1
|
Ravanfar R, Sheng Y, Gray HB, Winkler JR. Tryptophan extends the life of cytochrome P450. Proc Natl Acad Sci U S A 2023; 120:e2317372120. [PMID: 38060561 PMCID: PMC10722969 DOI: 10.1073/pnas.2317372120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/04/2023] [Indexed: 12/17/2023] Open
Abstract
Powerfully oxidizing enzymes need protective mechanisms to prevent self-destruction. The flavocytochrome P450 BM3 from Priestia megaterium (P450BM3) is a self-sufficient monooxygenase that hydroxylates fatty acid substrates using O2 and NADPH as co-substrates. Hydroxylation of long-chain fatty acids (≥C14) is well coupled to O2 and NADPH consumption, but shorter chains (≤C12) are more poorly coupled. Hydroxylation of p-nitrophenoxydodecanoic acid by P450BM3 produces a spectrophotometrically detectable product wherein the coupling of NADPH consumption to product formation is just 10%. Moreover, the rate of NADPH consumption is 1.8 times that of O2 consumption, indicating that an oxidase uncoupling pathway is operative. Measurements of the total number of enzyme turnovers before inactivation (TTN) indicate that higher NADPH concentrations increase TTN. At lower NADPH levels, added ascorbate increases TTN, while a W96H mutation leads to a decrease. The W96 residue is about 7 Å from the P450BM3 heme and serves as a gateway residue in a tryptophan/tyrosine (W/Y) hole transport chain from the heme to a surface tyrosine residue. The data indicate that two oxidase pathways protect the enzyme from damage by intercepting the powerfully oxidizing enzyme intermediate (Compound I) and returning it to its resting state. At high NADPH concentrations, reducing equivalents from the flavoprotein are delivered to Compound I by the usual reductase pathway. When NADPH is not abundant, however, oxidizing equivalents from Compound I can traverse a W/Y chain, arriving at the enzyme surface where they are scavenged by reductants. Ubiquitous tryptophan/tyrosine chains in highly oxidizing enzymes likely perform similar protective functions.
Collapse
Affiliation(s)
- Raheleh Ravanfar
- Beckman Institute, California Institute of Technology, Pasadena, CA91125
| | - Yuling Sheng
- Beckman Institute, California Institute of Technology, Pasadena, CA91125
| | - Harry B. Gray
- Beckman Institute, California Institute of Technology, Pasadena, CA91125
| | - Jay R. Winkler
- Beckman Institute, California Institute of Technology, Pasadena, CA91125
| |
Collapse
|
2
|
Mishin V, Heck DE, Jan YH, Richardson JR, Laskin JD. Distinct effects of form selective cytochrome P450 inhibitors on cytochrome P450-mediated monooxygenase and hydrogen peroxide generating NADPH oxidase. Toxicol Appl Pharmacol 2022; 455:116258. [PMID: 36174671 DOI: 10.1016/j.taap.2022.116258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/14/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022]
Abstract
A characteristic of cytochrome P450 (CYP) enzymes is their ability to generate H2O2, either directly or indirectly via superoxide anion, a reaction referred to as "NADPH oxidase" activity. H2O2 production by CYPs can lead to the accumulation of cytotoxic reactive oxygen species which can compromise cellular functioning and contribute to tissue injury. Herein we determined if form selective CYP inhibitors could distinguish between the activities of the monooxygenase and NADPH oxidase activities of rat recombinant CYP1A2, CYP2E1, CYP3A1 and CYP3A2 and CYP1A1/2-enriched β-naphthoflavone-induced rat liver microsomes, CYP2E1-enriched isoniazide-induced rat liver microsomes and CYP3A subfamily-enriched dexamethasone-induced rat liver microsomes. In the presence of 7,8-benzoflavone (2.0 μM) for CYP1A2 and 4-methylpyrazole (32 μM) or DMSO (16 mM) for CYP2E1, monooxygenase activity was blocked without affecting NADPH oxidase activity for both the recombinant enzymes and microsomal preparations. Ketoconazole (1.0 μM), a form selective inhibitor for CYP3A subfamily enzymes, completely inhibited monooxygenase activity of rat recombinant CYP3A1/3A2 and CYP3A subfamily in rat liver microsomes; it also partially inhibited NADPH oxidase activity. 7,8-benzoflavone is a type I ligand, which competes with substrate binding, while 4-methylpyrazole and DMSO are type II heme binding ligands. Interactions of heme with these type II ligands was not sufficient to interfere with oxygen activation, which is required for NADPH oxidase activity. Ketoconazole, a type II ligand known to bind multiple sites on CYP3A subfamily enzymes in close proximity to heme, also interfered, at least in part, with oxygen activation. These data indicate that form specific inhibitors can be used to distinguish between monooxygenase reactions and H2O2 generating NADPH oxidase of CYP1A2 and CYP2E1. Mechanisms by which ketoconazole inhibits CYP3A NADPH oxidase remain to be determined.
