1
|
de Oliveira AL, Miranda RG, Dorta DJ. Recreational MDMA doses do not elicit hepatotoxicity in HepG2 spheroids under normo- and hyperthermia. Toxicology 2024; 503:153761. [PMID: 38401800 DOI: 10.1016/j.tox.2024.153761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/09/2024] [Accepted: 02/21/2024] [Indexed: 02/26/2024]
Abstract
MDMA (3,4-methylenedioxymethamphetamine), an entactogen with empathogenic and prosocial effects, is widely used in music festivals and other festive settings. High MDMA doses have been associated with drug-induced liver injury and cases of hyperthermia. Although the latter condition is thought to increase MDMA hepatotoxicity, this correlation remains poorly explored for recreational MDMA doses. On the other hand, the fact that MDMA acts to extinguish fear and to reconsolidate memory could be explored as an adjunct to psychotherapy during treatment of neuropsychiatric disorders such as post-traumatic stress disorder. In this context, assessing MDMA toxicity is relevant, and tridimensional cell culture has emerged as an alternative to animal models in toxicity assessment. Herein, we have used HepG2 spheroids to evaluate MDMA-induced hepatotoxicity at recreational doses, under normo- or hyperthermia. The MTT reduction assay did not evidence significantly reduced cell viability. Moreover, MDMA did not increase reactive oxygen species production, deplete the mitochondrial membrane potential, arrest the cell cycle, or induce apoptotic cell death. These findings support further pre-clinical investigation of MDMA safety from the perspective of both harm reduction and therapy given that non-abusive recreational and therapeutic doses overlap.
Collapse
Affiliation(s)
- Arthur L de Oliveira
- Department of Chemistry, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14040-901, Brazil
| | - Raul G Miranda
- School of Pharmaceutical Sciences at Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14040-901, Brazil
| | - Daniel J Dorta
- Department of Chemistry, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14040-901, Brazil.
| |
Collapse
|
2
|
Ruiz de Galarreta M, Arriazu E, Pérez de Obanos MP, Ansorena E, Iraburu MJ. Antifibrogenic and apoptotic effects of Ocoxin in cultured rat hepatic stellate cells. J Physiol Biochem 2023; 79:881-890. [PMID: 35239161 PMCID: PMC10635942 DOI: 10.1007/s13105-022-00878-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/25/2022] [Indexed: 10/18/2022]
Abstract
Ocoxin is a nutritional supplement that has been shown to exert antioxidant and immunomodulatory responses in patients with chronic hepatitis C. The present work aimed to determine the effects of Ocoxin on activated hepatic stellate cells (HSC), the cell type mainly responsible for collagen deposition in the fibrotic liver. Ocoxin was found to reduce the survival of a cell line of immortalized non-tumoral rat HSC in a dose-response fashion and to diminish collagen type I levels. This latter effect was observed even at doses not affecting cell survival, pointing to an antifibrogenic action for the supplement. The decrease in viability exerted by Ocoxin on HSC correlated with an increase in histone-associated fragments in the cytoplasm and with increased activity of caspase-3, indicating the induction of apoptosis. To determine the molecular mechanisms mediating Ocoxin-induced apoptosis, the activation of members of the MAPK family was analyzed. Incubation of HSC with Ocoxin caused a transient and dramatic enhancement on ERK, JNK, and p38 MAPK phosphorylation levels. Using specific inhibitors for these enzymes, p38 MAPK was identified as a key mediator of the apoptotic effect of Ocoxin on HSC.
Collapse
Affiliation(s)
| | - Elena Arriazu
- Department of Biochemistry and Genetics, University of Navarra, 31008, Pamplona, Spain
| | | | - Eduardo Ansorena
- Department of Biochemistry and Genetics, University of Navarra, 31008, Pamplona, Spain
| | - María J Iraburu
- Department of Biochemistry and Genetics, University of Navarra, 31008, Pamplona, Spain.
| |
Collapse
|
3
|
Roque Bravo R, Carmo H, Valente MJ, Silva JP, Carvalho F, Bastos MDL, Dias da Silva D. 4-Fluoromethamphetamine (4-FMA) induces in vitro hepatotoxicity mediated by CYP2E1, CYP2D6, and CYP3A4 metabolism. Toxicology 2021; 463:152988. [PMID: 34655687 DOI: 10.1016/j.tox.2021.152988] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/01/2021] [Accepted: 10/10/2021] [Indexed: 12/14/2022]
Abstract
4-Fluoromethamphetamine (4-FMA) is an amphetamine-like psychoactive substance with recognized entactogenic and stimulant effects, but hitherto unclear toxicological mechanisms. Taking into consideration that the vast majority of 4-FMA users consume this substance through oral route, the liver is expected to be highly exposed. The aim of this work was to determine the hepatotoxic potential of 4-FMA using in vitro hepatocellular models: primary rat hepatocytes (PRH), human hepatoma cell lines HepaRG and HepG2, and resorting to concentrations ranging from 37 μM to 30 mM, during a 24-h exposure. EC50 values, estimated from the MTT viability assay data, were 2.21 mM, 5.59 mM and 9.57 mM, for each model, respectively. The most sensitive model, PRH, was then co-exposed to 4-FMA and cytochrome P450 (CYP) inhibitors to investigate the influence of metabolism on the toxicity of 4-FMA. Results show that CYP2E1, CYP3A4 and CYP2D6 have major roles in 4-FMA cytotoxicity. Inhibition of CYP2D6 and CYP3A4 led to left-geared shifts in the concentration-response curves of 4-FMA, hinting at a role of these metabolic enzymes for detoxifying 4-FMA, while CYP2E1 inhibition pointed towards a toxifying role of this enzyme in 4-FMA metabolism at physiologically-relevant concentrations. The drug also destabilised mitochondrial membrane potential and decreased ATP levels, increased the production of reactive oxygen and nitrogen species and compromised thiol antioxidant defences. 4-FMA further affected PRH integrity by interfering with the machinery of apoptosis and necrosis, increasing the activity of initiator and effector caspases, and causing loss of cell membrane integrity. Potential for autophagy was also observed. This research contributes to the growing body of evidence regarding the toxicity of new psychoactive substances, in particular regarding their hepatotoxic effects; the apparent influence of metabolism over the resulting cytotoxicity of 4-FMA shows that there is a substantial degree of unpredictability of the consequences for users that could be independent of the dose.
Collapse
Affiliation(s)
- Rita Roque Bravo
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, Porto, 4050-313, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.
| | - Helena Carmo
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, Porto, 4050-313, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| | - Maria João Valente
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal; UCIBIO, REQUIMTE, Laboratory of Biochemistry, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, Porto, 4050-313, Portugal
| | - João Pedro Silva
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, Porto, 4050-313, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| | - Félix Carvalho
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, Porto, 4050-313, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| | - Maria de Lourdes Bastos
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, Porto, 4050-313, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| | - Diana Dias da Silva
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, Porto, 4050-313, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal; TOXRUN - Toxicology Research Unit, University Institute of Health Sciences, IUCS-CESPU, Rua Central de Gandra, 1317, 4585-116, Gandra PRD, Portugal.
| |
Collapse
|
4
|
Kowsari G, Mehrabi S, Soleimani Asl S, Pourhamzeh M, Mousavizadeh K, Mehdizadeh M. Nicotine and modafinil combination protects against the neurotoxicity induced by 3,4-Methylenedioxymethamphetamine in hippocampal neurons of male rats. J Chem Neuroanat 2021; 116:101986. [PMID: 34119664 DOI: 10.1016/j.jchemneu.2021.101986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 05/14/2021] [Accepted: 06/08/2021] [Indexed: 10/21/2022]
Abstract
MDMA (3,4-Methylenedioxymethamphetamine) is a common recreational drug of abuse which causes neurodegeneration. Nicotine and modafinil provide antioxidant and neuroprotective properties and may be beneficial in the management of MDMA-induced neurotoxicity. The purpose of this study was to characterize how acute and chronic administration of nicotine and/or modafinil exert protective effects against the MDMA-induced impaired cognitive performance, oxidative stress, and neuronal loss. Adult male rats were divided into three groups, namely control, MDMA and treatment (modafinil and/or nicotine). MDMA (10 mg/kg) was administered intraperitoneally during a three-week schedule (two times/day for two consecutive days/week). The treated-groups were classified based on the acute or chronic status of treatment. In the groups which underwent acute treatments, nicotine (0.5 mg/kg) and/or modafinil (100 mg/kg) were injected just prior to the MDMA administration (acute nicotine (NA), acute modafinil (MA), and acute nicotine and modafinil (NMA)). In the rats which received chronic treatments, nicotine (0.5 mg/kg) and/or modafinil (100 mg/kg) were injected every day during the three week-schedule administration of MDMA (chronic nicotine (NC), chronic modafinil (MC), and chronic nicotine and modafinil (NMC)). Learning and memory performance, as well as avoidance response, were assessed by Morris water maze and Shuttle box, respectively. Our findings indicate enhanced learning and memory and avoidance response in the NMC group. By TUNEL test and Cresyl Violet staining we evaluated neuronal loss and apoptosis in the hippocampal CA1 and found increased neuronal viability in the NMC group. On the other hand, chronic administration of modafinil and nicotine significantly down-regulated the caspase 3 and up-regulated both BDNF and TrkB levels in the MDMA-received rats. The serum levels of glutathione peroxidase (GPx) and total antioxidant capacity (TAC) were evaluated and we found that the alterations of serum levels of GPx and TAC were considerably prevented in the NMC group. The overall results indicate that nicotine and modafinil co-administration rescued brain from MDMA-induced neurotoxicity. We suggest that nicotine and modafinil combination therapy could be considered as a possible treatment to reduce the neurological disorders induced by MDMA.
Collapse
Affiliation(s)
- Golshad Kowsari
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Science, Tehran, Iran
| | - Soraya Mehrabi
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Science, Tehran, Iran; Department of Physiology, Faculty of Medicine, Iran University of Medical Science, Tehran, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Sara Soleimani Asl
- Endometrium and Endometriosis Research Centre, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mahsa Pourhamzeh
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Kazem Mousavizadeh
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Science, Tehran, Iran
| | - Mehdi Mehdizadeh
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Science, Tehran, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Javanmard MZ, Meghrazi K, Ghafori SS, Karimipour M. The ameliorating effects of Vitamin E on hepatotoxicity of ecstasy. JOURNAL OF RESEARCH IN MEDICAL SCIENCES 2020; 25:91. [PMID: 33273936 PMCID: PMC7698444 DOI: 10.4103/jrms.jrms_496_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 01/19/2020] [Accepted: 05/29/2020] [Indexed: 11/05/2022]
Abstract
Background: The production of stress oxidative condition in body which is caused by consumption of ecstasy (3,4-methylenedioxymethamphetamine [MDMA]) leads to a liver damage. As an antioxidant, Vitamin E can protect cells and tissues against the deleterious effects of free radicals. This study evaluates the protective effects of Vitamin E on MDMA induced liver toxicity. Materials and Methods: Twenty-eight male albino mice were randomly assigned to four equal groups. Group 1 received saline (control), Group 2 received MDMA and saline, Group 3 received MDMA, and Vitamin E and Group 4 received Vitamin E. MDMA was injected with single daily dose, three sequential days/week for 5 weeks. At the end of the period, blood samples were collected for a biochemical analysis and then the mice were sacrificed by cervical dislocation for histopathological and biochemical examinations of liver. Results: The administration of Vitamin E attenuated the increased levels of alanine transaminase, aspartate transaminase, and alkaline phosphatase enzymes in serum. Vitamin E treatments significantly restored endogenous antioxidant enzymes (reduced glutathione and superoxide dismutase enzyme) activities as compared with MDMA-treated animals. Histological examination of liver revealed significant morphological tissue injuries in hepatocytes after MDMA being used, but in coadministration of vitamin E and MDMA, these morphological alterations reduced. Conclusion: The study showed that MDMA administration has adverse effects on the liver. Vitamin E lessened the deleterious impact considerably.
