1
|
Devabattula G, Panda B, Yadav R, Godugu C. The Potential Pharmacological Effects of Natural Product Withaferin A in Cancer: Opportunities and Challenges for Clinical Translation. PLANTA MEDICA 2024; 90:440-453. [PMID: 38588695 DOI: 10.1055/a-2289-9600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Cancer is one of the biggest health concerns with a complex pathophysiology. Currently, available chemotherapeutic drugs are showing deleterious side effects, and tumors often show resistance to treatment. Hence, extensive research is required to develop new treatment strategies to fight against cancer. Natural resources from plants are at the forefront of hunting novel drugs to treat various types of cancers. Withaferin A (WA) is a naturally occurring withanolide, a biologically active component obtained from the plant Ashwagandha. Various in vitro and in vivo oncological studies have reported that Withaferin A (WA) has shown protection from cancer. WA shows its activity by inhibiting the growth and proliferation of malignant cells, apoptosis, and inhibiting angiogenesis, metastasis, and cancer stem cells (CSCs). In addition, WA also showed chemo- and radio-sensitizing properties. Besides the beneficiary pharmacological activities of WA, a few aspects like pharmacokinetic properties, safety, and toxicity studies are still lacking, hindering this potent natural product from entering clinical development. In this review, we have summarized the various pharmacological mechanisms shown by WA in in vitro and in vivo cancer studies and the challenges that must be overcome for this potential natural product's clinical translation to be effective.
Collapse
Affiliation(s)
- Geetanjali Devabattula
- Pharamacology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Balanagar, India
| | - Biswajit Panda
- Pharamacology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Balanagar, India
| | - Rachana Yadav
- Pharamacology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Balanagar, India
| | - Chandraiah Godugu
- Pharamacology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Balanagar, India
| |
Collapse
|
2
|
Macharia JM, Pande DO, Zand A, Budán F, Káposztás Z, Kövesdi O, Varjas T, Raposa BL. In Vitro Inhibition of Colorectal Cancer Gene Targets by Withania somnifera L. Methanolic Extracts: A Focus on Specific Genome Regulation. Nutrients 2024; 16:1140. [PMID: 38674831 PMCID: PMC11054881 DOI: 10.3390/nu16081140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
An approach that shows promise for quickening the evolution of innovative anticancer drugs is the assessment of natural biomass sources. Our study sought to assess the effect of W. somnifera L. (WS) methanolic root and stem extracts on the expression of five targeted genes (cyclooxygenase-2, caspase-9, 5-Lipoxygenase, B-cell lymphoma-extra-large, and B-cell lymphoma 2) in colon cancer cell lines (Caco-2 cell lines). Plant extracts were prepared for bioassay by dissolving them in dimethyl sulfoxide. Caco-2 cell lines were exposed to various concentrations of plant extracts, followed by RNA extraction for analysis. By explicitly relating phytoconstituents of WS to the dose-dependent overexpression of caspase-9 genes and the inhibition of cyclooxygenase-2, 5-Lipoxygenase, B-cell lymphoma-extra-large, and B-cell lymphoma 2 genes, our novel findings characterize WS as a promising natural inhibitor of colorectal cancer (CRC) growth. Nonetheless, we recommend additional in vitro research to verify the current findings. With significant clinical benefits hypothesized, we offer WS methanolic root and stem extracts as potential organic antagonists for colorectal carcinogenesis and suggest further in vivo and clinical investigations, following successful in vitro trials. We recommend more investigation into the specific phytoconstituents in WS that contribute to the regulatory mechanisms that inhibit the growth of colon cancer cells.
Collapse
Affiliation(s)
- John M. Macharia
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pécs, Vörösmarty Mihály Str. 4, 7621 Pécs, Hungary
| | - Daniel O. Pande
- Department of Biological Sciences and Biomedical Science & Technology, School of Science and Applied Technology, Laikipia University, Nyahururu P.O. Box 1100-20300, Kenya
| | - Afshin Zand
- Department of Public Health Medicine, Medical School, University of Pécs, 7621 Pécs, Hungary
| | - Ferenc Budán
- Institute of Physiology, Medical School, University of Pécs, 7621 Pécs, Hungary;
| | - Zsolt Káposztás
- Faculty of Health Sciences, University of Pécs, 7621 Pécs, Hungary
| | - Orsolya Kövesdi
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pécs, Vörösmarty Mihály Str. 4, 7621 Pécs, Hungary
| | - Tímea Varjas
- Department of Public Health Medicine, Medical School, University of Pécs, 7621 Pécs, Hungary
| | - Bence L. Raposa
- Institute of Basics of Health Sciences, Midwifery and Health Visiting, Faculty of Health Sciences, University of Pécs, Vörösmarty Mihály Str. 4, 7621 Pécs, Hungary
| |
Collapse
|
3
|
Zhang Q, Yuan Y, Cao S, Kang N, Qiu F. Withanolides: Promising candidates for cancer therapy. Phytother Res 2024; 38:1104-1158. [PMID: 38176694 DOI: 10.1002/ptr.8090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/14/2023] [Accepted: 11/28/2023] [Indexed: 01/06/2024]
Abstract
Natural products have played a significant role throughout history in the prevention and treatment of numerous diseases, particularly cancers. As a natural product primarily derived from various medicinal plants in the Withania genus, withanolides have been shown in several studies to exhibit potential activities in cancer treatment. Consequently, understanding the molecular mechanism of withanolides could herald the discovery of new anticancer agents. Withanolides have been studied widely, especially in the last 20 years, and attracted the attention of numerous researchers. Currently, over 1200 withanolides have been classified, with approximately a quarter of them having been reported in the literature to be able to modulate the survival and death of cancer cells through multiple avenues. To what extent, though, has the anticancer effects of these compounds been studied? How far are they from being developed into clinical drugs? What are their potential, characteristic features, and challenges? In this review, we elaborate on the current knowledge of natural compounds belonging to this class and provide an overview of their natural sources, anticancer activity, mechanism of action, molecular targets, and implications for anticancer drug research. In addition, direct targets and clinical research to guide the design and implementation of future preclinical and clinical studies to accelerate the application of withanolides have been highlighted.
Collapse
Affiliation(s)
- Qiang Zhang
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - YongKang Yuan
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Shijie Cao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Ning Kang
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Feng Qiu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| |
Collapse
|
4
|
Abeesh P, Guruvayoorappan C. The Therapeutic Effects of Withaferin A against Cancer: Overview and Updates. Curr Mol Med 2024; 24:404-418. [PMID: 37076466 DOI: 10.2174/1566524023666230418094708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 04/21/2023]
Abstract
Cancer is a rapidly rising health problem among the global population, and this burden causes a significant challenge for public health. Current chemotherapeutic agents have different limitations, including drug resistance and severe side effects, and it demands a robust approach to accessing promising anti-cancer therapeutics. The natural compounds have been extensively studied to identify improved therapeutic agents for cancer therapy. Withaferin A (WA) is a steroidal lactone found in Withania somnifera and possesses anti-inflammatory, antioxidant, anti-angiogenesis, and anticancer properties. Multiple studies have shown that WA treatment attenuated various cancer hallmarks by inducing apoptosis and reducing angiogenesis and metastasis with reduced side effects. WA is a promising agent for the treatment of various cancer, and it targets various signaling pathways. With recent updates, the current review highlights the therapeutic implications of WA and its molecular targets in different cancer.
Collapse
Affiliation(s)
- Prathapan Abeesh
- Laboratory of Immunopharmacology and Experimental Therapeutics, Division of Cancer Research, Regional Cancer Centre, (Research Centre, University of Kerala), Thiruvananthapuram, Kerala, India
| | - Chandrasekaran Guruvayoorappan
- Laboratory of Immunopharmacology and Experimental Therapeutics, Division of Cancer Research, Regional Cancer Centre, (Research Centre, University of Kerala), Thiruvananthapuram, Kerala, India
| |
Collapse
|
5
|
Vilaboa N, Voellmy R. Withaferin A and Celastrol Overwhelm Proteostasis. Int J Mol Sci 2023; 25:367. [PMID: 38203539 PMCID: PMC10779417 DOI: 10.3390/ijms25010367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Withaferin A (WA) and celastrol (CEL) are major bioactive components of plants that have been widely employed in traditional medicine. The pleiotropic activities of plant preparations and the isolated compounds in vitro and in vivo have been documented in hundreds of studies. Both WA and CEL were shown to have anticancer activity. Although WA and CEL belong to different chemical classes, our synthesis of the available information suggests that the compounds share basic mechanisms of action. Both WA and CEL bind covalently to numerous proteins, causing the partial unfolding of some of these proteins and of many bystander proteins. The resulting proteotoxic stress, when excessive, leads to cell death. Both WA and CEL trigger the activation of the unfolded protein response (UPR) which, if the proteotoxic stress persists, results in apoptosis mediated by the PERK/eIF-2/ATF4/CHOP pathway or another UPR-dependent pathway. Other mechanisms of cell death may play contributory or even dominant roles depending on cell type. As shown in a proteomic study with WA, the compounds appear to function largely as electrophilic reactants, indiscriminately modifying reachable nucleophilic amino acid side chains of proteins. However, a remarkable degree of target specificity is imparted by the cellular context.
Collapse
Affiliation(s)
- Nuria Vilaboa
- Hospital Universitario La Paz-IdiPAZ, 28046 Madrid, Spain
- CIBER de Bioingenieria, Biomateriales y Nanomedicina, CIBER-BBN, 28046 Madrid, Spain
| | | |
Collapse
|
6
|
Yang C, Ge Y, Zang Y, Xu M, Jin L, Wang Y, Xu X, Xue B, Wang Z, Wang L. CDC20 promotes radioresistance of prostate cancer by activating Twist1 expression. Apoptosis 2023; 28:1584-1595. [PMID: 37535214 DOI: 10.1007/s10495-023-01877-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2023] [Indexed: 08/04/2023]
Abstract
Currently, radiotherapy is one of the most attractive treatments for prostate cancer (PCa) patients. However, radioresistance remains a challenging issue and the underlying mechanism is unknown. Growing evidence has demonstrated that CDC20 (Cell division cycle protein 20) plays a pivotal role in a variety of tumors, including PCa. Here, GEPIA database mining and western blot analysis showed that higher expression of CDC20 was observed in PCa tissues and cells. We demonstrated that the expression of CDC20 was increased in PCa cells by irradiation, and knockdown of CDC20 resulted in inhibition of cell proliferation, migration, tumor formation, induced cell apoptosis and increased radiosensitivity in PCa in vitro and in vivo. Furthermore, we observed that CDC20 regulated Twist1 pathway, influencing cell proliferation and migration. These results suggest that targeting CDC20 and Twist1 may be an effective way to improve the radiosensitivity of PCa.
