1
|
Li Z, Wei H, Li R, Wu B, Xu M, Yang X, Zhang Y, Liu Y. The effects of antihypertensive drugs on glucose metabolism. Diabetes Obes Metab 2024; 26:4820-4829. [PMID: 39140233 DOI: 10.1111/dom.15821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/28/2024] [Accepted: 07/08/2024] [Indexed: 08/15/2024]
Abstract
Abnormal glucose metabolism is a common disease of the endocrine system. The effects of drugs on glucose metabolism have been reported frequently in recent years, and since abnormal glucose metabolism increases the risk of microvascular and macrovascular complications, metabolic disorders, and infection, clinicians need to pay close attention to these effects. A variety of common drugs can affect glucose metabolism and have different mechanisms of action. Hypertension is a common chronic cardiovascular disease that requires long-term medication. Studies have shown that various antihypertensive drugs also have an impact on glucose metabolism. Among them, α-receptor blockers, angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, and calcium channel blockers can improve insulin resistance, while β-receptor blockers, thiazides and loop diuretics can impair glucose metabolism. The aim of this review was to discuss the mechanisms underlying the effects of various antihypertensive drugs on glucose metabolism in order to provide reference information for rational clinical drug use.
Collapse
Affiliation(s)
- Zhe Li
- Department of Endocrinology, The First Hospital of Shanxi Medical University, Taiyuan, China
- The First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Hongxia Wei
- Department of Endocrinology, The First Hospital of Shanxi Medical University, Taiyuan, China
- The First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Ru Li
- Department of Endocrinology, The First Hospital of Shanxi Medical University, Taiyuan, China
- The First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Baofeng Wu
- Department of Endocrinology, The First Hospital of Shanxi Medical University, Taiyuan, China
- The First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Ming Xu
- Department of Endocrinology, The First Hospital of Shanxi Medical University, Taiyuan, China
- The First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Xifeng Yang
- Department of Endocrinology, The First Hospital of Shanxi Medical University, Taiyuan, China
- The First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Yi Zhang
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Yunfeng Liu
- Department of Endocrinology, The First Hospital of Shanxi Medical University, Taiyuan, China
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, China
- Clinical Research Center For Metabolic Diseases Of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
2
|
Fu Q, Shen N, Fang T, Zhang H, Di Y, Liu X, Du C, Guo J. ACT001 alleviates inflammation and pyroptosis through the PPAR-γ/NF-κB signaling pathway in LPS-induced alveolar macrophages. Genes Genomics 2024; 46:323-332. [PMID: 37831404 DOI: 10.1007/s13258-023-01455-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/04/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUND ACT001 is an anti-inflammatory agent that has been widely investigated for its role in tumors, intracranial diseases, and fibrotic diseases, but its effect on acute lung injury is less known. OBJECTIVE The purpose of this study was to investigate the effect and mechanism of ACT001 on regulating inflammation and pyroptosis in lipopolysaccharide (LPS)-induced alveolar macrophages. METHODS NR8383 alveolar macrophages treated with LPS were used to replicate the proinflammatory macrophage phenotype observed during acute lung injury. After ACT001 treatment, we measured the secretion and expression levels of critical inflammatory cytokines, the rate of pyroptosis, and the expression of NLRP3 inflammasome-associated proteins and pyroptosis-associated proteins. In addition, we assessed the role of the PPAR-γ/NF-κB signaling pathways and further validated the results with a PPAR-γ inhibitor. RESULTS Our findings confirmed that ACT001 reduced the expression and release of inflammatory factors, attenuated cell pyroptosis, and downregulated the expression of NLRP3, ASC, caspase-1 p20, and GSDMD-N. These effects may be achieved by activating PPAR-γ expression and then inhibiting the NF-κB signaling pathway. When macrophages were treated with the PPAR-γ inhibitor, the protective effects of ACT001 were reversed. CONCLUSION ACT001 significantly ameliorated inflammation and pyroptosis via the PPAR-γ/NF-κB signaling pathways in LPS-induced NR8383 alveolar macrophages.
Collapse
Affiliation(s)
- Qiang Fu
- Department of Intensive Care Unit, Tianjin 4th Central Hospital, No.1 Zhongshan Road, Tianjin, 300140, China.