Collapse
Affiliation(s)
| | - Khadije Meghrazi
- Department of Biochemistry, Urmia University of Medical Sciences, Urmia, IR Iran
| | - Sayed Soran Ghafori
- Student Research Committee, Urmia University of Medical Sciences, Urmia, IR Iran
| | - Mojtaba Karimipour
- Department of Anatomy, Urmia University of Medical Sciences, Urmia, IR Iran
| |
Collapse
|
6
|
Thirupathi A, Scarparo S, Silva PL, Marqueze LF, Vasconcelos FTF, Nagashima S, Cunha EBB, de Noronha L, Silveira PCL, Nesi RT, Gu Y, Pinho RA. Physical Exercise-Mediated Changes in Redox Profile Contribute to Muscle Remodeling After Passive Hand-Rolled Cornhusk Cigarette Smoke Exposure. Front Physiol 2020; 11:590962. [PMID: 33281621 PMCID: PMC7705113 DOI: 10.3389/fphys.2020.590962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/29/2020] [Indexed: 12/17/2022] Open
Abstract
Consumption of non-traditional cigarettes has increased considerably worldwide, and they can induce skeletal muscle dysfunction. Physical exercise has been demonstrated to be important for prevention and treatment of smoking-related diseases. Therfore, the aim of this study was to investigate the effects of combined physical exercise (aerobic plus resistance exercise) on muscle histoarchitecture and oxidative stress in the animals exposed chronically to smoke from hand-rolled cornhusk cigarette (HRCC). Male Swiss mice were exposed to ambient air or passively to the smoke of 12 cigarettes over three daily sessions (four cigarettes per session) for 30 consecutive days with or without combined physical training. 48 h after the last training session, total leukocyte count was measured in bronchoalveolar lavage fluid (BALF), and the quadriceps were removed for histological/immunohistochemical analysis and measurement of oxidative stress parameters. The effects of HRCC on the number of leukocytes in BALF, muscle fiber diameter, central nuclei, and nuclear factor kappa B (NF-κB) were reverted after combined physical training. In addition, increased myogenic factor 5, tumor necrosis factor alpha (TNFα), reduced transforming growth factor beta (TGF-β), and nitrate levels were observed after physical training. However, the reduction in superoxide dismutase and glutathione/glutathione oxidized ratio induced by HRCC was not affected by the training program. These results suggest the important changes in the skeletal muscle brought about by HRCC-induced alteration in the muscle redox profile. In addition, combined physical exercise contributes to remodeling without disrupting muscle morphology.
Collapse
Affiliation(s)
| | - Silvia Scarparo
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | - Paulo L Silva
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | - Luis F Marqueze
- Laboratory of Exercise Biochemistry in Health, Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | - Franciane T F Vasconcelos
- Laboratory of Exercise Biochemistry in Health, Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | - Seigo Nagashima
- Laboratory of Experimental Pathology, Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | - Eduardo B B Cunha
- Laboratory of Exercise Biochemistry in Health, Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | - Lúcia de Noronha
- Laboratory of Experimental Pathology, Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | - Paulo C L Silveira
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | - Renata T Nesi
- Laboratory of Exercise Biochemistry in Health, Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | - Yaodong Gu
- Faculty of Sports Science, Ningbo University, Ningbo, China
| | - Ricardo A Pinho
- Laboratory of Exercise Biochemistry in Health, Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| |
Collapse
|
7
|
Ma Y, Bian C, Song D, Yao G, Nie R. 3,4-Methylenedioxymethamphetamine causes retinal damage in C57BL/6J mice. Hum Exp Toxicol 2020; 39:1556-1564. [PMID: 32552070 DOI: 10.1177/0960327120930253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
3,4-Methylenedioxymethamphetamine (MDMA) is a powerfully addictive psychostimulant with pronounced effects on the central nervous system, but the precise mechanism of MDMA-induced toxicity remains unclear, specifically on the retina. This study was performed to investigate the effects of MDMA treatment on the retina and explore the underlying mechanism. C57BL/6J mice were randomly divided into control and MDMA groups. Mice were treated with MDMA at progressively increasing doses (1-6 mg/kg) intraperitoneally 4 times per day. Electroretinography was used to test the retinal function. Pathological changes of the retina were examined by toluidine blue staining and terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick end labeling assay. Enzyme-linked immunosorbent assays were used to measure the levels of cytokines in the retina. Real-time polymerase chain reaction and Western blot were used to measure gene and protein expression in the retina, respectively. Our study showed that MDMA treatment impaired retinal function and decreased retinal thickness. MDMA treatment also increased transforming growth factor β as well as inflammatory factors in the retina. Moreover, MDMA treatment increased protein expression of matrix metalloproteinases (MMPs) and decreased tight junction protein expression in the retina. Our study indicated that treatment of MDMA caused retinal damage in C57BL/6J mice, associated with an increase of MMPs and a decrease of tight junction proteins.
Collapse
Affiliation(s)
- Y Ma
- Department of Ophthalmology, Tai'an City Central Hospital, Tai'an, People's Republic of China
| | - C Bian
- Department of Ophthalmology, Tai'an City Central Hospital, Tai'an, People's Republic of China
- Department of Ophthalmology, The First People's Hospital of Tai'an, Tai'an, People's Republic of China
| | - D Song
- Department of Ophthalmology, Tai'an City Central Hospital, Tai'an, People's Republic of China
| | - G Yao
- Department of Ophthalmology, The First People's Hospital of Tai'an, Tai'an, People's Republic of China
| | - R Nie
- Department of Geriatrics III, Tai'an City Central Hospital, Tai'an, People's Republic of China
| |
Collapse
|
8
|
Pavlović N, Calitz C, Thanapirom K, Mazza G, Rombouts K, Gerwins P, Heindryckx F. Inhibiting IRE1α-endonuclease activity decreases tumor burden in a mouse model for hepatocellular carcinoma. eLife 2020; 9:e55865. [PMID: 33103995 PMCID: PMC7661042 DOI: 10.7554/elife.55865] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 10/26/2020] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a liver tumor that usually arises in patients with cirrhosis. Hepatic stellate cells are key players in the progression of HCC, as they create a fibrotic micro-environment and produce growth factors and cytokines that enhance tumor cell proliferation and migration. We assessed the role of endoplasmic reticulum (ER) stress in the cross-talk between stellate cells and HCC cells. Mice with a fibrotic HCC were treated with the IRE1α-inhibitor 4μ8C, which reduced tumor burden and collagen deposition. By co-culturing HCC-cells with stellate cells, we found that HCC-cells activate IREα in stellate cells, thereby contributing to their activation. Inhibiting IRE1α blocked stellate cell activation, which then decreased proliferation and migration of tumor cells in different in vitro 2D and 3D co-cultures. In addition, we also observed cell-line-specific direct effects of inhibiting IRE1α in tumor cells.
Collapse
Affiliation(s)
- Nataša Pavlović
- Department of Medical Cell Biology, Uppsala UniversityUppsalaSweden
| | - Carlemi Calitz
- Department of Medical Cell Biology, Uppsala UniversityUppsalaSweden
| | - Kess Thanapirom
- Regenerative Medicine & Fibrosis Group, Institute for Liver and Digestive Health, University College LondonLondonUnited Kingdom
| | - Guiseppe Mazza
- Regenerative Medicine & Fibrosis Group, Institute for Liver and Digestive Health, University College LondonLondonUnited Kingdom
| | - Krista Rombouts
- Regenerative Medicine & Fibrosis Group, Institute for Liver and Digestive Health, University College LondonLondonUnited Kingdom
| | - Pär Gerwins
- Department of Medical Cell Biology, Uppsala UniversityUppsalaSweden
- Department of Radiology, Uppsala University HospitalUppsalaSweden
| | - Femke Heindryckx
- Department of Medical Cell Biology, Uppsala UniversityUppsalaSweden
| |
Collapse
|
9
|
Golchoobian R, Nabavizadeh F, Roghani M, Foroumadi A, Izad M, Bahrami M, Fanaei H. Exogenous Ghrelin Could Not Ameliorate 3,4-methylenedioxymethamphetamine-induced Acute Liver Injury in The Rat: Involved Mechanisms. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2020; 19:343-354. [PMID: 32922492 PMCID: PMC7462488 DOI: 10.22037/ijpr.2020.1100940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
MDMA (3,4-methylenedioxymethamphetamine, ecstasy) is often abused by youth as a recreational drug. MDMA abuse is a growing problem in different parts of the world. An important adverse consequence of the drug consumption is hepatotoxicity of different intensities. However, the underlying mechanism of this toxicity has not been completely understood. Ghrelin is a gut hormone with growth hormone stimulatory effect. It expresses in liver, albeit at a much lower level than in stomach, and exerts a hepatoprotective effect. In this study, we investigated hepatotoxicity effect of MDMA alone and its combination with ghrelin as a hepatoprotective agent. MDMA and MDMA+ ghrelin could transiently increase serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) followed by tissue necrosis. However, they could significantly decrease liver tumor necrosis factor-a (TNF-±) in both treatment groups. Unexpectedly, in MDMA treated rats, Bax, Bcl-xl, Bcl-2, Fas, Fas ligand (Fas-L), caspase 8, cytochrome c, caspase 3 gene expression, and DNA fragmentation were nearly unchanged. In addition, apoptosis in MDMA+ ghrelin group was significantly reduced when compared with MDMA treated animals. In all, MDMA could transiently increase serum transaminases and induce tissue necrosis and liver toxicity. Ghrelin, however, could not stop liver enzyme rise and MDMA hepatotoxicity. MDMA hepatotoxicity seems to be mediated via tissue necrosis than apoptotic and inflammatory pathways. Conceivably, ghrelin as an anti-inflammatory and anti-apoptotic agent may not protect hepatocytes against MDMA liver toxicity.
Collapse
Affiliation(s)
- Ravieh Golchoobian
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Nabavizadeh
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrdad Roghani
- Neurophysiology Research Center, Shahed University, Tehran, Iran
| | - Alireza Foroumadi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Izad
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences Tehran, Iran
| | - Maryam Bahrami
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hafseh Fanaei
- Department of Physiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
10
|
Lv XF, Tao LM, Zhong H. Long-term systemic administration with low dose of 3,4-methylenedioxymethamphetamine causes photoreceptor cell damage in CD1 mice. Cutan Ocul Toxicol 2018; 38:81-87. [PMID: 30360644 DOI: 10.1080/15569527.2018.1539007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE As a powerful psychostimulant with high potential for abuse, 3,4-methylenedioxymethamphetamine (MDMA) causes long-lasting neurotoxicity. This study was to investigate the effects of systemic administration of MDMA on retinal damage in CD1 mice and its underlying mechanisms. MATERIAL AND METHODS CD1 mice were randomly divided into two groups (n = 10): group 1 receiving PBS by intraperitoneal injection daily; group 2 receiving 2 mg/kg MDMA by intraperitoneal injection daily for 3 months. The retinal function was tested by electroretinography (ERG). The retinal morphology and histology was evaluated by Toluidine blue staining and TUNEL assay, respectively. Inflammatory cytokines were measured by ELISA assays. Gene and protein expression was detected by real-time PCR and western blot. RESULTS Results demonstrated that retinal damage was caused by MDMA after 3-month treatment, evidenced by retinal dysfunction through photoreceptor cell apoptosis induced by inflammatory response and oxidative stress. CONCLUSION Our study indicated that systemic administration of MDMA increased inflammatory response in photoreceptor cells to cause retinal dysfunction on CD1 mice, providing the scientific rationale for the photoreceptor cell damage caused by the MDMA abuse.