Collapse
Affiliation(s)
- Chuanlai Yang
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
- Scientific Research Department, The Second Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Yuegang Ge
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
- Institute of Radiotherapy and Oncology, Soochow University, Suzhou, 215006, Jiangsu, China
| | - Yachen Zang
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Ming Xu
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Lu Jin
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Yang Wang
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Xinyu Xu
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Boxin Xue
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Zhiwei Wang
- Department of Biochemistry and Molecular Biology, Bengbu Medical College, Bengbu, 233003, Anhui, China.
| | - Lixia Wang
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China.
| |
Collapse
|
7
|
Zhang Z, Yang Y, Xu Y, Liu Y, Li H, Chen L. Molecular targets and mechanisms of anti-cancer effects of withanolides. Chem Biol Interact 2023; 384:110698. [PMID: 37690745 DOI: 10.1016/j.cbi.2023.110698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/18/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
Withanolides are a class of natural products with a steroidal lactone structure that exhibit a broad spectrum of anti-cancer effects. To date, several studies have shown that their possible mechanisms in cancer development and progression are associated with the regulation of cell proliferation, apoptosis, metastasis, and angiogenesis. Withanolides can also attenuate inflammatory responses, as well as modulate the genomic instability and energy metabolism of cancer cells. In addition, they may improve the safety and efficacy of cancer treatments as adjuvants to traditional cancer therapeutics. Herein, we summarize the molecular targets and mechanisms of withanolides in different cancers, as well as their current clinical studies on them.
Collapse
Affiliation(s)
- Zhiruo Zhang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yueying Yang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yang Xu
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yang Liu
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China.
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
8
|
Xing Z, Su A, Mi L, Zhang Y, He T, Qiu Y, Wei T, Li Z, Zhu J, Wu W. Withaferin A: A Dietary Supplement with Promising Potential as an Anti-Tumor Therapeutic for Cancer Treatment - Pharmacology and Mechanisms. Drug Des Devel Ther 2023; 17:2909-2929. [PMID: 37753228 PMCID: PMC10519218 DOI: 10.2147/dddt.s422512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/18/2023] [Indexed: 09/28/2023] Open
Abstract
Cancer, as the leading cause of death worldwide, poses a serious threat to human health, making the development of effective tumor treatments a significant challenge. Natural products continue to serve as crucial resources for drug discovery. Among them, Withaferin A (WA), the most active phytocompound extracted from the renowned dietary supplement Withania somnifera (L.) Dunal, exhibits remarkable anti-tumor efficacy. In this manuscript, we aim to comprehensively summarize the pharmacological characteristics of WA as a potential anti-tumor drug candidate, with the objective of contributing to its further development and the discovery of prospective drugs. Through an extensive review of literature from PubMed, Science Direct, and Web of Science, we have gathered substantial evidence showcasing WA's significant anti-tumor effects against a wide range of cancers in both in vitro and in vivo studies. Mechanistically, WA exerts its anti-tumor influence by inducing cell cycle arrest, apoptosis, autophagy, and ferroptosis. Additionally, it inhibits cell proliferation, cancer stem cells, tumor metastasis, and also suppresses epithelial-mesenchymal transition (EMT) and angiogenesis. Several studies have identified direct target proteins of WA, such as vimentin, Hsp90, annexin II and mFAM72A, while BCR-ABL, Mortalin (mtHsp70), Nrf2, and c-MYB are potential targets of WA. Notwithstanding its remarkable anti-tumor efficacy, there are some limitations associated with WA, including potential toxicity and poor oral bioavailability, which need to be addressed when considering it as an anti-tumor candidate agent. Nevertheless, I given its promising anti-tumor attributes, WA remains an encouraging candidate for future drug development. Unveiling the exact target and comprehensive mechanism of WA's action represents a crucial research direction to pursue in the future.
Collapse
Affiliation(s)
- Zhichao Xing
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Anping Su
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Li Mi
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Yujie Zhang
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Ting He
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Yuxuan Qiu
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Tao Wei
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Zhihui Li
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Jingqiang Zhu
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Wenshuang Wu
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| |
Collapse
|
9
|
Xian F, Zhao C, Huang C, Bie J, Xu G. The potential role of CDC20 in tumorigenesis, cancer progression and therapy: A narrative review. Medicine (Baltimore) 2023; 102:e35038. [PMID: 37682144 PMCID: PMC10489547 DOI: 10.1097/md.0000000000035038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/11/2023] [Indexed: 09/09/2023] Open
Abstract
The cell division cycle 20 homologue (CDC20) is known to regulate the cell cycle. Many studies have suggested that dysregulation of CDC20 is associated with various pathological processes in malignant solid tumors, including tumorigenesis, progression, chemoradiotherapy resistance, and poor prognosis, providing a biomarker for cancer diagnosis and prognosis. Some researchers have demonstrated that CDC20 also regulates apoptosis, immune microenvironment, and tumor angiogenesis. In this review, we have systematically summarized the biological functions of CDC20 in solid cancers. Furthermore, we briefly synthesized multiple medicines that inhibited CDC20. We anticipate that CDC20 will be a promising and effective biomarker and therapeutic target for the treatment of human cancer.
Collapse
Affiliation(s)
- Feng Xian
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Department of Oncology, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College, Nanchong, China
| | - Caixia Zhao
- Department of Oncology, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College, Nanchong, China
| | - Chun Huang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jun Bie
- Department of Oncology, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College, Nanchong, China
| | - Guohui Xu
- Department of Interventional Radiology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
10
|
Macharia JM, Káposztás Z, Bence RL. Medicinal Characteristics of Withania somnifera L. in Colorectal Cancer Management. Pharmaceuticals (Basel) 2023; 16:915. [PMID: 37513827 PMCID: PMC10384768 DOI: 10.3390/ph16070915] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Research into tumorigenic pathways can aid in the development of more efficient cancer therapies and provide insight into the physiological regulatory mechanisms employed by rapidly proliferating cancer cells. Due to the severe side effects of cancer chemotherapeutic medications, plant chemicals and their analogues are now explored more frequently for the treatment and prevention of colorectal cancer (CRC), opening the stage for new phytotherapeutic strategies that are considered effective and safe substitutes. Our study aimed to evaluate the medicinal properties of Withania somnifera L. and its safety applications in CRC management. Important databases were rigorously searched for relevant literature, and only 82 full-text publications matched the inclusion requirements from a massive collection of 10,002 titles and abstracts. W. somnifera L. contains a high concentration of active plant-based compounds. The pharmacological activity of the plant from our study has been demonstrated to exert antiproliferation, upregulation of apoptosis, decrease in oxidative stress, downregulation of cyclooxygenase-2 (COX-2), induction of targeted cytotoxic effects on cancerous cells, and exertion of both antiangiogenesis and antimigratory effects. We advise further research before recommending W. somnifera L. for clinical use to identify the optimal concentrations required to elicit beneficial effects in CRC management in humans, singly or in combination.
Collapse
Affiliation(s)
- John M Macharia
- Doctoral School of Health Sciences, Faculty of Health Science, University of Pẻcs, Vörösmarty Mihály Str. 4, 7621 Pécs, Hungary
| | - Zsolt Káposztás
- Faculty of Health Science, University of Pẻcs, 7621 Pécs, Hungary
| | - Raposa L Bence
- Faculty of Health Science, University of Pẻcs, 7621 Pécs, Hungary
| |
Collapse
|
11
|
Kumar S, Mathew SO, Aharwal RP, Tulli HS, Mohan CD, Sethi G, Ahn KS, Webber K, Sandhu SS, Bishayee A. Withaferin A: A Pleiotropic Anticancer Agent from the Indian Medicinal Plant Withania somnifera (L.) Dunal. Pharmaceuticals (Basel) 2023; 16:160. [PMID: 37259311 PMCID: PMC9966696 DOI: 10.3390/ph16020160] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 08/04/2023] Open
Abstract
Cancer represents the second most deadly disease and one of the most important public health concerns worldwide. Surgery, chemotherapy, radiation therapy, and immune therapy are the major types of treatment strategies that have been implemented in cancer treatment. Unfortunately, these treatment options suffer from major limitations, such as drug-resistance and adverse effects, which may eventually result in disease recurrence. Many phytochemicals have been investigated for their antitumor efficacy in preclinical models and clinical studies to discover newer therapeutic agents with fewer adverse effects. Withaferin A, a natural bioactive molecule isolated from the Indian medicinal plant Withania somnifera (L.) Dunal, has been reported to impart anticancer activities against various cancer cell lines and preclinical cancer models by modulating the expression and activity of different oncogenic proteins. In this article, we have comprehensively discussed the biosynthesis of withaferin A as well as its antineoplastic activities and mode-of-action in in vitro and in vivo settings. We have also reviewed the effect of withaferin A on the expression of miRNAs, its combinational effect with other cytotoxic agents, withaferin A-based formulations, safety and toxicity profiles, and its clinical potential.
Collapse
Affiliation(s)
- Suneel Kumar
- Bio-Design Innovation Centre, Rani Durgavati University, Jabalpur 482 001, India
| | - Stephen O. Mathew
- Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | | | - Hardeep Singh Tulli
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala 133 207, India
| | | | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Kwang-Seok Ahn
- Department of Science in Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Kassidy Webber
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Sardul Singh Sandhu
- Bio-Design Innovation Centre, Rani Durgavati University, Jabalpur 482 001, India
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| |
Collapse
|
12
|
Bhat JA, Akther T, Najar RA, Rasool F, Hamid A. Withania somnifera (L.) Dunal (Ashwagandha); current understanding and future prospect as a potential drug candidate. Front Pharmacol 2022; 13:1029123. [PMID: 36578541 PMCID: PMC9790970 DOI: 10.3389/fphar.2022.1029123] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022] Open
Abstract
Cancer and Neurodegenerative diseases are one of the most dreadful diseases to cure and chemotherapy has found a prime place in cancerous treatments while as different strategies have been tested in neurodegenerative diseases as well. However, due to adverse shortcomings like the resistance of cancerous cells and inefficiency in neurodegenerative disease, plant sources have always found a prime importance in medicinal use for decades, Withania somnifera (L.) Dunal (W. somnifera) is a well-known plant with medicinal use reported for centuries. It is commonly known as winter cherry or ashwagandha and is a prime source of pharmaceutically active compounds withanolides. In recent years research is being carried in understanding the extensive role of W. somnifera in cancer and neurological disorders. W. somnifera has been reported to be beneficial in DNA repair mechanisms; it is known for its cellular repairing properties and helps to prevent the apoptosis of normal cells. This review summarizes the potential properties and medicinal benefits of W. somnifera especially in cancer and neurodegenerative diseases. Available data suggest that W. somnifera is effective in controlling disease progressions and could be a potential therapeutic target benefiting human health status. The current review also discusses the traditional medicinal applications of W. somnifera, the experimental evidence supporting its therapeutical potential as well as obstacles that necessitate being overcome for W. somnifera to be evaluated as a curative agent in humans.
