1
|
Falah K, Zhang P, Nigam AK, Maity K, Chang G, Granados JC, Momper JD, Nigam SK. In Vivo Regulation of Small Molecule Natural Products, Antioxidants, and Nutrients by OAT1 and OAT3. Nutrients 2024; 16:2242. [PMID: 39064685 PMCID: PMC11280313 DOI: 10.3390/nu16142242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/27/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
The organic anion transporters OAT1 (SLC22A6) and OAT3 (SLC22A8) are drug transporters that are expressed in the kidney, with well-established roles in the in vivo transport of drugs and endogenous metabolites. A comparatively unexplored potential function of these drug transporters is their contribution to the in vivo regulation of natural products (NPs) and their effects on endogenous metabolism. This is important for the evaluation of potential NP interactions with other compounds at the transporter site. Here, we have analyzed the NPs present in several well-established databases from Asian (Chinese, Indian Ayurvedic) and other traditions. Loss of OAT1 and OAT3 in murine knockouts caused serum alterations of many NPs, including flavonoids, vitamins, and indoles. OAT1- and OAT3-dependent NPs were largely separable based on a multivariate analysis of chemical properties. Direct binding to the transporter was confirmed using in vitro transport assays and protein binding assays. Our in vivo and in vitro results, considered in the context of previous data, demonstrate that OAT1 and OAT3 play a pivotal role in the handling of non-synthetic small molecule natural products, NP-derived antioxidants, phytochemicals, and nutrients (e.g., pantothenic acid, thiamine). As described by remote sensing and signaling theory, drug transporters help regulate redox states by meditating the movement of endogenous antioxidants and nutrients between organs and organisms. Our results demonstrate how dietary antioxidants and other NPs might feed into these inter-organ and inter-organismal pathways.
Collapse
Affiliation(s)
- Kian Falah
- Department of Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Patrick Zhang
- Department of Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Anisha K. Nigam
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Koustav Maity
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Geoffrey Chang
- Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Jeffry C. Granados
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Jeremiah D. Momper
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Sanjay K. Nigam
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
- Department of Medicine (Nephrology), University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
2
|
Li J, Wang S, Tian F, Zhang SQ, Jin H. Advances in Pharmacokinetic Mechanisms of Transporter-Mediated Herb-Drug Interactions. Pharmaceuticals (Basel) 2022; 15:ph15091126. [PMID: 36145347 PMCID: PMC9502688 DOI: 10.3390/ph15091126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/25/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
As the use of herbs has become more popular worldwide, there are increasing reports of herb-drug interactions (HDIs) following the combination of herbs and drugs. The active components of herbs are complex and have a variety of pharmacological activities, which inevitably affect changes in the pharmacokinetics of chemical drugs in vivo. The absorption, distribution, metabolism, and excretion of drugs in vivo are closely related to the expression of drug transporters. When the active components of herbs inhibit or induce the expression of transporters, this can cause changes in substrate pharmacokinetics, resulting in changes in the efficacy and toxicity of drugs. In this article, the tissue distribution and physiological functions of drug transporters are summarized through literature retrieval, and the effects of herbs on drug transporters and the possible mechanism of HDIs are analyzed and discussed in order to provide ideas and a reference for further guiding of safe clinical drug use.
Collapse
Affiliation(s)
- Jie Li
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Shuting Wang
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Fengjie Tian
- Beijing Union-Genius Pharmaceutical Technology Development Co., Ltd., Beijing 100176, China
- NMPA Key Laboratory for Safety Research and Evaluation of Innovative Drug, Beijing 102206, China
| | - Shuang-Qing Zhang
- Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, 29 Nanwei Road, Beijing 100050, China
- Correspondence: (S.-Q.Z.); (H.J.); Tel.: +86-10-66237226 (S.-Q.Z.); +86-10-67817730 (H.J.)
| | - Hongtao Jin
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Beijing Union-Genius Pharmaceutical Technology Development Co., Ltd., Beijing 100176, China
- NMPA Key Laboratory for Safety Research and Evaluation of Innovative Drug, Beijing 102206, China
- Correspondence: (S.-Q.Z.); (H.J.); Tel.: +86-10-66237226 (S.-Q.Z.); +86-10-67817730 (H.J.)
| |
Collapse
|
3
|
Ishii Y, Nakamura K, Mitsumoto T, Takimoto N, Namiki M, Takasu S, Ogawa K. Visualization of the distribution of anthraquinone components from madder roots in rat kidneys by desorption electrospray ionization-time-of-flight mass spectrometry imaging. Food Chem Toxicol 2022; 161:112851. [DOI: 10.1016/j.fct.2022.112851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/11/2022] [Accepted: 02/02/2022] [Indexed: 12/17/2022]
|
4
|
Regulation of organic anion transporters: Role in physiology, pathophysiology, and drug elimination. Pharmacol Ther 2020; 217:107647. [PMID: 32758646 DOI: 10.1016/j.pharmthera.2020.107647] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/27/2020] [Indexed: 12/24/2022]
Abstract
The members of the organic anion transporter (OAT) family are mainly expressed in kidney, liver, placenta, intestine, and brain. These transporters play important roles in the disposition of clinical drugs, pesticides, signaling molecules, heavy metal conjugates, components of phytomedicines, and toxins, and therefore critical for maintaining systemic homeostasis. Alterations in the expression and function of OATs contribute to the intra- and inter-individual variability of the therapeutic efficacy and the toxicity of many drugs, and to many pathophysiological conditions. Consequently, the activity of these transporters must be highly regulated to carry out their normal functions. This review will present an update on the recent advance in understanding the cellular and molecular mechanisms underlying the regulation of renal OATs, emphasizing on the post-translational modification (PTM), the crosstalk among these PTMs, and the remote sensing and signaling network of OATs. Such knowledge will provide significant insights into the roles of these transporters in health and disease.
