1
|
Liu Y, Bai J, Yuan S, Gao S, Liu Z, Li Y, Zhang F, Zhao C, Zhang L. Characterization and expression analysis of chalcone synthase gene family members suggested their roles in the male sterility of a wheat temperature-sensitive genic male sterile (TGMS) line. Gene 2023; 888:147740. [PMID: 37661030 DOI: 10.1016/j.gene.2023.147740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/15/2023] [Accepted: 08/23/2023] [Indexed: 09/05/2023]
Abstract
Chalcone synthase (CHS), also known as the plants-specific type III polyketide synthases (PKSs), catalyzes the first key step in the biosynthesis of plant flavonoids. Flavonoids are one of the most important secondary metabolites which participate in flower pigmentation and pollen fertility. Recent reports have demonstrated the role of the CHS family in plant pollen exine formation. This study focused on the potential roles of CHS in the pollen exine formation of wheat. In the present study, a genome-wide investigation of the CHS family was carried out, and 87 CHS genes were identified in wheat. TaCHS3, TaCHS10, and TaCHS13 are wheat orthologs of Arabidopsis LESS ADHESIVE POLLEN (LAP5); TaCHS58, TaCHS64, and TaCHS67 are wheat orthologs of AtLAP6. TaCHS3, TaCHS10, and TaCHS67 showed anther-specific patterns. The expression of TaCHS3, TaCHS10, and TaCHS67 was positively co-expressed with sporopollenin biosynthetic genes, including TaCYP703A2, TaCYP704B1, TaDRL1, TaTKPR2, and TaMS2. Coincidently, the expression of TaCHS3, TaCHS10, and TaCHS67, together with those sporopollenin biosynthetic genes, were repressed at the tetrads and uninucleate stages in the temperature-sensitive genic male-sterile (TGMS) line BS366 under sterile conditions. Wheat anther-specific CHS genes might participate in the exine formation of BS366 through co-expressing with sporopollenin biosynthetic genes, which will undoubtedly provide knowledge of the roles of CHS in wheat pollen development.
Collapse
Affiliation(s)
- Yongjie Liu
- Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Molecular Genetic Beijing Key Laboratory of Hybrid Wheat, Beijing 100097, China
| | - Jianfang Bai
- Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Molecular Genetic Beijing Key Laboratory of Hybrid Wheat, Beijing 100097, China
| | - Shaohua Yuan
- Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Molecular Genetic Beijing Key Laboratory of Hybrid Wheat, Beijing 100097, China
| | - Shiqing Gao
- Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Molecular Genetic Beijing Key Laboratory of Hybrid Wheat, Beijing 100097, China
| | - Zihan Liu
- Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Molecular Genetic Beijing Key Laboratory of Hybrid Wheat, Beijing 100097, China
| | - Yanmei Li
- Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Molecular Genetic Beijing Key Laboratory of Hybrid Wheat, Beijing 100097, China
| | - Fengting Zhang
- Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Molecular Genetic Beijing Key Laboratory of Hybrid Wheat, Beijing 100097, China
| | - Changping Zhao
- Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Molecular Genetic Beijing Key Laboratory of Hybrid Wheat, Beijing 100097, China.
| | - Liping Zhang
- Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Molecular Genetic Beijing Key Laboratory of Hybrid Wheat, Beijing 100097, China.
| |
Collapse
|
2
|
Ye Z, Du B, Zhou J, Cao Y, Zhang L. Camellia oleifera CoSWEET10 Is Crucial for Seed Development and Drought Resistance by Mediating Sugar Transport in Transgenic Arabidopsis. PLANTS (BASEL, SWITZERLAND) 2023; 12:2818. [PMID: 37570971 PMCID: PMC10420866 DOI: 10.3390/plants12152818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/22/2023] [Accepted: 07/23/2023] [Indexed: 08/13/2023]
Abstract
Sugar transport from the source leaf to the sink organ is critical for seed development and crop yield, as well as for responding to abiotic stress. SWEETs (sugar will eventually be exported transporters) mediate sugar efflux into the reproductive sink and are therefore considered key candidate proteins for sugar unloading during seed development. However, the specific mechanism underlying the sugar unloading to seeds in Camellia oleifera remains elusive. Here, we identified a SWEET gene named CoSWEET10, which belongs to Clade III and has high expression levels in the seeds of C. oleifera. CoSWEET10 is a plasma membrane-localized protein. The complementation assay of CoSWEET10 in SUSY7/ura3 and EBY.VW4000 yeast strains showed that CoSWEET10 has the ability to transport sucrose, glucose, and fructose. Through the C. oleifera seeds in vitro culture, we found that the expression of CoSWEET10 can be induced by hexose and sucrose, and especially glucose. By generating the restoration lines of CoSWEET10 in Arabidopsis atsweet10, we found that CoSWEET10 restored the seed defect phenotype of the mutant by regulating soluble sugar accumulation and increased plant drought tolerance. Collectively, our study demonstrates that CoSWEET10 plays a dual role in promoting seed development and enhancing plant drought resistance as a sucrose and hexose transporter.
Collapse
Affiliation(s)
| | | | | | | | - Lingyun Zhang
- Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, The College of Forestry, Beijing Forestry University, Beijing 100083, China; (Z.Y.); (B.D.); (J.Z.); (Y.C.)
| |
Collapse
|
3
|
Deslandes-Hérold G, Zanella M, Solhaug E, Fischer-Stettler M, Sharma M, Buergy L, Herrfurth C, Colinas M, Feussner I, Abt MR, Zeeman SC. The PRK/Rubisco shunt strongly influences Arabidopsis seed metabolism and oil accumulation, affecting more than carbon recycling. THE PLANT CELL 2023; 35:808-826. [PMID: 36454674 PMCID: PMC9940875 DOI: 10.1093/plcell/koac338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
The carbon efficiency of storage lipid biosynthesis from imported sucrose in green Brassicaceae seeds is proposed to be enhanced by the PRK/Rubisco shunt, in which ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) acts outside the context of the Calvin-Benson-Bassham cycle to recycle CO2 molecules released during fatty acid synthesis. This pathway utilizes metabolites generated by the nonoxidative steps of the pentose phosphate pathway. Photosynthesis provides energy for reactions such as the phosphorylation of ribulose 5-phosphate by phosphoribulokinase (PRK). Here, we show that loss of PRK in Arabidopsis thaliana (Arabidopsis) blocks photoautotrophic growth and is seedling-lethal. However, seeds containing prk embryos develop normally, allowing us to use genetics to assess the importance of the PRK/Rubisco shunt. Compared with nonmutant siblings, prk embryos produce one-third less lipids-a greater reduction than expected from simply blocking the proposed PRK/Rubisco shunt. However, developing prk seeds are also chlorotic and have elevated starch contents compared with their siblings, indicative of secondary effects. Overexpressing PRK did not increase embryo lipid content, but metabolite profiling suggested that Rubisco activity becomes limiting. Overall, our findings show that the PRK/Rubisco shunt is tightly integrated into the carbon metabolism of green Arabidopsis seeds, and that its manipulation affects seed glycolysis, starch metabolism, and photosynthesis.