Collapse
Affiliation(s)
- Xiu-Fang Lv
- a Department of Ophthalmology , the Second Hospital Affiliated to Anhui Medical University , Hefei , People's Republic of China
| | - Li-Ming Tao
- a Department of Ophthalmology , the Second Hospital Affiliated to Anhui Medical University , Hefei , People's Republic of China
| | - Hui Zhong
- b Department of Ophthalmology , Shenzhen Children's Hospital , Shenzhen , People's Republic of China
| |
Collapse
|
11
|
Reis AFVF, Gonçalves ILP, Neto AFG, Santos AS, Kuca K, Nepovimova E, Neto AMJC. Intermolecular interactions between DNA and methamphetamine, amphetamine, ecstasy and their major metabolites. J Biomol Struct Dyn 2017; 36:3047-3057. [PMID: 28978251 DOI: 10.1080/07391102.2017.1386592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In this work, we carried out a theoretical investigation regarding amphetamine-type stimulants, which can cause central nervous system degeneration, interacting with human DNA. These include amphetamine, methamphetamine, 3,4-Methylenedioxymethamphetamine (also known as ecstasy), as well as their main metabolites. The studies were performed through molecular docking and molecular dynamics simulations, where molecular interactions of the receptor-ligand systems, along with their physical-chemical energies, were reported. Our results show that 3,4-Methylenedioxymethamphetamine and 3,4-Dihydroxymethamphetamine (ecstasy) present considerable reactivity with the receptor (DNA), suggesting that these molecules may cause damage due to human-DNA. These results were indicated by free Gibbs change of bind (ΔGbind) values referring to intermolecular interactions between the drugs and the minor grooves of DNA, which were predominant for all simulations. In addition, it was observed that 3,4-Dihydroxymethamphetamine (ΔGbind = -13.15 kcal/mol) presented greater spontaneity in establishing interactions with DNA in comparison to 3,4-Methylenedioxymethamphetamine (ΔGbind = -8.61 kcal/mol). Thus, according with the calculations performed our results suggest that the 3,4-Methylenedioxymethamphetamine and 3,4-Dihydroxymethamphetamine have greater probability to provide damage to human DNA fragments.
Collapse
Affiliation(s)
- Arthur F V F Reis
- a Laboratory of Preparation and Computation of Nanomaterial , Faculty of Physics-ICEN-Federal University of Pará , Augusto Correa Street N°.1 C. P. 479, 66075-110 Belém , PA , Brazil.,b Federal University of Pará , Institute of Exact and Natural Sciences, Faculty of Chemistry . Augusto Correa Street, 01, Guamá66075-110, Belém , PA , Brazil
| | - Igor L P Gonçalves
- a Laboratory of Preparation and Computation of Nanomaterial , Faculty of Physics-ICEN-Federal University of Pará , Augusto Correa Street N°.1 C. P. 479, 66075-110 Belém , PA , Brazil.,b Federal University of Pará , Institute of Exact and Natural Sciences, Faculty of Chemistry . Augusto Correa Street, 01, Guamá66075-110, Belém , PA , Brazil
| | - Abel F G Neto
- a Laboratory of Preparation and Computation of Nanomaterial , Faculty of Physics-ICEN-Federal University of Pará , Augusto Correa Street N°.1 C. P. 479, 66075-110 Belém , PA , Brazil
| | - Alberdan S Santos
- b Federal University of Pará , Institute of Exact and Natural Sciences, Faculty of Chemistry . Augusto Correa Street, 01, Guamá66075-110, Belém , PA , Brazil
| | - Kamil Kuca
- c Biomedical Research Center , University Hospital Hradec Kralove , Sokolska 581, 500 05 Hradec Kralove , Czech Republic.,d Department of Chemistry, Faculty of Science , University of Hradec Kralove , Rokitanskeho 62, 500 03 Hradec Kralove , Czech Republic
| | - Eugenie Nepovimova
- c Biomedical Research Center , University Hospital Hradec Kralove , Sokolska 581, 500 05 Hradec Kralove , Czech Republic.,d Department of Chemistry, Faculty of Science , University of Hradec Kralove , Rokitanskeho 62, 500 03 Hradec Kralove , Czech Republic
| | - Antonio M J C Neto
- a Laboratory of Preparation and Computation of Nanomaterial , Faculty of Physics-ICEN-Federal University of Pará , Augusto Correa Street N°.1 C. P. 479, 66075-110 Belém , PA , Brazil
| |
Collapse
|
12
|
Mandal S, Chatterjee NS. Vibrio cholerae GbpA elicits necrotic cell death in intestinal cells. J Med Microbiol 2016; 65:837-847. [PMID: 27324251 DOI: 10.1099/jmm.0.000298] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Vibrio choleraeN-acetylglucosamine-binding protein GbpA is a secretory protein that facilitates the initial adherence of bacteria in the human intestine. Until now, considerable progress in the characterization of GbpA has been done, yet little is known about its role in host response. Our present studies demonstrated that GbpA at the amount secreted in the intestine resulted in decreased cell viability, altered cell morphology, disruption of cell membrane integrity and damage of cellular DNA indicating necrotic cell death. We observed that GbpA exposure leads to mitochondrial dysfunction, characterized by accumulation of reactive oxygen species (ROS), depolarization of mitochondrial membrane potential and depletion of ATP pool in host cells. Additionally, the intra-cellular ROS, accumulated in response to GbpA, were found to induce the migration of NF-κB from cytoplasm into nucleus in host cells. Taken together, these results prompted us to conclude that GbpA orchestrates a necrotic response in host cells which may have implications in immune response.
Collapse
Affiliation(s)
- Sudipto Mandal
- Division of Biochemistry, National Institute of Cholera and Enteric Diseases, Kolkata 700010, India
| | | |
Collapse
|
13
|
Persona K, Polus A, Góralska J, Gruca A, Dembińska-Kieć A, Piekoszewski W. An In Vitro Study of the Neurotoxic Effects of N-Benzylpiperazine: A Designer Drug of Abuse. Neurotox Res 2016; 29:558-68. [PMID: 26861955 PMCID: PMC4820481 DOI: 10.1007/s12640-016-9604-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 01/11/2016] [Accepted: 01/27/2016] [Indexed: 01/26/2023]
Abstract
Recently, the number of new psychoactive substances has significantly increased. Despite the systematic introduction of prohibition in trade of medicinal products which mimic the effects of illegal drugs, the problem concerning this group of drugs is still important although knowledge about the mechanism of action of those types of substances is scarce. This study aimed to follow the neurotoxic effect of N-benzylpiperazine (BZP), the central nervous system psychostimulant, using the human cancer LN-18 cell model. The statistically significant elevation of LDH levels, increased mitochondrial membrane potential, decreased ATP and increased ROS production, increased levels of DNA damage marker (8-OHdG) and activation of caspases: -3 and -9 confirmed by Real-Time PCR imply the activation of mitochondrial proapoptotic pathways induced by BZP after 24 h incubation. This study is a novel, preliminary attempt to explain the toxicity of one of the most popular designer drug of abuse at the cellular level.
Collapse
Affiliation(s)
- Karolina Persona
- Department of Analytical Chemistry, Faculty of Chemistry, Jagiellonian University in Krakow, Ingardena 3, 30-060, Kraków, Poland
| | - Anna Polus
- Department of Clinical Biochemistry, Jagiellonian University in Krakow - Medical College, Kraków, Poland
| | - Joanna Góralska
- Department of Clinical Biochemistry, Jagiellonian University in Krakow - Medical College, Kraków, Poland
| | - Anna Gruca
- Department of Clinical Biochemistry, Jagiellonian University in Krakow - Medical College, Kraków, Poland
| | - Aldona Dembińska-Kieć
- Department of Clinical Biochemistry, Jagiellonian University in Krakow - Medical College, Kraków, Poland
| | - Wojciech Piekoszewski
- Department of Analytical Chemistry, Faculty of Chemistry, Jagiellonian University in Krakow, Ingardena 3, 30-060, Kraków, Poland.
- School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia.
| |
Collapse
|
14
|
Hesam Shariati MB, Mirzaei F, Soleimani Asl S, Mosavi L, Sohrabi M. Acute and Chronic Effects of 3-4, Methylenedioxymethamphetamine on Pyramidal Cells of Hippocampus. ACTA ACUST UNITED AC 2014. [DOI: 10.17795/ajnpp-21812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Parolini M, Magni S, Binelli A. Environmental concentrations of 3,4-methylenedioxymethamphetamine (MDMA)-induced cellular stress and modulated antioxidant enzyme activity in the zebra mussel. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:11099-11106. [PMID: 24878561 DOI: 10.1007/s11356-014-3094-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 05/23/2014] [Indexed: 06/03/2023]
Abstract
Recent monitoring studies showed measurable levels of the 3,4-methylenedioxymethamphetamine (MDMA) in aquatic environments. However, no information is currently available on its potential hazard to aquatic non-target organisms. The aim of this study was to investigate the potential sub-lethal effects induced by 14-day exposures to low MDMA concentrations (0.05 and 0.5 μg/L) to zebra mussel (Dreissena polymorpha) specimens through the application of a biomarker suite. The trypan blue exclusion method and the neutral red retention assay (NRRA) were used to assess MDMA cytotoxicity. The activity of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and glutathione S-transferase (GST), as well as the lipid peroxidation (LPO) and protein carbonyl content (PCC), were measured as oxidative stress indexes. The single cell gel electrophoresis (SCGE) assay, the DNA diffusion assay, and the micronucleus test (MN test) were applied to investigate DNA damage, while filtration rate was measured as physiological parameter. Despite significant decrease in lysosome membrane stability, hemocyte viability and imbalances in CAT and GST activities pointed out at the end of the exposure to 0.5 μg/L, no significant variations for the other end points were noticed at both the treatments, suggesting that environmentally relevant MDMA concentrations did not induce deleterious effects to the zebra mussel.
Collapse
Affiliation(s)
- Marco Parolini
- Department of Biosciences, University of Milan, Via Celoria 26, 20133, Milan, Italy,
| | | | | |
Collapse
|
16
|
Liu P, Jin X, Lv H, Li J, Xu W, Qian HH, Yin Z. Icaritin ameliorates carbon tetrachloride-induced acute liver injury mainly because of the antioxidative function through estrogen-like effects. In Vitro Cell Dev Biol Anim 2014; 50:899-908. [DOI: 10.1007/s11626-014-9792-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Accepted: 06/19/2014] [Indexed: 12/16/2022]
|
17
|
Recent updates on drug abuse analyzed by neuroproteomics studies: Cocaine, Methamphetamine and MDMA. TRANSLATIONAL PROTEOMICS 2014. [DOI: 10.1016/j.trprot.2014.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
18
|
Adenosine A2a receptors activate Nuclear Factor-Kappa B (NF-κB) in rat hippocampus after exposure to different doses of MDMA. Mol Cell Toxicol 2014. [DOI: 10.1007/s13273-014-0007-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
19
|
Doblin R, Greer G, Holland J, Jerome L, Mithoefer MC, Sessa B. A reconsideration and response to Parrott AC (2013) "Human psychobiology of MDMA or 'Ecstasy': an overview of 25 years of empirical research". Hum Psychopharmacol 2014; 29:105-8. [PMID: 24590541 DOI: 10.1002/hup.2389] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 12/16/2013] [Accepted: 12/17/2013] [Indexed: 11/11/2022]
Abstract
Parrott recently published a review of literature on MDMA/ecstasy. This commentary is a response to the content and tenor of his review, which mischaracterizes the literature through misstatement and omission of contrary findings, and fails to address the central controversies in the literature. The review makes several erroneous statements concerning MDMA-assisted psychotherapy, such as incorrect statements about research design and other statements that are baseless or contradicted by the literature. Though it critiques an attempt by other authors to characterize the risks of MDMA, the review fails to produce a competing model of risk assessment, and does not discuss potential benefits. Parrott does not represent an even-handed review of the literature, but instead recites dated misconceptions about neurotoxicity concerns involving the recreational drug ecstasy, which do not relate directly to the use of pure MDMA in a therapeutic setting. Unchallenged, Parrott's report may deter researchers from further investigating an innovative treatment that in early clinical trials has demonstrated lasting benefits for people with chronic, treatment-resistant post-traumatic stress disorder.