Collapse
|
5
|
Huo X, Meng Q, Wang C, Wu J, Zhu Y, Sun P, Ma X, Sun H, Liu K. Targeting renal OATs to develop renal protective agent from traditional Chinese medicines: Protective effect of Apigenin against Imipenem-induced nephrotoxicity. Phytother Res 2020; 34:2998-3010. [PMID: 32468621 DOI: 10.1002/ptr.6727] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/11/2020] [Accepted: 04/25/2020] [Indexed: 12/11/2022]
Abstract
Imipenem (Imp) is a widely used broad-spectrum antibiotic. However, renal adverse effects limit its clinical application. We previously reported that organic anion transporters (OATs) facilitated the renal transport of Imp and contributed its nephrotoxicity. Natural flavonoids exhibited renal protective effect. Here, we aimed to develop potent OAT inhibitors from traditional Chinese medicines (TCMs) and to evaluate its protective effect against Imp-induced nephrotoxicity. Among 50 TCMs, Tribuli Fructus, Platycladi Cacumen, and Lycopi Herba exhibited potent inhibition on OAT1/3. After screening their main components, Apigenin strongly inhibited Imp uptake by OAT1/3-HEK293 cells with IC50 values of 1.98 ± 0.36 μM (OAT1) and 2.29 ± 0.88 μM (OAT3). Moreover, Imp exhibited OAT1/3-dependent cytotoxicity, which was alleviated by Apigenin. Furthermore, Apigenin ameliorated Imp-induced nephrotoxicity in rabbits, and reduced the renal secretion of Imp. Apigenin inhibited intracellular accumulation of Imp and sequentially decreased the nephrocyte toxicity in rabbit primary proximal tubule cells (rPTCs). Apigenin, a flavone widely distributed in TCMs, was a potent OAT1/3 inhibitor. Through OAT inhibition, at least in part, Apigenin decreased the renal exposure of Imp and consequently protected against the nephrotoxicity of Imp. Apigenin can be used as a promising agent to reduce the renal adverse reaction of Imp in clinic.
Collapse
Affiliation(s)
- Xiaokui Huo
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China.,College (Institute) of Integrative Medicine, Dalian Medical University, Dalian, China.,Provincial Key Laboratory for Pharmacokinetics and Transport Liaoning, Dalian Medical University, Dalian, China
| | - Qiang Meng
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China.,College (Institute) of Integrative Medicine, Dalian Medical University, Dalian, China.,Provincial Key Laboratory for Pharmacokinetics and Transport Liaoning, Dalian Medical University, Dalian, China
| | - Changyuan Wang
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China.,College (Institute) of Integrative Medicine, Dalian Medical University, Dalian, China.,Provincial Key Laboratory for Pharmacokinetics and Transport Liaoning, Dalian Medical University, Dalian, China
| | - Jingjing Wu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Yanna Zhu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Pengyuan Sun
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Xiaodong Ma
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Huijun Sun
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China.,College (Institute) of Integrative Medicine, Dalian Medical University, Dalian, China.,Provincial Key Laboratory for Pharmacokinetics and Transport Liaoning, Dalian Medical University, Dalian, China
| | - Kexin Liu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China.,College (Institute) of Integrative Medicine, Dalian Medical University, Dalian, China.,Provincial Key Laboratory for Pharmacokinetics and Transport Liaoning, Dalian Medical University, Dalian, China
| |
Collapse
|
6
|
Shen QQ, Wang JJ, Roy D, Sun LX, Jiang ZZ, Zhang LY, Huang X. Organic anion transporter 1 and 3 contribute to traditional Chinese medicine-induced nephrotoxicity. Chin J Nat Med 2020; 18:196-205. [PMID: 32245589 DOI: 10.1016/s1875-5364(20)30021-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Indexed: 01/09/2023]
Abstract
With the internationally growing popularity of traditional Chinese medicine (TCM), TCM-induced nephropathy has attracted public attention. Minimizing this toxicity is an important issue for future research. Typical nephrotoxic TCM drugs such as Aristolochic acid, Tripterygium wilfordii Hook. f, Rheum officinale Baill, and cinnabar mainly damage renal proximal tubules or cause interstitial nephritis. Transporters in renal proximal tubule are believed to be critical in the disposition of xenobiotics. In this review, we provide information on the alteration of renal transporters by nephrotoxic TCMs, which may be helpful for understanding the nephrotoxic mechanism of TCMs and reducing adverse effects. Studies have proven that when administering nephrotoxic TCMs, the expression or function of renal transporters is altered, especially organic anion transporter 1 and 3. The alteration of these transporters may enhance the accumulation of toxic drugs or the dysfunction of endogenous toxins and subsequently sensitize the kidney to injury. Transporters-related drug combination and clinical biomarkers supervision to avoid the risk of future toxicity are proposed.
Collapse
Affiliation(s)
- Qing-Qing Shen
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China
| | - Jing-Jing Wang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Debmalya Roy
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Li-Xin Sun
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Zhen-Zhou Jiang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Lu-Yong Zhang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; Center for Drug Screening and Pharmacodynamics Evaluation, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xin Huang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
7
|
Li Y, Shen F, Bao Y, Chen D, Lu H. Apoptotic effects of rhein through the mitochondrial pathways, two death receptor pathways, and reducing autophagy in human liver L02 cells. ENVIRONMENTAL TOXICOLOGY 2019; 34:1292-1302. [PMID: 31436023 DOI: 10.1002/tox.22830] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 07/22/2019] [Accepted: 07/22/2019] [Indexed: 06/10/2023]
Abstract
Rhein (4,5-dihydroxyanthraquinone-2-carboxylic acid) is a major component of many medicinal herbs such as Rheum palmatum L. and Polygonum multiflorum. Despite being widely used, intoxication cases associated with rhein-containing herbs are often reported. Currently, there are no available reports addressing the effects of rhein on apoptosis in human liver L02 cells. Thus, the aim of this study is to determine the cytotoxic effects and the underlying mechanism of rhein on human normal liver L02 cells. In the present study, the methyl thiazolyl tetrazolium assay demonstrated that rhein decreased the viability of L02 cells in dose-dependent and time-dependent ways. Rhein was found to trigger apoptosis in L02 cells as shown by Annexin V-fluoresceine isothiocyanate (FITC) apoptosis detection kit and cell mitochondrial membrane potential (MMP) assay, with nuclear morphological changes demonstrated by Hoechst 33258 staining. Detection of intracellular superoxide dismutase activity, lipid oxidation (malondialdehyde) content, and reactive oxygen species (ROS) levels showed that apoptosis was associated with oxidative stress. Moreover, it was observed that the mechanism implicated in rhein-induced apoptosis was presumably via the death receptor pathway and the mitochondrial pathway, as illustrated by upregulation of TNF-α, TNFR1, TRADD, and cleaved caspase-3, and downregulation of procaspase-8, and it is suggested that rhein may increase hepatocyte apoptosis by activating the increase of TNF-α level. Meanwhile, rhein upregulates the expression of Bax and downregulates the expression of procaspase-9 and -3, and it is suggested that the mitochondrial pathway is activated and rhein-induced apoptosis may be involved. In addition, we also want to explore whether rhein-induced apoptosis is related to the autophagic changes induced by rhein. The results showed that rhein treatment increased P62 and decreased LC3-II and beclin-1, which means that autophagy was weakened. The results of our studies indicated that rhein induced caspase-dependent apoptosis via both the Fas death pathway and the mitochondrial pathway by generating ROS, and meanwhile the autophagy tended to weaken.