| | - Na Shen
- Central Laboratory, Tianjin 4th Central Hospital, Tianjin, 300140, China
| | - Tao Fang
- Central Laboratory, Tianjin 4th Central Hospital, Tianjin, 300140, China
| | - Hewei Zhang
- Department of Intensive Care Unit, Tianjin 4th Central Hospital, No.1 Zhongshan Road, Tianjin, 300140, China
| | - Yanbo Di
- Central Laboratory, Tianjin 4th Central Hospital, Tianjin, 300140, China
| | - Xuan Liu
- Pharmacy Department, Tianjin 4th Central Hospital, Tianjin, 300140, China
| | - Chao Du
- Emergency Surgical Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Jianshuang Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China
| |
Collapse
|
3
|
Imenshahidi M, Roohbakhsh A, Hosseinzadeh H. Effects of telmisartan on metabolic syndrome components: a comprehensive review. Biomed Pharmacother 2024; 171:116169. [PMID: 38228033 DOI: 10.1016/j.biopha.2024.116169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/04/2024] [Accepted: 01/11/2024] [Indexed: 01/18/2024] Open
Abstract
Telmisartan is an antagonist of the angiotensin II receptor used in the management of hypertension (alone or in combination with other antihypertensive agents. It belongs to the drug class of angiotensin II receptor blockers (ARBs). Among drugs of this class, telmisartan shows particular pharmacologic properties, including a longer half-life than any other angiotensin II receptor blockers that bring higher and persistent antihypertensive activity. In hypertensive patients, telmisartan has superior efficacy than other antihypertensive drugs (losartan, valsartan, ramipril, atenolol, and perindopril) in controlling blood pressure, especially towards the end of the dosing interval. Telmisartan has a partial PPARγ-agonistic effect whilst does not have the safety concerns of full agonists of PPARγ receptors (thiazolidinediones). Moreover, telmisartan has an agonist activity on PPARα and PPARδ receptors and modulates the adipokine levels. Thus, telmisartan could be considered as a suitable alternative option, with multi-benefit for all components of metabolic syndrome including hypertension, diabetes mellitus, obesity, and hyperlipidemia. This review will highlight the role of telmisartan in metabolic syndrome and the main mechanisms of action of telmisartan are discussed and summarized. Many studies have demonstrated the useful properties of telmisartan in the prevention and improving of metabolic syndrome and this well-tolerated drug can be greatly proposed in the treatment of different components of metabolic syndrome. However, larger and long-duration studies are needed to confirm these findings in long-term observational studies and prospective trials and to determine the optimum dose of telmisartan in metabolic syndrome.
Collapse
Affiliation(s)
- Mohsen Imenshahidi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Roohbakhsh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Xu S, Xi J, Wu T, Wang Z. The Role of Adipocyte Endoplasmic Reticulum Stress in Obese Adipose Tissue Dysfunction: A Review. Int J Gen Med 2023; 16:4405-4418. [PMID: 37789878 PMCID: PMC10543758 DOI: 10.2147/ijgm.s428482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 09/19/2023] [Indexed: 10/05/2023] Open
Abstract
Adipose tissue dysfunction plays an important role in metabolic diseases associated with chronic inflammation, insulin resistance and lipid ectopic deposition in obese patients. In recent years, it has been found that under the stimulation of adipocyte endoplasmic reticulum stress (ERS), the over-activated ER unfolded protein response (UPR) exacerbates the inflammatory response of adipose tissue by interfering with the normal metabolism of adipose tissue, promotes the secretion of adipokines, and affects the browning and thermogenic pathways of adipose tissue, ultimately leading to the manifestation of metabolic syndrome such as ectopic lipid deposition and disorders of glucolipid metabolism in obese patients. This paper mainly summarizes the relationship between adipocyte ERS and obese adipose tissue dysfunction and provides an overview of the mechanisms by which ERS induces metabolic disorders such as catabolism, thermogenesis and inflammation in obese adipose tissue through the regulation of molecules and pathways such as NF-κB, ADPN, STAMP2, LPIN1, TRIP-Br2, NF-Y and SIRT2 and briefly describes the current mechanisms targeting adipocyte endoplasmic reticulum stress to improve obesity and provide ideas for intervention and treatment of obese adipose tissue dysfunction.
Collapse
Affiliation(s)
- Shengjie Xu
- The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, People’s Republic of China
| | - Jiaqiu Xi
- Shandong University of Traditional Chinese Medicine, Jinan, 250000, People’s Republic of China
| | - Tao Wu
- The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, People’s Republic of China
| | - Zhonglin Wang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, People’s Republic of China
| |
Collapse
|
5
|
Abd-Eltawab Tammam A, Rizg WY, Fakhry Boushra A, Alhelf M, Alissa M, Soliman GF, Nady Ouais G, Hosny KM, Alkhalidi HM, Elebiary AM. Telmisartan versus metformin in downregulating myostatin gene expression and enhancing insulin sensitivity in the skeletal muscles of type 2 diabetic rat model. Front Pharmacol 2023; 14:1228525. [PMID: 37576807 PMCID: PMC10416801 DOI: 10.3389/fphar.2023.1228525] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/11/2023] [Indexed: 08/15/2023] Open
Abstract