Collapse
Affiliation(s)
- Gabriel Deslandes-Hérold
- Department of Biology, Institute of Molecular Plant Biology, ETH Zurich, CH-8092 Zurich, Switzerland
| | - Martina Zanella
- Department of Biology, Institute of Molecular Plant Biology, ETH Zurich, CH-8092 Zurich, Switzerland
| | - Erik Solhaug
- Department of Biology, Institute of Molecular Plant Biology, ETH Zurich, CH-8092 Zurich, Switzerland
| | - Michaela Fischer-Stettler
- Department of Biology, Institute of Molecular Plant Biology, ETH Zurich, CH-8092 Zurich, Switzerland
| | - Mayank Sharma
- Department of Biology, Institute of Molecular Plant Biology, ETH Zurich, CH-8092 Zurich, Switzerland
| | - Léo Buergy
- Department of Biology, Institute of Molecular Plant Biology, ETH Zurich, CH-8092 Zurich, Switzerland
| | - Cornelia Herrfurth
- Department for Plant Biochemistry, Albrecht von Haller Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, D-37077 Göttingen, Germany
- Service Unit for Metabolomics and Lipidomics, Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, D-37077 Göttingen, Germany
| | - Maite Colinas
- Department of Biology, Institute of Molecular Plant Biology, ETH Zurich, CH-8092 Zurich, Switzerland
| | - Ivo Feussner
- Department for Plant Biochemistry, Albrecht von Haller Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, D-37077 Göttingen, Germany
- Service Unit for Metabolomics and Lipidomics, Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, D-37077 Göttingen, Germany
| | - Melanie R Abt
- Department of Biology, Institute of Molecular Plant Biology, ETH Zurich, CH-8092 Zurich, Switzerland
| | - Samuel C Zeeman
- Department of Biology, Institute of Molecular Plant Biology, ETH Zurich, CH-8092 Zurich, Switzerland
| |
Collapse
|
4
|
Using systems metabolic engineering strategies for high-oil maize breeding. Curr Opin Biotechnol 2023; 79:102847. [PMID: 36446144 DOI: 10.1016/j.copbio.2022.102847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/25/2022] [Accepted: 10/31/2022] [Indexed: 11/27/2022]
Abstract
Maize oil, which is a blend of fatty acid esters generated from triacylglycerol (TAG), is an important component of maize-derived food, feed, and biofuel. The kernel oil content in commercial high-oil maize hybrids averages ∼8%, which is far lower than that in developed high-oil maize lines (as high as 20%). Advances in high-oil maize genomics and genetics and the development of systems metabolic engineering technologies provide new opportunities for high-oil maize breeding. In this review, we discuss the possibility of using kernels and vegetative tissues as factories to produce TAG, eicosapentaenoic acid, and docosahexaenoic acid. We further propose specific implementation strategies based on the metabolic engineering of other species to develop transgenic and gene-editing products, as well as traditional breeding strategies, for application in high-oil maize breeding programs.
Collapse
|
5
|
Sagun JV, Yadav UP, Alonso AP. Progress in understanding and improving oil content and quality in seeds. FRONTIERS IN PLANT SCIENCE 2023; 14:1116894. [PMID: 36778708 PMCID: PMC9909563 DOI: 10.3389/fpls.2023.1116894] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
The world's population is projected to increase by two billion by 2050, resulting in food and energy insecurity. Oilseed crops have been identified as key to address these challenges: they produce and store lipids in the seeds as triacylglycerols that can serve as a source of food/feed, renewable fuels, and other industrially-relevant chemicals. Therefore, improving seed oil content and composition has generated immense interest. Research efforts aiming to unravel the regulatory pathways involved in fatty acid synthesis and to identify targets for metabolic engineering have made tremendous progress. This review provides a summary of the current knowledge of oil metabolism and discusses how photochemical activity and unconventional pathways can contribute to high carbon conversion efficiency in seeds. It also highlights the importance of 13C-metabolic flux analysis as a tool to gain insights on the pathways that regulate oil biosynthesis in seeds. Finally, a list of key genes and regulators that have been recently targeted to enhance seed oil production are reviewed and additional possible targets in the metabolic pathways are proposed to achieve desirable oil content and quality.
Collapse
Affiliation(s)
| | | | - Ana Paula Alonso
- Department of Biological Sciences, BioDiscovery Institute, University of North Texas, Denton, TX, United States
| |
Collapse
|
6
|
Lin Z, Chen F, Wang H, Hu J, Shi L, Zhang Z, Xiu Y, Lin S. Evaluation of oil accumulation and biodiesel property of Lindera glauca fruits among different germplasms and revelation of high oil producing mechanism for developing biodiesel. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:14. [PMID: 36698212 PMCID: PMC9878744 DOI: 10.1186/s13068-023-02265-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Lindera glauca with rich resource and fruit oil has emerged as novel source of biodiesel in China, but different germplasms show a variation for fruit oil content and FA profile. To develop L. glauca fruit oils as biodiesel, a concurrent exploration of oil content, FA composition, biodiesel yield, fuel property and prediction model construction was conducted on the fruits from 8 plus germplasms to select superior genotype for ideal biodiesel production. Another vital focus was to highlight mechanism that govern the differences in oil content and FA profile of different germplasms. The cross-accessions comparisons associated with oil-synthesized gene transcriptional level and oil accumulative amount led to the identification of potential determinants (enzymes, transporters or transcription factors) and regulatory mechanisms responsible for high-quality oil accumulation. RESULTS To select superior germplasm and unravel regulatory mechanism of high oil production for developing L. glauca fruit oils as biodiesel, 8 plus trees (accession LG01/02/03/04/05/06/07/08) with high-yield fruits were selected to evaluate the differences in oil content, FA profile, biodiesel yield and fuel property, and to construct fuel property prediction model, revealing a variation in the levels of fruit oil (45.12-60.95%), monounsaturated FA (52.43-78.46%) and polyunsaturated FA (17.69-38.73%), and biodiesel yield (80.12-98.71%) across different accessions. Of note, LG06 had a maximum yield of oil (60.95%) and biodiesel (98.71%), and ideal proportions of C18:1 (77.89%), C18:2 (14.16%) and C18:3 (1.55%), indicating that fruit oils from accession LG06 was the most suitable for high-quality biodiesel production. To highlight molecular mechanism that govern such differences in oil content and FA composition of different accessions, the quantitative relationship between oil-synthesized gene transcription and oil accumulative amount were conducted on different accessions to identify some vital determinants (enzymes, transporters or transcription factors) with a model of carbon metabolic regulatory for high-quality oil accumulation by an integrated analysis of our recent transcriptome data and qRT-PCR detection. Our findings may present strategies for developing L. glauca fruit oils as biodiesel feedstock and engineering its oil accumulation. CONCLUSIONS This is the first report on the cross-accessions evaluations of L. glauca fruit oils to determine ideal accession for producing ideal biodiesel, and the associations of oil accumulative amount with oil-synthesized gene transcription was performed to identify some crucial determinants (enzymes, transporters or transcription factors) with metabolic regulation model established for governing high oil production. Our finding may provide molecular basis for new strategies of developing biodiesel resource and engineering oil accumulation.