Collapse
Affiliation(s)
- Yanglei Li
- Department of Pharmacology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Fang Shen
- Department of Pharmacology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yiqi Bao
- Department of Pharmacology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Dongming Chen
- Department of Pharmacology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Hong Lu
- Department of Pharmacology, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
8
|
Yaro P, Nie J, Xu M, Zeng K, He H, Yao J, Wang R, Zeng S. Influence of organic anion transporter 1/3 on the pharmacokinetics and renal excretion of ginkgolides and bilobalide. JOURNAL OF ETHNOPHARMACOLOGY 2019; 243:112098. [PMID: 31325605 DOI: 10.1016/j.jep.2019.112098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/09/2019] [Accepted: 07/16/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The major terpene lactones of ginkgo biloba extract (GBE) include ginkgolide A, B, C and bilobalide are used for the protection of cardiovascular, cerebrovascular and neurodegenerative diseases. Terpene lactones are orally bioavailable and predominantly eliminated via the renal pathway. However, information on the transporters involved in the pharmacokinetics (PK) and renal excretion of terpene lactones is limited. AIM OF THE STUDY The objective of this study is to assess the role of OAT1/3 which are important transporters in the human kidney in the PK and renal excretion ginkgolide A, B, C and bilobalide. MATERIALS AND METHODS Uptake of ginkgolide A, B, C and bilobalide in Madin-Darby Canine Kidney (MDCK) and human embryonic kidney 293 (HEK293) cells overexpressing OAT1 or OAT3, respectively were studied. To verify the result from in vitro cell models, the studies on PK, kidney accumulation and urinary excretion of ginkgolide A, B, C and bilobalide were carried out in rats. RESULTS The result showed that ginkgolide A, B, C and bilobalide are low-affinity substrates of OAT1/3. Following co-administration with probenecid, a typical inhibitor of OAT1/3, the rat plasma concentrations of ginkgolide A, B, C and bilobalide increased significantly. AUC showed a significant increase in the probenecid-treated rats compared to control rats (893.48 vs. 1123.85, 314.91 vs. 505.74, and 2724.97 vs. 3096.40 μg/L*h for ginkgolide A, B and bilobalide, respectively), while the clearance of these compounds significantly decreased. The accumulation of ginkgolide A, B and bilobalide in the kidney of the probenecid-treated rats was reduced by 1.8, 2.4, and 1.5-fold, respectively; further reducing the cumulative urinary recovery of these compounds. CONCLUSION The findings indicated that ginkgolide A, B and bilobalide are excreted via OAT1/3-mediated transport in the kidney and OAT1/3 inhibitor significantly influence the PK ginkgolides and bilobalide.
Collapse
Affiliation(s)
- Peter Yaro
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jing Nie
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Mingcheng Xu
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Kui Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Houhong He
- Zhejiang Conba Pharmaceutical Co., Ltd, Zhejiang Provincial Key Laboratory of TCM Pharmaceutical Technology, Hangzhou, 310006, China
| | - Jianbiao Yao
- Zhejiang Conba Pharmaceutical Co., Ltd, Zhejiang Provincial Key Laboratory of TCM Pharmaceutical Technology, Hangzhou, 310006, China
| | - Ruwei Wang
- Zhejiang Conba Pharmaceutical Co., Ltd, Zhejiang Provincial Key Laboratory of TCM Pharmaceutical Technology, Hangzhou, 310006, China
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
9
|
Bu T, Wang C, Jin H, Meng Q, Huo X, Sun H, Sun P, Wu J, Ma X, Liu Z, Liu K. Organic anion transporters and PI3K-AKT-mTOR pathway mediate the synergistic anticancer effect of pemetrexed and rhein. J Cell Physiol 2019; 235:3309-3319. [PMID: 31587272 DOI: 10.1002/jcp.29218] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 09/03/2019] [Indexed: 12/21/2022]
Abstract
The aim of this study was to explore whether rhein could enhance the effects of pemetrexed (PTX) on the therapy of non-small-cell lung cancer (NSCLC) and to clarify the associated molecular mechanism. Our study shows that rhein in combination with PTX could obviously increase the systemic exposure of PTX in rats, which would be mediated by the inhibition of organic anion transporters (OATs). Furthermore, the toxicity of PTX was significantly raised by rhein in A549 cells in a concentration-dependent manner. Concomitant administration of rhein and PTX-induced cell apoptosis compared with PTX alone in flow cytometry assays, which was further validated by the protein expressions of the apoptotic markers B-cell lymphoma-2/Bcl-2-associated x (Bcl-2/Bax) and Cleaved-Caspase3 (Cl-Caspase3). Meanwhile, the results of monodansylcadaverine (MDC) dyeing experiments showed that PTX-induced autophagy could be enhanced by combination therapy with rhein in A549 cells. Western blot analysis indicated that the synergistic effect of rhein on PTX-mediated autophagy may be interrelated to PI3K-AKT-mTOR pathway inhibition and to the enhancement of p-AMPK and light chain 3-II (LC3-II) protein levels. From these findings, it could be surmised that rhein enhanced the antitumor activity of PTX through influencing autophagy and apoptosis by modulating the PI3K-AKT-mTOR pathway and Bcl-2 family of proteins in A549 cells. Our findings demonstrated that the potential application of rhein as a candidate drug in combination with PTX is promising for treatment of the human lung cancer.
