1
|
Benny J, Saito T, Liu J. Nitrosation mechanisms, kinetics, and dynamics of the guanine and 9-methylguanine radical cations by nitric oxide-Radical-radical combination at different electron configurations. J Chem Phys 2024; 161:125101. [PMID: 39319660 DOI: 10.1063/5.0230367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/06/2024] [Indexed: 09/26/2024] Open
Abstract
As a precursor to various reactive nitrogen species formed in biological systems, nitric oxide (•NO) participates in numerous processes, including enhancing DNA radiosensitivity in ionizing radiation-based radiotherapy. Forming guanine radical cations is another common DNA lesion resulting from ionization and oxidation damage. As such, the interaction of •NO with guanine radical cations (G•+) may contribute to the radiosensitization of •NO. An intriguing aspect of this process is the participation of multiple spin configurations in the reaction, including open-shell singlet 1,OS[G•+(↑)⋯(↓)•NO], closed-shell singlet 1,CS[G(↑↓)⋯NO+], and triplet 3[G•+(↑)⋯(↑)•NO]. In this study, the reactions of •NO with both unsubstituted guanine radical cations (in the 9HG•+ conformation) and 9-methylguanine radical cations (9MG•+, a guanosine-mimicking model compound) were investigated in the absence and presence of monohydration of radical cations. Kinetic-energy dependent reaction product ions and cross sections were measured using an electrospray ionization guided-ion beam tandem mass spectrometer. The reaction mechanisms, kinetics, and dynamics were comprehended by interpreting the reaction potential energy surface using spin-projected density functional theory, coupled cluster theory, and multiconfiguration complete active space second-order perturbation theory, followed by RRKM kinetics modeling. The combined experimental and computational findings revealed closed-shell singlet 1,CS[7-NO-9MG]+ as the major, exothermic product and triplet 3[8-NO-9MG]+ as the minor, endothermic product. Singlet biradical products were not detected due to high reaction endothermicities, activation barriers, and inherent instability.
Collapse
Affiliation(s)
- Jonathan Benny
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Blvd., Queens, New York 11367, USA
- The Ph.D. Program in Chemistry, the Graduate Center of the City University of New York, 365 5th Ave., New York, New York 10016, USA
| | - Toru Saito
- Department of Biomedical Information Science, Graduate School of Information Science, Hiroshima City University, 731-3194 Hiroshima, Japan
| | - Jianbo Liu
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Blvd., Queens, New York 11367, USA
- The Ph.D. Program in Chemistry, the Graduate Center of the City University of New York, 365 5th Ave., New York, New York 10016, USA
| |
Collapse
|
2
|
Benny J, Liu J. Spin-orbit charge transfer from guanine and 9-methylguanine radical cations to nitric oxide radicals and the induced triplet-to-singlet intersystem crossing. J Chem Phys 2023; 159:085102. [PMID: 37638623 DOI: 10.1063/5.0160921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/08/2023] [Indexed: 08/29/2023] Open
Abstract
Nitric oxide (●NO) participates in many biological activities, including enhancing DNA radiosensitivity in ionizing radiation-based radiotherapy. To help understand the radiosensitization of ●NO, we report reaction dynamics between ●NO and the radical cations of guanine (a 9HG●+ conformer) and 9-methylguanine (9MG●+). On the basis of the formation of 9HG●+ and 9MG●+ in the gas phase and the collisions of the radical cations with ●NO in a guided-ion beam mass spectrometer, the charge transfer reactions of 9HG●+ and 9MG●+ with ●NO were examined. For both reactions, the kinetic energy-dependent product ion cross sections revealed a threshold energy that is 0.24 (or 0.37) eV above the 0 K product 9HG (or 9MG) + NO+ asymptote. To interrogate this abnormal threshold behavior, the reaction potential energy surface for [9MG + NO]+ was mapped out at closed-shell singlet, open-shell singlet, and triplet states using density functional and coupled cluster theories. The results showed that the charge transfer reaction requires the interaction of a triplet-state surface originating from a reactant-like precursor complex 3[9MG●+(↑)⋅(↑)●NO] with a closed-shell singlet-state surface evolving from a charge-transferred complex 1[9MG⋅NO+]. During the reaction, an electron is transferred from π∗(NO) to perpendicular π∗(9MG), which introduces a change in orbital angular momentum. The latter offsets the change in electron spin angular momentum and facilitates intersystem crossing. The reaction threshold in excess of the 0 K thermochemistry and the low charge-transfer efficiency are rationalized by the vibrational excitation in the product ion NO+ and the kinetic shift arising from a long-lived triplet intermediate.
Collapse
Affiliation(s)
- Jonathan Benny
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Blvd., Queens, New York 11367, USA
- The Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 5th Ave., New York, New York 10016, USA
| | - Jianbo Liu
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Blvd., Queens, New York 11367, USA
- The Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 5th Ave., New York, New York 10016, USA
| |
Collapse
|
3
|
Hosea R, Hillary S, Wu S, Kasim V. Targeting Transcription Factor YY1 for Cancer Treatment: Current Strategies and Future Directions. Cancers (Basel) 2023; 15:3506. [PMID: 37444616 DOI: 10.3390/cancers15133506] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/28/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Cancer represents a significant and persistent global health burden, with its impact underscored by its prevalence and devastating consequences. Whereas numerous oncogenes could contribute to cancer development, a group of transcription factors (TFs) are overactive in the majority of tumors. Targeting these TFs may also combat the downstream oncogenes activated by the TFs, making them attractive potential targets for effective antitumor therapeutic strategy. One such TF is yin yang 1 (YY1), which plays crucial roles in the development and progression of various tumors. In preclinical studies, YY1 inhibition has shown efficacy in inhibiting tumor growth, promoting apoptosis, and sensitizing tumor cells to chemotherapy. Recent studies have also revealed the potential of combining YY1 inhibition with immunotherapy for enhanced antitumor effects. However, clinical translation of YY1-targeted therapy still faces challenges in drug specificity and delivery. This review provides an overview of YY1 biology, its role in tumor development and progression, as well as the strategies explored for YY1-targeted therapy, with a focus on their clinical implications, including those using small molecule inhibitors, RNA interference, and gene editing techniques. Finally, we discuss the challenges and current limitations of targeting YY1 and the need for further research in this area.
Collapse
Affiliation(s)
- Rendy Hosea
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Sharon Hillary
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Shourong Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing University, Chongqing 400030, China
| | - Vivi Kasim
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing University, Chongqing 400030, China
| |
Collapse
|
4
|
Salihi A, Al-Naqshabandi MA, Khudhur ZO, Housein Z, Hama HA, Abdullah RM, Hussen BM, Alkasalias T. Gasotransmitters in the tumor microenvironment: Impacts on cancer chemotherapy (Review). Mol Med Rep 2022; 26:233. [PMID: 35616143 PMCID: PMC9178674 DOI: 10.3892/mmr.2022.12749] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 04/07/2022] [Indexed: 11/23/2022] Open
Abstract
Nitric oxide, carbon monoxide and hydrogen sulfide are three endogenous gasotransmitters that serve a role in regulating normal and pathological cellular activities. They can stimulate or inhibit cancer cell proliferation and invasion, as well as interfere with cancer cell responses to drug treatments. Understanding the molecular pathways governing the interactions between these gases and the tumor microenvironment can be utilized for the identification of a novel technique to disrupt cancer cell interactions and may contribute to the conception of effective and safe cancer therapy strategies. The present review discusses the effects of these gases in modulating the action of chemotherapies, as well as prospective pharmacological and therapeutic interfering approaches. A deeper knowledge of the mechanisms that underpin the cellular and pharmacological effects, as well as interactions, of each of the three gases could pave the way for therapeutic treatments and translational research.
