1
|
Trejo-Solís C, Serrano-García N, Castillo-Rodríguez RA, Robledo-Cadena DX, Jimenez-Farfan D, Marín-Hernández Á, Silva-Adaya D, Rodríguez-Pérez CE, Gallardo-Pérez JC. Metabolic dysregulation of tricarboxylic acid cycle and oxidative phosphorylation in glioblastoma. Rev Neurosci 2024; 35:813-838. [PMID: 38841811 DOI: 10.1515/revneuro-2024-0054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/21/2024] [Indexed: 06/07/2024]
Abstract
Glioblastoma multiforme (GBM) exhibits genetic alterations that induce the deregulation of oncogenic pathways, thus promoting metabolic adaptation. The modulation of metabolic enzyme activities is necessary to generate nucleotides, amino acids, and fatty acids, which provide energy and metabolic intermediates essential for fulfilling the biosynthetic needs of glioma cells. Moreover, the TCA cycle produces intermediates that play important roles in the metabolism of glucose, fatty acids, or non-essential amino acids, and act as signaling molecules associated with the activation of oncogenic pathways, transcriptional changes, and epigenetic modifications. In this review, we aim to explore how dysregulated metabolic enzymes from the TCA cycle and oxidative phosphorylation, along with their metabolites, modulate both catabolic and anabolic metabolic pathways, as well as pro-oncogenic signaling pathways, transcriptional changes, and epigenetic modifications in GBM cells, contributing to the formation, survival, growth, and invasion of glioma cells. Additionally, we discuss promising therapeutic strategies targeting key players in metabolic regulation. Therefore, understanding metabolic reprogramming is necessary to fully comprehend the biology of malignant gliomas and significantly improve patient survival.
Collapse
Affiliation(s)
- Cristina Trejo-Solís
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Laboratorio de Neurobiología Molecular y Celular, Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico
| | - Norma Serrano-García
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Laboratorio de Neurobiología Molecular y Celular, Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico
| | - Rosa Angelica Castillo-Rodríguez
- CICATA Unidad Morelos, Instituto Politécnico Nacional, Boulevard de la Tecnología, 1036 Z-1, P 2/2, Atlacholoaya, Xochitepec 62790, Mexico
| | - Diana Xochiquetzal Robledo-Cadena
- Departamento de Fisiopatología Cardio-Renal, Departamento de Bioquímica, Instituto Nacional de Cardiología, Ciudad de México 14080, Mexico
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Coyoacán, 04510, Ciudad de México, Mexico
| | - Dolores Jimenez-Farfan
- Laboratorio de Inmunología, División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico
| | - Álvaro Marín-Hernández
- Departamento de Fisiopatología Cardio-Renal, Departamento de Bioquímica, Instituto Nacional de Cardiología, Ciudad de México 14080, Mexico
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Coyoacán, 04510, Ciudad de México, Mexico
| | - Daniela Silva-Adaya
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Laboratorio de Neurobiología Molecular y Celular, Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico
| | - Citlali Ekaterina Rodríguez-Pérez
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Laboratorio de Neurobiología Molecular y Celular, Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico
| | - Juan Carlos Gallardo-Pérez
- Departamento de Fisiopatología Cardio-Renal, Departamento de Bioquímica, Instituto Nacional de Cardiología, Ciudad de México 14080, Mexico
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Coyoacán, 04510, Ciudad de México, Mexico
| |
Collapse
|
2
|
Hubert M, Stuart S, Ohh M. Glucose deprivation impairs hypoxia-inducible factor-1α synthesis. Discov Oncol 2024; 15:595. [PMID: 39466364 PMCID: PMC11519269 DOI: 10.1007/s12672-024-01484-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/22/2024] [Indexed: 10/30/2024] Open
Abstract
Hypoxia-inducible factors (HIFs) are key transcriptional mediators of the hypoxic response and are implicated in oncogenesis. HIFα is regulated by a well-characterized, oxygen-dependent degradation pathway involving the von Hippel Lindau (VHL) tumor suppressor protein. However, comparatively little is known about HIFα regulation at the translational level, particularly under cellular stress. There is evidence that HIFα expression not only responds to changes in oxygen tension, but also nutrient availability. In this study, we monitored global translation rates, ATP levels and HIF1α synthesis rates in response to glucose starvation or glycolysis inhibition. We found that both global and HIF1α-specific translation rates decline under glucose deprivation that is concomitant with ATP reduction. These results are in contrast with previous reports showing preferential HIF1α synthesis despite global translation suppression under hypoxia and suggest that a glucose requirement in cellular metabolism is associated with HIF1α translation.
Collapse
Affiliation(s)
- Mia Hubert
- Department of Laboratory Medicine & Pathobiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Sarah Stuart
- Department of Laboratory Medicine & Pathobiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
- Department of Biochemistry, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Michael Ohh
- Department of Laboratory Medicine & Pathobiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
- Department of Biochemistry, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
3
|
Cortes Ballen AI, Amosu M, Ravinder S, Chan J, Derin E, Slika H, Tyler B. Metabolic Reprogramming in Glioblastoma Multiforme: A Review of Pathways and Therapeutic Targets. Cells 2024; 13:1574. [PMID: 39329757 PMCID: PMC11430559 DOI: 10.3390/cells13181574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/05/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
Glioblastoma (GBM) is an aggressive and highly malignant primary brain tumor characterized by rapid growth and a poor prognosis for patients. Despite advancements in treatment, the median survival time for GBM patients remains low. One of the crucial challenges in understanding and treating GBMs involves its remarkable cellular heterogeneity and adaptability. Central to the survival and proliferation of GBM cells is their ability to undergo metabolic reprogramming. Metabolic reprogramming is a process that allows cancer cells to alter their metabolism to meet the increased demands of rapid growth and to survive in the often oxygen- and nutrient-deficient tumor microenvironment. These changes in metabolism include the Warburg effect, alterations in several key metabolic pathways including glutamine metabolism, fatty acid synthesis, and the tricarboxylic acid (TCA) cycle, increased uptake and utilization of glutamine, and more. Despite the complexity and adaptability of GBM metabolism, a deeper understanding of its metabolic reprogramming offers hope for developing more effective therapeutic interventions against GBMs.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Betty Tyler
- Hunterian Neurosurgical Laboratory, Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; (A.I.C.B.); (M.A.); (S.R.); (J.C.); (E.D.); (H.S.)
| |
Collapse
|
4
|
Shukla M, Bhowmick R, Ganguli P, Sarkar RR. Metabolic reprogramming and signalling cross-talks in tumour-immune interaction: a system-level exploration. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231574. [PMID: 38481985 PMCID: PMC10933535 DOI: 10.1098/rsos.231574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/19/2023] [Accepted: 01/23/2024] [Indexed: 04/26/2024]
Abstract
Tumour-immune microenvironment (TIME) is pivotal in tumour progression and immunoediting. Within TIME, immune cells undergo metabolic adjustments impacting nutrient supply and the anti-tumour immune response. Metabolic reprogramming emerges as a promising approach to revert the immune response towards a pro-inflammatory state and conquer tumour dominance. This study proposes immunomodulatory mechanisms based on metabolic reprogramming and employs the regulatory flux balance analysis modelling approach, which integrates signalling, metabolism and regulatory processes. For the first time, a comprehensive system-level model is constructed to capture signalling and metabolic cross-talks during tumour-immune interaction and regulatory constraints are incorporated by considering the time lag between them. The model analysis identifies novel features to enhance the immune response while suppressing tumour activity. Particularly, altering the exchange of succinate and oxaloacetate between glioma and macrophage enhances the pro-inflammatory response of immune cells. Inhibition of glutamate uptake in T-cells disrupts the antioxidant mechanism of glioma and reprograms metabolism. Metabolic reprogramming through adenosine monophosphate (AMP)-activated protein kinase (AMPK), coupled with glutamate uptake inhibition, was identified as the most impactful combination to restore T-cell function. A comprehensive understanding of metabolism and gene regulation represents a favourable approach to promote immune cell recovery from tumour dominance.
Collapse
Affiliation(s)
- Mudita Shukla
- Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Rupa Bhowmick
- Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Piyali Ganguli
- Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Ram Rup Sarkar
- Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| |
Collapse
|
5
|
Niu N, Ye J, Hu Z, Zhang J, Wang Y. Regulative Roles of Metabolic Plasticity Caused by Mitochondrial Oxidative Phosphorylation and Glycolysis on the Initiation and Progression of Tumorigenesis. Int J Mol Sci 2023; 24:ijms24087076. [PMID: 37108242 PMCID: PMC10139088 DOI: 10.3390/ijms24087076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/23/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
One important feature of tumour development is the regulatory role of metabolic plasticity in maintaining the balance of mitochondrial oxidative phosphorylation and glycolysis in cancer cells. In recent years, the transition and/or function of metabolic phenotypes between mitochondrial oxidative phosphorylation and glycolysis in tumour cells have been extensively studied. In this review, we aimed to elucidate the characteristics of metabolic plasticity (emphasizing their effects, such as immune escape, angiogenesis migration, invasiveness, heterogeneity, adhesion, and phenotypic properties of cancers, among others) on tumour progression, including the initiation and progression phases. Thus, this article provides an overall understanding of the influence of abnormal metabolic remodeling on malignant proliferation and pathophysiological changes in carcinoma.
Collapse
Affiliation(s)
- Nan Niu
- Shenzhen Engineering Labortaory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Lihu Campus of Shenzhen University, Shenzhen 518055, China
- College of Physics and Optoelectronic Engineering, Canghai Campus of Shenzhen University, Shenzhen 518060, China
| | - Jinfeng Ye
- Shenzhen Engineering Labortaory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Lihu Campus of Shenzhen University, Shenzhen 518055, China
| | - Zhangli Hu
- Shenzhen Engineering Labortaory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Lihu Campus of Shenzhen University, Shenzhen 518055, China
| | - Junbin Zhang
- Shenzhen Engineering Labortaory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Lihu Campus of Shenzhen University, Shenzhen 518055, China
| | - Yun Wang
- Shenzhen Engineering Labortaory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Lihu Campus of Shenzhen University, Shenzhen 518055, China
| |
Collapse
|
6
|
Fala M, Ros S, Sawle A, Rao JU, Tsyben A, Tronci L, Frezza C, Mair R, Brindle KM. The role of branched-chain aminotransferase 1 in driving glioblastoma cell proliferation and invasion varies with tumor subtype. Neurooncol Adv 2023; 5:vdad120. [PMID: 37885806 PMCID: PMC10599397 DOI: 10.1093/noajnl/vdad120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023] Open
Abstract
Background Branched-chain aminotransferase 1 (BCAT1) has been proposed to drive proliferation and invasion of isocitrate dehydrogenase (IDH) wild-type glioblastoma cells. However, the Cancer Genome Atlas (TCGA) dataset shows considerable variation in the expression of this enzyme in glioblastoma. The aim of this study was to determine the role of BCAT1 in driving the proliferation and invasion of glioblastoma cells and xenografts that have widely differing levels of BCAT1 expression and the mechanism responsible. Methods The activity of BCAT1 was modulated in IDH wild-type patient-derived glioblastoma cell lines, and in orthotopically implanted tumors derived from these cells, to examine the effects of BCAT1 expression on tumor phenotype. Results In cells with constitutively high BCAT1 expression and a glycolytic metabolic phenotype, inducible shRNA knockdown of the enzyme resulted in reduced proliferation and invasion by increasing the concentration of α-ketoglutarate, leading to reduced DNA methylation, HIF-1α destabilization, and reduced expression of the transcription factor Forkhead box protein M1 (FOXM1). Conversely, overexpression of the enzyme increased HIF-1α expression and promoted proliferation and invasion. However, in cells with an oxidative phenotype and very low constitutive expression of BCAT1 increased expression of the enzyme had no effect on invasion and reduced cell proliferation. This occurred despite an increase in HIF-1α levels and could be explained by decreased TCA cycle flux. Conclusions There is a wide variation in BCAT1 expression in glioblastoma and its role in proliferation and invasion is dependent on tumor subtype.