Objective: Telmisartan is an angiotensin receptor blocker (ARB) that specifically blocks angiotensin II type-1 receptors (AT1R). Telmisartan has been proven to have antidiabetic effects via a variety of mechanisms, and it can be utilized in some diabetic patients due to its dual benefit for hypertensive patients with type 2 DM (T2DM) and when the other oral antidiabetic medications are intolerable or contraindicated. However, its precise underlying hypoglycemic mechanism is still obscure. Aim of work: We sought to establish a link between telmisartan administration and myostatin expression in skeletal muscles of T2DM rat model as a potential hypoglycemic mechanism of telmisartan. Materials and Methods: 32 male albino rats were included in the study; 8 rats served as controls (group I). T2DM was inducted in the other 24 rats, which were then randomly subdivided into 3 groups (8 in each): (group II) the Diabetic group and (groups III and IV) which were treated with either telmisartan (8 mg/kg/day) or metformin (250 mg/kg/day) respectively via oral gavage for a 4-week period. Results: Telmisartan administration resulted in a significant improvement in OGTT, HOMA-IR, glucose uptake, and muscle mass/body ratios in Telmisartan group as compared to Diabetic group (p < 0.05). Additionally, telmisartan induced a significant boost in adiponectin and IL-10 serum levels with a substantial drop in TNF-α and IL-6 levels in Telmisartan group compared to diabetic rats (p < 0.05). Moreover, telmisartan significantly boosted SOD and GSH, and decreased MDA levels in the skeletal muscles of telmisartan group. Furthermore, a significant downregulation of myostatin and upregulation of insulin receptor, IRS-1, and IRS-3 genes in the skeletal muscles of Telmisartan group were also detected. Histologically, telmisartan attenuated the morphological damage in the skeletal muscle fibers compared to diabetic rats, as evidenced by a considerable decrease in the collagen deposition area percentage and a reduction in NF-kB expression in the muscle tissues of group III. Conclusion: Telmisartan administration dramatically reduced myostatin and NF-kB expressions in skeletal muscles, which improved insulin resistance and glucose uptake in these muscles, highlighting a novel antidiabetic mechanism of telmisartan in treating T2DM.
Collapse
Affiliation(s)
| | - Waleed Y. Rizg
- Center of Innovation in Personalized Medicine (CIPM), 3D Bioprinting Unit, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Amy Fakhry Boushra
- Medical Physiology Department, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Maha Alhelf
- Biotechnology School, Nile University, Giza, Egypt
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mohammed Alissa
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Ghada F. Soliman
- Medical Pharmacology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
- Medical Pharmacology Department, Armed Forces College of Medicine, Cairo, Egypt
| | - Ghada Nady Ouais
- Anatomy and Embryology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
- Anatomy and Embryology Department, Faculty of Medicine, New Giza University, Giza, Egypt
| | - Khaled M. Hosny
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hala M. Alkhalidi
- Department of Clinical Pharmacy, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmed Magdy Elebiary
- Medical Physiology Department, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| |
Collapse
|
6
|
Dai J, Shi H, Zhang C, Li B, Li Y, Wei Y. Multimeric adiponectin nanoparticles regulate glucose metabolism by activating phosphatidylinositol-3-kinase, protein kinase B and T-cadherin. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.12.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
7
|
Sano H, Namekata K, Niki M, Semba K, Murao F, Harada T, Mitamura Y. Ocular expression of cyclin-dependent kinase 5 in patients with proliferative diabetic retinopathy. J Diabetes Investig 2021; 13:628-637. [PMID: 34693664 PMCID: PMC9017639 DOI: 10.1111/jdi.13702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/31/2021] [Accepted: 10/21/2021] [Indexed: 11/29/2022] Open
Abstract
Aims/Introduction Inhibition of peroxisome proliferator‐activated receptor gamma (PPARγ) phosphorylation mediated by cyclin‐dependent kinase 5 (Cdk5) is one of the main mechanisms of action of antidiabetic drugs. In this study, we analyzed the ocular expression and activation of Cdk5 in patients with proliferative diabetic retinopathy (PDR). Materials and Methods The concentrations of PPARγ, Cdk5 and its activating subunit (p35) were determined in the vitreous body of 24 PDR and 63 control eyes by enzyme‐linked immunosorbent assay. In addition, the messenger ribonucleic acid and protein expression levels of PPARγ, Cdk5 and p35 were measured in proliferative neovascular membranes from seven PDR eyes and non‐neovascular epiretinal membranes from five control eyes by quantitative real‐time polymerase chain reaction and immunohistochemical analysis. Results PPARγ, Cdk5 and p35 concentrations in the vitreous body were significantly higher in the PDR group compared with the control group. There was also a positive significant correlation of Cdk5 with PPARγ and p35 in the PDR group. Furthermore, the messenger ribonucleic acid expression levels of PPARγ, Cdk5 and p35 in proliferative neovascular membranes were significantly higher in the PDR group compared with the control group. Immunostaining showed increased protein expression levels of PPARγ, Cdk5 and p35 in proliferative neovascular membranes in the PDR group compared with the control group. Conclusions Cdk5 activation is involved in PDR pathogenesis through PPARγ expression, and inhibition of Cdk5‐mediated PPARγ phosphorylation might be a new therapeutic target for treatment of PDR.