Collapse
Affiliation(s)
- Abbas Salihi
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Kurdistan Region 44001, Iraq
- Center of Research and Strategic Studies, Lebanese French University, Erbil, Kurdistan Region 44002, Iraq
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum, Karolinska Institutet, SE-17165 Stockholm, Sweden
| | - Mohammed A. Al-Naqshabandi
- Department of Clinical Biochemistry, College of Health Sciences, Hawler Medical University, Erbil, Kurdistan Region 44001, Iraq
| | - Zhikal Omar Khudhur
- Department of Medical Analysis, Faculty of Applied Science, Tishk International University, Erbil, Kurdistan Region 44001, Iraq
| | - Zjwan Housein
- Department of Medical Laboratory Technology, Technical Health and Medical College, Erbil Polytechnique University, Erbil, Kurdistan Region 44002, Iraq
| | - Harmand A. Hama
- Department of Biology, Faculty of Education, Tishk International University, Erbil, Kurdistan Region 44002, Iraq
| | - Ramyar M. Abdullah
- College of Medicine, Hawler Medical University, Erbil, Kurdistan Region 44002, Iraq
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region 44002, Iraq
| | - Twana Alkasalias
- General Directorate of Scientific Research Center, Salahaddin University-Erbil, Erbil, Kurdistan Region 44002, Iraq
- Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital, SE-17176 Stockholm, Sweden
| |
Collapse
|
5
|
Fu J, Wu Q, Dang Y, Lei X, Feng G, Chen M, Yu XY. Synergistic Therapy Using Doxorubicin-Loading and Nitric Oxide-Generating Hollow Prussian Blue Nanoparticles with Photoacoustic Imaging Potential Against Breast Cancer. Int J Nanomedicine 2021; 16:6003-6016. [PMID: 34511902 PMCID: PMC8418369 DOI: 10.2147/ijn.s327598] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/16/2021] [Indexed: 11/23/2022] Open
Abstract
Introduction Traditional antitumor chemotherapy faces great challenges, such as multi-drug resistance (MDR) and poor penetration into tumor tissues. The newly emerging nitric oxide (NO)-based gas therapy has been recognized to reduce MDR and has improved permeation into tumor tissue. Methods In this study, NO-generating prodrug sodium nitroprusside (SNP) was doped to hollow mesoporous Prussian blue (PB) nanoparticles to fabricate NO-generating nanoparticles (NO-PB), which was further loaded with doxorubicin (DOX). Results DOX loaded NO-PB (DOX-NO-PB) was released quicker at pH 6 compared with neutral pH, suggesting NO-PB may facilitate the release of loaded drug in acidic tumor tissue. The capacity of NO production by NO-PB was measured, and the results showed the presence of NO in the culture medium from 4T1 cells incubated with NO-PB and inside the cells. NP-PB could be detected by photoacoustic imaging (PAI) in tumor tissue in 4T1 tumor bearing mice, suggesting this nanoparticle may serve as contrast agent for the noninvasive diagnosis of tumor tissues. NO-PB suppressed the growth of tissues in 4T1 tumor bearing mice. DOX-NO-PB showed more potent anti-tumor effects in 4T1 cells and tumor bearing mice compared with free DOX and NO-PB alone, indicating that the combination of DOX and NO-PB exhibited synergistic effects on tumor suppression. Conclusion This study provides a novel nanocarrier for gas therapy with additional PAI imaging capacity. This nanocarrier can be utilized for combination therapy of NO and chemotherapeutics which may serve as theranostic agents.
Collapse
Affiliation(s)
- Jijun Fu
- The Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, The First Affiliated Hospital of Guangzhou Medical University, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Qianni Wu
- The Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, The First Affiliated Hospital of Guangzhou Medical University, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Yuanye Dang
- The Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, The First Affiliated Hospital of Guangzhou Medical University, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Xueping Lei
- The Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, The First Affiliated Hospital of Guangzhou Medical University, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Guining Feng
- The Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, The First Affiliated Hospital of Guangzhou Medical University, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Mingyue Chen
- Foshan Nanhai Vocational School of Health, Foshan, 528211, People's Republic of China
| | - Xi-Yong Yu
- The Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, The First Affiliated Hospital of Guangzhou Medical University, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| |
Collapse
|
6
|
Bibby BAS, Thiruthaneeswaran N, Yang L, Pereira RR, More E, McArt DG, O'Reilly P, Bristow RG, Williams KJ, Choudhury A, West CML. Repurposing FDA approved drugs as radiosensitizers for treating hypoxic prostate cancer. BMC Urol 2021; 21:96. [PMID: 34210300 PMCID: PMC8247203 DOI: 10.1186/s12894-021-00856-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 06/04/2021] [Indexed: 01/21/2023] Open
Abstract
Background The presence of hypoxia is a poor prognostic factor in prostate cancer and the hypoxic tumor microenvironment promotes radioresistance. There is potential for drug radiotherapy combinations to improve the therapeutic ratio. We aimed to investigate whether hypoxia-associated genes could be used to identify FDA approved drugs for repurposing for the treatment of hypoxic prostate cancer. Methods Hypoxia associated genes were identified and used in the connectivity mapping software QUADrATIC to identify FDA approved drugs as candidates for repurposing. Drugs identified were tested in vitro in prostate cancer cell lines (DU145, PC3, LNCAP). Cytotoxicity was investigated using the sulforhodamine B assay and radiosensitization using a clonogenic assay in normoxia and hypoxia. Results Menadione and gemcitabine had similar cytotoxicity in normoxia and hypoxia in all three cell lines. In DU145 cells, the radiation sensitizer enhancement ratio (SER) of menadione was 1.02 in normoxia and 1.15 in hypoxia. The SER of gemcitabine was 1.27 in normoxia and 1.09 in hypoxia. No radiosensitization was seen in PC3 cells. Conclusion Connectivity mapping can identify FDA approved drugs for potential repurposing that are linked to a radiobiologically relevant phenotype. Gemcitabine and menadione could be further investigated as potential radiosensitizers in prostate cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s12894-021-00856-x.
Collapse
Affiliation(s)
- Becky A S Bibby
- Translational Radiobiology Group, Division of Cancer Science, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, The Christie NHS Foundation Trust, Wilmslow Road, Manchester, M20 4BX, UK
| | - Niluja Thiruthaneeswaran
- Translational Radiobiology Group, Division of Cancer Science, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, The Christie NHS Foundation Trust, Wilmslow Road, Manchester, M20 4BX, UK. .,Sydney Medical School, University of Sydney, Camperdown, Australia.
| | - Lingjian Yang
- Translational Radiobiology Group, Division of Cancer Science, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, The Christie NHS Foundation Trust, Wilmslow Road, Manchester, M20 4BX, UK
| | - Ronnie R Pereira
- Translational Radiobiology Group, Division of Cancer Science, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, The Christie NHS Foundation Trust, Wilmslow Road, Manchester, M20 4BX, UK.,Translational Oncogenomics, CRUK Manchester Institute and CRUK Manchester Centre, Manchester, UK
| | - Elisabet More
- Translational Radiobiology Group, Division of Cancer Science, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, The Christie NHS Foundation Trust, Wilmslow Road, Manchester, M20 4BX, UK
| | - Darragh G McArt
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - Paul O'Reilly
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - Robert G Bristow
- Translational Radiobiology Group, Division of Cancer Science, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, The Christie NHS Foundation Trust, Wilmslow Road, Manchester, M20 4BX, UK.,Translational Oncogenomics, CRUK Manchester Institute and CRUK Manchester Centre, Manchester, UK
| | - Kaye J Williams
- School of Pharmacy and Pharmaceutical Sciences, University of Manchester, Manchester, UK
| | - Ananya Choudhury
- Translational Radiobiology Group, Division of Cancer Science, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, The Christie NHS Foundation Trust, Wilmslow Road, Manchester, M20 4BX, UK
| | - Catharine M L West
- Translational Radiobiology Group, Division of Cancer Science, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, The Christie NHS Foundation Trust, Wilmslow Road, Manchester, M20 4BX, UK
| |
Collapse
|
7
|
Ross JA, Vissers JPC, Nanda J, Stewart GD, Husi H, Habib FK, Hammond DE, Gethings LA. The influence of hypoxia on the prostate cancer proteome. Clin Chem Lab Med 2021; 58:980-993. [PMID: 31940282 DOI: 10.1515/cclm-2019-0626] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 09/11/2019] [Indexed: 12/11/2022]
Abstract
Prostate cancer accounts for around 15% of male deaths in Western Europe and is the second leading cause of cancer death in men after lung cancer. Mounting evidence suggests that prostate cancer deposits exist within a hypoxic environment and this contributes to radio-resistance thus hampering one of the major therapies for this cancer. Recent reports have shown that nitric oxide (NO) donating non-steroidal anti-inflammatory drugs (NSAIDs) reduced tumour hypoxia as well as maintaining a radio-sensitising/therapeutic effect on prostate cancer cells. The aim of this study was to evaluate the impact of hypoxia on the proteome of the prostate and to establish whether NO-NSAID treatment reverted the protein profiles back to their normoxic status. To this end an established hormone insensitive prostate cancer cell line, PC-3, was cultured under hypoxic and normoxic conditions before and following exposure to NO-NSAID in combination with selected other common prostate cancer treatment types. The extracted proteins were analysed by ion mobility-assisted data independent acquisition mass spectrometry (MS), combined with multivariate statistical analyses, to measure hypoxia-induced alterations in the proteome of these cells. The analyses demonstrated that under hypoxic conditions there were well-defined, significantly regulated/differentially expressed proteins primarily involved with structural and binding processes including, for example, TUBB4A, CIRP and PLOD1. Additionally, the exposure of hypoxic cells to NSAID and NO-NSAID agents, resulted in some of these proteins being differentially expressed; for example, both PCNA and HNRNPA1L were down-regulated, corresponding with disruption in the nucleocytoplasmic shuttling process.