Collapse
Affiliation(s)
- Maria Fala
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Susana Ros
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Ashley Sawle
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Jyotsna U Rao
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Anastasia Tsyben
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Laura Tronci
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Cambridge, United Kingdom
| | - Christian Frezza
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Cambridge, United Kingdom
| | - Richard Mair
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Kevin M Brindle
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
7
|
Lima C, Andrade-Barros AI, Bernardo JTG, Balogh E, Quesniaux VF, Ryffel B, Lopes-Ferreira M. Natterin-Induced Neutrophilia Is Dependent on cGAS/STING Activation via Type I IFN Signaling Pathway. Int J Mol Sci 2022; 23:ijms23073600. [PMID: 35408954 PMCID: PMC8998820 DOI: 10.3390/ijms23073600] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
Abstract
Natterin is a potent pro-inflammatory fish molecule, inducing local and systemic IL-1β/IL-1R1-dependent neutrophilia mediated by non-canonical NLRP6 and NLRC4 inflammasome activation in mice, independent of NLRP3. In this work, we investigated whether Natterin activates mitochondrial damage, resulting in self-DNA leaks into the cytosol, and whether the DNA sensor cGAS and STING pathway participate in triggering the innate immune response. Employing a peritonitis mouse model, we found that the deficiency of the tlr2/tlr4, myd88 and trif results in decreased neutrophil influx to peritoneal cavities of mice, indicative that in addition to MyD88, TRIF contributes to neutrophilia triggered by TLR4 engagement by Natterin. Next, we demonstrated that gpcr91 deficiency in mice abolished the neutrophil recruitment after Natterin injection, but mice pre-treated with 2-deoxy-d-glucose that blocks glycolysis presented similar infiltration than WT Natterin-injected mice. In addition, we observed that, compared with the WT Natterin-injected mice, DPI and cyclosporin A treated mice had a lower number of neutrophils in the peritoneal exudate. The levels of dsDNA in the supernatant of the peritoneal exudate and processed IL-33 in the supernatant of the peritoneal exudate or cytoplasmic supernatant of the peritoneal cell lysate of WT Natterin-injected mice were several folds higher than those of the control mice. The recruitment of neutrophils to peritoneal cavity 2 h post-Natterin injection was intensely impaired in ifnar KO mice and partially in il-28r KO mice, but not in ifnγr KO mice. Finally, using cgas KO, sting KO, or irf3 KO mice we found that recruitment of neutrophils to peritoneal cavities was virtually abolished in response to Natterin. These findings reveal cytosolic DNA sensors as critical regulators for Natterin-induced neutrophilia.
Collapse
Affiliation(s)
- Carla Lima
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CETICs/FAPESP), Butantan Institute, Vital Brazil Avenue, São Paulo 05503-009, Brazil; (A.I.A.-B.); (J.T.G.B.); (M.L.-F.)
- Correspondence:
| | - Aline Ingrid Andrade-Barros
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CETICs/FAPESP), Butantan Institute, Vital Brazil Avenue, São Paulo 05503-009, Brazil; (A.I.A.-B.); (J.T.G.B.); (M.L.-F.)
| | - Jefferson Thiago Gonçalves Bernardo
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CETICs/FAPESP), Butantan Institute, Vital Brazil Avenue, São Paulo 05503-009, Brazil; (A.I.A.-B.); (J.T.G.B.); (M.L.-F.)
| | - Eniko Balogh
- MTA-DE Lendület Vascular Pathophysiology Research Group, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, 4027 Debrecen, Hungary;
| | - Valerie F. Quesniaux
- Molecular and Experimental Immunology and Neurogenetics (INEM), UMR7355, CNRS and University of Orléans, 45071 Orléans, France; (V.F.Q.); (B.R.)
| | - Bernhard Ryffel
- Molecular and Experimental Immunology and Neurogenetics (INEM), UMR7355, CNRS and University of Orléans, 45071 Orléans, France; (V.F.Q.); (B.R.)
| | - Monica Lopes-Ferreira
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CETICs/FAPESP), Butantan Institute, Vital Brazil Avenue, São Paulo 05503-009, Brazil; (A.I.A.-B.); (J.T.G.B.); (M.L.-F.)
| |
Collapse
|
8
|
Paredes F, Williams HC, San Martin A. Metabolic adaptation in hypoxia and cancer. Cancer Lett 2021; 502:133-142. [PMID: 33444690 PMCID: PMC8158653 DOI: 10.1016/j.canlet.2020.12.020] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 12/17/2022]
Abstract
The ability of tumor cells to adapt to changes in oxygen tension is essential for tumor development. Low oxygen concentration influences cellular metabolism and, thus, affects proliferation, migration, and invasion. A focal point of the cell's adaptation to hypoxia is the transcription factor HIF1α (hypoxia-inducible factor 1 alpha), which affects the expression of specific gene networks involved in cellular energetics and metabolism. This review illustrates the mechanisms by which HIF1α-induced metabolic adaptation promotes angiogenesis, participates in the escape from immune recognition, and increases cancer cell antioxidant capacity. In addition to hypoxia, metabolic inhibition of 2-oxoglutarate-dependent dioxygenases regulates HIF1α stability and transcriptional activity. This phenomenon, known as pseudohypoxia, is frequently used by cancer cells to promote glycolytic metabolism to support biomass synthesis for cell growth and proliferation. In this review, we highlight the role of the most important metabolic intermediaries that are at the center of cancer's biology, and in particular, the participation of these metabolites in HIF1α retrograde signaling during the establishment of pseudohypoxia. Finally, we will discuss how these changes affect both the development of cancers and their resistance to treatment.
Collapse
Affiliation(s)
- Felipe Paredes
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA, 30322, USA
| | - Holly C Williams
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA, 30322, USA
| | - Alejandra San Martin
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
9
|
Dowling JK, Afzal R, Gearing LJ, Cervantes-Silva MP, Annett S, Davis GM, De Santi C, Assmann N, Dettmer K, Gough DJ, Bantug GR, Hamid FI, Nally FK, Duffy CP, Gorman AL, Liddicoat AM, Lavelle EC, Hess C, Oefner PJ, Finlay DK, Davey GP, Robson T, Curtis AM, Hertzog PJ, Williams BRG, McCoy CE. Mitochondrial arginase-2 is essential for IL-10 metabolic reprogramming of inflammatory macrophages. Nat Commun 2021; 12:1460. [PMID: 33674584 PMCID: PMC7936006 DOI: 10.1038/s41467-021-21617-2] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 01/29/2021] [Indexed: 01/31/2023] Open
Abstract
Mitochondria are important regulators of macrophage polarisation. Here, we show that arginase-2 (Arg2) is a microRNA-155 (miR-155) and interleukin-10 (IL-10) regulated protein localized at the mitochondria in inflammatory macrophages, and is critical for IL-10-induced modulation of mitochondrial dynamics and oxidative respiration. Mechanistically, the catalytic activity and presence of Arg2 at the mitochondria is crucial for oxidative phosphorylation. We further show that Arg2 mediates this process by increasing the activity of complex II (succinate dehydrogenase). Moreover, Arg2 is essential for IL-10-mediated downregulation of the inflammatory mediators succinate, hypoxia inducible factor 1α (HIF-1α) and IL-1β in vitro. Accordingly, HIF-1α and IL-1β are highly expressed in an LPS-induced in vivo model of acute inflammation using Arg2-/- mice. These findings shed light on a new arm of IL-10-mediated metabolic regulation, working to resolve the inflammatory status of the cell.
Collapse
Affiliation(s)
- Jennifer K Dowling
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- FutureNeuro, SFI Research Centre, Dublin 2, Ireland
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
| | - Remsha Afzal
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Linden J Gearing
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
| | - Mariana P Cervantes-Silva
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Stephanie Annett
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Gavin M Davis
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Chiara De Santi
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Nadine Assmann
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
- Immunobiology Laboratory, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Katja Dettmer
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Daniel J Gough
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Glenn R Bantug
- Immunobiology Laboratory, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
- Cambridge Institute of Therapeutic Immunology & Infectious Disease, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Fidinny I Hamid
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Frances K Nally
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Conor P Duffy
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Aoife L Gorman
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Alex M Liddicoat
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Ed C Lavelle
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Christoph Hess
- Immunobiology Laboratory, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
- Cambridge Institute of Therapeutic Immunology & Infectious Disease, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Peter J Oefner
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - David K Finlay
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Gavin P Davey
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Tracy Robson
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Annie M Curtis
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Paul J Hertzog
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
| | - Bryan R G Williams
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Claire E McCoy
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin 2, Ireland.
- FutureNeuro, SFI Research Centre, Dublin 2, Ireland.
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia.
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia.
| |
Collapse
|
10
|
ERGO2: A Prospective, Randomized Trial of Calorie-Restricted Ketogenic Diet and Fasting in Addition to Reirradiation for Malignant Glioma. Int J Radiat Oncol Biol Phys 2020; 108:987-995. [DOI: 10.1016/j.ijrobp.2020.06.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/05/2020] [Accepted: 06/12/2020] [Indexed: 01/07/2023]
|
11
|
Aguilar-López BA, Moreno-Altamirano MMB, Dockrell HM, Duchen MR, Sánchez-García FJ. Mitochondria: An Integrative Hub Coordinating Circadian Rhythms, Metabolism, the Microbiome, and Immunity. Front Cell Dev Biol 2020; 8:51. [PMID: 32117978 PMCID: PMC7025554 DOI: 10.3389/fcell.2020.00051] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 01/20/2020] [Indexed: 12/25/2022] Open
Abstract
There is currently some understanding of the mechanisms that underpin the interactions between circadian rhythmicity and immunity, metabolism and immune response, and circadian rhythmicity and metabolism. In addition, a wealth of studies have led to the conclusion that the commensal microbiota (mainly bacteria) within the intestine contributes to host homeostasis by regulating circadian rhythmicity, metabolism, and the immune system. Experimental studies on how these four biological domains interact with each other have mainly focused on any two of those domains at a time and only occasionally on three. However, a systematic analysis of how these four domains concurrently interact with each other seems to be missing. We have analyzed current evidence that signposts a role for mitochondria as a key hub that supports and integrates activity across all four domains, circadian clocks, metabolic pathways, the intestinal microbiota, and the immune system, coordinating their integration and crosstalk. This work will hopefully provide a new perspective for both hypothesis-building and more systematic experimental approaches.
