of Orthopedic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Haining Road100, Shanghai, 200080, People's Republic of China
| | - Haodong Lin
- Department of Orthopedic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Haining Road100, Shanghai, 200080, People's Republic of China.
| |
Collapse
|
14
|
Ye Z, Wei J, Zhan C, Hou J. Role of Transforming Growth Factor Beta in Peripheral Nerve Regeneration: Cellular and Molecular Mechanisms. Front Neurosci 2022; 16:917587. [PMID: 35769702 PMCID: PMC9234557 DOI: 10.3389/fnins.2022.917587] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/11/2022] [Indexed: 11/24/2022] Open
Abstract
Peripheral nerve injury (PNI) is one of the most common concerns in trauma patients. Despite significant advances in repair surgeries, the outcome can still be unsatisfactory, resulting in morbidities such as loss of sensory or motor function and reduced quality of life. This highlights the need for more supportive strategies for nerve regrowth and adequate recovery. Multifunctional cytokine transforming growth factor-β (TGF-β) is essential for the development of the nervous system and is known for its neuroprotective functions. Accumulating evidence indicates its involvement in multiple cellular and molecular responses that are critical to peripheral nerve repair. Following PNI, TGF-β is released at the site of injury where it can initiate a series of phenotypic changes in Schwann cells (SCs), modulate immune cells, activate neuronal intrinsic growth capacity, and regulate blood nerve barrier (BNB) permeability, thus enhancing the regeneration of the nerves. Notably, TGF-β has already been applied experimentally in the treatment of PNI. These treatments with encouraging outcomes further demonstrate its regeneration-promoting capacity. Herein, we review the possible roles of TGF-β in peripheral nerve regeneration and discuss the underlying mechanisms, thus providing new cues for better treatment of PNI.
Collapse
Affiliation(s)
- Zhiqian Ye
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Junbin Wei
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chaoning Zhan
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jin Hou
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Jin Hou,
| |
Collapse
|
15
|
Li J, Yao Y, Wang Y, Xu J, Zhao D, Liu M, Shi S, Lin Y. Modulation of the Crosstalk between Schwann Cells and Macrophages for Nerve Regeneration: A Therapeutic Strategy Based on a Multifunctional Tetrahedral Framework Nucleic Acids System. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202513. [PMID: 35483031 DOI: 10.1002/adma.202202513] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/17/2022] [Indexed: 02/05/2023]
Abstract
Peripheral nerve injury (PNI) is currently recognized as one of the most significant public health issues and affects the general well-being of millions of individuals worldwide. Despite advances in nerve tissue engineering, nerve repair still cannot guarantee complete functional recovery. In the present study, an innovative approach is adopted to establish a multifunctional tetrahedral framework nucleic acids (tFNAs) system, denoted as MiDs, which can integrate the powerful programmability, permeability, and structural stability of tFNAs, with the nerve regeneration potential of microRNA-22 to enhance the communication between Schwann cells (SCs) and macrophages for more effective functional rehabilitation of peripheral nerves. Relevant results demonstrate that MiDs can amplify the ability of SCs to recruit macrophages and facilitate their polarization into the pro-healing M2 phenotype to reconstruct the post-injury microenvironment. Furthermore, MiDs can initiate the adaptive intracellular reprogramming of SCs within a short period to further promote axon regeneration and remyelination. MiDs represent a new possibility for enhancing nerve repair and may have critical clinical applications in the future.
Collapse
Affiliation(s)
- Jiajie Li
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu 610041 P. R. China
| | - Yangxue Yao
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu 610041 P. R. China
| | - Yun Wang
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu 610041 P. R. China
| | - Jiangshan Xu
- College of Biomedical Engineering Sichuan University Chengdu 610041 P. R. China
| | - Dan Zhao
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu 610041 P. R. China
| | - Mengting Liu
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu 610041 P. R. China
| | - Sirong Shi
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu 610041 P. R. China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu 610041 P. R. China
- College of Biomedical Engineering Sichuan University Chengdu 610041 P. R. China
| |
Collapse
|
16
|
Guo Y, Gil Z. The Role of Extracellular Vesicles in Cancer-Nerve Crosstalk of the Peripheral Nervous System. Cells 2022; 11:cells11081294. [PMID: 35455973 PMCID: PMC9027707 DOI: 10.3390/cells11081294] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 03/30/2022] [Accepted: 04/05/2022] [Indexed: 02/06/2023] Open
Abstract
Although the pathogenic operations of cancer–nerve crosstalk (e.g., neuritogenesis, neoneurogensis, and perineural invasion—PNI) in the peripheral nervous system (PNS) during tumorigenesis, as well as the progression of all cancer types is continuing to emerge as an area of unique scientific interest and study, extensive, wide-ranging, and multidisciplinary investigations still remain fragmented and unsystematic. This is especially so in regard to the roles played by extracellular vesicles (EVs), which are lipid bilayer-enclosed nano- to microsized particles that carry multiple-function molecular cargos, facilitate intercellular communication in diverse processes. Accordingly, the biological significance of EVs has been greatly elevated in recent years, as there is strong evidence that they could contribute to important and possibly groundbreaking diagnostic and therapeutic innovations. This can be achieved and the pace of discoveries accelerated through cross-pollination from existing knowledge and studies regarding nervous system physiology and pathology, as well as thoroughgoing collaborations between oncologists, neurobiologists, pathologists, clinicians, and researchers. This article offers an overview of current and recent past investigations on the roles of EVs in cancer–nerve crosstalk, as well as in neural development, physiology, inflammation, injury, and regeneration in the PNS. By highlighting the mechanisms involved in physiological and noncancerous pathological cellular crosstalk, we provide hints that may inspire additional translational studies on cancer–nerve interplay.
Collapse
Affiliation(s)
- Yuanning Guo
- Rappaport Family Institute for Research in the Medical Sciences, Technion—Israel Institute of Technology, Haifa 31096, Israel;
| | - Ziv Gil
- Rappaport Family Institute for Research in the Medical Sciences, Technion—Israel Institute of Technology, Haifa 31096, Israel;
- Head and Neck Institute, The Holy Family Hospital Nazareth, Nazareth 1641100, Israel
- Correspondence: ; Tel.: +972-4-854-2480
| |
Collapse
|
17
|
Contreras E, Bolívar S, Navarro X, Udina E. New insights into peripheral nerve regeneration: The role of secretomes. Exp Neurol 2022; 354:114069. [DOI: 10.1016/j.expneurol.2022.114069] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 02/05/2022] [Accepted: 04/03/2022] [Indexed: 11/04/2022]
|
18
|
Kosanović M, Milutinovic B, Glamočlija S, Morlans IM, Ortiz A, Bozic M. Extracellular Vesicles and Acute Kidney Injury: Potential Therapeutic Avenue for Renal Repair and Regeneration. Int J Mol Sci 2022; 23:ijms23073792. [PMID: 35409151 PMCID: PMC8998560 DOI: 10.3390/ijms23073792] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/27/2022] [Accepted: 03/28/2022] [Indexed: 12/10/2022] Open
Abstract
Acute kidney injury (AKI) is a sudden decline of renal function and represents a global clinical problem due to an elevated morbidity and mortality. Despite many efforts, currently there are no treatments to halt this devastating condition. Extracellular vesicles (EVs) are nanoparticles secreted by various cell types in both physiological and pathological conditions. EVs can arise from distinct parts of the kidney and can mediate intercellular communication between various cell types along the nephron. Besides their potential as diagnostic tools, EVs have been proposed as powerful new tools for regenerative medicine and have been broadly studied as therapeutic mediators in different models of experimental AKI. In this review, we present an overview of the basic features and biological relevance of EVs, with an emphasis on their functional role in cell-to-cell communication in the kidney. We explore versatile roles of EVs in crucial pathophysiological mechanisms contributing to AKI and give a detailed description of the renoprotective effects of EVs from different origins in AKI. Finally, we explain known mechanisms of action of EVs in AKI and provide an outlook on the potential clinical translation of EVs in the setting of AKI.
Collapse
Affiliation(s)
- Maja Kosanović
- Institute for the Application of Nuclear Energy, INEP, University of Belgrade, 11080 Belgrade, Serbia; (M.K.); (S.G.)
| | - Bojana Milutinovic
- Department of Neurosurgery, MD Anderson Cancer Center, University of Texas, Houston, TX 77030, USA;
| | - Sofija Glamočlija
- Institute for the Application of Nuclear Energy, INEP, University of Belgrade, 11080 Belgrade, Serbia; (M.K.); (S.G.)
| | - Ingrid Mena Morlans
- Vascular and Renal Translational Research Group, Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLleida), 25196 Lleida, Spain;
| | - Alberto Ortiz
- Department of Nephrology and Hypertension, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, 28040 Madrid, Spain;
| | - Milica Bozic
- Vascular and Renal Translational Research Group, Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLleida), 25196 Lleida, Spain;
- Correspondence:
| |
Collapse
|
19
|
Hercher D, Nguyen MQ, Dworak H. Extracellular vesicles and their role in peripheral nerve regeneration. Exp Neurol 2021; 350:113968. [PMID: 34973963 DOI: 10.1016/j.expneurol.2021.113968] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/04/2021] [Accepted: 12/25/2021] [Indexed: 12/18/2022]
Abstract
Peripheral nerve injuries often result in sensory and motor dysfunction in respective parts of the body. Regeneration after peripheral nerve injuries is a complex process including the differentiation of Schwann cells, recruiting of macrophages, blood vessel growth and axonal regrowth. Extracellular vesicles (EVs) are considered to play a pivotal role in intercellular communication and transfer of biological information. Specifically, their bioactivity and ability to deliver cargos of various types of nucleic acids and proteins have made them a potential vehicle for neurotherapeutics. However, production, characterization, dosage and targeted delivery of EVs still pose challenges for the clinical translation of EV therapeutics. This review summarizes the current knowledge of EVs in the context of the healthy and injured peripheral nerve and addresses novel concepts for modification of EVs as therapeutic agents for peripheral nerve regeneration.