Collapse
Affiliation(s)
- Rick Doblin
- Multidisciplinary Association for Psychedelic Studies, Santa Cruz, CA, USA
| | | | | | | | | | | |
Collapse
|
20
|
Hwang SJ, Kim YW, Park Y, Lee HJ, Kim KW. Anti-inflammatory effects of chlorogenic acid in lipopolysaccharide-stimulated RAW 264.7 cells. Inflamm Res 2013; 63:81-90. [DOI: 10.1007/s00011-013-0674-4] [Citation(s) in RCA: 231] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 09/30/2013] [Accepted: 10/03/2013] [Indexed: 01/07/2023] Open
|
21
|
Dias da Silva D, Carmo H, Lynch A, Silva E. An insight into the hepatocellular death induced by amphetamines, individually and in combination: the involvement of necrosis and apoptosis. Arch Toxicol 2013; 87:2165-85. [PMID: 23820845 DOI: 10.1007/s00204-013-1082-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 05/29/2013] [Indexed: 02/06/2023]
Abstract
The liver is a vulnerable target for amphetamine toxicity, but the mechanisms involved in the drug's hepatotoxicity remain poorly understood. The purpose of the current research was to characterize the mode of death elicited by four amphetamines and to evaluate whether their combination triggered similar mechanisms in immortalized human HepG2 cells. The obtained data revealed a time- and temperature-dependent mortality of HepG2 cells exposed to 3,4-methylenedioxymethamphetamine (MDMA, ecstasy; 1.3 mM), methamphetamine (3 mM), 4-methylthioamphetamine (0.5 mM) and D-amphetamine (1.7 mM), alone or combined (1.6 mM mixture). At physiological temperature (37 °C), 24-h exposures caused HepG2 death preferentially by apoptosis, while a rise to 40.5 °C favoured necrosis. ATP levels remained unaltered when the drugs where tested at normothermia, but incubation at 40.5 °C provoked marked ATP depletion for all treatments. Further investigations on the apoptotic mechanisms triggered by the drugs (alone or combined) showed a decline in BCL-2 and BCL- XL mRNA levels, with concurrent upregulation of BAX, BIM, PUMA and BID genes. Elevation of Bax, cleaved Bid, Puma, Bak and Bim protein levels was also seen. To the best of our knowledge, Puma, Bim and Bak have never been linked with the toxicity induced by amphetamines. Time-dependent caspase-3/-7 activation, but not mitochondrial membrane potential (∆ψm) disruption, also mediated amphetamine-induced apoptosis. The cell dismantling was confirmed by poly(ADP-ribose)polymerase proteolysis. Overall, for all evaluated parameters, no relevant differences were detected between individual amphetamines and the mixture (all tested at equieffective cytotoxic concentrations), suggesting that the mode of action of the amphetamines in combination does not deviate from the mode of action of the drugs individually, when eliciting HepG2 cell death.
Collapse
|
22
|
Valdovinos-Flores C, Gonsebatt ME. Nerve growth factor exhibits an antioxidant and an autocrine activity in mouse liver that is modulated by buthionine sulfoximine, arsenic, and acetaminophen. Free Radic Res 2013; 47:404-12. [DOI: 10.3109/10715762.2013.783210] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
23
|
Kim IH, Kim SW, Kim SH, Lee SO, Lee ST, Kim DG, Lee MJ, Park WH. Parthenolide-induced apoptosis of hepatic stellate cells and anti-fibrotic effects in an in vivo rat model. Exp Mol Med 2013; 44:448-56. [PMID: 22581380 PMCID: PMC3406290 DOI: 10.3858/emm.2012.44.7.051] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Parthenolide (PT), a sesquiterpene lactone derived from the plant feverfew, has pro-apoptotic activity in a number of cancer cell types. We assessed whether PT induces the apoptosis of hepatic stellate cells (HCSs) and examined its effects on hepatic fibrosis in an in vivo model. The effects of PT on rat HSCs were investigated in relation to cell growth inhibition, apoptosis, NF-κB binding activity, intracellular reactive oxygen species (ROS) generation, and glutathione (GSH) levels. In addition, the anti-fibrotic effects of PT were investigated in a thioacetamide-treated rat model. PT induced growth inhibition and apoptosis in HSCs, as evidenced by cell growth inhibition and apoptosis assays. PT increased the expression of Bax proteins during apoptosis, but decreased the expression of Bcl-2 and Bcl-XL proteins. PT also induced a reduction in mitochondrial membrane potential, poly(ADP-ribose) polymerase cleavage, and caspase-3 activation. PT inhibited TNF-α-stimulated NF-κB binding activity in HSCs. The pro-apoptotic activity of PT in HSCs was associated with increased intracellular oxidative stress as evidenced by increased intracellular ROS levels and depleted intracellular GSH levels. Furthermore, PT ameliorated hepatic fibrosis significantly in a thioacetamide-treated rat model. In conclusion, PT exhibited pro-apoptotic effects in rat HSCs and ameliorated hepatic fibrosis in a thioacetamide-induced rat model.
Collapse
Affiliation(s)
- In Hee Kim
- Department of Internal Medicine, Research Institute of Clinical Medicine, Chonbuk National University Medical School and Hospital, Jeonju 561-712, Korea
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Kermanian F, Soleimani M, Ebrahimzadeh A, Haghir H, Mehdizadeh M. Effects of adenosine A2a receptor agonist and antagonist on hippocampal nuclear factor-kB expression preceded by MDMA toxicity. Metab Brain Dis 2013; 28:45-52. [PMID: 23212481 DOI: 10.1007/s11011-012-9366-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 11/22/2012] [Indexed: 01/23/2023]
Abstract
There is an abundance of evidence showing that repeated use of 3,4-methlylenedioxymethamphetamine (MDMA; ecstasy) is associated with brain dysfunction, memory disturbance, locomotor hyperactivity, and hyperthermia. MDMA is toxic to both the serotonergic neurons and dopaminergic system. Adenosine is an endogenous purine nucleoside with a neuromodulatory function in the central nervous system. Nuclear factor kappa-B (NF-kB) plays a pivotal role in the initiation and perpetuation of an immune response by triggering the expression of major inflammatory mediators such as cytokines, chemokines, and adhesion molecules. Here, we investigated the effects of the A2a adenosine receptor (A2a-R) agonist (CGS) and antagonist (SCH) on NF-kB expression after MDMA administration. Male Sprague-Dawley rats were injected to MDMA (10 mg/kg) followed by intraperitoneal injection of either CGS or SCH (0.03 mg/kg each) to animals. The hippocampi were then removed for western blot and RT- PCR analyses. MDMA significantly elevated NF-kB expression. Our results show that administration of CGS following MDMA significantly elevated the NF-kB expression both at mRNA and protein levels. By contrast, administration of the A2a-R antagonist SCH resulted in a decrease in the NF-kB levels. Taken together, these results indicate that, co-administration of A2a agonist (CGS) can protect against MDMA neurotoxic effects by increasing NF-kB expression levels; suggesting a potential application for protection against the neurotoxic effects observed in MDMA users.
Collapse
Affiliation(s)
- Fatemeh Kermanian
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | | | | | | | | |
Collapse
|
25
|
Szuster-Ciesielska A, Mizerska-Dudka M, Daniluk J, Kandefer-Szerszeń M. Butein inhibits ethanol-induced activation of liver stellate cells through TGF-β, NFκB, p38, and JNK signaling pathways and inhibition of oxidative stress. J Gastroenterol 2013; 48:222-37. [PMID: 22722906 PMCID: PMC3575555 DOI: 10.1007/s00535-012-0619-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 05/21/2012] [Indexed: 02/04/2023]
Abstract
BACKGROUND Butein has been reported to prevent and partly reverse liver fibrosis in vivo; however, the mechanisms of its action are poorly understood. We, therefore, aimed to determine the antifibrotic potential of butein. METHODS We assessed the influence of the incubation of hepatic stellate cells (HSCs) and hepatoma cells (HepG2) with butein on sensitivity to ethanol- or acetaldehyde-induced toxicity; the production of reactive oxygen species (ROS); the expression of markers of HSC activation, including smooth muscle α-actin (α-SMA) and procollagen I; and the production of transforming growth factor-β1 (TGF-β1), metalloproteinases-2 and -13 (MMP-2and MMP-13), and tissue inhibitors of metalloproteinases (TIMPs). The influence of butein on intracellular signals in HSCs; i.e., nuclear factor-κB (NFκB), c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinase (p38 MAPK) induced by ethanol was estimated. RESULTS Butein protected HSCs and HepG2 cells against ethanol toxicity by the inhibition of ethanol- or acetaldehyde-induced production of ROS when cells were incubated separately or in co-cultures; butein also inhibited HSC activation measured as the production of α-SMA and procollagen I. As well, butein downregulated ethanol- or acetaldehyde-induced HSC migration and the production of TGF-β, TIMP-1, and TIMP-2; decreased the activity of MMP-2; and increased the activity of MMP-13. In ethanol-induced HSCs, butein inhibited the activation of the p38 MAPK and JNK transduction pathways as well as significantly inhibiting the phosphorylation of NF κB inhibitor (IκB) and Smad3. CONCLUSIONS The results indicated that butein inhibited ethanol- and acetaldehyde-induced activation of HSCs at different levels, acting as an antioxidant and inhibitor of ethanol-induced MAPK, TGF-β, and NFκB/IκB transduction signaling; this result makes butein a promising agent for antifibrotic therapies.
Collapse
Affiliation(s)
| | - Magdalena Mizerska-Dudka
- Department of Virology and Immunology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - Jadwiga Daniluk
- Department and Clinic of Gastroenterology, Medical University, Jaczewskiego 8, 20-950 Lublin, Poland
| | - Martyna Kandefer-Szerszeń
- Department of Virology and Immunology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| |
Collapse
|
26
|
Yang H, Zhao LF, Zhao ZF, Wang Y, Zhao JJ, Zhang L. Heme oxygenase-1 prevents liver fibrosis in rats by regulating the expression of PPARγ and NF-κB. World J Gastroenterol 2012; 18:1680-8. [PMID: 22529699 PMCID: PMC3325536 DOI: 10.3748/wjg.v18.i14.1680] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 10/17/2011] [Accepted: 01/22/2012] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effects of heme oxygenase (HO)-1 on liver fibrosis and the expression of peroxisome proliferator-activated receptor gamma (PPARγ) and nuclear factor-kappa B (NF-κB) in rats.
METHODS: Sixty Wistar rats were used to construct liver fibrosis models and were randomly divided into 5 groups: group A (normal, untreated), group B (model for 4 wk, untreated), group C (model for 6 wk, untreated), group D [model for 6 wk, treated with zinc protoporphyrin IX (ZnPP-IX) from week 4 to week 6], group E (model for 6 wk, treated with hemin from week 4 to week 6). Next, liver injury was assessed by measuring serum alanine aminotransferase (ALT), aspartate aminotransferase (AST) and albumin levels. The degree of hepatic fibrosis was evaluated by measuring serum hyaluronate acid (HA), type IV collagen (IV-C) and by histological examination. Hydroxyproline (Hyp) content in the liver homogenate was determined. The expression levels of alpha-smooth muscle actin (α-SMA) in liver tissue were measured by real-time quantitative polymerase chain reaction (RT-PCR). The expression levels of PPARγ and NF-κB were determined by RT-PCR and Western blotting.