Collapse
Affiliation(s)
- Javeed Ahmad Bhat
- Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India,Department of Biochemistry and Biophysics, University of Rochester, Rochester, NY, United States,*Correspondence: Javeed Ahmad Bhat, ; Abid Hamid,
| | - Tahira Akther
- B. S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, India
| | - Rauf Ahmad Najar
- Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India,Department of Pediatrics (Neonatology), Lung Biology and Disease Program, University of Rochester Medical Center, Rochester, NY, United States
| | - Faheem Rasool
- Government College for Women, Jammu, Jammu and Kashmir, India
| | - Abid Hamid
- Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India,Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Srinagar, India,*Correspondence: Javeed Ahmad Bhat, ; Abid Hamid,
| |
Collapse
|
13
|
Jeong SM, Bui QT, Kwak M, Lee JY, Lee PCW. Targeting Cdc20 for cancer therapy. Biochim Biophys Acta Rev Cancer 2022; 1877:188824. [DOI: 10.1016/j.bbcan.2022.188824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/26/2022] [Accepted: 10/06/2022] [Indexed: 11/26/2022]
|
14
|
Tewari D, Chander V, Dhyani A, Sahu S, Gupta P, Patni P, Kalick LS, Bishayee A. Withania somnifera (L.) Dunal: Phytochemistry, structure-activity relationship, and anticancer potential. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 98:153949. [PMID: 35151215 DOI: 10.1016/j.phymed.2022.153949] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/08/2022] [Accepted: 01/15/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Ayurveda is a highly recognized, well-documented, and well-accepted traditional medicine system. This system utilizes many natural products in various forms for therapeutic purposes. Thousands of plants mentioned in the Ayurvedic system are useful in disease mitigation and health preservation. One potential plant of the Ayurvedic system is "Ashwagandha" [Withania somnifera (L.) Dunal], commonly regarded as Indian Ginseng. It possesses various therapeutic activities, such as neuroprotective, hypoglycemic, hepatoprotective, antiarthritic, and anticancer effects. PURPOSE Here we present a comprehensive insight on the anticancer effects of W. somnifera and mechanistic attributes of its bioactive phytocompounds. This review also provides updated information on the clinical studies pertaining to cancer, safety evaluation and opportunities for chemical modifications of withanolides, a group of specialized phytochemicals of W. somnifera. METHODS The present study was performed in accordance with the guidelines of the Preferred Reporting Items for Systemic Reviews and Meta-Analysis. Various scientific databases, such as PubMed, Science Direct, Scopus, Google Scholar, were explored for related studies published up to May 2021. RESULTS An updated review on the anticancer potential and mechanisms of action of the major bioactive components of W. somnifera, including withanolides, withaferin A and withanone, is presented. Comprehensive information on clinical attributes of W. somnifera and its active components are presented with the structure-activity relationship (SAR) and toxicity evaluation. CONCLUSION The outcome of the work clearly indicates that W. somnifera has a significant potential for cancer therapy. The SAR revealed that various withanolides in general and withaferin A in particular have binding energies against various proteins and tremendous potential to serve as the lead for new chemical entities. Nevertheless, additional studies, particularly well-designed clinical trials are required before therapeutic application of withanolides for cancer treatment.
Collapse
Affiliation(s)
- Devesh Tewari
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India.
| | - Vikas Chander
- Department of Pharmacy, Uttarakhand Technical University, Dehradun 248007, Uttarakhand, India
| | - Archana Dhyani
- Department of Pharmaceutics, School of Pharmacy, Graphic Era Hill University, Dehradun 248001, Uttarakhand, India
| | - Sanjeev Sahu
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Pawan Gupta
- Shree SK Patel College of Pharmaceutical Education and Research, Ganpat University, Mehsana 384012, Gujarat, India
| | - Pooja Patni
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Lindsay S Kalick
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA.
| |
Collapse
|
15
|
Kashyap VK, Peasah-Darkwah G, Dhasmana A, Jaggi M, Yallapu MM, Chauhan SC. Withania somnifera: Progress towards a Pharmaceutical Agent for Immunomodulation and Cancer Therapeutics. Pharmaceutics 2022; 14:pharmaceutics14030611. [PMID: 35335986 PMCID: PMC8954542 DOI: 10.3390/pharmaceutics14030611] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/05/2022] [Accepted: 03/05/2022] [Indexed: 02/01/2023] Open
Abstract
Chemotherapy is one of the prime treatment options for cancer. However, the key issues with traditional chemotherapy are recurrence of cancer, development of resistance to chemotherapeutic agents, affordability, late-stage detection, serious health consequences, and inaccessibility. Hence, there is an urgent need to find innovative and cost-effective therapies that can target multiple gene products with minimal adverse reactions. Natural phytochemicals originating from plants constitute a significant proportion of the possible therapeutic agents. In this article, we reviewed the advances and the potential of Withania somnifera (WS) as an anticancer and immunomodulatory molecule. Several preclinical studies have shown the potential of WS to prevent or slow the progression of cancer originating from various organs such as the liver, cervix, breast, brain, colon, skin, lung, and prostate. WS extracts act via various pathways and provide optimum effectiveness against drug resistance in cancer. However, stability, bioavailability, and target specificity are major obstacles in combination therapy and have limited their application. The novel nanotechnology approaches enable solubility, stability, absorption, protection from premature degradation in the body, and increased circulation time and invariably results in a high differential uptake efficiency in the phytochemical’s target cells. The present review primarily emphasizes the insights of WS source, chemistry, and the molecular pathways involved in tumor regression, as well as developments achieved in the delivery of WS for cancer therapy using nanotechnology. This review substantiates WS as a potential immunomodulatory, anticancer, and chemopreventive agent and highlights its potential use in cancer treatment.
Collapse
Affiliation(s)
- Vivek K. Kashyap
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (V.K.K.); (G.P.-D.); (A.D.); (M.J.)
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Godwin Peasah-Darkwah
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (V.K.K.); (G.P.-D.); (A.D.); (M.J.)
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Anupam Dhasmana
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (V.K.K.); (G.P.-D.); (A.D.); (M.J.)
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Meena Jaggi
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (V.K.K.); (G.P.-D.); (A.D.); (M.J.)
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Murali M. Yallapu
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (V.K.K.); (G.P.-D.); (A.D.); (M.J.)
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
- Correspondence: (M.M.Y.); (S.C.C.); Tel.: +1-956-296-1734 (M.M.Y.); +1-956-296-5000 (S.C.C.)
| | - Subhash C. Chauhan
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (V.K.K.); (G.P.-D.); (A.D.); (M.J.)
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
- Correspondence: (M.M.Y.); (S.C.C.); Tel.: +1-956-296-1734 (M.M.Y.); +1-956-296-5000 (S.C.C.)
| |
Collapse
|
16
|
Sultana T, Okla MK, Ahmed M, Akhtar N, Al-Hashimi A, Abdelgawad H, Haq IU. Withaferin A: From Ancient Remedy to Potential Drug Candidate. Molecules 2021; 26:molecules26247696. [PMID: 34946778 PMCID: PMC8705790 DOI: 10.3390/molecules26247696] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 11/23/2022] Open
Abstract
Withaferin A (WA) is a pivotal withanolide that has conquered a conspicuous place in research, owning to its multidimensional biological properties. It is an abundant constituent in Withania somnifera Dunal. (Ashwagandha, WS) that is one of the prehistoric pivotal remedies in Ayurveda. This article reviews the literature about the pharmacological profile of WA with special emphasis on its anticancer aspect. We reviewed research publications concerning WA through four databases and provided a descriptive analysis of literature without statistical or qualitative analysis. WA has been found as an effective remedy with multifaceted mechanisms and a broad spectrum of pharmacological profiles. It has anticancer, anti-inflammatory, antiherpetic, antifibrotic, antiplatelet, profibrinolytic, immunosuppressive, antipigmentation, antileishmanial, and healing potentials. Evidence for wide pharmacological actions of WA has been established by both in vivo and in vitro studies. Further, the scientific literature accentuates the role of WA harboring a variable therapeutic spectrum for integrative cancer chemoprevention and cure. WA is a modern drug from traditional medicine that is necessary to be advanced to clinical trials for advocating its utility as a commercial drug.
Collapse
Affiliation(s)
- Tahira Sultana
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| | - Mohammad K. Okla
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (M.K.O.); (A.A.-H.)
| | - Madiha Ahmed
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan;
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad 44000, Pakistan
- Correspondence: (M.A.); (I.-u.-H.)
| | - Nosheen Akhtar
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 43600, Pakistan;
| | - Abdulrahman Al-Hashimi
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (M.K.O.); (A.A.-H.)
| | - Hamada Abdelgawad
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, 2020 Antwerpen, Belgium;
| | - Ihsan-ul- Haq
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan;
- Correspondence: (M.A.); (I.-u.-H.)
| |
Collapse
|
17
|
Nkwe DO, Lotshwao B, Rantong G, Matshwele J, Kwape TE, Masisi K, Gaobotse G, Hefferon K, Makhzoum A. Anticancer Mechanisms of Bioactive Compounds from Solanaceae: An Update. Cancers (Basel) 2021; 13:4989. [PMID: 34638473 PMCID: PMC8507657 DOI: 10.3390/cancers13194989] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 12/27/2022] Open
Abstract
Plants continue to provide unlimited pharmacologically active compounds that can treat various illnesses, including cancer. The Solanaceae family, besides providing economically important food plants, such as potatoes and tomatoes, has been exploited extensively in folk medicine, as it provides an array of bioactive compounds. Many studies have demonstrated the anticancer potency of some of the compounds, but the corresponding molecular targets are not well defined. However, advances in molecular cell biology and in silico modelling have made it possible to dissect some of the underlying mechanisms. By reviewing the literature over the last five years, we provide an update on anticancer mechanisms associated with phytochemicals isolated from species in the Solanaceae plant family. These mechanisms are conveniently grouped into cell cycle arrest, transcription regulation, modulation of autophagy, inhibition of signalling pathways, suppression of metabolic enzymes, and membrane disruption. The majority of the bioactive compounds exert their antiproliferative effects by inhibiting diverse signalling pathways, as well as arresting the cell cycle. Furthermore, some of the phytochemicals are effective against more than one cancer type. Therefore, understanding these mechanisms provides paths for future formulation of novel anticancer drugs, as well as highlighting potential areas of research.
Collapse
Affiliation(s)
- David O. Nkwe
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Palapye, Botswana; (B.L.); (G.R.); (T.E.K.); (K.M.); (G.G.)
| | - Bonolo Lotshwao
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Palapye, Botswana; (B.L.); (G.R.); (T.E.K.); (K.M.); (G.G.)
| | - Gaolathe Rantong
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Palapye, Botswana; (B.L.); (G.R.); (T.E.K.); (K.M.); (G.G.)
| | - James Matshwele
- Department of Chemical and Forensic Sciences, Botswana International University of Science and Technology, Palapye, Botswana;
- Department of Applied Sciences, Botho University, Gaborone, Botswana
| | - Tebogo E. Kwape
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Palapye, Botswana; (B.L.); (G.R.); (T.E.K.); (K.M.); (G.G.)
| | - Kabo Masisi
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Palapye, Botswana; (B.L.); (G.R.); (T.E.K.); (K.M.); (G.G.)
| | - Goabaone Gaobotse
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Palapye, Botswana; (B.L.); (G.R.); (T.E.K.); (K.M.); (G.G.)
| | - Kathleen Hefferon
- Virology Laboratory, Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada;
| | - Abdullah Makhzoum
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Palapye, Botswana; (B.L.); (G.R.); (T.E.K.); (K.M.); (G.G.)
| |
Collapse
|
18
|
El-Masry OS, Goja A, Rateb M, Owaidah AY, Alsamman K. RNA sequencing identified novel target genes for Adansonia digitata in breast and colon cancer cells. Sci Prog 2021; 104:368504211032084. [PMID: 34251294 PMCID: PMC10450698 DOI: 10.1177/00368504211032084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Adansonia digitata exhibits numerous beneficial effects. In the current study, we investigated the anti-cancer effects of four different extracts of A. digitata (polar and non-polar extracts of fruit powder and fibers) on the proliferation of human colon cancer (HCT116), human breast cancer (MCF-7), and human ovarian cancer (OVCAR-3 and OVCAR-4) cell lines. RNA sequencing revealed the influence of the effective A. digitata fraction on the gene expression profiles of responsive cells. The results indicated that only the polar extract of the A. digitata fibers exhibited anti-proliferative activities against HCT116 and MCF-7 cells, but not ovarian cancer cells. Moreover, the polar extract of the fibers resulted in the modulation of the expression of multiple genes in HCT116 and MCF-7 cells. We propose that casein kinase 2 alpha 3 (CSNK2A3) is a novel casein kinase 2 (CSNK2) isoform in HCT116 cells and report, for the first time, the potential involvement of FYVE, RhoGEF, and PH domain-containing 3 (FGD3) in colon cancer. Together, these findings provide evidence supporting the anti-cancer potential of the polar extract of A. digitata fibers in this experimental model of breast and colon cancers.