Collapse
Affiliation(s)
- David Hercher
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria.
| | - Mai Quyen Nguyen
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Helene Dworak
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria; Ludwig Boltzmann Research Group Senescence and Healing of Wounds, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| |
Collapse
|
20
|
Dervan A, Franchi A, Almeida-Gonzalez FR, Dowling JK, Kwakyi OB, McCoy CE, O’Brien FJ, Hibbitts A. Biomaterial and Therapeutic Approaches for the Manipulation of Macrophage Phenotype in Peripheral and Central Nerve Repair. Pharmaceutics 2021; 13:2161. [PMID: 34959446 PMCID: PMC8706646 DOI: 10.3390/pharmaceutics13122161] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 12/18/2022] Open
Abstract
Injury to the peripheral or central nervous systems often results in extensive loss of motor and sensory function that can greatly diminish quality of life. In both cases, macrophage infiltration into the injury site plays an integral role in the host tissue inflammatory response. In particular, the temporally related transition of macrophage phenotype between the M1/M2 inflammatory/repair states is critical for successful tissue repair. In recent years, biomaterial implants have emerged as a novel approach to bridge lesion sites and provide a growth-inductive environment for regenerating axons. This has more recently seen these two areas of research increasingly intersecting in the creation of 'immune-modulatory' biomaterials. These synthetic or naturally derived materials are fabricated to drive macrophages towards a pro-repair phenotype. This review considers the macrophage-mediated inflammatory events that occur following nervous tissue injury and outlines the latest developments in biomaterial-based strategies to influence macrophage phenotype and enhance repair.
Collapse
Affiliation(s)
- Adrian Dervan
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (A.D.); (A.F.); (F.R.A.-G.); (F.J.O.)
- Trinity Centre for Bioengineering, Trinity College Dublin, D02 R590 Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, D02 YN77 Dublin, Ireland
| | - Antonio Franchi
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (A.D.); (A.F.); (F.R.A.-G.); (F.J.O.)
- Trinity Centre for Bioengineering, Trinity College Dublin, D02 R590 Dublin, Ireland
| | - Francisco R. Almeida-Gonzalez
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (A.D.); (A.F.); (F.R.A.-G.); (F.J.O.)
- Trinity Centre for Bioengineering, Trinity College Dublin, D02 R590 Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, D02 YN77 Dublin, Ireland
| | - Jennifer K. Dowling
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (J.K.D.); (O.B.K.); (C.E.M.)
- FutureNeuro SFI Research Centre, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
| | - Ohemaa B. Kwakyi
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (J.K.D.); (O.B.K.); (C.E.M.)
- School of Medicine, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
| | - Claire E. McCoy
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (J.K.D.); (O.B.K.); (C.E.M.)
- FutureNeuro SFI Research Centre, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
| | - Fergal J. O’Brien
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (A.D.); (A.F.); (F.R.A.-G.); (F.J.O.)
- Trinity Centre for Bioengineering, Trinity College Dublin, D02 R590 Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, D02 YN77 Dublin, Ireland
| | - Alan Hibbitts
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (A.D.); (A.F.); (F.R.A.-G.); (F.J.O.)
- Trinity Centre for Bioengineering, Trinity College Dublin, D02 R590 Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, D02 YN77 Dublin, Ireland
| |
Collapse
|
21
|
Klimovich P, Rubina K, Sysoeva V, Semina E. New Frontiers in Peripheral Nerve Regeneration: Concerns and Remedies. Int J Mol Sci 2021; 22:13380. [PMID: 34948176 PMCID: PMC8703705 DOI: 10.3390/ijms222413380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/30/2021] [Accepted: 12/07/2021] [Indexed: 01/08/2023] Open
Abstract
Topical advances in studying molecular and cellular mechanisms responsible for regeneration in the peripheral nervous system have highlighted the ability of the nervous system to repair itself. Still, serious injuries represent a challenge for the morphological and functional regeneration of peripheral nerves, calling for new treatment strategies that maximize nerve regeneration and recovery. This review presents the canonical view of the basic mechanisms of nerve regeneration and novel data on the role of exosomes and their transferred microRNAs in intracellular communication, regulation of axonal growth, Schwann cell migration and proliferation, and stromal cell functioning. An integrated comprehensive understanding of the current mechanistic underpinnings will open the venue for developing new clinical strategies to ensure full regeneration in the peripheral nervous system.
Collapse
Affiliation(s)
- Polina Klimovich
- National Cardiology Research Center Ministry of Health of the Russian Federation, Institute of Experimental Cardiology, 121552 Moscow, Russia; (P.K.); (E.S.)
- Faculty of Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Kseniya Rubina
- Faculty of Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Veronika Sysoeva
- Faculty of Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Ekaterina Semina
- National Cardiology Research Center Ministry of Health of the Russian Federation, Institute of Experimental Cardiology, 121552 Moscow, Russia; (P.K.); (E.S.)
- Faculty of Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia;
| |
Collapse
|
22
|
Chai Y, Long Y, Dong X, Liu K, Wei W, Chen Y, Qiu T, Dai H. Improved functional recovery of rat transected spinal cord by peptide-grafted PNIPAM based hydrogel. Colloids Surf B Biointerfaces 2021; 210:112220. [PMID: 34840029 DOI: 10.1016/j.colsurfb.2021.112220] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/30/2021] [Accepted: 11/12/2021] [Indexed: 01/23/2023]
Abstract
Facilitating angiogenesis, reducing the formation of glial scar tissue, and the occurrence of a strong inflammatory response are of great importance for the repair of central nerve damage. In our previous study, a temperature-sensitive hydrogel grafted with bioactive isoleucine-lysine-valine-alanine-valine (IKVAV) peptide was prepared and it showed regular three-dimensional porous structure, rapid (de)swelling performance and good biological activity. Therefore, in this study, we used this hydrogel scaffold to treat for SCI to study the effect of it to facilitate angiogenesis, inhibit the differentiation and adhesion of keratinocytes, and further reduce the formation of glial scar tissue. The results reveal that the peptide hydrogel scaffold achieved excellent performance and can also promote the expression of angiogenic factors and reduce the secretion of pro-inflammatory factors to a certain extent. Particularly, it can also inhibit the formation of glial scar tissue and repair damaged tissue. The proposed strategy for developing this hydrogel scaffold provides a new insight into designing biomaterials for a broad range of applications in the tissue engineering of the central nervous system (CNS).
Collapse
Affiliation(s)
- Yunhui Chai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan 430070, China
| | - Yanpiao Long
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan 430070, China
| | - Xianzhen Dong
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan 430070, China
| | - Kun Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan 430070, China
| | - Wenying Wei
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan 430070, China; International School of Materials Science and Engineering, Wuhan University Technology, Wuhan 430070, China
| | - Yuzhe Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan 430070, China
| | - Tong Qiu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan 430070, China
| | - Honglian Dai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan 430070, China; Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu hydrogen Valley, Foshan 528200, China.
| |
Collapse
|
23
|
Li JY, Li QQ, Sheng R. The role and therapeutic potential of exosomes in ischemic stroke. Neurochem Int 2021; 151:105194. [PMID: 34582960 DOI: 10.1016/j.neuint.2021.105194] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 09/05/2021] [Accepted: 09/25/2021] [Indexed: 01/08/2023]
Abstract
Ischemic stroke is a disease caused by insufficient blood and oxygen supply to the brain, which is mainly due to intracranial arterial stenosis and middle cerebral artery occlusion. Exosomes play an important role in cerebral ischemia. Nucleic acid substances such as miRNA, circRNA, lncRNA in exosomes can play communication roles and improve cerebral ischemia by regulating the development and regeneration of the nervous system, remodeling of blood vessels and inhibiting neuroinflammation. Furthermore, exosomes modulate stroke through various mechanisms, including improving neural communication, promoting the development of neuronal cells and myelin synapses, neurovascular unit remodeling and maintaining homeostasis of the nervous system. At the same time, exosomes are also a good carrier of bioactive substances, which can be modified and targeted to the lesion site. Here, we review the roles of exosomes in cerebral ischemia, and discuss the possible mechanisms and potentials of modification of exosomes for targeting stroke, providing a new idea for the prevention and treatment of cerebral ischemia.