Collapse
Affiliation(s)
- James A Ross
- Tissue Injury and Repair Group, University of Edinburgh, Edinburgh, UK
| | | | - Jyoti Nanda
- Tissue Injury and Repair Group, University of Edinburgh, Edinburgh, UK.,Prostate Research Group, University of Edinburgh, Edinburgh, UK
| | - Grant D Stewart
- Department of Surgery, University of Cambridge, Cambridge, UK
| | - Holger Husi
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Fouad K Habib
- Tissue Injury and Repair Group, University of Edinburgh, Edinburgh, UK.,Prostate Research Group, University of Edinburgh, Edinburgh, UK
| | - Dean E Hammond
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, UK
| | - Lee A Gethings
- Waters Corporation, Wilmslow, UK.,Manchester Institute of Biotechnology, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
8
|
The Role of Biomimetic Hypoxia on Cancer Cell Behaviour in 3D Models: A Systematic Review. Cancers (Basel) 2021; 13:cancers13061334. [PMID: 33809554 PMCID: PMC7999912 DOI: 10.3390/cancers13061334] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/05/2021] [Accepted: 03/13/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Cancer remains one of the leading causes of death worldwide. The advancements in 3D tumour models provide in vitro test-beds to study cancer growth, metastasis and response to therapy. We conducted this systematic review on existing experimental studies in order to identify and summarize key biomimetic tumour microenvironmental features which affect aspects of cancer biology. The review noted the significance of in vitro hypoxia and 3D tumour models on epithelial to mesenchymal transition, drug resistance, invasion and migration of cancer cells. We highlight the importance of various experimental parameters used in these studies and their subsequent effects on cancer cell behaviour. Abstract The development of biomimetic, human tissue models is recognized as being an important step for transitioning in vitro research findings to the native in vivo response. Oftentimes, 2D models lack the necessary complexity to truly recapitulate cellular responses. The introduction of physiological features into 3D models informs us of how each component feature alters specific cellular response. We conducted a systematic review of research papers where the focus was the introduction of key biomimetic features into in vitro models of cancer, including 3D culture and hypoxia. We analysed outcomes from these and compiled our findings into distinct groupings to ascertain which biomimetic parameters correlated with specific responses. We found a number of biomimetic features which primed cancer cells to respond in a manner which matched in vivo response.
Collapse
|
9
|
Zhao Y, Li Z, Tang H, Lin S, Zeng W, Ye D, Zeng X, Luo Q, Li J, Ao Z, Mo J, Chen L, Yang Y, Huang Y, Liu J. [Mn(PaPy2Q)(NO)]ClO 4, a Near-Infrared Light activated release of Nitric Oxide drug as a nitric oxide donor for therapy of human prostate cancer cells in vitro and in vivo. Biomed Pharmacother 2021; 137:111388. [PMID: 33761607 DOI: 10.1016/j.biopha.2021.111388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/31/2021] [Accepted: 02/09/2021] [Indexed: 12/20/2022] Open
Abstract
This study was the first to investigate the synthesis of near-infrared light-sensitive NO prodrug [Mn(PaPy2Q)(NO)]ClO4, and detection the amount of NO released by the drug in different time and near infrared light (10 mW, 20 mW). It showed that with the increase of light power, the time required for the drug to release NO was shortened, and we selected 20 mW, 10 min as a follow-up study of light power and irradiation time while ensuring the near-infrared light did not affect tumor cells. The cells were irradiated with 20 mW of near-infrared light for 10 min at 6 h after treatment with the drug on PC-3, LNCaP and 22RV1 cells, and NO concentration and cell survival rate were tested at 12 h, 24 h and 48 h. Experiments showed that NO concentration remained stable within 48 h and [Mn(PaPy2Q)(NO)]ClO4 inhibited the proliferation of cells in a concentration and time-dependent manner. Then we also found that [Mn(PaPy2Q)(NO)]ClO4 increased the expression of apoptosis-related proteins (PARP, Bax, Caspase 3/9), inhibited the expression of BCl-2 and increased the activity level of Caspase 3/7, which showed [Mn(PaPy2Q)(NO)]ClO4 promoted prostate cancer cells apoptosis. Next, the results in xenograft mouse model showed that [Mn(PaPy2Q)(NO)]ClO4 also had anti-prostate cancer effects in vivo, and the NO concentration increased in the tumor after near-infrared light irradiation. After [Mn(PaPy2Q)(NO)]ClO4 treatment 6 weeks, tumor volume was significantly reduced, Ki67 and BrdU protein expression was significantly reduced. TUNEL assay results showed that [Mn(PaPy2Q)(NO)]ClO4 could promote the apoptosis of solid tumors in vivo and in a concentration-dependent manner.
Collapse
Affiliation(s)
- Yuwan Zhao
- Laboratory of Urology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Zhuo Li
- Laboratory of Urology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Huancheng Tang
- Laboratory of Urology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Shanhong Lin
- Laboratory of Urology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Wenfeng Zeng
- Laboratory of Urology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Dongcai Ye
- Laboratory of Urology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Xin Zeng
- Laboratory of Urology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Qiuming Luo
- Laboratory of Urology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Jianwei Li
- Laboratory of Urology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Zhixian Ao
- Laboratory of Urology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Jierong Mo
- Laboratory of Urology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Lixin Chen
- Laboratory of Urology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Yiqiu Yang
- School of Pharmacy, Guangdong Medical University, Xincheng Ave, Songshan Lake Technology Park, Dongguan 523808, China
| | - Yunsheng Huang
- School of Pharmacy, Guangdong Medical University, Xincheng Ave, Songshan Lake Technology Park, Dongguan 523808, China.
| | - Jianjun Liu
- Laboratory of Urology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China.
| |
Collapse
|
10
|
Perry J, Minaei E, Engels E, Ashford BG, McAlary L, Clark JR, Gupta R, Tehei M, Corde S, Carolan M, Ranson M. Thulium oxide nanoparticles as radioenhancers for the treatment of metastatic cutaneous squamous cell carcinoma. Phys Med Biol 2020; 65:215018. [PMID: 32726756 DOI: 10.1088/1361-6560/abaa5d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Metastases from cutaneous squamous cell carcinoma (cSCC) occur in 2%-5% of cases. Surgery is the standard treatment, often combined with adjuvant radiotherapy. Concurrent carboplatin treatment with post-operative radiotherapy may be prescribed, although it has not shown benefit in recent clinical trials in high-risk cSCC patients. The novel high-Z nanoparticle thulium (III) oxide has been shown to enhance radiation dose delivery to brain tumors by specific uptake of these nanoparticles into the cancerous tissue. As the dose-enhancement capacity of thulium oxide nanoparticles following radiotherapy against metastatic cSCC cells is unknown, its efficacy as a radiosensitizer was evaluated, with and without carboplatin. Novel and validated human patient-derived cell lines of metastatic cSCC were used. The sensitivity of the cells to radiation was investigated using short-term proliferation assays as well as clonogenic survival as the radiobiological endpoint. Briefly, cells were irradiated with 125 kVp orthovoltage x-rays (0-6 Gy) with and without thulium oxide nanoparticles (99.9% trace metals basis; 50 µg ml-1) or low dose carboplatin pre-sensitization. Cellular uptake of the nanoparticles was first confirmed by microscopy and found to have no impact on short-term cell survival for the cSCC cells, highlighting the biocompatibility of thulium oxide nanoparticles. Clonogenic cell survival assays confirmed radio-sensitization when exposed to thulium nanoparticles, with the cell sensitivity increasing by a factor of 1.24 (calculated at the 10% survival fraction) for the irradiated cSCC cells. The combination of carboplatin with thulium oxide nanoparticles with irradiation did not result in significant further reductions in survival compared to nanoparticles alone. This is the first study to provide in vitro data demonstrating the independent radiosensitization effect of high-Z nanoparticles against metastatic cSCC with or without carboplatin. Further preclinical investigations with radiotherapy plus high-Z nanoparticles for the management of metastatic cSCC are warranted.