Collapse
Affiliation(s)
- Tianci Bu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China.,The First People's Hospital of Zunyi, The Third Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou, China
| | - Changyuan Wang
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China.,Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, Dalian, China
| | - Huan Jin
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Qiang Meng
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China.,Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, Dalian, China
| | - Xiaokui Huo
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China.,Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, Dalian, China
| | - Huijun Sun
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China.,Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, Dalian, China
| | - Pengyuan Sun
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Jingjing Wu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Xiaodong Ma
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Zhihao Liu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China.,Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, Dalian, China
| | - Kexin Liu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China.,Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, Dalian, China
| |
Collapse
|
10
|
Chang WC, Chu MT, Hsu CY, Wu YJJ, Lee JY, Chen TJ, Chung WH, Chen DY, Hung SI. Rhein, An Anthraquinone Drug, Suppresses the NLRP3 Inflammasome and Macrophage Activation in Urate Crystal-Induced Gouty Inflammation. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2019; 47:135-151. [PMID: 30612459 DOI: 10.1142/s0192415x19500071] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Rhein, an anthraquinone drug, is a widely used traditional Chinese medicine. Rhein is a major bioactive metabolite of diacerein which has been approved for treating osteoarthritis with a good safety profile in humans. Gouty arthritis is an inflammatory disease characterized by urate crystal-induced NLRP3 inflammasome activation with up-regulated caspase-1 protease and IL-1 β in macrophages. Inhibition of the NLRP3 inflammasome formation has been considered as a potential therapeutic avenue for treating or preventing many inflammatory diseases. This study aimed to evaluate the anti-inflammatory effects of rhein on gouty arthritis. Rhein within the physiological levels of humans showed no toxicity on the cell viability and differentiation, but significantly decreased the production of IL-1 β , TNF- α and caspase-1 protease in urate crystal-activated macrophages. Compared to medium controls, rhein at the therapeutic concentration (2.5 μ g/mL) effectively inhibited IL-1 β production by 47% ( P=0.002 ). Rhein did not affect the mRNA levels of CASP1, NLRP3 and ASC, but suppressed the protein expression and enzyme activity of caspase-1. Immunofluorescence confocal microscopy further revealed that rhein suppressed the aggregation of ASC speck and inhibited the formation of NLRP3 inflammasome. Rhein of 5 μ g/mL significantly decreased the ASC speck to 36% ( P=0.0011 ), and reduced the NLRP3 aggregates to 37.5% ( P=0.014 ). Our data demonstrate that rhein possesses pharmacological activity to suppress caspase-1 protease activity and IL-1 β production by interfering with the formation of NLRP3 multiprotein complex. These results suggest that rhein has therapeutic potential for treating NLRP3 inflammasome-mediated diseases such as gouty arthritis.
Collapse
Affiliation(s)
- Wan-Chun Chang
- * Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Mu-Tzu Chu
- * Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chih-Yuan Hsu
- * Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yeong-Jian Jan Wu
- † Department of Medicine, Division of Allergy, Immunology and Rheumatology, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Keelung, Taiwan
| | | | - Ting-Jui Chen
- * Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,§ Department of Dermatology, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan
| | - Wen-Hung Chung
- ¶ Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, College of Medicine and Chang Gung University, Taipei, Taiwan
| | - Der-Yuan Chen
- ∥ Rheumatology and Immunology Center, China Medical University Hospital; Department of Medicine, China Medical University, Taichung, Taiwan
| | - Shuen-Iu Hung
- * Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
11
|
Organic solute carrier 22 (SLC22) family: Potential for interactions with food, herbal/dietary supplements, endogenous compounds, and drugs. J Food Drug Anal 2018; 26:S45-S60. [PMID: 29703386 PMCID: PMC9326878 DOI: 10.1016/j.jfda.2018.03.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 03/02/2018] [Accepted: 03/05/2018] [Indexed: 02/07/2023] Open
|
12
|
Huo X, Liu K. Renal organic anion transporters in drug-drug interactions and diseases. Eur J Pharm Sci 2017; 112:8-19. [PMID: 29109021 DOI: 10.1016/j.ejps.2017.11.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 10/10/2017] [Accepted: 11/01/2017] [Indexed: 12/17/2022]
Abstract
The kidney plays a vital role in maintaining systemic homeostasis. Active tubular secretion and reabsorption, which are mainly mediated by transporters, is an efficient mechanism for retaining glucose, amino acids, and other nutrients and for the clearance of endogenous waste products and xenobiotics. These substances are recognized by uptake transporters located in the basolateral and apical membranes of renal proximal tubule cells and are extracted from plasma and urine. Organic anion transporters (OATs) belong to the solute carrier (SLC) 22 superfamily and facilitate organic anions across the plasma membranes of renal proximal tubule cells. OATs are responsible for the transmembrane transport of anionic and zwitterionic organic molecules, including endogenous substances and many drugs. The alteration in OAT expression and function caused by diseases, drug-drug interactions (DDIs) or other issues can thus change the renal disposition of substrates, induce the accumulation of toxic metabolites, and lead to unexpected clinically outcome. This review summarizes the recent information regarding the expression, regulation, and substrate spectrum of OATs and discusses the roles of OATs in diseases and DDIs. These findings will enables us to have a better understanding of the related disease therapy and the potential risk of DDIs mediated by OATs.