Collapse
Affiliation(s)
- Vladimir Mishin
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | - Diane E Heck
- Department of Public Health, New York Medical College, Valhalla, NY 10595, USA
| | - Yi-Hua Jan
- Department of Environmental and Occupational Health and Justice, Rutgers University School of Public Health, Piscataway, NJ 08854, USA
| | - Jason R Richardson
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL 33199, USA
| | - Jeffrey D Laskin
- Department of Environmental and Occupational Health and Justice, Rutgers University School of Public Health, Piscataway, NJ 08854, USA.
| |
Collapse
|
3
|
Li W, Li P, Zhou X, Situ J, Lin Y, Qiu J, Yuan Y, Xi P, Jiang Z, Kong G. A Cytochrome B 5-Like Heme/Steroid Binding Domain Protein, PlCB5L1, Regulates Mycelial Growth, Pathogenicity and Oxidative Stress Tolerance in Peronophythora litchii. FRONTIERS IN PLANT SCIENCE 2021; 12:783438. [PMID: 34899811 PMCID: PMC8655872 DOI: 10.3389/fpls.2021.783438] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/01/2021] [Indexed: 06/14/2023]
Abstract
As an electron transport component, cytochrome b5 is an essential component of the Class II cytochrome P450 monooxygenation system and widely present in animals, plants, and fungi. However, the roles of Cyt-b5 domain proteins in pathogenic oomycetes remain unknown. Peronophythora litchii is an oomycete pathogen that causes litchi downy blight, the most destructive disease of litchi. In this study, we identified a gene, designated PlCB5L1, that encodes a Cyt-b5 domain protein in P. litchii, and characterized its function. PlCB5L1 is highly expressed in the zoospores, cysts, germinated cysts, and during early stages of infection. PlCB5L1 knockout mutants showed reduced growth rate and β-sitosterol utilization. Importantly, we also found that PlCB5L1 is required for the full pathogenicity of P. litchii. Compared with the wild-type strain, the PlCB5L1 mutants exhibited significantly higher tolerance to SDS and sorbitol, but impaired tolerance to cell wall stress, osmotic stress, and oxidative stress. Further, the expression of genes involved in oxidative stress tolerance, including peroxidase, cytochrome P450, and laccase genes, were down-regulated in PlCB5L1 mutants under oxidative stress. This is the first report that a Cyt-b5 domain protein contributes to the development, stress response, and pathogenicity in plant pathogenic oomycetes.
Collapse
Affiliation(s)
- Wen Li
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant Pathology, South China Agricultural University, Guangzhou, China
| | - Peng Li
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant Pathology, South China Agricultural University, Guangzhou, China
| | - Xiaofan Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant Pathology, South China Agricultural University, Guangzhou, China
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Junjian Situ
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant Pathology, South China Agricultural University, Guangzhou, China
| | - Yiming Lin
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant Pathology, South China Agricultural University, Guangzhou, China
| | - Jiahui Qiu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant Pathology, South China Agricultural University, Guangzhou, China
| | - Yuling Yuan
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant Pathology, South China Agricultural University, Guangzhou, China
| | - Pinggen Xi
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant Pathology, South China Agricultural University, Guangzhou, China
| | - Zide Jiang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant Pathology, South China Agricultural University, Guangzhou, China
| | - Guanghui Kong
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant Pathology, South China Agricultural University, Guangzhou, China
| |
Collapse
|
4
|
