1
|
Tessarin GWL, Toro LF, Pereira RF, Dos Santos RM, Azevedo RG. Peri-implantitis with a potential axis to brain inflammation: an inferential review. Odontology 2024; 112:1033-1046. [PMID: 38630323 DOI: 10.1007/s10266-024-00936-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/26/2024] [Indexed: 09/21/2024]
Abstract
Peri-implantitis (PI) is a chronic, inflammatory, and infectious disease which affects dental implants and has certain similarities to periodontitis (PD). Evidence has shown that PD may be related to several types of systemic disorders, such as diabetes and insulin resistance, cardiovascular diseases, respiratory tract infections, adverse pregnancy outcomes, and neurological disorders. Furthermore, some types of bacteria in PD can also be found in PI, leading to certain similarities in the immunoinflammatory responses in the host. This review aims to discuss the possible connection between PI and neuroinflammation, using information based on studies about periodontal disorders, a topic whose connection with systemic alterations has been gaining the interest of the scientific community. Literature concerning PI, PD, and systemic disorders, such as neuroinflammation, brain inflammation, and neurological disorder, was searched in the PubMed database using different keyword combinations. All studies found were included in this narrative review. No filters were used. Eligible studies were analyzed and reviewed carefully. This study found similarities between PI and PD development, maintenance, and in the bacterial agents located around the teeth (periodontitis) or dental implants (peri-implantitis). Through the cardiovascular system, these pathologies may also affect blood-brain barrier permeability. Furthermore, scientific evidence has suggested that microorganisms from PI (as in PD) can be recognized by trigeminal fiber endings and start inflammatory responses into the trigeminal ganglion. In addition, bacteria can traverse from the mouth to the brain through the lymphatic system. Consequently, the immune system increases inflammatory mediators in the brain, affecting the homeostasis of the nervous tissue and vice-versa. Based on the interrelation of microbiological, inflammatory, and immunological findings between PD and PI, it is possible to infer that immunoinflammatory changes observed in PD can imply systemic changes in PI. This, as discussed, could lead to the development or intensification of neuroinflammatory changes, contributing to neurodegenerative diseases.
Collapse
Affiliation(s)
- Gestter Willian Lattari Tessarin
- University Center in the North of São Paulo (UNORTE), São José Do Rio Preto, SP, 15020-040, Brazil.
- Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil.
| | - Luan Felipe Toro
- Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
- Marilia Medical School (FAMEMA), Marília, São Paulo, Brazil
| | - Renato Felipe Pereira
- Union of Colleges of the Great Lakes (UNILAGO), São José Do Rio Preto, São Paulo, Brazil
| | - Rodrigo Martins Dos Santos
- Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Renato Gomes Azevedo
- University Center in the North of São Paulo (UNORTE), São José Do Rio Preto, SP, 15020-040, Brazil
| |
Collapse
|
2
|
Ohm M, Hosseini S, Lonnemann N, He W, More T, Goldmann O, Medina E, Hiller K, Korte M. The potential therapeutic role of itaconate and mesaconate on the detrimental effects of LPS-induced neuroinflammation in the brain. J Neuroinflammation 2024; 21:207. [PMID: 39164713 PMCID: PMC11337794 DOI: 10.1186/s12974-024-03188-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/26/2024] [Indexed: 08/22/2024] Open
Abstract
Despite advances in antimicrobial and anti-inflammatory treatment, inflammation and its consequences remain a major challenge in the field of medicine. Inflammatory reactions can lead to life-threatening conditions such as septic shock, while chronic inflammation has the potential to worsen the condition of body tissues and ultimately lead to significant impairment of their functionality. Although the central nervous system has long been considered immune privileged to peripheral immune responses, recent research has shown that strong immune responses in the periphery also affect the brain, leading to reactive microglia, which belong to the innate immune system and reside in the brain, and neuroinflammation. The inflammatory response is primarily a protective mechanism to defend against pathogens and tissue damage. However, excessive and chronic inflammation can have negative effects on neuronal structure and function. Neuroinflammation underlies the pathogenesis of many neurological and neurodegenerative diseases and can accelerate their progression. Consequently, targeting inflammatory signaling pathways offers potential therapeutic strategies for various neuropathological conditions, particularly Parkinson's and Alzheimer's disease, by curbing inflammation. Here the blood-brain barrier is a major hurdle for potential therapeutic strategies, therefore it would be highly advantageous to foster and utilize brain innate anti-inflammatory mechanisms. The tricarboxylic acid cycle-derived metabolite itaconate is highly upregulated in activated macrophages and has been shown to act as an immunomodulator with anti-inflammatory and antimicrobial functions. Mesaconate, an isomer of itaconate, similarly reduces the inflammatory response in macrophages. Nevertheless, most studies have focused on its esterified forms and its peripheral effects, while its influence on the CNS remained largely unexplored. Therefore, this study investigated the immunomodulatory and therapeutic potential of endogenously synthesized itaconate and its isomer mesaconate in lipopolysaccharide (LPS)-induced neuroinflammatory processes. Our results show that both itaconate and mesaconate reduce LPS-induced neuroinflammation, as evidenced by lower levels of inflammatory mediators, reduced microglial reactivity and a rescue of synaptic plasticity, the cellular correlate of learning and memory processes in the brain. Overall, this study emphasizes that both itaconate and mesaconate have therapeutic potential for neuroinflammatory processes in the brain and are of remarkable importance due to their endogenous origin and production, which usually leads to high tolerance.
Collapse
Affiliation(s)
- Melanie Ohm
- Department of Cellular Neurobiology, Zoological Institute, TU Braunschweig, 38106, Braunschweig, Germany
| | - Shirin Hosseini
- Department of Cellular Neurobiology, Zoological Institute, TU Braunschweig, 38106, Braunschweig, Germany
- Neuroinflammation and Neurodegeneration Group, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany
| | - Niklas Lonnemann
- Department of Cellular Neurobiology, Zoological Institute, TU Braunschweig, 38106, Braunschweig, Germany
| | - Wei He
- Department of Bioinformatics and Biochemistry, Braunschweig Integrated Centre of Systems Biology (BRICS), TU Braunschweig, 38106, Braunschweig, Germany
| | - Tushar More
- Department of Bioinformatics and Biochemistry, Braunschweig Integrated Centre of Systems Biology (BRICS), TU Braunschweig, 38106, Braunschweig, Germany
| | - Oliver Goldmann
- Infection Immunology Research Group, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany
| | - Eva Medina
- Infection Immunology Research Group, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany
| | - Karsten Hiller
- Department of Bioinformatics and Biochemistry, Braunschweig Integrated Centre of Systems Biology (BRICS), TU Braunschweig, 38106, Braunschweig, Germany.
| | - Martin Korte
- Department of Cellular Neurobiology, Zoological Institute, TU Braunschweig, 38106, Braunschweig, Germany.
- Neuroinflammation and Neurodegeneration Group, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany.
| |
Collapse
|
3
|
Islam R, Rajan R, Choudhary H, Vrionis F, Hanafy KA. Gender differences in Alzheimer's may be associated with TLR4-LYN expression in damage associated microglia and neuronal phagocytosis. J Cell Physiol 2024; 239:e30916. [PMID: 36409648 PMCID: PMC10199960 DOI: 10.1002/jcp.30916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 11/22/2022]
Abstract
The role of Aβ plaques and neurofibrillary tangles in Alzheimer's disease (AD) pathogenesis have recently come into question due to failure of many pharmaceutical agents targeting these deposits and detection of these misfolded proteins in normal human brains. Therefore, we investigated correlations between microglial activation and toll like receptor 4 (TLR4) and Lck/Yes novel tyrosine (LYN) kinase signaling in an AD mouse model. In this study, we used 5-6-month-old 5XFAD and wild type (WT) male and female mice. Immunohistochemistry (IHC) and flow cytometry (FC) were performed on their brains. Cognitive performance was assessed with the Barnes-Maze. IHC showed more Ab aggregation in microglia of female 5XFAD mice compared to their male counterparts. Increased co-localization of microglial TLR4 and LYN was also observed in AD more than WT and females more than males. IHC also suggests microglial phagocytosis of neurons in AD mice, which is supported by FC data. Our FC data also support the involvement of disease associated microglia (DAMs) in this process based on cytokine secretion. Cognitive assessment by the Barnes maze showed 5XFAD females performed worse than males. In this study, we investigated the relationship between microglial TLR4 and LYN kinase in 5XFAD male and females. Our data reveals a correlation between microglial TLR4 and LYN co-localization and AD pathogenesis, more in females than males. Targeting microglial TLR4 and Lyn in DAMs may offer new therapeutic opportunities in the treatment of AD.
Collapse
Affiliation(s)
- Rezwanul Islam
- Department of Biomedical Sciences, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL
| | - Robin Rajan
- Marcus Neuroscience Institute, Boca Raton Medical Center, Boca Raton, FL
| | - Hadi Choudhary
- Department of Biomedical Sciences, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL
| | - Frank Vrionis
- Marcus Neuroscience Institute, Boca Raton Medical Center, Boca Raton, FL
| | - Khalid A. Hanafy
- Department of Biomedical Sciences, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL
- Marcus Neuroscience Institute, Boca Raton Medical Center, Boca Raton, FL
| |
Collapse
|
4
|
Chen H, Zeng Y, Wang D, Li Y, Xing J, Zeng Y, Liu Z, Zhou X, Fan H. Neuroinflammation of Microglial Regulation in Alzheimer's Disease: Therapeutic Approaches. Molecules 2024; 29:1478. [PMID: 38611758 PMCID: PMC11013124 DOI: 10.3390/molecules29071478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/13/2024] [Accepted: 03/23/2024] [Indexed: 04/14/2024] Open
Abstract
Alzheimer's disease (AD) is a complex degenerative disease of the central nervous system that is clinically characterized by a progressive decline in memory and cognitive function. The pathogenesis of AD is intricate and not yet fully understood. Neuroinflammation, particularly microglial activation-mediated neuroinflammation, is believed to play a crucial role in increasing the risk, triggering the onset, and hastening the progression of AD. Modulating microglial activation and regulating microglial energy metabolic disorder are seen as promising strategies to intervene in AD. The application of anti-inflammatory drugs and the targeting of microglia for the prevention and treatment of AD has emerged as a new area of research interest. This article provides a comprehensive review of the role of neuroinflammation of microglial regulation in the development of AD, exploring the connection between microglial energy metabolic disorder, neuroinflammation, and AD development. Additionally, the advancements in anti-inflammatory and microglia-regulating therapies for AD are discussed.
Collapse
Affiliation(s)
- Haiyun Chen
- College of Pharmacy, Clinical Pharmacy (School of Integrative Pharmacy), Guangdong Pharmaceutical University, Guangzhou 510006, China; (H.C.)
| | - Yuhan Zeng
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China; (Y.Z.)
- Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou 510006, China
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM, State Administration of Traditional Chinese Medicine, Guangzhou 510006, China
| | - Dan Wang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China; (Y.Z.)
- Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou 510006, China
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM, State Administration of Traditional Chinese Medicine, Guangzhou 510006, China
| | - Yichen Li
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang 524023, China;
| | - Jieyu Xing
- College of Pharmacy, Clinical Pharmacy (School of Integrative Pharmacy), Guangdong Pharmaceutical University, Guangzhou 510006, China; (H.C.)
| | - Yuejia Zeng
- College of Pharmacy, Clinical Pharmacy (School of Integrative Pharmacy), Guangdong Pharmaceutical University, Guangzhou 510006, China; (H.C.)
| | - Zheng Liu
- School of Medicine, Foshan University, Foshan 528000, China;
| | - Xinhua Zhou
- Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou 510000, China
| | - Hui Fan
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China; (Y.Z.)
- Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou 510006, China
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM, State Administration of Traditional Chinese Medicine, Guangzhou 510006, China
| |
Collapse
|
5
|
Kang HS, Kim JH, Kim JH, Bang WJ, Choi HG, Kim NY, Park HY, Kwon MJ. Unlocking the Protective Potential of Upper Respiratory Infection Treatment Histories against Alzheimer's Disease: A Korean Adult Population Study. J Clin Med 2024; 13:260. [PMID: 38202267 PMCID: PMC10780066 DOI: 10.3390/jcm13010260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/22/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
With increasing interest in the inflammation-pathogen infection hypothesis and its potential links to Alzheimer's disease (AD) development, there is growing consideration of using upper respiratory infection (URI) treatments as interventions for AD. This nested case-control study explored the potential association between prior URI histories and AD development in a Korean adult population using the national health screening cohort data (2002-2019). The study included 26,920 AD patients and 107,680 matched control individuals, focusing on those seeking respiratory treatment. Logistic regression analyses assessed the impact of URI histories and treatment on AD risk while adjusting for covariates. Our results revealed that over a 1-year period, individuals with URI histories (≥1, ≥2, or ≥3 instances) exhibited decreasing probabilities of developing AD, with risk reductions of 19%, 15%, and 12%, respectively. Expanding our investigation to a 2-year period consistently showed a 17% reduction in AD risk. This effect remained robust across diverse demographic groups and after adjusting for covariates, encompassing comorbidities, hypertension, hyperlipidemia, blood glucose levels, and lifestyle factors. Subgroup analyses further substantiated this association. In conclusion, our findings cautiously suggest a potential protective role of prior URI treatment histories in mitigating the risk of AD development.