Collapse
Affiliation(s)
- Hiroki Sano
- Department of Ophthalmology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan.,Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kazuhiko Namekata
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Masanori Niki
- Department of Ophthalmology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Kentaro Semba
- Department of Ophthalmology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan.,Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Fumiko Murao
- Department of Ophthalmology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Takayuki Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Yoshinori Mitamura
- Department of Ophthalmology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| |
Collapse
|
8
|
Liu CH, Sung PS, Li YR, Huang WK, Lee TW, Huang CC, Lee TH, Chen TH, Wei YC. Telmisartan use and risk of dementia in type 2 diabetes patients with hypertension: A population-based cohort study. PLoS Med 2021; 18:e1003707. [PMID: 34280191 PMCID: PMC8289120 DOI: 10.1371/journal.pmed.1003707] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 06/22/2021] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Angiotensin receptor blockers (ARBs) may have protective effects against dementia occurrence in patients with hypertension (HTN). However, whether telmisartan, an ARB with peroxisome proliferator-activated receptor γ (PPAR-γ)-modulating effects, has additional benefits compared to other ARBs remains unclear. METHODS AND FINDINGS Between 1997 and 2013, 2,166,944 type 2 diabetes mellitus (T2DM) patients were identified from the National Health Insurance Research Database of Taiwan. Patients with HTN using ARBs were included in the study. Patients with a history of stroke, traumatic brain injury, or dementia were excluded. Finally, 65,511 eligible patients were divided into 2 groups: the telmisartan group and the non-telmisartan ARB group. Propensity score matching (1:4) was used to balance the distribution of baseline characteristics and medications. The primary outcome was the diagnosis of dementia. The secondary outcomes included the diagnosis of Alzheimer disease and occurrence of symptomatic ischemic stroke (IS), any IS, and all-cause mortality. The risks between groups were compared using a Cox proportional hazard model. Statistical significance was set at p < 0.05. There were 2,280 and 9,120 patients in the telmisartan and non-telmisartan ARB groups, respectively. Patients in the telmisartan group had a lower risk of dementia diagnosis (telmisartan versus non-telmisartan ARBs: 2.19% versus 3.20%; HR, 0.72; 95% CI, 0.53 to 0.97; p = 0.030). They also had lower risk of dementia diagnosis with IS as a competing risk (subdistribution HR, 0.70; 95% CI, 0.51 to 0.95; p = 0.022) and with all-cause mortality as a competing risk (subdistribution HR, 0.71; 95% CI, 0.53 to 0.97; p = 0.029). In addition, the telmisartan users had a lower risk of any IS (6.84% versus 8.57%; HR, 0.79; 95% CI, 0.67 to 0.94; p = 0.008) during long-term follow-up. Study limitations included potential residual confounding by indication, interpretation of causal effects in an observational study, and bias caused by using diagnostic and medication codes to represent real clinical data. CONCLUSIONS The current study suggests that telmisartan use in hypertensive T2DM patients may be associated with a lower risk of dementia and any IS events in an East-Asian population.
Collapse
Affiliation(s)
- Chi-Hung Liu
- Department of Neurology, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Pi-Shan Sung
- Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yan-Rong Li
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Wen-Kuan Huang
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Division of Hematology-Oncology, Department of Internal Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Tay-Wey Lee
- Biostatistical Consultation Center, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Chin-Chang Huang
- Department of Neurology, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Tsong-Hai Lee
- Department of Neurology, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Tien-Hsing Chen
- Division of Cardiology, Department of Internal Medicine, Keelung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Keelung, Taiwan
- * E-mail: (THC); (YCW)
| | - Yi-Chia Wei
- Department of Neurology, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Community Medicine Research Center, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan
- * E-mail: (THC); (YCW)
| |
Collapse
|
9
|
Cataldi S, Costa V, Ciccodicola A, Aprile M. PPARγ and Diabetes: Beyond the Genome and Towards Personalized Medicine. Curr Diab Rep 2021; 21:18. [PMID: 33866450 DOI: 10.1007/s11892-021-01385-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/25/2021] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Full and partial synthetic agonists targeting the transcription factor PPARγ are contained in FDA-approved insulin-sensitizing drugs and used for the treatment of metabolic syndrome-related dysfunctions. Here, we discuss the association between PPARG genetic variants and drug efficacy, as well as the role of alternative splicing and post-translational modifications as contributors to the complexity of PPARγ signaling and to the effects of synthetic PPARγ ligands. RECENT FINDINGS PPARγ regulates the transcription of several target genes governing adipocyte differentiation and glucose and lipid metabolism, as well as insulin sensitivity and inflammatory pathways. These pleiotropic functions confer great relevance to PPARγ in physiological regulation of whole-body metabolism, as well as in the etiology of metabolic disorders. Accordingly, PPARG gene mutations, nucleotide variations, and post-translational modifications have been associated with adipose tissue disorders and the related risk of insulin resistance and type 2 diabetes (T2D). Moreover, PPARγ alternative splicing isoforms-generating dominant-negative isoforms mainly expressed in human adipose tissue-have been related to impaired PPARγ activity and adipose tissue dysfunctions. Thus, multiple regulatory levels that contribute to PPARγ signaling complexity may account for the beneficial as well as adverse effects of PPARγ agonists. Further targeted analyses, taking into account all these aspects, are needed for better deciphering the role of PPARγ in human pathophysiology, especially in insulin resistance and T2D. The therapeutic potential of full and partial PPARγ synthetic agonists underlines the clinical significance of this nuclear receptor. PPARG mutations, polymorphisms, alternative splicing isoforms, and post-translational modifications may contribute to the pathogenesis of metabolic disorders, also influencing the responsiveness of pharmacological therapy. Therefore, in the context of the current evidence-based trend to personalized diabetes management, we highlight the need to decipher the intricate regulation of PPARγ signaling to pave the way to tailored therapies in patients with insulin resistance and T2D.