Collapse
Affiliation(s)
- Bruno A Aguilar-López
- Laboratorio de Inmunorregulación, Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | | | - Hazel M Dockrell
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Michael R Duchen
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Francisco Javier Sánchez-García
- Laboratorio de Inmunorregulación, Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
12
|
Sorokin A, Shurkhay V, Pekov S, Zhvansky E, Ivanov D, Kulikov EE, Popov I, Potapov A, Nikolaev E. Untangling the Metabolic Reprogramming in Brain Cancer: Discovering Key Molecular Players Using Mass Spectrometry. Curr Top Med Chem 2019; 19:1521-1534. [PMID: 31362676 DOI: 10.2174/1568026619666190729154543] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 07/16/2019] [Accepted: 07/18/2019] [Indexed: 12/11/2022]
Abstract
Cells metabolism alteration is the new hallmark of cancer, as well as an important method for carcinogenesis investigation. It is well known that the malignant cells switch to aerobic glycolysis pathway occurring also in healthy proliferating cells. Recently, it was shown that in malignant cells de novo synthesis of the intracellular fatty acid replaces dietary fatty acids which change the lipid composition of cancer cells noticeably. These alterations in energy metabolism and structural lipid production explain the high proliferation rate of malignant tissues. However, metabolic reprogramming affects not only lipid metabolism but many of the metabolic pathways in the cell. 2-hydroxyglutarate was considered as cancer cell biomarker and its presence is associated with oxidative stress influencing the mitochondria functions. Among the variety of metabolite detection methods, mass spectrometry stands out as the most effective method for simultaneous identification and quantification of the metabolites. As the metabolic reprogramming is tightly connected with epigenetics and signaling modifications, the evaluation of metabolite alterations in cells is a promising approach to investigate the carcinogenesis which is necessary for improving current diagnostic capabilities and therapeutic capabilities. In this paper, we overview recent studies on metabolic alteration and oncometabolites, especially concerning brain cancer and mass spectrometry approaches which are now in use for the investigation of the metabolic pathway.
Collapse
Affiliation(s)
- Anatoly Sorokin
- Laboratory of Ion and Molecular Physics, Moscow Institute of Physics and Technology, Dolgoprudnyi, Russian Federation
| | - Vsevolod Shurkhay
- Federal State Autonomous Institution, N.N. Burdenko National Scientific and Practical Center for Neurosurgery of the Ministry of Healthcare of the Russian Feaderation, Moscow, Russian Federation
| | - Stanislav Pekov
- Laboratory of Ion and Molecular Physics, Moscow Institute of Physics and Technology, Dolgoprudnyi, Russian Federation.,Institute for Energy Problems of Chemical Physics RAS, Moscow, Russian Federation
| | - Evgeny Zhvansky
- Laboratory of Ion and Molecular Physics, Moscow Institute of Physics and Technology, Dolgoprudnyi, Russian Federation.,Institute for Energy Problems of Chemical Physics RAS, Moscow, Russian Federation
| | - Daniil Ivanov
- Laboratory of Ion and Molecular Physics, Moscow Institute of Physics and Technology, Dolgoprudnyi, Russian Federation.,Emanuel Institute of Biochemical Physics RAS, Moscow, Russian Federation
| | - Eugene E Kulikov
- Department of Molecular and Biological Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russian Federation.,Federal Research Center "Fundamentals of biotechnology", Russian Academy of Sciences, Moscow, Russian Federation
| | - Igor Popov
- Laboratory of Ion and Molecular Physics, Moscow Institute of Physics and Technology, Dolgoprudnyi, Russian Federation.,Institute for Energy Problems of Chemical Physics RAS, Moscow, Russian Federation
| | - Alexander Potapov
- Federal State Autonomous Institution, N.N. Burdenko National Scientific and Practical Center for Neurosurgery of the Ministry of Healthcare of the Russian Feaderation, Moscow, Russian Federation
| | - Eugene Nikolaev
- Institute for Energy Problems of Chemical Physics RAS, Moscow, Russian Federation.,Skolkovo Institute of Science and Technology, Skolkovo, Russian Federation
| |
Collapse
|
13
|
Shen J, Wang C, Ying J, Xu T, McAlinden A, O’Keefe RJ. Inhibition of 4-aminobutyrate aminotransferase protects against injury-induced osteoarthritis in mice. JCI Insight 2019; 4:128568. [PMID: 31534049 PMCID: PMC6795381 DOI: 10.1172/jci.insight.128568] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 08/08/2019] [Indexed: 11/17/2022] Open
Abstract
Recently we demonstrated that ablation of the DNA methyltransferase enzyme, Dnmt3b, resulted in catabolism and progression of osteoarthritis (OA) in murine articular cartilage through a mechanism involving increased mitochondrial respiration. In this study, we identify 4-aminobutyrate aminotransferase (Abat) as a downstream target of Dnmt3b. Abat is an enzyme that metabolizes γ-aminobutyric acid to succinate, a key intermediate in the tricarboxylic acid cycle. We show that Dnmt3b binds to the Abat promoter, increases methylation of a conserved CpG sequence just upstream of the transcriptional start site, and inhibits Abat expression. Dnmt3b deletion in articular chondrocytes results in reduced methylation of the CpG sequence in the Abat promoter, which subsequently increases expression of Abat. Increased Abat expression in chondrocytes leads to enhanced mitochondrial respiration and elevated expression of catabolic genes. Overexpression of Abat in murine knee joints via lentiviral injection results in accelerated cartilage degradation following surgical induction of OA. In contrast, lentiviral-based knockdown of Abat attenuates the expression of IL-1β-induced catabolic genes in primary murine articular chondrocytes in vitro and also protects against murine articular cartilage degradation in vivo. Strikingly, treatment with the FDA-approved small-molecule Abat inhibitor, vigabatrin, significantly prevents the development of injury-induced OA in mice. In summary, these studies establish Abat as an important new target for therapies to prevent OA.
Collapse
MESH Headings
- 4-Aminobutyrate Transaminase/antagonists & inhibitors
- 4-Aminobutyrate Transaminase/genetics
- 4-Aminobutyrate Transaminase/metabolism
- Animals
- Cartilage, Articular/cytology
- Cartilage, Articular/drug effects
- Cartilage, Articular/injuries
- Cartilage, Articular/pathology
- Cells, Cultured
- Chondrocytes/cytology
- Chondrocytes/drug effects
- Chondrocytes/immunology
- Chondrocytes/pathology
- CpG Islands/genetics
- DNA (Cytosine-5-)-Methyltransferases/metabolism
- DNA Methylation/genetics
- Disease Models, Animal
- Gene Knockdown Techniques
- Humans
- Interleukin-1beta/immunology
- Interleukin-1beta/metabolism
- Male
- Mice
- Mitochondria/metabolism
- Osteoarthritis, Knee/drug therapy
- Osteoarthritis, Knee/etiology
- Osteoarthritis, Knee/pathology
- Oxidative Phosphorylation/drug effects
- Primary Cell Culture
- Promoter Regions, Genetic/genetics
- Transcription Initiation Site
- Transcription, Genetic
- Vigabatrin/pharmacology
- Vigabatrin/therapeutic use
- DNA Methyltransferase 3B
Collapse
Affiliation(s)
- Jie Shen
- Department of Orthopaedic Surgery, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Cuicui Wang
- Department of Orthopaedic Surgery, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Jun Ying
- Department of Orthopaedic Surgery, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Taotao Xu
- Department of Orthopaedic Surgery, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Audrey McAlinden
- Department of Orthopaedic Surgery, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Cell Biology and Physiology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Regis J. O’Keefe
- Department of Orthopaedic Surgery, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
14
|
McGarry T, Biniecka M, Veale DJ, Fearon U. Hypoxia, oxidative stress and inflammation. Free Radic Biol Med 2018; 125:15-24. [PMID: 29601945 DOI: 10.1016/j.freeradbiomed.2018.03.042] [Citation(s) in RCA: 339] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/20/2018] [Accepted: 03/24/2018] [Indexed: 12/20/2022]
Abstract
Inflammatory Arthritis is characterized by synovial proliferation, neovascularization and leukocyte extravasation leading to joint destruction and functional disability. Efficiency of oxygen supply to the synovium is poor due to the highly dysregulated synovial microvasculature. This along with the increased energy demands of activated infiltrating immune cells and inflamed resident cells leads to an hypoxic microenvironment and mitochondrial dysfunction. This favors an increase of reactive oxygen species, leading to oxidative damage which further promotes inflammation. In this adverse microenvironment synovial cells adapt to generate energy and switch their cell metabolism from a resting regulatory state to a highly metabolically active state which allows them to produce essential building blocks to support their proliferation. This metabolic shift results in the accumulation of metabolic intermediates which act as signaling molecules that further dictate the inflammatory response. Understanding the complex interplay between hypoxia-induced signaling pathways, oxidative stress and mitochondrial function will provide better insight into the underlying mechanisms of disease pathogenesis.
Collapse
Affiliation(s)
- Trudy McGarry
- The Department of Molecular Rheumatology, Trinity College Dublin, Ireland
| | - Monika Biniecka
- The Centre for Arthritis and Rheumatic Disease, Dublin Academic Medical Centre, St. Vincent's University Hospital, Elm Park, Dublin 4, Ireland
| | - Douglas J Veale
- The Centre for Arthritis and Rheumatic Disease, Dublin Academic Medical Centre, St. Vincent's University Hospital, Elm Park, Dublin 4, Ireland
| | - Ursula Fearon
- The Department of Molecular Rheumatology, Trinity College Dublin, Ireland.
| |
Collapse
|
15
|
Voss M, Lorenz NI, Luger AL, Steinbach JP, Rieger J, Ronellenfitsch MW. Rescue of 2-Deoxyglucose Side Effects by Ketogenic Diet. Int J Mol Sci 2018; 19:E2462. [PMID: 30127309 PMCID: PMC6121440 DOI: 10.3390/ijms19082462] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 08/13/2018] [Accepted: 08/15/2018] [Indexed: 01/15/2023] Open
Abstract
Cancer metabolism is characterized by extensive glucose consumption through aerobic glycolysis. No effective therapy exploiting this cancer trait has emerged so far, in part, due to the substantial side effects of the investigated drugs. In this study, we examined the side effects of a combination of isocaloric ketogenic diet (KD) with the glycolysis inhibitor 2-deoxyglucose (2-DG). Two groups of eight athymic nude mice were either fed a standard diet (SD) or a caloric unrestricted KD with a ratio of 4 g fat to 1 g protein/carbohydrate. 2-DG was investigated in commonly employed doses of 0.5 to 4 g/kg and up to 8 g/kg. Ketosis was achieved under KD (ketone bodies: SD 0.5 ± 0.14 mmol/L, KD 1.38 ± 0.28 mmol/L, p < 0.01). The intraperitoneal application of 4 g/kg of 2-DG caused a significant increase in blood glucose, which was not prevented by KD. Sedation after the 2-DG treatment was observed and a behavioral test of spontaneous motion showed that KD reduced the sedation by 2-DG (p < 0.001). A 2-DG dose escalation to 8 g/kg was lethal for 50% of the mice in the SD and for 0% of the mice in the KD group (p < 0.01). A long-term combination of KD and an oral 1 or 2 g 2-DG/kg was well-tolerated. In conclusion, KD reduces the sedative effects of 2-DG and dramatically increases the maximum tolerated dose of 2-DG. A continued combination of KD and anti-glycolytic therapy is feasible. This is, to our knowledge, the first demonstration of increased tolerance to glycolysis inhibition by KD.