Collapse
Affiliation(s)
- Ho Suk Kang
- Division of Gastroenterology, Department of Internal Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang 14068, Republic of Korea;
| | - Ji Hee Kim
- Department of Neurosurgery, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang 14068, Republic of Korea;
| | - Joo-Hee Kim
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang 14068, Republic of Korea;
| | - Woo Jin Bang
- Department of Urology, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang 14068, Republic of Korea;
| | - Hyo Geun Choi
- Suseo Seoul E.N.T. Clinic and MD Analytics, 10, Bamgogae-ro 1-gil, Gangnam-gu, Seoul 06349, Republic of Korea;
| | - Nan Young Kim
- Hallym Institute of Translational Genomics and Bioinformatics, Hallym University Medical Center, Anyang 14068, Republic of Korea;
| | - Ha Young Park
- Department of Pathology, Busan Paik Hospital, Inje University College of Medicine, Busan 47392, Republic of Korea;
| | - Mi Jung Kwon
- Department of Pathology, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang 14068, Republic of Korea
| |
Collapse
|
6
|
Yang Y, García-Cruzado M, Zeng H, Camprubí-Ferrer L, Bahatyrevich-Kharitonik B, Bachiller S, Deierborg T. LPS priming before plaque deposition impedes microglial activation and restrains Aβ pathology in the 5xFAD mouse model of Alzheimer's disease. Brain Behav Immun 2023; 113:228-247. [PMID: 37437821 DOI: 10.1016/j.bbi.2023.07.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/28/2023] [Accepted: 07/05/2023] [Indexed: 07/14/2023] Open
Abstract
Microglia have an innate immunity memory (IIM) with divergent functions in different animal models of neurodegenerative diseases, including Alzheimer's disease (AD). AD is characterized by chronic neuroinflammation, neurodegeneration, tau tangles and β-amyloid (Aβ) deposition. Systemic inflammation has been implicated in contributing to the progression of AD. Multiple reports have demonstrated unique microglial signatures in AD mouse models and patients. However, the proteomic profiles of microglia modified by IIM have not been well-documented in an AD model. Therefore, in the present study, we investigate whether lipopolysaccharide (LPS)-induced IIM in the pre-clinical stage of AD alters the microglial responses and shapes the neuropathology. We accomplished this by priming 5xFAD and wild-type (WT) mice with an LPS injection at 6 weeks (before the robust development of plaques). 140 days later, we evaluated microglial morphology, activation, the microglial barrier around Aβ, and Aβ deposition in both 5xFAD primed and unprimed mice. Priming induced decreased soma size of microglia and reduced colocalization of PSD95 and Synaptophysin in the retrosplenial cortex. Priming appeared to increase phagocytosis of Aβ, resulting in fewer Thioflavin S+ Aβ fibrils in the dentate gyrus. RIPA-soluble Aβ 40 and 42 were significantly reduced in Primed-5xFAD mice leading to a smaller size of MOAB2+ Aβ plaques in the prefrontal cortex. We also found that Aβ-associated microglia in the Primed-5xFAD mice were less activated and fewer in number. After priming, we also observed improved memory performance in 5xFAD. To further elucidate the molecular mechanism underlying these changes, we performed quantitative proteomic analysis of microglia and bone marrow monocytes. A specific pattern in the microglial proteome was revealed in primed 5xFAD mice. These results suggest that the imprint signatures of primed microglia display a distinctive phenotype and highlight the potential for a beneficial adaption of microglia when intervention occurs in the pre-clinical stage of AD.
Collapse
Affiliation(s)
- Yiyi Yang
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Sweden.
| | - Marta García-Cruzado
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Sweden
| | - Hairuo Zeng
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Sweden
| | - Lluís Camprubí-Ferrer
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Sweden
| | - Bazhena Bahatyrevich-Kharitonik
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Sweden; Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital, University of Seville, CSIC, Spain; Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - Sara Bachiller
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Sweden; Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital, University of Seville, CSIC, Spain; Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Seville, Spain
| | - Tomas Deierborg
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Sweden.
| |
Collapse
|
7
|
Latham AS, Moreno JA, Geer CE. Biological agents and the aging brain: glial inflammation and neurotoxic signaling. FRONTIERS IN AGING 2023; 4:1244149. [PMID: 37649972 PMCID: PMC10464498 DOI: 10.3389/fragi.2023.1244149] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/01/2023] [Indexed: 09/01/2023]
Abstract
Neuroinflammation is a universal characteristic of brain aging and neurological disorders, irrespective of the disease state. Glial inflammation mediates this signaling, through astrocyte and microglial polarization from neuroprotective to neurotoxic phenotypes. Glial reactivity results in the loss of homeostasis, as these cells no longer provide support to neurons, in addition to the production of chronically toxic pro-inflammatory mediators. These glial changes initiate an inflammatory brain state that injures the central nervous system (CNS) over time. As the brain ages, glia are altered, including increased glial cell numbers, morphological changes, and either a pre-disposition or inability to become reactive. These alterations induce age-related neuropathologies, ultimately leading to neuronal degradation and irreversible damage associated with disorders of the aged brain, including Alzheimer's Disease (AD) and other related diseases. While the complex interactions of these glial cells and the brain are well studied, the role additional stressors, such as infectious agents, play on age-related neuropathology has not been fully elucidated. Both biological agents in the periphery, such as bacterial infections, or in the CNS, including viral infections like SARS-CoV-2, push glia into neuroinflammatory phenotypes that can exacerbate pathology within the aging brain. These biological agents release pattern associated molecular patterns (PAMPs) that bind to pattern recognition receptors (PRRs) on glial cells, beginning an inflammatory cascade. In this review, we will summarize the evidence that biological agents induce reactive glia, which worsens age-related neuropathology.
Collapse
Affiliation(s)
- Amanda S. Latham
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
- Brain Research Center, Colorado State University, Fort Collins, CO, United States
| | - Julie A. Moreno
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
- Brain Research Center, Colorado State University, Fort Collins, CO, United States
| | - Charlize E. Geer
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
8
|
Catumbela CSG, Giridharan VV, Barichello T, Morales R. Clinical evidence of human pathogens implicated in Alzheimer's disease pathology and the therapeutic efficacy of antimicrobials: an overview. Transl Neurodegener 2023; 12:37. [PMID: 37496074 PMCID: PMC10369764 DOI: 10.1186/s40035-023-00369-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/05/2023] [Indexed: 07/28/2023] Open
Abstract
A wealth of pre-clinical reports and data derived from human subjects and brain autopsies suggest that microbial infections are relevant to Alzheimer's disease (AD). This has inspired the hypothesis that microbial infections increase the risk or even trigger the onset of AD. Multiple models have been developed to explain the increase in pathogenic microbes in AD patients. Although this hypothesis is well accepted in the field, it is not yet clear whether microbial neuroinvasion is a cause of AD or a consequence of the pathological changes experienced by the demented brain. Along the same line, the gut microbiome has also been proposed as a modulator of AD. In this review, we focus on human-based evidence demonstrating the elevated abundance of microbes and microbe-derived molecules in AD hosts as well as their interactions with AD hallmarks. Further, the direct-purpose and potential off-target effects underpinning the efficacy of anti-microbial treatments in AD are also addressed.
Collapse
Affiliation(s)
- Celso S G Catumbela
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Vijayasree V Giridharan
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA
| | - Tatiana Barichello
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA
- Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, 88806-000, Brazil
| | - Rodrigo Morales
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
- Centro Integrativo de Biologia y Quimica Aplicada (CIBQA), Universidad Bernardo O'Higgins, 8370993, Santiago, Chile.
| |
Collapse
|
9
|
Endres K, Friedland K. Talk to Me-Interplay between Mitochondria and Microbiota in Aging. Int J Mol Sci 2023; 24:10818. [PMID: 37445995 DOI: 10.3390/ijms241310818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
The existence of mitochondria in eukaryotic host cells as a remnant of former microbial organisms has been widely accepted, as has their fundamental role in several diseases and physiological aging. In recent years, it has become clear that the health, aging, and life span of multicellular hosts are also highly dependent on the still-residing microbiota, e.g., those within the intestinal system. Due to the common evolutionary origin of mitochondria and these microbial commensals, it is intriguing to investigate if there might be a crosstalk based on preserved common properties. In the light of rising knowledge on the gut-brain axis, such crosstalk might severely affect brain homeostasis in aging, as neuronal tissue has a high energy demand and low tolerance for according functional decline. In this review, we summarize what is known about the impact of both mitochondria and the microbiome on the host's aging process and what is known about the aging of both entities. For a long time, bacteria were assumed to be immortal; however, recent evidence indicates their aging and similar observations have been made for mitochondria. Finally, we present pathways by which mitochondria are affected by microbiota and give information about therapeutic anti-aging approaches that are based on current knowledge.
Collapse
Affiliation(s)
- Kristina Endres
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg-University, 55131 Mainz, Germany
| | - Kristina Friedland
- Department of Pharmacology and Toxicology, Institute for Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, 55128 Mainz, Germany
| |
Collapse
|
10
|
López-Villodres JA, Escamilla A, Mercado-Sáenz S, Alba-Tercedor C, Rodriguez-Perez LM, Arranz-Salas I, Sanchez-Varo R, Bermúdez D. Microbiome Alterations and Alzheimer's Disease: Modeling Strategies with Transgenic Mice. Biomedicines 2023; 11:1846. [PMID: 37509487 PMCID: PMC10377071 DOI: 10.3390/biomedicines11071846] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
In the last decade, the role of the microbiota-gut-brain axis has been gaining momentum in the context of many neurodegenerative and metabolic disorders, including Alzheimer's disease (AD) and diabetes, respectively. Notably, a balanced gut microbiota contributes to the epithelial intestinal barrier maintenance, modulates the host immune system, and releases neurotransmitters and/or neuroprotective short-chain fatty acids. However, dysbiosis may provoke immune dysregulation, impacting neuroinflammation through peripheral-central immune communication. Moreover, lipopolysaccharide or detrimental microbial end-products can cross the blood-brain barrier and induce or at least potentiate the neuropathological progression of AD. Thus, after repeated failure to find a cure for this dementia, a necessary paradigmatic shift towards considering AD as a systemic disorder has occurred. Here, we present an overview of the use of germ-free and/or transgenic animal models as valid tools to unravel the connection between dysbiosis, metabolic diseases, and AD, and to investigate novel therapeutical targets. Given the high impact of dietary habits, not only on the microbiota but also on other well-established AD risk factors such as diabetes or obesity, consistent changes of lifestyle along with microbiome-based therapies should be considered as complementary approaches.
Collapse
Affiliation(s)
- Juan Antonio López-Villodres
- Departamento Fisiologia Humana, Histologia Humana, Anatomia Patologica y Educacion Fisica y Deportiva, Facultad de Medicina, Universidad de Malaga, 29071 Malaga, Spain
| | - Alejandro Escamilla
- Departamento Fisiologia Humana, Histologia Humana, Anatomia Patologica y Educacion Fisica y Deportiva, Facultad de Medicina, Universidad de Malaga, 29071 Malaga, Spain
- Instituto de Investigacion Biomedica de Malaga-IBIMA-Plataforma Bionand, 29071 Malaga, Spain
| | - Silvia Mercado-Sáenz
- Departamento Fisiologia Humana, Histologia Humana, Anatomia Patologica y Educacion Fisica y Deportiva, Facultad de Medicina, Universidad de Malaga, 29071 Malaga, Spain
| | - Carmen Alba-Tercedor
- Departamento Fisiologia Humana, Histologia Humana, Anatomia Patologica y Educacion Fisica y Deportiva, Facultad de Medicina, Universidad de Malaga, 29071 Malaga, Spain
| | - Luis Manuel Rodriguez-Perez
- Departamento Fisiologia Humana, Histologia Humana, Anatomia Patologica y Educacion Fisica y Deportiva, Facultad de Medicina, Universidad de Malaga, 29071 Malaga, Spain
- Instituto de Investigacion Biomedica de Malaga-IBIMA-Plataforma Bionand, 29071 Malaga, Spain
| | - Isabel Arranz-Salas
- Departamento Fisiologia Humana, Histologia Humana, Anatomia Patologica y Educacion Fisica y Deportiva, Facultad de Medicina, Universidad de Malaga, 29071 Malaga, Spain
- Instituto de Investigacion Biomedica de Malaga-IBIMA-Plataforma Bionand, 29071 Malaga, Spain
- Unidad de Anatomia Patologica, Hospital Universitario Virgen de la Victoria, 29010 Malaga, Spain
| | - Raquel Sanchez-Varo
- Departamento Fisiologia Humana, Histologia Humana, Anatomia Patologica y Educacion Fisica y Deportiva, Facultad de Medicina, Universidad de Malaga, 29071 Malaga, Spain
- Instituto de Investigacion Biomedica de Malaga-IBIMA-Plataforma Bionand, 29071 Malaga, Spain
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| | - Diego Bermúdez
- Departamento Fisiologia Humana, Histologia Humana, Anatomia Patologica y Educacion Fisica y Deportiva, Facultad de Medicina, Universidad de Malaga, 29071 Malaga, Spain
| |
Collapse
|
11
|
Song R, Guo Y, Fu Y, Ren H, Wang H, Yan H, Ge Y. Trends of mitochondrial changes in AD: a bibliometric study. Front Aging Neurosci 2023; 15:1136400. [PMID: 37261264 PMCID: PMC10227516 DOI: 10.3389/fnagi.2023.1136400] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/17/2023] [Indexed: 06/02/2023] Open
Abstract
Background Alzheimer's disease (AD) is a neurodegenerative disease characterized by progressive progress and memory loss, which eventually develops into dementia. It can cause personality disorders and decreased quality of life of patients. Currently, AD patients account for 60-70% of global dementia patients and the incidence rate of AD is increasing annually. AD not only causes pain to patients but also brings a heavy burden to the entire family. Studies have found that there is a connection between mitochondrial dysfunction and other biochemical changes in AD like classical neuropathological hallmarks (β-amyloid and tau protein), inflammation pathways, oxidative stress, and so on. Evidence shows that early treatment targeted directly to mitochondria could extend the lifespan of model mice and decrease the relevant neuropathological markers. Therefore, research on the mitochondrial dysfunction of AD can be of potential significance for clinical treatment. To date, few bibliometric analysis articles related to mitochondrial dysfunction of AD have been published. Bibliometric analysis refers to quantitatively analyzing certain aspects of articles like publishers, authors, and countries by using statistical and mathematical methods. Combined with statistical software, a large number of papers can be converted to visualization figures and tables, which provide vital information such as keyword hotspots and the names of contributing authors. Through the bibliometric analysis method, our study aimed to provide study trends and keyword hotpots for researchers to conduct further relevant research in this field. Methods We used the Web of Science core collection database as a literature retrieval tool to obtain data related to mitochondrial changes in Alzheimer's disease during the last 20 years. The retrieval type was [TS = (Alzheimer's disease)] ND [TS = (mitochondrion)], ranging from January 1, 2000 to June 30, 2022. VOSviewer v1.6.18, Arcgis 10.8, and HistCite pro 2.1 were used to conduct data visualization analysis. VOSviewer v1.6.18 made relevant network visualization maps of the cooperative relationship between relevant countries, institutions, and authors (co-authorship), the frequency of different keywords appearing together (co-occurrence), and the frequency of different articles cited together (co-cited). Arcgis 10.8 created the world map of publications distribution in this field and Histcite pro 2.1 was used to count the local citation score (LCS) of references. In addition, Journal Citation Reports were used to consult the latest journal import factor and JCI quartile. Results As of June 30, 2022, from the Web of Science core collection, we selected 2,474 original articles in English, excluding the document types of the news items, meeting abstracts, and some articles that had little relevance to our theme. The United States acted as the leader and enjoyed a high reputation in this field. The University of California System was the institution that made the greatest contribution (3.64% with 90 papers). Most articles were published in the Journal of Alzheimer's Disease (8.21%, with 203 papers). The most frequently co-cited journal in Q1 was the Journal of Biological Chemistry (8,666 citations, TLS: 1039591). Russel H. Swerdlow (55 publications) was the most productive author and PH Reddy was the most co-cited author with 1,264 citations (TLS: 62971). The hotpots of mitochondrial dysfunction in AD were as follows: "oxidative stress," "amyloid-beta-protein," "tau," "apoptosis," "inflammation," "autophagy," "precursor protein," "endoplasmic-reticulum," "dynamics" and "mitochondrial unfolded protein response." Conclusion This bibliometric analysis research will help readers rapidly identify current hotpots and milestone studies related to directions of interest in AD research.