Collapse
Affiliation(s)
- Simona Cataldi
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso", CNR, Via P. Castellino 111, 80131, Naples, Italy
| | - Valerio Costa
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso", CNR, Via P. Castellino 111, 80131, Naples, Italy
| | - Alfredo Ciccodicola
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso", CNR, Via P. Castellino 111, 80131, Naples, Italy.
- Department of Science and Technology, University of Naples "Parthenope", 80131, Naples, Italy.
| | - Marianna Aprile
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso", CNR, Via P. Castellino 111, 80131, Naples, Italy
| |
Collapse
|
10
|
de Carvalho MV, Gonçalves-de-Albuquerque CF, Silva AR. PPAR Gamma: From Definition to Molecular Targets and Therapy of Lung Diseases. Int J Mol Sci 2021; 22:E805. [PMID: 33467433 PMCID: PMC7830538 DOI: 10.3390/ijms22020805] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/18/2020] [Accepted: 09/24/2020] [Indexed: 12/15/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear receptor superfamily that regulate the expression of genes related to lipid and glucose metabolism and inflammation. There are three members: PPARα, PPARβ or PPARγ. PPARγ have several ligands. The natural agonists are omega 9, curcumin, eicosanoids and others. Among the synthetic ligands, we highlight the thiazolidinediones, clinically used as an antidiabetic. Many of these studies involve natural or synthetic products in different pathologies. The mechanisms that regulate PPARγ involve post-translational modifications, such as phosphorylation, sumoylation and ubiquitination, among others. It is known that anti-inflammatory mechanisms involve the inhibition of other transcription factors, such as nuclear factor kB(NFκB), signal transducer and activator of transcription (STAT) or activator protein 1 (AP-1), or intracellular signaling proteins such as mitogen-activated protein (MAP) kinases. PPARγ transrepresses other transcription factors and consequently inhibits gene expression of inflammatory mediators, known as biomarkers for morbidity and mortality, leading to control of the exacerbated inflammation that occurs, for instance, in lung injury/acute respiratory distress. Many studies have shown the therapeutic potentials of PPARγ on pulmonary diseases. Herein, we describe activities of the PPARγ as a modulator of inflammation, focusing on lung injury and including definition and mechanisms of regulation, biological effects and molecular targets, and its role in lung diseases caused by inflammatory stimuli, bacteria and virus, and molecular-based therapy.
Collapse
Affiliation(s)
- Márcia V. de Carvalho
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil;
- Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil
| | - Cassiano F. Gonçalves-de-Albuquerque
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil;
- Laboratório de Imunofarmacologia, Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Rio de Janeiro 20211-010, Brazil
- Programa de Pós-Graduação em Biologia Molecular e Celular, Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Rio de Janeiro 20211-010, Brazil
| | - Adriana R. Silva
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil;
- Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil
| |
Collapse
|
11
|
Ayza MA, Zewdie KA, Tesfaye BA, Gebrekirstos ST, Berhe DF. Anti-Diabetic Effect of Telmisartan Through its Partial PPARγ-Agonistic Activity. Diabetes Metab Syndr Obes 2020; 13:3627-3635. [PMID: 33116714 PMCID: PMC7567533 DOI: 10.2147/dmso.s265399] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 09/10/2020] [Indexed: 12/19/2022] Open
Abstract
Telmisartan is an angiotensin II receptor antagonist, which selectively inhibits the angiotensin II type 1 receptor. Thus, it is widely used for hypertension management. Nowadays, telmisartan's effect on peroxisome proliferator-activated receptors (PPARs) is gaining wider attention. PPARs are ligand-activated transcription factors that belong to the nuclear hormone receptor superfamily. Telmisartan is reported to have a partial PPARγ-agonistic effect while avoiding the safety concerns found with full PPARγ agonists (thiazolidinediones). Telmisartan could be an alternative treatment option, with dual benefit for diabetes mellitus (DM) and hypertension. This review summarizes the anti-diabetic activity of telmisartan via its partial PPARγ-agonistic activity.