Collapse
Affiliation(s)
- Martin Voss
- Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Goethe University, Schleusenweg 2-16, 60528 Frankfurt am Main, Germany.
- University Cancer Center Frankfurt (UCT), University Hospital Frankfurt, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.
| | - Nadja I Lorenz
- Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Goethe University, Schleusenweg 2-16, 60528 Frankfurt am Main, Germany.
- University Cancer Center Frankfurt (UCT), University Hospital Frankfurt, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.
| | - Anna-Luisa Luger
- Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Goethe University, Schleusenweg 2-16, 60528 Frankfurt am Main, Germany.
- University Cancer Center Frankfurt (UCT), University Hospital Frankfurt, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.
| | - Joachim P Steinbach
- Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Goethe University, Schleusenweg 2-16, 60528 Frankfurt am Main, Germany.
- University Cancer Center Frankfurt (UCT), University Hospital Frankfurt, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.
- LOEWE Center for Personalized Translational Epilepsy Research (CePTER), University Hospital Frankfurt, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.
| | - Johannes Rieger
- Interdisciplinary Division of Neuro-Oncology, University Hospital Tübingen, Hoppe-Seyler-Straße 3, 72076 Tübingen, Germany.
| | - Michael W Ronellenfitsch
- Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Goethe University, Schleusenweg 2-16, 60528 Frankfurt am Main, Germany.
- University Cancer Center Frankfurt (UCT), University Hospital Frankfurt, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.
- LOEWE Center for Personalized Translational Epilepsy Research (CePTER), University Hospital Frankfurt, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.
| |
Collapse
|
16
|
Libby CJ, Tran AN, Scott SE, Griguer C, Hjelmeland AB. The pro-tumorigenic effects of metabolic alterations in glioblastoma including brain tumor initiating cells. Biochim Biophys Acta Rev Cancer 2018; 1869:175-188. [PMID: 29378228 PMCID: PMC6596418 DOI: 10.1016/j.bbcan.2018.01.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 01/20/2018] [Accepted: 01/20/2018] [Indexed: 02/06/2023]
Abstract
De-regulated cellular energetics is an emerging hallmark of cancer with alterations to glycolysis, oxidative phosphorylation, the pentose phosphate pathway, lipid oxidation and synthesis and amino acid metabolism. Understanding and targeting of metabolic reprogramming in cancers may yield new treatment options, but metabolic heterogeneity and plasticity complicate this strategy. One highly heterogeneous cancer for which current treatments ultimately fail is the deadly brain tumor glioblastoma. Therapeutic resistance, within glioblastoma and other solid tumors, is thought to be linked to subsets of tumor initiating cells, also known as cancer stem cells. Recent profiling of glioblastoma and brain tumor initiating cells reveals changes in metabolism, as compiled here, that may be more broadly applicable. We will summarize the profound role for metabolism in tumor progression and therapeutic resistance and discuss current approaches to target glioma metabolism to improve standard of care.
Collapse
Affiliation(s)
- Catherine J. Libby
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA 35294
| | - Anh Nhat Tran
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA 35294
| | - Sarah E. Scott
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA 35294
| | - Corinne Griguer
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama, USA 35294
| | - Anita B. Hjelmeland
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA 35294,, corresponding author, Anita Hjelmeland, Ph.D., Assistant Professor, University of Alabama at Birmingham, Department of Cell, Developmental, and Integrative Biology, 1900 University Blvd, THT 979, Birmingham Al 35294,
| |
Collapse
|
17
|
Dahlberg D, Struys EA, Jansen EE, Mørkrid L, Midttun Ø, Hassel B. Cyst Fluid From Cystic, Malignant Brain Tumors: A Reservoir of Nutrients, Including Growth Factor-Like Nutrients, for Tumor Cells. Neurosurgery 2018; 80:917-924. [PMID: 28327992 DOI: 10.1093/neuros/nyw101] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 01/01/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Brain tumors may have cysts, whose content of nutrients could influence tumor cell microenvironment and growth. OBJECTIVE To measure nutrients in cyst fluid from glioblastoma multiforme (GBM) and metastatic brain tumors. METHODS Quantification of nutrients in cyst fluid from 12 to 18 GBMs and 4 to 10 metastatic brain tumors. RESULTS GBM cysts contained glucose at 2.2 mmol/L (median value; range <0.8-3.5) and glutamine at 1.04 mmol/L (0.17-4.2). Lactate was 7.1 mmol/L (2.4-12.5) and correlated inversely with glucose level (r = -0.77; P < .001). Amino acids, including glutamate, varied greatly, but median values were similar to previously published serum values. Ammonia was 75 μmol/L (11-241). B vitamins were present at previously published serum values, and riboflavin, nicotinamide, pyridoxal 5΄-phosphate, and cobalamin were higher in cyst fluid than in cerebrospinal fluid. Inorganic phosphate was 1.25 mmol/L (0.34-3.44), which was >3 times higher than in ventricular cerebrospinal fluid: 0.35 mmol/L (0.22-0.66; P < .001). Tricarboxylic acid cycle intermediates were in the low micromolar range, except for citrate, which was 240 μmol/L (140-590). In cystic metastatic malignant melanomas and lung tumors values were similar to those in GBMs. CONCLUSION Tumor cysts may be a nutrient reservoir for brain tumors, securing tumor energy metabolism and synthesis of cell constituents. Serum is one likely source of cyst fluid nutrients. Nutrient levels in tumor cyst fluid are highly variable, which could differentially stimulate tumor growth. Cyst fluid glutamate, lactate, and phosphate may act as tumor growth factors; these compounds have previously been shown to stimulate tumor growth at concentrations found in tumor cyst fluid.
Collapse
Affiliation(s)
- Daniel Dahlberg
- Department of Neurosurgery, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Eduard A Struys
- Metabolic Unit, Clinical Chemistry, VUmc Medical Center, HV Amsterdam, The Netherlands
| | - Erwin E Jansen
- Metabolic Unit, Clinical Chemistry, VUmc Medical Center, HV Amsterdam, The Netherlands
| | - Lars Mørkrid
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | | | - Bjørnar Hassel
- Department of Complex Neurology and Neurohabilitation, Oslo University Hospital and University of Oslo, Oslo, Norway.,Norwegian Defence Research Establishment (FFI), Division for Protection, Kjeller, Norway
| |
Collapse
|
18
|
Vasin MV, Ushakov IB, Bukhtiyarov IV. Stress Reaction and Biochemical Shock as Interrelated and Unavoidable Components in the Formation of High Radioresistance of the Body in Acute Hypoxia. BIOL BULL+ 2018. [DOI: 10.1134/s1062359017060115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Effects of monobutyrin and tributyrin on liver lipid profile, caecal microbiota composition and SCFA in high-fat diet-fed rats. J Nutr Sci 2017; 6:e51. [PMID: 29152255 PMCID: PMC5672331 DOI: 10.1017/jns.2017.54] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/11/2017] [Accepted: 08/02/2017] [Indexed: 01/05/2023] Open
Abstract
Butyric acid has been shown to have suppressive effects on inflammation and diseases related to the intestinal tract. The aim of the present study was to investigate whether supplementation of two glycerol esters, monobutyrin (MB) and tributyrin (TB), would reach the hindgut of rats, thus having an effect on the caecal profile of SCFA, microbiota composition and some risk markers associated with chronic inflammation. For this purpose, rats were fed high-fat diets after adding MB (1 and 5 g/kg) and TB (5 g/kg) to a diet without any supplementation (high-fat control; HFC). A low-fat (LF) diet was also included. In the liver, total cholesterol concentrations, LDL-cholesterol concentrations, LDL:HDL ratio, and succinic acid concentrations were reduced in rats given the MB and TB (5 g/kg) diets, compared with the group fed the HFC diet. These effects were more pronounced in MB than TB groups as also expressed by down-regulation of the gene Cyp8b1. The composition of the caecal microbiota in rats fed MB and TB was separated from the group fed the HFC diet, and also the LF diet, as evidenced by the absence of the phylum TM7 and reduced abundance of the genera Dorea (similar to LF-fed rats) and rc4-4. Notably, the caecal abundance of Mucispirillum was markedly increased in the MB group compared with the HFC group. The results suggest that dietary supplementation of MB and TB can be used to counteract disturbances associated with a HFC diet, by altering the gut microbiota, and decreasing liver lipids and succinic acid concentrations.
Collapse
|
20
|
Eyassu F, Angione C. Modelling pyruvate dehydrogenase under hypoxia and its role in cancer metabolism. ROYAL SOCIETY OPEN SCIENCE 2017; 4:170360. [PMID: 29134060 PMCID: PMC5666243 DOI: 10.1098/rsos.170360] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 09/25/2017] [Indexed: 05/18/2023]
Abstract
Metabolism is the only biological system that can be fully modelled at genome scale. As a result, metabolic models have been increasingly used to study the molecular mechanisms of various diseases. Hypoxia, a low-oxygen tension, is a well-known characteristic of many cancer cells. Pyruvate dehydrogenase (PDH) controls the flux of metabolites between glycolysis and the tricarboxylic acid cycle and is a key enzyme in metabolic reprogramming in cancer metabolism. Here, we develop and manually curate a constraint-based metabolic model to investigate the mechanism of pyruvate dehydrogenase under hypoxia. Our results characterize the activity of pyruvate dehydrogenase and its decline during hypoxia. This results in lactate accumulation, consistent with recent hypoxia studies and a well-known feature in cancer metabolism. We apply machine-learning techniques on the flux datasets to identify reactions that drive these variations. We also identify distinct features on the structure of the variables and individual metabolic components in the switch from normoxia to hypoxia. Our results provide a framework for future studies by integrating multi-omics data to predict condition-specific metabolic phenotypes under hypoxia.
Collapse
|
21
|
Abstract
Glioblastoma multiforme (GBM) are extremely lethal and still poorly treated primary brain tumors, characterized by the presence of highly tumorigenic cancer stem cell (CSC) subpopulations, considered responsible for tumor relapse. In order to successfully eradicate GBM growth and recurrence, new anti-cancer strategies selectively targeting CSCs should be designed. CSCs might be eradicated by targeting some of their cell surface markers and transporters, inducing their differentiation, impacting their hyper-glycolytic metabolism, inhibiting CSC-related signaling pathways and/or by targeting their microenvironmental niche. In this regard, phytocompounds such as curcumin, isothiocyanates, resveratrol and epigallocatechin-3-gallate have been shown to prevent or reverse cancer-related epigenetic dysfunctions, reducing tumorigenesis, preventing metastasis and/or increasing chemotherapy and radiotherapy efficacy. However, the actual bioavailability and metabolic processing of phytocompounds is generally unknown, and the presence of the blood brain barrier often represents a limitation to glioma treatments. Nowadays, nanoparticles (NPs) can be loaded with therapeutic compounds such as phytochemicals, improving their bioavailability and their targeted delivery within the GBM tumor bulk. Moreover, NPs can be designed to increase their tropism and specificity toward CSCs by conjugating their surface with antibodies specific for CSC antigens, with ligands or with glucose analogues. Here we discuss the use of phytochemicals as anti-glioma agents and the applicability of phytochemical-loaded NPs as drug delivery systems to target GBM. Additionally, we provide some examples on how NPs can be specifically formulated to improve CSC targeting.