Collapse
Affiliation(s)
- Ruiyao Song
- The Department of Neurology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Yunchu Guo
- The Department of Neurology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Yu Fu
- The Department of Neurology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Hongling Ren
- The Department of Neurology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Hairong Wang
- The Department of Neurology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Hongting Yan
- The Department of Neurology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Yusong Ge
- The Department of Neurology, The Second Hospital of Dalian Medical University, Dalian, China
- The Department of Discipline Construction and Scientific Research Management, The Second Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
12
|
Wei ZH, Koya J, Acharekar N, Trejos J, Dong XD, Schanne FA, Ashby CR, Reznik SE. N,N-dimethylacetamide targets neuroinflammation in Alzheimer's disease in in-vitro and ex-vivo models. Sci Rep 2023; 13:7077. [PMID: 37127686 PMCID: PMC10151369 DOI: 10.1038/s41598-023-34355-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 04/28/2023] [Indexed: 05/03/2023] Open
Abstract
Alzheimer's disease (AD) is a chronic degenerative brain disorder with no clear pathogenesis or effective cure, accounting for 60-80% of cases of dementia. In recent years, the importance of neuroinflammation in the pathogenesis of AD and other neurodegenerative disorders has come into focus. Previously, we made the serendipitous discovery that the widely used drug excipient N,N-dimethylacetamide (DMA) attenuates endotoxin-induced inflammatory responses in vivo. In the current work, we investigate the effect of DMA on neuroinflammation and its mechanism of action in in-vitro and ex-vivo models of AD. We show that DMA significantly suppresses the production of inflammatory mediators, such as reactive oxygen species (ROS), nitric oxide (NO) and various cytokines and chemokines, as well as amyloid-β (Aβ), in cultured microglia and organotypic hippocampal slices induced by lipopolysaccharide (LPS). We also demonstrate that DMA inhibits Aβ-induced inflammation. Finally, we show that the mechanism of DMA's effect on neuroinflammation is inhibition of the nuclear factor kappa-B (NF-κB) signaling pathway and we show how DMA dismantles the positive feedback loop between NF-κB and Aβ synthesis. Taken together, our findings suggest that DMA, a generally regarded as safe compound that crosses the blood brain barrier, should be further investigated as a potential therapy for Alzheimer's disease and neuroinflammatory disorders.
Collapse
Affiliation(s)
- Zeng-Hui Wei
- Department of Pharmaceutical Sciences, St. John's University, Queens, NY, 11439, USA
| | - Jagadish Koya
- Department of Pharmaceutical Sciences, St. John's University, Queens, NY, 11439, USA
| | - Nikita Acharekar
- Department of Pharmaceutical Sciences, St. John's University, Queens, NY, 11439, USA
| | - Jesus Trejos
- Department of Pharmaceutical Sciences, St. John's University, Queens, NY, 11439, USA
| | - Xing-Duo Dong
- Department of Pharmaceutical Sciences, St. John's University, Queens, NY, 11439, USA
| | - Francis A Schanne
- Department of Pharmaceutical Sciences, St. John's University, Queens, NY, 11439, USA
| | - Charles R Ashby
- Department of Pharmaceutical Sciences, St. John's University, Queens, NY, 11439, USA
| | - Sandra E Reznik
- Department of Pharmaceutical Sciences, St. John's University, Queens, NY, 11439, USA.
- Departments of Pathology and Obstetrics and Gynecology and Women's Health, The University Hospital for Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, 10461, USA.
| |
Collapse
|
13
|
Das TK, Ganesh BP. Interlink between the gut microbiota and inflammation in the context of oxidative stress in Alzheimer's disease progression. Gut Microbes 2023; 15:2206504. [PMID: 37127846 PMCID: PMC10153019 DOI: 10.1080/19490976.2023.2206504] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/03/2023] Open
Abstract
The microbiota-gut-brain axis is an important pathway of communication and may dynamically contribute to Alzheimer's disease (AD) pathogenesis. Pathological commensal gut microbiota alterations, termed as dysbiosis, can influence intestinal permeability and break the blood-brain barrier which may trigger AD pathogenesis via redox signaling, neuronal, immune, and metabolic pathways. Dysbiosis increases the oxidative stress. Oxidants affect the innate immune system through recognizing microbial-derived pathogens by Toll-like receptors and initiating the inflammatory process. Most of the gut microbiome research work highlights the relationship between the gut microbiota and AD, but the contributory connection between precise bacteria and brain dysfunction in AD pathology cannot be fully demonstrated. Here, we summarize the current information of the fundamental connections between oxidative stress, inflammation, and gut dysbiosis in AD. This review emphasizes on the involvement of gut microbiota in the regulation of oxidative stress, inflammation, immune responses including central and peripheral cross-talk. It provides insights for novel preventative and therapeutic approaches in AD.
Collapse
Affiliation(s)
- Tushar K Das
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Bhanu P Ganesh
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
14
|
De Vlieger L, Vandenbroucke RE, Van Hoecke L. Recent insights into viral infections as a trigger and accelerator in alzheimer's disease. Drug Discov Today 2022; 27:103340. [PMID: 35987492 PMCID: PMC9385395 DOI: 10.1016/j.drudis.2022.103340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/08/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder for which only symptomatic medication is available, except for the recently FDA-approved aducanumab. This lack of effective treatment urges us to investigate alternative paths that might contribute to disease development. In light of the recent SARS-CoV-2 pandemic and the disturbing neurological complications seen in some patients, it is desirable to (re)investigate the viability of the viral infection theory claiming that a microbe could affect AD initiation and/or progression. Here, we review the most important evidence for this theory with a special focus on two viruses, namely HSV-1 and SARS-CoV-2. Moreover, we discuss the possible involvement of extracellular vesicles (EVs). This overview will contribute to a more rational approach of potential treatment strategies for AD patients.
Collapse
Affiliation(s)
- Lize De Vlieger
- Barriers in Inflammation Lab, VIB Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Roosmarijn E Vandenbroucke
- Barriers in Inflammation Lab, VIB Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| | - Lien Van Hoecke
- Barriers in Inflammation Lab, VIB Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
15
|
Toll-Like Receptor 4: A Promising Therapeutic Target for Alzheimer's Disease. Mediators Inflamm 2022; 2022:7924199. [PMID: 36046763 PMCID: PMC9420645 DOI: 10.1155/2022/7924199] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 11/18/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease that primarily manifests as memory deficits and cognitive impairment and has created health challenges for patients and society. In AD, amyloid β-protein (Aβ) induces Toll-like receptor 4 (TLR4) activation in microglia. Activation of TLR4 induces downstream signaling pathways and promotes the generation of proinflammatory cytokines, such as tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β), which also trigger the activation of astrocytes and influence amyloid-dependent neuronal death. Therefore, TLR4 may be an important molecular target for treating AD by regulating neuroinflammation. Moreover, TLR4 regulates apoptosis, autophagy, and gut microbiota and is closely related to AD. This article reviews the role of TLR4 in the pathogenesis of AD and a range of potential therapies targeting TLR4 for AD. Elucidating the regulatory mechanism of TLR4 in AD may provide valuable clues for developing new therapeutic strategies for AD.
Collapse
|
16
|
Wendimu MY, Hooks SB. Microglia Phenotypes in Aging and Neurodegenerative Diseases. Cells 2022; 11:2091. [PMID: 35805174 PMCID: PMC9266143 DOI: 10.3390/cells11132091] [Citation(s) in RCA: 91] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/24/2022] [Accepted: 06/29/2022] [Indexed: 02/08/2023] Open
Abstract
Neuroinflammation is a hallmark of many neurodegenerative diseases (NDs) and plays a fundamental role in mediating the onset and progression of disease. Microglia, which function as first-line immune guardians of the central nervous system (CNS), are the central drivers of neuroinflammation. Numerous human postmortem studies and in vivo imaging analyses have shown chronically activated microglia in patients with various acute and chronic neuropathological diseases. While microglial activation is a common feature of many NDs, the exact role of microglia in various pathological states is complex and often contradictory. However, there is a consensus that microglia play a biphasic role in pathological conditions, with detrimental and protective phenotypes, and the overall response of microglia and the activation of different phenotypes depends on the nature and duration of the inflammatory insult, as well as the stage of disease development. This review provides a comprehensive overview of current research on the various microglia phenotypes and inflammatory responses in health, aging, and NDs, with a special emphasis on the heterogeneous phenotypic response of microglia in acute and chronic diseases such as hemorrhagic stroke (HS), Alzheimer's disease (AD), and Parkinson's disease (PD). The primary focus is translational research in preclinical animal models and bulk/single-cell transcriptome studies in human postmortem samples. Additionally, this review covers key microglial receptors and signaling pathways that are potential therapeutic targets to regulate microglial inflammatory responses during aging and in NDs. Additionally, age-, sex-, and species-specific microglial differences will be briefly reviewed.
Collapse
Affiliation(s)
| | - Shelley B. Hooks
- Hooks Lab, Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602, USA;
| |
Collapse
|
17
|
Chen D, Fang X, Zhu Z. Progress in the correlation of postoperative cognitive dysfunction and Alzheimer's disease and the potential therapeutic drug exploration. IBRAIN 2022; 9:446-462. [PMID: 38680509 PMCID: PMC11045201 DOI: 10.1002/ibra.12040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/27/2022] [Accepted: 05/02/2022] [Indexed: 05/01/2024]
Abstract
Postoperative cognitive dysfunction (POCD) is a decrease in mental capacity that can occur days to weeks after a medical procedure and may become permanent and rarely lasts for a longer period of time. With the continuous development of research, various viewpoints in academic circles have undergone subtle changes, and the role of anesthesia depth and anesthesia type seems to be gradually weakened; Alzheimer's disease (AD) is a latent and progressive neurodegenerative disease in the elderly. The protein hypothesis and the synaptic hypothesis are well-known reasons. These changes will also lead to the occurrence of an inflammatory cascade. The exact etiology and pathogenesis need to be studied. The reasonable biological mechanism affecting brain protein deposition, neuroinflammation, and acetylcholine-like effect has a certain relationship between AD and POCD. Whereas there is still further uncertainty about the mechanism and treatment, and it is elusive whether POCD is a link in the continuous progress of AD or a separate entity, which has doubts about the diagnosis and treatment of the disease. Therefore, this review is based on the current common clinical characteristics of AD and POCD, and pathophysiological research, to search for their common points and explore the direction and new strategies for future treatment.