Collapse
Affiliation(s)
- Jay Perry
- Illawarra Health and Medical Research Institute (IHMRI), Wollongong, NSW 2522, Australia. School of Chemistry and Molecular Bioscience, University of Wollongong, NSW 2522, Australia. Centre for Oncology Education and Research Translation (CONCERT), NSW 2170, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Hays E, Bonavida B. Nitric Oxide-Mediated Enhancement and Reversal of Resistance of Anticancer Therapies. Antioxidants (Basel) 2019; 8:E407. [PMID: 31533363 PMCID: PMC6769868 DOI: 10.3390/antiox8090407] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/11/2019] [Accepted: 09/13/2019] [Indexed: 12/13/2022] Open
Abstract
In the last decade, immune therapies against human cancers have emerged as a very effective therapeutic strategy in the treatment of various cancers, some of which are resistant to current therapies. Although the clinical responses achieved with many therapeutic strategies were significant in a subset of patients, another subset remained unresponsive initially, or became resistant to further therapies. Hence, there is a need to develop novel approaches to treat those unresponsive patients. Several investigations have been reported to explain the underlying mechanisms of immune resistance, including the anti-proliferative and anti-apoptotic pathways and, in addition, the increased expression of the transcription factor Yin-Yang 1 (YY1) and the programmed death ligand 1 (PD-L1). We have reported that YY1 leads to immune resistance through increasing HIF-1α accumulation and PD-L1 expression. These mechanisms inhibit the ability of the cytotoxic T-lymphocytes to mediate their cytotoxic functions via the inhibitory signal delivered by the PD-L1 on tumor cells to the PD-1 receptor on cytotoxic T-cells. Thus, means to override these resistance mechanisms are needed to sensitize the tumor cells to both cell killing and inhibition of tumor progression. Treatment with nitric oxide (NO) donors has been shown to sensitize many types of tumors to chemotherapy, immunotherapy, and radiotherapy. Treatment of cancer cell lines with NO donors has resulted in the inhibition of cancer cell activities via, in part, the inhibition of YY1 and PD-L1. The NO-mediated inhibition of YY1 was the result of both the inhibition of the upstream NF-κB pathway as well as the S-nitrosylation of YY1, leading to both the downregulation of YY1 expression as well as the inhibition of YY1-DNA binding activity, respectively. Also, treatment with NO donors induced the inhibition of YY1 and resulted in the inhibition of PD-L1 expression. Based on the above findings, we propose that treatment of tumor cells with the combination of NO donors, at optimal noncytotoxic doses, and anti-tumor cytotoxic effector cells or other conventional therapies will result in a synergistic anticancer activity and tumor regression.
Collapse
Affiliation(s)
- Emily Hays
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, CA 90095, USA.
| | - Benjamin Bonavida
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, CA 90095, USA.
| |
Collapse
|
12
|
Kashfi K. The dichotomous role of H 2S in cancer cell biology? Déjà vu all over again. Biochem Pharmacol 2018; 149:205-223. [PMID: 29397935 PMCID: PMC5866221 DOI: 10.1016/j.bcp.2018.01.042] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 01/17/2018] [Indexed: 02/09/2023]
Abstract
Nitric oxide (NO) a gaseous free radical is one of the ten smallest molecules found in nature, while hydrogen sulfide (H2S) is a gas that bears the pungent smell of rotten eggs. Both are toxic yet they are gasotransmitters of physiological relevance. There appears to be an uncanny resemblance between the general actions of these two gasotransmitters in health and disease. The role of NO and H2S in cancer has been quite perplexing, as both tumor promotion and inflammatory activities as well as anti-tumor and antiinflammatory properties have been described. These paradoxes have been explained for both gasotransmitters in terms of each having a dual or biphasic effect that is dependent on the local flux of each gas. In this review/commentary, I have discussed the major roles of NO and H2S in carcinogenesis, evaluating their dual nature, focusing on the enzymes that contribute to this paradox and evaluate the pros and cons of inhibiting or inducing each of these enzymes.
Collapse
Affiliation(s)
- Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, NY, USA.
| |
Collapse
|
13
|
Seabra AB, Durán N. Nitric oxide donors for prostate and bladder cancers: Current state and challenges. Eur J Pharmacol 2018; 826:158-168. [PMID: 29501865 DOI: 10.1016/j.ejphar.2018.02.040] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/26/2018] [Accepted: 02/27/2018] [Indexed: 12/27/2022]
Abstract
Nitric oxide (NO) is an endogenous molecule that plays pivotal physiological and pathophysiological roles, particularly in cancer biology. Generally, low concentrations of NO (pico- to nanomolar range) lead to tumor promotion. In contrast, high NO concentrations (micromolar range) have pro-apoptotic functions, leading to tumor suppression, and in this case, NO is involved in immune surveillance. Under oxidative stress, inducible NO synthase (iNOS) produces high NO concentrations for antineoplastic activities. Prostate and bladder cancers are the most commonly detected cancers in men, and are related to cancer death in males. This review summarizes the state of the art of NO/NO donors in combating prostate and bladder cancers, highlighting the importance of NO donors in cancer treatment, and the limitations and challenges to be overcome. In addition, the combination of NO donors with classical therapies (radio- or chemotherapy) in the treatment of prostate and bladder cancers is also presented and discussed. The combination of NO donors with conventional anticancer drugs is reported to inhibit tumor growth, since NO is able to sensitize tumor cells, enhancing the efficacy of the traditional drugs. Although important progress has been made, more studies are still necessary to definitely translate the administration of NO donors to clinical sets. The purpose of this review is to inspire new avenues in this topic.
Collapse
Affiliation(s)
- Amedea B Seabra
- Center for Natural and Human Sciences, Universidade Federal do ABC, Santo André, SP, Brazil; NanoBioss Lab., Chemistry Institute, Universidade Estadual de Campinas, Campinas, SP, Brazil; Nanomedicine Research Unit (NANOMED), Universidade Federal do ABC, Santo André, SP, Brazil.
| | - Nelson Durán
- Center for Natural and Human Sciences, Universidade Federal do ABC, Santo André, SP, Brazil; NanoBioss Lab., Chemistry Institute, Universidade Estadual de Campinas, Campinas, SP, Brazil; Nanomedicine Research Unit (NANOMED), Universidade Federal do ABC, Santo André, SP, Brazil; Chemistry Institute, Biol. Chem. Lab., Universidade Estadual de Campinas, CP 6154, CEP 13083-970, Campinas, SP, Brazil
| |
Collapse
|
14
|
Heckler M, Osterberg N, Guenzle J, Thiede-Stan NK, Reichardt W, Weidensteiner C, Saavedra JE, Weyerbrock A. The nitric oxide donor JS-K sensitizes U87 glioma cells to repetitive irradiation. Tumour Biol 2017; 39:1010428317703922. [PMID: 28653883 DOI: 10.1177/1010428317703922] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
As a potent radiosensitizer nitric oxide (NO) may be a putative adjuvant in the treatment of malignant gliomas which are known for their radio- and chemoresistance. The NO donor prodrug JS-K (O2-(2.4-dinitrophenyl) 1-[(4-ethoxycarbonyl) piperazin-1-yl] diazen-1-ium-1,2-diolate) allows cell-type specific intracellular NO release via enzymatic activation by glutathione-S-transferases overexpressed in glioblastoma multiforme. The cytotoxic and radiosensitizing efficacy of JS-K was assessed in U87 glioma cells in vitro focusing on cell proliferation, induction of DNA damage, and cell death. In vivo efficacy of JS-K and repetitive irradiation were investigated in an orthotopic U87 xenograft model in mice. For the first time, we could show that JS-K acts as a potent cytotoxic and radiosensitizing agent in U87 cells in vitro. This dose- and time-dependent effect is due to an enhanced induction of DNA double-strand breaks leading to mitotic catastrophe as the dominant form of cell death. However, this potent cytotoxic and radiosensitizing effect could not be confirmed in an intracranial U87 xenograft model, possibly due to insufficient delivery into the brain. Although NO donor treatment was well tolerated, neither a retardation of tumor growth nor an extended survival could be observed after JS-K and/or radiotherapy.