Collapse
|
22
|
Li Y, Zheng JY, Liu JQ, Yang J, Liu Y, Wang C, Ma XN, Liu BL, Xin GZ, Liu LF. Succinate/NLRP3 Inflammasome Induces Synovial Fibroblast Activation: Therapeutical Effects of Clematichinenoside AR on Arthritis. Front Immunol 2016; 7:532. [PMID: 28003810 PMCID: PMC5141240 DOI: 10.3389/fimmu.2016.00532] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 11/11/2016] [Indexed: 12/22/2022] Open
Abstract
Clematichinenoside AR (C-AR) is a triterpene saponin isolated from the root of Clematis manshurica Rupr., which is a herbal medicine used in traditional Chinese medicine for the treatment of arthritis. C-AR exerts anti-inflammatory and immunosuppressive properties, but little is known about its action in the suppression of fibroblast activation. Low oxygen tension and transforming growth factor-β (TGF-β1) induction in the synovium contribute to fibrosis in arthritis. This study was designed to investigate the effect of C-AR on synovial fibrosis from the aspects of hypoxic TGF-β1 and hypoxia-inducible transcription factor-1α (HIF-1α) induction. In the synovium of rheumatoid arthritis (RA) rats, hypoxic TGF-β1 induction increased succinate accumulation due to the reversal of succinate dehydrogenase (SDH) activation and induced NLRP3 inflammasome activation in a manner dependent on HIF-1α induction. In response to NLRP3 inflammasome activation, the released IL-1β further increased TGF-β1 induction, suggesting the forward cycle between inflammation and fibrosis in myofibroblast activation. In the synovium of RA rats, C-AR inhibited hypoxic TGF-β1 induction and suppressed succinate-associated NLRP3 inflammasome activation by inhibiting SDH activity, and thereby prevented myofibroblast activation by blocking the cross-talk between inflammation and fibrosis. Taken together, these results showed that succinate worked as a metabolic signaling, linking inflammation with fibrosis through NLRP3 inflammasome activation. These findings suggested that synovial succinate accumulation and HIF-1α induction might be therapeutical targets for the prevention of fibrosis in arthritis.
Collapse
Affiliation(s)
- Yi Li
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, China Pharmaceutical University , Nanjing , China
| | - Jia-Yi Zheng
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, China Pharmaceutical University , Nanjing , China
| | - Jian-Qun Liu
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine , Nanchang , China
| | - Jie Yang
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, China Pharmaceutical University , Nanjing , China
| | - Yang Liu
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, China Pharmaceutical University , Nanjing , China
| | - Chen Wang
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, China Pharmaceutical University , Nanjing , China
| | - Xiao-Nan Ma
- Cellular and Molecular Biology Center of China Pharmaceutical University , Nanjing , China
| | - Bao-Lin Liu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University , Nanjing , China
| | - Gui-Zhong Xin
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, China Pharmaceutical University , Nanjing , China
| | - Li-Fang Liu
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, China Pharmaceutical University , Nanjing , China
| |
Collapse
|
23
|
Garcia-Heredia JM, Carnero A. Decoding Warburg's hypothesis: tumor-related mutations in the mitochondrial respiratory chain. Oncotarget 2016; 6:41582-99. [PMID: 26462158 PMCID: PMC4747175 DOI: 10.18632/oncotarget.6057] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 09/23/2015] [Indexed: 01/13/2023] Open
Abstract
Otto Warburg observed that cancer cells derived their energy from aerobic glycolysis by converting glucose to lactate. This mechanism is in opposition to the higher energy requirements of cancer cells because oxidative phosphorylation (OxPhos) produces more ATP from glucose. Warburg hypothesized that this phenomenon occurs due to the malfunction of mitochondria in cancer cells. The rediscovery of Warburg's hypothesis coincided with the discovery of mitochondrial tumor suppressor genes that may conform to Warburg's hypothesis along with the demonstrated negative impact of HIF-1 on PDH activity and the activation of HIF-1 by oncogenic signals such as activated AKT. This work summarizes the alterations in mitochondrial respiratory chain proteins that have been identified and their involvement in cancer. Also discussed is the fact that most of the mitochondrial mutations have been found in homoplasmy, indicating a positive selection during tumor evolution, thereby supporting their causal role.
Collapse
Affiliation(s)
- Jose M Garcia-Heredia
- Instituto de Biomedicina de Sevilla (IBIS), HUVR/CSIC/Universidad de Sevilla, Sevilla, Spain.,Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Biología, Sevilla, Spain
| | - Amancio Carnero
- Instituto de Biomedicina de Sevilla (IBIS), HUVR/CSIC/Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
24
|
Yuen CA, Asuthkar S, Guda MR, Tsung AJ, Velpula KK. Cancer stem cell molecular reprogramming of the Warburg effect in glioblastomas: a new target gleaned from an old concept. CNS Oncol 2016; 5:101-8. [PMID: 26997129 DOI: 10.2217/cns-2015-0006] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Prior targeted treatment for glioblastoma multiforme (GBM) with anti-angiogenic agents, such as bevacizumab, has been met with limited success potentially owing to GBM tumor's ability to develop a hypoxia-induced escape mechanism--a glycolytic switch from oxidative phosphorylation to glycolysis, an old concept known as the Warburg effect. New studies points to a subpopulation of cells as a source for treatment-resistance, cancer stem cells (CSCs). Taken together, the induction of the Warburg effect leads to the promotion of CSC self-renewal and undifferentiation. In response to hypoxia, hypoxia-inducible transcription factor is upregulated and is the central driver in setting off the cascade of events in CSC metabolic reprogramming. Hypoxia-inducible transcription factor upregulates GLUT1 to increase glucose uptake into the cell, upregulates HK2 and PK during glycolysis, upregulates LDHA in the termination of glycolysis, and downregulates PDH to redirect energy production toward glycolysis. This review aims to unite these old and new concepts simultaneously and examine potential enzyme targets driven by hypoxia in the glycolytic phenotype of CSCs to reverse the metabolic shift induced by the Warburg effect.
Collapse
Affiliation(s)
- Carlen A Yuen
- Departments of Cancer Biology & Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL 61605, USA
| | - Swapna Asuthkar
- Departments of Cancer Biology & Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL 61605, USA
| | - Maheedhara R Guda
- Departments of Cancer Biology & Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL 61605, USA
| | - Andrew J Tsung
- Departments of Cancer Biology & Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL 61605, USA.,Department of Neurosurgery, University of Illinois College of Medicine, Peoria, IL 61605, USA.,Illinois Neurological Institute, Peoria, IL 61605, USA
| | - Kiran K Velpula
- Departments of Cancer Biology & Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL 61605, USA.,Department of Neurosurgery, University of Illinois College of Medicine, Peoria, IL 61605, USA
| |
Collapse
|
25
|
Karsy M, Guan J, Jensen R, Huang LE, Colman H. The Impact of Hypoxia and Mesenchymal Transition on Glioblastoma Pathogenesis and Cancer Stem Cells Regulation. World Neurosurg 2015; 88:222-236. [PMID: 26724617 DOI: 10.1016/j.wneu.2015.12.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 12/01/2015] [Accepted: 12/01/2015] [Indexed: 12/13/2022]
Abstract
Glioblastoma (GBM) is an aggressive primary brain tumor with potential for wide dissemination and resistance to standard treatments. Although GBM represents a single histopathologic diagnosis under current World Health Organization criteria, data from multiplatform molecular profiling efforts, including The Cancer Genome Atlas, indicate that multiple subgroups with distinct markers and biology exist. It remains unclear whether treatment resistance differs based on subgroup. Recent evidence suggests that hypoxia, or absence of normal tissue oxygenation, is important in generating tumor resistance through a signaling cascade driven by hypoxia-inducible factors and vascular endothelial growth factor. Hypoxia can result in isolation of tumor cells from therapeutic agents and activation of downstream tumor protective mechanisms. In addition, there are links between hypoxia and the phenomenon of mesenchymal transition in gliomas. Mesenchymal transformation in gliomas resembles at many levels the epithelial-mesenchymal transition that has been described in other solid tumors in which epithelial cells lose their epithelial characteristics and take on a more mesenchymal phenotype, but the mesenchymal transition in brain tumors is also distinct, perhaps related to the unique cell types and cellular organization in the brain and brain tumors. Cancer stem cells, which are specific cell populations involved in self-renewal, differentiation, and GBM pathophysiology, are also importantly regulated by hypoxia signaling pathways. In this review, we discuss the interplay of hypoxia and mesenchymal signaling in GBM including the key pathway regulators and downstream genes, the effect of these processes in regulation of the tumor microenvironment and cancer stem cells, and their role in treatment resistance.
Collapse
Affiliation(s)
- Michael Karsy
- Department of Neurosurgery, Clinical Neurosciences Center, Salt Lake City, Utah, USA
| | - Jian Guan
- Department of Neurosurgery, Clinical Neurosciences Center, Salt Lake City, Utah, USA
| | - Randy Jensen
- Department of Neurosurgery, Clinical Neurosciences Center, Salt Lake City, Utah, USA; Huntsman Cancer Institute, Salt Lake City, Utah, USA
| | - L Eric Huang
- Department of Neurosurgery, Clinical Neurosciences Center, Salt Lake City, Utah, USA; Department of Oncological Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Howard Colman
- Department of Neurosurgery, Clinical Neurosciences Center, Salt Lake City, Utah, USA; Huntsman Cancer Institute, Salt Lake City, Utah, USA.
| |
Collapse
|
26
|
Bhowmick R, Subramanian A, Sarkar RR. Exploring the differences in metabolic behavior of astrocyte and glioblastoma: a flux balance analysis approach. SYSTEMS AND SYNTHETIC BIOLOGY 2015; 9:159-177. [PMID: 28392849 DOI: 10.1007/s11693-015-9183-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 09/08/2015] [Accepted: 10/05/2015] [Indexed: 12/21/2022]
Abstract
Brain cancers demonstrate a complex metabolic behavior so as to adapt the external hypoxic environment and internal stress generated by reactive oxygen species. To survive in these stringent conditions, glioblastoma cells develop an antagonistic metabolic phenotype as compared to their predecessors, the astrocytes, thereby quenching the resources expected for nourishing the neurons. The complexity and cumulative effect of the large scale metabolic functioning of glioblastoma is mostly unexplored. In this study, we reconstruct a metabolic network comprising of pathways that are known to be deregulated in glioblastoma cells as compared to the astrocytes. The network, consisted of 147 genes encoding for enzymes performing 247 reactions distributed across five distinct model compartments, was then studied using constrained-based modeling approach by recreating the scenarios for astrocytes and glioblastoma, and validated with available experimental evidences. From our analysis, we predict that glycine requirement of the astrocytes are mostly fulfilled by the internal glycine-serine metabolism, whereas glioblastoma cells demand an external uptake of glycine to utilize it for glutathione production. Also, cystine and glucose were identified to be the major contributors to glioblastoma growth. We also proposed an extensive set of single and double lethal reaction knockouts, which were further perturbed to ascertain their role as probable chemotherapeutic targets. These simulation results suggested that, apart from targeting the reactions of central carbon metabolism, knockout of reactions belonging to the glycine-serine metabolism effectively reduce glioblastoma growth. The combinatorial targeting of glycine transporter with any other reaction belonging to glycine-serine metabolism proved lethal to glioblastoma growth.