Collapse
Affiliation(s)
- Dong‐Qin Chen
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina
- College of AnesthesiologyZunyi Medical UniversityZunyiChina
| | - Xu Fang
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina
- College of AnesthesiologyZunyi Medical UniversityZunyiChina
| | - Zhao‐Qiong Zhu
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| |
Collapse
|
18
|
Yousefi-Ahmadipour A, Sartipi M, Khodadadi H, Shariati-Kohbanani M, Arababadi MK. Toll-like receptor 4 and the inflammation during aging. JOURNAL OF GERONTOLOGY AND GERIATRICS 2022. [DOI: 10.36150/2499-6564-n471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
19
|
Xie J, Van Hoecke L, Vandenbroucke RE. The Impact of Systemic Inflammation on Alzheimer's Disease Pathology. Front Immunol 2022; 12:796867. [PMID: 35069578 PMCID: PMC8770958 DOI: 10.3389/fimmu.2021.796867] [Citation(s) in RCA: 103] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 12/15/2021] [Indexed: 12/11/2022] Open
Abstract
Alzheimer’s disease (AD) is a devastating age-related neurodegenerative disorder with an alarming increasing prevalence. Except for the recently FDA-approved Aducanumab of which the therapeutic effect is not yet conclusively proven, only symptomatic medication that is effective for some AD patients is available. In order to be able to design more rational and effective treatments, our understanding of the mechanisms behind the pathogenesis and progression of AD urgently needs to be improved. Over the last years, it became increasingly clear that peripheral inflammation is one of the detrimental factors that can contribute to the disease. Here, we discuss the current understanding of how systemic and intestinal (referred to as the gut-brain axis) inflammatory processes may affect brain pathology, with a specific focus on AD. Moreover, we give a comprehensive overview of the different preclinical as well as clinical studies that link peripheral Inflammation to AD initiation and progression. Altogether, this review broadens our understanding of the mechanisms behind AD pathology and may help in the rational design of further research aiming to identify novel therapeutic targets.
Collapse
Affiliation(s)
- Junhua Xie
- VIB Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Lien Van Hoecke
- VIB Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Roosmarijn E Vandenbroucke
- VIB Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
20
|
Shen S, Liao Q, Wong YK, Chen X, Yang C, Xu C, Sun J, Wang J. The role of melatonin in the treatment of type 2 diabetes mellitus and Alzheimer's disease. Int J Biol Sci 2022; 18:983-994. [PMID: 35173531 PMCID: PMC8771831 DOI: 10.7150/ijbs.66871] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/21/2021] [Indexed: 12/03/2022] Open
Abstract
In type 2 diabetes mellitus (T2DM) and its related disorders like obesity, the abnormal protein processing, oxidative stress and proinflammatory cytokines will drive the activation of inflammatory pathways, leading to low-grade chronic inflammation and insulin resistance (IR) in the periphery and impaired neuronal insulin signaling in the brain. Studies have shown that such inflammation and impaired insulin signaling contribute to the development of Alzheimer's disease (AD). Therefore, new therapeutic strategies are needed for the treatment of T2DM and T2DM-linked AD. Melatonin is primarily known for its circadian role which conveys message of darkness and induces night-state physiological functions. Besides rhythm-related effects, melatonin has anti-inflammatory and antioxidant properties. Melatonin levels are downregulated in metabolic disorders with IR, and activation of melatonin signaling delays disease progression. The aim of this Review is to highlight the therapeutic potentials of melatonin in preventing the acceleration of AD in T2DM individuals through its therapeutic mechanisms, including antioxidative effects, anti-inflammatory effects, restoring mitochondrial function and insulin sensitivity.
Collapse
Affiliation(s)
- Shengnan Shen
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medcal Sciences, University of Macau, Taipa, Macau, China
| | - Qiwen Liao
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Yin Kwan Wong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Xiao Chen
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Chuanbin Yang
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Chengchao Xu
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jichao Sun
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
- Shenzhen Mental Health Centre, Shenzhen Kangning Hospital, Shenzhen, China
| | - Jigang Wang
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
- Central People's Hospital of Zhanjiang, Zhanjiang, Guangdong, China
| |
Collapse
|
21
|
Can gamma entrainment of the brain rhythms prevent or alleviate Alzheimer’s disease? J Transl Int Med 2021; 9:231-233. [PMID: 35136721 PMCID: PMC8802396 DOI: 10.2478/jtim-2021-0048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
|
22
|
Sansores-España LD, Melgar-Rodríguez S, Olivares-Sagredo K, Cafferata EA, Martínez-Aguilar VM, Vernal R, Paula-Lima AC, Díaz-Zúñiga J. Oral-Gut-Brain Axis in Experimental Models of Periodontitis: Associating Gut Dysbiosis With Neurodegenerative Diseases. FRONTIERS IN AGING 2021; 2:781582. [PMID: 35822001 PMCID: PMC9261337 DOI: 10.3389/fragi.2021.781582] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/08/2021] [Indexed: 12/12/2022]
Abstract
Periodontitis is considered a non-communicable chronic disease caused by a dysbiotic microbiota, which generates a low-grade systemic inflammation that chronically damages the organism. Several studies have associated periodontitis with other chronic non-communicable diseases, such as cardiovascular or neurodegenerative diseases. Besides, the oral bacteria considered a keystone pathogen, Porphyromonas gingivalis, has been detected in the hippocampus and brain cortex. Likewise, gut microbiota dysbiosis triggers a low-grade systemic inflammation, which also favors the risk for both cardiovascular and neurodegenerative diseases. Recently, the existence of an axis of Oral-Gut communication has been proposed, whose possible involvement in the development of neurodegenerative diseases has not been uncovered yet. The present review aims to compile evidence that the dysbiosis of the oral microbiota triggers changes in the gut microbiota, which creates a higher predisposition for the development of neuroinflammatory or neurodegenerative diseases.The Oral-Gut-Brain axis could be defined based on anatomical communications, where the mouth and the intestine are in constant communication. The oral-brain axis is mainly established from the trigeminal nerve and the gut-brain axis from the vagus nerve. The oral-gut communication is defined from an anatomical relation and the constant swallowing of oral bacteria. The gut-brain communication is more complex and due to bacteria-cells, immune and nervous system interactions. Thus, the gut-brain and oral-brain axis are in a bi-directional relationship. Through the qualitative analysis of the selected papers, we conclude that experimental periodontitis could produce both neurodegenerative pathologies and intestinal dysbiosis, and that periodontitis is likely to induce both conditions simultaneously. The severity of the neurodegenerative disease could depend, at least in part, on the effects of periodontitis in the gut microbiota, which could strengthen the immune response and create an injurious inflammatory and dysbiotic cycle. Thus, dementias would have their onset in dysbiotic phenomena that affect the oral cavity or the intestine. The selected studies allow us to speculate that oral-gut-brain communication exists, and bacteria probably get to the brain via trigeminal and vagus nerves.
Collapse
Affiliation(s)
- Luis Daniel Sansores-España
- Periodontal Biology Laboratory, Faculty of Dentistry, University of Chile, Santiago, Chile
- Faculty of Dentistry, Autonomous University of Yucatán, Mérida, México
| | | | | | - Emilio A. Cafferata
- Department of Periodontology, School of Dentistry, Universidad Científica Del Sur, Lima, Perú
| | | | - Rolando Vernal
- Periodontal Biology Laboratory, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Andrea Cristina Paula-Lima
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Jaime Díaz-Zúñiga
- Periodontal Biology Laboratory, Faculty of Dentistry, University of Chile, Santiago, Chile
- Department of Medicine, Faculty of Medicine, University of Atacama, Copiapó, Chile
- *Correspondence: Jaime Díaz-Zúñiga, ,
| |
Collapse
|
23
|
Kim HS, Kim S, Shin SJ, Park YH, Nam Y, Kim CW, Lee KW, Kim SM, Jung ID, Yang HD, Park YM, Moon M. Gram-negative bacteria and their lipopolysaccharides in Alzheimer's disease: pathologic roles and therapeutic implications. Transl Neurodegener 2021; 10:49. [PMID: 34876226 PMCID: PMC8650380 DOI: 10.1186/s40035-021-00273-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/09/2021] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD) is the most serious age-related neurodegenerative disease and causes destructive and irreversible cognitive decline. Failures in the development of therapeutics targeting amyloid-β (Aβ) and tau, principal proteins inducing pathology in AD, suggest a paradigm shift towards the development of new therapeutic targets. The gram-negative bacteria and lipopolysaccharides (LPS) are attractive new targets for AD treatment. Surprisingly, an altered distribution of gram-negative bacteria and their LPS has been reported in AD patients. Moreover, gram-negative bacteria and their LPS have been shown to affect a variety of AD-related pathologies, such as Aβ homeostasis, tau pathology, neuroinflammation, and neurodegeneration. Moreover, therapeutic approaches targeting gram-negative bacteria or gram-negative bacterial molecules have significantly alleviated AD-related pathology and cognitive dysfunction. Despite multiple evidence showing that the gram-negative bacteria and their LPS play a crucial role in AD pathogenesis, the pathogenic mechanisms of gram-negative bacteria and their LPS have not been clarified. Here, we summarize the roles and pathomechanisms of gram-negative bacteria and LPS in AD. Furthermore, we discuss the possibility of using gram-negative bacteria and gram-negative bacterial molecules as novel therapeutic targets and new pathological characteristics for AD.
Collapse
Affiliation(s)
- Hyeon Soo Kim
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, 35365, Republic of Korea
| | - Sujin Kim
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, 35365, Republic of Korea
- Research Institute for Dementia Science, Konyang University, Daejeon, 35365, Republic of Korea
| | - Soo Jung Shin
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, 35365, Republic of Korea
| | - Yong Ho Park
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, 35365, Republic of Korea
| | - Yunkwon Nam
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, 35365, Republic of Korea
| | - Chae Won Kim
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, 35365, Republic of Korea
| | - Kang Won Lee
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, 35365, Republic of Korea
| | - Sung-Min Kim
- Dandi Bioscience Inc, 6th Floor of Real Company Building, 66, Achasan-ro, Sungdong-gu, Seoul, Republic of Korea
| | - In Duk Jung
- Dandi Bioscience Inc, 6th Floor of Real Company Building, 66, Achasan-ro, Sungdong-gu, Seoul, Republic of Korea
| | - Hyun Duk Yang
- Harvard Neurology Clinic, 294 Gwanggyojungang-ro, Suji-gu, Yongin, 16943, Republic of Korea.
| | - Yeong-Min Park
- Dandi Bioscience Inc, 6th Floor of Real Company Building, 66, Achasan-ro, Sungdong-gu, Seoul, Republic of Korea.
- Department of Immunology, School of Medicine, Konkuk University, 268, Chungwondaero, Chungju-si, Chungcheongbuk-do, Republic of Korea.
| | - Minho Moon
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, 35365, Republic of Korea.
- Research Institute for Dementia Science, Konyang University, Daejeon, 35365, Republic of Korea.
| |
Collapse
|
24
|
Chu E, Mychasiuk R, Hibbs ML, Semple BD. Dysregulated phosphoinositide 3-kinase signaling in microglia: shaping chronic neuroinflammation. J Neuroinflammation 2021; 18:276. [PMID: 34838047 PMCID: PMC8627624 DOI: 10.1186/s12974-021-02325-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 11/15/2021] [Indexed: 12/15/2022] Open
Abstract
Microglia are integral mediators of innate immunity within the mammalian central nervous system. Typical microglial responses are transient, intending to restore homeostasis by orchestrating the removal of pathogens and debris and the regeneration of damaged neurons. However, prolonged and persistent microglial activation can drive chronic neuroinflammation and is associated with neurodegenerative disease. Recent evidence has revealed that abnormalities in microglial signaling pathways involving phosphatidylinositol 3-kinase (PI3K) and protein kinase B (AKT) may contribute to altered microglial activity and exacerbated neuroimmune responses. In this scoping review, the known and suspected roles of PI3K-AKT signaling in microglia, both during health and pathological states, will be examined, and the key microglial receptors that induce PI3K-AKT signaling in microglia will be described. Since aberrant signaling is correlated with neurodegenerative disease onset, the relationship between maladapted PI3K-AKT signaling and the development of neurodegenerative disease will also be explored. Finally, studies in which microglial PI3K-AKT signaling has been modulated will be highlighted, as this may prove to be a promising therapeutic approach for the future treatment of a range of neuroinflammatory conditions.
Collapse
Affiliation(s)
- Erskine Chu
- Department of Immunology and Pathology, Central Clinical School, Monash University, Level 6, 89 Commercial Road, Melbourne, VIC, 3004, Australia
- Department of Neuroscience, Central Clinical School, Monash University, Level 6, 99 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Central Clinical School, Monash University, Level 6, 99 Commercial Road, Melbourne, VIC, 3004, Australia
- Department of Neurology, Alfred Health, Prahran, VIC, 3181, Australia
| | - Margaret L Hibbs
- Department of Immunology and Pathology, Central Clinical School, Monash University, Level 6, 89 Commercial Road, Melbourne, VIC, 3004, Australia.
| | - Bridgette D Semple
- Department of Neuroscience, Central Clinical School, Monash University, Level 6, 99 Commercial Road, Melbourne, VIC, 3004, Australia.
- Department of Neurology, Alfred Health, Prahran, VIC, 3181, Australia.
- Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Parkville, VIC, 3050, Australia.
| |
Collapse
|
25
|
Abstract
The innate immune system plays key roles in controlling Alzheimer's disease (AD), while secreting cytokines to eliminate pathogens and regulating brain homeostasis. Recent research in the field of AD has shown that the innate immune-sensing ability of pattern recognition receptors on brain-resident macrophages, known as microglia, initiates neuroinflammation, Aβ accumulation, neuronal loss, and memory decline in patients with AD. Advancements in understanding the role of innate immunity in AD have laid a strong foundation to elucidate AD pathology and devise therapeutic strategies for AD in the future. In this review, we highlight the present understanding of innate immune responses, inflammasome activation, inflammatory cell death pathways, and cytokine secretion in AD. We also discuss how the AD pathology influences these biological processes.