Collapse
Affiliation(s)
- Muluken Altaye Ayza
- Department of Pharmacology and Toxicology, School of Pharmacy, Mekelle University, Mekelle, Ethiopia
| | - Kaleab Alemayehu Zewdie
- Department of Pharmacology and Toxicology, School of Pharmacy, Mekelle University, Mekelle, Ethiopia
| | - Bekalu Amare Tesfaye
- Department of Pharmacology and Toxicology, School of Pharmacy, Mekelle University, Mekelle, Ethiopia
| | | | - Derbew Fikadu Berhe
- Department of Pharmacology and Toxicology, School of Pharmacy, Mekelle University, Mekelle, Ethiopia
| |
Collapse
|
12
|
Zhang Y, Wang Y, Li X, Gu K, Li M, Zhang Y, Zhang Z, Wang S, Li Z. WSF-7 Inhibits Obesity-Mediated PPARγ Phosphorylation and Improves Insulin Sensitivity in 3T3-L1 Adipocytes. Biol Pharm Bull 2020; 43:526-532. [PMID: 32115511 DOI: 10.1248/bpb.b19-00986] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ), the molecular target for antidiabetic thiazolidinediones (TZDs), is a master regulator of preadipocyte differentiation and lipid metabolism. The adverse side effects of TZDs, arising from their potent agonistic activity, can be minimized by PPARγ partial agonists or PPARγ non-agonists without loss of insulin sensitization. In this study, we reported that WSF-7, a synthetic chemical derived from natural monoterpene α-pinene, is a partial PPARγ agonist. We found that WSF-7 binds directly to PPARγ. Activation of PPARγ by WSF-7 promotes adipogenesis, adiponectin oligomerization and insulin-induced glucose uptake. WSF-7 also inhibits obesity-mediated PPARγ phosphorylation at serine (Ser)273 and improves insulin sensitivity of 3T3-L1 adipocytes. Our study suggested that WSF-7 activates PPARγ transcription by a mechanism different from that of rosiglitazone or luteolin. Therefore, WSF-7 might be a potential therapeutic drug to treat type 2 diabetes.
Collapse
Affiliation(s)
- Yudian Zhang
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University
| | - Yunyun Wang
- College of Chemical Engineering, Nanjing Forestry University
| | - Xiaochuan Li
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University
| | - Kerui Gu
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University
| | - Mingxin Li
- College of Chemical Engineering, Nanjing Forestry University
| | - Yan Zhang
- College of Chemical Engineering, Nanjing Forestry University
| | - Zhijie Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences
| | - Shifa Wang
- College of Chemical Engineering, Nanjing Forestry University
| | - Zhen Li
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University
| |
Collapse
|
13
|
Kaupang Å, Hansen TV. The PPAR Ω Pocket: Renewed Opportunities for Drug Development. PPAR Res 2020; 2020:9657380. [PMID: 32695150 PMCID: PMC7351019 DOI: 10.1155/2020/9657380] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 05/13/2020] [Indexed: 12/13/2022] Open
Abstract
The past decade of PPARγ research has dramatically improved our understanding of the structural and mechanistic bases for the diverging physiological effects of different classes of PPARγ ligands. The discoveries that lie at the heart of these developments have enabled the design of a new class of PPARγ ligands, capable of isolating central therapeutic effects of PPARγ modulation, while displaying markedly lower toxicities than previous generations of PPARγ ligands. This review examines the emerging framework around the design of these ligands and seeks to unite its principles with the development of new classes of ligands for PPARα and PPARβ/δ. The focus is on the relationships between the binding modes of ligands, their influence on PPAR posttranslational modifications, and gene expression patterns. Specifically, we encourage the design and study of ligands that primarily bind to the Ω pockets of PPARα and PPARβ/δ. In support of this development, we highlight already reported ligands that if studied in the context of this new framework may further our understanding of the gene programs regulated by PPARα and PPARβ/δ. Moreover, recently developed pharmacological tools that can be utilized in the search for ligands with new binding modes are also presented.
Collapse
Affiliation(s)
- Åsmund Kaupang
- Section for Pharmaceutical Chemistry, Department of Pharmacy, University of Oslo, 0316 Oslo, Norway
| | - Trond Vidar Hansen
- Section for Pharmaceutical Chemistry, Department of Pharmacy, University of Oslo, 0316 Oslo, Norway
| |
Collapse
|
14
|
Di Y, He J, Ma P, Shen N, Niu C, Liu X, Du X, Tian F, Li H, Liu Y. Liraglutide promotes the angiogenic ability of human umbilical vein endothelial cells through the JAK2/STAT3 signaling pathway. Biochem Biophys Res Commun 2020; 523:666-671. [PMID: 31948746 DOI: 10.1016/j.bbrc.2020.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 01/01/2020] [Indexed: 02/07/2023]
Abstract
Liraglutide is a glucagon-like peptide-1 receptor (GLP-1R) agonist and incretin mimetic used for the treatment of Type 2 diabetes mellitus. It has also been shown to have a beneficial role in the cardiovascular system. Here, we investigated the mechanism by which liraglutide promotes angiogenesis using human umbilical vein endothelial cells (HUVECs). HUVECs were treated with various concentrations of liraglutide, and assessed by wound healing assay and tube formation assay as measures of angiogenesis. We found that liraglutide at 10 and 100 nmol/L greatly promoted the angiogenic ability of HUVECs. Next, we examined the JAK2/STAT3 signaling pathway and found that liraglutide treatment led to JAK2/STAT3 activation and significant increase in the angiogenic mediator expressions, including vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), and endothelial nitric oxide synthase (eNOS) in HUVECs. Treatment with JAK2 inhibitor, AG490, in HUVECs successfully reduced the observed effects of liraglutide. We conclude that liraglutide promotes the angiogenic ability of HUVECs by activating the JAK2/STAT3 signaling pathway and upregulating its downstream factors, VEGF, bFGF and eNOS. Thus, liraglutide may provide ischemic relief for diabetic patients with cardiovascular diseases in addition to glycemic control.