Collapse
Affiliation(s)
- Zixin Lin
- Beijing Advanced Innovation Center for Tree Breeding By Molecular Design, College of Biological Sciences and Biotechnology, School of Soil and Water Conservation, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, 100083 China
| | - Feng Chen
- Beijing Advanced Innovation Center for Tree Breeding By Molecular Design, College of Biological Sciences and Biotechnology, School of Soil and Water Conservation, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, 100083 China
| | - Hongjuan Wang
- Department of Biochemistry and Molecular Biology, Yanjing Medical College, Capital Medical University, Beijing, 101300 China
| | - Jinhe Hu
- Beijing Advanced Innovation Center for Tree Breeding By Molecular Design, College of Biological Sciences and Biotechnology, School of Soil and Water Conservation, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, 100083 China
| | - Lingling Shi
- Beijing Advanced Innovation Center for Tree Breeding By Molecular Design, College of Biological Sciences and Biotechnology, School of Soil and Water Conservation, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, 100083 China
| | - Zhixiang Zhang
- Beijing Advanced Innovation Center for Tree Breeding By Molecular Design, College of Biological Sciences and Biotechnology, School of Soil and Water Conservation, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, 100083 China
| | - Yu Xiu
- Beijing Advanced Innovation Center for Tree Breeding By Molecular Design, College of Biological Sciences and Biotechnology, School of Soil and Water Conservation, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, 100083 China
| | - Shanzhi Lin
- Beijing Advanced Innovation Center for Tree Breeding By Molecular Design, College of Biological Sciences and Biotechnology, School of Soil and Water Conservation, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, 100083 China
| |
Collapse
|
7
|
Jiang L, Geng D, Zhi F, Li Z, Yang Y, Wang Y, Shen X, Liu X, Yang Y, Xu Y, Tang Y, Du R, Ma F, Guan Q, Zhang J. A genome-wide association study provides insights into fatty acid synthesis and metabolism in Malus fruits. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:7467-7476. [PMID: 36112134 DOI: 10.1093/jxb/erac372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 09/15/2022] [Indexed: 06/15/2023]
Abstract
As a precursor of aromatic compounds, fatty acids play important roles in apple fruit quality; however, the genetic and molecular basis underlying fatty acid synthesis and metabolism is largely unknown. In this study, we conducted a genome-wide association study (GWAS) of seven fatty acids using genomic data of 149 Malus accessions and identified 232 significant signals (-log10P>5) associated with 99 genes from GWAS of four fatty acids across 2 years. Among these, a significant GWAS signal associated with linoleic acid was identified in the transcriptional regulator SUPERMAN-like (SUP) MD13G1209600 at chromosome 13 of M. × domestica. Transient overexpression of MdSUP increased the contents of linoleic and linolenic acids and of three aromatic components in the fruit. Our study provides genetic and molecular information for improving the flavor and nutritional value of apple.
Collapse
Affiliation(s)
- Lijuan Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Dali Geng
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Fang Zhi
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Zhongxing Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Yusen Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Yunlong Wang
- College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Xiaoxia Shen
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Xiuyun Liu
- Institute of Vocational Technology, Shanghai 200000, China
| | - Yanqing Yang
- College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Yange Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Yanlong Tang
- College of Economics and Management, Northwest A&F University, Yangling 712100, China
| | - Rui Du
- College of Innovation and Experiment, Northwest A&F University, Yangling 712100, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Qingmei Guan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Jing Zhang
- College of Horticulture, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
8
|
Burgess AJ, Masclaux‐Daubresse C, Strittmatter G, Weber APM, Taylor SH, Harbinson J, Yin X, Long S, Paul MJ, Westhoff P, Loreto F, Ceriotti A, Saltenis VLR, Pribil M, Nacry P, Scharff LB, Jensen PE, Muller B, Cohan J, Foulkes J, Rogowsky P, Debaeke P, Meyer C, Nelissen H, Inzé D, Klein Lankhorst R, Parry MAJ, Murchie EH, Baekelandt A. Improving crop yield potential: Underlying biological processes and future prospects. Food Energy Secur 2022; 12:e435. [PMID: 37035025 PMCID: PMC10078444 DOI: 10.1002/fes3.435] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 10/07/2022] [Accepted: 11/10/2022] [Indexed: 12/05/2022] Open
Abstract
The growing world population and global increases in the standard of living both result in an increasing demand for food, feed and other plant-derived products. In the coming years, plant-based research will be among the major drivers ensuring food security and the expansion of the bio-based economy. Crop productivity is determined by several factors, including the available physical and agricultural resources, crop management, and the resource use efficiency, quality and intrinsic yield potential of the chosen crop. This review focuses on intrinsic yield potential, since understanding its determinants and their biological basis will allow to maximize the plant's potential in food and energy production. Yield potential is determined by a variety of complex traits that integrate strictly regulated processes and their underlying gene regulatory networks. Due to this inherent complexity, numerous potential targets have been identified that could be exploited to increase crop yield. These encompass diverse metabolic and physical processes at the cellular, organ and canopy level. We present an overview of some of the distinct biological processes considered to be crucial for yield determination that could further be exploited to improve future crop productivity.