Collapse
Affiliation(s)
- Omar S. El-Masry
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Arafat Goja
- Department of Clinical Nutrition, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Mostafa Rateb
- School of Computing, Engineering & Physical Sciences, University of the West of Scotland, Paisley, UK
- Marine Biodiscovery Centre, School of Natural & Computing Sciences, University of Aberdeen, Aberdeen, UK
| | - Amani Y Owaidah
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Khaldoon Alsamman
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
19
|
Haque A, Brazeau D, Amin AR. Perspectives on natural compounds in chemoprevention and treatment of cancer: an update with new promising compounds. Eur J Cancer 2021; 149:165-183. [PMID: 33865202 PMCID: PMC8113151 DOI: 10.1016/j.ejca.2021.03.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/04/2021] [Accepted: 03/13/2021] [Indexed: 12/21/2022]
Abstract
Cancer is the second deadliest disease worldwide. Although recent advances applying precision treatments with targeted (molecular and immune) agents are promising, the histological and molecular heterogeneity of cancer cells and huge mutational burdens (intrinsic or acquired after therapy) leading to drug resistance and treatment failure are posing continuous challenges. These recent advances do not negate the need for alternative approaches such as chemoprevention, the pharmacological approach to reverse, suppress or prevent the initial phases of carcinogenesis or the progression of premalignant cells to invasive disease by using non-toxic agents. Although data are limited, the success of several clinical trials in preventing cancer in high-risk populations suggests that chemoprevention is a rational, appealing and viable strategy to prevent carcinogenesis. Particularly among higher-risk groups, the use of safe, non-toxic agents is the utmost consideration because these individuals have not yet developed invasive disease. Natural dietary compounds present in fruits, vegetables and spices are especially attractive for chemoprevention and treatment because of their easy availability, high margin of safety, relatively low cost and widespread human consumption. Hundreds of such compounds have been widely investigated for chemoprevention and treatment in the last few decades. Previously, we reviewed the most widely studied natural compounds and their molecular mechanisms, which were highly exploited by the cancer research community. In the time since our initial review, many promising new compounds have been identified. In this review, we critically review these promising new natural compounds, their molecular targets and mechanisms of anticancer activity that may create novel opportunities for further design and conduct of preclinical and clinical studies.
Collapse
Affiliation(s)
- Abedul Haque
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Daniel Brazeau
- Department of Pharmacy Practice, Administration and Research, School of Pharmacy, Marshall University, Huntington, WV, 25701, USA
| | - Arm R Amin
- Department of Pharmaceutical Sciences and Research, School of Pharmacy, Marshall University, Huntington, WV, 25701, USA.
| |
Collapse
|
20
|
Singh N, Yadav SS, Rao AS, Nandal A, Kumar S, Ganaie SA, Narasihman B. Review on anticancerous therapeutic potential of Withania somnifera (L.) Dunal. JOURNAL OF ETHNOPHARMACOLOGY 2021; 270:113704. [PMID: 33359918 DOI: 10.1016/j.jep.2020.113704] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 09/23/2020] [Accepted: 12/15/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Withania somnifera, commonly known as Ashwagandha, is an important medicinal herb belonging to family Solanaceae. It is widely used in folkloric and Ayurvedic medicines since antiquity. Traditionally, the plant is highly practiced throughout the globe as immunomodulator, anti-inflammatory, anti-stress, anti-parkinson, anti-alzheimer, cardio protective, neural and physical health enhancer, neurodefensive, anti-diabetic, aphrodisiac, memory boosting etc. The plant is also effective in combating various types of cancer and other related problems of colon, mammary, lung, prostate, skin, blood, liver and kidney. AIM OF THIS REVIEW The present review represents the critical assessment of the literature available on the anticancerous role of W. somnifera. The present study throws light on its diverse chemical compounds and the possible mechanisms of action involved. This review also suggests further research strategies to harness the therapeutic potential of this plant. MATERIALS AND METHODS The present review is the outcome of a systematic search of scientific literature about 'Withania somnifera and its role in cancer prevention'. The scientific databases viz. Google Scholar, Science Direct, Pubmed and Web of Science were searched from 2001 to 2019. Textbooks, magazines and newspapers were also consulted. This review summarizes all the published literature about its therapeutic potential for the treatment of different types of cancers. RESULTS W. somnifera has been widely used in traditional and ayurvedic medicines for treatment of numerous problems related to health and vitality. The plant is a reservoir of diverse phytoconstituents like alkaloids, steroids, flavonoids, phenolics, nitrogen containing compounds and trace elements. Withanolides are the major alkaloids which renders its anticancer potential due to its highly oxygenated nature. The plant is highly effective in combating various types of cancers viz. colon, mammary, lung, prostate, skin, blood, liver and kidney. Previous studies depict that this plant is more effective against breast cancer followed by colon, lung, prostate and blood cancer. Furthermore, from different clinical studies it has been observed that the active constituents of the plant like withaferin-A, withanolide-D have least toxic effects. CONCLUSION The present review confirms the various medicinal values of W. somnifera without any significant side effects. Withaferin-A (WA) and Withanolides are its most promising anticancer compounds that play a major role in apoptosis induction. Keeping in mind the anticancerous potential of this plant, it is suggested that this plant may further be investigated and more clinical studies can be performed.
Collapse
Affiliation(s)
- Neetu Singh
- Department of Botany, Maharshi Dayanand University, Rohtak, Haryana, 124 001, India
| | - S S Yadav
- Department of Botany, Maharshi Dayanand University, Rohtak, Haryana, 124 001, India.
| | - Amrender Singh Rao
- Department of Botany, Maharshi Dayanand University, Rohtak, Haryana, 124 001, India
| | - Abhishek Nandal
- Department of Botany, Maharshi Dayanand University, Rohtak, Haryana, 124 001, India
| | - Sanjiv Kumar
- Department of Pharmaceutical Sciences, Ch. Bansi Lal University, Bhiwani, Haryana, India
| | - S A Ganaie
- Department of Botany, Maharshi Dayanand University, Rohtak, Haryana, 124 001, India
| | - B Narasihman
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, 124 001, India
| |
Collapse
|
21
|
Wei Z, Li T, Sun Y, Su H, Zeng Y, Wang Q, Kuang H. Daturataturin A, a withanolide in Datura metel L., induces HaCaT autophagy through the PI3K-Akt-mTOR signaling pathway. Phytother Res 2021; 35:1546-1558. [PMID: 33560581 DOI: 10.1002/ptr.6921] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/02/2020] [Accepted: 10/07/2020] [Indexed: 12/11/2022]
Abstract
Daturataturin A (DTA), a withanolide compound in Datura metel L., exhibits excellent anti-inflammatory and anti-proliferative activities. Here, we report the study of DTA-induced proliferation and inflammation in human immortalized keratinocytes (HaCaTs) and the associated molecular mechanisms. HaCaTs are a model of the epidermal proliferative state of cells. The pharmacodynamics and mechanism of DTA were studied by western blot, immunofluorescence, apoptosis and proliferation detection, and real-time quantitative polymerase chain reaction. We confirmed that DTA induced HaCaT autophagy, which, in turn, induced HaCaT senescence and, ultimately, led to cell cycle arrest. DTA also negatively regulated inflammation through the activation of autophagy. This may be one of the mechanisms underlying the action of Datura metel L. preparation used for the treatment of psoriasis.
Collapse
Affiliation(s)
- Zheng Wei
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Tingting Li
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yanping Sun
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Huilin Su
- College of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yuanning Zeng
- College of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qiuhong Wang
- College of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Haixue Kuang
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
22
|
Behl T, Sharma A, Sharma L, Sehgal A, Zengin G, Brata R, Fratila O, Bungau S. Exploring the Multifaceted Therapeutic Potential of Withaferin A and Its Derivatives. Biomedicines 2020; 8:E571. [PMID: 33291236 PMCID: PMC7762146 DOI: 10.3390/biomedicines8120571] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/01/2020] [Accepted: 12/04/2020] [Indexed: 12/12/2022] Open
Abstract
Withaferin A (WA), a manifold studied, C28-steroidal lactone withanolide found in Withania somnifera. Given its unique beneficial effects, it has gathered attention in the era of modern science. Cancer, being considered a "hopeless case and the leading cause of death worldwide, and the available conventional therapies have many lacunae in the form of side effects. The poly pharmaceutical natural compound, WA treatment, displayed attenuation of various cancer hallmarks by altering oxidative stress, promoting apoptosis, and autophagy, inhibiting cell proliferation, reducing angiogenesis, and metastasis progression. The cellular proteins associated with antitumor pathways were also discussed. WA structural modifications attack multiple signal transduction pathways and enhance the therapeutic outcomes in various diseases. Moreover, it has shown validated pharmacological effects against multiple neurodegenerative diseases by inhibiting acetylcholesterinases and butyrylcholinesterases enzyme activity, antidiabetic activity by upregulating adiponectin and preventing the phosphorylation of peroxisome proliferator-activated receptors (PPARγ), cardioprotective activity by AMP-activated protein kinase (AMPK) activation and suppressing mitochondrial apoptosis. The current review is an extensive survey of various WA associated disease targets, its pharmacokinetics, synergistic combination, modifications, and biological activities.
Collapse
Affiliation(s)
- Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India;
| | - Aditi Sharma
- School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh 173229, India; (A.S.); (L.S.)
| | - Lalit Sharma
- School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh 173229, India; (A.S.); (L.S.)
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India;
| | - Gokhan Zengin
- Department of Biology, Faculty of Science, Selcuk University Campus, Konya 42250, Turkey;
| | - Roxana Brata
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (R.B.); (O.F.)
| | - Ovidiu Fratila
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (R.B.); (O.F.)