Collapse
Affiliation(s)
- Jia-Ying Li
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, China
| | - Qi-Qi Li
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, China
| | - Rui Sheng
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, China.
| |
Collapse
|
24
|
Song Y, Liao M, Zhao X, Han H, Dong X, Wang X, Du M, Yan H. Vitreous M2 Macrophage-Derived Microparticles Promote RPE Cell Proliferation and Migration in Traumatic Proliferative Vitreoretinopathy. Invest Ophthalmol Vis Sci 2021; 62:26. [PMID: 34554178 PMCID: PMC8475283 DOI: 10.1167/iovs.62.12.26] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To characterize vitreous microparticles (MPs) in patients with traumatic proliferative vitreoretinopathy (PVR) and investigate their role in PVR pathogenesis. Methods Vitreous MPs were characterized in patients with traumatic PVR, patients with rhegmatogenous retinal detachment (RRD) complicated with PVR, and control subjects by flow cytometry. The presence of M2 macrophages in epiretinal membranes was measured by immunostaining. Vitreous cytokines were quantified by ELISA assay. For in vitro studies, MPs isolated from THP-1 cell differentiated M1 and M2 macrophages, termed M1-MPs and M2-MPs, were used. The effects and mechanisms of M1-MPs and M2-MPs on RPE cell proliferation, migration, and epithelial to mesenchymal transition were analyzed. Results Vitreous MPs derived from photoreceptors, microglia, and macrophages were significantly increased in patients with traumatic PVR in comparison with control and patients with RRD (PVR), whereas no significance was identified between the two control groups. M2 macrophages were present in epiretinal membranes, and their signature cytokines were markedly elevated in the vitreous of patients with traumatic PVR. Moreover, MPs from M2 macrophages were increased in the vitreous of patients with traumatic PVR. In vitro analyses showed that M2-MPs promoted the proliferation and migration of RPE cells via activation of the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling pathway. However, M2-MPs did not induce the expression of fibrotic proteins, including fibronectin, α-smooth muscle actin, and N-cadherin in RPE cells. Conclusions This study demonstrated increased MP shedding in the vitreous of patients with traumatic PVR; specifically, MPs derived from M2 polarized macrophages may contribute to PVR progression by stimulating RPE cell proliferation and migration.
Collapse
Affiliation(s)
- Yinting Song
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China
| | - Mengyu Liao
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiao Zhao
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China
| | - Han Han
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China
| | - Xue Dong
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China.,Laboratory of Molecular Ophthalmology, Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xiaohong Wang
- Laboratory of Molecular Ophthalmology, Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Mei Du
- Laboratory of Molecular Ophthalmology, Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Hua Yan
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China.,Laboratory of Molecular Ophthalmology, Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
25
|
Pinson MR, Chung DD, Adams AM, Scopice C, Payne EA, Sivakumar M, Miranda RC. Extracellular Vesicles in Premature Aging and Diseases in Adulthood Due to Developmental Exposures. Aging Dis 2021; 12:1516-1535. [PMID: 34527425 PMCID: PMC8407878 DOI: 10.14336/ad.2021.0322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
The developmental origins of health and disease (DOHaD) is a paradigm that links prenatal and early life exposures that occur during crucial periods of development to health outcome and risk of disease later in life. Maternal exposures to stress, some psychoactive drugs and alcohol, and environmental chemicals, among others, may result in functional changes in developing fetal tissues, creating a predisposition for disease in the individual as they age. Extracellular vesicles (EVs) may be mediators of both the immediate effects of exposure during development and early childhood as well as the long-term consequences of exposure that lead to increased risk and disease severity later in life. Given the prevalence of diseases with developmental origins, such as cardiovascular disease, neurodegenerative disorders, osteoporosis, metabolic dysfunction, and cancer, it is important to identify persistent mediators of disease risk. In this review, we take this approach, viewing diseases typically associated with aging in light of early life exposures and discuss the potential role of EVs as mediators of lasting consequences.
Collapse
Affiliation(s)
- Marisa R Pinson
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Dae D Chung
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Amy M Adams
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Chiara Scopice
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Elizabeth A Payne
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Monisha Sivakumar
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Rajesh C Miranda
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| |
Collapse
|
26
|
Ikumi A, Gingery A, Toyoshima Y, Zhao C, Moran SL, Livia C, Rolland T, Peterson T, Sabbah MS, Boroumand S, Saffari TM, Behfar A, Shin AY, Amadio PC. Administration of Purified Exosome Product in a Rat Sciatic Serve Reverse Autograft Model. Plast Reconstr Surg 2021; 148:200e-211e. [PMID: 34153020 DOI: 10.1097/prs.0000000000008202] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND The nerve autograft remains the gold standard when reconstructing peripheral nerve defects. However, although autograft repair can result in useful functional recovery, poor outcomes are common, and better treatments are needed. The purpose of this study was to evaluate the effect of purified exosome product on functional motor recovery and nerve-related gene expression in a rat sciatic nerve reverse autograft model. METHODS Ninety-six Sprague-Dawley rats were divided into three experimental groups. In each group, a unilateral 10-mm sciatic nerve defect was created. The excised nerve was reversed and used to reconstruct the defect. Group I animals received the reversed autograft alone, group II animals received the reversed autograft with fibrin glue, and group III animals received the reversed autograft with purified exosome product suspended in the fibrin glue. The animals were killed at 3 and 7 days and 12 and 16 weeks after surgery. Evaluation included compound muscle action potentials, isometric tetanic force, tibialis anterior muscle wet weight, nerve regeneration-related gene expression, and nerve histomorphometry. RESULTS At 16 weeks, isometric tetanic force was significantly better in group III (p = 0.03). The average axon diameter of the peroneal nerve was significantly larger in group III at both 12 and 16 weeks (p = 0.015 at 12 weeks; p < 0.01 at 16 weeks). GAP43 and S100b gene expression was significantly up-regulated by purified exosome product. CONCLUSIONS Local administration of purified exosome product demonstrated improved nerve regeneration profiles in the reverse sciatic nerve autograft rat model. Thus, purified exosome product may have beneficial effects on nerve regeneration, gene profiles, and motor outcomes.
Collapse
Affiliation(s)
- Akira Ikumi
- From the Division of Orthopedic Research, Department of Orthopedic Surgery, the Department of Biochemistry and Molecular Biology, the Division of Plastic and Reconstructive Surgery, the Van Cleve Cardiac Regeneration Program, Center for Regenerative Medicine, the Division of Hand Surgery, Department of Orthopedic Surgery, and the Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic; and the Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic College of Medicine
| | - Anne Gingery
- From the Division of Orthopedic Research, Department of Orthopedic Surgery, the Department of Biochemistry and Molecular Biology, the Division of Plastic and Reconstructive Surgery, the Van Cleve Cardiac Regeneration Program, Center for Regenerative Medicine, the Division of Hand Surgery, Department of Orthopedic Surgery, and the Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic; and the Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic College of Medicine
| | - Yoichi Toyoshima
- From the Division of Orthopedic Research, Department of Orthopedic Surgery, the Department of Biochemistry and Molecular Biology, the Division of Plastic and Reconstructive Surgery, the Van Cleve Cardiac Regeneration Program, Center for Regenerative Medicine, the Division of Hand Surgery, Department of Orthopedic Surgery, and the Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic; and the Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic College of Medicine
| | - Chunfeng Zhao
- From the Division of Orthopedic Research, Department of Orthopedic Surgery, the Department of Biochemistry and Molecular Biology, the Division of Plastic and Reconstructive Surgery, the Van Cleve Cardiac Regeneration Program, Center for Regenerative Medicine, the Division of Hand Surgery, Department of Orthopedic Surgery, and the Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic; and the Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic College of Medicine
| | - Steven L Moran
- From the Division of Orthopedic Research, Department of Orthopedic Surgery, the Department of Biochemistry and Molecular Biology, the Division of Plastic and Reconstructive Surgery, the Van Cleve Cardiac Regeneration Program, Center for Regenerative Medicine, the Division of Hand Surgery, Department of Orthopedic Surgery, and the Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic; and the Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic College of Medicine
| | - Christopher Livia
- From the Division of Orthopedic Research, Department of Orthopedic Surgery, the Department of Biochemistry and Molecular Biology, the Division of Plastic and Reconstructive Surgery, the Van Cleve Cardiac Regeneration Program, Center for Regenerative Medicine, the Division of Hand Surgery, Department of Orthopedic Surgery, and the Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic; and the Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic College of Medicine
| | - Tyler Rolland
- From the Division of Orthopedic Research, Department of Orthopedic Surgery, the Department of Biochemistry and Molecular Biology, the Division of Plastic and Reconstructive Surgery, the Van Cleve Cardiac Regeneration Program, Center for Regenerative Medicine, the Division of Hand Surgery, Department of Orthopedic Surgery, and the Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic; and the Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic College of Medicine
| | - Timothy Peterson
- From the Division of Orthopedic Research, Department of Orthopedic Surgery, the Department of Biochemistry and Molecular Biology, the Division of Plastic and Reconstructive Surgery, the Van Cleve Cardiac Regeneration Program, Center for Regenerative Medicine, the Division of Hand Surgery, Department of Orthopedic Surgery, and the Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic; and the Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic College of Medicine
| | - Michael S Sabbah
- From the Division of Orthopedic Research, Department of Orthopedic Surgery, the Department of Biochemistry and Molecular Biology, the Division of Plastic and Reconstructive Surgery, the Van Cleve Cardiac Regeneration Program, Center for Regenerative Medicine, the Division of Hand Surgery, Department of Orthopedic Surgery, and the Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic; and the Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic College of Medicine
| | - Soulmaz Boroumand
- From the Division of Orthopedic Research, Department of Orthopedic Surgery, the Department of Biochemistry and Molecular Biology, the Division of Plastic and Reconstructive Surgery, the Van Cleve Cardiac Regeneration Program, Center for Regenerative Medicine, the Division of Hand Surgery, Department of Orthopedic Surgery, and the Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic; and the Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic College of Medicine
| | - Tiam M Saffari
- From the Division of Orthopedic Research, Department of Orthopedic Surgery, the Department of Biochemistry and Molecular Biology, the Division of Plastic and Reconstructive Surgery, the Van Cleve Cardiac Regeneration Program, Center for Regenerative Medicine, the Division of Hand Surgery, Department of Orthopedic Surgery, and the Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic; and the Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic College of Medicine
| | - Atta Behfar
- From the Division of Orthopedic Research, Department of Orthopedic Surgery, the Department of Biochemistry and Molecular Biology, the Division of Plastic and Reconstructive Surgery, the Van Cleve Cardiac Regeneration Program, Center for Regenerative Medicine, the Division of Hand Surgery, Department of Orthopedic Surgery, and the Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic; and the Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic College of Medicine
| | - Alexander Y Shin
- From the Division of Orthopedic Research, Department of Orthopedic Surgery, the Department of Biochemistry and Molecular Biology, the Division of Plastic and Reconstructive Surgery, the Van Cleve Cardiac Regeneration Program, Center for Regenerative Medicine, the Division of Hand Surgery, Department of Orthopedic Surgery, and the Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic; and the Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic College of Medicine
| | - Peter C Amadio
- From the Division of Orthopedic Research, Department of Orthopedic Surgery, the Department of Biochemistry and Molecular Biology, the Division of Plastic and Reconstructive Surgery, the Van Cleve Cardiac Regeneration Program, Center for Regenerative Medicine, the Division of Hand Surgery, Department of Orthopedic Surgery, and the Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic; and the Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic College of Medicine
| |
Collapse
|
27
|
Murali VP, Holmes CA. Biomaterial-based extracellular vesicle delivery for therapeutic applications. Acta Biomater 2021; 124:88-107. [PMID: 33454381 DOI: 10.1016/j.actbio.2021.01.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 12/21/2020] [Accepted: 01/08/2021] [Indexed: 12/13/2022]
Abstract
Extracellular vesicle (EV)- based therapies have been successfully tested in preclinical models for several biomedical applications, including tissue engineering, drug delivery and cancer therapy. However, EVs are most commonly delivered via local or systemic injection, which results in rapid clearance. In order to prolong the retention of EVs at target site and improve their therapeutic efficacy, biomaterial-based delivery systems are being investigated. This review discusses the various biomaterial-based systems that have been used to deliver EVs for therapeutic applications, specifically highlighting any strategies for controlled release. Further, challenges to clinical translation of biomaterial-based EV delivery systems are also discussed.