Zhang W, Wang H, Liu Z, Wang Y, Xu B. Identification of a new P450s gene ( AccCYP4AV1) and its roles in abiotic stress resistance in the Apis cerana cerana Fabricius. BULLETIN OF ENTOMOLOGICAL RESEARCH 2021; 111:57-65. [PMID: 33107419 DOI: 10.1017/s0007485320000644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cytochrome P450 monooxygenases (P450s) play significant roles in protecting organisms from abiotic stress damage. Here, we report the sequence and characterization of a P450s gene (AccCYP4AV1), isolated from Apis cerana cerana Fabricius. The open reading frame of AccCYP4AV1 is 1506 base pairs long and encodes a predicted protein of 501 amino acids and 57.84 kDa, with an isoelectric point of 8.67. Real-time quantitative polymerase chain reaction (RT-qPCR) analysis indicated that AccCYP4AV1 is more highly expressed in the midgut than in other tissues. In addition, the highest expression occurs in newly emerged adult workers, followed by the first instar of the larval stage. In addition, the expression of the AccCYP4AV1 was upregulated by low temperature (4 °C), ultraviolet radiation, hydrogen peroxide, paraquat, and dichlorvos treatments. In contrast, AccCYP4AV1 transcription was downregulated by other abiotic stress conditions: exposure to increased temperature (44 °C), deltamethrin, cadmium chloride, and mercury (II) chloride. Moreover, when AccCYP4AV1 was knocked-down by RNA interference, the results suggested that multiple antioxidant genes (AccsHSP22.6, AccSOD2, AccTpx1, and AccTpx4) were downregulated and antioxidant genes AccGSTO1 and AccTrx1 were upregulated. The activity levels of peroxidase and catalase were upregulated in the AccCYP4AV1-knocked-down samples, compared with those in the control groups. These findings suggest that the AccCYP4AV1 protein might be involved in the defense against abiotic stress damage.
Collapse
Affiliation(s)
- Weixing Zhang
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong, People's Republic of China
| | - Hongfang Wang
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong, People's Republic of China
| | - Zhenguo Liu
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong, People's Republic of China
| | - Ying Wang
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong, People's Republic of China
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong, People's Republic of China
| |
Collapse
|
5
|
Li X, Yu D, Jie H, Zhou H, Ye H, Ma G, Wan L, Li C, Shi H, Yin S. Cytochrome P450 1A2 Is Incapable of Oxidizing Bilirubin Under Physiological Conditions. Front Pharmacol 2019; 10:1220. [PMID: 31680983 PMCID: PMC6813656 DOI: 10.3389/fphar.2019.01220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 09/23/2019] [Indexed: 12/31/2022] Open
Abstract
Background: Bilirubin (BR) is metabolized mainly by uridine diphosphate (UDP)-glucuronosyltransferase 1A1 (UGT1A1) through glucuronidation in the liver. Some studies have shown that several subtypes of cytochrome P450 (CYP) enzymes, including CYP1A2, are upregulated by inducers and proposed to be alternative BR degradation enzymes. However, no information is available on the BR degradation ability of CYP in normal rats without manipulation by CYP inducers. Methods: Quantitative real-time polymerase chain reaction (QRT-PCR), western blot, immunofluorescence, and confocal microscopy were used to find expression of CYP1A2 in the brain and the liver. BR metabolites in microsomal fractions during development were examined by high-performance liquid chromatography/electrospray ionization tandem mass spectrometry (LC-MS/MS). Results: In the present study, we observed that CYP1A2 mRNA levels increased at postnatal days (P)14 and P30 with respect to the level at P7 both in liver and brain, this increment was especially pronounced in the brain at P14. The expression of CYP1A2 in the brainstem (BS) was higher than that in the cerebellum (CLL) and cortex (COR). Meanwhile, the CYP1A2 protein level was significantly higher in the COR than in the brainstem and CLL at P14. The levels of BR and its metabolites (m/z values 301, 315, 333 and biliverdin) were statistically unaltered by incubation with liver and brain microsomal fractions. Conclusion: Our results indicated that the region-specific expression of CYP1A2 increased during development, but CYP family enzymes were physiologically incapable of metabolizing BR. The ability of CYPs to oxidize BR may be triggered by CYP inducers.