Collapse
Affiliation(s)
- Max Heckler
- 1 Department of Neurosurgery, University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nadja Osterberg
- 1 Department of Neurosurgery, University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jessica Guenzle
- 1 Department of Neurosurgery, University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,2 Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Nina Kristin Thiede-Stan
- 1 Department of Neurosurgery, University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Wilfried Reichardt
- 3 German Cancer Consortium (DKTK), Heidelberg, Germany.,4 German Cancer Research Center (DKFZ), Heidelberg, Germany.,5 Department of Radiology-Medical Physics, University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Claudia Weidensteiner
- 5 Department of Radiology-Medical Physics, University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Joseph E Saavedra
- 6 Cancer and Inflammation Program, National Cancer Institute (NCI) at Frederick, Frederick, MD, USA
| | - Astrid Weyerbrock
- 1 Department of Neurosurgery, University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
15
|
Jonsson M, Ragnum HB, Julin CH, Yeramian A, Clancy T, Frikstad KAM, Seierstad T, Stokke T, Matias-Guiu X, Ree AH, Flatmark K, Lyng H. Hypoxia-independent gene expression signature associated with radiosensitisation of prostate cancer cell lines by histone deacetylase inhibition. Br J Cancer 2016; 115:929-939. [PMID: 27599042 PMCID: PMC5061908 DOI: 10.1038/bjc.2016.278] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/22/2016] [Accepted: 08/11/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Histone deacetylase inhibitors (HDACis) like vorinostat are promising radiosensitisers in prostate cancer, but their effect under hypoxia is not known. We investigated gene expression associated with radiosensitisation of normoxic and hypoxic prostate cancer cells by vorinostat. METHODS Cells were exposed to vorinostat under normoxia or hypoxia and subjected to gene expression profiling before irradiation and clonogenic survival analysis. RESULTS Pretreatment with vorinostat led to radiosensitisation of the intrinsically radioresistant DU 145 cells, but not the radiosensitive PC-3 and 22Rv1 cells, and was independent of hypoxia status. Knockdown experiments showed that the sensitisation was not caused by repression of hypoxia-inducible factor HIF1 or tumour protein TP53. Global deregulation of DNA repair and chromatin organisation genes was associated with radiosensitisation under both normoxia and hypoxia. A radiosensitisation signature with expression changes of 56 genes was generated and valid for both conditions. For eight signature genes, baseline expression also correlated with sensitisation, showing potential as pretreatment biomarker. The hypoxia independence of the signature was confirmed in a clinical data set. CONCLUSIONS Pretreatment with HDACi may overcome radioresistance of hypoxic prostate tumours by similar mechanisms as under normoxia. We propose a gene signature to predict radiosensitising effects independent of hypoxia status.
Collapse
Affiliation(s)
- Marte Jonsson
- Department of Radiation Biology, Norwegian Radium Hospital, Oslo University Hospital, Pb 4950, Nydalen, 0424 Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Harald Bull Ragnum
- Department of Radiation Biology, Norwegian Radium Hospital, Oslo University Hospital, Pb 4950, Nydalen, 0424 Oslo, Norway
| | - Cathinka Halle Julin
- Department of Radiation Biology, Norwegian Radium Hospital, Oslo University Hospital, Pb 4950, Nydalen, 0424 Oslo, Norway
| | - Andree Yeramian
- Department of Pathology and Molecular Genetics HUAV, University of Lleida, Lleida, Spain
| | - Trevor Clancy
- Department of Tumor Biology, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Kari-Anne Myrum Frikstad
- Department of Radiation Biology, Norwegian Radium Hospital, Oslo University Hospital, Pb 4950, Nydalen, 0424 Oslo, Norway
| | - Therese Seierstad
- Department of Radiology and Nuclear Medicine, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Trond Stokke
- Department of Radiation Biology, Norwegian Radium Hospital, Oslo University Hospital, Pb 4950, Nydalen, 0424 Oslo, Norway
| | - Xavier Matias-Guiu
- Department of Pathology and Molecular Genetics HUAV, University of Lleida, Lleida, Spain
| | - Anne Hansen Ree
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Tumor Biology, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
- Department of Oncology, Akershus University Hospital, Lørenskog, Norway
| | - Kjersti Flatmark
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Tumor Biology, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
- Department of Gastroenterological Surgery, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Heidi Lyng
- Department of Radiation Biology, Norwegian Radium Hospital, Oslo University Hospital, Pb 4950, Nydalen, 0424 Oslo, Norway
| |
Collapse
|
16
|
Dal Pra A, Locke JA, Borst G, Supiot S, Bristow RG. Mechanistic Insights into Molecular Targeting and Combined Modality Therapy for Aggressive, Localized Prostate Cancer. Front Oncol 2016; 6:24. [PMID: 26909338 PMCID: PMC4754414 DOI: 10.3389/fonc.2016.00024] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Accepted: 01/22/2016] [Indexed: 12/12/2022] Open
Abstract
Radiation therapy (RT) is one of the mainstay treatments for prostate cancer (PCa). The potentially curative approaches can provide satisfactory results for many patients with non-metastatic PCa; however, a considerable number of individuals may present disease recurrence and die from the disease. Exploiting the rich molecular biology of PCa will provide insights into how the most resistant tumor cells can be eradicated to improve treatment outcomes. Important for this biology-driven individualized treatment is a robust selection procedure. The development of predictive biomarkers for RT efficacy is therefore of utmost importance for a clinically exploitable strategy to achieve tumor-specific radiosensitization. This review highlights the current status and possible opportunities in the modulation of four key processes to enhance radiation response in PCa by targeting the: (1) androgen signaling pathway; (2) hypoxic tumor cells and regions; (3) DNA damage response (DDR) pathway; and (4) abnormal extra-/intracell signaling pathways. In addition, we discuss how and which patients should be selected for biomarker-based clinical trials exploiting and validating these targeted treatment strategies with precision RT to improve cure rates in non-indolent, localized PCa.
Collapse
Affiliation(s)
- Alan Dal Pra
- Radiation Medicine Program, Ontario Cancer Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Jennifer A Locke
- Radiation Medicine Program, Ontario Cancer Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Gerben Borst
- Radiation Medicine Program, Ontario Cancer Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Stephane Supiot
- Integrated Center of Oncology (ICO) René Gauducheau , Nantes , France
| | - Robert G Bristow
- Radiation Medicine Program, Ontario Cancer Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
17
|
Chin VT, Nagrial AM, Chou A, Biankin AV, Gill AJ, Timpson P, Pajic M. Rho-associated kinase signalling and the cancer microenvironment: novel biological implications and therapeutic opportunities. Expert Rev Mol Med 2015; 17:e17. [PMID: 26507949 PMCID: PMC4836205 DOI: 10.1017/erm.2015.17] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The Rho/ROCK pathway is involved in numerous pivotal cellular processes that have made it an area of intense study in cancer medicine, however, Rho-associated coiled-coil containing protein kinase (ROCK) inhibitors are yet to make an appearance in the clinical cancer setting. Their performance as an anti-cancer therapy has been varied in pre-clinical studies, however, they have been shown to be effective vasodilators in the treatment of hypertension and post-ischaemic stroke vasospasm. This review addresses the various roles the Rho/ROCK pathway plays in angiogenesis, tumour vascular tone and reciprocal feedback from the tumour microenvironment and explores the potential utility of ROCK inhibitors as effective vascular normalising agents. ROCK inhibitors may potentially enhance the delivery and efficacy of chemotherapy agents and improve the effectiveness of radiotherapy. As such, repurposing of these agents as adjuncts to standard treatments may significantly improve outcomes for patients with cancer. A deeper understanding of the controlled and dynamic regulation of the key components of the Rho pathway may lead to effective use of the Rho/ROCK inhibitors in the clinical management of cancer.
Collapse
Affiliation(s)
- Venessa T. Chin
- The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney, NSW 2010, Australia
| | - Adnan M. Nagrial
- The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney, NSW 2010, Australia
- The Department of Medical Oncology, Crown Princess Mary Cancer Centre, Westmead Hospital, NSW, Australia
| | - Angela Chou
- The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney, NSW 2010, Australia
- Anatomical Pathology, Sydpath, St Vincent's Hospital, Sydney, Australia
| | - Andrew V. Biankin
- The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney, NSW 2010, Australia
- Department of Surgery, Bankstown Hospital, Eldridge Road, Bankstown, Sydney, NSW 2200, Australia
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow, Scotland G61 1BD, UK
| | - Anthony J. Gill
- Department of Anatomical Pathology, Royal North Shore Hospital, St Leonards, Sydney, NSW 2065, Australia
- University of Sydney, Sydney, NSW 2006, Australia
| | - Paul Timpson
- The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney, NSW 2010, Australia
- Faculty of Medicine, St Vincent's Clinical School, University of NSW, Australia
| | - Marina Pajic
- The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney, NSW 2010, Australia
- Faculty of Medicine, St Vincent's Clinical School, University of NSW, Australia
| |
Collapse
|
18
|
NO to cancer: The complex and multifaceted role of nitric oxide and the epigenetic nitric oxide donor, RRx-001. Redox Biol 2015; 6:1-8. [PMID: 26164533 PMCID: PMC4529402 DOI: 10.1016/j.redox.2015.07.002] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 06/30/2015] [Accepted: 07/01/2015] [Indexed: 01/18/2023] Open
Abstract
The endogenous mediator of vasodilation, nitric oxide (NO), has been shown to be a potent radiosensitizer. However, the underlying mode of action for its role as a radiosensitizer – while not entirely understood – is believed to arise from increased tumor blood flow, effects on cellular respiration, on cell signaling, and on the production of reactive oxygen and nitrogen species (RONS), that can act as radiosensitizers in their own right. NO activity is surprisingly long-lived and more potent in comparison to oxygen. Reports of the effects of NO with radiation have often been contradictory leading to confusion about the true radiosensitizing nature of NO. Whether increasing or decreasing tumor blood flow, acting as radiosensitizer or radioprotector, the effects of NO have been controversial. Key to understanding the role of NO as a radiosensitizer is to recognize the importance of biological context. With a very short half-life and potent activity, the local effects of NO need to be carefully considered and understood when using NO as a radiosensitizer. The systemic effects of NO donors can cause extensive side effects, and also affect the local tumor microenvironment, both directly and indirectly. To minimize systemic effects and maximize effects on tumors, agents that deliver NO on demand selectively to tumors using hypoxia as a trigger may be of greater interest as radiosensitizers. Herein we discuss the multiple effects of NO and focus on the clinical molecule RRx-001, a hypoxia-activated NO donor currently being investigated as a radiosensitizer in the clinic. . NO radiosensitizes by reaction with DNA radicals, by its metabolites and by impact on the vasculature. Understanding the local and context-specific activity of NO is key for radiosensitizer development RRx-001 induces NO production under hypoxia with promising radiosensitizing activity.