Collapse
Affiliation(s)
- Alexandra J. Burgess
- School of Biosciences University of Nottingham, Sutton Bonington campus Loughborough UK
| | | | - Günter Strittmatter
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS) Heinrich‐Heine‐Universität Düsseldorf Düsseldorf Germany
| | - Andreas P. M. Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS) Heinrich‐Heine‐Universität Düsseldorf Düsseldorf Germany
| | | | - Jeremy Harbinson
- Laboratory for Biophysics Wageningen University and Research Wageningen The Netherlands
| | - Xinyou Yin
- Centre for Crop Systems Analysis, Department of Plant Sciences Wageningen University & Research Wageningen The Netherlands
| | - Stephen Long
- Lancaster Environment Centre Lancaster University Lancaster UK
- Plant Biology and Crop Sciences University of Illinois at Urbana‐Champaign Urbana Illinois USA
| | | | - Peter Westhoff
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS) Heinrich‐Heine‐Universität Düsseldorf Düsseldorf Germany
| | - Francesco Loreto
- Department of Biology, Agriculture and Food Sciences, National Research Council of Italy (CNR), Rome, Italy and University of Naples Federico II Napoli Italy
| | - Aldo Ceriotti
- Institute of Agricultural Biology and Biotechnology National Research Council (CNR) Milan Italy
| | - Vandasue L. R. Saltenis
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences University of Copenhagen Copenhagen Denmark
| | - Mathias Pribil
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences University of Copenhagen Copenhagen Denmark
| | - Philippe Nacry
- BPMP, Univ Montpellier, INRAE, CNRS Institut Agro Montpellier France
| | - Lars B. Scharff
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences University of Copenhagen Copenhagen Denmark
| | - Poul Erik Jensen
- Department of Food Science University of Copenhagen Copenhagen Denmark
| | - Bertrand Muller
- Université de Montpellier ‐ LEPSE – INRAE Institut Agro Montpellier France
| | | | - John Foulkes
- School of Biosciences University of Nottingham, Sutton Bonington campus Loughborough UK
| | - Peter Rogowsky
- INRAE UMR Plant Reproduction and Development Lyon France
| | | | - Christian Meyer
- IJPB UMR1318 INRAE‐AgroParisTech‐Université Paris Saclay Versailles France
| | - Hilde Nelissen
- Department of Plant Biotechnology and Bioinformatics Ghent University Ghent Belgium
- VIB Center for Plant Systems Biology Ghent Belgium
| | - Dirk Inzé
- Department of Plant Biotechnology and Bioinformatics Ghent University Ghent Belgium
- VIB Center for Plant Systems Biology Ghent Belgium
| | - René Klein Lankhorst
- Wageningen Plant Research Wageningen University & Research Wageningen The Netherlands
| | | | - Erik H. Murchie
- School of Biosciences University of Nottingham, Sutton Bonington campus Loughborough UK
| | - Alexandra Baekelandt
- Department of Plant Biotechnology and Bioinformatics Ghent University Ghent Belgium
- VIB Center for Plant Systems Biology Ghent Belgium
| |
Collapse
|
9
|
Li Y, Ali U, Cao Z, Zeng C, Xiao M, Wei F, Yao X, Guo L, Lu S. Fatty acid exporter 1 enhances seed oil content in Brassica napus. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2022; 42:75. [PMID: 37313324 PMCID: PMC10248612 DOI: 10.1007/s11032-022-01346-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 06/15/2023]
Abstract
Fatty acid exporter 1 (FAX1) is an initial transporter for fatty acid (FA), in charge of transporting FA from the inside of the plastid to the outside. Brassica napus (B. napus) has nineteen members in the FAX family, of which there are six FAX1 homologous genes. Here, we generated the BnaFAX1 CRISPR mutants (BnaA09.FAX1 and BnaC08.FAX1 were both edited) and overexpression (OE) plants of BnaA09.FAX1 in B. napus. The results showed that the FA content was increased by 0.6-0.9% in OE plant leaves, and the seed oil content was increased by 1.4-1.7% in OE lines, compared to WT. Meanwhile, the content of triacylglycerol, diacylglycerol, and phosphatidylcholine was significantly increased in OE seeds. Moreover, seedling biomass and plant height of OE plants were increased compared to WT plants. However, the traits above had no significant difference between the mutants and WT. These results suggest that BnaA09.FAX1 plays a role in improving seed oil accumulation and plant growth, while the function of BnaFAX1 may be compensated by other homologous genes of BnaFAX1 and other BnaFAX genes in the mutants. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-022-01346-0.
Collapse
Affiliation(s)
- Yuqing Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
- Hubei Hongshan Laboratory, Wuhan, 430070 China
| | - Usman Ali
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
- Hubei Hongshan Laboratory, Wuhan, 430070 China
| | - Zhouxiao Cao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
- Hubei Hongshan Laboratory, Wuhan, 430070 China
| | - Chenghao Zeng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
- Hubei Hongshan Laboratory, Wuhan, 430070 China
| | - Mengying Xiao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
- Hubei Hongshan Laboratory, Wuhan, 430070 China
| | - Fang Wei
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing of Ministry of Agriculture and Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, 430062 China
| | - Xuan Yao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
- Hubei Hongshan Laboratory, Wuhan, 430070 China
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
- Hubei Hongshan Laboratory, Wuhan, 430070 China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, 430070 China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Genome Analysis Laboratory of the Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Shenzhen, 518120 China
| | - Shaoping Lu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
- Hubei Hongshan Laboratory, Wuhan, 430070 China
| |
Collapse
|
10
|
Han X, Zhang YW, Liu JY, Zuo JF, Zhang ZC, Guo L, Zhang YM. 4D genetic networks reveal the genetic basis of metabolites and seed oil-related traits in 398 soybean RILs. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:92. [PMID: 36076247 PMCID: PMC9461130 DOI: 10.1186/s13068-022-02191-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/27/2022] [Indexed: 11/10/2022]
Abstract
Background The yield and quality of soybean oil are determined by seed oil-related traits, and metabolites/lipids act as bridges between genes and traits. Although there are many studies on the mode of inheritance of metabolites or traits, studies on multi-dimensional genetic network (MDGN) are limited. Results In this study, six seed oil-related traits, 59 metabolites, and 107 lipids in 398 recombinant inbred lines, along with their candidate genes and miRNAs, were used to construct an MDGN in soybean. Around 175 quantitative trait loci (QTLs), 36 QTL-by-environment interactions, and 302 metabolic QTL clusters, 70 and 181 candidate genes, including 46 and 70 known homologs, were previously reported to be associated with the traits and metabolites, respectively. Gene regulatory networks were constructed using co-expression, protein–protein interaction, and transcription factor binding site and miRNA target predictions between candidate genes and 26 key miRNAs. Using modern statistical methods, 463 metabolite–lipid, 62 trait–metabolite, and 89 trait–lipid associations were found to be significant. Integrating these associations into the above networks, an MDGN was constructed, and 128 sub-networks were extracted. Among these sub-networks, the gene–trait or gene–metabolite relationships in 38 sub-networks were in agreement with previous studies, e.g., oleic acid (trait)–GmSEI–GmDGAT1a–triacylglycerol (16:0/18:2/18:3), gene and metabolite in each of 64 sub-networks were predicted to be in the same pathway, e.g., oleic acid (trait)–GmPHS–d-glucose, and others were new, e.g., triacylglycerol (16:0/18:1/18:2)–GmbZIP123–GmHD-ZIPIII-10–miR166s–oil content. Conclusions This study showed the advantages of MGDN in dissecting the genetic relationships between complex traits and metabolites. Using sub-networks in MGDN, 3D genetic sub-networks including pyruvate/threonine/citric acid revealed genetic relationships between carbohydrates, oil, and protein content, and 4D genetic sub-networks including PLDs revealed the relationships between oil-related traits and phospholipid metabolism likely influenced by the environment. This study will be helpful in soybean quality improvement and molecular biological research. Supplementary Information The online version contains supplementary material available at 10.1186/s13068-022-02191-1.
Collapse
|
11
|
Peter J, Huleux M, Spaniol B, Sommer F, Neunzig J, Schroda M, Li-Beisson Y, Philippar K. Fatty acid export (FAX) proteins contribute to oil production in the green microalga Chlamydomonas reinhardtii. Front Mol Biosci 2022; 9:939834. [PMID: 36120551 PMCID: PMC9470853 DOI: 10.3389/fmolb.2022.939834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/11/2022] [Indexed: 11/24/2022] Open
Abstract
In algae and land plants, transport of fatty acids (FAs) from their site of synthesis in the plastid stroma to the endoplasmic reticulum (ER) for assembly into acyl lipids is crucial for cellular lipid homeostasis, including the biosynthesis of triacylglycerol (TAG) for energy storage. In the unicellular green alga Chlamydomonas reinhardtii, understanding and engineering of these processes is of particular interest for microalga-based biofuel and biomaterial production. Whereas in the model plant Arabidopsis thaliana, FAX (fatty acid export) proteins have been associated with a function in plastid FA-export and hence TAG synthesis in the ER, the knowledge on the function and subcellular localization of this protein family in Chlamydomonas is still scarce. Among the four FAX proteins encoded in the Chlamydomonas genome, we found Cr-FAX1 and Cr-FAX5 to be involved in TAG production by functioning in chloroplast and ER membranes, respectively. By in situ immunolocalization, we show that Cr-FAX1 inserts into the chloroplast envelope, while Cr-FAX5 is located in ER membranes. Severe reduction of Cr-FAX1 or Cr-FAX5 proteins by an artificial microRNA approach results in a strong decrease of the TAG content in the mutant strains. Further, overexpression of chloroplast Cr-FAX1, but not of ER-intrinsic Cr-FAX5, doubled the content of TAG in Chlamydomonas cells. We therefore propose that Cr-FAX1 in chloroplast envelopes and Cr-FAX5 in ER membranes represent a basic set of FAX proteins to ensure shuttling of FAs from chloroplasts to the ER and are crucial for oil production in Chlamydomonas.