Collapse
Affiliation(s)
- Xinyi Li
- Department of Otorhinolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Dongzhen Yu
- Department of Otorhinolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Huiqun Jie
- Department of Otorhinolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Huiqun Zhou
- Department of Otorhinolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Haibo Ye
- Department of Otorhinolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Guo Ma
- Department of Clinical Pharmacy, School of Pharmacy, Fudan University, Shanghai, China
| | - Lili Wan
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Chunyan Li
- Department of Otorhinolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Haibo Shi
- Department of Otorhinolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Shankai Yin
- Department of Otorhinolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| |
Collapse
|
6
|
Zhang W, Chen W, Li Z, Ma L, Yu J, Wang H, Liu Z, Xu B. Identification and Characterization of Three New Cytochrome P450 Genes and the Use of RNA Interference to Evaluate Their Roles in Antioxidant Defense in Apis cerana cerana Fabricius. Front Physiol 2018; 9:1608. [PMID: 30498454 PMCID: PMC6250095 DOI: 10.3389/fphys.2018.01608] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 10/25/2018] [Indexed: 11/13/2022] Open
Abstract
Cytochrome P450s play critical roles in maintaining redox homeostasis and protecting organisms from the accumulation of toxic reactive oxygen species (ROS). The biochemical functions of the P450 family have essentially been associated with the metabolism of xenobiotics. Here, we sequenced and characterized three P450 genes, AccCYP314A1, AccCYP4AZ1, and AccCYP6AS5, from Apis cerana cerana Fabricius; these genes play a critical role in maintaining biodiversity. Quantitative PCR (qPCR) analysis indicated that the three genes were all predominantly expressed in the epidermis (EP), followed by the brain (BR) and midgut (MG). In addition, the highest expression levels were detected in the dark-eyed pupae and adult stages. The three genes were induced by temperature (4°C and 44°C), heavy metals (CdCl2 and HgCl2), pesticides (DDV, deltamethrin, and paraquat) and UV treatments. Furthermore, Western blot analysis indicated that the protein expression levels could be induced by some abiotic stressors, a result that complements the qPCR results. We analyzed the silencing of these three genes and found that silencing these genes enhanced the enzymatic activities of peroxidase (POD) and catalase (CAT). Additionally, we investigated the expression of other antioxidant genes and found that some were upregulated, while others were downregulated, suggesting that the upregulated genes may be involved in compensating for the silencing of AccCYP314A1, AccCYP4AZ1, and AccCYP6AS5. Our findings suggest that AccCYP314A1, AccCYP4AZ1, and AccCYP6AS5 may play very significant roles in the antioxidant defense against damage caused by ROS.
Collapse
Affiliation(s)
- Weixing Zhang
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Wenfeng Chen
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Zhenfang Li
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Lanting Ma
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Jing Yu
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Hongfang Wang
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Zhenguo Liu
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
7
|
Song C, Matysik J, Mark F. Crystal Effects on Mesobilirubin: A Combined NMR Spectroscopic and Density Functional Theory Study. Photochem Photobiol 2017; 93:834-843. [PMID: 28500715 DOI: 10.1111/php.12734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 12/12/2016] [Indexed: 11/30/2022]
Abstract
We report solid-state NMR investigations of crystal effects in powdered mesobilirubin-IXα, an open-chain tetrapyrrole that is structurally related to bilirubin-IXα but hydrogenated at the 3- and 18-vinyl groups. 13 C and 15 N cross-polarization magic-angle spinning (CP/MAS) NMR experiments were performed on the compound at natural abundance. To facilitate the spectral analysis, density functional calculations were carried out at the B3LYP/6-311G(d,p) level of theory, using an enneameric cluster to simulate the solid. The 1 H, 13 C and 15 N chemical shift data calculated for the enneamer are in a good agreement with those observed in the experimental spectra, and the relative order of the calculated resonances was thus used to confirm the tentative assignments obtained mainly from the heteronuclear correlation spectra. The observed signal splittings of a small subset of the 13 C resonances in the peripheral regions of the two terminal rings provide evidence for microcrystalline heterogeneity of the powdered compound.