Collapse
Affiliation(s)
- Xiaokui Huo
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China; Key Laboratory of Pharmacokinetics and Transport of Liaoning Province, Dalian Medical University, Dalian 116044, China; College (Institute) of Integrative Medicine, Dalian Medical University, Dalian 116044, China
| | - Kexin Liu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China; Key Laboratory of Pharmacokinetics and Transport of Liaoning Province, Dalian Medical University, Dalian 116044, China; College (Institute) of Integrative Medicine, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
13
|
Interaction between rhein acyl glucuronide and methotrexate based on human organic anion transporters. Chem Biol Interact 2017; 277:79-84. [DOI: 10.1016/j.cbi.2017.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 08/31/2017] [Accepted: 09/01/2017] [Indexed: 12/20/2022]
|
14
|
Abstract
Transporters in proximal renal tubules contribute to the disposition of numerous drugs. Furthermore, the molecular mechanisms of tubular secretion have been progressively elucidated during the past decades. Organic anions tend to be secreted by the transport proteins OAT1, OAT3 and OATP4C1 on the basolateral side of tubular cells, and multidrug resistance protein (MRP) 2, MRP4, OATP1A2 and breast cancer resistance protein (BCRP) on the apical side. Organic cations are secreted by organic cation transporter (OCT) 2 on the basolateral side, and multidrug and toxic compound extrusion (MATE) proteins MATE1, MATE2/2-K, P-glycoprotein, organic cation and carnitine transporter (OCTN) 1 and OCTN2 on the apical side. Significant drug-drug interactions (DDIs) may affect any of these transporters, altering the clearance and, consequently, the efficacy and/or toxicity of substrate drugs. Interactions at the level of basolateral transporters typically decrease the clearance of the victim drug, causing higher systemic exposure. Interactions at the apical level can also lower drug clearance, but may be associated with higher renal toxicity, due to intracellular accumulation. Whereas the importance of glomerular filtration in drug disposition is largely appreciated among clinicians, DDIs involving renal transporters are less well recognized. This review summarizes current knowledge on the roles, quantitative importance and clinical relevance of these transporters in drug therapy. It proposes an approach based on substrate-inhibitor associations for predicting potential tubular-based DDIs and preventing their adverse consequences. We provide a comprehensive list of known drug interactions with renally-expressed transporters. While many of these interactions have limited clinical consequences, some involving high-risk drugs (e.g. methotrexate) definitely deserve the attention of prescribers.
Collapse
Affiliation(s)
- Anton Ivanyuk
- Division of Clinical Pharmacology, Lausanne University Hospital (CHUV), Bugnon 17, 1011, Lausanne, Switzerland.
| | - Françoise Livio
- Division of Clinical Pharmacology, Lausanne University Hospital (CHUV), Bugnon 17, 1011, Lausanne, Switzerland
| | - Jérôme Biollaz
- Division of Clinical Pharmacology, Lausanne University Hospital (CHUV), Bugnon 17, 1011, Lausanne, Switzerland
| | - Thierry Buclin
- Division of Clinical Pharmacology, Lausanne University Hospital (CHUV), Bugnon 17, 1011, Lausanne, Switzerland
| |
Collapse
|
15
|
Dai Y, Ma BL, Zheng M, Shi R, Li YY, Wang TM, Ma YM. Identification of drug transporters involved in the uptake and efflux of rhein in hepatocytes. RSC Adv 2017. [DOI: 10.1039/c6ra28205a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Rhein is an herbal medicine with various bioactivities and is derived from an anthraquinone compound. In this study, we aimed to identify drug transporters involved in the uptake and efflux of rhein in hepatocytes.
Collapse
Affiliation(s)
- Yan Dai
- Department of Pharmacology
- School of Pharmacy
- Shanghai University of Traditional Chinese Medicine
- Shanghai
- China
| | - Bing-Liang Ma
- Department of Pharmacology
- School of Pharmacy
- Shanghai University of Traditional Chinese Medicine
- Shanghai
- China
| | - Min Zheng
- Department of Pharmacology
- School of Pharmacy
- Shanghai University of Traditional Chinese Medicine
- Shanghai
- China
| | - Rong Shi
- Department of Pharmacology
- School of Pharmacy
- Shanghai University of Traditional Chinese Medicine
- Shanghai
- China
| | - Yuan-Yuan Li
- Department of Pharmacology
- School of Pharmacy
- Shanghai University of Traditional Chinese Medicine
- Shanghai
- China
| | - Tian-Ming Wang
- Department of Pharmacology
- School of Pharmacy
- Shanghai University of Traditional Chinese Medicine
- Shanghai
- China
| | - Yue-Ming Ma
- Department of Pharmacology
- School of Pharmacy
- Shanghai University of Traditional Chinese Medicine
- Shanghai
- China
| |
Collapse
|
16
|
Liu Z, Jia Y, Wang C, Meng Q, Huo X, Sun H, Sun P, Yang X, Ma X, Peng J, Liu K. Organic anion transporters 1 (OAT1) and OAT3 meditated the protective effect of rhein on methotrexate-induced nephrotoxicity. RSC Adv 2017. [DOI: 10.1039/c7ra02968c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Rhein protects methotrexate induced kidney damage mediated by OAT1 and OAT3.
Collapse
|
17
|
Yuan Y, Zheng J, Wang M, Li Y, Ruan J, Zhang H. Metabolic Activation of Rhein: Insights into the Potential Toxicity Induced by Rhein-Containing Herbs. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:5742-5750. [PMID: 27362917 DOI: 10.1021/acs.jafc.6b01872] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Rhein is a major component of the many medicinal herbs such as rhubarb. Despite wide use, intoxication cases associated with rhein-containing herbs are often reported. The present work aimed to investigate if rhein was subject to metabolic activation leading to toxicity. Upon incubations with different species of liver microsomes, three monoglucuronides were identified, corresponding to two hydroxyl glucuronides and one acyl glucuronide via the carboxyl group, respectively. Further study revealed that rhein acyl glucuronide was chemically reactive, and showed cytotoxicity toward hepatocarcinoma cells. In addition, significant species differences in glucuronidation of rhein were observed between laboratory animals and humans. Reaction phenotyping experiments demonstrated that rhein acyl glucuronide was catalyzed predominantly by uridine 5'-diphospho-glucuronosyltransferase 1A1, 1A9, and 2B7. Taken together, the present study confirmed that rhein could be metabolically activated via the formation of acyl glucuronide, especially in human.