Collapse
|
19
|
Ryu YK, Lee MH, Lee J, Lee JW, Jang SJ, Kang JH, Moon EY. γ-Irradiated cancer cells promote tumor growth by activation of Toll-like receptor 1-mediated inducible nitric oxide synthase in macrophages. J Leukoc Biol 2015; 97:711-721. [DOI: 10.1189/jlb.3a0114-055r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Abstract
Abstract
RT is commonly used to treat malignant tumors. However, tumor regrowth is a major limitation to RT as an antitumor treatment. In the present study, we investigated the tumor-promoting effects of high-dose (or ablative) RT treatments on tumor-bearing mice. We focused on the role of macrophages that interact with IR-CCs in the TME, which cause tumor regrowth. We observed that CT26(H-2d) tumor growth was enhanced by i.v. injection of IR-CT26 cells compared with NR control CT26 cells. The levels of iNOS gene expression and NO production from RAW264.7 macrophages (H-2d) in response to the interaction with IR-CT26 cells were higher than with NR-CT26 cells. When CT26 tumor-bearing mice were treated i.v. with L-NMMA, a NOS inhibitor, the reduction in in vivo tumor growth was higher in the IR-CT26-injected group compared with the NR-CT26-injected control group. In vivo CT26 tumor growth was decreased after transplanting PEM extracted from L-NMMA-treated, tumor-bearing mice. Although iNOS activity was reduced by inhibiting TLR1 expression with TLR1-siRNA, it was enhanced by TLR1 overexpression. Transcriptional activation and protein expression levels of iNOS were also decreased in the presence of TLR1-siRNA but increased as a result of TLR1 overexpression. These results demonstrate that postradiotherapeutic tumor regrowth may be caused by interaction of IR-CCs with macrophages that induce TLR1-mediated iNOS expression and NO production. Our data suggest that iNOS in macrophages could be a useful target to regulate postradiotherapeutic responses in hosts and subsequently limit tumor regrowth.
Collapse
Affiliation(s)
- Yun-Kyoung Ryu
- Department of Bioscience and Biotechnology, Sejong University , Seoul , Korea
| | - Mi-Hee Lee
- Department of Bioscience and Biotechnology, Sejong University , Seoul , Korea
| | - Jiyoung Lee
- Department of Bioscience and Biotechnology, Sejong University , Seoul , Korea
| | - Jae-Wook Lee
- Department of Bioscience and Biotechnology, Sejong University , Seoul , Korea
| | - Su-Jin Jang
- Molecular Imaging Research Center, Korea Institute of Radiological and Medical Science , Seoul , Korea
| | - Joo-Hyun Kang
- Molecular Imaging Research Center, Korea Institute of Radiological and Medical Science , Seoul , Korea
| | - Eun-Yi Moon
- Department of Bioscience and Biotechnology, Sejong University , Seoul , Korea
| |
Collapse
|
20
|
Samuni Y, Wink DA, Krishna MC, Mitchell JB, Goldstein S. Suberoylanilide hydroxamic acid radiosensitizes tumor hypoxic cells in vitro through the oxidation of nitroxyl to nitric oxide. Free Radic Biol Med 2014; 73:291-8. [PMID: 24880052 PMCID: PMC7670884 DOI: 10.1016/j.freeradbiomed.2014.05.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 05/13/2014] [Accepted: 05/20/2014] [Indexed: 01/05/2023]
Abstract
The pharmacological effects of hydroxamic acids are partially attributed to their ability to serve as HNO and/or NO donors under oxidative stress. Previously, it was concluded that oxidation of the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) by the metmyoglobin/H2O2 reaction system releases NO, which was based on spin trapping of NO and accumulation of nitrite. Reinvestigation of this system demonstrates the accumulation of N2O, which is a marker of HNO formation, at similar rates under normoxia and anoxia. In addition, the yields of nitrite that accumulated in the absence and the presence of O2 did not differ, implying that the source of nitrite is other than autoxidation of NO. In this system metmyoglobin is instantaneously and continuously converted into compound II, leading to one-electron oxidation of SAHA to its respective transient nitroxide radical. Studies using pulse radiolysis show that one-electron oxidation of SAHA (pKa=9.56 ± 0.04) yields the respective nitroxide radical (pKa=9.1 ± 0.2), which under all experimental conditions decomposes bimolecularly to yield HNO. The proposed mechanism suggests that compound I oxidizes SAHA to the respective nitroxide radical, which decomposes bimolecularly in competition with its oxidation by compound II to form HNO. Compound II also oxidizes HNO to NO and NO to nitrite. Given that NO, but not HNO, is an efficient hypoxic cell radiosensitizer, we hypothesized that under an oxidizing environment SAHA might act as a NO donor and radiosensitize hypoxic cells. Preincubation of A549 and HT29 cells with 2.5 μM SAHA for 24h resulted in a sensitizer enhancement ratio at 0.01 survival levels (SER0.01) of 1.33 and 1.59, respectively. Preincubation of A549 cells with oxidized SAHA had hardly any effect and, with 2mM valproic acid, which lacks the hydroxamate group, resulted in SER0.01=1.17. Preincubation of HT29 cells with SAHA and Tempol, which readily oxidizes HNO to NO, enhanced the radiosensitizing effect of SAHA. Pretreatment with SAHA blocked A549 cells at the G1 stage of the cell cycle and upregulated γ-H2AX after irradiation. Overall, we conclude that SAHA enhances tumor radioresponse by multiple mechanisms that might also involve its ability to serve as a NO donor under oxidizing environments.
Collapse
Affiliation(s)
- Yuval Samuni
- IMPACT Strategic Research Centre, Deakin University School of Medicine, Geelong, VIC 3220, Australia; Department of Oral and Maxillofacial Surgery, Barzilai Medical Center, Ashkelon 78278, Israel
| | - David A Wink
- Radiation Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Murali C Krishna
- Radiation Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - James B Mitchell
- Radiation Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sara Goldstein
- Institute of Chemistry, The Accelerator Laboratory, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| |
Collapse
|
21
|
|
22
|
Shafi AA, Yen AE, Weigel NL. Androgen receptors in hormone-dependent and castration-resistant prostate cancer. Pharmacol Ther 2013; 140:223-38. [PMID: 23859952 DOI: 10.1016/j.pharmthera.2013.07.003] [Citation(s) in RCA: 260] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 06/24/2013] [Indexed: 01/18/2023]
Abstract
In the United States, prostate cancer (PCa) is the most commonly diagnosed non-cutaneous cancer in males and the second leading cause of cancer-related death for men. The prostate is an androgen-dependent organ and PCa is an androgen-dependent disease. Androgen action is mediated by the androgen receptor (AR), a hormone activated transcription factor. The primary treatment for metastatic PCa is androgen deprivation therapy (ADT). For the most part, tumors respond to ADT, but most become resistant to therapy within two years. There is persuasive evidence that castration resistant (also termed castration recurrent) PCa (CRPC) remains AR dependent. Recent studies have shown that there are numerous factors that contribute to AR reactivation despite castrate serum levels of androgens. These include changes in AR expression and structure through gene amplification, mutation, and alternative splicing. Changes in steroid metabolism, cell signaling, and coregulator proteins are also important contributors to AR reactivation in CRPC. Most AR targeted therapies have been directed at the hormone binding domain. The finding that constitutively active AR splice variants that lack the hormone binding domain are frequently expressed in CRPC highlights the need to develop therapies that target other portions of AR. In this review, the role of AR in normal prostate, in PCa, and particularly the mechanisms for its reactivation subsequent to ADT are summarized. In addition, recent clinical trials and novel approaches to target AR are discussed.