RESULTS: The expression of HO-1 increased with the development of fibrosis. Induction of HO-1 by hemin significantly attenuated the severity of liver injury and the levels of liver fibrosis as compared with inhibition of HO-1 by ZnPP-IX. The concentrations of serum ALT, AST, HA and IV-C in group E decreased compared with group C and group D (P < 0.01). Amount of Hyp and α-SMA in the liver tissues in group E decreased compared with group C (0.62 ± 0.14 vs 0.84 ± 0.07, 1.42 ± 0.17 vs 1.84 ± 0.17, respectively, P < 0.01) and group D (0.62 ± 0.14 vs 1.11 ± 0.16, 1.42 ± 0.17 vs 2.56 ± 0.37, respectively, P < 0.01). The expression of PPARγ at levels of transcription and translation decreased with the development of fibrosis especially in group D; and it increased in group E compared with groups C and D (0.88 ± 0.15 vs 0.56 ± 0.19, 0.88 ± 0.15 vs 0.41 ± 0.11, respectively, P < 0.01). The expression of NF-κB increased with the development of fibrosis especially in group D; and it decreased in group E compared with groups C and D (1.43 ± 0.31 vs 1.89 ± 0.29, 1.43 ± 0.31 vs 2.53 ± 0.54, respectively, P < 0.01).
CONCLUSION: Our data demonstrate a potential mechanism that HO-1 can prevent liver fibrosis by enhancing the expression of PPARγ and decreasing the expression of NF-κB in liver tissues.
Collapse
|
27
|
Carvalho M, Carmo H, Costa VM, Capela JP, Pontes H, Remião F, Carvalho F, Bastos MDL. Toxicity of amphetamines: an update. Arch Toxicol 2012; 86:1167-231. [PMID: 22392347 DOI: 10.1007/s00204-012-0815-5] [Citation(s) in RCA: 263] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 02/02/2012] [Indexed: 01/06/2023]
Abstract
Amphetamines represent a class of psychotropic compounds, widely abused for their stimulant, euphoric, anorectic, and, in some cases, emphathogenic, entactogenic, and hallucinogenic properties. These compounds derive from the β-phenylethylamine core structure and are kinetically and dynamically characterized by easily crossing the blood-brain barrier, to resist brain biotransformation and to release monoamine neurotransmitters from nerve endings. Although amphetamines are widely acknowledged as synthetic drugs, of which amphetamine, methamphetamine, and 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) are well-known examples, humans have used natural amphetamines for several millenniums, through the consumption of amphetamines produced in plants, namely cathinone (khat), obtained from the plant Catha edulis and ephedrine, obtained from various plants in the genus Ephedra. More recently, a wave of new amphetamines has emerged in the market, mainly constituted of cathinone derivatives, including mephedrone, methylone, methedrone, and buthylone, among others. Although intoxications by amphetamines continue to be common causes of emergency department and hospital admissions, it is frequent to find the sophism that amphetamine derivatives, namely those appearing more recently, are relatively safe. However, human intoxications by these drugs are increasingly being reported, with similar patterns compared to those previously seen with classical amphetamines. That is not surprising, considering the similar structures and mechanisms of action among the different amphetamines, conferring similar toxicokinetic and toxicological profiles to these compounds. The aim of the present review is to give an insight into the pharmacokinetics, general mechanisms of biological and toxicological actions, and the main target organs for the toxicity of amphetamines. Although there is still scarce knowledge from novel amphetamines to draw mechanistic insights, the long-studied classical amphetamines-amphetamine itself, as well as methamphetamine and MDMA, provide plenty of data that may be useful to predict toxicological outcome to improvident abusers and are for that reason the main focus of this review.
Collapse
Affiliation(s)
- Márcia Carvalho
- REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Fernàndez-Castillo N, Orejarena MJ, Ribasés M, Blanco E, Casas M, Robledo P, Maldonado R, Cormand B. Active and passive MDMA ('ecstasy') intake induces differential transcriptional changes in the mouse brain. GENES BRAIN AND BEHAVIOR 2011; 11:38-51. [PMID: 21951708 DOI: 10.1111/j.1601-183x.2011.00735.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
3,4-Methylenedioxymethamphetamine (MDMA, 'ecstasy') is a recreational drug widely used by adolescents and young adults. Although its rewarding effects are well established, there is controversy on its addictive potential. We aimed to compare the consequences of active and passive MDMA administration on gene expression in the mouse brain since all previous studies were based on passive MDMA administration. We used a yoked-control operant intravenous self-administration paradigm combined with microarray technology. Transcriptomic profiles of ventral striatum, frontal cortex, dorsal raphe nucleus and hippocampus were analysed in mice divided in contingent MDMA, yoked MDMA and yoked saline groups, and several changes were validated by quantitative reverse transcription polymerase chain reaction (qRT-PCR). The comparison of contingent MDMA and yoked MDMA vs. yoked saline mice allowed the identification of differential expression in several genes, most of them with immunological and inflammatory functions, but others being involved in neuroadaptation. In the comparison of contingent MDMA vs. yoked MDMA administration, hippocampus and the dorsal raphe nucleus showed statistically significant changes. The altered expression of several genes involved in neuroadaptative changes and synapse function, which may be related to learning self-administration behaviour, could be validated in these two brain structures. In conclusion, our study shows a strong effect of MDMA administration on the expression of immunological and inflammatory genes in all the four brain regions studied. In addition, experiments on MDMA self-administration suggest that the dorsal raphe nucleus and hippocampus may be involved in active MDMA-seeking behaviour, and show specific alterations on gene expression that support the addictive potential of this drug.
Collapse
Affiliation(s)
- N Fernàndez-Castillo
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Cerretani D, Bello S, Cantatore S, Fiaschi A, Montefrancesco G, Neri M, Pomara C, Riezzo I, Fiore C, Bonsignore A, Turillazzi E, Fineschi V. Acute administration of 3,4-methylenedioxymethamphetamine (MDMA) induces oxidative stress, lipoperoxidation and TNFα-mediated apoptosis in rat liver. Pharmacol Res 2011; 64:517-27. [DOI: 10.1016/j.phrs.2011.08.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 07/18/2011] [Accepted: 08/05/2011] [Indexed: 11/25/2022]
|
30
|
Wasik AM, Gandy MN, McIldowie M, Holder MJ, Chamba A, Challa A, Lewis KD, Young SP, Scheel-Toellner D, Dyer MJ, Barnes NM, Piggott MJ, Gordon J. Enhancing the anti-lymphoma potential of 3,4-methylenedioxymethamphetamine ('ecstasy') through iterative chemical redesign: mechanisms and pathways to cell death. Invest New Drugs 2011; 30:1471-83. [PMID: 21850491 DOI: 10.1007/s10637-011-9730-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 08/01/2011] [Indexed: 11/29/2022]
Abstract
While 3,4-methylenedioxymethamphetamine (MDMA/'ecstasy') is cytostatic towards lymphoma cells in vitro, the concentrations required militate against its translation directly to a therapeutic in vivo. The possibility of 'redesigning the designer drug', separating desired anti-lymphoma activity from unwanted psychoactivity and neurotoxicity, was therefore mooted. From an initial analysis of MDMA analogues synthesized with a modified α-substituent, it was found that incorporating a phenyl group increased potency against sensitive, Bcl-2-deplete, Burkitt's lymphoma (BL) cells 10-fold relative to MDMA. From this lead, related analogs were synthesized with the 'best' compounds (containing 1- and 2-naphthyl and para-biphenyl substituents) some 100-fold more potent than MDMA versus the BL target. When assessed against derived lines from a diversity of B-cell tumors MDMA analogues were seen to impact the broad spectrum of malignancy. Expressing a BCL2 transgene in BL cells afforded only scant protection against the analogues and across the malignancies no significant correlation between constitutive Bcl-2 levels and sensitivity to compounds was observed. Bcl-2-deplete cells displayed hallmarks of apoptotic death in response to the analogues while BCL2 overexpressing equivalents died in a caspase-3-independent manner. Despite lymphoma cells expressing monoamine transporters, their pharmacological blockade failed to reverse the anti-lymphoma actions of the analogues studied. Neither did reactive oxygen species account for ensuing cell death. Enhanced cytotoxic performance did however track with predicted lipophilicity amongst the designed compounds. In conclusion, MDMA analogues have been discovered with enhanced cytotoxic efficacy against lymphoma subtypes amongst which high-level Bcl-2--often a barrier to drug performance for this indication--fails to protect.
Collapse
Affiliation(s)
- Agata M Wasik
- School of Immunity & Infection, The Medical School, Birmingham, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Mòdol T, Natal C, Pérez de Obanos MP, Domingo de Miguel E, Iraburu MJ, López-Zabalza MJ. Apoptosis of hepatic stellate cells mediated by specific protein nitration. Biochem Pharmacol 2011; 81:451-8. [DOI: 10.1016/j.bcp.2010.10.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 10/26/2010] [Accepted: 10/28/2010] [Indexed: 01/22/2023]
|
32
|
Song BJ, Moon KH, Upreti VV, Eddington ND, Lee IJ. Mechanisms of MDMA (ecstasy)-induced oxidative stress, mitochondrial dysfunction, and organ damage. Curr Pharm Biotechnol 2010; 11:434-43. [PMID: 20420575 DOI: 10.2174/138920110791591436] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Accepted: 02/21/2010] [Indexed: 12/21/2022]
Abstract
Despite numerous reports about the acute and sub-chronic toxicities caused by MDMA (3,4-methylenedioxymethamphetamine, ecstasy), the underlying mechanism of organ damage is poorly understood. The aim of this review is to present an update of the mechanistic studies on MDMA-mediated organ damage partly caused by increased oxidative/nitrosative stress. Because of the extensive reviews on MDMA-mediated oxidative stress and tissue damage, we specifically focus on the mechanisms and consequences of oxidative-modifications of mitochondrial proteins, leading to mitochondrial dysfunction. We briefly describe a method to systematically identify oxidatively-modified mitochondrial proteins in control and MDMA-exposed rats by using biotin-N-maleimide (biotin-NM) as a sensitive probe for oxidized proteins. We also describe various applications and advantages of this Cys-targeted proteomics method and alternative approaches to overcome potential limitations of this method in studying oxidized proteins from MDMA-exposed tissues. Finally we discuss the mechanism of synergistic drug-interaction between MDMA and other abused substances including alcohol (ethanol) as well as application of this redox-based proteomics method in translational studies for developing effective preventive and therapeutic agents against MDMA-induced organ damage.
Collapse
Affiliation(s)
- Byoung-Joon Song
- Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|
33
|
Tiangco DA, Halcomb S, Lattanzio FA, Hargrave BY. 3,4-Methylenedioxymethamphetamine alters left ventricular function and activates nuclear factor-Kappa B (NF-κB) in a time and dose dependent manner. Int J Mol Sci 2010; 11:4843-63. [PMID: 21614177 PMCID: PMC3100831 DOI: 10.3390/ijms11124743] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 11/04/2010] [Accepted: 11/08/2010] [Indexed: 11/16/2022] Open
Abstract
3,4-Methylenedioxymethamphetamine (MDMA) is an illicit psychoactive drug with cardiovascular effects that have not been fully described. In the current study, we observed the effects of acute MDMA on rabbit left ventricular function. We also observed the effects of MDMA on nuclear factor-kappa B (NF-κB) activity in cultured rat ventricular myocytes (H9c2). In the rabbit, MDMA (2 mg/kg) alone caused a significant increase in heart rate and a significant decrease in the duration of the cardiac cycle. Inhibition of nitric oxide synthase (NOS) by pretreatment with L-NAME (10 mg/kg) alone caused significant dysfunction in heart rate, systolic pressure, diastolic pressure, duration of relaxation, duration of cardiac cycle, and mean left ventricular pressure. Pretreatment with L-NAME followed by treatment with MDMA caused significant dysfunction in additional parameters that were not abnormal upon exposure to either compound in isolation: duration of contraction, inotropy, and pulse pressure. Exposure to 1.0 mM MDMA for 6 h or 2.0 μM MDMA for 12 h caused increased nuclear localization of NF-κB in cultured H9c2 cells. The current results suggest that MDMA is acutely detrimental to heart function and that an intact cardiovascular NOS system is important to help mitigate early sequelae in some functional parameters. The delayed timing of NF-κB activation suggests that this factor may be relevant to MDMA induced cardiomyopathy of later onset.