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
| |
Collapse
|
23
|
Kamal MA, Al-Zahrani MH, Khan SH, Khan MH, Al-Subhi HA, Kuerban A, Aslam M, Al-Abbasi FA, Anwar F. Tubulin Proteins in Cancer Resistance: A Review. Curr Drug Metab 2020; 21:178-185. [DOI: 10.2174/1389200221666200226123638] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 11/26/2019] [Accepted: 12/03/2019] [Indexed: 12/26/2022]
Abstract
Cancer cells are altered with cell cycle genes or they are mutated, leading to a high rate of proliferation
compared to normal cells. Alteration in these genes leads to mitosis dysregulation and becomes the basis of tumor
progression and resistance to many drugs. The drugs which act on the cell cycle fail to arrest the process, making
cancer cell non-responsive to apoptosis or cell death. Vinca alkaloids and taxanes fall in this category and are
referred to as antimitotic agents. Microtubule proteins play an important role in mitosis during cell division as a
target site for vinca alkaloids and taxanes. These proteins are dynamic in nature and are composed of α-β-tubulin
heterodimers. β-tubulin specially βΙΙΙ isotype is generally altered in expression within cancerous cells. Initially,
these drugs were very effective in the treatment of cancer but failed to show their desired action after initial
chemotherapy. The present review highlights some of the important targets and their mechanism of resistance
offered by cancer cells with new promising drugs from natural sources that can lead to the development of a new
approach to chemotherapy.
Collapse
Affiliation(s)
- Mohammad Amjad Kamal
- Metabolomics and Enzymology Unit, Fundamental and Applied Biology Group, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Maryam Hassan Al-Zahrani
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Salman Hasan Khan
- Department of Orthodontics, and Dentofacial Orthopaedics, TMU Dental College, Moradabad, Uttar Pradesh, India
| | - Mateen Hasan Khan
- Department of Pharmacology, Shri Venkateshwara University, Gajraula, Amroha, Uttar Pradesh, India
| | - Hani Awad Al-Subhi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Abudukadeer Kuerban
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Muhammad Aslam
- Department of Statistics, Faculy of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Fahad Ahmed Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Firoz Anwar
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
24
|
Mehta V, Chander H, Munshi A. Mechanisms of Anti-Tumor Activity of Withania somnifera (Ashwagandha). Nutr Cancer 2020; 73:914-926. [PMID: 33949906 DOI: 10.1080/01635581.2020.1778746] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Increasing herbal formulations have been used to treat several diseases including cancer. W. somnifera (Ashwagandha) is one such plant the extracts of which have been tested against a number of ailments including cancer, which remains as one of the most dreadful diseases on the globe. The ever-increasing number of cancer related mortality demands the development of novel chemopreventive agents with minimum side effects. Different compounds isolated from various parts of the plant like root, stem, and leaves have been reported to display significant anti-cancerous and immunomodulating properties and thus can be used alone or in combination with other chemotherapeutic drugs for cancer treatment. Through this review, we highlight the importance of W. somnifera in countering the potential oncogenic signaling mediators that are modulated by active constituents of W. somnifera in a variety of cancer types. Further, we hope that active constituents of W. somnifera will be tested in clinical trials so that they can be used as an important adjuvant in the near future for the effective treatment of cancer.
Collapse
Affiliation(s)
- Vikrant Mehta
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab, India
| | - Harish Chander
- National Institute of Biologicals, Noida, Uttar Pradesh, India
| | - Anjana Munshi
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab, India
| |
Collapse
|
25
|
Saggam A, Tillu G, Dixit S, Chavan-Gautam P, Borse S, Joshi K, Patwardhan B. Withania somnifera (L.) Dunal: A potential therapeutic adjuvant in cancer. JOURNAL OF ETHNOPHARMACOLOGY 2020; 255:112759. [PMID: 32173425 DOI: 10.1016/j.jep.2020.112759] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/05/2020] [Accepted: 03/08/2020] [Indexed: 05/27/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Withania somnifera (L.) Dunal (WS) is one of the moststudied Rasayana botanicals used in Ayurveda practice for its immunomodulatory, anti-aging, adaptogenic, and rejuvenating effects. The botanical is being used for various clinical indications, including cancer. Several studies exploring molecular mechanisms of WS suggest its possible role in improving clinical outcomes in cancer management. Therefore, research on WS may offer new insights in rational development of therapeutic adjuvants for cancer. AIM OF THIS REVIEW The review aims at providing a detailed analysis of in silico, in vitro, in vivo, and clinical studies related to WS and cancer. It suggests possible role of WS in regulating molecular mechanisms associated with carcinogenesis. The review discusses potential of WS in cancer management in terms of cancer prevention, anti-cancer activity, and enhancing efficacy of cancer therapeutics. MATERIAL AND METHODS The present narrative review offers a critical analysis of published literature on WS studies in cancer. The reported studies were analysed in the context of pathophysiology of cancer, commonly referred as 'cancer hallmarks'. The review attempts to bridge Ayurveda knowledge with biological insights into molecular mechanisms of cancer. RESULTS Critical analysisof the published literature suggests an anti-cancer potential of WS with a key role in cancer prevention. The possible mechanisms for these effects are associated with the modulation of apoptotic, proliferative, and metastatic markers in cancer. WS can attenuate inflammatory responses and enzymes involved in invasion and metastatic progression of cancer.The properties of WS are likely to be mediated through withanolides, which may activate tumor suppressor proteins to restrict proliferation of cancer cells. Withanolides also regulate the genomic instability, and energy metabolism of cancer cells. The reported studies indicate the need for deeper understanding of molecular mechanisms of WS in inhibiting angiogenesis and promoting immunosurveillance. Additionally, WS can augment efficacy and safety of cancer therapeutics. CONCLUSION The experimentally-supported evidence of immunomodulatory, anti-cancer, adaptogenic, and regenerative attributes of WS suggest its therapeutic adjuvant potential in cancer management. The adjuvant properties of withanolides can modulate multidrug resistance and reverse chemotherapy-induced myelosuppression. These mechanisms need to be further explored in systematically designed translational and clinical studies that will pave the way for integration of WS as a therapeutic adjuvant in cancer management.
Collapse
Affiliation(s)
- Akash Saggam
- AYUSH Center of Excellence, Center for Complementary and Integrative Health, Interdisciplinary School of Health Sciences, Savitribai Phule Pune University, Pune, India
| | - Girish Tillu
- AYUSH Center of Excellence, Center for Complementary and Integrative Health, Interdisciplinary School of Health Sciences, Savitribai Phule Pune University, Pune, India
| | | | - Preeti Chavan-Gautam
- AYUSH Center of Excellence, Center for Complementary and Integrative Health, Interdisciplinary School of Health Sciences, Savitribai Phule Pune University, Pune, India
| | - Swapnil Borse
- AYUSH Center of Excellence, Center for Complementary and Integrative Health, Interdisciplinary School of Health Sciences, Savitribai Phule Pune University, Pune, India
| | - Kalpana Joshi
- Department of Biotechnology, Sinhgad College of Engineering, Pune, India
| | - Bhushan Patwardhan
- AYUSH Center of Excellence, Center for Complementary and Integrative Health, Interdisciplinary School of Health Sciences, Savitribai Phule Pune University, Pune, India.
| |
Collapse
|
26
|
Huang P, Le X, Huang F, Yang J, Yang H, Ma J, Hu G, Li Q, Chen Z. Discovery of a Dual Tubulin Polymerization and Cell Division Cycle 20 Homologue Inhibitor via Structural Modification on Apcin. J Med Chem 2020; 63:4685-4700. [PMID: 32290657 DOI: 10.1021/acs.jmedchem.9b02097] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Apcin is one of the few compounds that have been previously reported as a Cdc20 specific inhibitor, although Cdc20 is a very promising drug target. We reported here the design, synthesis, and biological evaluations of 2,2,2-trichloro-1-aryl carbamate derivatives as Cdc20 inhibitors. Among these derivatives, compound 9f was much more efficient than the positive compound apcin in inhibiting cancer cell growth, but it had approximately the same binding affinity with apcin in SPR assays. It is possible that another mechanism of action might exist. Further evidence demonstrated that compound 9f also inhibited tubulin polymerization, disorganized the microtubule network, and blocked the cell cycle at the M phase with changes in the expression of cyclins. Thus, it induced apoptosis through the activation of caspase-3 and PARP. In addition, compound 9f inhibited cell migration and invasion in a concentration-dependent manner. These results provide guidance for developing the current series as potential new anticancer therapeutics.
Collapse
Affiliation(s)
- Pan Huang
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China
| | - Xiangyang Le
- Department of Pharmacy, Yiyang Central Hospital, Yiyang 413000, Hunan, China
| | - Fei Huang
- Center for Medical Experiments, Third Xiangya Hospital of Central South University, Changsha 410013, Hunan, China
| | - Jie Yang
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China
| | - Haofeng Yang
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China
| | - Junlong Ma
- Department of Good Clinical Practice, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Gaoyun Hu
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China
| | - Qianbin Li
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China
| | - Zhuo Chen
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China
| |
Collapse
|
27
|
Hassannia B, Logie E, Vandenabeele P, Vanden Berghe T, Vanden Berghe W. Withaferin A: From ayurvedic folk medicine to preclinical anti-cancer drug. Biochem Pharmacol 2020; 173:113602. [DOI: 10.1016/j.bcp.2019.08.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 08/05/2019] [Indexed: 12/26/2022]
|
28
|
Li H, Wei N, Ma Y, Wang X, Zhang Z, Zheng S, Yu X, Liu S, He L. Integrative module analysis of HCC gene expression landscapes. Exp Ther Med 2020; 19:1779-1788. [PMID: 32104233 PMCID: PMC7027144 DOI: 10.3892/etm.2020.8437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 11/22/2019] [Indexed: 12/13/2022] Open
Abstract
Despite hepatocellular carcinoma (HCC) being a common cancer globally, its initiation and progression are not well understood. The present study was designed to investigate the hub genes and biological processes of HCC, which change substantially during its progression. Three gene expression profiles of 480 patients with HCC were obtained from the Gene Expression Omnibus database. Subsequent to performing functional annotations and constructing protein-protein interaction (PPI) networks, 657 differentially expressed genes were identified, which were subsequently used to screen candidate hub genes. PPI networks were modularized using the weighted gene correlation network analysis algorithm, the topological overlapping matrix and the hierarchical cluster tree, which were utilized via STRING. Clinical data obtained from The Cancer Genome Atlas were then analyzed to validate the experiments performed using six hub genes. Additionally, a transcription factor and microRNA-mRNA network were constructed to determine the potential regulatory mechanisms of six hub genes. The results revealed that the oxidation-reduction process and cell cycle associated processes were markedly involved in HCC progression. Six highly expressed genes, including cyclin B2, cell division cycle 20, mitotic arrest deficient 2 like 1, minichromosome maintenance complex component 2, centromere protein F and BUB mitotic checkpoint serine/threonine kinase B, were confirmed as hub genes and validated via experiments associated with cell division. These hub genes are necessary for confirmatory experiments and may be used in clinical gene therapy as biomarkers or drug targets.