Collapse
Affiliation(s)
- Ayesha A Shafi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, M515, One Baylor Plaza, Houston, TX 77030, USA
| | | | | |
Collapse
|
23
|
Biological consequences of radiation-induced DNA damage: relevance to radiotherapy. Clin Oncol (R Coll Radiol) 2013; 25:578-85. [PMID: 23849504 DOI: 10.1016/j.clon.2013.06.007] [Citation(s) in RCA: 422] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 06/12/2013] [Indexed: 12/21/2022]
Abstract
DNA damage of exposed tumour tissue leading to cell death is one of the detrimental effects of ionising radiation that is exploited, with beneficial consequences, for radiotherapy. The pattern of the discrete energy depositions during passage of the ionising track of radiation defines the spatial distribution of lesions induced in DNA with a fraction of the DNA damage sites containing clusters of lesions, formed over a few nanometres, against a background of endogenously induced individual lesions. These clustered DNA damage sites, which may be considered as a signature of ionising radiation, underlie the deleterious biological consequences of ionising radiation. The concepts developed rely in part on the fact that ionising radiation creates significant levels of clustered DNA damage, including complex double-strand breaks (DSB), to kill tumour cells as clustered damage sites are difficult to repair. This reduced repairability of clustered DNA damage using specific repair pathways is exploitable in radiotherapy for the treatment of cancer. We discuss some potential strategies to enhance radiosensitivity by targeting the repair pathways of radiation-induced clustered damage and complex DNA DSB, through inhibition of specific proteins that are not required in the repair pathways for endogenous damage. The variety and severity of DNA damage from ionising radiation is also influenced by the tumour microenvironment, being especially sensitive to the oxygen status of the cells. For instance, nitric oxide is known to influence the types of damage induced by radiation under hypoxic conditions. A potential strategy based on bioreductive activation of pro-drugs to release nitric oxide is discussed as an approach to deliver nitric oxide to hypoxic tumours during radiotherapy. The ultimate aim of this review is to stimulate thinking on how knowledge of the complexity of radiation-induced DNA damage may contribute to the development of adjuncts to radiotherapy.
Collapse
|
24
|
Folkes LK, O'Neill P. Modification of DNA damage mechanisms by nitric oxide during ionizing radiation. Free Radic Biol Med 2013; 58:14-25. [PMID: 23376236 DOI: 10.1016/j.freeradbiomed.2013.01.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 01/04/2013] [Accepted: 01/15/2013] [Indexed: 10/27/2022]
Abstract
Nitric oxide ((•)NO) is a very effective radiosensitizer of hypoxic mammalian cells. In vivo (•)NO may have effects on tumor vasculature and hence on tumor oxygenation and it may also interact with radiation-produced radicals to modify DNA lesions. Few studies have addressed this last aspect, and we report here specific base modifications that result from reaction of (•)NO with radicals in DNA bases and in plasmid DNA after irradiation. 2'-Deoxyxanthosine monophosphate and 2'-deoxy-8-azaguanosine monophosphate (8azadGMP) are formed upon γ-irradiation of 2'-deoxyguanosine monophosphate (dGMP) in the presence of micromolar levels of (•)NO in anoxia. In addition, the presence of (•)NO at physiological pH inhibits the formation of the well-described (•)OH-induced oxidation product of dGMP, 8-oxo-2'-deoxyguanosine monophosphate. Single-strand breaks are induced in plasmid DNA when γ-irradiated in anoxia, whereas in the presence of (•)NO the number of breaks is reduced by approximately threefold, and evidence is shown for the formation of 8azadGMP in these plasmids. The consequence of the base modifications by (•)NO are as yet unknown although additional breaks are revealed in irradiated plasmid DNA after treatment with glycosylases involved in base excision repair. V79-4 cells irradiated in anoxia show an enhancement in the number of γH2AX foci when (•)NO is present, particularly evident a few hours postirradiation, indicative of the formation of replication-induced DNA damage. We propose that the consequence of (•)NO-induced base modifications in anoxia contributes to its radiosensitization of cells.
Collapse
Affiliation(s)
- Lisa K Folkes
- Gray Institute for Radiation Oncology and Biology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | | |
Collapse
|
25
|
Folkes LK, O'Neill P. DNA damage induced by nitric oxide during ionizing radiation is enhanced at replication. Nitric Oxide 2013; 34:47-55. [PMID: 23623927 DOI: 10.1016/j.niox.2013.04.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 02/28/2013] [Accepted: 04/16/2013] [Indexed: 01/08/2023]
Abstract
Nitric oxide (NO) is a very effective radiosensitizer of hypoxic mammalian cells, at least as efficient as oxygen in enhancing cell death in vitro. NO may induce cell death through the formation of base lesions which are difficult to repair, and if they occur within complex clustered damage common to ionizing radiation, they may lead to replication-induced DNA strand breaks. It has previously been shown that 8-azaguanine and xanthine result from the reaction of guanine radicals with nitric oxide. We have now shown that adenine radicals also react with NO to form hypoxanthine and 8-azaadenine. Cells irradiated in exponential growth in the presence of NO are twice as radiosensitive compared to those irradiated in anoxia alone, whereas confluent cells are less radiosensitive to (•)NO. In addition, the numbers of DNA double strand breaks observed as γH2AX staining following radiosensitization by NO, are higher in exponential cells than in confluent cells. DNA damage, detected as 53BP1 foci, is also higher in HF-19 cells expressing Cyclin A, a marker for cells in S and G2 phases of the cell cycle, following radiosensitization by NO. RAD51 foci are highest in V79-4 cells irradiated in the presence of NO compared to in anoxia, 24h after radiolysis. This work presents evidence that radiosensitization of cells by NO is in part through the formation of specific DNA damage, difficult to repair, which in dividing cells may induce the formation of stalled replication forks and as a consequence replication-induced DNA strand breaks which may lead to cell death.
Collapse
Affiliation(s)
- Lisa K Folkes
- Gray Institute for Radiation Oncology and Biology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK.
| | | |
Collapse
|
26
|
Burke AJ, Sullivan FJ, Giles FJ, Glynn SA. The yin and yang of nitric oxide in cancer progression. Carcinogenesis 2013; 34:503-12. [PMID: 23354310 DOI: 10.1093/carcin/bgt034] [Citation(s) in RCA: 265] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Nitric oxide (NO) is a short-lived, pleiotropic molecule that affects numerous critical functions in the body. Presently, there are markedly conflicting findings in the literature regarding NO and its role in carcinogenesis and tumor progression. NO has been shown to have dichotomous effects on cellular proliferation, apoptosis, migration, invasion, angiogenesis and many other important processes in cancer biology. It has been shown to be both pro- and antitumorigenic, depending on the concentration and the tumor microenvironment in question. NO is generated by three isoforms of NO synthase (NOS) that are widely expressed and sometimes upregulated in human tumors. Due to its vast array of physiological functions, it presents a huge challenge to researchers to discover its true potential in cancer biology and consequently, its use in anticancer therapies. In this study, we review the current knowledge in this area, with an emphasis placed on NO modulation as an anticancer therapy, focusing on NO-donating drugs and NOS inhibitors.
Collapse
Affiliation(s)
- Amy J Burke
- Prostate Cancer Institute, National University of Ireland Galway, Dublin, Ireland.
| | | | | | | |
Collapse
|
27
|
Ding M, Zhang E, He R, Wang X, Li R, Wang W, Yi Q. The radiation dose-regulated AND gate genetic circuit, a novel targeted and real-time monitoring strategy for cancer gene therapy. Cancer Gene Ther 2012; 19:382-92. [PMID: 22498721 DOI: 10.1038/cgt.2012.11] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The AND gate functions such that when all inputs are activated the downstream gene will be transcribed and it is off otherwise. To accomplish optimal and targeted gene therapy in solid tumor patients, we have constructed an AND gate genetic circuit and investigated whether it could be activated by low-dose radiation in vitro and in vivo. The enhancement green fluorescent protein (EGFP) expression in different tumor cells transfected with control vector plxsn-EGFP confirmed that 2 Gy of radiation and 1% O(2) for 3 h could activate our AND gate. Besides, the obvious different levels of EGFP expression between 2 and 6 Gy of radiation demonstrated that the AND gate could be regulated by radiation doses. Additionally, through EGFP expression and the codistribution of p53 and HIF-1α in xenografts, we illustrated the targeted activation property of the AND gate and real-time monitoring to hypoxic districts in vivo. Moreover, significant growth inhibition and cell cycle arrest in vitro and apoptosis-inducing effects in vitro and in vivo proved that the AND gate induced ideal antitumor effects. In conclusion, the radiation dose-regulated AND gate genetic circuit could not only effectively monitor the therapeutic process in real-time but also induce ideal antitumor efficacy, and can be further exploited for personal therapy in clinical tumor patients.