Collapse
Affiliation(s)
- David A. Tiangco
- Department of Biological Sciences, Old Dominion University, Norfolk, VA 23529, USA
| | - Sapna Halcomb
- Department of Biological Sciences, Old Dominion University, Norfolk, VA 23529, USA
| | - Frank A. Lattanzio
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, 23510, USA
| | - Barbara Y. Hargrave
- Department of Biological Sciences, Old Dominion University, Norfolk, VA 23529, USA
| |
Collapse
|
34
|
Qian J, Zhang JS, Wang XQ, Ji JL, Mei S. Fenretinide stimulates the apoptosis of hepatic stellate cells and ameliorates hepatic fibrosis in mice. Hepatol Res 2009; 39:1229-47. [PMID: 19788699 DOI: 10.1111/j.1872-034x.2009.00562.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AIM To investigate whether fenretinide, a clinically proved apoptosis-inducing chemopreventive agent in tumor cells, can induce apoptosis in hepatic stellate cells (HSCs) and resolve hepatic fibrosis. METHODS CCl(4)-induced liver fibrosis in mice and rat activated hepatic stellate cells (HSC-T6) as well as hepatocytes (BRL-3A) were studied. RESULTS The duplex staining of proliferating cell nuclear antigen and alpha- smooth muscle actin or terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling and alpha- smooth muscle actin demonstrated that fenretinide executed its anti-fibrosis effect in liver by inducing apoptosis rather than inhibiting proliferation of HSCs, while it had no apparently apoptotic effect on hepatocytes. Fenretinide could elicit apoptosis of HSC-T6 in vitro at the concentration range from 0.5 to 5 microM, but at higher concentrations >/=5 microM was required to induce apoptosis in hepatocytes (BRL-3A). CONCLUSION Further studies using malondialdehyde measurement, Western blot, antioxidant, inhibitors for p53, caspase 8 and 9 - as well as anti-Fas neutralizing antibody - have shown that in HSC-T6, fenretinide-induced apoptosis involves a reactive oxygen species (ROS)-generated, P53-independent, mitochondria-associated intrinsic pathway, whereas in hepatocytes (BRL-3A), a ROS-generated, P53-dependent, Fas-related extrinsic pathway is triggered only at high concentration.
Collapse
Affiliation(s)
- Jin Qian
- Department of Pathology, Shanghai Medical College, Fudan University, Shanghai, China
| | | | | | | | | |
Collapse
|
35
|
Dunning S, Hannivoort RA, de Boer JF, Buist-Homan M, Faber KN, Moshage H. Superoxide anions and hydrogen peroxide inhibit proliferation of activated rat stellate cells and induce different modes of cell death. Liver Int 2009; 29:922-32. [PMID: 19386027 DOI: 10.1111/j.1478-3231.2009.02004.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
BACKGROUND In chronic liver injury, hepatic stellate cells (HSCs) proliferate and produce excessive amounts of connective tissue causing liver fibrosis and cirrhosis. Oxidative stress has been implicated as a driving force of HSC activation and proliferation, although contradictory results have been described. AIM To determine the effects of oxidative stress on activated HSC proliferation, survival and signalling pathways. METHODS Serum-starved culture-activated rat HSCs were exposed to the superoxide anion donor menadione (5-25 micromol/L) or hydrogen peroxide (0.2-5 mmol/L). Haem oxygenase-1 mRNA expression, glutathione status, cell death, phosphorylation of mitogen-activated protein (MAP) kinases and proliferation were investigated. RESULTS Menadione induced apoptosis in a dose- and time-dependent, but caspase-independent manner. Hydrogen peroxide induced necrosis only at extremely high concentrations. Both menadione and hydrogen peroxide activated Jun N-terminal kinase (JNK) and p38. Hydrogen peroxide also activated extracellular signal-regulated protein. Menadione, but not hydrogen peroxide, reduced cellular glutathione levels. Inhibition of JNK or supplementation of glutathione reduced menadione-induced apoptosis. Non-toxic concentrations of menadione or hydrogen peroxide inhibited platelet-derived growth factor- or/and serum-induced proliferation. CONCLUSION Reactive oxygen species (ROS) inhibit HSC proliferation and promote HSC cell death in vitro. Different ROS induce different modes of cell death. Superoxide anion-induced HSC apoptosis is dependent on JNK activation and glutathione status.
Collapse
Affiliation(s)
- Sandra Dunning
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
36
|
Jameel NM, Thirunavukkarasu C, Wu T, Watkins SC, Friedman SL, Gandhi CR. p38-MAPK- and caspase-3-mediated superoxide-induced apoptosis of rat hepatic stellate cells: reversal by retinoic acid. J Cell Physiol 2008; 218:157-66. [PMID: 18792915 DOI: 10.1002/jcp.21581] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Reactive oxygen species (ROS) activate retinoid-containing quiescent hepatic stellate cells (qHSCs) to retinoid-deficient fibrogenic myofibroblast-like cells (aHSCs). However, ROS also cause apoptosis of aHSCs, and apoptotic aHSCs are observed in inflammatory fibrotic liver. Here, we investigated mechanisms of the effects of oxidative stress on the survival of qHSCs and aHSCs. HSCs from normal rat liver were used after overnight culture (qHSCs), or in 3-5 passages (aHSCs). For in vivo induction of oxidative stress, tert-butylhydroperoxide was injected into control and CCl4-induced cirrhotic rats. Spontaneous caspase-3 activation and apoptosis, observed in cultured qHSCs, decreased with time and were unaffected by superoxide. In contrast, superoxide caused caspase-3 and p38-MAPK activation, reduction in Bcl-xL expression, and apoptosis in aHSCs. Inhibition of caspase-3 and p38-MAPK did not affect the viability of qHSCs in the absence or presence of superoxide, but inhibited superoxide-induced death of aHSCs. Glutathione (GSH) level and activities of superoxide dismutase (SOD), catalase and glutathione peroxidase (GPx) were lower in aHSCs than qHSCs. Superoxide increased GSH content, and activities of SOD, catalase and GPx in qHSCs but not in aHSCs. Incubation of 13-cis-retinoic acid (RA)-treated aHSCs with superoxide increased their GSH content significantly, and prevented superoxide-induced p38-MAPK and caspase-3 activation while dramatically reducing the extent of apoptosis. Finally, oxidative stress induced in vivo caused apoptosis of aHSCs in cirrhotic but not of qHSCs in control rats. These results suggest that the absence of retinoids render aHSCs susceptible to superoxide-induced apoptosis via caspase-3 and p38-MAPK activation.
Collapse
Affiliation(s)
- Noor Mohamed Jameel
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | | | | | | | | |
Collapse
|
37
|
Moon KH, Upreti VV, Yu LR, Lee IJ, Ye X, Eddington ND, Veenstra TD, Song BJ. Mechanism of 3,4-methylenedioxymethamphetamine (MDMA, ecstasy)-mediated mitochondrial dysfunction in rat liver. Proteomics 2008; 8:3906-18. [PMID: 18780394 DOI: 10.1002/pmic.200800215] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Despite numerous reports citing the acute hepatotoxicity caused by 3,4-methylenedioxymethamphetamine (MDMA) (ecstasy), the underlying mechanism of organ damage is poorly understood. We hypothesized that key mitochondrial proteins are oxidatively modified and inactivated in MDMA-exposed tissues. The aim of this study was to identify and investigate the mechanism of inactivation of oxidatively modified mitochondrial proteins, prior to the extensive mitochondrial dysfunction and liver damage following MDMA exposure. MDMA-treated rats showed abnormal liver histology with significant elevation in plasma transaminases, nitric oxide synthase, and the level of hydrogen peroxide. Oxidatively modified mitochondrial proteins in control and MDMA-exposed rats were labeled with biotin-N-maleimide (biotin-NM) as a sensitive probe for oxidized proteins, purified with streptavidin-agarose, and resolved using 2-DE. Comparative 2-DE analysis of biotin-NM-labeled proteins revealed markedly increased levels of oxidatively modified proteins following MDMA exposure. Mass spectrometric analysis identified oxidatively modified mitochondrial proteins involved in energy supply, fat metabolism, antioxidant defense, and chaperone activities. Among these, the activities of mitochondrial aldehyde dehydrogenase, 3-ketoacyl-CoA thiolases, and ATP synthase were significantly inhibited following MDMA exposure. Our data show for the first time that MDMA causes the oxidative inactivation of key mitochondrial enzymes which most likely contributes to mitochondrial dysfunction and subsequent liver damage in MDMA-exposed animals.
Collapse
Affiliation(s)
- Kwan-Hoon Moon
- Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892-9410, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Pontes H, Sousa C, Silva R, Fernandes E, Carmo H, Remião F, Carvalho F, Bastos ML. Synergistic toxicity of ethanol and MDMA towards primary cultured rat hepatocytes. Toxicology 2008; 254:42-50. [PMID: 18848861 DOI: 10.1016/j.tox.2008.09.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Revised: 09/03/2008] [Accepted: 09/04/2008] [Indexed: 01/19/2023]
Abstract
Ethanol is frequently consumed along with 3,4-methylenedioxymethamphetamine (MDMA; ecstasy). Since both compounds are hepatotoxic and are metabolized in the liver, an increased deleterious interaction resulting from the concomitant use of these two drugs seems plausible. Another important feature of MDMA-induced toxicity is hyperthermia, an effect known to be potentiated after continuous exposure to ethanol. Considering the potential deleterious interaction, the aim of the present study was to evaluate the hepatotoxic effects of ethanol and MDMA mixtures to primary cultured rat hepatocytes and to elucidate the mechanism(s) underlying this interaction. For this purpose, the toxicity induced by MDMA to primary cultured rat hepatocytes in absence or in presence of ethanol was evaluated, under normothermic (36.5 degrees C) and hyperthermic (40.5 degrees C) conditions. While MDMA and ethanol, by themselves, had discrete effects on the analysed parameters, which were slightly aggravated under hyperthermia, the simultaneous incubation of MDMA and ethanol for 24h, resulted in high cell death ratios accompanied by a significant disturbance of cellular redox status and decreased energy levels. Evaluation of apoptotic/necrotic features provided clear evidences that the cell death occurs preferentially through a necrotic pathway. All the evaluated parameters were dramatically aggravated when cells were incubated under hyperthermia. In conclusion, co-exposure of hepatocytes to ethanol and MDMA definitely results in a synergism of the hepatotoxic effects, through a disruption of the cellular redox status and enhanced cell death by a necrotic pathway in a temperature-dependent extent.