Collapse
Affiliation(s)
- Rupa Bhowmick
- Chemical Engineering and Process Development, CSIR-National Chemical Laboratory, Pune, Maharashtra 411008 India
| | - Abhishek Subramanian
- Chemical Engineering and Process Development, CSIR-National Chemical Laboratory, Pune, Maharashtra 411008 India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-NCL Campus, Pune, 411008 India
| | - Ram Rup Sarkar
- Chemical Engineering and Process Development, CSIR-National Chemical Laboratory, Pune, Maharashtra 411008 India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-NCL Campus, Pune, 411008 India
| |
Collapse
|
27
|
Rodrigues AS, Correia M, Gomes A, Pereira SL, Perestrelo T, Sousa MI, Ramalho-Santos J. Dichloroacetate, the Pyruvate Dehydrogenase Complex and the Modulation of mESC Pluripotency. PLoS One 2015; 10:e0131663. [PMID: 26147621 PMCID: PMC4493017 DOI: 10.1371/journal.pone.0131663] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 06/05/2015] [Indexed: 02/06/2023] Open
Abstract
Introduction The pyruvate dehydrogenase (PDH) complex is localized in the mitochondrial matrix catalyzing the irreversible decarboxylation of pyruvate to acetyl-CoA and NADH. For proper complex regulation the E1-α subunit functions as an on/off switch regulated by phosphorylation/dephosphorylation. In different cell types one of the four-pyruvate dehydrogenase kinase isoforms (PDHK1-4) can phosphorylate this subunit leading to PDH inactivation. Our previous results with human Embryonic Stem Cells (hESC), suggested that PDHK could be a key regulator in the metabolic profile of pluripotent cells, as it is upregulated in pluripotent stem cells. Therefore, we wondered if metabolic modulation, via inexpensive pharmacological inhibition of PDHK, could impact metabolism and pluripotency. Methods/Results In order to assess the importance of the PDH cycle in mouse Embryonic Stem Cells (mESC), we incubated cells with the PDHK inhibitor dichloroacetate (DCA) and observed that in its presence ESC started to differentiate. Changes in mitochondrial function and proliferation potential were also found and protein levels for PDH (both phosphorylated and non-phosphorylated) and PDHK1 were monitored. Interestingly, we were also able to describe a possible pathway that involves Hif-1α and p53 during DCA-induced loss of pluripotency. Results with ESCs treated with DCA were comparable to those obtained for cells grown without Leukemia Inhibitor Factor (LIF), used in this case as a positive control for differentiation. Conclusions DCA negatively affects ESC pluripotency by changing cell metabolism and elements related to the PDH cycle, suggesting that PDHK could function as a possible metabolic gatekeeper in ESC, and may be a good target to modulate metabolism and differentiation. Although further molecular biology-based experiments are required, our data suggests that inactive PDH favors pluripotency and that ESC have similar strategies as cancer cells to maintain a glycolytic profile, by using some of the signaling pathways found in the latter cells.
Collapse
Affiliation(s)
- Ana Sofia Rodrigues
- PhD Programme in Experimental Biology and Biomedicine, CNC—Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Marcelo Correia
- PhD Programme in Experimental Biology and Biomedicine, CNC—Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
| | - Andreia Gomes
- PhD Programme in Experimental Biology and Biomedicine, CNC—Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
- Biocant—Center of Innovation in Biotechnology, Cantanhede, Portugal
| | - Sandro L. Pereira
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Tânia Perestrelo
- PhD Programme in Experimental Biology and Biomedicine, CNC—Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
| | - Maria Inês Sousa
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - João Ramalho-Santos
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Department of Life Sciences, University of Coimbra, Coimbra, Portugal
- * E-mail:
| |
Collapse
|
28
|
Marcondes MC, Fernandes ACS, Itabaiana I, de Souza ROMA, Sola-Penna M, Zancan P. Nanomicellar Formulation of Clotrimazole Improves Its Antitumor Action toward Human Breast Cancer Cells. PLoS One 2015; 10:e0130555. [PMID: 26098874 PMCID: PMC4476588 DOI: 10.1371/journal.pone.0130555] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 05/21/2015] [Indexed: 02/04/2023] Open
Abstract
Background Although demonstrated as a selective anticancer drug, the clinical use of clotrimazole (CTZ) is limited due to its low solubility in hydrophilic fluids. Thus, we prepared a water-soluble nanomicellar formulation of CTZ (nCTZ) and tested on the human breast cancer cell line MCF-7 biology. Methodology/Principal Findings CTZ was nanoencapsulated in tween 80 micelles, which generated nanomicelles of, approximately, 17 nm of diameter. MCF-7 cells were treated with nCTZ and unencapsulated DMSO-solubilized drug (sCTZ) was used for comparison. After treatment, the cells were evaluated in terms of metabolism, proliferation, survival and structure. We found that nCTZ was more efficient than sCTZ at inhibiting glycolytic and other cytosolic and mitochondrial enzymes. Moreover, this increased activity was also observed for lactate production, intracellular ATP content, ROS production and antioxidant potential. As a consequence, nCTZ-treated MCF-7 cells displayed alterations to the plasma membrane, mitochondria and the nucleus. Finally, nCTZ induced both apoptosis and necrosis in MCF-7 cells. Conclusions/Significance MCF-7 cells are more sensible to nCTZ than to sCTZ. This was especially evident on regard to antioxidant potential, which is an important cell defense against drugs that affect cell metabolism. Moreover, this water-soluble formulation of CTZ strengths its potential use as an anticancer medicine.
Collapse
Affiliation(s)
- Mariah C. Marcondes
- Laboratório de Oncobiologia Molecular (LabOMol), Departamento de Biotecnologia Farmacêutica (BioTecFar), Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Anne C. S. Fernandes
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Ivaldo Itabaiana
- Laboratório de Biocatálise e Síntese Orgânica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Rodrigo O. M. A. de Souza
- Laboratório de Biocatálise e Síntese Orgânica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Mauro Sola-Penna
- Laboratório de Enzimologia e Controle do Metabolismo (LabECoM), Departamento de Biotecnologia Farmacêutica (BioTecFar), Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Patricia Zancan
- Laboratório de Oncobiologia Molecular (LabOMol), Departamento de Biotecnologia Farmacêutica (BioTecFar), Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
- * E-mail:
| |
Collapse
|
29
|
Romagnoli R, Baraldi PG, Salvador MK, Prencipe F, Lopez-Cara C, Schiaffino Ortega S, Brancale A, Hamel E, Castagliuolo I, Mitola S, Ronca R, Bortolozzi R, Porcù E, Basso G, Viola G. Design, synthesis, in vitro, and in vivo anticancer and antiangiogenic activity of novel 3-arylaminobenzofuran derivatives targeting the colchicine site on tubulin. J Med Chem 2015; 58:3209-22. [PMID: 25785605 DOI: 10.1021/acs.jmedchem.5b00155] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A new series of compounds characterized by the presence of a 2-methoxy/ethoxycarbonyl group, combined with either no substituent or a methoxy group at each of the four possible positions of the benzene portion of the 3-(3',4',5'-trimethoxyanilino)benzo[b]furan skeleton, were evaluated for antiproliferative activity against cancer cells in culture and, for selected, highly active compounds, inhibition of tubulin polymerization, cell cycle effects, and in vivo potency. The greatest antiproliferative activity occurred with a methoxy group introduced at the C-6 position, the least with this substituent at C-4. Thus far, the most promising compound in this series was 2-methoxycarbonyl-3-(3',4',5'-trimethoxyanilino)-6-methoxybenzo[b]furan (3g), which inhibited cancer cell growth at nanomolar concentrations (IC50 values of 0.3-27 nM), bound to the colchicine site of tubulin, induced apoptosis, and showed, both in vitro and in vivo, potent vascular disrupting properties derived from the effect of this compound on vascular endothelial cells. Compound 3g had in vivo antitumor activity in a murine model comparable to the activity obtained with combretastatin A-4 phosphate.
Collapse
Affiliation(s)
- Romeo Romagnoli
- †Dipartimento di Scienze Farmaceutiche, Università di Ferrara, 44121 Ferrara, Italy
| | | | | | - Filippo Prencipe
- †Dipartimento di Scienze Farmaceutiche, Università di Ferrara, 44121 Ferrara, Italy
| | - Carlota Lopez-Cara
- ‡Departamento de Quimica Organica y Farmaceutica, Facultad de Farmacia, Universidad de Granada, Campus de Cartuja s/n, 18071, Granada, Spain
| | - Santiago Schiaffino Ortega
- ‡Departamento de Quimica Organica y Farmaceutica, Facultad de Farmacia, Universidad de Granada, Campus de Cartuja s/n, 18071, Granada, Spain
| | - Andrea Brancale
- §School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff, CF10 3NB, U.K
| | - Ernest Hamel
- ∥Screening Technologies Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| | | | - Stefania Mitola
- ⊥Dipartimento di Medicina Molecolare e Traslazionale, Unità di Oncologia Sperimentale ed Immunologia, Università di Brescia, 25121 Brescia, Italy
| | - Roberto Ronca
- ⊥Dipartimento di Medicina Molecolare e Traslazionale, Unità di Oncologia Sperimentale ed Immunologia, Università di Brescia, 25121 Brescia, Italy
| | - Roberta Bortolozzi
- ∞Dipartimento di Salute della Donna e del Bambino, Laboratorio di Oncoematologia, Università di Padova, 35131 Padova, Italy
| | - Elena Porcù
- ∞Dipartimento di Salute della Donna e del Bambino, Laboratorio di Oncoematologia, Università di Padova, 35131 Padova, Italy
| | - Giuseppe Basso
- ∞Dipartimento di Salute della Donna e del Bambino, Laboratorio di Oncoematologia, Università di Padova, 35131 Padova, Italy
| | - Giampietro Viola
- ∞Dipartimento di Salute della Donna e del Bambino, Laboratorio di Oncoematologia, Università di Padova, 35131 Padova, Italy
| |
Collapse
|
30
|
Hou X, Liu Y, Liu H, Chen X, Liu M, Che H, Guo F, Wang C, Zhang D, Wu J, Chen X, Shen C, Li C, Peng F, Bi Y, Yang Z, Yang G, Ai J, Gao X, Zhao S. PERK silence inhibits glioma cell growth under low glucose stress by blockage of p-AKT and subsequent HK2's mitochondria translocation. Sci Rep 2015; 5:9065. [PMID: 25761777 PMCID: PMC4356960 DOI: 10.1038/srep09065] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 02/09/2015] [Indexed: 12/14/2022] Open
Abstract
Glioma relies on glycolysis to obtain energy and sustain its survival under low glucose microenvironment in vivo. The mechanisms on glioma cell glycolysis regulation are still unclear. Signaling mediated by Double-stranded RNA-activated protein kinase (PKR) - like ER kinase (PERK) is one of the important pathways of unfolded protein response (UPR) which is comprehensively activated in cancer cells upon the hypoxic and low glucose stress. Here we show that PERK is significantly activated in human glioma tissues. PERK silencing results in decreased glioma cell viability and ATP/lactate production upon low glucose stress, which is mediated by partially blocked AKT activation and subsequent inhibition of Hexokinase II (HK2)'s mitochondria translocation. More importantly, PERK silenced glioma cells show decreased tumor formation capacity. Our results reveal that PERK activation is involved in glioma glycolysis regulation and may be a potential molecular target for glioma treatment.