Collapse
Affiliation(s)
- M Ding
- Department of Cardiology, Chongqing Medical University, Chongqing, China.
| | | | | | | | | | | | | |
Collapse
|
28
|
Bayer C, Vaupel P. Acute versus chronic hypoxia in tumors: Controversial data concerning time frames and biological consequences. Strahlenther Onkol 2012; 188:616-27. [PMID: 22454045 DOI: 10.1007/s00066-012-0085-4] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 01/20/2012] [Indexed: 10/28/2022]
Abstract
BACKGROUND Many tumors contain hypoxic regions. Hypoxia, in turn, is known to increase aggressiveness and to be associated with treatment resistance. The two most frequently described and investigated subtypes of tumor hypoxia are acute and chronic. These two subtypes can lead to completely different hypoxia-related responses within the tumor, which could have a direct effect on tumor development and response to treatment. In order to accurately assess the specific biological consequences, it is important to understand which time frames best define acute and chronic hypoxia. MATERIALS AND METHODS This article provides an overview of the kinetics of in vitro and in vivo acute and chronic tumor hypoxia. Special attention was paid to differentiate between methods to detect spontaneous in vivo hypoxia and to describe the biological effects of experimental in vitro and in vivo acute and chronic tumor hypoxia. RESULTS AND CONCLUSIONS There are large variations in reported spontaneous fluctuations in acute hypoxia that are dependent on the cell lines investigated and the detection method used. In addition to differing hypoxia levels, exposure times used to induce in vitro and in vivo experimental acute and chronic hypoxia range from 30 min to several weeks with no clear boundaries separating the two. Evaluation of the biological consequences of each hypoxia subtype revealed a general trend that acute hypoxia leads to a more aggressive phenotype. Importantly, more information on the occurrence of acute and chronic hypoxia in human tumors is needed to help our understanding of the clinical consequences.
Collapse
Affiliation(s)
- C Bayer
- Department of Radiotherapy and Radiation Oncology, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany.
| | | |
Collapse
|
29
|
Duan S, Cai S, Yang Q, Forrest ML. Multi-arm polymeric nanocarrier as a nitric oxide delivery platform for chemotherapy of head and neck squamous cell carcinoma. Biomaterials 2012; 33:3243-53. [PMID: 22281420 DOI: 10.1016/j.biomaterials.2012.01.026] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 01/09/2012] [Indexed: 11/18/2022]
Abstract
Nitric oxide is a cell signaling molecule that can be a potent inducer of cell death in cancers at elevated concentrations. However, NO is also toxic to normal tissues and chronic exposure at low levels can induce tumor growth. We have designed a polymeric carrier system to deliver nitric oxide locoregionally to tumorigenic tissues at micromolar concentrations. A highly water solubility and biodegradable multi-arm polymer nanocarrier, sugar poly-(6-O-methacryloyl-d-galactose), was synthesized using MADIX/RAFT polymerization, and utilized to deliver high concentrations of nitric oxide to xenografts of human head and neck squamous cell carcinoma (HNSCC). The in vitro release of the newly synthesized nitric oxide donor, O(2)-(2,4-dinitrophenyl) 1-[4-(2-hydroxy)ethyl]-3-methylpiperazin-1-yl]diazen-1-ium-1,2-diolate and its corresponding multi-arm polymer-based nanoconjugate demonstrated a 1- and 2.3-fold increase in half-life, respectively, compared to the release half-life of the nitric oxide-donor prodrug JS-K. When administered to tumor-bearing nude mice, the subcutaneously injected multi-arm polymer nitric oxide nanoparticles resulted in 50% tumor inhibition and a 7-week extension of the average survival time, compared to intravenous JS-K therapy. In summary, we have developed an effective nitric oxide anti-cancer chemotherapy that could be administered regionally to provide the local disease control, improving prognosis for head and neck cancers.
Collapse
Affiliation(s)
- Shaofeng Duan
- Department of Pharmaceutical Chemistry, The University of Kansas, 2095 Constant Ave, Lawrence, KS 66047, United States
| | | | | | | |
Collapse
|
30
|
Hsu JL, Leong PK, Ho YF, Hsu LC, Lu PH, Chen CS, Guh JH. Pim-1 knockdown potentiates paclitaxel-induced apoptosis in human hormone-refractory prostate cancers through inhibition of NHEJ DNA repair. Cancer Lett 2012; 319:214-222. [PMID: 22261337 DOI: 10.1016/j.canlet.2012.01.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 12/26/2011] [Accepted: 01/10/2012] [Indexed: 01/08/2023]
Abstract
The knockdown of Pim-1 or inhibition of Pim-1 activity significantly increased γ-H2A.X expression. The effect was correlated to apoptosis and was attributed to the inhibition of nonhomologous DNA-end-joining (NHEJ) repair activity supported by the following observations: (1) inhibition of ATM and DNA-PKcs activities, (2) down-regulation of Ku expression and nuclear localization and (3) decrease of DNA end-binding of both Ku70 and Ku80. The data suggest that Pim-1 plays a crucial role in the regulation of NHEJ repair. In the absence of Pim-1, the ability of DNA repair significantly decreases when exposed to paclitaxel, leading to severe DNA damage and apoptosis.
Collapse
Affiliation(s)
- Jui-Ling Hsu
- School of Pharmacy, National Taiwan University, No. 1, Sect. 1, Jen-Ai Road, Taipei 100, Taiwan
| | - Pui-Kei Leong
- School of Pharmacy, National Taiwan University, No. 1, Sect. 1, Jen-Ai Road, Taipei 100, Taiwan
| | - Yunn-Fang Ho
- School of Pharmacy, National Taiwan University, No. 1, Sect. 1, Jen-Ai Road, Taipei 100, Taiwan
| | - Lih-Ching Hsu
- School of Pharmacy, National Taiwan University, No. 1, Sect. 1, Jen-Ai Road, Taipei 100, Taiwan
| | - Pin-Hsuan Lu
- School of Pharmacy, National Taiwan University, No. 1, Sect. 1, Jen-Ai Road, Taipei 100, Taiwan
| | - Ching-Shih Chen
- Division of Medicinal Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Jih-Hwa Guh
- School of Pharmacy, National Taiwan University, No. 1, Sect. 1, Jen-Ai Road, Taipei 100, Taiwan.
| |
Collapse
|
31
|
Quero L, Dubois L, Lieuwes NG, Hennequin C, Lambin P. miR-210 as a marker of chronic hypoxia, but not a therapeutic target in prostate cancer. Radiother Oncol 2011; 101:203-8. [PMID: 21704399 DOI: 10.1016/j.radonc.2011.05.063] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Revised: 05/24/2011] [Accepted: 05/26/2011] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Radiotherapy in combination with medical castration is the standard treatment for high-risk prostate cancer. Some relapses may be explained by the presence of radioresistant clones arising from hypoxic microenvironment. Since microRNAs (miR) are increased upon hypoxia, the aim of this study was to see whether miR-210 is a potential marker for hypoxia and/or a therapeutic target in prostate cancer. METHODS Human LNCaP, DU145 or PC3 prostate cancer cells were exposed to normoxia or hypoxia for several hours. Gene expression of miR-210, miR-373 and several hypoxia markers were analyzed by Taqman and SYBR green qRT-PCR, respectively. Clonogenic survival after LNA miR-210 inhibitor (78 nM) and concomitant irradiation were evaluated. RESULTS During anoxia, CAIX and VEGF expressions were dramatically increased. miR-210 expression increased during anoxia exposure, while basal miR-373 expression was low and remained stable upon anoxia. LNA miR-210 inhibitor decreased anoxic miR-210 expression by 90% and clonogenic survival under anoxia (p=0.01). However, no enhanced effect was observed when miR-210 inhibitor was combined with irradiation. CONCLUSION miR-210 could be an interesting marker of chronic hypoxia irrespective of the androgen dependency and should, therefore, be tested as a prognostic marker in high risk prostate cancer patients.
Collapse
Affiliation(s)
- Laurent Quero
- Maastricht Radiation Oncology Lab, Maastricht University Medical Centre, The Netherlands.
| | | | | | | | | |
Collapse
|