Collapse
Affiliation(s)
- Helena Pontes
- REQUIMTE, Toxicology Department, Faculty of Pharmacy, University of Porto, Rua Aníbal Cunha 164, 4099-030 Porto, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Nelson DA, Nirmaier JL, Singh SJ, Tolbert MD, Bost KL. Ecstasy (3,4-methylenedioxymethamphetamine) limits murine gammaherpesvirus-68 induced monokine expression. Brain Behav Immun 2008; 22:912-22. [PMID: 18280699 PMCID: PMC4275657 DOI: 10.1016/j.bbi.2008.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Revised: 01/07/2008] [Accepted: 01/08/2008] [Indexed: 01/03/2023] Open
Abstract
While Ecstasy (3,4-methylenedioxymethamphetamine, MDMA) has been shown to modulate immune responses, no studies have addressed drug-induced alterations to viral infection. In this study, bone marrow-derived macrophages were exposed to MDMA, then infected with murine gammaherpesvirus-68, and the expression of monokines assessed. MDMA-induced reductions in virus-stimulated monokine mRNA expression were observed in a dose-dependent manner. In particular, IL-6 mRNA expression and secretion was significantly decreased in gammaherpesvirus-infected macrophages exposed to MDMA. Concentrations of MDMA capable of reducing monokine production did not induce significant cell death and allowed normal viral gene expression. These studies represent the first to demonstrate the ability of this drug of abuse to alter a viral-induced macrophage response.
Collapse
Affiliation(s)
- Daniel A Nelson
- Department of Biology, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC 28223, USA.
| | | | | | | | | |
Collapse
|
40
|
Langer DA, Das A, Semela D, Kang-Decker N, Hendrickson H, Bronk SF, Katusic ZS, Gores GJ, Shah VH. Nitric oxide promotes caspase-independent hepatic stellate cell apoptosis through the generation of reactive oxygen species. Hepatology 2008; 47:1983-93. [PMID: 18459124 PMCID: PMC2562502 DOI: 10.1002/hep.22285] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
UNLABELLED Hepatic stellate cells (HSCs) contribute to portal hypertension through multiple mechanisms that include collagen deposition, vasoconstriction, and regulation of sinusoidal structure. Under normal physiologic conditions, endothelial nitric oxide (NO) synthase-derived NO exerts paracrine effects on HSCs; however, in cirrhosis, NO generation is impaired in association with concomitant HSC activation and changes in sinusoidal structure, events that contribute significantly to the development of portal hypertension. These concepts, in combination with recent evidence that induction of HSC-selective apoptosis may represent a useful target for treatment of chronic liver disease, led us to examine if NO may further limit HSC function through apoptosis. Indeed, both NO donors and endothelial NO synthase overexpression promoted HSC apoptotic pathways. HSC death conferred by NO occurred through mitochondrial membrane depolarization and through a caspase-independent pathway. Furthermore, NO-induced apoptosis of HSC did not occur through the canonical pathways of soluble guanylate cyclase or protein nitration, but rather through the generation of superoxide and hydroxyl radical intermediates. Lastly, HSC isolated from rats after bile duct ligation were more susceptible to NO-induced apoptosis. These data indicate that NO promotes HSC apoptosis through a signaling mechanism that involves mitochondria, is mediated by reactive oxygen species, and occurs independent of caspase activation. CONCLUSION We postulate that NO-dependent apoptosis of HSCs may maintain sinusoidal homeostasis, and may represent an additional beneficial effect of NO donors for therapy of portal hypertension.
Collapse
Affiliation(s)
- Daniel A. Langer
- Gastrointestinal Research Unit and Fiterman Center for Digestive Disease, Mayo Clinic College of Medicine, Rochester, MN
| | - Amitava Das
- Gastrointestinal Research Unit and Fiterman Center for Digestive Disease, Mayo Clinic College of Medicine, Rochester, MN
| | - David Semela
- Gastrointestinal Research Unit and Fiterman Center for Digestive Disease, Mayo Clinic College of Medicine, Rochester, MN
| | - Ningling Kang-Decker
- Gastrointestinal Research Unit and Fiterman Center for Digestive Disease, Mayo Clinic College of Medicine, Rochester, MN
| | - Helen Hendrickson
- Gastrointestinal Research Unit and Fiterman Center for Digestive Disease, Mayo Clinic College of Medicine, Rochester, MN
| | - Steven F. Bronk
- Center for Basic Research in Digestive Diseases and Fiterman Center for Digestive Disease, Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, MN
| | - Zvonimir S. Katusic
- Department of Anesthesiology and Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN
| | - Gregory J. Gores
- Center for Basic Research in Digestive Diseases and Fiterman Center for Digestive Disease, Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, MN
| | - Vijay H. Shah
- Gastrointestinal Research Unit and Fiterman Center for Digestive Disease, Mayo Clinic College of Medicine, Rochester, MN
| |
Collapse
|
41
|
Shenouda SK, Lord KC, McIlwain E, Lucchesi PA, Varner KJ. Ecstasy produces left ventricular dysfunction and oxidative stress in rats. Cardiovasc Res 2008; 79:662-70. [PMID: 18495670 DOI: 10.1093/cvr/cvn129] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AIMS Our aim was to determine whether the repeated, binge administration of 3,4-methylenedioxymethamphetamine (ecstasy; MDMA) produces structural and/or functional changes in the myocardium that are associated with oxidative stress. METHODS AND RESULTS Echocardiography and pressure-volume conductance catheters were used to assess left ventricular (LV) structure and function in rats subjected to four ecstasy binges (9 mg/kg i.v. for 4 days, separated by a 10 day drug-free period). Hearts from treated and control rats were used for either biochemical and proteomic analysis or the isolation of adult LV myocytes. After the fourth binge, treated hearts showed eccentric LV dilation and diastolic dysfunction. Systolic function was not altered in vivo; however, the magnitude of the contractile responses to electrical stimulation was significantly smaller in myocytes from rats treated in vivo with ecstasy compared with myocytes from control rats. The magnitude of the peak increase in intracellular calcium (measured by Fura-2) was also significantly smaller in myocytes from ecstasy-treated vs. control rats. The relaxation kinetics of the intracellular calcium transients were significantly longer in myocytes from ecstasy-treated rats. Ecstasy significantly increased nitrotyrosine content in the left ventricle. Proteomic analysis revealed increased nitration of contractile proteins (troponin-T, tropomyosin alpha-1 chain, myosin light polypeptide, and myosin regulatory light chain), mitochondrial proteins (Ub-cytochrome-c reductase and ATP synthase), and sarcoplasmic reticulum calcium ATPase. CONCLUSION The repeated binge administration of ecstasy produces eccentric LV dilation and dysfunction that is accompanied by oxidative stress. These functional responses may result from the redox modification of proteins involved in excitation-contraction coupling and/or mitochondrial energy production. Together, these results indicate that ecstasy has the potential to produce serious cardiac toxicity and ventricular dysfunction.
Collapse
Affiliation(s)
- Sylvia K Shenouda
- Department of Pharmacology and Experimental Therapeutics, The Cardiovascular Center, Louisiana State University Health Sciences Center, 1901 Perdido Street P7-1, New Orleans, LA 70112, USA
| | | | | | | | | |
Collapse
|
42
|
Wang Y, Huang X, Cang H, Gao F, Yamamoto T, Osaki T, Yi J. The endogenous reactive oxygen species promote NF-kappaB activation by targeting on activation of NF-kappaB-inducing kinase in oral squamous carcinoma cells. Free Radic Res 2007; 41:963-71. [PMID: 17729113 DOI: 10.1080/10715760701445045] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Reactive oxygen species (ROS) could stimulate or inhibit NF-kappaB pathways. However, most results have been obtained on the basis of the exogenous ROS and the molecular target of ROS in NF-kappaB signalling pathways has remained unclear. Here, the oral squamous carcinoma (OSC) cells, with a mild difference in the endogenous ROS level, were used to investigate how slight fluctuation of the endogenous ROS regulates NF-kappaB activation. This study demonstrates that NF-kappaB-inducing kinase (NIK) is a critical target of the endogenous ROS in NF-kappaB pathways. The results indicate that ROS may function as a physiological signalling modulator on NF-kappaB signalling cascades through its ability to facilitate the activity of NIK and subsequent NF-kappaB transactivation. In addition, the data are useful to explain why the altered intracellular microenvironment related to redox state may influence biological behaviours of cancer cells.
Collapse
Affiliation(s)
- Yumei Wang
- Department of Cell Biology, Key Laboratory of the Education Ministry of China for Cell Differentiation and Apoptosis, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
43
|
Miranda M, Bosch-Morell F, Johnsen-Soriano S, Barcia J, Almansa I, Asensio S, Araiz J, Messeguer A, Romero FJ. Oxidative Stress in Rat Retina and Hippocampus after Chronic MDMA (‘ecstasy’) Administration. Neurochem Res 2007; 32:1156-62. [PMID: 17401664 DOI: 10.1007/s11064-007-9285-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Accepted: 01/04/2007] [Indexed: 11/26/2022]
Abstract
The effects of MDMA administration on oxidative stress markers in rat eye and hippocampus, and the neuroprotective effects of the antioxidant 3,4-dihydro-6-hydroxy-7-methoxy-2,2-dimethyl-1(2H)-benzopyran (CR-6) have been studied. MDMA effects on liver were used for comparison with those in eye and hippocampus and to test CR-6 protective effects. Another goal was to test for apoptosis in retinal cells, as it is known that happens in liver and brain. After 1 week of ecstasy administration, malondialdehyde (MDA) concentration increased, glutathione peroxidase (GPx) activity and glutathione (GSH) content decreased in liver, as previously described. MDA concentration increased and GPx activity decreased in hippocampus; whereas no change was observed in GSH concentration. MDMA decreased ocular GSH concentration and GPx activity; no change was observed in MDA concentration. The number of TUNEL-positive nuclei increased significantly in rat retinas after 1 week of MDMA administration. CR-6 normalized the modifications in liver, hippocampus and retina mentioned above.
Collapse
Affiliation(s)
- María Miranda
- Instituto CEU sobre Drogas y Conductas Adictivas (IDYCA), Universidad CEU Cardenal Herrera, Avda. Seminario s/n, 46113, Moncada, Valencia, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Martin H, Abadie C, Heyd B, Mantion G, Richert L, Berthelot A. N-Acetylcysteine Partially Reverses Oxidative Stress and Apoptosis Exacerbated by Mg-Deficiency Culturing Conditions in Primary Cultures of Rat and Human Hepatocytes. J Am Coll Nutr 2006; 25:363-9. [PMID: 17031004 DOI: 10.1080/07315724.2006.10719547] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
OBJECTIVE The effects of magnesium (Mg) deficiency on the rate of oxidative stress and apoptosis in primary cultures of human hepatocytes were compared to cultured rat hepatocytes. The possible reversion by N-acetylcysteine (NAC) in Mg-deficient culturing conditions was evaluated. METHODS Incubations were conducted for up to 72 h in media containing a deficient (0-0.4 mM) or a physiological (0.8 mM) Mg concentration, and in the presence or absence of NAC after 24 h of culture in these Mg concentration conditions. RESULTS We obtained similar profiles in terms of apoptosis and oxidative stress in primary cultures of human hepatocytes, as compared to rat hepatocytes, i.e. a Mg concentration-dependent effect on the caspase-3 activity and GSH levels after 72 h of culture, caspase-3 activity being highest and GSH levels being lowest in Mg-free cultures. The addition of NAC to culture media after the first 24 h of culture increased GSH concentrations. This was accompanied in Mg-deficient cultures by a decrease in both the caspase-3 activity and the lipid peroxidation. However, when culturing hepatocytes with physiological Mg concentrations, an increase in both caspase-3 activity and lipid peroxidation was observed. CONCLUSIONS Our results indicate that Mg deficiency exacerbates the rate of apoptosis in cultured hepatocytes, associated with an increase in oxidative stress, the sensitivity of human hepatocytes being equivalent to that of rat hepatocytes. They also indicate a dual role of NAC and/or GSH, i.e. protective for hepatocytes placed in a Mg-deficient environment, while deleterious for hepatocytes placed in a Mg-physiological environment.