Collapse
Affiliation(s)
- Yuan Yuan
- College of Pharmaceutical Sciences, Soochow University , Suzhou, 215123, China
| | - Jiyue Zheng
- College of Pharmaceutical Sciences, Soochow University , Suzhou, 215123, China
| | - Meiyu Wang
- College of Pharmaceutical Sciences, Soochow University , Suzhou, 215123, China
| | - Yuan Li
- College of Pharmaceutical Sciences, Soochow University , Suzhou, 215123, China
| | - Jianqing Ruan
- College of Pharmaceutical Sciences, Soochow University , Suzhou, 215123, China
| | - Hongjian Zhang
- College of Pharmaceutical Sciences, Soochow University , Suzhou, 215123, China
| |
Collapse
|
18
|
Wu X, Ma J, Ye Y, Lin G. Transporter modulation by Chinese herbal medicines and its mediated pharmacokinetic herb–drug interactions. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1026:236-253. [DOI: 10.1016/j.jchromb.2015.11.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 11/13/2015] [Accepted: 11/16/2015] [Indexed: 10/22/2022]
|
19
|
Xu S, Lv Y, Zhao J, Wang J, Wang G, Wang S. The Inhibitory Effect of Rhein on Proliferation of High Glucose-induced Mesangial Cell Through Cell Cycle Regulation and Induction of Cell Apoptosis. Pharmacogn Mag 2016; 12:S257-63. [PMID: 27279717 PMCID: PMC4883089 DOI: 10.4103/0973-1296.182158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 08/17/2015] [Indexed: 11/25/2022] Open
Abstract
Objectives: Increased mesangial cell proliferation and accumulation of extracellular matrix (ECM) are the major pathological features of early-stage diabetic nephropathy. This study was sought to investigate the inhibitory effects of rhein (RH) on high glucose (HG)-cultured mesangial cells. Specially, we focus on the analysis of proliferation rate, cell cycle regulation, apoptosis, and the expression of collagen IV and laminin. Materials and Methods: The established rat renal mesangial cell (RMC) line was cultured in medium with different concentrations of glucose (5.6 mM or 25 mM) and RH (40 μM, 20 μM, and 10 μM). Pro-treated cells were collected at 12 h, 24 h, and 48 h for cell proliferation analysis and after 24 h for the experiments of flow cytometry, transmission electron microscope, real-time polymerase chain reaction, and Western blotting. Results: Our data shows HG can promote the proliferation of RMCs and RH has an inhibitory effect on HG-induced RMC proliferation and expression of ECM. Based on our data, we hypothesize this inhibitory effect might be a result of cell cycle regulation and the induction of cellular apoptosis. Conclusion: RH can inhibit cellular proliferation and downregulate the expression of ECM under the circumstance of HG. The mechanism of growth suppression may be due to cell cycle arrest at G1 phase, induction of cell apoptosis, and upregulation of apoptotic mediators bax and caspase-3. SUMMARY Rhein (RH) has an inhibitory effect on high glucose.induced rat mesangial cells proliferation RH has an inhibitory effect on the expression of extracellular matrix RH has a growth.suppression effect RH can upregulate the expression of apoptotic mediators bax and caspase-3 All above shows RH is one of the main active ingredient in Shenkang injection.
Abbreviations used: RH: Rhein, ECM: Extracellular matrix, DN: Diabetic nephropathy, RMC: Renal mesangial cell, SKI: Shenkang injection, MTT: 3-(4,5-dimethylthiazol–2-yl)-2,5-diphenyltetrazolium bromide
Collapse
Affiliation(s)
- Shouzhu Xu
- Department of Natural Medicine, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China; Department of Pharmacology, Medical School, Xi'an Jiaotong University, Xi'an 710061, China
| | - Yanying Lv
- Xi'an Shiji Shengkang Pharmaceutical Industry Co. Ltd., Xi'an Fengjing Industrial Park, Xi'an 710065, China
| | - Jing Zhao
- Department of Natural Medicine, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Junping Wang
- Xi'an Shiji Shengkang Pharmaceutical Industry Co. Ltd., Xi'an Fengjing Industrial Park, Xi'an 710065, China
| | - Guangjian Wang
- Xi'an Shiji Shengkang Pharmaceutical Industry Co. Ltd., Xi'an Fengjing Industrial Park, Xi'an 710065, China
| | - Siwang Wang
- Department of Natural Medicine, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| |
Collapse
|
20
|
Ma BL, Ma YM. Pharmacokinetic herb–drug interactions with traditional Chinese medicine: progress, causes of conflicting results and suggestions for future research. Drug Metab Rev 2016; 48:1-26. [DOI: 10.3109/03602532.2015.1124888] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
21
|
Liu Y, Li L, Xiao YQ, Yao JQ, Li PY, Yu DR, Ma YL. Global metabolite profiling and diagnostic ion filtering strategy by LC-QTOF MS for rapid identification of raw and processed pieces of Rheum palmatum L. Food Chem 2015; 192:531-40. [PMID: 26304381 DOI: 10.1016/j.foodchem.2015.07.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 06/24/2015] [Accepted: 07/05/2015] [Indexed: 02/04/2023]
Abstract
Due to its variety of functions, rhubarb has been used for thousands of years in many countries. It is commonly used after processing. Processing usually affect the chemical profile and the contents of active compounds in herbals, leading to changes of their bioactivities. Here, an approach of metabolite profiling and diagnostic ion filtering strategy with liquid chromatography-quadrupole/time-of-flight mass spectrometry was established for rapid identification of raw and processed pieces of Rheum palmatum L. (RPL). The comprehensive and unbiased information of 30 batches of RPL covering raw and two general processing methods were given by metabolomic profiles. Using molecular feature extraction algorithm, non-targeted compounds were analyzed in minutes. In total, 73 characteristic markers were extracted and identified by diagnostic ion filtering. They have been further analyzed by partial least squares-support vector machine-based pattern recognition. The comprehensive and rapid method for raw and processed pieces of RPL classification shows good sensitivity, specificity and prediction performance.