Collapse
Affiliation(s)
- Vishnu Priya Murali
- Department of Chemical and Biomedical Engineering, College of Engineering, Florida A&M University-Florida State University, 2525 Pottsdamer Street, Room A131, Tallahassee, FL 32310, USA.
| | - Christina A Holmes
- Department of Chemical and Biomedical Engineering, College of Engineering, Florida A&M University-Florida State University, 2525 Pottsdamer Street, Room A131, Tallahassee, FL 32310, USA.
| |
Collapse
|
28
|
Aligned microfiber-induced macrophage polarization to guide schwann-cell-enabled peripheral nerve regeneration. Biomaterials 2021; 272:120767. [PMID: 33813259 DOI: 10.1016/j.biomaterials.2021.120767] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/13/2021] [Indexed: 12/29/2022]
Abstract
Mechanistic understanding of the topological cues delivered by biomaterials in promotion of oriented tissue regeneration (e.g., peripheral nerve regrowth) remains largely elusive. Here, we engineered nerve conduits composed of oriented microfiber-bundle cores and randomly organized nanofiber sheaths to particularly interrogate the regulatory mechanism of microfiber orientation on promoted peripheral nerve regeneration. With comprehensive yet systematic analyses, we were able to elucidate the intricate cascade of biological responses associated with conduit-assisted nerve regrowth, i.e., oriented microfibers facilitated macrophage recruitment and subsequent polarization toward a pro-healing phenotype, which in turn promoted Schwann cell (SC) migration, myelinization and axonal extension. Pronounced improvement of nerve regeneration in rat sciatic nerve injury was evidenced with enhanced electrophysiologic function, sciatic functional index and alleviated muscle atrophy 3 months post-implantation. The obtained results offer essential insights on the topological regulation of biomaterials in functional nerve tissue regeneration via immune modulation.
Collapse
|
29
|
Daines JM, Schellhardt L, Wood MD. The Role of the IL-4 Signaling Pathway in Traumatic Nerve Injuries. Neurorehabil Neural Repair 2021; 35:431-443. [PMID: 33754913 DOI: 10.1177/15459683211001026] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Following traumatic peripheral nerve injury, adequate restoration of function remains an elusive clinical goal. Recent research highlights the complex role that the immune system plays in both nerve injury and regeneration. Pro-regenerative processes in wounded soft tissues appear to be significantly mediated by cytokines of the type 2 immune response, notably interleukin (IL)-4. While IL-4 signaling has been firmly established as a critical element in general tissue regeneration during wound healing, it has also emerged as a critical process in nerve injury and regeneration. In this context of peripheral nerve injury, endogenous IL-4 signaling has recently been confirmed to influence more than leukocytes, but including also neurons, axons, and Schwann cells. Given the role IL-4 plays in nerve injury and regeneration, exogenous IL-4 and/or compounds targeting this signaling pathway have shown encouraging preliminary results to treat nerve injury or other neuropathy in rodent models. In particular, the exogenous stimulation of the IL-4 signaling pathway appears to promote postinjury neuron survival, axonal regeneration, remyelination, and thereby improved functional recovery. These preclinical data strongly suggest that targeting IL-4 signaling pathways is a promising translational therapy to augment treatment approaches of traumatic nerve injury. However, a better understanding of the type 2 immune response and associated signaling networks functioning within the nerve injury microenvironment is still needed to fully develop this promising therapeutic avenue.
Collapse
|
30
|
Gao L, Feng A, Yue P, Liu Y, Zhou Q, Zang Q, Teng J. LncRNA BC083743 Promotes the Proliferation of Schwann Cells and Axon Regeneration Through miR-103-3p/BDNF After Sciatic Nerve Crush. J Neuropathol Exp Neurol 2021; 79:1100-1114. [PMID: 32888019 DOI: 10.1093/jnen/nlaa069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/28/2020] [Accepted: 06/18/2020] [Indexed: 01/10/2023] Open
Abstract
To investigate the underlying mechanism of lncRNA BC083743 in regulating the proliferation of Schwann cells (SCs) and axon regeneration after sciatic nerve crush (SNC), we used a rat model. Sciatic function index and the atrophy ratio of gastrocnemius muscle were evaluated. The relationship among BC083743, miR-103-3p, and brain-derived neurotrophic factor (BDNF) and their regulation mechanism in the repair of SNC were investigated using in vivo and in vitro experiments. The expression changes of BC083743 were positively associated with that of BDNF following SNC, but the expression changes of miR-103-3p were inversely associated with that of BDNF. The SC proliferation and BDNF expression could be promoted by overexpression of BC083743, while they were inhibited by a miR-103-3p mimic. In addition, BC083743 interacted with and regulated miR-103-3p, thereby promoting BDNF expression and SC proliferation. BC083743 overexpression also promoted axon regeneration through miR-103-3p. In vivo experiments also indicated that BC083743 overexpression promoted the repair of SNC. In conclusion, LncRNA BC083743 promotes SC proliferation and the axon regeneration through miR-103-3p/BDNF after SNC.
Collapse
Affiliation(s)
- Lin Gao
- Department of Neurological Intensive Care Unit
| | - Aiqin Feng
- Department of Clinical Medicine Laboratory, The Affiliated Huaihe Hospital of Henan University, Kaifeng, China
| | - Peijian Yue
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yue Liu
- Department of Neurological Intensive Care Unit
| | - Qiaoyu Zhou
- Department of Neurological Intensive Care Unit
| | | | | |
Collapse
|
31
|
Manoukian OS, Rudraiah S, Arul MR, Bartley JM, Baker JT, Yu X, Kumbar SG. Biopolymer-nanotube nerve guidance conduit drug delivery for peripheral nerve regeneration: In vivo structural and functional assessment. Bioact Mater 2021; 6:2881-2893. [PMID: 33718669 PMCID: PMC7907220 DOI: 10.1016/j.bioactmat.2021.02.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/12/2021] [Accepted: 02/12/2021] [Indexed: 01/01/2023] Open
Abstract
Peripheral nerve injuries account for roughly 3% of all trauma patients with over 900,000 repair procedures annually in the US. Of all extremity peripheral nerve injuries, 51% require nerve repair with a transected gap. The current gold-standard treatment for peripheral nerve injuries, autograft repair, has several shortcomings. Engineered constructs are currently only suitable for short gaps or small diameter nerves. Here, we investigate novel nerve guidance conduits with aligned microchannel porosity that deliver sustained-release of neurogenic 4-aminopyridine (4-AP) for peripheral nerve regeneration in a critical-size (15 mm) rat sciatic nerve transection model. The results of functional walking track analysis, morphometric evaluations of myelin development, and histological assessments of various markers confirmed the equivalency of our drug-conduit with autograft controls. Repaired nerves showed formation of thick myelin, presence of S100 and neurofilament markers, and promising functional recovery. The conduit's aligned microchannel architecture may play a vital role in physically guiding axons for distal target reinnervation, while the sustained release of 4-AP may increase nerve conduction, and in turn synaptic neurotransmitter release and upregulation of critical Schwann cell neurotrophic factors. Overall, our nerve construct design facilitates efficient and efficacious peripheral nerve regeneration via a drug delivery system that is feasible for clinical applications. Nerve guidance conduit platform with tunable scaffold properties for repair and regeneration of large-gap nerve injuries. Sustained 4-aminopyridine release amplifies neurotrophic factor release by Schwann cells to promote axon regeneration. Longitudinally aligned scaffold pores and controllable physicochemical properties provide guidance for axon regeneration. Critical-size rat sciatic nerve defect healing both structurally and functionally resembled autograft control treatment. Innovative and transformative scaffold technology imbued with structural and functional features for tissue regeneration. Scaffold enable tailorable release profiles for small molecules proteins and electrical stimulation for tissue regeneration.