Collapse
Affiliation(s)
- Hélène Martin
- Laboratoire de Biologie Cellulaire, EA 3921, UFR des Sciences Médicales et Pharmaceutiques, Place Saint-Jacques, 25030 Besançon cedex, France.
| | | | | | | | | | | |
Collapse
|
45
|
Cao Q, Mak KM, Lieber CS. DLPC and SAMe prevent alpha1(I) collagen mRNA up-regulation in human hepatic stellate cells, whether caused by leptin or menadione. Biochem Biophys Res Commun 2006; 350:50-5. [PMID: 16996477 DOI: 10.1016/j.bbrc.2006.08.174] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2006] [Accepted: 08/30/2006] [Indexed: 01/08/2023]
Abstract
We previously reported that the combination of dilinoleoylphosphatidylcholine (DLPC) and S-adenosylmethionine (SAMe), which have antioxidant properties and antifibrogenic actions, prevented leptin-stimulated tissue inhibitor of metalloproteinase (TIMP)-1 production in hepatic stellate cells (HSCs) by inhibiting H2O2-mediated signal transduction. We now show that DLPC and SAMe inhibit alpha1(I) collagen mRNA expression induced by leptin or menadione in LX-2 human HSCs. We found that DLPC and SAMe prevent H2O2 generation and restore reduced glutathione (GSH) depletion whether caused by leptin or menadione. Blocking H2O2 signaling through ERK1/2 and p38 pathways resulted in a complete inhibition of leptin or menadione-induced alpha1(I) collagen mRNA. The inhibition of collagen mRNA by DLPC and SAMe combined is at least two times more effective than that by DLPC or SAMe alone. In conjunction with the prevention of TIMP-1 production, the ability of DLPC and SAMe to inhibit alpha1(I) collagen mRNA expression provides a mechanistic basis for these innocuous compounds in the prevention of hepatic fibrosis, because enhanced TIMP-1 and collagen productions are associated with hepatic fibrogenesis and their attenuation may diminish fibrosis.
Collapse
Affiliation(s)
- Qi Cao
- Alcohol Research and Treatment Center, James J. Peters Veterans Affairs Medical Center, 130 W. Kingsbridge Road, Bronx, NY 10468, USA
| | | | | |
Collapse
|
46
|
Elsharkawy AM, Oakley F, Mann DA. The role and regulation of hepatic stellate cell apoptosis in reversal of liver fibrosis. Apoptosis 2006; 10:927-39. [PMID: 16151628 DOI: 10.1007/s10495-005-1055-4] [Citation(s) in RCA: 311] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Liver fibrosis and its end-stage disease cirrhosis are major world health problems arising from chronic injury of the liver by a variety of etiological factors including viruses, alcohol and drug abuse, the metabolic syndrome, autoimmune disease and hereditary disorders of metabolism. Fibrosis is a progressive pathological process in which wound-healing myofibroblasts of the liver respond to injury by promoting replacement of the normal hepatic tissue with a scar-like matrix composed of cross-linked collagen. Until recently it was believed that this process was irreversible. However emerging experimental and clinical evidence is starting to show that even cirrhosis is potentially reversible. Key to this is the discovery that reversion of fibrosis is accompanied by clearance of hepatic stellate cells (HSC) by apoptosis. Furthermore, proof-of-concept studies in rodents have demonstrated that experimental augmentation of HSC apoptosis will promote the resolution of fibrosis. Consequently there is now considerable interest in determining the molecular events that regulate HSC apoptosis and the discovery of drugs that will stimulate HSC apoptosis in a selective manner. This review will consider the regulatory role played by growth factors (e.g. NGF, IGF-1, TGFbeta), death receptor ligands (TRAIL, FAS), components and regulators of extracellular matrix (integrins, collagen, matrix metalloproteinases and their tissue inhibitors) and signal transduction proteins and transcription factors (Rho/Rho kinase, Jun N-terminal Kinase (JNK), IkappaKinase (IKK), NF-kappa B). The potential for known pharmacological agents such as gliotoxin, sulfasalazine, benzodiazepine ligands, curcumin and tanshinone I to induce HSC apoptosis and therefore to be used therapeutically will be explored.
Collapse
Affiliation(s)
- A M Elsharkawy
- Liver Group, Division of Infection, Inflammation and Repair, University of Southampton, Southampton General Hospital, Level D, South Academic Block, Southampton, SO16 6YD, UK
| | | | | |
Collapse
|
47
|
Smets G, Bronselaer K, De Munnynck K, De Feyter K, Van de Voorde W, Sabbe M. Amphetamine toxicity in the emergency department. Eur J Emerg Med 2005; 12:193-7. [PMID: 16034267 DOI: 10.1097/00063110-200508000-00010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
XTC and other amphetamines are considered to be safe by the majority of partying young people who are unaware of (or unwilling to know about) the acute and chronic toxicity of these substances, and these drugs are widespread, illicit stimulants. In this article, we describe four cases of severe acute toxicity due to recreational use of amphetamines 3,4-methylene-dioxymethamphetamine, 3,4-methylenedioxyethylamphetamine, 3,4-methylenedioxyamphetamine, 4-methylthioamphetamine or p-methoxyamphetamine, with emphasis on the presenting symptoms and acute treatment in the emergency department.
Collapse
Affiliation(s)
- Gert Smets
- Department of Emergency Medicine, University Hospitals of Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
48
|
El Eter E, Hagar HH, Al-Tuwaijiri A, Arafa M. Nuclear factor-kappaB inhibition by pyrrolidinedithiocarbamate attenuates gastric ischemia-reperfusion injury in rats. Can J Physiol Pharmacol 2005; 83:483-92. [PMID: 16049548 DOI: 10.1139/y05-034] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Pyrrolidinedithiocarbamate (PDTC) is a potent antioxidant and an inhibitor of nuclear factor-kappaB (NF-kappaB). The present study examined the impact of PDTC preconditioning on gastric protection in response to ischemia-reperfusion (I/R) injury to the rat stomach. Male Wistar rats were recruited and divided into 3 groups (n = 7). One group was subjected to gastric ischemia for 30 min and reperfusion for 1 hour. The second group of rats was preconditioned with PDTC (200 mg/kg body mass i.v.) 15 min prior to ischemia and before reperfusion. The third group of rats was sham-operated and served as the control group. Gastric I/R injury increased serum lactate dehydrogenase level, vascular permeability of gastric mucosa (as indicated by Evans blue dye extravasation) and gastric content of inflammatory cytokine; tumor necrosis factor-alpha (TNF-alpha). Moreover, oxidative stress was increased as indicated by elevated lipid peroxides formation (measured as thiobarbituric acid reactive substances) and depleted reduced glutathione in gastric tissues. NF-kappaB translocation was also detected by electrophoretic mobility shift assay. Microscopically, gastric tissues subjected to I/R injury showed ulceration, hemorrhages, and neutrophil infiltration. Immunohistochemical studies of gastric sections revealed increased expression of p53 and Bcl-2 proteins. PDTC pretreatment reduced Evans blue extravasation, serum lactate dehydrogenase levels, gastric TNF-alpha levels, and thiobarbituric acid reactive substances content, and increased gastric glutathione content. Moreover, PDTC pretreatment abolished p53 expression and inhibited NF-kappaB translocation. Finally, histopathological changes were nearly restored by PDTC pretreatment. These results clearly demonstrate that NF-kappaB activation and pro-apoptotic protein p53 induction are involved in gastric I/R injury. PDTC protects against gastric I/R injury by an antioxidant, NF-kappaB inhibition, and by reduction of pro-apoptotic protein p53 expression, which seems to be downstream to NF-kappaB, thus promoting cell survival.
Collapse
Affiliation(s)
- Eman El Eter
- Physiology Department, Medical College & King Khalid University Hospital, King Saud University, Riyadh, Saudi Arabia
| | | | | | | |
Collapse
|
49
|
Alessenko AV, Shupik MA, Bugrova AE, Dudnik LB, Shingarova LN, Mikoyan A, Vanin AF. The relation between sphingomyelinase activity, lipid peroxide oxidation and NO-releasing in mice liver and brain. FEBS Lett 2005; 579:5571-6. [PMID: 16225875 DOI: 10.1016/j.febslet.2005.08.085] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2004] [Revised: 08/23/2005] [Accepted: 08/31/2005] [Indexed: 10/25/2022]
Abstract
We used animal models to study connection between oxidating system and sphingomyelin signaling cascade, because this models are more close related to people disease. Activation of n-sphingomyelinase (n-SMase) in mice liver and brain is coincided in time with increased level of peroxide products (conjugated dienes) after injection of tumor necrosis factor alpha (TNF-alpha). We found that ceramide can induce peroxide oxidation and lead to accumulation of TNF-alpha in animal organs. Nitric oxide (NO) donors (S-nitrosoglutathione and dinitrosyl iron complex) reversibly inhibited activity of n-SMase and decreased level of lipid peroxidation products. This data proposed that both SMase and messengers of oxidative systems could be targets for NO-derived oxidants.
Collapse
Affiliation(s)
- A V Alessenko
- Institute of Biochemical Physics of the Russian Academy of Sciences, Moscow.
| | | | | | | | | | | | | |
Collapse
|
50
|
Morissette G, Moreau E, C-Gaudreault R, Marceau F. N-Substituted 4-Aminobenzamides (Procainamide Analogs): An Assessment of Multiple Cellular Effects Concerning Ion Trapping. Mol Pharmacol 2005; 68:1576-89. [PMID: 16183854 DOI: 10.1124/mol.105.016527] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Procainamide and related triethylamine-substituted 4-aminobenzamides, such as metoclopramide and declopramide, exert cellular effects potentially exploitable in oncology at millimolar concentrations (DNA demethylation, nuclear factor-kappaB inhibition, apoptosis) and display anti-inflammatory properties. However, these drugs induce massive cell vacuolization at similar concentrations, a response initiated by vacuolar (V-) ATPase-dependent ion trapping into and osmotic swelling of acidic organelles. We have examined whether this overlooked response might be related to the effects on cell proliferation and viability using cultured vascular smooth muscle cells and tumor-derived cell lines (Morris 7777 hepatoma, HT-1080 fibrosarcoma). Giant vacuole formation, of confirmed trans-Golgi origin (labeled with C5-ceramide, p230, golgin-97), is a cellular response to all tested amines in the series (> or = 2.5 mM), including triethylamine. These drugs and the V-ATPase inhibitor bafilomycin A1 inhibited smooth muscle cell proliferation, suggesting that acidification of a cellular compartment is essential to cell division. The cytotoxicity was maximal with metoclopramide, and this effect was minimally influenced by bafilomycin A1; furthermore, metoclopramide (2.5 mM) induced apoptosis in tumor cells as judged by poly(ADP-ribose)polymerase (PARP) cleavage. Triethylamine and procainamide exhibit a low level of cytotoxicity variably reduced by bafilomycin co-treatment. In Morris cells, the secretion of alpha-fetoprotein is inhibited by amines, consistent with the impairment of the secretory pathway. The most highly substituted 4-aminobenzamides are significant NF-kappaB inhibitors in smooth muscle cells. Although some effects of 4-aminobenzamides are independent of V-ATPase-driven ion trapping (inhibition of NF-kappaB nuclear translocation, agent-specific cytotoxicity, PARP cleavage), other effects are dependent on this phenomenon (vacuolization, a component of the cytotoxicity, inhibition of secretion).
Collapse
Affiliation(s)
- Guillaume Morissette
- Centre de Recherche en Rhumatologie et Immunologie, Centre Hospitalier Universitaire de Québec, 2705 Laurier Blvd., Québec, QC, Canada G1V 4G2
| | | | | | | |
Collapse
|