Collapse
Affiliation(s)
- Hongshi Li
- Department of Medical Oncology, People's Hospital of Liaoning Province, Shenyang, Liaoning 110016, P.R. China
| | - Ning Wei
- Department of Medical Oncology, People's Hospital of Liaoning Province, Shenyang, Liaoning 110016, P.R. China
| | - Yi Ma
- Department of Medical Oncology, People's Hospital of Liaoning Province, Shenyang, Liaoning 110016, P.R. China
| | - Xiaozhou Wang
- Department of Medical Oncology, People's Hospital of Liaoning Province, Shenyang, Liaoning 110016, P.R. China
| | - Zhiqiang Zhang
- Department of Medical Oncology, People's Hospital of Liaoning Province, Shenyang, Liaoning 110016, P.R. China
| | - Shuang Zheng
- Department of Medical Oncology, People's Hospital of Liaoning Province, Shenyang, Liaoning 110016, P.R. China
| | - Xi Yu
- Department of Medical Oncology, People's Hospital of Liaoning Province, Shenyang, Liaoning 110016, P.R. China
| | - Shuang Liu
- Department of Medical Oncology, People's Hospital of Liaoning Province, Shenyang, Liaoning 110016, P.R. China
| | - Lijie He
- Department of Medical Oncology, People's Hospital of Liaoning Province, Shenyang, Liaoning 110016, P.R. China
| |
Collapse
|
29
|
Dom M, Vanden Berghe W, Van Ostade X. Broad-spectrum antitumor properties of Withaferin A: a proteomic perspective. RSC Med Chem 2020; 11:30-50. [PMID: 33479603 PMCID: PMC7523023 DOI: 10.1039/c9md00296k] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 11/21/2019] [Indexed: 12/11/2022] Open
Abstract
The multifunctional antitumor properties of Withaferin A (WA), the manifold studied bioactive compound of the plant Withania somnifera, have been well established in many different in vitro and in vivo cancer models. This undoubtedly has led to a much better insight in the underlying mechanisms of WAs broad antitumor activity range, but also raises additional challenging questions on how all these antitumor properties could be explained on a molecular level. Therefore, a lot of effort was made to characterize the cellular WA target proteins, since these binding events will lead and initiate the observed downstream effects. Based on a proteomic perspective, this review provides novel insights in the molecular chain of events by which WA potentially exercises its antitumor activities. We illustrate that WA triggers multiple cellular stress pathways such as the NRF2-mediated oxidative stress response, the heat shock response and protein translation events and at the same time inhibits these cellular protection mechanisms, driving stressed cancer cells towards a fatal state of collapse. If cancer cells manage to restore homeostasis and survive, a stress-independent WA antitumor response comes into play. These include the known inhibition of cytoskeleton proteins, NFκB pathway inhibition and cell cycle inhibition, among others. This review therefore provides a comprehensive overview which integrates the numerous WA-protein binding partners to formulate a general WA antitumor mechanism.
Collapse
Affiliation(s)
- Martin Dom
- Laboratory of Protein Chemistry , Proteomics and Epigenetic Signalling (PPES) , Department of Biomedical Sciences , University of Antwerp (UA) , Universiteitsplein 1 , 2610 Wilrijk , Belgium . ; Tel: +3232562319
| | - Wim Vanden Berghe
- Laboratory of Protein Chemistry , Proteomics and Epigenetic Signalling (PPES) , Department of Biomedical Sciences , University of Antwerp (UA) , Universiteitsplein 1 , 2610 Wilrijk , Belgium . ; Tel: +3232562319
| | - Xaveer Van Ostade
- Laboratory of Protein Chemistry , Proteomics and Epigenetic Signalling (PPES) , Department of Biomedical Sciences , University of Antwerp (UA) , Universiteitsplein 1 , 2610 Wilrijk , Belgium . ; Tel: +3232562319
| |
Collapse
|
30
|
Sun Z, Lu J, Wu M, Li M, Bai L, Shi Z, Hao L, Wu Y. Deficiency of PTEN leads to aberrant chromosome segregation through downregulation of MAD2. Mol Med Rep 2019; 20:4235-4243. [PMID: 31545428 PMCID: PMC6797992 DOI: 10.3892/mmr.2019.10668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 08/20/2019] [Indexed: 11/07/2022] Open
Abstract
Proper spindle formation and accurate chromosome segregation are essential for ensuring mitotic fidelity. Phosphatase and tensin homolog (PTEN) is a multifunctional protein, which is able to maintain the stability of the genome and chromosomes. The present study described an essential role of PTEN in regulating chromosome segregation to prevent gross genomic instability via regulation of mitotic arrest deficient 2 (MAD2). PTEN knockdown induced cell cycle arrest and abnormal chromosome segregation, which manifested as the formation of anaphase bridges, lagging chromosomes and premature chromatid separation. In addition, MAD2 was identified as a potential target of PTEN. Furthermore, the present study revealed that PTEN knockdown resulted in MAD2 degradation via the ubiquitin-proteasomal pathway, while restoration of MAD2 expression partially ameliorated the mitotic defects induced by PTEN loss. The results from the present study proposed a novel mechanism by which PTEN maintains chromosome stability.
Collapse
Affiliation(s)
- Zhuo Sun
- Department of Pathology, Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Jinqi Lu
- Department of Pathology, Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Muyu Wu
- Department of Pathology, Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Mingyan Li
- Department of Pathology, Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Lu Bai
- Department of Pathology, Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Zhenduo Shi
- Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu 221009, P.R. China
| | - Lin Hao
- Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu 221009, P.R. China
| | - Yongping Wu
- Department of Pathology, Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| |
Collapse
|
31
|
Maes A, Maes K, De Raeve H, De Smedt E, Vlummens P, Szablewski V, Devin J, Faict S, De Veirman K, Menu E, Offner F, Spaargaren M, Moreaux J, Vanderkerken K, Van Valckenborgh E, De Bruyne E. The anaphase-promoting complex/cyclosome: a new promising target in diffuse large B-cell lymphoma and mantle cell lymphoma. Br J Cancer 2019; 120:1137-1146. [PMID: 31089208 PMCID: PMC6738099 DOI: 10.1038/s41416-019-0471-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 01/03/2023] Open
Abstract
Background The aggressive B-cell non-Hodgkin lymphomas diffuse large B-cell lymphoma (DLBCL) and mantle cell lymphoma (MCL) are characterised by a high proliferation rate. The anaphase-promoting complex/cyclosome (APC/C) and its co-activators Cdc20 and Cdh1 represent an important checkpoint in mitosis. Here, the role of the APC/C and its co-activators is examined in DLBCL and MCL. Methods The expression and prognostic value of Cdc20 and Cdh1 was investigated using GEP data and immunohistochemistry. Moreover, the therapeutic potential of APC/C targeting was evaluated using the small-molecule inhibitor proTAME and the underlying mechanisms of action were investigated by western blot. Results We demonstrated that Cdc20 is highly expressed in DLBCL and aggressive MCL, correlating with a poor prognosis in DLBCL. ProTAME induced a prolonged metaphase, resulting in accumulation of the APC/C-Cdc20 substrate cyclin B1, inactivation/degradation of Bcl-2 and Bcl-xL and caspase-dependent apoptosis. In addition, proTAME strongly enhanced the anti-lymphoma effect of the clinically relevant agents doxorubicin and venetoclax. Conclusion We identified for the first time APC/C as a new, promising target in DLBCL and MCL. Moreover, we provide evidence that Cdc20 might be a novel, independent prognostic factor in DLBCL and MCL.
Collapse
Affiliation(s)
- Anke Maes
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ken Maes
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Hendrik De Raeve
- Department of Pathology, UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Eva De Smedt
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Philip Vlummens
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium.,Hematology, Department of Internal Medicine, Ghent University Hospital, Ghent, Belgium
| | | | - Julie Devin
- Laboratory for Monitoring Innovative Therapies, Institute of Human Genetics, CNRS, Montpellier, France
| | - Sylvia Faict
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Kim De Veirman
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Eline Menu
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Fritz Offner
- Hematology, Department of Internal Medicine, Ghent University Hospital, Ghent, Belgium
| | - Marcel Spaargaren
- Department of Pathology, Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Jérôme Moreaux
- Laboratory for Monitoring Innovative Therapies, Institute of Human Genetics, CNRS, Montpellier, France
| | - Karin Vanderkerken
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Els Van Valckenborgh
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Elke De Bruyne
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
32
|
Long C, Chen J, Zhou H, Jiang T, Fang X, Hou D, Liu P, Duan H. Diosgenin exerts its tumor suppressive function via inhibition of Cdc20 in osteosarcoma cells. Cell Cycle 2019; 18:346-358. [PMID: 30640578 DOI: 10.1080/15384101.2019.1568748] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Osteosarcoma (OS) is one of the aggressive malignancies for young adults. Cdc20 (cell division cycle 20 homologue) has been reported to exhibit an oncogenic role in OS, suggesting that inhibition of Cdc20 could be a novel strategy for the treatment of OS. Since Cdc20 inhibitors have side effects, it is important to discover the new CDC20 inhibitors with non-toxic nature. In the present study, we determine whether natural agent diosgenin is an inhibitor of Cdc20 in OS cells. We performed MTT, FACS, Wound healing assay, Transwell, Western blotting, transfection assays in our study. We found diosgenin inhibited cell growth and induced apoptosis. Moreover, diosgenin exposure led to inhibition of cell migration and invasion. Notably, diosgenin inhibited the expression of Cdc20 in OS cells. Overexpression of Cdc20 abrogated the inhibition of cell growth and invasion induced by diosgenin. Our data reveal that inhibition of Cdc20 by diosgenin could be helpful for the treatment of patients with OS.
Collapse
Affiliation(s)
- Cheng Long
- a Department of Orthopedics, West China Hospital, Sichuan University , Chengdu, Sichuan Province , China
| | - Juan Chen
- b Department of Ultrasound, West China Hospital, Sichuan University , Chengdu, Sichuan Province , China
| | - Hua Zhou
- c Department of Orthopedics, Peking University Third Hospital , Beijing , China
| | - Tao Jiang
- d Department of Orthopedics, Sichuan Modern Hospital , Chengdu, Sichuan Province , China
| | - Xiang Fang
- a Department of Orthopedics, West China Hospital, Sichuan University , Chengdu, Sichuan Province , China
| | - Dong Hou
- e West China Medical College, Sichuan University, Chengdu , Sichuan Province , China
| | - Ping Liu
- e West China Medical College, Sichuan University, Chengdu , Sichuan Province , China
| | - Hong Duan
- a Department of Orthopedics, West China Hospital, Sichuan University , Chengdu, Sichuan Province , China
| |
Collapse
|
33
|
Paier CRK, Maranhão SS, Carneiro TR, Lima LM, Rocha DD, da Silva Santos R, de Farias KM, de Moraes-Filho MO, Pessoa C. Natural products as new antimitotic compounds for anticancer drug development. Clinics (Sao Paulo) 2018; 73:e813s. [PMID: 30540125 PMCID: PMC6256996 DOI: 10.6061/clinics/2018/e813s] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 10/09/2018] [Indexed: 12/19/2022] Open
Abstract
Cell cycle control genes are frequently mutated in cancer cells, which usually display higher rates of proliferation than normal cells. Dysregulated mitosis leads to genomic instability, which contributes to tumor progression and aggressiveness. Many drugs that disrupt mitosis have been studied because they induce cell cycle arrest and tumor cell death. These antitumor compounds are referred to as antimitotics. Vinca alkaloids and taxanes are natural products that target microtubules and inhibit mitosis, and their derivatives are among the most commonly used drugs in cancer therapy worldwide. However, severe adverse effects such as neuropathies are frequently observed during treatment with microtubule-targeting agents. Many efforts have been directed at developing improved antimitotics with increased specificity and decreased likelihood of inducing side effects. These new drugs generally target specific components of mitotic regulation that are mainly or exclusively expressed during cell division, such as kinases, motor proteins and multiprotein complexes. Such small molecules are now in preclinical studies and clinical trials, and many are products or derivatives from natural sources. In this review, we focused on the most promising targets for the development of antimitotics and discussed the advantages and disadvantages of these targets. We also highlighted the novel natural antimitotic agents under investigation by our research group, including combretastatins, withanolides and pterocarpans, which show the potential to circumvent the main issues in antimitotic therapy.