Collapse
Affiliation(s)
- Ying Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiao Lane, Dongzhimennei, Beijing 100700, China
| | - Li Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiao Lane, Dongzhimennei, Beijing 100700, China
| | - Yong-Qing Xiao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiao Lane, Dongzhimennei, Beijing 100700, China.
| | - Jia-Qi Yao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiao Lane, Dongzhimennei, Beijing 100700, China
| | - Peng-Yuan Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiao Lane, Dongzhimennei, Beijing 100700, China
| | - Ding-Rong Yu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiao Lane, Dongzhimennei, Beijing 100700, China
| | - Yin-Lian Ma
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiao Lane, Dongzhimennei, Beijing 100700, China
| |
Collapse
|
22
|
Jeong HU, Kwon M, Lee Y, Yoo JS, Shin DH, Song IS, Lee HS. Organic anion transporter 3- and organic anion transporting polypeptides 1B1- and 1B3-mediated transport of catalposide. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:643-53. [PMID: 25653502 PMCID: PMC4310350 DOI: 10.2147/dddt.s75400] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
We investigated the in vitro transport characteristics of catalposide in HEK293 cells overexpressing organic anion transporter 1 (OAT1), OAT3, organic anion transporting polypeptide 1B1 (OATP1B1), OATP1B3, organic cation transporter 1 (OCT1), OCT2, P-glycoprotein (P-gp), and breast cancer resistance protein (BCRP). The transport mechanism of catalposide was investigated in HEK293 and LLC-PK1 cells overexpressing the relevant transporters. The uptake of catalposide was 319-, 13.6-, and 9.3-fold greater in HEK293 cells overexpressing OAT3, OATP1B1, and OATP1B3 transporters, respectively, than in HEK293 control cells. The increased uptake of catalposide via the OAT3, OATP1B1, and OATP1B3 transporters was decreased to basal levels in the presence of representative inhibitors such as probenecid, furosemide, and cimetidine (for OAT3) and cyclosporin A, gemfibrozil, and rifampin (for OATP1B1 and OATP1B3). The concentration-dependent OAT3-mediated uptake of catalposide revealed the following kinetic parameters: Michaelis constant (Km) =41.5 μM, maximum uptake rate (Vmax) =46.2 pmol/minute, and intrinsic clearance (CLint) =1.11 μL/minute. OATP1B1- and OATP1B3-mediated catalposide uptake also showed concentration dependency, with low CLint values of 0.035 and 0.034 μL/minute, respectively. However, the OCT1, OCT2, OAT1, P-gp, and BCRP transporters were apparently not involved in the uptake of catalposide into cells. In addition, catalposide inhibited the transport activities of OAT3, OATP1B1, and OATP1B3 with half-maximal inhibitory concentration values of 83, 200, and 235 μM, respectively. However, catalposide did not significantly inhibit the transport activities of OCT1, OCT2, OAT1, P-gp, or BCRP. In conclusion, OAT3, OATP1B1, and OATP1B3 are major transporters that may regulate the pharmacokinetic properties and may cause herb–drug interactions of catalposide, although their clinical relevance awaits further evaluation.
Collapse
Affiliation(s)
- Hyeon-Uk Jeong
- College of Pharmacy, The Catholic University of Korea, Bucheon 420-743, Korea
| | - Mihwa Kwon
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 702-701, Korea
| | - Yongnam Lee
- Central R&D Institute, Yungjin Pharm Co., Ltd., Suwon 443-270, Korea
| | - Ji Seok Yoo
- Central R&D Institute, Yungjin Pharm Co., Ltd., Suwon 443-270, Korea
| | - Dae Hee Shin
- Central R&D Institute, Yungjin Pharm Co., Ltd., Suwon 443-270, Korea
| | - Im-Sook Song
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 702-701, Korea
| | - Hye Suk Lee
- College of Pharmacy, The Catholic University of Korea, Bucheon 420-743, Korea
| |
Collapse
|
23
|
Jiang R, Dong J, Li X, Du F, Jia W, Xu F, Wang F, Yang J, Niu W, Li C. Molecular mechanisms governing different pharmacokinetics of ginsenosides and potential for ginsenoside-perpetrated herb-drug interactions on OATP1B3. Br J Pharmacol 2015; 172:1059-73. [PMID: 25297453 DOI: 10.1111/bph.12971] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 09/20/2014] [Accepted: 09/30/2014] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND AND PURPOSE Ginsenosides are bioactive saponins derived from Panax notoginseng roots (Sanqi) and ginseng. Here, the molecular mechanisms governing differential pharmacokinetics of 20(S)-protopanaxatriol-type ginsenoside Rg1 , ginsenoside Re and notoginsenoside R1 and 20(S)-protopanaxadiol-type ginsenosides Rb1, Rc and Rd were elucidated. EXPERIMENTAL APPROACH Interactions of ginsenosides with human and rat hepatobiliary transporters were characterized at the cellular and vesicular levels. A rifampin-based inhibition study in rats evaluated the in vivo role of organic anion-transporting polypeptide (Oatp)1b2. Plasma protein binding was assessed by equilibrium dialysis. Drug-drug interaction indices were calculated to estimate potential for clinically relevant ginsenoside-mediated interactions due to inhibition of human OATP1Bs. KEY RESULTS All the ginsenosides were bound to human OATP1B3 and rat Oatp1b2 but only the 20(S)-protopanaxatriol-type ginsenosides were transported. Human multidrug resistance-associated protein (MRP)2/breast cancer resistance protein (BCRP)/bile salt export pump (BSEP)/multidrug resistance protein-1 and rat Mrp2/Bcrp/Bsep also mediated the transport of the 20(S)-protopanaxatriol-type ginsenosides. Glomerular-filtration-based renal excretion of the 20(S)-protopanaxatriol-type ginsenosides was greater than that of the 20(S)-protopanaxadiol-type counterparts due to differences in plasma protein binding. Rifampin-impaired hepatobiliary excretion of the 20(S)-protopanaxatriol-type ginsenosides was effectively compensated by the renal excretion in rats. The 20(S)-protopanaxadiol-type ginsenosides were potent inhibitors of OATP1B3. CONCLUSION AND IMPLICATIONS Differences in hepatobiliary and in renal excretory clearances caused markedly different systemic exposure and different elimination kinetics between the two types of ginsenosides. Caution should be exercised with the long-circulating 20(S)-protopanaxadiol-type ginsenosides as they could induce hepatobiliary herb-drug interactions, particularly when patients receive long-term therapies with high-dose i.v. Sanqi or ginseng extracts.