Collapse
Affiliation(s)
- Ohan S Manoukian
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA.,Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, USA
| | - Swetha Rudraiah
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, USA.,Department of Pharmaceutical Sciences, University of Saint Joseph, Hartford, CT, USA
| | - Michael R Arul
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, USA
| | - Jenna M Bartley
- Department of Immunology, Center on Aging, University of Connecticut Health, Farmington, CT, USA
| | - Jiana T Baker
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, USA
| | - Xiaojun Yu
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, USA
| | - Sangamesh G Kumbar
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA.,Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, USA
| |
Collapse
|
32
|
Qu WR, Zhu Z, Liu J, Song DB, Tian H, Chen BP, Li R, Deng LX. Interaction between Schwann cells and other cells during repair of peripheral nerve injury. Neural Regen Res 2021; 16:93-98. [PMID: 32788452 PMCID: PMC7818858 DOI: 10.4103/1673-5374.286956] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Peripheral nerve injury (PNI) is common and, unlike damage to the central nervous system injured nerves can effectively regenerate depending on the location and severity of injury. Peripheral myelinating glia, Schwann cells (SCs), interact with various cells in and around the injury site and are important for debris elimination, repair, and nerve regeneration. Following PNI, Wallerian degeneration of the distal stump is rapidly initiated by degeneration of damaged axons followed by morphologic changes in SCs and the recruitment of circulating macrophages. Interaction with fibroblasts from the injured nerve microenvironment also plays a role in nerve repair. The replication and migration of injury-induced dedifferentiated SCs are also important in repairing the nerve. In particular, SC migration stimulates axonal regeneration and subsequent myelination of regenerated nerve fibers. This mobility increases SC interactions with other cells in the nerve and the exogenous environment, which influence SC behavior post-injury. Following PNI, SCs directly and indirectly interact with other SCs, fibroblasts, and macrophages. In addition, the inter- and intracellular mechanisms that underlie morphological and functional changes in SCs following PNI still require further research to explain known phenomena and less understood cell-specific roles in the repair of the injured peripheral nerve. This review provides a basic assessment of SC function post-PNI, as well as a more comprehensive evaluation of the literature concerning the SC interactions with macrophages and fibroblasts that can influence SC behavior and, ultimately, repair of the injured nerve.
Collapse
Affiliation(s)
- Wen-Rui Qu
- Department of Hand Surgery, the Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Zhe Zhu
- Department of Hand Surgery, the Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Jun Liu
- Department of Hand Surgery, the Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - De-Biao Song
- Department of Emergency and Critical Medicine, the Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Heng Tian
- Department of Hand Surgery, the Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Bing-Peng Chen
- Orthopedic Medical Center, the Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Rui Li
- Department of Hand Surgery, the Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Ling-Xiao Deng
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
33
|
Lien BV, Brown NJ, Ransom SC, Lehrich BM, Shahrestani S, Tafreshi AR, Ransom RC, Sahyouni R. Enhancing peripheral nerve regeneration with neurotrophic factors and bioengineered scaffolds: A basic science and clinical perspective. J Peripher Nerv Syst 2020; 25:320-334. [DOI: 10.1111/jns.12414] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/05/2020] [Accepted: 09/07/2020] [Indexed: 01/01/2023]
Affiliation(s)
- Brian V. Lien
- School of Medicine University of California Irvine California USA
| | - Nolan J. Brown
- School of Medicine University of California Irvine California USA
| | - Seth C. Ransom
- College of Medicine University of Arkansas for Medical Sciences Little Rock Arkansas USA
| | - Brandon M. Lehrich
- Department of Biomedical Engineering University of California Irvine California USA
| | - Shane Shahrestani
- Keck School of Medicine University of Southern California Los Angeles California USA
- Department of Medical Engineering California Institute of Technology Pasadena California USA
| | - Ali R. Tafreshi
- Department of Neurological Surgery Geisinger Health System Danville Pennsylvania USA
| | - Ryan C. Ransom
- Department of Neurological Surgery Mayo Clinic Rochester Minnesota USA
| | - Ronald Sahyouni
- Department of Neurological Surgery University of California San Diego California USA
| |
Collapse
|
34
|
Stewart CE, Kan CFK, Stewart BR, Sanicola HW, Jung JP, Sulaiman OAR, Wang D. Machine intelligence for nerve conduit design and production. J Biol Eng 2020; 14:25. [PMID: 32944070 PMCID: PMC7487837 DOI: 10.1186/s13036-020-00245-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 08/13/2020] [Indexed: 02/08/2023] Open
Abstract
Nerve guidance conduits (NGCs) have emerged from recent advances within tissue engineering as a promising alternative to autografts for peripheral nerve repair. NGCs are tubular structures with engineered biomaterials, which guide axonal regeneration from the injured proximal nerve to the distal stump. NGC design can synergistically combine multiple properties to enhance proliferation of stem and neuronal cells, improve nerve migration, attenuate inflammation and reduce scar tissue formation. The aim of most laboratories fabricating NGCs is the development of an automated process that incorporates patient-specific features and complex tissue blueprints (e.g. neurovascular conduit) that serve as the basis for more complicated muscular and skin grafts. One of the major limitations for tissue engineering is lack of guidance for generating tissue blueprints and the absence of streamlined manufacturing processes. With the rapid expansion of machine intelligence, high dimensional image analysis, and computational scaffold design, optimized tissue templates for 3D bioprinting (3DBP) are feasible. In this review, we examine the translational challenges to peripheral nerve regeneration and where machine intelligence can innovate bottlenecks in neural tissue engineering.
Collapse
Affiliation(s)
- Caleb E. Stewart
- Current Affiliation: Department of Neurosurgery, Louisiana State University Health Sciences Center, Shreveport Louisiana, USA
| | - Chin Fung Kelvin Kan
- Current Affiliation: Department of General Surgery, Brigham and Women’s Hospital, Boston, MA 02115 USA
| | - Brody R. Stewart
- Current Affiliation: Department of Surgery, Mayo Clinic College of Medicine, Rochester, MN 55905 USA
| | - Henry W. Sanicola
- Current Affiliation: Department of Neurosurgery, Louisiana State University Health Sciences Center, Shreveport Louisiana, USA
| | - Jangwook P. Jung
- Department of Biological Engineering, Louisiana State University, Baton Rouge, LA 70803 USA
| | - Olawale A. R. Sulaiman
- Ochsner Neural Injury & Regeneration Laboratory, Ochsner Clinic Foundation, New Orleans, LA 70121 USA
- Department of Neurosurgery, Ochsner Clinic Foundation, New Orleans, 70121 USA
| | - Dadong Wang
- Quantitative Imaging Research Team, Data 61, Commonwealth Scientific and Industrial Research Organization, Marsfield, NSW 2122 Australia
| |
Collapse
|
35
|
Huang TC, Wu HL, Chen SH, Wang YT, Wu CC. Thrombomodulin facilitates peripheral nerve regeneration through regulating M1/M2 switching. J Neuroinflammation 2020; 17:240. [PMID: 32799887 PMCID: PMC7477856 DOI: 10.1186/s12974-020-01897-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 07/14/2020] [Indexed: 12/17/2022] Open
Abstract
Background Excessive inflammation within damaged tissue usually leads to delayed or insufficient regeneration, and nerves in the peripheral nervous system (PNS) generally do not recover fully following damage. Consequently, there is growing interest in whether modulation of the inflammatory response could help to promote nerve regeneration in the PNS. However, to date, there are no practical therapeutic strategies for manipulating inflammation after nerve injury. Thrombomodulin (TM) is a transmembrane glycoprotein containing five domains. The lectin-like domain of TM has the ability to suppress the inflammatory response. However, whether TM can modulate inflammation in the PNS during nerve regeneration has yet to be elucidated. Methods We investigated the role of TM in switching proinflammatory type 1 macrophages (M1) to anti-inflammatory type 2 macrophages (M2) in a human monocytic cell line (THP-1) and evaluated the therapeutic application of TM in transected sciatic nerve injury in rats. Results The administration of TM during M1 induction significantly reduced the expression levels of inflammatory cytokines, including TNF-a (p < 0.05), IL-6 (p < 0.05), and CD86 (p < 0.05), in THP-1 cells. Simultaneously, the expression levels of M2 markers, including IL-10 (p < 0.05) and CD206 (p < 0.05), were significantly increased in TM-treated THP-1 cells. Inhibition of IL-4R-c-Myc-pSTAT6-PPARγ signaling abolished the expression levels of IL-10 (p < 0.05) and CD206 (p < 0.05). The conditioned medium (CM) collected from M1 cells triggered an inflammatory response in primary Schwann cells, while CM collected from M1 cells treated with TM resulted in a dose-dependent reduction in inflammation. TM treatment led to better nerve regeneration when tested 6 weeks after injury and preserved effector muscle function. In addition, TM treatment reduced macrophage infiltration at the site of injury and led to potent M1 to M2 transition, thus indicating the anti-inflammatory capacity of TM. Conclusions Collectively, our findings demonstrate the anti-inflammatory role of TM during nerve regeneration. Therefore, TM represents a potential drug for the promotion and modulation of functional recovery in peripheral nerves that acts by regulating the M1/M2 ratio.