Collapse
Affiliation(s)
- Janick Peter
- Plant Biology, Center for Human- and Molecular Biology (ZHMB), Saarland University, Saarbrücken, Germany
| | - Marie Huleux
- Aix Marseille Univ, CEA, CNRS, Institute of Bioscience and Biotechnology of Aix Marseille, BIAM, Saint Paul-Lez-Durance, France
| | - Benjamin Spaniol
- Molecular Biotechnology and Systems Biology, TU Kaiserslautern, Kaiserslautern, Germany
| | - Frederik Sommer
- Molecular Biotechnology and Systems Biology, TU Kaiserslautern, Kaiserslautern, Germany
| | - Jens Neunzig
- Plant Biology, Center for Human- and Molecular Biology (ZHMB), Saarland University, Saarbrücken, Germany
| | - Michael Schroda
- Molecular Biotechnology and Systems Biology, TU Kaiserslautern, Kaiserslautern, Germany
| | - Yonghua Li-Beisson
- Aix Marseille Univ, CEA, CNRS, Institute of Bioscience and Biotechnology of Aix Marseille, BIAM, Saint Paul-Lez-Durance, France
| | - Katrin Philippar
- Plant Biology, Center for Human- and Molecular Biology (ZHMB), Saarland University, Saarbrücken, Germany
- *Correspondence: Katrin Philippar,
| |
Collapse
|
12
|
Shin S, Chairattanawat C, Yamaoka Y, Yang Q, Lee Y, Hwang JU. Early seed development requires the A-type ATP-binding cassette protein ABCA10. PLANT PHYSIOLOGY 2022; 189:360-374. [PMID: 35166840 PMCID: PMC9070825 DOI: 10.1093/plphys/kiac062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/06/2022] [Indexed: 05/11/2023]
Abstract
A-type ATP-binding cassette (ABCA) proteins transport lipids and lipid-based molecules in humans, and their malfunction is associated with various inherited diseases. Although plant genomes encode many ABCA transporters, their molecular and physiological functions remain largely unknown. Seeds are rapidly developing organs that rely on the biosynthesis and transport of large quantities of lipids to generate new membranes and storage lipids. In this study, we characterized the Arabidopsis (Arabidopsis thaliana) ABCA10 transporter, which is selectively expressed in female gametophytes and early developing seeds. By 3 d after flowering (DAF), seeds from the abca10 loss-of-function mutant exhibited a smaller chalazal endosperm than those of the wild-type. By 4 DAF, their endosperm nuclei occupied a smaller area than those of the wild-type. The endosperm nuclei of the mutants also failed to distribute evenly inside the seed coat and stayed aggregated instead, possibly due to inadequate expansion of abca10 endosperm. This endosperm defect might have retarded abca10 embryo development. At 7 DAF, a substantial portion of abca10 embryos remained at the globular or earlier developmental stages, whereas wild-type embryos were at the torpedo or later stages. ABCA10 is likely involved in lipid metabolism, as ABCA10 overexpression induced the overaccumulation of triacylglycerol but did not change the carbohydrate or protein contents in seeds. In agreement, ABCA10 localized to the endoplasmic reticulum (ER), the major site of lipid biosynthesis. Our results reveal that ABCA10 plays an essential role in early seed development, possibly by transporting substrates for lipid metabolism to the ER.
Collapse
Affiliation(s)
- Seungjun Shin
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | | | - Yasuyo Yamaoka
- Division of Biotechnology, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Qianying Yang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Youngsook Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
- Department of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | | |
Collapse
|
13
|
Mining of Potential Gene Resources for Breeding Nutritionally Improved Maize. PLANTS 2022; 11:plants11050627. [PMID: 35270097 PMCID: PMC8912576 DOI: 10.3390/plants11050627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 11/16/2022]
Abstract
Maize is one of the leading food crops and its kernel is rich in starch, lipids, protein and other energy substances. In addition, maize kernels also contain many trace elements that are potentially beneficial to human health, such as vitamins, minerals and other secondary metabolites. However, gene resources that could be applied for nutrient improvement are limited in maize. In this review, we summarized 107 genes that are associated with nutrient content from different plant species and identified 246 orthologs from the maize genome. In addition, we constructed physical maps and performed a detailed expression pattern analysis for the 246 maize potential gene resources. Combining expression profiles and their potential roles in maize nutrient improvement, genetic engineering by editing or ectopic expression of these genes in maize are expected to improve resistant starch, oil, essential amino acids, vitamins, iron, zinc and anthocyanin levels of maize grains. Thus, this review provides valuable gene resources for maize nutrient improvement.
Collapse
|
14
|
Integument-Specific Transcriptional Regulation in the Mid-Stage of Flax Seed Development Influences the Release of Mucilage and the Seed Oil Content. Cells 2021; 10:cells10102677. [PMID: 34685657 PMCID: PMC8534900 DOI: 10.3390/cells10102677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 11/17/2022] Open
Abstract
Flax (Linum usitatissimum L.) seed oil, which accumulates in the embryo, and mucilage, which is synthesized in the seed coat, are of great economic importance for food, pharmaceutical as well as chemical industries. Theories on the link between oil and mucilage production in seeds consist in the spatio-temporal competition of both compounds for photosynthates during the very early stages of seed development. In this study, we demonstrate a positive relationship between seed oil production and seed coat mucilage extrusion in the agronomic model, flax. Three recombinant inbred lines were selected for low, medium and high mucilage and seed oil contents. Metabolite and transcript profiling (1H NMR and DNA oligo-microarrays) was performed on the seeds during seed development. These analyses showed main changes in the seed coat transcriptome during the mid-phase of seed development (25 Days Post-Anthesis), once the mucilage biosynthesis and modification processes are thought to be finished. These transcriptome changes comprised genes that are putatively involved in mucilage chemical modification and oil synthesis, as well as gibberellic acid (GA) metabolism. The results of this integrative biology approach suggest that transcriptional regulations of seed oil and fatty acid (FA) metabolism could occur in the seed coat during the mid-stage of seed development, once the seed coat carbon supplies have been used for mucilage biosynthesis and mechanochemical properties of the mucilage secretory cells.