Collapse
Affiliation(s)
- SangJoon Lee
- Department of Infection Biology, Faculty of Medicine, 38515University of Tsukuba, Tsukuba, Japan
| | - Hyun-Jeong Cho
- Department of Biomedical Laboratory Science, College of Medical Science, 34966Konyang University, Daejeon, South Korea
| | - Jin-Hyeob Ryu
- BIORCHESTRA Co. Ltd., 17, Techno 4-ro, Yuseong-gu, Daejeon, Republic of Korea.,BIORCHESTRA Co. Ltd., 245 Main St, Cambridge, MA 02142, USA
| |
Collapse
|
26
|
Garbuz DG, Zatsepina OG, Evgen’ev MB. Beta Amyloid, Tau Protein, and Neuroinflammation: An Attempt to Integrate Different Hypotheses of Alzheimer’s Disease Pathogenesis. Mol Biol 2021. [DOI: 10.1134/s002689332104004x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease that inevitably results in dementia and death. Currently, there are no pathogenetically grounded methods for the prevention and treatment of AD, and all current treatment regimens are symptomatic and unable to significantly delay the development of dementia. The accumulation of β-amyloid peptide (Aβ), which is a spontaneous, aggregation-prone, and neurotoxic product of the processing of signaling protein APP (Amyloid Precursor Protein), in brain tissues, primarily in the hippocampus and the frontal cortex, was for a long time considered the main cause of neurodegenerative changes in AD. However, attempts to treat AD based on decreasing Aβ production and aggregation did not bring significant clinical results. More and more arguments are arising in favor of the fact that the overproduction of Aβ in most cases of AD is not the initial cause, but a concomitant event of pathological processes in the course of the development of sporadic AD. The concept of neuroinflammation has come to the fore, suggesting that inflammatory responses play the leading role in the initiation and development of AD, both in brain tissue and in the periphery. The hypothesis about the key role of neuroinflammation in the pathogenesis of AD opens up new opportunities in the search for ways to treat and prevent this socially significant disease.
Collapse
|
27
|
Mizobuchi H, Soma GI. Low-dose lipopolysaccharide as an immune regulator for homeostasis maintenance in the central nervous system through transformation to neuroprotective microglia. Neural Regen Res 2021; 16:1928-1934. [PMID: 33642362 PMCID: PMC8343302 DOI: 10.4103/1673-5374.308067] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/26/2020] [Accepted: 12/16/2020] [Indexed: 12/25/2022] Open
Abstract
Microglia, which are tissue-resident macrophages in the brain, play a central role in the brain innate immunity and contribute to the maintenance of brain homeostasis. Lipopolysaccharide is a component of the outer membrane of gram-negative bacteria, and activates immune cells including microglia via Toll-like receptor 4 signaling. Lipopolysaccharide is generally known as an endotoxin, as administration of high-dose lipopolysaccharide induces potent systemic inflammation. Also, it has long been recognized that lipopolysaccharide exacerbates neuroinflammation. In contrast, our study revealed that oral administration of lipopolysaccharide ameliorates Alzheimer's disease pathology and suggested that neuroprotective microglia are involved in this phenomenon. Additionally, other recent studies have accumulated evidence demonstrating that controlled immune training with low-dose lipopolysaccharide prevents neuronal damage by transforming the microglia into a neuroprotective phenotype. Therefore, lipopolysaccharide may not a mere inflammatory inducer, but an immunomodulator that can lead to neuroprotective effects in the brain. In this review, we summarized current studies regarding neuroprotective microglia transformed by immune training with lipopolysaccharide. We state that microglia transformed by lipopolysaccharide preconditioning cannot simply be characterized by their general suppression of proinflammatory mediators and general promotion of anti-inflammatory mediators, but instead must be described by their complex profile comprising various molecules related to inflammatory regulation, phagocytosis, neuroprotection, anti-apoptosis, and antioxidation. In addition, microglial transformation seems to depend on the dose of lipopolysaccharide used during immune training. Immune training of neuroprotective microglia using low-dose lipopolysaccharide, especially through oral lipopolysaccharide administration, may represent an innovative prevention or treatment for neurological diseases; however more vigorous studies are still required to properly modulate these treatments.
Collapse
Affiliation(s)
- Haruka Mizobuchi
- Control of Innate Immunity, Technology Research Association, Kagawa, Japan
| | - Gen-Ichiro Soma
- Control of Innate Immunity, Technology Research Association, Kagawa, Japan
- Macrophi Inc., Kagawa, Japan
- Research Institute for Healthy Living, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan
| |
Collapse
|
28
|
Wei Z, Koya J, Reznik SE. Insulin Resistance Exacerbates Alzheimer Disease via Multiple Mechanisms. Front Neurosci 2021; 15:687157. [PMID: 34349617 PMCID: PMC8326507 DOI: 10.3389/fnins.2021.687157] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022] Open
Abstract
Alzheimer disease (AD) is a chronic neurodegenerative disease that accounts for 60–70% of dementia and is the sixth leading cause of death in the United States. The pathogenesis of this debilitating disorder is still not completely understood. New insights into the pathogenesis of AD are needed in order to develop novel pharmacologic approaches. In recent years, numerous studies have shown that insulin resistance plays a significant role in the development of AD. Over 80% of patients with AD have type II diabetes (T2DM) or abnormal serum glucose, suggesting that the pathogenic mechanisms of insulin resistance and AD likely overlap. Insulin resistance increases neuroinflammation, which promotes both amyloid β-protein deposition and aberrant tau phosphorylation. By increasing production of reactive oxygen species, insulin resistance triggers amyloid β-protein accumulation. Oxidative stress associated with insulin resistance also dysregulates glycogen synthase kinase 3-β (GSK-3β), which leads to increased tau phosphorylation. Both insulin and amyloid β-protein are metabolized by insulin degrading enzyme (IDE). Defects in this enzyme are the basis for a strong association between T2DM and AD. This review highlights multiple pathogenic mechanisms induced by insulin resistance that are implicated in AD. Several pharmacologic approaches to AD associated with insulin resistance are presented.
Collapse
Affiliation(s)
- Zenghui Wei
- Department of Pharmaceutical Sciences, St. John's University, New York, NY, United States
| | - Jagadish Koya
- Department of Pharmaceutical Sciences, St. John's University, New York, NY, United States
| | - Sandra E Reznik
- Department of Pharmaceutical Sciences, St. John's University, New York, NY, United States.,Department of Pathology, Albert Einstein College of Medicine, New York, NY, United States.,Department of Obstetrics and Gynecology and Women's Health, Albert Einstein College of Medicine, New York, NY, United States
| |
Collapse
|
29
|
Tiwari RK, Moin A, Rizvi SMD, Shahid SMA, Bajpai P. Modulating neuroinflammation in neurodegeneration-related dementia: can microglial toll-like receptors pull the plug? Metab Brain Dis 2021; 36:829-847. [PMID: 33704660 DOI: 10.1007/s11011-021-00696-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 02/16/2021] [Indexed: 01/13/2023]
Abstract
Neurodegeneration-associated dementia disorders (NADDs), namely Alzheimer and Parkinson diseases, are developed by a significant portion of the elderly population globally. Extensive research has provided critical insights into the molecular basis of the pathological advancements of these diseases, but an efficient curative therapy seems elusive. A common attribute of NADDs is neuroinflammation due to a chronic inflammatory response within the central nervous system (CNS), which is primarily modulated by microglia. This response within the CNS is positively regulated by cytokines, chemokines, secondary messengers or cyclic nucleotides, and free radicals. Microglia mediated immune activation is regulated by a positive feedback loop in NADDs. The present review focuses on evaluating the crosstalk between inflammatory mediators and microglia, which aggravates both the clinical progression and extent of NADDs by forming a persistent chronic inflammatory milieu within the CNS. We also discuss the role of the human gut microbiota and its effect on NADDs as well as the suitability of targeting toll-like receptors for an immunotherapeutic intervention targeting the deflation of an inflamed milieu within the CNS.
Collapse
Affiliation(s)
- Rohit Kumar Tiwari
- Department of Biosciences, Integral University, Kursi Road, Lucknow, Uttar Pradesh, 226026, India
| | - Afrasim Moin
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail, Kingdom of Saudi Arabia
| | - Syed Mohd Danish Rizvi
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail, Kingdom of Saudi Arabia
| | - Syed Monowar Alam Shahid
- Department of Biochemistry, College of Medicine, University of Hail, Hail, Kingdom of Saudi Arabia
| | - Preeti Bajpai
- Department of Zoology, School of Life Sciences, Mahatma Gandhi Central University, Motihari, Bihar, 845401, India.
| |
Collapse
|
30
|
Yang J, Malone F, Go M, Kou J, Lim JE, Caughey RC, Fukuchi KI. Lipopolysaccharide-Induced Exosomal miR-146a Is Involved in Altered Expression of Alzheimer's Risk Genes Via Suppression of TLR4 Signaling. J Mol Neurosci 2021; 71:1245-1255. [PMID: 33185814 PMCID: PMC8096651 DOI: 10.1007/s12031-020-01750-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 10/29/2020] [Indexed: 12/12/2022]
Abstract
Repeated exposure to toll-like receptor 4 (TLR4) ligands, such as lipopolysaccharide (LPS), reduces responses of monocytes/macrophages to LPS (LPS/endotoxin tolerance). Microglial exposure to Aβ deposits, a TLR4 ligand, may cause "Aβ/LPS tolerance," leading to decreased Aβ clearance. We demonstrated that microglial activation by LPS is diminished in Aβ deposit-bearing 12-month-old model mice of Alzheimer's disease (AD), compared with non-AD mice and Aβ deposit-free 2-month-old AD mice. Because miR-146a plays a predominant role in inducing TLR tolerance in macrophages and because miR-146a in extracellular vesicles (EVs) shed by inflammatory macrophages increases in circulation, we investigated potential roles of miR-146a and inflammatory EVs in inducing TLR tolerance in microglia and in altering expression of inflammatory AD risk genes. We found that miR-146a upregulation induces TLR tolerance and alters expression of inflammatory AD risk genes in response to LPS treatment in BV2 microglia. LPS brain injection altered expression of the AD risk genes in 12-month-old AD mice but not in non-AD littermates. EVs from inflammatory macrophages polarize BV2 microglia to M1 phenotype and induce TLR tolerance. Microglia exposed to Aβ in the brain show reduced cytokine responses to systemic inflammation due to peripheral LPS injection, indicating TLR/Aβ tolerance in microglia. Our results suggest that increased miR-146a induces microglial Aβ/LPS tolerance and that circulating EVs shed by inflammatory macrophages contribute to microglial Aβ/LPS tolerance, leading to reduced Aβ clearance. Our study also suggests that altered expression of inflammatory AD risk genes may contribute to AD development via the same molecular mechanism underlying LPS tolerance.
Collapse
Affiliation(s)
- Junling Yang
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine Peoria, 1 Illini Drive, Peoria, IL, 61605, USA
| | - Fiona Malone
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine Peoria, 1 Illini Drive, Peoria, IL, 61605, USA
| | - Michelle Go
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine Peoria, 1 Illini Drive, Peoria, IL, 61605, USA
| | - Jinghong Kou
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine Peoria, 1 Illini Drive, Peoria, IL, 61605, USA
| | - Jeong-Eun Lim
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine Peoria, 1 Illini Drive, Peoria, IL, 61605, USA
| | - Robert C Caughey
- Department of Pathology, University of Illinois College of Medicine Peoria, 1 Illini Drive, Peoria, IL, 61605, USA
| | - Ken-Ichiro Fukuchi
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine Peoria, 1 Illini Drive, Peoria, IL, 61605, USA.
| |
Collapse
|
31
|
Andreadou EG, Katsipis G, Tsolaki M, Pantazaki AA. Involvement and relationship of bacterial lipopolysaccharides and cyclooxygenases levels in Alzheimer's Disease and Mild Cognitive Impairment patients. J Neuroimmunol 2021; 357:577561. [PMID: 34091099 DOI: 10.1016/j.jneuroim.2021.577561] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/24/2021] [Accepted: 03/29/2021] [Indexed: 11/30/2022]
Abstract
This study reports elevated levels of bacterial lipopolysaccharides (LPSs) and cyclooxygenases (COX-1/2) in blood serum and cerebrospinal fluid (CSF) of Alzheimer's Disease (AD) and Mild Cognitive Impairment (MCI) patients compared to cognitively healthy individuals, indicating LPSs as promising biomarkers, especially in serum. LPSs, in both fluids, positively correlate with COX-1/2, Αβ42 and tau and negatively with mental state. Furthermore, COX-2 is the main determinant of LPSs presence in serum, whereas COX-1 in CSF. These results underline the significance of microbial/ inflammatory involvement in dementia and offer novel perspectives on the roles of LPSs and COX in pathogenesis of AD.