Collapse
Affiliation(s)
- Carlos Roberto Koscky Paier
- Laboratorio de Oncologia Experimental, Nucleo de Pesquisa e Desenvolvimento de Medicamentos (NPDM), Universidade Federal do Ceara, Fortaleza, CE, BR
- *Corresponding author. E-mail:
| | - Sarah Sant'Anna Maranhão
- Laboratorio de Oncologia Experimental, Nucleo de Pesquisa e Desenvolvimento de Medicamentos (NPDM), Universidade Federal do Ceara, Fortaleza, CE, BR
- Programa de Pos graduacao em Farmacologia, Universidade Federal do Ceara, Fortaleza, CE, BR
| | - Teiliane Rodrigues Carneiro
- Laboratorio de Oncologia Experimental, Nucleo de Pesquisa e Desenvolvimento de Medicamentos (NPDM), Universidade Federal do Ceara, Fortaleza, CE, BR
- Programa de Pos graduacao em Biotecnologia, Rede Nordeste de Biotecnologia (RENORBIO), Universidade Federal do Ceara, Fortaleza, CE, BR
- Laboratorio de Avaliacao e Sintese de Substancias Bioativas (LASSBio), Instituto de Ciencia e Tecnologia de Farmacos e Medicamentos (INCT-INOFAR), Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, BR
| | - Lídia Moreira Lima
- Laboratorio de Avaliacao e Sintese de Substancias Bioativas (LASSBio), Instituto de Ciencia e Tecnologia de Farmacos e Medicamentos (INCT-INOFAR), Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, BR
| | - Danilo Damasceno Rocha
- Laboratorio de Oncologia Experimental, Nucleo de Pesquisa e Desenvolvimento de Medicamentos (NPDM), Universidade Federal do Ceara, Fortaleza, CE, BR
| | - Renan da Silva Santos
- Laboratorio de Oncologia Experimental, Nucleo de Pesquisa e Desenvolvimento de Medicamentos (NPDM), Universidade Federal do Ceara, Fortaleza, CE, BR
- Programa de Pos graduacao em Farmacologia, Universidade Federal do Ceara, Fortaleza, CE, BR
| | - Kaio Moraes de Farias
- Laboratorio de Oncologia Experimental, Nucleo de Pesquisa e Desenvolvimento de Medicamentos (NPDM), Universidade Federal do Ceara, Fortaleza, CE, BR
- Programa de Pos graduacao em Biotecnologia, Rede Nordeste de Biotecnologia (RENORBIO), Universidade Federal do Ceara, Fortaleza, CE, BR
| | - Manoel Odorico de Moraes-Filho
- Laboratorio de Oncologia Experimental, Nucleo de Pesquisa e Desenvolvimento de Medicamentos (NPDM), Universidade Federal do Ceara, Fortaleza, CE, BR
- Programa de Pos graduacao em Farmacologia, Universidade Federal do Ceara, Fortaleza, CE, BR
- Programa de Pos graduacao em Biotecnologia, Rede Nordeste de Biotecnologia (RENORBIO), Universidade Federal do Ceara, Fortaleza, CE, BR
| | - Claudia Pessoa
- Laboratorio de Oncologia Experimental, Nucleo de Pesquisa e Desenvolvimento de Medicamentos (NPDM), Universidade Federal do Ceara, Fortaleza, CE, BR
- Programa de Pos graduacao em Farmacologia, Universidade Federal do Ceara, Fortaleza, CE, BR
- Programa de Pos graduacao em Biotecnologia, Rede Nordeste de Biotecnologia (RENORBIO), Universidade Federal do Ceara, Fortaleza, CE, BR
| |
Collapse
|
34
|
Bale S, Pulivendala G, Godugu C. Withaferin A attenuates bleomycin-induced scleroderma by targeting FoxO3a and NF-κβ signaling: Connecting fibrosis and inflammation. Biofactors 2018; 44:507-517. [PMID: 30367690 DOI: 10.1002/biof.1446] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 07/24/2018] [Indexed: 12/16/2022]
Abstract
Scleroderma is an inflammatory autoimmune disease which begins with inflammation due to tissue injury and advances to progressive accumulation of extracellular matrix resulting in scarring and hardening of the skin. Inflammation is a salutary response to tissue injury caused by varied factors. While inflammation is required for systematic wound healing, dysregulated chronic inflammation often leads to tissue scarring. Prominent role of inflammation in pathology and physiology makes it a double edge sword. The objective of this study was to investigate the role of Withaferin A (WFA), a steroidal lactone from Withania somnifera in a 28-day murine model of bleomycin-induced experimental scleroderma. Withaferin A was administered at two doses 2 and 4 mg/kg intraperitoneally for 28 days. At the time of study termination, we observed significant reduction in dorsal skin thickness. Our results indicate that WFA was able to sufficiently suppress pro-inflammatory phase of fibrosis, TGF-β/Smad signaling and also significantly repressed fibroblast conversion to myofibroblasts. Additionally, our study also demonstrated that WFA modulates FoxO3a-Akt-dependent NF-κβ/IKK-mediated inflammatory cascade, which is a prime signaling pathway in fibrogenesis. The findings of this study are persuasive of WFA as an antifibrotic agent with promising therapeutic effects in scleroderma. © 2018 BioFactors, 44(6):507-517, 2018.
Collapse
Affiliation(s)
- Swarna Bale
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, 500037, India
| | - Gauthami Pulivendala
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, 500037, India
| | - Chandraiah Godugu
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, 500037, India
| |
Collapse
|
35
|
Wang L, Hou Y, Yin X, Su J, Zhao Z, Ye X, Zhou X, Zhou L, Wang Z. Rottlerin inhibits cell growth and invasion via down-regulation of Cdc20 in glioma cells. Oncotarget 2018; 7:69770-69782. [PMID: 27626499 PMCID: PMC5342514 DOI: 10.18632/oncotarget.11974] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/05/2016] [Indexed: 02/07/2023] Open
Abstract
Rottlerin, isolated from a medicinal plant Mallotus phillippinensis, has been demonstrated to inhibit cellular growth and induce cytoxicity in glioblastoma cell lines through inhibition of calmodulin-dependent protein kinase III. Emerging evidence suggests that rottlerin exerts its antitumor activity as a protein kinase C inhibitor. Although further studies revealed that rottlerin regulated multiple signaling pathways to suppress tumor cell growth, the exact molecular insight on rottlerin-mediated tumor inhibition is not fully elucidated. In the current study, we determine the function of rottlerin on glioma cell growth, apoptosis, cell cycle, migration and invasion. We found that rottlerin inhibited cell growth, migration, invasion, but induced apoptosis and cell cycle arrest. Mechanistically, the expression of Cdc20 oncoprotein was measured by the RT-PCR and Western blot analysis in glioma cells treated with rottlerin. We observed that rottlerin significantly inhibited the expression of Cdc20 in glioma cells, implying that Cdc20 could be a novel target of rottlerin. In line with this, over-expression of Cdc20 decreased rottlerin-induced cell growth inhibition and apoptosis, whereas down-regulation of Cdc20 by its shRNA promotes rottlerin-induced anti-tumor activity. Our findings indicted that rottlerin could exert its tumor suppressive function by inhibiting Cdc20 pathway which is constitutively active in glioma cells. Therefore, down-regulation of Cdc20 by rottlerin could be a promising therapeutic strategy for the treatment of glioma.
Collapse
Affiliation(s)
- Lixia Wang
- The Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, the First Affiliated Hospital, Soochow University, Suzhou, China
| | - Yingying Hou
- The Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, the First Affiliated Hospital, Soochow University, Suzhou, China
| | - Xuyuan Yin
- The Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, the First Affiliated Hospital, Soochow University, Suzhou, China
| | - Jingna Su
- The Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, the First Affiliated Hospital, Soochow University, Suzhou, China
| | - Zhe Zhao
- The Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, the First Affiliated Hospital, Soochow University, Suzhou, China
| | - Xiantao Ye
- The Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, the First Affiliated Hospital, Soochow University, Suzhou, China
| | - Xiuxia Zhou
- The Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, the First Affiliated Hospital, Soochow University, Suzhou, China
| | - Li Zhou
- Department of Gynecologic Oncosurgery, Jilin province Cancer Hospital, Changchun, Jilin, China
| | - Zhiwei Wang
- The Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, the First Affiliated Hospital, Soochow University, Suzhou, China.,Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, USA
| |
Collapse
|
36
|
Shang G, Ma X, Lv G. Cell division cycle 20 promotes cell proliferation and invasion and inhibits apoptosis in osteosarcoma cells. Cell Cycle 2017; 17:43-52. [PMID: 28980876 DOI: 10.1080/15384101.2017.1387700] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Cdc20 (cell division cycle 20 homologue) has been reported to exhibit an oncogenic role in human tumorigenesis. However, the function of Cdc20 in osteosarcoma (OS) has not been investigated. In the current study, we aim to explore the role of Cdc20 in human OS cells. Multiple approaches were used to measure cell growth, apoptosis, cell cycle, migration and invasion in OS cells after depletion of Cdc20 or overexpression of Cdc20. We found that down-regulation of Cdc20 inhibited cell growth, induced apoptosis and triggered cell cycle arrest in OS cells. Moreover, Cdc20 down-regulation let to inhibition of cell migration and invasion in OS cells. Consistently, overexpression of Cdc20 in OS cells promoted cell growth, inhibited apoptosis, enhanced cell migration and invasion. Mechanistically, our Western blotting results showed that overexpression of Cdc20 reduced the expression of Bim and p21, whereas depletion of Cdc20 upregulated Bim and p21 levels in OS cells. Altogether, our findings demonstrated that Cdc20 exerts its oncogenic role partly due to regulation of Bim and p21 in OS cells, suggesting that targeting Cdc20 could be useful for the treatment of OS.