Collapse
Affiliation(s)
- Yanbo Di
- Central Laboratory, Tianjin 4th Center Hospital, The Fourth Central Hospital Affiliated to Nankai University, The Fourth Center Clinical College of Tianjin Medical University, Tianjin, 300140, China
| | - Jing He
- Department of Cardiology, Tianjin 4th Center Hospital, The Fourth Central Hospital Affiliated to Nankai University, The Fourth Center Clinical College of Tianjin Medical University, Tianjin, 300140, China
| | - Ping Ma
- Department of Endocrinology, Tianjin 4th Center Hospital, The Fourth Central Hospital Affiliated to Nankai University, The Fourth Center Clinical College of Tianjin Medical University, Tianjin, 300140, China
| | - Na Shen
- Central Laboratory, Tianjin 4th Center Hospital, The Fourth Central Hospital Affiliated to Nankai University, The Fourth Center Clinical College of Tianjin Medical University, Tianjin, 300140, China
| | - Chunhong Niu
- Department of Nursing, Tianjin 4th Center Hospital, The Fourth Central Hospital Affiliated to Nankai University, The Fourth Center Clinical College of Tianjin Medical University, Tianjin, 300140, China
| | - Xuan Liu
- Central Laboratory, Tianjin 4th Center Hospital, The Fourth Central Hospital Affiliated to Nankai University, The Fourth Center Clinical College of Tianjin Medical University, Tianjin, 300140, China
| | - Xiaoming Du
- Department of Endocrinology, Tianjin 4th Center Hospital, The Fourth Central Hospital Affiliated to Nankai University, The Fourth Center Clinical College of Tianjin Medical University, Tianjin, 300140, China
| | - Fengshi Tian
- Department of Cardiology, Tianjin 4th Center Hospital, The Fourth Central Hospital Affiliated to Nankai University, The Fourth Center Clinical College of Tianjin Medical University, Tianjin, 300140, China
| | - Huanming Li
- Department of Cardiology, Tianjin 4th Center Hospital, The Fourth Central Hospital Affiliated to Nankai University, The Fourth Center Clinical College of Tianjin Medical University, Tianjin, 300140, China.
| | - Yong Liu
- Department of Cardiology, Tianjin 4th Center Hospital, The Fourth Central Hospital Affiliated to Nankai University, The Fourth Center Clinical College of Tianjin Medical University, Tianjin, 300140, China.
| |
Collapse
|
15
|
Liu CH, Lee TH, Lin YS, Sung PS, Wei YC, Li YR. Pioglitazone and PPAR-γ modulating treatment in hypertensive and type 2 diabetic patients after ischemic stroke: a national cohort study. Cardiovasc Diabetol 2020; 19:2. [PMID: 31910836 PMCID: PMC6945719 DOI: 10.1186/s12933-019-0979-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 12/24/2019] [Indexed: 12/13/2022] Open
Abstract
Background and aim Peroxisome proliferator-activated receptor-γ (PPAR-γ) modulating treatment may have cardiovascular benefits in type 2 diabetes mellitus (T2DM) patients after ischemic stroke (IS). However, whether there are additional benefits from intensive PPAR-γ modulating treatments in Asian patients with T2DM and hypertension (HTN) after IS remains unknown. Methods Between 2001 and 2013, patients admitted due to IS were identified from the National Health Insurance Research Database of Taiwan. Patients with T2DM and HTN using angiotensin receptor blockers were further included. Eligible patients were divided into two groups: (1) pioglitazone and (2) non-pioglitazone oral anti-diabetic agent groups. Propensity score matching (1:2) was used to balance the distribution of baseline characteristics, stroke severity and medications. The primary outcome was recurrent IS. Subgroup analysis for recurrent IS in pioglitazone and/or telmisartan users, the trend of IS risks across different PPAR-γ intensity treatments, and dose-dependent outcomes across different pioglitazone possession ratios were further studied. Statistical significance was set at p < 0.05 and p < 0.1 for clinical outcomes and interaction of subgroup analyses, respectively. Results There were 3190 and 32,645 patients in the pioglitazone and non-pioglitazone groups. Patients of the pioglitazone group had a lower risk of recurrent IS (subdistribution hazard ratio, 0.91; 95% confidence interval 0.84–0.99). Pioglitazone was also associated with reduced recurrent IS in patients who also used telmisartan (p for interaction = 0.071). A graded correlation was found a borderline significant trend between the intensity of PPAR-γ therapy and following IS (p = 0.076). The dose-dependent outcome also showed that a borderline significant trend that higher pioglitazone possession ratio was associated with a lower risk of recurrent IS (p = 0.068). Conclusions The current study suggests that the use of pioglitazone in type 2 diabetic and hypertensive IS patients is associated with fewer recurrent IS events in an Asian population. Concurrent telmisartan use or a higher pioglitazone possession ratio may have a trend of increased pleiotropic effects, which could possibly be related to higher PPAR-γ effects. Future studies are warranted to confirm or refute the clinical effects and the possible mechanism of more intensive PPAR-γ-modulating treatments.