Collapse
Affiliation(s)
- Eleni G Andreadou
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; Center for Interdisciplinary Research and Innovation, Laboratory of Neurodegenerative Diseases (LND), 57001 Thermi, Thessaloniki, Greece.
| | - Georgios Katsipis
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; Center for Interdisciplinary Research and Innovation, Laboratory of Neurodegenerative Diseases (LND), 57001 Thermi, Thessaloniki, Greece
| | - Magda Tsolaki
- First Neurology Department, "AHEPA" University General Hospital of Thessaloniki, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; Greek Association of Alzheimer's Disease and Related Disorders - GAADRD, Greece; Center for Interdisciplinary Research and Innovation, Laboratory of Neurodegenerative Diseases (LND), 57001 Thermi, Thessaloniki, Greece
| | - Anastasia A Pantazaki
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; Center for Interdisciplinary Research and Innovation, Laboratory of Neurodegenerative Diseases (LND), 57001 Thermi, Thessaloniki, Greece.
| |
Collapse
|
32
|
Ernest James Phillips T, Maguire E. Phosphoinositides: Roles in the Development of Microglial-Mediated Neuroinflammation and Neurodegeneration. Front Cell Neurosci 2021; 15:652593. [PMID: 33841102 PMCID: PMC8032904 DOI: 10.3389/fncel.2021.652593] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/08/2021] [Indexed: 12/11/2022] Open
Abstract
Microglia are increasingly recognized as vital players in the pathology of a variety of neurodegenerative conditions including Alzheimer’s (AD) and Parkinson’s (PD) disease. While microglia have a protective role in the brain, their dysfunction can lead to neuroinflammation and contributes to disease progression. Also, a growing body of literature highlights the seven phosphoinositides, or PIPs, as key players in the regulation of microglial-mediated neuroinflammation. These small signaling lipids are phosphorylated derivates of phosphatidylinositol, are enriched in the brain, and have well-established roles in both homeostasis and disease.Disrupted PIP levels and signaling has been detected in a variety of dementias. Moreover, many known AD disease modifiers identified via genetic studies are expressed in microglia and are involved in phospholipid metabolism. One of these, the enzyme PLCγ2 that hydrolyzes the PIP species PI(4,5)P2, displays altered expression in AD and PD and is currently being investigated as a potential therapeutic target.Perhaps unsurprisingly, neurodegenerative conditions exhibiting PIP dyshomeostasis also tend to show alterations in aspects of microglial function regulated by these lipids. In particular, phosphoinositides regulate the activities of proteins and enzymes required for endocytosis, toll-like receptor signaling, purinergic signaling, chemotaxis, and migration, all of which are affected in a variety of neurodegenerative conditions. These functions are crucial to allow microglia to adequately survey the brain and respond appropriately to invading pathogens and other abnormalities, including misfolded proteins. AD and PD therapies are being developed to target many of the above pathways, and although not yet investigated, simultaneous PIP manipulation might enhance the beneficial effects observed. Currently, only limited therapeutics are available for dementia, and although these show some benefits for symptom severity and progression, they are far from curative. Given the importance of microglia and PIPs in dementia development, this review summarizes current research and asks whether we can exploit this information to design more targeted, or perhaps combined, dementia therapeutics. More work is needed to fully characterize the pathways discussed in this review, but given the strength of the current literature, insights in this area could be invaluable for the future of neurodegenerative disease research.
Collapse
Affiliation(s)
| | - Emily Maguire
- UK Dementia Research Institute at Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
33
|
Peripheral inflammation promotes brain tau transmission via disrupting blood-brain barrier. Biosci Rep 2021; 40:222089. [PMID: 32043530 PMCID: PMC7033313 DOI: 10.1042/bsr20193629] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/03/2020] [Accepted: 02/10/2020] [Indexed: 12/15/2022] Open
Abstract
Abnormal aggregation of pathological tau protein is a neuropathological feature of Alzheimer's disease (AD). In the AD patients, the abnormal tau accumulation first appeared in entorhinal cortex (EC) and then propagated to the hippocampus with microglia activation and inflammation, but the mechanism is elusive. Here, we studied the role and mechanisms underlying periphery inflammation on brain tau transmission. By intraperitoneal injection of lipopolysaccharide (LPS) with brain medial entorhinal cortex (MEC)-specific overexpressing P301L human tau (P301L-hTau), we found that both acute and chronic administration of LPS remarkably promoted P301L-hTau transmission from MEC to the hippocampal subsets. Interestingly, the chronic LPS-induced P301L-hTau transmission was still apparent after blocking microglia activation. Further studies demonstrated that LPS disrupted the integrity of blood-brain barrier (BBB) and simultaneous intraperitoneal administration of glucocorticoid (GC) attenuated LPS-promoted P301L-hTau transmission. These data together suggest that a non-microglia-dependent BBB disruption contributes to peripheral LPS-promoted brain P301L-hTau transmission, therefore, maintaining the integrity of BBB can be a novel strategy for preventing pathological tau propagation in AD and other tauopathies.
Collapse
|
34
|
Keogh CE, Rude KM, Gareau MG. Role of pattern recognition receptors and the microbiota in neurological disorders. J Physiol 2021; 599:1379-1389. [PMID: 33404072 DOI: 10.1113/jp279771] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/28/2020] [Indexed: 12/12/2022] Open
Abstract
In recent years, the gut microbiota has been increasingly implicated in the development of many extraintestinal disorders, including neurodevelopmental and neurodegenerative disorders. Despite this growing connection, our understanding of the precise mechanisms behind these effects is currently lacking. Pattern recognition receptors (PRRs) are important innate immune proteins expressed on the surface and within the cytoplasm of a multitude of cells, both immune and otherwise, including epithelial, endothelial and neuronal. PRRs comprise four major subfamilies: the Toll-like receptors (TLRs), the nucleotide-binding oligomerization domain leucine rich repeats-containing receptors (NLRs), the retinoic acid inducible gene 1-like receptors and the C-type lectin receptors. Recognition of commensal bacteria by PRRs is critical for maintaining host-microbe interactions and homeostasis, including behaviour. The expression of PRRs on multiple cell types makes them a highly interesting and novel target for regulation of host-microbe signalling, which may lead to gut-brain signalling. Emerging evidence indicates that two of the four known families of PRRs (the NLRs and the TLRs) are involved in the pathogenesis of neurodevelopmental and neurodegenerative disorders via the gut-brain axis. Taken together, increasing evidence supports a role for these PRRs in the development of neurological disorders, including Alzheimer's disease, Parkinson's disease and multiple sclerosis, via the microbiota-gut-brain axis.
Collapse
Affiliation(s)
- Ciara E Keogh
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Kavi M Rude
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Mélanie G Gareau
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| |
Collapse
|
35
|
Zhou Y, Chen Y, Xu C, Zhang H, Lin C. TLR4 Targeting as a Promising Therapeutic Strategy for Alzheimer Disease Treatment. Front Neurosci 2020; 14:602508. [PMID: 33390886 PMCID: PMC7775514 DOI: 10.3389/fnins.2020.602508] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/16/2020] [Indexed: 12/30/2022] Open
Abstract
Alzheimer disease (AD) is a devastating neurodegenerative disorder characterized by extracellular accumulation of amyloid-beta and formation of intracellular neurofibrillary tangles. Microglia activation and neuroinflammation play important roles in the pathogenesis of AD; Toll-like receptor 4 (TLR4)-a key component of the innate immune system-in microglia is also thought to be involved based on the observed association between TLR gene polymorphisms and AD risk. TLR4 has been shown to exert both detrimental and beneficial effects on AD-related pathologies. In preclinical models, experimental manipulations targeting TLR4 were shown to improve learning and memory, which was related to inhibition of pro-inflammatory cytokine release and reduction of oxidative stress. In this review, we summarize the key evidence supporting TLR4 as a promising therapeutic target in AD treatment.
Collapse
Affiliation(s)
- Yongji Zhou
- Department of Neurology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanxing Chen
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Congcong Xu
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hao Zhang
- Department of Neurology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Caixiu Lin
- Department of Neurology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
36
|
Li Z, Moniruzzaman M, Dastgheyb RM, Yoo S, Wang M, Hao H, Liu J, Casaccia P, Nogueras‐Ortiz C, Kapogiannis D, Slusher BS, Haughey NJ. Astrocytes deliver CK1 to neurons via extracellular vesicles in response to inflammation promoting the translation and amyloidogenic processing of APP. J Extracell Vesicles 2020; 10:e12035. [PMID: 33408815 PMCID: PMC7775567 DOI: 10.1002/jev2.12035] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 08/20/2020] [Accepted: 09/09/2020] [Indexed: 12/14/2022] Open
Abstract
Chronic inflammation is thought to contribute to the early pathogenesis of Alzheimer's disease (AD). However, the precise mechanism by which inflammatory cytokines promote the formation and deposition of Aβ remains unclear. Available data suggest that applications of inflammatory cytokines onto isolated neurons do not promote the formation of Aβ, suggesting an indirect mechanism of action. Based on evidence astrocyte derived extracellular vesicles (astrocyte derived EVs) regulate neuronal functions, and data that inflammatory cytokines can modify the molecular cargo of astrocyte derived EVs, we sought to determine if IL-1β promotes the formation of Aβ indirectly through actions of astrocyte derived EVs on neurons. The production of Aβ was increased when neurons were exposed to astrocyte derived EVs shed in response to IL-1β (astrocyte derived EV-IL-1β). The mechanism for this effect involved an enrichment of Casein kinase 1 (CK1) in astrocyte derived EV-IL-1β. This astrocyte derived CK1 was delivered to neurons where it formed a complex with neuronal APC and GSK3 to inhibit the β-catenin degradation. Stabilized β-catenin translocated to the nucleus and bound to Hnrnpc gene at promoter regions. An increased cellular concentration of hnRNP C promoted the translation of APP by outcompeting the translational repressor fragile X mental retardation protein (FMRP) bound to APP mRNA. An increased amount of APP protein became co-localized with BACE1 in enlarged membrane microdomains concurrent with increased production of Aβ. These findings identify a mechanism whereby inflammation promotes the formation of Aβ through the actions of astrocyte derived EV-IL-1β on neurons.
Collapse
Affiliation(s)
- Zhigang Li
- Department of Neurology, Richard T. Johnson Division of Neuroimmunology and Neurological InfectionsJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Mohammed Moniruzzaman
- Department of Neurology, Richard T. Johnson Division of Neuroimmunology and Neurological InfectionsJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Raha M. Dastgheyb
- Department of Neurology, Richard T. Johnson Division of Neuroimmunology and Neurological InfectionsJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Seung‐Wan Yoo
- Department of Neurology, Richard T. Johnson Division of Neuroimmunology and Neurological InfectionsJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Meina Wang
- Department of Neurology, Richard T. Johnson Division of Neuroimmunology and Neurological InfectionsJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Hongbo Hao
- Advanced Science Research Center at the Graduate Center, Neuroscience InitiativeCity University of New YorkNew YorkNew YorkUSA
| | - Jia Liu
- Advanced Science Research Center at the Graduate Center, Neuroscience InitiativeCity University of New YorkNew YorkNew YorkUSA
| | - Patrizia Casaccia
- Advanced Science Research Center at the Graduate Center, Neuroscience InitiativeCity University of New YorkNew YorkNew YorkUSA
| | | | | | - Barbara S. Slusher
- Department of Neurology, Richard T. Johnson Division of Neuroimmunology and Neurological InfectionsJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Johns Hopkins Drug DiscoveryJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Norman J. Haughey
- Department of Neurology, Richard T. Johnson Division of Neuroimmunology and Neurological InfectionsJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
37
|
Toll-like receptors in Alzheimer's disease. J Neuroimmunol 2020; 348:577362. [DOI: 10.1016/j.jneuroim.2020.577362] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/04/2020] [Accepted: 08/15/2020] [Indexed: 02/07/2023]
|
38
|
Lyu J, Jiang X, Leak RK, Shi Y, Hu X, Chen J. Microglial Responses to Brain Injury and Disease: Functional Diversity and New Opportunities. Transl Stroke Res 2020; 12:474-495. [PMID: 33128703 DOI: 10.1007/s12975-020-00857-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 12/27/2022]
Abstract
As an integral part of the innate immune system of the brain, resident microglia must react rapidly to the onset of brain injury and neurological disease. These dynamic cells then continue to shift their phenotype along a multidimensional continuum with overlapping pro- and anti-inflammatory states, allowing them to adapt to microenvironmental changes during the progression of brain disorders. However, the ability of microglia to shift phenotype through nimble molecular, structural, and functional changes comes at a cost, as the extreme pro-inflammatory states may prevent these professional phagocytes from clearing toxic debris and secreting tissue-repairing neurotrophic factors. Evolution has strongly favored heterogeneity in microglia in both the spatial and temporal dimensions-they can assume diverse roles in different brain regions, throughout the course of brain development and aging, and during the spatiotemporal progression of brain injuries and neurological diseases. Age and sex differences add further diversity to microglia functional status under physiological and pathological conditions. This article reviews recent advances in our knowledge of microglia with emphases on molecular mediators of phenotype shifts and functional diversity. We describe microglia-targeted therapeutic opportunities, including pharmacologic modulation of phenotype and repopulation of the brain with fresh microglia. With the advent of powerful new tools, research on microglia has recently accelerated in pace and may translate into potential therapeutics against brain injury and neurological disease.