Collapse
Affiliation(s)
- Rongrong Jiang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
An G, Wang X, Morris ME. Flavonoids are inhibitors of human organic anion transporter 1 (OAT1)-mediated transport. Drug Metab Dispos 2014; 42:1357-66. [PMID: 25002746 DOI: 10.1124/dmd.114.059337] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Organic anion transporter 1 (OAT1) has been reported to be involved in the nephrotoxicity of many anionic xenobiotics. As current clinically used OAT1 inhibitors are often associated with safety issues, identifying potent OAT1 inhibitors with little toxicity is of great value in reducing OAT1-mediated drug nephrotoxicity. Flavonoids are a class of polyphenolic compounds with exceptional safety records. Our objective was to evaluate the effects of 18 naturally occurring flavonoids, and some of their glycosides, on the uptake of para-aminohippuric acid (PAH) in both OAT1-expressing and OAT1-negative LLC-PK1 cells. Most flavonoid aglycones produced substantial decreases in PAH uptake in OAT1-expressing cells. Among the flavonoids screened, fisetin, luteolin, morin, and quercetin exhibited the strongest effect and produced complete inhibition of OAT1-mediated PAH uptake at a concentration of 50 μM. Further concentration-dependent studies revealed that both morin and luteolin are potent OAT1 inhibitors, with IC50 values of <0.3 and 0.47 μM, respectively. In contrast to the tested flavonoid aglycones, all flavonoid glycosides had negligible or small effects on OAT1. In addition, the role of OAT1 in the uptake of fisetin, luteolin, morin, and quercetin was investigated and fisetin was found to be a substrate of OAT1. Taken together, our results indicate that flavonoids are a novel class of OAT1 modulators. Considering the high consumption of flavonoids in the diet and in herbal products, OAT1-mediated flavonoid-drug interactions may be clinically relevant. Further investigation is warranted to evaluate the nephroprotective role of flavonoids in relation to drug-induced nephrotoxicity mediated by the OAT1 pathway.
Collapse
Affiliation(s)
- Guohua An
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York, University at Buffalo, Buffalo, New York
| | - Xiaodong Wang
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York, University at Buffalo, Buffalo, New York
| | - Marilyn E Morris
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York, University at Buffalo, Buffalo, New York
| |
Collapse
|
25
|
Ma L, Zhao L, Hu H, Qin Y, Bian Y, Jiang H, Zhou H, Yu L, Zeng S. Interaction of five anthraquinones from rhubarb with human organic anion transporter 1 (SLC22A6) and 3 (SLC22A8) and drug-drug interaction in rats. JOURNAL OF ETHNOPHARMACOLOGY 2014; 153:864-871. [PMID: 24685584 DOI: 10.1016/j.jep.2014.03.055] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 03/21/2014] [Accepted: 03/22/2014] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Rhubarb is a well-known traditional Chinese medicine and has been used in China for thousands of years. Anthraquinone derivatives including rhein, emodin, aloe-emodin, chrysophanol and physcion are the important components in rhubarb. MATERIALS AND METHODS Here we studied the interaction of five anthraquinone derivatives with human renal organic anion transporter 1 (hOAT1) and hOAT3 stably expressed in cells, and interaction of rhein or rhubarb extract (RE) with furosemide (FS, substrate of OATs) in rats. RESULTS Uptake of 6-carboxyl fluorescein via hOAT1 and fluorescein via hOAT3 were markedly inhibited by rhein, emodin and aloe-emodin, and slightly inhibited by chrysophanol and physcion. The estimated IC₅₀ values for rhein, emodin, aloe-emodin and probenecid (typical inhibitor of hOAT1 and hOAT3) were 0.23, 0.61, 2.29 and 18.34 μM for hOAT1, and 0.08, 1.22, 5.37 and 5.83 μM for hOAT3, respectively. Furthermore, the data from the cellular accumulation assay indicated that these five compounds were not substrates of hOAT1 or hOAT3. Pharmacokinetic interaction between rhein and FS in rats showed that area under the curve (AUC₀-t) for FS was increased by 65% when coadministrated with rhein. RE was also used to interact with FS in rats and results showed that AUC₀-t of FS was increased by 32% and by 52% when coadministrated with single-dose or multiple-dose of RE, respectively. CONCLUSIONS These findings suggested that five anthraquinones inhibited hOAT1 and hOAT3, but these compounds were not transported by hOAT1 or hOAT3. Furthermore, rhein or RE, might cause drug-drug interaction when coadministrated with substrates of OAT1 or OAT3 in vivo.
Collapse
Affiliation(s)
- Liping Ma
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Lei Zhao
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Haihong Hu
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Yahong Qin
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Yicong Bian
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Huidi Jiang
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Hui Zhou
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Lushan Yu
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China.
| | - Su Zeng
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China.
| |
Collapse
|
26
|
Inhibition of human organic cation transporters by the alkaloids matrine and oxymatrine. Fitoterapia 2014; 92:206-10. [DOI: 10.1016/j.fitote.2013.11.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 11/16/2013] [Accepted: 11/20/2013] [Indexed: 01/11/2023]
|