Collapse
|
15
|
Xiao Z, Tang F, Zhang L, Li S, Wang S, Huo Q, Yang B, Zhang C, Wang D, Li Q, Wei L, Guo T, Qu C, Lu K, Zhang Y, Guo L, Li J, Li N. The Brassica napus fatty acid exporter FAX1-1 contributes to biological yield, seed oil content, and oil quality. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:190. [PMID: 34587987 PMCID: PMC8482660 DOI: 10.1186/s13068-021-02035-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/07/2021] [Indexed: 06/01/2023]
Abstract
BACKGROUND In the oilseed crop Brassica napus (rapeseed), various metabolic processes influence seed oil content, oil quality, and biological yield. However, the role of plastid membrane proteins in these traits has not been explored. RESULTS Our genome-wide association study (GWAS) of 520 B. napus accessions identified the chloroplast membrane protein-localized FATTY ACID EXPORTER 1-1 (FAX1-1) as a candidate associated with biological yield. Seed transcript levels of BnaFAX1-1 were higher in a cultivar with high seed oil content relative to a low-oil cultivar. BnaFAX1-1 was localized to the plastid envelope. When expressed in Arabidopsis thaliana, BnaFAX1-1 enhanced biological yield (total plant dry matter), seed yield and seed oil content per plant. Likewise, in the field, B. napus BnaFAX1-1 overexpression lines (BnaFAX1-1-OE) displayed significantly enhanced biological yield, seed yield, and seed oil content compared with the wild type. BnaFAX1-1 overexpression also up-regulated gibberellic acid 4 (GA4) biosynthesis, which may contribute to biological yield improvement. Furthermore, oleic acid (C18:1) significantly increased in BnaFAX1-1 overexpression seeds. CONCLUSION Our results indicated that the putative fatty acid exporter BnaFAX1-1 may simultaneously improve seed oil content, oil quality and biological yield in B. napus, providing new approaches for future molecular breeding.
Collapse
Affiliation(s)
- Zhongchun Xiao
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, 400715, China
- College of Biology and Chemistry, Xingyi Normal University for Nationalities, Xingyi, 562400, Guizhou, China
| | - Fang Tang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, 400715, China
| | - Liyuan Zhang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, 400715, China
| | - Shengting Li
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, 400715, China
| | - Shufeng Wang
- College of Resources and Environment, and Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, 400715, China
| | - Qiang Huo
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, 400715, China
| | - Bo Yang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, 400715, China
| | - Chao Zhang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, 400715, China
| | - Daojie Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Qing Li
- Hybrid Rapeseed Research Center of Shaanxi Province, Shaanxi, China
| | - Lijuan Wei
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, 400715, China
| | - Tao Guo
- College of Resources and Environment, and Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, 400715, China
| | - Cunmin Qu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, 400715, China
| | - Kun Lu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, 400715, China
| | - Yanfeng Zhang
- Hybrid Rapeseed Research Center of Shaanxi Province, Shaanxi, China
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Jiana Li
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China.
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, 400715, China.
| | - Nannan Li
- College of Resources and Environment, and Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, 400715, China.
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, 400715, China.
| |
Collapse
|
16
|
Tracing Key Molecular Regulators of Lipid Biosynthesis in Tuber Development of Cyperus esculentus Using Transcriptomics and Lipidomics Profiling. Genes (Basel) 2021; 12:genes12101492. [PMID: 34680888 PMCID: PMC8535953 DOI: 10.3390/genes12101492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/16/2021] [Accepted: 09/22/2021] [Indexed: 11/17/2022] Open
Abstract
Cyperus esculentus is widely representing one of the important oil crops around the world, which provides valuable resources of edible tubers called tiger nut. The chemical composition and high ability to produce fats emphasize the role of tiger nut in promoting oil crop productivity. However, the underlying molecular mechanism of the production and accumulation of lipids in tiger nut development still remains unclear. Here, we conducted comprehensive transcriptomics and lipidomics analyses at different developmental stages of tuber in Cyperus esculentus. Lipidomic analyses confirmed that the accumulation of lipids including glycolipids, phospholipids, and glycerides were significantly enriched during tuber development from early to mature stage. The proportion of phosphatidylcholines (PC) declined during all stages and phosphatidyl ethanolamine (PE) was significantly declined in early and middle stages. These findings implied that PC is actively involved in triacylglycerol (TAG) biosynthesis during the tubers development, whereas PE may participate in TAG metabolism during early and middle stages. Comparative transcriptomics analyses indicated several genomic and metabolic pathways associated with lipid metabolism during tuber development in tiger nut. The Pearson correlation analysis showed that TAG synthesis in different developmental stages was attributed to 37 candidate transcripts including CePAH1. The up-regulation of diacylglycerol (DAG) and oil content in yeast, resulted from the inducible expression of exogenous CePAH1 confirmed the central role of this candidate gene in lipid metabolism. Our results demonstrated the foundation of an integrative metabolic model for understanding the molecular mechanism of tuber development in tiger nut, in which lipid biosynthesis plays a central role.
Collapse
|
17
|
Cai G, Wang G, Kim SC, Li J, Zhou Y, Wang X. Increased expression of fatty acid and ABC transporters enhances seed oil production in camelina. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:49. [PMID: 33640013 PMCID: PMC7913393 DOI: 10.1186/s13068-021-01899-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 02/09/2021] [Indexed: 05/04/2023]
Abstract
BACKGROUND Lipid transporters play an essential role in lipid delivery and distribution, but their influence on seed oil production in oilseed crops is not well studied. RESULTS Here, we examined the effect of two lipid transporters, FAX1 (fatty acid export1) and ABCA9 (ATP-binding cassette transporter subfamily A9) on oil production and lipid metabolism in the oilseed plant Camelina sativa. Overexpression (OE) of FAX1 and ABCA9 increased seed weight and size, with FAX1-OEs and ABCA9-OEs increasing seed length and width, respectively, whereas FAX1/ABCA9-OEs increasing both. FAX1-OE and ABCA9-OE displayed additive effects on seed oil content and seed yield. Also, OE of FAX1 and ABCA9 affected membrane lipid composition in developing pods, especially on phosphatidylcholine, phosphatidylethanolamine, and phosphatidylglycerol. The expression of some genes involved in seed oil synthesis, such as DGAT2, PDAT1, and LEC1, was increased in developing seeds of FAX1- and/or ABCA9-OEs. CONCLUSION These results indicate that increased expression of FAX1 and ABCA9 can potentially be applied to improving camelina oil production.