Collapse
Affiliation(s)
- Xu Hou
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Yaohua Liu
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Huailei Liu
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Xin Chen
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Min Liu
- College of Basic Medicine, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Hui Che
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Fei Guo
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Chunlei Wang
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Daming Zhang
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Jianing Wu
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Xiaofeng Chen
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Chen Shen
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Chenguang Li
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Fei Peng
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Yunke Bi
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Zhuowen Yang
- Department of Endocrinology, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Guang Yang
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Jing Ai
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Xin Gao
- Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Shiguang Zhao
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| |
Collapse
|
31
|
Chen C, Cui H, Li Z, Wang R, Zhou C. Normobaric oxygen for cerebral ischemic injury. Neural Regen Res 2014; 8:2885-94. [PMID: 25206609 PMCID: PMC4146175 DOI: 10.3969/j.issn.1673-5374.2013.31.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 09/16/2013] [Indexed: 12/12/2022] Open
Abstract
Oxygen inhalation has been shown to increase oxygen supply to tissues after cerebral ischemia/ reperfusion injury, protecting injured neural cells. However, hyperbaric oxygen may aggravate oxidative stress. By contrast, normobaric oxygen has the rapid and non-invasive characteristics and may have therapeutic effects on ischemic/hypoxic disease. Rats inhaled normobaric oxygen (95% O2) for 6 consecutive days, and then a rat model of focal cerebral ischemia was established. Nissl and 2,3,5-triphenyltetrazolium chloride (TTC) staining revealed that normobaric oxygen pretreatment improved neurological deficits and reduced infarct volume. Immunohistochemical staining and western blot assay revealed that the expression of hypoxia-inducible factor-1α, Notch-1, vascular endothelial growth factor and erythropoietin were increased. Behavioral studies also verified that neurological deficit scores increased. The hypoxia-inducible factor inhibitor 2-methoxyestradiol treatment at 1 hour before administration of normobaric oxygen could suppress the protective effect of normobaric oxygen. Given these observations, normobaric oxygen pretreatment may alleviate cerebral ischemic injury via the hypoxia-inducible factor signal pathway.
Collapse
Affiliation(s)
- Chunhua Chen
- Department of Anatomy and Histoembryology, Peking University Health Science Center, Beijing 100191, China
| | - Haimeng Cui
- Department of Anatomy and Histoembryology, Peking University Health Science Center, Beijing 100191, China
| | - Zihe Li
- Department of Anatomy and Histoembryology, Peking University Health Science Center, Beijing 100191, China
| | - Ruifeng Wang
- Department of Anatomy and Histoembryology, Peking University Health Science Center, Beijing 100191, China
| | - Changman Zhou
- Department of Anatomy and Histoembryology, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|
32
|
Pereira SL, Rodrigues AS, Sousa MI, Correia M, Perestrelo T, Ramalho-Santos J. From gametogenesis and stem cells to cancer: common metabolic themes. Hum Reprod Update 2014; 20:924-43. [DOI: 10.1093/humupd/dmu034] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
33
|
Abbadi S, Rodarte JJ, Abutaleb A, Lavell E, Smith CL, Ruff W, Schiller J, Olivi A, Levchenko A, Guerrero-Cazares H, Quinones-Hinojosa A. Glucose-6-phosphatase is a key metabolic regulator of glioblastoma invasion. Mol Cancer Res 2014; 12:1547-59. [PMID: 25001192 DOI: 10.1158/1541-7786.mcr-14-0106-t] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UNLABELLED Glioblastoma (GBM) remains the most aggressive primary brain cancer in adults. Similar to other cancers, GBM cells undergo metabolic reprogramming to promote proliferation and survival. Glycolytic inhibition is widely used to target such reprogramming. However, the stability of glycolytic inhibition in GBM remains unclear especially in a hypoxic tumor microenvironment. In this study, it was determined that glucose-6-phosphatase (G6PC/G6Pase) expression is elevated in GBM when compared with normal brain. Human-derived brain tumor-initiating cells (BTIC) use this enzyme to counteract glycolytic inhibition induced by 2-deoxy-d-glucose (2DG) and sustain malignant progression. Downregulation of G6PC renders the majority of these cells unable to survive glycolytic inhibition, and promotes glycogen accumulation through the activation of glycogen synthase (GYS1) and inhibition of glycogen phosphorylase (PYGL). Moreover, BTICs that survive G6PC knockdown are less aggressive (reduced migration, invasion, proliferation, and increased astrocytic differentiation). Collectively, these findings establish G6PC as a key enzyme with promalignant functional consequences that has not been previously reported in GBM and identify it as a potential therapeutic target. IMPLICATIONS This study is the first to demonstrate a functional relationship between the critical gluconeogenic and glycogenolytic enzyme G6PC with the metabolic adaptations during GBM invasion.
Collapse
Affiliation(s)
- Sara Abbadi
- Department of Neurosurgery and Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Julio J Rodarte
- Department of Neurosurgery and Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ameer Abutaleb
- University of Maryland, School of Medicine, Baltimore, Maryland
| | - Emily Lavell
- Department of Neurosurgery and Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Chris L Smith
- Department of Neurosurgery and Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland. Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - William Ruff
- Department of Neurosurgery and Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Alessandro Olivi
- Department of Neurosurgery and Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Andre Levchenko
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Hugo Guerrero-Cazares
- Department of Neurosurgery and Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Alfredo Quinones-Hinojosa
- Department of Neurosurgery and Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
34
|
Zhao S, Liu H, Liu Y, Wu J, Wang C, Hou X, Chen X, Yang G, Zhao L, Che H, Bi Y, Wang H, Peng F, Ai J. miR-143 inhibits glycolysis and depletes stemness of glioblastoma stem-like cells. Cancer Lett 2013; 333:253-60. [DOI: 10.1016/j.canlet.2013.01.039] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 01/18/2013] [Accepted: 01/23/2013] [Indexed: 01/16/2023]
|
35
|
Tannahill GM, Curtis AM, Adamik J, Palsson-McDermott EM, McGettrick AF, Goel G, Frezza C, Bernard NJ, Kelly B, Foley NH, Zheng L, Gardet A, Tong Z, Jany SS, Corr SC, Haneklaus M, Caffrey BE, Pierce K, Walmsley S, Beasley FC, Cummins E, Nizet V, Whyte M, Taylor CT, Lin H, Masters SL, Gottlieb E, Kelly VP, Clish C, Auron PE, Xavier RJ, O'Neill LAJ. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature 2013; 496:238-42. [PMID: 23535595 PMCID: PMC4031686 DOI: 10.1038/nature11986] [Citation(s) in RCA: 2699] [Impact Index Per Article: 245.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 02/05/2013] [Indexed: 01/27/2023]
Abstract
Macrophages activated by the Gram-negative bacterial product lipopolysaccharide switch their core metabolism from oxidative phosphorylation to glycolysis. Here we show that inhibition of glycolysis with 2-deoxyglucose suppresses lipopolysaccharide-induced interleukin-1β but not tumour-necrosis factor-α in mouse macrophages. A comprehensive metabolic map of lipopolysaccharide-activated macrophages shows upregulation of glycolytic and downregulation of mitochondrial genes, which correlates directly with the expression profiles of altered metabolites. Lipopolysaccharide strongly increases the levels of the tricarboxylic-acid cycle intermediate succinate. Glutamine-dependent anerplerosis is the principal source of succinate, although the 'GABA (γ-aminobutyric acid) shunt' pathway also has a role. Lipopolysaccharide-induced succinate stabilizes hypoxia-inducible factor-1α, an effect that is inhibited by 2-deoxyglucose, with interleukin-1β as an important target. Lipopolysaccharide also increases succinylation of several proteins. We therefore identify succinate as a metabolite in innate immune signalling, which enhances interleukin-1β production during inflammation.
Collapse
Affiliation(s)
- G M Tannahill
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Martínez-González A, Calvo GF, Pérez Romasanta LA, Pérez-García VM. Hypoxic cell waves around necrotic cores in glioblastoma: a biomathematical model and its therapeutic implications. Bull Math Biol 2012; 74:2875-96. [PMID: 23151957 PMCID: PMC3510407 DOI: 10.1007/s11538-012-9786-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2011] [Accepted: 10/18/2012] [Indexed: 12/20/2022]
Abstract
Glioblastoma is a rapidly evolving high-grade astrocytoma that is distinguished pathologically from lower grade gliomas by the presence of necrosis and microvascular hyperplasia. Necrotic areas are typically surrounded by hypercellular regions known as "pseudopalisades" originated by local tumor vessel occlusions that induce collective cellular migration events. This leads to the formation of waves of tumor cells actively migrating away from central hypoxia. We present a mathematical model that incorporates the interplay among two tumor cell phenotypes, a necrotic core and the oxygen distribution. Our simulations reveal the formation of a traveling wave of tumor cells that reproduces the observed histologic patterns of pseudopalisades. Additional simulations of the model equations show that preventing the collapse of tumor microvessels leads to slower glioma invasion, a fact that might be exploited for therapeutic purposes.
Collapse
Affiliation(s)
- Alicia Martínez-González
- Departamento de Matemáticas, E. T. S. I. Industriales and Instituto de Matemática Aplicada a la Ciencia y la Ingeniería, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Gabriel F. Calvo
- Departamento de Matemáticas, E. T. S. I. Caminos, Canales y Puertos and Instituto de Matemática Aplicada a la Ciencia y la Ingeniería, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Luis A. Pérez Romasanta
- Servicio de Oncología Radioterápica, Hospital Universitario de Salamanca, 37007 Salamanca, Spain
| | - Víctor M. Pérez-García
- Departamento de Matemáticas, E. T. S. I. Industriales and Instituto de Matemática Aplicada a la Ciencia y la Ingeniería, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain
| |
Collapse
|
37
|
Kluckova K, Bezawork-Geleta A, Rohlena J, Dong L, Neuzil J. Mitochondrial complex II, a novel target for anti-cancer agents. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1827:552-64. [PMID: 23142170 DOI: 10.1016/j.bbabio.2012.10.015] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 10/28/2012] [Accepted: 10/29/2012] [Indexed: 12/22/2022]
Abstract
With the arrival of the third millennium, in spite of unprecedented progress in molecular medicine, cancer remains as untamed as ever. The complexity of tumours, dictating the potential response of cancer cells to anti-cancer agents, has been recently highlighted in a landmark paper by Weinberg and Hanahan on hallmarks of cancer [1]. Together with the recently published papers on the complexity of tumours in patients and even within the same tumour (see below), the cure for this pathology seems to be an elusive goal. Indisputably, the strategy ought to be changed, searching for targets that are generally invariant across the landscape of neoplastic diseases. One such target appears to be the mitochondrial complex II (CII) of the electron transfer chain, a recent focus of research. We document and highlight this particularly intriguing target in this review paper and give examples of drugs that use CII as their molecular target. This article is part of a Special Issue entitled: Respiratory complex II: Role in cellular physiology and disease.