Collapse
Affiliation(s)
- Chi-Hung Liu
- Stroke Center and Department of Neurology, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Tsong-Hai Lee
- Stroke Center and Department of Neurology, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Sheng Lin
- Division of Cardiology, Department of Internal Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan.,Department of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Pi-Shan Sung
- Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Chia Wei
- Department of Neurology, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan.,Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan
| | - Yan-Rong Li
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Linkou Chang Gung Memorial Hospital, and College of Medicine, Chang Gung University, No. 5, Fu-Hsing St, Kueishan, Taoyuan, 33333, Taiwan.
| |
Collapse
|
16
|
Liu J, Li X, Lu Q, Ren D, Sun X, Rousselle T, Li J, Leng J. AMPK: a balancer of the renin-angiotensin system. Biosci Rep 2019; 39:BSR20181994. [PMID: 31413168 PMCID: PMC6722492 DOI: 10.1042/bsr20181994] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 07/24/2019] [Accepted: 08/12/2019] [Indexed: 02/07/2023] Open
Abstract
The renin-angiotensin system (RAS) is undisputedly well-studied as one of the oldest and most critical regulators for arterial blood pressure, fluid volume, as well as renal function. In recent studies, RAS has also been implicated in the development of obesity, diabetes, hyperlipidemia, and other diseases, and also involved in the regulation of several signaling pathways such as proliferation, apoptosis and autophagy, and insulin resistance. AMP-activated protein kinase (AMPK), an essential cellular energy sensor, has also been discovered to be involved in these diseases and cellular pathways. This would imply a connection between the RAS and AMPK. Therefore, this review serves to draw attention to the cross-talk between RAS and AMPK, then summering the most recent literature which highlights AMPK as a point of balance between physiological and pathological functions of the RAS.
Collapse
Affiliation(s)
- Jia Liu
- Department of Geriatrics, The First Hospital of Jilin University, Changchun 130021, China
- Department of Surgery, University of South Florida, Tampa, FL 33612, U.S.A
| | - Xuan Li
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, U.S.A
| | - Qingguo Lu
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, U.S.A
| | - Di Ren
- Department of Surgery, University of South Florida, Tampa, FL 33612, U.S.A
| | - Xiaodong Sun
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, U.S.A
| | - Thomas Rousselle
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, U.S.A
| | - Ji Li
- Department of Surgery, University of South Florida, Tampa, FL 33612, U.S.A
| | - Jiyan Leng
- Department of Geriatrics, The First Hospital of Jilin University, Changchun 130021, China
| |
Collapse
|
17
|
Al-Nimer MS, Esmail VA, Mohammad O. Telmisartan improves the metabolic, hematological and inflammasome indices in non-alcoholic fatty liver infiltration: A pilot open-label placebo-controlled study. ELECTRONIC JOURNAL OF GENERAL MEDICINE 2019. [DOI: 10.29333/ejgm/104568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
18
|
Wei H, Li J, Shi S, Zhang L, Xiang A, Shi X, Yang G, Chu G. Hhip inhibits proliferation and promotes differentiation of adipocytes through suppressing hedgehog signaling pathway. Biochem Biophys Res Commun 2019; 514:148-156. [PMID: 31027733 DOI: 10.1016/j.bbrc.2019.04.047] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 04/06/2019] [Indexed: 12/19/2022]
Abstract
Adipogenesis, which directly control body fat mass, plays a crucial role in lipid metabolism and obesity-related diseases. Hedgehog interacting protein (Hhip) belongs to Hedgehog (Hh) signaling pathway. The Hh signaling pathway was already linked with adipogenesis in previous reports, however, the physiological functions of Hhip on lipid deposition are still poorly understood. In this study, the level of Hhip was down-regulated during the development of porcine adipose tissues. Recombinant Hedgehog interacting protein (rHhip) could down-regulate cell cycle related genes and cell numbers in S phage to inhibit cell proliferation. Moreover, rHhip could increase adipocytes differentiation by targeting canonical Hh signaling, indicated by the increase of lipid accumulation and up-regulation of Glut4 and PPARγ expression. Collectively, these findings illustrated the essential role of Hhip in the proliferation and differentiation of adipocytes, and provided a potential novel target for preventing obesity.
Collapse
Affiliation(s)
- Haiyan Wei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China; Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jingjing Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China; Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Shengjie Shi
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China; Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Lutong Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China; Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Aoqi Xiang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China; Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xin'e Shi
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China; Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Gongshe Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China; Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Guiyan Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China; Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|