Collapse
Affiliation(s)
- Junxuan Lyu
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Xiaoyan Jiang
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA.,Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, 15261, USA
| | - Rehana K Leak
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA, 15282, USA
| | - Yejie Shi
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA.,Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, 15261, USA
| | - Xiaoming Hu
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA.,Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, 15261, USA
| | - Jun Chen
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA. .,Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
39
|
Guo H, Zhao Z, Zhang R, Chen P, Zhang X, Cheng F, Gou X. Monocytes in the Peripheral Clearance of Amyloid-β and Alzheimer's Disease. J Alzheimers Dis 2020; 68:1391-1400. [PMID: 30958361 DOI: 10.3233/jad-181177] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Aging societies have high incidence rates of Alzheimer's disease (AD). AD is diagnosed at later disease stages and has a poor prognosis, and effective drugs and treatments for AD are lacking. The molecular mechanism of AD is not clear, and current research focuses primarily on amyloid-β (Aβ) deposition and tau protein hyperphosphorylation. Aβ deposition is the most frequently hypothesized initiating factor of AD, and Aβ clearance during the pathogenesis of AD may be an optional strategy to suppress AD development. Monocytes play important roles in the peripheral clearance of Aβ. Therefore, the present review summarizes our current knowledge of the potential roles of infiltrating macrophages, circulating monocytes, and Kupffer cells in the peripheral clearance of Aβ in AD.
Collapse
Affiliation(s)
- Huifang Guo
- Shaanxi Key Laboratory of Brain Disorders and School of Basic Medical Science, Xi'an Medical University, Xi'an, China
| | - Zhaohua Zhao
- Shaanxi Key Laboratory of Brain Disorders and School of Basic Medical Science, Xi'an Medical University, Xi'an, China
| | - Ruisan Zhang
- Shaanxi Key Laboratory of Brain Disorders and School of Basic Medical Science, Xi'an Medical University, Xi'an, China
| | - Peng Chen
- Shaanxi Key Laboratory of Brain Disorders and School of Basic Medical Science, Xi'an Medical University, Xi'an, China
| | - Xiaohua Zhang
- Shaanxi Key Laboratory of Brain Disorders and School of Basic Medical Science, Xi'an Medical University, Xi'an, China.,Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Fan Cheng
- Shaanxi Key Laboratory of Brain Disorders and School of Basic Medical Science, Xi'an Medical University, Xi'an, China
| | - Xingchun Gou
- Shaanxi Key Laboratory of Brain Disorders and School of Basic Medical Science, Xi'an Medical University, Xi'an, China.,Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| |
Collapse
|
40
|
Honig MG, Dorian CC, Worthen JD, Micetich AC, Mulder IA, Sanchez KB, Pierce WF, Del Mar NA, Reiner A. Progressive long-term spatial memory loss following repeat concussive and subconcussive brain injury in mice, associated with dorsal hippocampal neuron loss, microglial phenotype shift, and vascular abnormalities. Eur J Neurosci 2020; 54:5844-5879. [PMID: 32090401 PMCID: PMC7483557 DOI: 10.1111/ejn.14711] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 12/14/2022]
Abstract
There is considerable concern about the long‐term deleterious effects of repeat head trauma on cognition, but little is known about underlying mechanisms and pathology. To examine this, we delivered four air blasts to the left side of the mouse cranium, a week apart, with an intensity that causes deficits when delivered singly and considered “concussive,” or an intensity that does not yield significant deficits when delivered singly and considered “subconcussive.” Neither repeat concussive nor subconcussive blast produced spatial memory deficits at 4 months, but both yielded deficits at 14 months, and dorsal hippocampal neuron loss. Hierarchical cluster analysis of dorsal hippocampal microglia across the three groups based on morphology and expression of MHCII, CX3CR1, CD68 and IBA1 revealed five distinct phenotypes. Types 1A and 1B microglia were more common in sham mice, linked to better neuron survival and memory, and appeared mildly activated. By contrast, 2B and 2C microglia were more common in repeat concussive and subconcussive mice, linked to poorer neuron survival and memory, and characterized by low expression levels and attenuated processes, suggesting they were de‐activated and dysfunctional. In addition, endothelial cells in repeat concussive mice exhibited reduced CD31 and eNOS expression, which was correlated with the prevalence of type 2B and 2C microglia. Our findings suggest that both repeat concussive and subconcussive head injury engender progressive pathogenic processes, possibly through sustained effects on microglia that over time lead to increased prevalence of dysfunctional microglia, adversely affecting neurons and blood vessels, and thereby driving neurodegeneration and memory decline.
Collapse
Affiliation(s)
- Marcia G Honig
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Conor C Dorian
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - John D Worthen
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Anthony C Micetich
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Isabelle A Mulder
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Katelyn B Sanchez
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - William F Pierce
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Nobel A Del Mar
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Anton Reiner
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, USA.,Department of Ophthalmology, The University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
41
|
Impact of HMGB1, RAGE, and TLR4 in Alzheimer's Disease (AD): From Risk Factors to Therapeutic Targeting. Cells 2020; 9:cells9020383. [PMID: 32046119 PMCID: PMC7072620 DOI: 10.3390/cells9020383] [Citation(s) in RCA: 150] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/04/2020] [Accepted: 02/04/2020] [Indexed: 12/24/2022] Open
Abstract
Alzheimer’s disease (AD) is a devastating neurodegenerative disorder and a leading cause of dementia, with accumulation of amyloid-beta (Aβ) and neurofibrillary tangles (NFTs) as defining pathological features. AD presents a serious global health concern with no cure to date, reflecting the complexity of its pathogenesis. Recent evidence indicates that neuroinflammation serves as the link between amyloid deposition, Tau pathology, and neurodegeneration. The high mobility group box 1 (HMGB1) protein, an initiator and activator of neuroinflammatory responses, has been involved in the pathogenesis of neurodegenerative diseases, including AD. HMGB1 is a typical damage-associated molecular pattern (DAMP) protein that exerts its biological activity mainly through binding to the receptor for advanced glycation end products (RAGE) and toll-like receptor 4 (TLR4). RAGE and TLR4 are key components of the innate immune system that both bind to HMGB1. Targeting of HMGB1, RAGE, and TLR4 in experimental AD models has demonstrated beneficial effects in halting AD progression by suppressing neuroinflammation, reducing Aβ load and production, improving spatial learning, and inhibiting microglial stimulation. Herein, we discuss the contribution of HMGB1 and its receptor signaling in neuroinflammation and AD pathogenesis, providing evidence of its beneficial effects upon therapeutic targeting.
Collapse
|
42
|
Le Page LM, Guglielmetti C, Najac CF, Tiret B, Chaumeil MM. Hyperpolarized 13 C magnetic resonance spectroscopy detects toxin-induced neuroinflammation in mice. NMR IN BIOMEDICINE 2019; 32:e4164. [PMID: 31437326 PMCID: PMC6817388 DOI: 10.1002/nbm.4164] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/27/2019] [Accepted: 07/15/2019] [Indexed: 05/04/2023]
Abstract
Lipopolysaccharide (LPS) is a commonly used agent for induction of neuroinflammation in preclinical studies. Upon injection, LPS causes activation of microglia and astrocytes, whose metabolism alters to favor glycolysis. Assessing in vivo neuroinflammation and its modulation following therapy remains challenging, and new noninvasive methods allowing for longitudinal monitoring would be highly valuable. Hyperpolarized (HP) 13 C magnetic resonance spectroscopy (MRS) is a promising technique for assessing in vivo metabolism. In addition to applications in oncology, the most commonly used probe of [1-13 C] pyruvate has shown potential in assessing neuroinflammation-linked metabolism in mouse models of multiple sclerosis and traumatic brain injury. Here, we aimed to investigate LPS-induced neuroinflammatory changes using HP [1-13 C] pyruvate and HP 13 C urea. 2D chemical shift imaging following simultaneous intravenous injection of HP [1-13 C] pyruvate and HP 13 C urea was performed at baseline (day 0) and at days 3 and 7 post-intracranial injection of LPS (n = 6) or saline (n = 5). Immunofluorescence (IF) analyses were performed for Iba1 (resting and activated microglia/macrophages), GFAP (resting and reactive astrocytes) and CD68 (activated microglia/macrophages). A significant increase in HP [1-13 C] lactate production was observed at days 3 and 7 following injection, in the injected (ipsilateral) side of the LPS-treated mouse brain, but not in either the contralateral side or saline-injected animals. HP 13 C lactate/pyruvate ratio, without and with normalization to urea, was also significantly increased in the ipsilateral LPS-injected brain at 7 days compared with baseline. IF analyses showed a significant increase in CD68 and GFAP staining at 3 days, followed by increased numbers of Iba1 and GFAP positive cells at 7 days post-LPS injection. In conclusion, we can detect LPS-induced changes in the mouse brain using HP 13 C MRS, in alignment with increased numbers of microglia/macrophages and astrocytes. This study demonstrates that HP 13 C spectroscopy has substantial potential for providing noninvasive information on neuroinflammation.
Collapse
Affiliation(s)
- Lydia M Le Page
- Department of Physical Therapy and Rehabilitation Science, University of California San Francisco, San Francisco, California
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Caroline Guglielmetti
- Department of Physical Therapy and Rehabilitation Science, University of California San Francisco, San Francisco, California
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Chloé F Najac
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Brice Tiret
- Department of Physical Therapy and Rehabilitation Science, University of California San Francisco, San Francisco, California
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Myriam M Chaumeil
- Department of Physical Therapy and Rehabilitation Science, University of California San Francisco, San Francisco, California
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| |
Collapse
|
43
|
Lin C, Zhao S, Zhu Y, Fan Z, Wang J, Zhang B, Chen Y. Microbiota-gut-brain axis and toll-like receptors in Alzheimer's disease. Comput Struct Biotechnol J 2019; 17:1309-1317. [PMID: 31921396 PMCID: PMC6944716 DOI: 10.1016/j.csbj.2019.09.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 09/19/2019] [Accepted: 09/22/2019] [Indexed: 12/21/2022] Open
Abstract
Alzheimer’s disease (AD) is a multifactorial disease which involves both the periphery and central nervous system (CNS). It has been recently recognized that gut microbiota interacts with the gut and brain (microbiota-gut-brain axis), contributing to the pathogenesis of neurodegenerative diseases, such as AD. Dysbiosis of gut microbiota can induce increased intestinal permeability and systemic inflammation, which may lead to the development of AD pathologies and cognitive impairment via the neural, immune, endocrine, and metabolic pathways. Toll-like receptors (TLRs) play an important role in the innate immune system via recognizing microbes-derived pathogens and initiating the inflammatory process. TLRs have also been found in the brain, especially in the microglia, and have been indicated in the development of AD. In this review, we summarized the relationship between microbiota-gut-brain axis and AD, as well as the complex role of TLRs in AD. Intervention of the gut microbiota or modulation of TLRs properly might emerge as promising preventive and therapeutic strategies for AD.
Collapse
Affiliation(s)
- Caixiu Lin
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Neurology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shuai Zhao
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yueli Zhu
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ziqi Fan
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Wang
- Department of Geriatric, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Baorong Zhang
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanxing Chen
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
44
|
Sureda A, Capó X, Tejada S. Neuroprotective Effects of Flavonoid Compounds on Neuronal Death Associated to Alzheimer’s Disease. Curr Med Chem 2019; 26:5124-5136. [DOI: 10.2174/0929867325666171226103237] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 09/19/2017] [Accepted: 09/19/2017] [Indexed: 01/25/2023]
Abstract
Alzheimer’s disease is an increasing neurodegenerative pathology related to
age in many societies. Some aspects of the disease are related to the loss of neuronal cells
derived by the formation of extracellular neuritic plaques and the appearance of intracellular
neurofibrillary tangles, altogether generating an inflammatory and oxidative status.
The accumulation of amyloids in cells induces the activation of the apoptotic cascade
which implies caspases activation. Alzheimer’s disease is treated with acetylcholine esterase
inhibitors, although their effects are still far away to reduce or eliminate the problems
associated with the pathology. The lack of effective treatment has led to the search
for new therapeutic alternatives based on natural products. Flavonoids comprise a group
of phenolic compounds that have gained great interest since they present great diversity of
biological activities. In the present work, we review the potential uses of flavonoids and
the proposed mechanisms of action as a new therapeutic strategy in neurological cell
death associated with Alzheimer’s disease.
Collapse
Affiliation(s)
- Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress, University of Balearic Islands, E-07122 Palma de Mallorca, Balearic Islands, Spain
| | - Xavier Capó
- Research Group on Community Nutrition and Oxidative Stress, University of Balearic Islands, E-07122 Palma de Mallorca, Balearic Islands, Spain
| | - Silvia Tejada
- CIBEROBN (Physiopathology of Obesity and Nutrition), E- 07122 Palma de Mallorca, Balearic Islands, Spain
| |
Collapse
|
45
|
Ho A, Sinick J, Esko T, Fischer K, Menni C, Zierer J, Matey-Hernandez M, Fortney K, Morgen EK. Circulating glucuronic acid predicts healthspan and longevity in humans and mice. Aging (Albany NY) 2019; 11:7694-7706. [PMID: 31557729 PMCID: PMC6781977 DOI: 10.18632/aging.102281] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 09/07/2019] [Indexed: 12/21/2022]
Abstract
Glucuronic acid is a metabolite of glucose that is involved in the detoxification of xenobiotic compounds and the structure/remodeling of the extracellular matrix. We report for the first time that circulating glucuronic acid is a robust biomarker of mortality that is conserved across species. We find that glucuronic acid levels are significant predictors of all-cause mortality in three population-based cohorts from different countries with 4-20 years of follow-up (HR=1.44, p=2.9×10-6 in the discovery cohort; HR=1.13, p=0.032 and HR=1.25, p=0.017, respectively in the replication cohorts), as well as in a longitudinal study of genetically heterogenous mice (HR=1.29, p=0.018). Additionally, we find that glucuronic acid levels increase with age and predict future healthspan-related outcomes. Together, these results demonstrate glucuronic acid as a robust biomarker of longevity and healthspan.