Collapse
Affiliation(s)
- Tzu-Chieh Huang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, No. 1, University Rd, Tainan, 701, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan
| | - Hua-Lin Wu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan.,Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Szu-Han Chen
- International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan.,Division of Plastic and Reconstructive Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yun-Ting Wang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Ching Wu
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, No. 1, University Rd, Tainan, 701, Taiwan. .,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan. .,International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan. .,Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
36
|
Xia B, Gao J, Li S, Huang L, Ma T, Zhao L, Yang Y, Huang J, Luo Z. Extracellular Vesicles Derived From Olfactory Ensheathing Cells Promote Peripheral Nerve Regeneration in Rats. Front Cell Neurosci 2019; 13:548. [PMID: 31866834 PMCID: PMC6908849 DOI: 10.3389/fncel.2019.00548] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 11/26/2019] [Indexed: 12/13/2022] Open
Abstract
Accumulating evidence showed that extracellular vesicles (EVs) and their cargoes are important information mediators in the nervous system and have been proposed to play an important role in regulating regeneration. Moreover, many studies reported that olfactory ensheathing cells (OECs) conditioned medium is capable of promoting nerve regeneration and functional recovery. However, the role of EVs derived from OECs in axonal regeneration has not been clear. Thereby, the present study was designed to firstly isolate EVs from OECs culture supernatants, and then investigated their role in enhancing axonal regeneration after sciatic nerve injury. In vitro studies showed that OECs-EVs promoted axonal growth of dorsal root ganglion (DRG), which is dose-dependent and relies on their integrity. In vivo studies further demonstrated that nerve conduit containing OECs-EVs significantly enhanced axonal regeneration, myelination of regenerated axons and neurologically functional recovery in rats with sciatic nerve injury. In conclusion, our results, for the first time, demonstrated that OECs-EVs are capable of promoting nerve regeneration and functional recovery after peripheral nerve injuries in rats.
Collapse
Affiliation(s)
- Bing Xia
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jianbo Gao
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Shengyou Li
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Liangliang Huang
- Department of Orthopaedics, The General Hospital of Central Theater Command of People's Liberation Army, Wuhan, China
| | - Teng Ma
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Laihe Zhao
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yujie Yang
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jinghui Huang
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhuojing Luo
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
37
|
Liao CF, Chen CC, Lu YW, Yao CH, Lin JH, Way TD, Yang TY, Chen YS. Effects of endogenous inflammation signals elicited by nerve growth factor, interferon-γ, and interleukin-4 on peripheral nerve regeneration. J Biol Eng 2019; 13:86. [PMID: 31754373 PMCID: PMC6854735 DOI: 10.1186/s13036-019-0216-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/21/2019] [Indexed: 12/15/2022] Open
Abstract
Background Large gap healing is a difficult issue in the recovery of peripheral nerve injury. The present study provides in vivo trials of silicone rubber chambers filled with collagen containing IFN-γ or IL-4 to bridge a 15 mm sciatic nerve defect in rats. Fillings of NGF and normal saline were used as the positive and negative controls. Neuronal electrophysiology, neuronal connectivity, macrophage infiltration, location and expression levels of calcitonin gene-related peptide and histology of the regenerated nerves were evaluated. Results At the end of 6 weeks, animals from the groups of NGF and IL-4 had dramatic higher rates of successful regeneration (100 and 80%) across the wide gap as compared to the groups of IFN-γ and saline controls (30 and 40%). In addition, the NGF group had significantly higher NCV and shorter latency compared to IFN-γ group (P < 0.05). The IL-4 group recruited significantly more macrophages in the nerves as compared to the saline controls and the NGF-treated animals (P < 0.05). Conclusions The current study demonstrated that NGF and IL-4 show potential growth-promoting capability for peripheral nerve regeneration. These fillings in the bridging conduits may modulate local inflammatory conditions affecting recovery of the nerves.
Collapse
Affiliation(s)
- Chien-Fu Liao
- 1Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Chung-Chia Chen
- Linsen Chinese Medicine and Kunming Branch, Taipei City Hospital, Taipei, Taiwan
| | - Yu-Wen Lu
- 3Department of Chinese Medicine, Show Chwan Memorial Hospital, Chunaghua, Taiwan.,4Department of Chinese Medicine, Chang Bing Show Chwan Memorial Hospital, Changhua, Taiwan
| | - Chun-Hsu Yao
- 5Lab of Biomaterials, School of Chinese Medicine, China Medical University , Taichung, Taiwan.,6Biomaterials Translational Research Center, China Medical University Hospital, Taichung, Taiwan.,7Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
| | - Jia-Horng Lin
- 8Department of Fiber and Composite Materials, Feng Chia University, Taichung, Taiwan
| | - Tzong-Der Way
- 1Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Tse-Yen Yang
- 9Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.,10Center for General Education & Master Program of Digital Health Innovation, China Medical University, Taichung, Taiwan
| | - Yueh-Sheng Chen
- 5Lab of Biomaterials, School of Chinese Medicine, China Medical University , Taichung, Taiwan.,6Biomaterials Translational Research Center, China Medical University Hospital, Taichung, Taiwan.,7Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan.,10Center for General Education & Master Program of Digital Health Innovation, China Medical University, Taichung, Taiwan.,11College of Humanities and Sciences, China Medical University, Taichung, Taiwan
| |
Collapse
|
38
|
Lv L, Sheng C, Zhou Y. Extracellular vesicles as a novel therapeutic tool for cell-free regenerative medicine in oral rehabilitation. J Oral Rehabil 2019; 47 Suppl 1:29-54. [PMID: 31520537 DOI: 10.1111/joor.12885] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 07/26/2019] [Accepted: 09/11/2019] [Indexed: 12/17/2022]
Abstract
Oral maxillofacial defects may always lead to complicated hard and soft tissue loss, including bone, nerve, blood vessels, teeth and skin, which are difficult to restore and severely influence the life quality of patients. Extracellular vesicles (EVs), including exosomes, microvesicles and apoptotic bodies, are emerging as potential solutions for complex tissue regeneration through cell-free therapies. In this review, we highlight the functional roles of EVs in the regenerative medicine for oral maxillofacial rehabilitation, specifically bone, skin, blood vessels, peripheral nerve and tooth-related tissue regeneration. Publications were reviewed by two researchers independently basing on three databases (PubMed, MEDLINE and Web of Science), until 31 December 2018. Basing on current researches, we classified the origin of EVs for regenerative medicine into four categories: related cells in the regenerative niche, mesenchymal stem cells, immune cells and body fluids. The secretome of different cells are distinct, while the same cells secrete different EVs under varied conditions; therefore, the content profiles of EVs and regulatory mechanisms on target cells are compared and emphasised. By unravelling the regulatory mechanisms of EVs in tissue regeneration, modified cells and tailored EVs with specific target may be produced for precision medicine with high efficacy.
Collapse
Affiliation(s)
- Longwei Lv
- Department of Prosthodontics, National Clinical Research Center for Oral Disease, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Chunhui Sheng
- Department of Prosthodontics, National Clinical Research Center for Oral Disease, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yongsheng Zhou
- Department of Prosthodontics, National Clinical Research Center for Oral Disease, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
39
|
Abstract
The process of fracture healing is complex and requires an interaction of multiple organ systems. Cell-cell communication is known to be very important during this process. Extracellular vesicles (EVs) are small membranous vesicles generated from a variety of cells. Proteins, RNAs, small molecules, and mitochondria DNA were found to be transported among cells through EVs. EV-based cross talk represents a substantial cell-cell communication pattern that can both interact with cells through molecular surfaces and transfer molecules to cells. These interactions can assist in the synchronization of cellular functions among cells of the same kind, and coordinate the functions of different types of cells. After activation, platelets, neutrophils, macrophages, osteoblasts, osteoclasts, and mesenchymal stem cell (') all secrete EVs, promoting the fracture healing process. Moreover, some studies have found evidence that EVs may be used for diagnosis and treatment of delayed fracture healing, and may be significantly involved in the pathophysiology of fracture healing disturbances. In this review, we summarize recent findings on EVs released by fracture healing-related cells, and EV-mediated communications during fracture healing. We also highlight the potential applications of EVs in fracture healing. Lastly, the prospect of EVs for research and clinical use is discussed.
Collapse
|
40
|
Zhou Z, Zhang N, Shi P, Xie J. Mechanism of miR-148b inhibiting cell proliferation and migration of Schwann cells by regulating CALR. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:1978-1983. [PMID: 31174435 DOI: 10.1080/21691401.2019.1609008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The aim of this study is to investigate the effect of miR-148b on cell proliferation and migration of Schwann cells and explore its mechanism. The miR-148b group, miR-con group and the anti-miR-148b group, anti-miR-con group, si-con group, si-CALR group, Ctrl group, CALR group were transfected into Schwann cells by liposome method; the expression of miR-148b was detected by qRT-PCR; the cell viability was detected by MTT assay; the migration of cells was detected by Transwell method; WB assay was used to detect the protein expression of CALR. Firstly, we found that compared with miR-con group and si-con group, the proliferation and migration of miR-148b group and si-CALR group were significantly down-regulated (P < .05). Moreover, compared with anti-miR-con group and Ctrl group, anti-miR-148b group and CALR group cells proliferation and migration were significantly up-regulated (P < .05). In addition, miR-148b was targeted to CALR, and silencing CALR could reverse the inhibitory effect of miR-148b on Schwann cell proliferation and migration. In conclusion, miR-148b can regulate the proliferation and migration of Schwann cells. The mechanism may be related to the targeted negative regulation of CALR, which will provide a basis for targeted therapy of peripheral nerve injury.