Collapse
Affiliation(s)
- Chen Song
- Institut für Analytische Chemie, Universität Leipzig, Leipzig, Germany.,Leids Instituut voor Chemisch Onderzoek, Universiteit Leiden, Leiden, The Netherlands
| | - Jörg Matysik
- Institut für Analytische Chemie, Universität Leipzig, Leipzig, Germany
| | - Franz Mark
- Max-Planck-Institut für Chemische Energiekonversion, Mülheim an der Ruhr, Germany
| |
Collapse
|
8
|
Electron flow through biological molecules: does hole hopping protect proteins from oxidative damage? Q Rev Biophys 2016; 48:411-20. [PMID: 26537399 DOI: 10.1017/s0033583515000062] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Biological electron transfers often occur between metal-containing cofactors that are separated by very large molecular distances. Employing photosensitizer-modified iron and copper proteins, we have shown that single-step electron tunneling can occur on nanosecond to microsecond timescales at distances between 15 and 20 Å. We also have shown that charge transport can occur over even longer distances by hole hopping (multistep tunneling) through intervening tyrosines and tryptophans. In this perspective, we advance the hypothesis that such hole hopping through Tyr/Trp chains could protect oxygenase, dioxygenase, and peroxidase enzymes from oxidative damage. In support of this view, by examining the structures of P450 (CYP102A) and 2OG-Fe (TauD) enzymes, we have identified candidate Tyr/Trp chains that could transfer holes from uncoupled high-potential intermediates to reductants in contact with protein surface sites.
Collapse
|
9
|
Characterization of an Apis cerana cerana cytochrome P450 gene (AccCYP336A1) and its roles in oxidative stresses responses. Gene 2016; 584:120-8. [DOI: 10.1016/j.gene.2016.02.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 01/28/2016] [Accepted: 02/10/2016] [Indexed: 01/18/2023]
|
10
|
Szilagyi JT, Mishin V, Heck DE, Jan YH, Aleksunes LM, Richardson JR, Heindel ND, Laskin DL, Laskin JD. Selective Targeting of Heme Protein in Cytochrome P450 and Nitric Oxide Synthase by Diphenyleneiodonium. Toxicol Sci 2016; 151:150-9. [PMID: 26880746 PMCID: PMC4914801 DOI: 10.1093/toxsci/kfw031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cytochrome P450 (CYP) enzymes mediate mixed-function oxidation reactions important in drug metabolism. The aromatic heterocyclic cation, diphenyleneiodonium (DPI), binds flavin in cytochrome P450 reductase and inhibits CYP-mediated activity. DPI also inhibits CYP by directly interacting with heme. Herein, we report that DPI effectively inhibits a number of CYP-related monooxygenase reactions including NADPH oxidase, a microsomal enzyme activity that generates hydrogen peroxide in the absence of metabolizing substrates. Inhibition of monooxygenase by DPI was time and concentration dependent with IC50's ranging from 0.06 to 1.9 μM. Higher (4.6-23.9 μM), but not lower (0.06-1.9 μM), concentrations of DPI inhibited electron flow via cytochrome P450 reductase, as measured by its ability to reduce cytochrome c and mediate quinone redox cycling. Similar results were observed with inducible nitric oxide synthase (iNOS), an enzyme containing a C-terminal reductase domain homologous to cytochrome P450 reductase that mediates reduction of cytochrome c, and an N-terminal heme-thiolate oxygenase domain mediating nitric oxide production. Significantly greater concentrations of DPI were required to inhibit cytochrome c reduction by iNOS (IC50 = 3.5 µM) than nitric oxide production (IC50 = 0.16 µM). Difference spectra of liver microsomes, recombinant CYPs, and iNOS demonstrated that DPI altered heme-carbon monoxide interactions. In the presence of NADPH, DPI treatment of microsomes and iNOS yielded a type II spectral shift. These data indicate that DPI interacts with both flavin and heme in CYPs and iNOS. Increased sensitivity for inhibition of CYP-mediated metabolism and nitric oxide production by iNOS indicates that DPI targets heme moieties within the enzymes.