Collapse
Affiliation(s)
- Katarina Kluckova
- Institute of Biotechnology, Czech Academy of Sciences, Prague, Czech Republic
| | | | | | | | | |
Collapse
|
38
|
Wanka C, Steinbach JP, Rieger J. Tp53-induced glycolysis and apoptosis regulator (TIGAR) protects glioma cells from starvation-induced cell death by up-regulating respiration and improving cellular redox homeostasis. J Biol Chem 2012; 287:33436-46. [PMID: 22887998 DOI: 10.1074/jbc.m112.384578] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Altered metabolism in tumor cells is increasingly recognized as a core component of the neoplastic phenotype. Because p53 has emerged as a master metabolic regulator, we hypothesized that the presence of wild-type p53 in glioblastoma cells could confer a selective advantage to these cells under the adverse conditions of the glioma microenvironment. Here, we report on the effects of the p53-dependent effector Tp53-induced glycolysis and apoptosis regulator (TIGAR) on hypoxia-induced cell death. We demonstrate that TIGAR is overexpressed in glioblastomas and that ectopic expression of TIGAR reduces cell death induced by glucose and oxygen restriction. Metabolic analyses revealed that TIGAR inhibits glycolysis and promotes respiration. Further, generation of reactive oxygen species (ROS) levels was reduced whereas levels of reduced glutathione were elevated in TIGAR-expressing cells. Finally, inhibiting the transketolase isoenzyme transketolase-like 1 (TKTL1) by siRNA reversed theses effects of TIGAR. These findings suggest that glioma cells benefit from TIGAR expression by (i) improving energy yield from glucose via increased respiration and (ii) enhancing defense mechanisms against ROS. Targeting metabolic regulators such as TIGAR may therefore be a valuable strategy to enhance glioma cell sensitivity toward spontaneously occurring or therapy-induced starvation conditions or ROS-inducing therapeutic approaches.
Collapse
Affiliation(s)
- Christina Wanka
- Dr. Senckenberg Institute of Neurooncology, Goethe University Frankfurt, Frankfurt, Germany
| | | | | |
Collapse
|
39
|
A role for the NLRP3 inflammasome in metabolic diseases--did Warburg miss inflammation? Nat Immunol 2012; 13:352-7. [PMID: 22430788 DOI: 10.1038/ni.2228] [Citation(s) in RCA: 356] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The inflammasome is a protein complex that comprises an intracellular sensor (typically a Nod-like receptor), the precursor procaspase-1 and the adaptor ASC. Inflammasome activation leads to the maturation of caspase-1 and the processing of its substrates, interleukin 1β (IL-1β) and IL-18. Although initially the inflammasome was described as a complex that affects infection and inflammation, subsequent evidence has suggested that inflammasome activation influences many metabolic disorders, including atherosclerosis, type 2 diabetes, gout and obesity. Another feature of inflammation in general and the inflammasome specifically is that the activation process has a profound effect on aerobic glycolysis (the 'Warburg effect'). Here we explore how the Warburg effect might be linked to inflammation and inflammasome activation.
Collapse
|
40
|
Choi JH, Yoon JS, Won YW, Park BB, Lee YY. Chloroquine enhances the chemotherapeutic activity of 5-fluorouracil in a colon cancer cell line via cell cycle alteration. APMIS 2012; 120:597-604. [PMID: 22716215 DOI: 10.1111/j.1600-0463.2012.02876.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 01/02/2012] [Indexed: 12/16/2022]
Abstract
Autophagy is a conserved catabolic process that degrades cytoplasmic proteins and organelles for recycling. The role of autophagy in tumorigenesis is controversial because autophagy can be either protective or damaging to tumor cells, and its effects may change during tumor progression. A number of cancer cell lines have been exposed to chloroquine, an anti-malarial drug, with the aim of inhibiting cell growth and inducing cell death. In addition, chloroquine inhibits a late phase of autophagy. This study was conducted to investigate the anti-cancer effect of autophagy inhibition, using chloroquine together with 5-fluorouracil (5-FU) in a colon cancer cell line. Human colon cancer DLD-1 cells were treated with 5-FU (10 μΜ) or chloroquine (100 μΜ), or a combination of both. Autophagy was evaluated by western blot analysis of microtubule-associated protein light chain3 (LC3). Proliferative activity, alterations of the cell cycle, and apoptosis were measured by MTT assays, flow cytometry, and western blotting. LC3-II protein increased after treatment with 5-FU, and chloroquine potentiated the cytotoxicity of 5-FU. MTT assays showed that 5-FU inhibited proliferation of the DLD-1 cells and that chloroquine enhanced this inhibitory effect of 5-FU. The combination of 5-FU and chloroquine induced G1 arrest, up-regulation of p27 and p53, and down-regulation of CDK2 and cyclin D1. These results suggest that chloroquine may potentiate the anti-cancer effect of 5-FU via cell cycle inhibition. Chloroquine potentiates the anti-cancer effect of 5-FU in colon cancer cells. Supplementation of conventional chemotherapy with chloroquine may provide a new cancer therapy modality.
Collapse
Affiliation(s)
- Jung-Hye Choi
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea.
| | | | | | | | | |
Collapse
|
41
|
Viola G, Bortolozzi R, Hamel E, Moro S, Brun P, Castagliuolo I, Ferlin MG, Basso G. MG-2477, a new tubulin inhibitor, induces autophagy through inhibition of the Akt/mTOR pathway and delayed apoptosis in A549 cells. Biochem Pharmacol 2012; 83:16-26. [PMID: 21964343 PMCID: PMC3234688 DOI: 10.1016/j.bcp.2011.09.017] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 09/14/2011] [Accepted: 09/15/2011] [Indexed: 11/26/2022]
Abstract
We previously demonstrated that MG-2477 (3-cyclopropylmethyl-7-phenyl-3H-pyrrolo[3,2-f]quinolin-9(6H)-one) inhibits the growth of several cancer cell lines in vitro. Here we show that MG-2477 inhibited tubulin polymerization and caused cells to arrest in metaphase. The detailed mechanism of action of MG-2477 was investigated in a non-small cell lung carcinoma cell line (A549). Treatment of A549 cells with MG-2477 caused the cells to arrest in the G2/M phase of the cell cycle, with a concomitant accumulation of cyclin B. Moreover, the compound induced autophagy, which was followed at later times by apoptotic cell death. Autophagy was detected as early as 12h by the conversion of microtubule associated protein 1 light chain 3 (LC3-I) to LC3-II, following cleavage and lipid addition to LC3-I. After 48h of MG-2477 exposure, phosphatidylserine externalization on the cell membrane, caspase-3 activation, and PARP cleavage occurred, revealing that apoptotic cell death had begun. Pharmacological inhibition of autophagy with 3-methyladenine or bafilomycin A1 increased apoptotic cell death, suggesting that the autophagy caused by MG-2477 played a protective role and delayed apoptotic cell death. Additional studies revealed that MG-2477 inhibited survival signaling by blocking activation of Akt and its downstream targets, including mTOR, and FHKR. Treatment with MG-2477 also reduced phosphorylation of mTOR downstream targets p70 ribosomal S6 kinase and 4E-BP1. Overexpression of Akt by transfection with a Myr-Akt vector decreased MG-2477 induced autophagy, indicating that Akt is involved. Taken together, these results indicated that the autophagy induced by MG-2477 delayed apoptosis by exerting an adaptive response following microtubule damage.
Collapse
Affiliation(s)
- Giampietro Viola
- Department of Pediatrics, Laboratory of Oncohematology, University of Padova, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Gliomas contain a small number of treatment-resistant glioma stem cells (GSCs), and it is thought that tumor regrowth originates from GSCs, thus rendering GSCs an attractive target for novel treatment approaches. Cancer cells rely more on glycolysis than on oxidative phosphorylation for glucose metabolism, a phenomenon used in 2-[(18)F]fluoro-2-deoxy-D-glucose positron emission tomography imaging of solid cancers, and targeting metabolic pathways in cancer cells has become a topic of considerable interest. However, if GSCs are indeed important for tumor control, knowledge of the metabolic state of GSCs is needed. We hypothesized that the metabolism of GSCs differs from that of their progeny. Using a unique imaging system for GSCs, we assessed the oxygen consumption rate, extracellular acidification rate, intracellular ATP levels, glucose uptake, lactate production, PKM1 and PKM2 expression, radiation sensitivity, and cell cycle duration of GSCs and their progeny in a panel of glioma cell lines. We found GSCs and progenitor cells to be less glycolytic than differentiated glioma cells. GSCs consumed less glucose and produced less lactate while maintaining higher ATP levels than their differentiated progeny. Compared with differentiated cells, GSCs were radioresistant, and this correlated with a higher mitochondrial reserve capacity. Glioma cells expressed both isoforms of pyruvate kinase, and inhibition of either glycolysis or oxidative phosphorylation had minimal effect on energy production in GSCs and progenitor cells. We conclude that GSCs rely mainly on oxidative phosphorylation. However, if challenged, they can use additional metabolic pathways. Therefore, targeting glycolysis in glioma may spare GSCs.
Collapse
|
43
|
Cunningham LA, Candelario K, Li L. Roles for HIF-1α in neural stem cell function and the regenerative response to stroke. Behav Brain Res 2011; 227:410-7. [PMID: 21871501 DOI: 10.1016/j.bbr.2011.08.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 07/29/2011] [Accepted: 08/01/2011] [Indexed: 12/20/2022]
Abstract
Stroke represents a leading cause of long-term disability worldwide, with few therapeutic options available for improving behavioral recovery. Identification of endogenous neural stem and progenitor cells (NSPCs) that are capable of promoting reparative responses following brain injury and stroke make these cells attractive therapeutic targets for stimulating cell replacement and neuronal plasticity. Interest in the mechanisms that support NSPC survival and replenishment of damaged cells within the ischemic brain has led to elucidation of new roles for hypoxia-inducible factor-1α (HIF-1α) in NSPC function. HIF-1α is a well-studied mediator of adaptive cellular responses to hypoxia through direct transcriptional regulation of cellular metabolism and angiogenesis. Recent evidence also indicates novel roles for HIF-1α in stem cell differentiation through modulation of Notch and Wnt/β-catenin signaling pathways. In this review, we will explore the hypothesis that HIF-1α represents an important mediator of NSPC function under both non-pathological conditions and stroke; and plays a central role in the regulation of NSPC response to hypoxia, metabolism and maintenance of the vascular environment of the neural stem cell niche.
Collapse
Affiliation(s)
- Lee Anna Cunningham
- Department of Neurosciences, MSC08 4740, 1 University of New Mexico Health Sciences Center, Albuquerque, NM 87131-0001, USA.
| | | | | |
Collapse
|
44
|
Tannahill GM, O'Neill LAJ. The emerging role of metabolic regulation in the functioning of Toll-like receptors and the NOD-like receptor Nlrp3. FEBS Lett 2011; 585:1568-72. [PMID: 21565193 DOI: 10.1016/j.febslet.2011.05.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 04/29/2011] [Accepted: 05/02/2011] [Indexed: 12/12/2022]
Abstract
While it has long been suspected that inflammation participates in the pathogenesis of metabolic disorders such as the insulin resistance that occurs in type 2 diabetes, recent work suggests that this is not the only important interaction between metabolism and inflammation. Inroads into the understanding of the relationship between metabolic pathways and inflammation are indicating that signaling by innate immune receptors such as TLR4 and Nlrp3 regulate metabolism. TLRs have been shown to promote glycolysis, whilst Nlrp3-mediated production of IL-1β causes insulin resistance. A key role for the hypoxia-sensing transcription factor HIF1α in the functioning of macrophages activated by TLRs has also recently emerged. This review will assess recent evidence for these complex interactions and speculate on their importance for innate immunity and inflammation.
Collapse
|