Collapse
Affiliation(s)
- Zhenyu Zhou
- a Department of Orthopaedics, Second Military Medical University's Jinan Clinical Medicine College , Jinan , China.,b Department of Orthaopedics, General Hospital of Jinan Military Command , Jinan , China
| | - Ning Zhang
- a Department of Orthopaedics, Second Military Medical University's Jinan Clinical Medicine College , Jinan , China.,b Department of Orthaopedics, General Hospital of Jinan Military Command , Jinan , China
| | - Peilei Shi
- c Department of Orthopaedics, Kuishan Section of Rizhao People's Hospital , Rizhao , China
| | - Jin Xie
- d Guangxi International Zhuang Medicine hospital , Guangxi , China
| |
Collapse
|
41
|
Tseng AM, Chung DD, Pinson MR, Salem NA, Eaves SE, Miranda RC. Ethanol Exposure Increases miR-140 in Extracellular Vesicles: Implications for Fetal Neural Stem Cell Proliferation and Maturation. Alcohol Clin Exp Res 2019; 43:1414-1426. [PMID: 31009095 DOI: 10.1111/acer.14066] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 04/12/2019] [Indexed: 12/23/2022]
Abstract
BACKGROUND Neural stem cells (NSCs) generate most of the neurons of the adult brain in humans, during the mid-first through second-trimester period. This critical neurogenic window is particularly vulnerable to prenatal alcohol exposure, which can result in diminished brain growth. Previous studies showed that ethanol (EtOH) exposure does not kill NSCs, but, rather, results in their depletion by influencing cell cycle kinetics and promoting aberrant maturation, in part, by altering NSC expression of key neurogenic miRNAs. NSCs reside in a complex microenvironment rich in extracellular vesicles, shown to traffic miRNA cargo between cells. METHODS We profiled the miRNA content of extracellular vesicles from control and EtOH-exposed ex vivo neurosphere cultures of fetal NSCs. We subsequently examined the effects of one EtOH-sensitive miRNA, miR-140-3p, on NSC growth, survival, and maturation. RESULTS EtOH exposure significantly elevates levels of a subset of miRNAs in secreted extracellular vesicles. Overexpression of one of these elevated miRNAs, miR-140-3p, and its passenger strand relative, miR-140-5p, significantly increased the proportion of S-phase cells while decreasing the proportion of G0 /G1 cells compared to controls. In contrast, while miR-140-3p knockdown had minimal effects on the proportion of cells in each phase of the cell cycle, knockdown of miR-140-5p significantly decreased the proportion of cells in G2 /M phase. Furthermore, miR-140-3p overexpression, during mitogen-withdrawal-induced NSC differentiation, favors astroglial maturation at the expense of neural and oligodendrocyte differentiation. CONCLUSIONS Collectively, the dysregulated miRNA content of extracellular vesicles following EtOH exposure may result in aberrant neural progenitor cell growth and maturation, explaining brain growth deficits associated with prenatal alcohol exposure.
Collapse
Affiliation(s)
- Alexander M Tseng
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, Texas
| | - Dae D Chung
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, Texas
| | - Marisa R Pinson
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, Texas
| | - Nihal A Salem
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, Texas
| | - Sarah E Eaves
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, Texas
| | - Rajesh C Miranda
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, Texas
| |
Collapse
|
42
|
What is normal trauma healing and what is complex regional pain syndrome I? An analysis of clinical and experimental biomarkers. Pain 2019; 160:2278-2289. [DOI: 10.1097/j.pain.0000000000001617] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
43
|
Jia Y, Yang W, Zhang K, Qiu S, Xu J, Wang C, Chai Y. Nanofiber arrangement regulates peripheral nerve regeneration through differential modulation of macrophage phenotypes. Acta Biomater 2019; 83:291-301. [PMID: 30541701 DOI: 10.1016/j.actbio.2018.10.040] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 10/09/2018] [Accepted: 10/25/2018] [Indexed: 12/20/2022]
Abstract
Topographical cues presented by aligned nanofibers have been demonstrated to stimulate peripheral nerve regeneration across long gaps, but the underlying mechanisms remain incompletely elucidated. Because macrophages play a crucial role in peripheral nerve regeneration and can be phenotypically modulated by topographical cues, we hypothesized that aligned nanofibers might induce the development of macrophage phenotypes that facilitate the regeneration of peripheral nerves. Here, macrophages were seeded on aligned and random poly(l-lactic acid-co-ε-caprolactone) nanofibers and their morphology and phenotypes were compared. Aligned nanofibers drastically stimulated macrophage elongation along the nanofibers, and, more importantly, induced the development of a pro-healing macrophage phenotype (M2 type), whereas random nanofibers induced a proinflammatory phenotype (M1 type). Notably, the macrophages polarized by aligned nanofibers potently promoted the proliferation and migration of Schwann cells in vitro. Thus, we constructed nerve-guidance conduits by using aligned and random nanofibers and evaluated their effects on macrophage polarization and nerve regeneration in a rat sciatic nerve defect model. Our in vivo results showed that the ratio of pro-healing macrophages was again higher in the aligned-nanofiber group, and further that Schwann cell infiltration and axon numbers were 2.0- and 2.84-fold higher in the aligned group than in the random group, respectively. This study demonstrates that nanofiber arrangement differentially regulates macrophage activation and that nerve-guidance conduits constructed from aligned nanofibers markedly facilitate peripheral nerve regeneration at least partly by promoting the pro-healing phenotype in macrophages. STATEMENT OF SIGNIFICANCE: The effect of aligned nanofibers on peripheral nerve regeneration has been well established. However, the underlying mechanism remains unclear. Since macrophages play an important role in peripheral nerve regeneration, and can be phenotypically modulated by topographical cues, we hypothesized that aligned nanofibers may exert their beneficial effects via modulating macrophage phenotypes. This study demonstrates for the first time that nanofiber arrangement differentially modulates macrophage shape and polarization, and this subsequently influences the outcome of peripheral nerve regeneration. These findings reveals a novel relationship between biomaterial structure and macrophage activation, contributes to clarifying the mechanism of surface topography in tissue regeneration, and highlight the potential application prospect of aligned nanofiber scaffolds in nerve regeneration and wound healing.
Collapse
Affiliation(s)
- Yachao Jia
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Weichao Yang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Kuihua Zhang
- College of Materials and Textile Engineering, Jiaxing University, Zhejiang 314001, China
| | - Shuo Qiu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Jia Xu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Chunyang Wang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.
| | - Yimin Chai
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.
| |
Collapse
|
44
|
Tsuruta T, Sakai K, Watanabe J, Katagiri W, Hibi H. Dental pulp-derived stem cell conditioned medium to regenerate peripheral nerves in a novel animal model of dysphagia. PLoS One 2018; 13:e0208938. [PMID: 30533035 PMCID: PMC6289419 DOI: 10.1371/journal.pone.0208938] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/26/2018] [Indexed: 12/27/2022] Open
Abstract
In nerve regeneration studies, various animal models are used to assess nerve regeneration. However, because of the difficulties in functional nerve assessment, a visceral nerve injury model is yet to be established. The superior laryngeal nerve (SLN) plays an essential role in swallowing. Although a treatment for SLN injury following trauma and surgery is desirable, no such treatment is reported in the literature. We recently reported that stem cells derived from human exfoliated deciduous teeth (SHED) have a therapeutic effect on various tissues via macrophage polarization. Here, we established a novel animal model of SLN injury. Our model was characterized as having weight loss and drinking behavior changes. In addition, the SLN lesion caused a delay in the onset of the swallowing reflex and gain of laryngeal residue in the pharynx. Systemic administration of SHED-conditioned media (SHED-CM) promoted functional recovery of the SLN and significantly promoted axonal regeneration by converting of macrophages to the anti-inflammatory M2 phenotype. In addition, SHED-CM enhanced new blood vessel formation at the injury site. Our data suggest that the administration of SHED-CM may provide therapeutic benefits for SLN injury.
Collapse
Affiliation(s)
- Takeshi Tsuruta
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kiyoshi Sakai
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
- * E-mail:
| | - Junna Watanabe
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Wataru Katagiri
- Division of Reconstructive Surgery for Oral and Maxillofacial Region, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hideharu Hibi
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
45
|
Guest JD, Moore SW, Aimetti AA, Kutikov AB, Santamaria AJ, Hofstetter CP, Ropper AE, Theodore N, Ulich TR, Layer RT. Internal decompression of the acutely contused spinal cord: Differential effects of irrigation only versus biodegradable scaffold implantation. Biomaterials 2018; 185:284-300. [DOI: 10.1016/j.biomaterials.2018.09.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 09/04/2018] [Accepted: 09/16/2018] [Indexed: 12/13/2022]
|
46
|
Qing L, Chen H, Tang J, Jia X. Exosomes and Their MicroRNA Cargo: New Players in Peripheral Nerve Regeneration. Neurorehabil Neural Repair 2018; 32:765-776. [PMID: 30223738 PMCID: PMC6146407 DOI: 10.1177/1545968318798955] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Peripheral nerve injury is a major clinical problem and often results in a poor functional recovery. Despite obvious clinical need, treatment strategies have been largely suboptimal. In the nervous system, exosomes, which are nanosized extracellular vesicles, play a critical role in mediating intercellular communication. More specifically, microRNA carried by exosomes are involved in various key processes such as nerve and vascular regeneration, and exosomes originating from Schwann cells, macrophages, and mesenchymal stem cells can promote peripheral nerve regeneration. In this review, the current knowledge of exosomes' and their miRNA cargo's role in peripheral nerve regeneration are summarized. The possible future roles of exosomes in therapy and the potential for microRNA-containing exosomes to treat peripheral nerve injuries are also discussed.