Collapse
Affiliation(s)
- John T Szilagyi
- *Department of Environmental and Occupational Health, Rutgers University School of Public Health, Piscataway, NJ 08854
| | - Vladimir Mishin
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ 08854
| | - Diane E Heck
- Department of Environmental Health Science, New York Medical College, Valhalla, NY 10595
| | - Yi-Hua Jan
- *Department of Environmental and Occupational Health, Rutgers University School of Public Health, Piscataway, NJ 08854
| | - Lauren M Aleksunes
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ 08854
| | - Jason R Richardson
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272
| | - Ned D Heindel
- Department of Chemistry, Lehigh University, Bethlehem, PA 18015
| | - Debra L Laskin
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ 08854
| | - Jeffrey D Laskin
- *Department of Environmental and Occupational Health, Rutgers University School of Public Health, Piscataway, NJ 08854
| |
Collapse
|
11
|
Korobkova EA. Effect of Natural Polyphenols on CYP Metabolism: Implications for Diseases. Chem Res Toxicol 2015; 28:1359-90. [PMID: 26042469 DOI: 10.1021/acs.chemrestox.5b00121] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cytochromes P450 (CYPs) are a large group of hemeproteins located on mitochondrial membranes or the endoplasmic reticulum. They play a crucial role in the metabolism of endogenous and exogenous molecules. The activity of CYP is associated with a number of factors including redox potential, protein conformation, the accessibility of the active site by substrates, and others. This activity may be potentially modulated by a variety of small molecules. Extensive experimental data collected over the past decade point at the active role of natural polyphenols in modulating the catalytic activity of CYP. Polyphenols are widespread micronutrients present in human diets of plant origin and in medicinal herbs. These compounds may alter the activity of CYP either via direct interactions with the enzymes or by affecting CYP gene expression. The polyphenol-CYP interactions may significantly alter the pharmacokinetics of drugs and thus influence the effectiveness of chemical therapies used in the treatment of different types of cancers, diabetes, obesity, and cardiovascular diseases (CVD). CYPs are involved in the oxidation and activation of external carcinogenic agents, in which case the inhibition of the CYP activity is beneficial for health. CYPs also support detoxification processes. In this case, it is the upregulation of CYP genes that would be favorable for the organism. A CYP enzyme aromatase catalyzes the formation of estrone and estradiol from their precursors. CYPs also catalyze multiple reactions leading to the oxidation of estrogen. Estrogen signaling and oxidative metabolism of estrogen are associated with the development of cancer. Thus, polyphenol-mediated modulation of the CYP's activity also plays a vital role in estrogen carcinogenesis. The aim of the present review is to summarize the data collected over the last five to six years on the following topics: (1) the mechanisms of the interactions of CYP with food constituents that occur via the direct binding of polyphenols to the enzymes and (2) the mechanisms of the regulation of CYP gene expression mediated by polyphenols. The structure-activity relationship relevant to the ability of polyphenols to affect the activity of CYP is analyzed. The application of polyphenol-CYP interactions to diseases is discussed.
Collapse
Affiliation(s)
- Ekaterina A Korobkova
- John Jay College of Criminal Justice, The Department of Sciences, City University of New York, 524 W 59th Street, New York, New York 10019, United States
| |
Collapse
|
12
|
Winkler JR, Gray HB. Could tyrosine and tryptophan serve multiple roles in biological redox processes? PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2015; 373:rsta.2014.0178. [PMID: 25666062 PMCID: PMC4342971 DOI: 10.1098/rsta.2014.0178] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Single-step electron tunnelling reactions can transport charges over distances of 15-20 Åin proteins. Longer-range transfer requires multi-step tunnelling processes along redox chains, often referred to as hopping. Long-range hopping via oxidized radicals of tryptophan and tyrosine, which has been identified in several natural enzymes, has been demonstrated in artificial constructs of the blue copper protein azurin. Tryptophan and tyrosine serve as hopping way stations in high-potential charge transport processes. It may be no coincidence that these two residues occur with greater-than-average frequency in O(2)- and H(2)O(2)-reactive enzymes. We suggest that appropriately placed tyrosine and/or tryptophan residues prevent damage from high-potential reactive intermediates by reduction followed by transfer of the oxidizing equivalent to less harmful sites or out of the protein altogether.
Collapse
Affiliation(s)
- Jay R Winkler
- Beckman Institute, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Harry B Gray
- Beckman Institute, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| |
Collapse
|
13
|
Cong Z, Shoji O, Kasai C, Kawakami N, Sugimoto H, Shiro Y, Watanabe Y. Activation of Wild-Type Cytochrome P450BM3 by the Next Generation of Decoy Molecules: Enhanced Hydroxylation of Gaseous Alkanes and Crystallographic Evidence. ACS Catal 2014. [DOI: 10.1021/cs501592f] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
| | | | | | | | - Hiroshi Sugimoto
- RIKEN SPing-8 Center, Harima Institute. 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Yoshitsugu Shiro
- RIKEN SPing-8 Center, Harima Institute. 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | | |
Collapse
|
14
|
Role of brain cytochrome P450 mono-oxygenases in bilirubin oxidation-specific induction and activity. Arch Toxicol 2014; 90:279-90. [DOI: 10.1007/s00204-014-1394-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 10/16/2014] [Indexed: 01/24/2023]
|