Collapse
Affiliation(s)
- Guangqin Cai
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crop Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062 Hubei China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 Hubei China
- Department of Biology, University of Missouri, St. Louis, MO 63121 USA
- Donald Danforth Plant Science Center, St. Louis, MO 63132 USA
| | - Geliang Wang
- Department of Biology, University of Missouri, St. Louis, MO 63121 USA
- Donald Danforth Plant Science Center, St. Louis, MO 63132 USA
| | - Sang-Chul Kim
- Department of Biology, University of Missouri, St. Louis, MO 63121 USA
- Donald Danforth Plant Science Center, St. Louis, MO 63132 USA
| | - Jianwu Li
- Department of Biology, University of Missouri, St. Louis, MO 63121 USA
- Donald Danforth Plant Science Center, St. Louis, MO 63132 USA
| | - Yongming Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Xuemin Wang
- Department of Biology, University of Missouri, St. Louis, MO 63121 USA
- Donald Danforth Plant Science Center, St. Louis, MO 63132 USA
| |
Collapse
|
18
|
Correa SM, Fernie AR, Nikoloski Z, Brotman Y. Towards model-driven characterization and manipulation of plant lipid metabolism. Prog Lipid Res 2020; 80:101051. [PMID: 32640289 DOI: 10.1016/j.plipres.2020.101051] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 06/20/2020] [Accepted: 06/21/2020] [Indexed: 01/09/2023]
Abstract
Plant lipids have versatile applications and provide essential fatty acids in human diet. Therefore, there has been a growing interest to better characterize the genetic basis, regulatory networks, and metabolic pathways that shape lipid quantity and composition. Addressing these issues is challenging due to context-specificity of lipid metabolism integrating environmental, developmental, and tissue-specific cues. Here we systematically review the known metabolic pathways and regulatory interactions that modulate the levels of storage lipids in oilseeds. We argue that the current understanding of lipid metabolism provides the basis for its study in the context of genome-wide plant metabolic networks with the help of approaches from constraint-based modeling and metabolic flux analysis. The focus is on providing a comprehensive summary of the state-of-the-art of modeling plant lipid metabolic pathways, which we then contrast with the existing modeling efforts in yeast and microalgae. We then point out the gaps in knowledge of lipid metabolism, and enumerate the recent advances of using genome-wide association and quantitative trait loci mapping studies to unravel the genetic regulations of lipid metabolism. Finally, we offer a perspective on how advances in the constraint-based modeling framework can propel further characterization of plant lipid metabolism and its rational manipulation.
Collapse
Affiliation(s)
- Sandra M Correa
- Genetics of Metabolic Traits Group, Max Planck Institute for Molecular Plant Physiology, Potsdam 14476, Germany; Department of Life Sciences, Ben-Gurion University of the Negev, 8410501 Beer-Sheva, Israel; Departamento de Ciencias Exactas y Naturales, Universidad de Antioquia, Medellín 050010, Colombia.
| | - Alisdair R Fernie
- Central Metabolism Group, Max Planck Institute for Molecular Plant Physiology, Potsdam 14476, Germany; Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| | - Zoran Nikoloski
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria; Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany; Systems Biology and Mathematical Modelling Group, Max Planck Institute for Molecular Plant Physiology, Potsdam-Golm 14476, Germany.
| | - Yariv Brotman
- Genetics of Metabolic Traits Group, Max Planck Institute for Molecular Plant Physiology, Potsdam 14476, Germany; Department of Life Sciences, Ben-Gurion University of the Negev, 8410501 Beer-Sheva, Israel
| |
Collapse
|
19
|
Wang R, Cheng Y, Ke X, Zhang X, Zhang H, Huang J. Comparative analysis of salt responsive gene regulatory networks in rice and Arabidopsis. Comput Biol Chem 2020; 85:107188. [DOI: 10.1016/j.compbiolchem.2019.107188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 11/25/2019] [Accepted: 12/05/2019] [Indexed: 11/25/2022]
|
20
|
Tian Y, Lv X, Xie G, Wang L, Dai T, Qin X, Chen F, Xu Y. FAX2 Mediates Fatty Acid Export from Plastids in Developing Arabidopsis Seeds. PLANT & CELL PHYSIOLOGY 2019; 60:2231-2242. [PMID: 31198959 DOI: 10.1093/pcp/pcz117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/01/2019] [Indexed: 05/25/2023]
Abstract
Vegetable oils are mainly stored in the form of triacylglycerol (TAG) in oilseeds. Fatty acids (FAs), one of the building blocks for TAG assembly, are synthesized in plastids and then exported to the endoplasmic reticulum for storage oil synthesis. A recent study demonstrated that the export of FAs from plastids was mediated by a FAX (FA export) family protein. However, the significance of FAs export from plastid during seed oil accumulation has not been investigated. In this study, we found that FAX2 was highly expressed in developing Arabidopsis seeds and the expression level was consistent with FAs synthesis activity. FAX2 mutant seeds showed an approximately 18% reduction of lipid levels compared with wild-type seeds. By contrast, overexpression of FAX2 enhanced seed lipid accumulation by up to 30%. The FAs export activity of FAX2 was confirmed by yeast mutant cell complementation analysis. Our results showed that FAX2 could interact with other proteins to facilitate FAs transport. Taken together, these results indicate that FAX2-mediated FA export from plastids is important for seed oil accumulation, and that FAX2 can be used as a target gene for increasing lipid production in oilseeds.
Collapse
Affiliation(s)
- Yinshuai Tian
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, No.29 Wangjiang Road, Wuhou District, Chengdu, China
- Institute of New Energy and Low-carbon Technology, Sichuan University, Chengdu, China
| | - Xueyan Lv
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, No.29 Wangjiang Road, Wuhou District, Chengdu, China
| | - Guilan Xie
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, No.29 Wangjiang Road, Wuhou District, Chengdu, China
| | - Linghui Wang
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, No.29 Wangjiang Road, Wuhou District, Chengdu, China
| | - Tingwei Dai
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, No.29 Wangjiang Road, Wuhou District, Chengdu, China
| | - Xiaobo Qin
- Sichuan Natural Resource Institute, Chengdu, China
| | - Fang Chen
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, No.29 Wangjiang Road, Wuhou District, Chengdu, China
- Institute of New Energy and Low-carbon Technology, Sichuan University, Chengdu, China
| | - Ying Xu
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, No.29 Wangjiang Road, Wuhou District, Chengdu, China
| |
Collapse
|
21
|
Zafar S, Li YL, Li NN, Zhu KM, Tan XL. Recent advances in enhancement of oil content in oilseed crops. J Biotechnol 2019; 301:35-44. [PMID: 31158409 DOI: 10.1016/j.jbiotec.2019.05.307] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/14/2019] [Accepted: 05/29/2019] [Indexed: 10/26/2022]
Abstract
Plant oils are very valuable agricultural commodity. The manipulation of seed oil composition to deliver enhanced fatty acid compositions, which are appropriate for feed or fuel, has always been a main objective of metabolic engineers. The last two decennary have been noticeable by numerous significant events in genetic engineering for identification of different gene targets to improve oil yield in oilseed crops. Particularly, genetic engineering approaches have presented major breakthrough in elevating oil content in oilseed crops such as Brassica napus and soybean. Additionally, current research efforts to explore the possibilities to modify the genetic expression of key regulators of oil accumulation along with biochemical studies to elucidate lipid biosynthesis will establish protocols to develop transgenic oilseed crops along much improved oil content. In this review, we describe current distinct genetic engineering approaches investigated by researchers for ameliorating oil content and its nutritional quality. Moreover, we will also discuss some auspicious and innovative approaches and challenges for engineering oil content to yield oil at much higher rate in oilseed crops.