Collapse
Affiliation(s)
- Liming Qing
- Department of Hand & Microsurgery, Xiangya Hospital of
Central South University, Changsha, Hunan, 410008
- Department of Neurosurgery, University of Maryland School of
Medicine, Baltimore, MD 21201, USA
| | - Huanwen Chen
- Department of Neurosurgery, University of Maryland School of
Medicine, Baltimore, MD 21201, USA
| | - Juyu Tang
- Department of Hand & Microsurgery, Xiangya Hospital of
Central South University, Changsha, Hunan, 410008
| | - Xiaofeng Jia
- Department of Neurosurgery, University of Maryland School of
Medicine, Baltimore, MD 21201, USA
- Department of Orthopedics, University of Maryland School of
Medicine, Baltimore, MD 21201, USA
- Department of Anatomy and Neurobiology, University of Maryland
School of Medicine, Baltimore, MD 21201, USA
- Department of Biomedical Engineering, Johns Hopkins University
School of Medicine, Baltimore, MD 21205, USA
- Department of Anesthesiology and Critical Care Medicine, Johns
Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
47
|
Panagiotou N, Neytchev O, Selman C, Shiels PG. Extracellular Vesicles, Ageing, and Therapeutic Interventions. Cells 2018; 7:cells7080110. [PMID: 30126173 PMCID: PMC6115766 DOI: 10.3390/cells7080110] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/13/2018] [Accepted: 08/16/2018] [Indexed: 02/07/2023] Open
Abstract
A more comprehensive understanding of the human ageing process is required to help mitigate the increasing burden of age-related morbidities in a rapidly growing global demographic of elderly individuals. One exciting novel strategy that has emerged to intervene involves the use of extracellular vesicles to engender tissue regeneration. Specifically, this employs their molecular payloads to confer changes in the epigenetic landscape of ageing cells and ameliorate the loss of functional capacity. Understanding the biology of extracellular vesicles and the specific roles they play during normative ageing will allow for the development of novel cell-free therapeutic interventions. Hence, the purpose of this review is to summarise the current understanding of the mechanisms that drive ageing, critically explore how extracellular vesicles affect ageing processes and discuss their therapeutic potential to mitigate the effects of age-associated morbidities and improve the human health span.
Collapse
Affiliation(s)
- Nikolaos Panagiotou
- Wolfson Wohl Cancer Research Centre, College of Medical, Veterinary & Life Sciences, Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK.
| | - Ognian Neytchev
- Wolfson Wohl Cancer Research Centre, College of Medical, Veterinary & Life Sciences, Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK.
| | - Colin Selman
- College of Medical, Veterinary & Life Sciences, Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Graham Kerr, Glasgow G12 8QQ, UK.
| | - Paul G Shiels
- Wolfson Wohl Cancer Research Centre, College of Medical, Veterinary & Life Sciences, Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK.
| |
Collapse
|
48
|
Alberti D, Grange C, Porta S, Aime S, Tei L, Geninatti Crich S. Efficient Route to Label Mesenchymal Stromal Cell-Derived Extracellular Vesicles. ACS OMEGA 2018; 3:8097-8103. [PMID: 30087935 PMCID: PMC6072237 DOI: 10.1021/acsomega.8b00908] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 07/06/2018] [Indexed: 05/23/2023]
Abstract
Recent research results report that extracellular vesicles (EVs) have a central role in both physiological and pathological processes involving intercellular communication. Herein, a simple EVs labeling procedure based on the metabolic labeling of secreting cells (mesenchymal stroma cells, MSCs) with a fluorescein-containing bio-orthogonal dye is described. This procedure was carried out by incubating cells for 72 h with tetraacetylated N-azidoacetyl-d-mannosamine (Ac4ManNAz), a modified sugar containing an azido group that, upon incorporation on the external surface of the cytoplasmatic cell membrane, is specifically conjugated with cyclooctyne-modified fluorescein isothiocyanate (ADIBO-FITC). MSCs released fluorescent EVs did not need any further purification. Finally, cellular uptake and tracking of the fluorescein-labeled EVs were successfully assessed by targeting experiments with MSCs. The method appears of general applicability and it may be very useful opening new horizon on diagnostic and therapeutic protocols exploiting EVs.
Collapse
Affiliation(s)
- Diego Alberti
- Department
of Molecular Biotechnology and Health Science, University of Turin, Via Nizza 52, 10126 Torino, Italy
| | - Cristina Grange
- Department
of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126 Torino, Italy
| | - Stefano Porta
- Department
of Molecular Biotechnology and Health Science, University of Turin, Via Nizza 52, 10126 Torino, Italy
| | - Silvio Aime
- Department
of Molecular Biotechnology and Health Science, University of Turin, Via Nizza 52, 10126 Torino, Italy
| | - Lorenzo Tei
- Department
of Science and Technological Innovation, University of Piemonte Orientale, Viale T. Michel 11, 15121 Alessandria, Italy
| | - Simonetta Geninatti Crich
- Department
of Molecular Biotechnology and Health Science, University of Turin, Via Nizza 52, 10126 Torino, Italy
| |
Collapse
|
49
|
Shen D, Chu F, Lang Y, Geng Y, Zheng X, Zhu J, Liu K. Beneficial or Harmful Role of Macrophages in Guillain-Barré Syndrome and Experimental Autoimmune Neuritis. Mediators Inflamm 2018; 2018:4286364. [PMID: 29853789 PMCID: PMC5944239 DOI: 10.1155/2018/4286364+10.1155/2018/4286364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/01/2018] [Indexed: 01/21/2024] Open
Abstract
Guillain-Barré syndrome (GBS), an immune-mediated demyelinating peripheral neuropathy, is characterized by acute weakness of the extremities and areflexia or hyporeflexia. Experimental autoimmune neuritis (EAN) is a common animal model for GBS, which represents a CD4+ T cell-mediated inflammatory autoimmune demyelination of the peripheral nervous system (PNS), and is used to investigate the pathogenic mechanism of GBS. It has been found that macrophages play a critical role in the pathogenesis of both GBS and EAN. Macrophages have been primarily classified into two major phenotypes: proinflammatory macrophages (M1) and anti-inflammatory macrophages (M2). The two different macrophage subsets M1 and M2 may play a decisive role in initiation and development of GBS and EAN. However, recently, it has been indicated that the roles of macrophages in immune regulation and autoimmune diseases are more complex than those suggested by a simple M1-M2 dichotomy. Macrophages might exert either inflammatory or anti-inflammatory effect by secreting pro- or anti-inflammatory cytokines, and either inducing the activation of T cells to mediate immune response, resulting in inflammation and demyelination in the PNS, or promoting disease recovery. In this review, we summarize the dual roles of macrophages in GBS and EAN and explore the mechanism of macrophage polarization to provide a potential therapeutic approach for GBS in the future.
Collapse
Affiliation(s)
- Donghui Shen
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun 130021, China
| | - Fengna Chu
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun 130021, China
| | - Yue Lang
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun 130021, China
| | - Yunlong Geng
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun 130021, China
| | - Xiangyu Zheng
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun 130021, China
| | - Jie Zhu
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun 130021, China
- Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Karolinska University Hospital, SE-14157 Huddinge, Stockholm, Sweden
| | - Kangding Liu
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun 130021, China
| |
Collapse
|
50
|
Beneficial or Harmful Role of Macrophages in Guillain-Barré Syndrome and Experimental Autoimmune Neuritis. Mediators Inflamm 2018; 2018:4286364. [PMID: 29853789 PMCID: PMC5944239 DOI: 10.1155/2018/4286364 10.1155/2018/4286364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Guillain-Barré syndrome (GBS), an immune-mediated demyelinating peripheral neuropathy, is characterized by acute weakness of the extremities and areflexia or hyporeflexia. Experimental autoimmune neuritis (EAN) is a common animal model for GBS, which represents a CD4+ T cell-mediated inflammatory autoimmune demyelination of the peripheral nervous system (PNS), and is used to investigate the pathogenic mechanism of GBS. It has been found that macrophages play a critical role in the pathogenesis of both GBS and EAN. Macrophages have been primarily classified into two major phenotypes: proinflammatory macrophages (M1) and anti-inflammatory macrophages (M2). The two different macrophage subsets M1 and M2 may play a decisive role in initiation and development of GBS and EAN. However, recently, it has been indicated that the roles of macrophages in immune regulation and autoimmune diseases are more complex than those suggested by a simple M1-M2 dichotomy. Macrophages might exert either inflammatory or anti-inflammatory effect by secreting pro- or anti-inflammatory cytokines, and either inducing the activation of T cells to mediate immune response, resulting in inflammation and demyelination in the PNS, or promoting disease recovery. In this review, we summarize the dual roles of macrophages in GBS and EAN and explore the mechanism of macrophage polarization to provide a potential therapeutic approach for GBS in the future.
Collapse
|