Collapse
Affiliation(s)
| | | | - Tõnu Esko
- Estonian Genome Center, University of Tartu, Tartu 51010, Estonia
| | - Krista Fischer
- Estonian Genome Center, University of Tartu, Tartu 51010, Estonia.,Institute of Mathematics and Statistics, University of Tartu, Tartu 50409, Estonia
| | - Cristina Menni
- Department of Twin Research, Kings College London, London SE1 7EH, United Kingdom
| | - Jonas Zierer
- Department of Twin Research, Kings College London, London SE1 7EH, United Kingdom
| | | | | | | |
Collapse
|
46
|
Biber K, Bhattacharya A, Campbell BM, Piro JR, Rohe M, Staal RGW, Talanian RV, Möller T. Microglial Drug Targets in AD: Opportunities and Challenges in Drug Discovery and Development. Front Pharmacol 2019; 10:840. [PMID: 31507408 PMCID: PMC6716448 DOI: 10.3389/fphar.2019.00840] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 07/01/2019] [Indexed: 12/20/2022] Open
Abstract
Alzheimer’s disease (AD) is a large and increasing unmet medical need with no disease-modifying treatment currently available. Genetic evidence from genome-wide association studies (GWASs) and gene network analysis has clearly revealed a key role of the innate immune system in the brain, of which microglia are the most important element. Single-nucleotide polymorphisms (SNPs) in genes predominantly expressed in microglia have been associated with altered risk of developing AD. Furthermore, microglia-specific pathways are affected on the messenger RNA (mRNA) expression level in post-mortem AD tissue and in mouse models of AD. Together these findings have increased the interest in microglia biology, and numerous scientific reports have proposed microglial molecules and pathways as drug targets for AD. Target identification and validation are generally the first steps in drug discovery. Both target validation and drug lead identification for central nervous system (CNS) targets and diseases entail additional significant obstacles compared to peripheral targets and diseases. This makes CNS drug discovery, even with well-validated targets, challenging. In this article, we will illustrate the special challenges of AD drug discovery by discussing the viability/practicality of possible microglia drug targets including cluster of differentiation 33 (CD33), KCa3.1, kynurenines, ionotropic P2 receptor 7 (P2X7), programmed death-1 (PD-1), Toll-like receptors (TLRs), and triggering receptor expressed in myeloid cells 2 (TREM2).
Collapse
Affiliation(s)
- Knut Biber
- AbbVie Deutschland GmbH & Co. KG, Neuroscience Research, Ludwigshafen, Germany
| | | | | | - Justin R Piro
- AbbVie Foundational Neuroscience Center, Cambridge, MA, United States
| | - Michael Rohe
- AbbVie Deutschland GmbH & Co. KG, Neuroscience Research, Ludwigshafen, Germany
| | | | - Robert V Talanian
- AbbVie Foundational Neuroscience Center, Cambridge, MA, United States
| | - Thomas Möller
- AbbVie Foundational Neuroscience Center, Cambridge, MA, United States
| |
Collapse
|
47
|
Wenzel TJ, Bajwa E, Klegeris A. Cytochrome c can be released into extracellular space and modulate functions of human astrocytes in a toll-like receptor 4-dependent manner. Biochim Biophys Acta Gen Subj 2019; 1863:129400. [PMID: 31344401 DOI: 10.1016/j.bbagen.2019.07.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 06/23/2019] [Accepted: 07/18/2019] [Indexed: 11/16/2022]
Abstract
BACKGROUND Chronic activation of glial cells contributes to neurodegenerative diseases. Cytochrome c (CytC) is a soluble mitochondrial protein that can act as a damage-associated molecular pattern (DAMP) when released into the extracellular space from damaged cells. CytC causes immune activation of microglia in a toll-like receptor (TLR) 4-dependent manner. The effects of extracellular CytC on astrocytes are unknown. Astrocytes, which are the most abundant glial cell type in the brain, express TLR 4 and secrete inflammatory mediators; therefore, we hypothesized that extracellular CytC can interact with the TLR 4 of astrocytes inducing their release of inflammatory molecules and cytotoxins. METHOD Experiments were conducted using primary human astrocytes, U118 MG human astrocytic cells, BV-2 murine microglia, and SH-SY5Y human neuronal cells. RESULTS Extracellularly applied CytC increased the secretion of interleukin (IL)-1β, granulocyte-macrophage colony stimulating factor (GM-CSF) and IL-12 p70 by cultured primary human astrocytes. Anti-TLR 4 antibodies blocked the CytC-induced secretion of IL-1β and GM-CSF by astrocytes. Supernatants from CytC-activated astrocytes were toxic to human SH-SY5Y neuronal cells. We also demonstrated CytC release from damaged glial cells by measuring CytC in the supernatants of BV-2 microglia after their exposure to cytotoxic concentrations of staurosporine, amyloid-β peptides (Aβ42) and tumor necrosis factor-α. CONCLUSION CytC can be released into the extracellular space from damaged glial cells causing immune activation of astrocytes in a TLR 4-dependent manner. GENERAL SIGNIFICANCE Astrocyte activation by CytC may contribute to neuroinflammation and neuronal death in neurodegenerative diseases. Astrocyte TLR 4 could be a potential therapeutic target in these diseases.
Collapse
Affiliation(s)
- Tyler J Wenzel
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, British Columbia V1V 1V7, Canada
| | - Ekta Bajwa
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, British Columbia V1V 1V7, Canada
| | - Andis Klegeris
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, British Columbia V1V 1V7, Canada.
| |
Collapse
|
48
|
Cell Type Specific Expression of Toll-Like Receptors in Human Brains and Implications in Alzheimer's Disease. BIOMED RESEARCH INTERNATIONAL 2019; 2019:7420189. [PMID: 31396533 PMCID: PMC6668540 DOI: 10.1155/2019/7420189] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/07/2019] [Indexed: 12/20/2022]
Abstract
Toll-like receptors mediate important cellular immune responses upon activation via various pathogenic stimuli such as bacterial or viral components. The activation and subsequent secretion of cytokines and proinflammatory factors occurs in the whole body including the brain. The subsequent inflammatory response is crucial for the immune system to clear the pathogen(s) from the body via the innate and adaptive immune response. Within the brain, astrocytes, neurons, microglia, and oligodendrocytes all bear unique compositions of Toll-like receptors. Besides pathogens, cellular damage and abnormally folded protein aggregates, such as tau and Amyloid beta peptides, have been shown to activate Toll-like receptors in neurodegenerative diseases such as Alzheimer's disease. This review provides an overview of the different cell type-specific Toll-like receptors of the human brain, their activation mode, and subsequent cellular response, as well as their activation in Alzheimer's disease. Finally, we critically evaluate the therapeutic potential of targeting Toll-like receptors for treatment of Alzheimer's disease as well as discussing the limitation of mouse models in understanding Toll-like receptor function in general and in Alzheimer's disease.
Collapse
|
49
|
Ahmad A, Ali T, Rehman SU, Kim MO. Phytomedicine-Based Potent Antioxidant, Fisetin Protects CNS-Insult LPS-Induced Oxidative Stress-Mediated Neurodegeneration and Memory Impairment. J Clin Med 2019; 8:E850. [PMID: 31207963 PMCID: PMC6616651 DOI: 10.3390/jcm8060850] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/05/2019] [Accepted: 06/11/2019] [Indexed: 12/14/2022] Open
Abstract
Phytomedicine based natural flavonoids have potent antioxidant, anti-inflammatory, and neuroprotective activities against neurodegenerative diseases. The aim of the present study is to investigate the potent neuroprotective and antioxidant potential effects of fisetin (natural flavonoid) against central nervous system (CNS)-insult, lipopolysaccharide (LPS)-induced reactive oxygen species (ROS), neuroinflammation, neurodegeneration, and synaptic/memory deficits in adult mice. The mice were injected intraperitoneally (i.p.) with LPS (250 μg/kg/day for 1 week) and a fisetin dosage regimen (20 mg/kg/day i.p. for 2 weeks, 1 week pre-treated to LPS and 1 week co-treated with LPS). Behavioral tests, and biochemical and immunofluorescence assays were applied. Our results revealed that fisetin markedly abrogated the LPS-induced elevated ROS/oxidative stress and activated phosphorylated c-JUN N-terminal Kinase (p-JNK) in the adult mouse hippocampus. Fisetin significantly alleviated LPS-induced activated gliosis. Moreover, fisetin treatment inhibited LPS-induced activation of the inflammatory Toll-like Receptors (TLR4)/cluster of differentiation 14 (CD14)/phospho-nuclear factor kappa (NF-κB) signaling and attenuated other inflammatory mediators (tumor necrosis factor-α (TNF-α), interleukin-1 β (IL1-β), and cyclooxygenase (COX-2). Furthermore, immunoblotting and immunohistochemical results revealed that fisetin significantly reversed LPS-induced apoptotic neurodegeneration. Fisetin improved the hippocampal-dependent synaptic and memory functions in LPS-treated adult mice. In summary, our results strongly recommend that fisetin, a natural potent antioxidant, and neuroprotective phytomedicine, represents a promising, valuable, and therapeutic candidate for the prevention and treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Ashfaq Ahmad
- Division of Applied Life Science (BK 21), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea.
| | - Tahir Ali
- Division of Applied Life Science (BK 21), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea.
| | - Shafiq Ur Rehman
- Division of Applied Life Science (BK 21), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea.
| | - Myeong Ok Kim
- Division of Applied Life Science (BK 21), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea.
| |
Collapse
|
50
|
Maezawa I, Nguyen HM, Di Lucente J, Jenkins DP, Singh V, Hilt S, Kim K, Rangaraju S, Levey AI, Wulff H, Jin LW. Kv1.3 inhibition as a potential microglia-targeted therapy for Alzheimer's disease: preclinical proof of concept. Brain 2019; 141:596-612. [PMID: 29272333 DOI: 10.1093/brain/awx346] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 10/30/2017] [Indexed: 12/14/2022] Open
Abstract
Microglia significantly contribute to the pathophysiology of Alzheimer's disease but an effective microglia-targeted therapeutic approach is not yet available clinically. The potassium channels Kv1.3 and Kir2.1 play important roles in regulating immune cell functions and have been implicated by in vitro studies in the 'M1-like pro-inflammatory' or 'M2-like anti-inflammatory' state of microglia, respectively. We here found that amyloid-β oligomer-induced expression of Kv1.3 and Kir2.1 in cultured primary microglia. Likewise, ex vivo microglia acutely isolated from the Alzheimer's model 5xFAD mice co-expressed Kv1.3 and Kir2.1 as well as markers traditionally associated with M1 and M2 activation suggesting that amyloid-β oligomer induces a microglial activation state that is more complex than previously thought. Using the orally available, brain penetrant small molecule Kv1.3 blocker PAP-1 as a tool, we showed that pro-inflammatory and neurotoxic microglial responses induced by amyloid-β oligomer required Kv1.3 activity in vitro and in hippocampal slices. Since we further observed that Kv1.3 was highly expressed in microglia of transgenic Alzheimer's mouse models and human Alzheimer's disease brains, we hypothesized that pharmacological Kv1.3 inhibition could mitigate the pathology induced by amyloid-β aggregates. Indeed, treating APP/PS1 transgenic mice with a 5-month oral regimen of PAP-1, starting at 9 months of age, when the animals already manifest cognitive deficits and amyloid pathology, reduced neuroinflammation, decreased cerebral amyloid load, enhanced hippocampal neuronal plasticity, and improved behavioural deficits. The observed decrease in cerebral amyloid deposition was consistent with the in vitro finding that PAP-1 enhanced amyloid-β uptake by microglia. Collectively, these results provide proof-of-concept data to advance Kv1.3 blockers to Alzheimer's disease clinical trials.
Collapse
Affiliation(s)
- Izumi Maezawa
- Department of Pathology and Laboratory Medicine, University of California Davis Medical Center, 2805 50th Street, Sacramento, CA 95817, USA
| | - Hai M Nguyen
- Department of Pharmacology, University of California Davis, 451 Health Sciences Drive, Davis, CA 95616, USA
| | - Jacopo Di Lucente
- Department of Pathology and Laboratory Medicine, University of California Davis Medical Center, 2805 50th Street, Sacramento, CA 95817, USA
| | - David Paul Jenkins
- Department of Pharmacology, University of California Davis, 451 Health Sciences Drive, Davis, CA 95616, USA
| | - Vikrant Singh
- Department of Pharmacology, University of California Davis, 451 Health Sciences Drive, Davis, CA 95616, USA
| | - Silvia Hilt
- Department of Biochemistry and Molecular Medicine, University of California Davis, 2700 Stockton Blvd, Sacramento, CA 95817, USA
| | - Kyoungmi Kim
- Department of Public Health Sciences, University of California Davis, One Shields Avenue, Med Sci 1-C, Davis, CA 95616, USA
| | - Srikant Rangaraju
- Department of Neurology and Alzheimer's Disease Research Center, Emory University, 201 Dowman Drive, Atlanta, GA 30322, USA
| | - Allan I Levey
- Department of Neurology and Alzheimer's Disease Research Center, Emory University, 201 Dowman Drive, Atlanta, GA 30322, USA
| | - Heike Wulff
- Department of Pharmacology, University of California Davis, 451 Health Sciences Drive, Davis, CA 95616, USA
| | - Lee-Way Jin
- Department of Pathology and Laboratory Medicine, University of California Davis Medical Center, 2805 50th Street, Sacramento, CA 95817, USA.,Alzheimer's Disease Center, University of California Davis Medical Center, 4860 Y Street, Suite 3900, Sacramento, CA 95817, USA
| |
Collapse
|