Collapse
Affiliation(s)
- Sundus Zafar
- School of Agricultural Equipment Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China; Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Yu-Long Li
- Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Nan-Nan Li
- School of Resource and Environment, Southwest University, Chongqing, 400715, People's Republic of China
| | - Ke-Ming Zhu
- Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Xiao-Li Tan
- Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, People's Republic of China.
| |
Collapse
|
22
|
Chen K, Yin Y, Liu S, Guo Z, Zhang K, Liang Y, Zhang L, Zhao W, Chao H, Li M. Genome-wide identification and functional analysis of oleosin genes in Brassica napus L. BMC PLANT BIOLOGY 2019; 19:294. [PMID: 31272381 PMCID: PMC6610931 DOI: 10.1186/s12870-019-1891-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 06/18/2019] [Indexed: 05/20/2023]
Abstract
BACKGROUND Rapeseed is the third largest oil seed crop in the world. The seeds of this plant store lipids in oil bodies, and oleosin is the most important structural protein in oil bodies. However, the function of oleosin in oil crops has received little attention. RESULTS In the present study, 48 oleosin sequences from the Brassica napus genome were identified and divided into four lineages (T, U, SH, SL). Synteny analysis revealed that most of the oleosin genes were conserved, and all of these genes experienced purifying selection during evolution. Three and four important oleosin genes from Arabidopsis and B. napus, respectively, were cloned and analyzed for function in Arabidopsis. Overexpression of these oleosin genes in Arabidopsis increased the seed oil content slightly, except for BnaOLE3. Further analysis revealed that the average oil body size of the transgenic seeds was slightly larger than that of the wild type (WT), except for BnaOLE1. The fatty acid profiles showed that the linoleic acid content (13.3% at most) increased and the peanut acid content (11% at most) decreased in the transgenic lines. In addition, the seed size and thousand-seed weight (TSW) also increased in the transgenic lines, which could lead to increased total lipid production. CONCLUSION We identified oleosin genes in the B. napus genome, and overexpression of oleosin in Arabidopsis seeds increased the seed weight and linoleic acid content (13.3% at most).
Collapse
Affiliation(s)
- Kang Chen
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Yongtai Yin
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Si Liu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Zhenyi Guo
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Kai Zhang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Yu Liang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Lina Zhang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Weiguo Zhao
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Hongbo Chao
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Maoteng Li
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 China
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal University, Huanggang, China
| |
Collapse
|
23
|
Isolation and characterization of a novel seed-specific promoter from peanut (Arachis hypogaea L.). Mol Biol Rep 2019; 46:3183-3191. [PMID: 30937655 DOI: 10.1007/s11033-019-04775-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 03/19/2019] [Indexed: 10/27/2022]
Abstract
Peanut, whose seeds are ideal bioreactors for the production of recombinant proteins and/or nutrient metabolites, is one of the most important crop species worldwide. As important molecular tools, seed-specific promoters (SSPs) can direct the expression of foreign proteins specifically in seeds to avoid constitutive expression that can damage plants. However, few SSPs have been identified from this species. In this study, we isolated a novel SSP (we named it AHSSP2) from peanut. Several cis-acting elements commonly found in SSPs, including 3 copies of RYREPEAT elements, were dispersed throughout the 1970-bp sequence of AHSSP2. The sequence was then substituted in place of the 35S promoter sequence in a pBI121 plasmid, which was subsequently transformed into Arabidopsis. Beta-glucuronidase (GUS) staining showed that AHSSP2 can drive GUS gene expression in the mature seeds of transgenic Arabidopsis, excluding within the testa. The cotyledons and hypocotyls of the germinating seeds of transgenic Arabidopsis seedlings also exhibited GUS activity, even after the seedlings became adult plants. No GUS activity was detected in nontransformed Arabidopsis at any stage. These results strongly suggested that AHSSP2 could drive the expression of foreign genes in a seed-specific manner. This study enriched SSP resources, and the results showed that AHSSP2 could be potentially utilized in peanut and other crop species to improve seed quality, such as modifications to seed oil content.
Collapse
|
24
|
Wang J, Lin W, Yin Z, Wang L, Dong S, An J, Lin Z, Yu H, Shi L, Lin S, Chen S. Comprehensive evaluation of fuel properties and complex regulation of intracellular transporters for high oil production in developing seeds of Prunus sibirica for woody biodiesel. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:6. [PMID: 30622648 PMCID: PMC6318995 DOI: 10.1186/s13068-018-1347-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 12/24/2018] [Indexed: 05/17/2023]
Abstract
BACKGROUND Based on our previous studies of 17 Prunus sibirica germplasms, one plus tree with high quality and quantity of seed oils has emerged as novel potential source of biodiesel. To better develop P. sibirica seed oils as woody biodiesel, a concurrent exploration of oil content, FA composition, biodiesel yield and fuel properties as well as prediction model construction for fuel properties was conducted on developing seeds to determine the optimal seed harvest time for producing high-quality biodiesel. Oil synthesis required supply of carbon source, energy and FA, but their transport mechanisms still remains enigmatic. Our recent 454 sequencing of P. sibirica could provide long-read sequences to identify membrane transporters for a better understanding of regulatory mechanism for high oil production in developing seeds. RESULTS To better develop the seed oils of P. sibirica as woody biodiesel, we firstly focused on a temporal and comparative evaluation of growth tendency, oil content, FA composition, biodiesel yield and fuel properties as well as model construction for biodiesel property prediction in different developing seeds from P. sibirica plus tree (accession AS-80), revealing that the oils from developing seeds harvested after 60 days after flowering (DAF) could be as novel potential feedstock for producing biodiesel with ideal fuel property. To gain new insight into membrane transport mechanism for high oil yield in developing seeds of P. sibirica, we presented a global analysis of transporter based on our recent 454 sequencing data of P. sibirica. We annotated a total of 116 genes for membrane-localized transporters at different organelles (plastid, endoplasmatic reticulum, tonoplast, mitochondria and peroxisome), of which some specific transporters were identified to be involved in carbon allocation, metabolite transport and energy supply for oil synthesis by both RT-PCR and qRT-PCR. Importantly, the transporter-mediated model was well established for high oil synthesis in developing P. sibirica seeds. Our findings could help to reveal molecular mechanism of increased oil production and may also present strategies for engineering oil accumulation in oilseed plants. CONCLUSIONS This study presents a temporal and comparative evaluation of developing P. sibirica seed oils as a potential feedstock for producing high-quality biodiesel and a global identification for membrane transporters was to gain better insights into regulatory mechanism of high oil production in developing seeds of P. sibirica. Our findings may present strategies for developing woody biodiesel resources and engineering oil accumulation.
Collapse
Affiliation(s)
- Jia Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Biotechnology, School of Soil and Water Conservation, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083 China
| | - Weijun Lin
- Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China
| | - Zhongdong Yin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Biotechnology, School of Soil and Water Conservation, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083 China
| | - Libing Wang
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091 China
| | - ShuBin Dong
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Biotechnology, School of Soil and Water Conservation, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083 China
| | - Jiyong An
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Biotechnology, School of Soil and Water Conservation, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083 China
| | - Zixin Lin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Biotechnology, School of Soil and Water Conservation, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083 China
| | - Haiyan Yu
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091 China
| | - Lingling Shi
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Biotechnology, School of Soil and Water Conservation, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083 China
| | - Shanzhi Lin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Biotechnology, School of Soil and Water Conservation, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083 China
| | - Shaoliang Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Biotechnology, School of Soil and Water Conservation, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083 China
| |
Collapse
|