Collapse
Affiliation(s)
- Guanning Shang
- a Department of Orthopaedics , The First Affiliated Hospital , China Medical University , Shenyang , Liaoning Province , PR China
| | - Xu Ma
- a Department of Orthopaedics , The First Affiliated Hospital , China Medical University , Shenyang , Liaoning Province , PR China
| | - Gang Lv
- a Department of Orthopaedics , The First Affiliated Hospital , China Medical University , Shenyang , Liaoning Province , PR China
| |
Collapse
|
37
|
Yu P, Zhang C, Gao CY, Ma T, Zhang H, Zhou MM, Yang YW, Yang L, Kong LY. Anti-proliferation of triple-negative breast cancer cells with physagulide P: ROS/JNK signaling pathway induces apoptosis and autophagic cell death. Oncotarget 2017; 8:64032-64049. [PMID: 28969050 PMCID: PMC5609982 DOI: 10.18632/oncotarget.19299] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 06/05/2017] [Indexed: 12/19/2022] Open
Abstract
Physagulide P (PP), a new natural compound, was isolated from Physalis angulate L. in our laboratory. In this study, we demonstrated that PP potently suppressed cell proliferation by inducing G2/M phase arrest in MDA-MB-231 and MDA-MB-468 cells. Moreover, PP provoked apoptosis by decreasing the mitochondrial membrane potential and elevating the Bax/Bcl-2 protein expression ratio. The caspase inhibitor Z-VAD-FMK partly restore cell viability, suggesting that apoptosis plays as an important role in the anti-proliferative effect of PP. PP-treated cells also underwent autophagy, as evidenced by the formation of autophagosomes and the accumulation of LC3BII. Furthermore, the knockdown of LC3B reduced PP-induced cytotoxicity, indicating that autophagy played an anticancer effect. PP also induced the generation of reactive oxygen species (ROS) and resulted in c-Jun N-terminal kinases (JNK) activation. Accordingly, JNK siRNA significantly attenuated PP-triggered apoptosis and autophagy, and ROS scavengers almost completely reverse this apoptosis and autophagy. The ROS scavenger also blocked PP-induced G2/M phase arrest and the phosphorylation of JNK. Our results revealed that PP induced G2/M phase arrest, apoptosis and autophagy via the ROS/JNK signaling pathway in MDA-MB-231 and MDA-MB-468 cells. Therefore, PP is a promising candidate for the development of antitumor drugs for the treatment of triple-negative breast cancer.
Collapse
Affiliation(s)
- Pei Yu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Chao Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Cai-Yun Gao
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Ting Ma
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Hao Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Miao-Miao Zhou
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Yan-Wei Yang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Lei Yang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Ling-Yi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
38
|
Cdc20: At the Crossroads between Chromosome Segregation and Mitotic Exit. Trends Biochem Sci 2017; 42:193-205. [PMID: 28202332 DOI: 10.1016/j.tibs.2016.12.001] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 11/13/2016] [Accepted: 12/06/2016] [Indexed: 11/21/2022]
Abstract
Cell-division cycle protein 20 homologue (Cdc20) has important functions in chromosome segregation and mitotic exit. Cdc20 is the target of the spindle assembly checkpoint (SAC) and a key cofactor of the anaphase-promoting complex or cyclosome (APC/C) E3 ubiquitin ligase, thus regulating APC/C ubiquitin activity on specific substrates for their subsequent degradation by the proteasome. Here we discuss the roles of Cdc20 in SAC signalling and mitotic exit, describe how the integration of traditional approaches with emerging technologies has revealed new details of Cdc20 functions, comment about the potential of Cdc20 as a therapeutic target for the treatment of human malignancies, and discuss recent advances and controversies in the mechanistic understanding of the control of chromosome segregation during cell division.
Collapse
|
39
|
Abstract
The Notch1 gene is a major oncogenic driver and therapeutic target in T-cell acute lymphoblastic leukemia (T-ALL). However, inhibition of NOTCH signaling with γ-secretase inhibitors (GSIs) has shown limited antileukemic activity in clinical trials. Here we performed an expression-based virtual screening to identify highly active antileukemic drugs that synergize with NOTCH1 inhibition in T-ALL. Among these, withaferin A demonstrated the strongest cytotoxic and GSI-synergistic antileukemic effects in vitro and in vivo. Mechanistically, network perturbation analyses showed eIF2A-phosphorylation-mediated inhibition of protein translation as a critical mediator of the antileukemic effects of withaferin A and its interaction with NOTCH1 inhibition. Overall, these results support a role for anti-NOTCH1 therapies and protein translation inhibitor combinations in the treatment of T-ALL.
Collapse
|
40
|
Inhibition of Cell Survival by Curcumin Is Associated with Downregulation of Cell Division Cycle 20 (Cdc20) in Pancreatic Cancer Cells. Nutrients 2017; 9:nu9020109. [PMID: 28165402 PMCID: PMC5331540 DOI: 10.3390/nu9020109] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 01/19/2017] [Accepted: 01/25/2017] [Indexed: 01/23/2023] Open
Abstract
Pancreatic cancer is one of the most aggressive human tumors in the United States. Curcumin, a polyphenol derived from the Curcuma longa plant, has been reported to exert its antitumor activity in pancreatic cancer. However, the molecular mechanisms of curcumin-mediated tumor suppressive function have not been fully elucidated. In the current study, we explore whether curcumin exhibits its anti-cancer function through inhibition of oncoprotein cell division cycle 20 (Cdc20) in pancreatic cancer cells. We found that curcumin inhibited cell growth, enhanced apoptosis, induced cell cycle arrest and retarded cell invasion in pancreatic cancer cells. Moreover, we observed that curcumin significantly inhibited the expression of Cdc20 in pancreatic cancer cells. Furthermore, our results demonstrated that overexpression of Cdc20 enhanced cell proliferation and invasion, and abrogated the cytotoxic effects induced by curcumin in pancreatic cancer cells. Consistently, downregulation of Cdc20 promoted curcumin-mediated anti-tumor activity. Therefore, our findings indicated that inhibition of Cdc20 by curcumin could be useful for the treatment of pancreatic cancer patients.
Collapse
|
41
|
Kaul SC, Ishida Y, Tamura K, Wada T, Iitsuka T, Garg S, Kim M, Gao R, Nakai S, Okamoto Y, Terao K, Wadhwa R. Novel Methods to Generate Active Ingredients-Enriched Ashwagandha Leaves and Extracts. PLoS One 2016; 11:e0166945. [PMID: 27936030 PMCID: PMC5147857 DOI: 10.1371/journal.pone.0166945] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 11/06/2016] [Indexed: 12/16/2022] Open
Abstract
Ashwagandha (Withania somnifera) is an Ayurvedic herb commonly used in world-renowned traditional Indian home medicine system. Roots of Ashwagandha have been traditionally known to possess a variety of therapeutic and health promoting potentials that have not been sufficiently supported by laboratory studies. Nevertheless, most, if not all, of the preventive and therapeutic potentials have been assigned to its bioactive components, steroidal alkaloids and lactones. In contrast to the traditional use of roots, we have been exploring bioactivities in leaves of Ashwagandha. Here, we report that the leaves possess higher content of active Withanolides, Withaferin-A (Wi-A) and Withanone (Wi-N), as compared to the roots. We also established, for the first time, hydroponic cultivation of Ashwagandha and investigated the effect of various cultivation conditions on the content of Wi-A and Wi-N by chemical analysis and bioassays. We report that the Withanone/Withaferin A-rich leaves could be obtained by manipulating light condition during hydroponic cultivation. Furthermore, we recruited cyclodextrins to prepare extracts with desired ratio of Wi-N and Wi-A. Hydroponically grown Ashwagandha and its extracts with high ratio of withanolides are valuable for cancer treatment.
Collapse
Affiliation(s)
- Sunil C. Kaul
- Drug Discovery and Assets Innovation Laboratory, DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, Japan
| | - Yoshiyuki Ishida
- CycloChem Co., Ltd., 7-4-5 Minatojima-minamimachi, Chuo-ku, Kobe, Japan
| | - Kazuya Tamura
- DAI-DAN Co., Ltd., 390 Kitanagai, Miyoshi-machi, Iruma-gun, Saitama, Japan
| | - Teruo Wada
- Osaka Prefecture University, 1-1 Nakakugakuencho, Sakai-city, Osaka, Japan
| | - Tomoko Iitsuka
- Drug Discovery and Assets Innovation Laboratory, DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, Japan
| | - Sukant Garg
- Drug Discovery and Assets Innovation Laboratory, DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, Japan
- School of Integrative and Global Majors, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Japan
| | - Mijung Kim
- Drug Discovery and Assets Innovation Laboratory, DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, Japan
| | - Ran Gao
- Drug Discovery and Assets Innovation Laboratory, DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, Japan
| | - Shoichi Nakai
- DAI-DAN Co., Ltd., 390 Kitanagai, Miyoshi-machi, Iruma-gun, Saitama, Japan
| | - Youji Okamoto
- Zuiron Private Ltd., 2-3-1 Nakajyosanjimacho, Tokushima-city, Tokushima, Japan
| | - Keiji Terao
- CycloChem Co., Ltd., 7-4-5 Minatojima-minamimachi, Chuo-ku, Kobe, Japan
| | - Renu Wadhwa
- Drug Discovery and Assets Innovation Laboratory, DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, Japan
- School of Integrative and Global Majors, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Japan
- * E-mail:
| |
Collapse
|
42
|
Li K, Mao Y, Lu L, Hu C, Wang D, Si-Tu J, Lu M, Peng S, Qiu J, Gao X. Silencing of CDC20 suppresses metastatic castration-resistant prostate cancer growth and enhances chemosensitivity to docetaxel. Int J Oncol 2016; 49:1679-85. [DOI: 10.3892/ijo.2016.3671] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 07/26/2016] [Indexed: 11/06/2022] Open
|
43
|
Abstract
Glioblastoma is the most prevalent and lethal primary intrinsic brain tumor. Glioblastoma displays hierarchical arrangement with a population of self-renewing and tumorigenic glioma tumor initiating cells (TICs), or cancer stem cells. While non-neoplastic neural stem cells are generally quiescent, glioblastoma TICs are often proliferative with mitotic control offering a potential point of fragility. Here, we interrogate the role of cell-division cycle protein 20 (CDC20), an essential activator of anaphase-promoting complex (APC) E3 ubiquitination ligase, in the maintenance of TICs. By chromatin analysis and immunoblotting, CDC20 was preferentially expressed in TICs relative to matched non-TICs. Targeting CDC20 expression by RNA interference attenuated TIC proliferation, self-renewal and in vivo tumor growth. CDC20 disruption mediated its effects through induction of apoptosis and inhibition of cell cycle progression. CDC20 maintains TICs through degradation of p21CIP1/WAF1, a critical negative regulator of TICs. Inhibiting CDC20 stabilized p21CIP1/WAF1, resulting in repression of several genes critical to tumor growth and survival, including CDC25C, c-Myc and Survivin. Transcriptional control of CDC20 is mediated by FOXM1, a central transcription factor in TICs. These results suggest CDC20 is a critical regulator of TIC proliferation and survival, linking two key TIC nodes – FOXM1 and p21CIP1/WAF1 — elucidating a potential point for therapeutic intervention.
Collapse
|
44
|
Lee IC, Choi BY. Withaferin-A--A Natural Anticancer Agent with Pleitropic Mechanisms of Action. Int J Mol Sci 2016; 17:290. [PMID: 26959007 PMCID: PMC4813154 DOI: 10.3390/ijms17030290] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 02/16/2016] [Accepted: 02/17/2016] [Indexed: 01/01/2023] Open
Abstract
Cancer, being the second leading cause of mortality, exists as a formidable health challenge. In spite of our enormous efforts, the emerging complexities in the molecular nature of disease progression limit the real success in finding an effective cancer cure. It is now conceivable that cancer is, in fact, a progressive illness, and the morbidity and mortality from cancer can be reduced by interfering with various oncogenic signaling pathways. A wide variety of structurally diverse classes of bioactive phytochemicals have been shown to exert anticancer effects in a large number of preclinical studies. Multiple lines of evidence suggest that withaferin-A can prevent the development of cancers of various histotypes. Accumulating data from different rodent models and cell culture experiments have revealed that withaferin-A suppresses experimentally induced carcinogenesis, largely by virtue of its potent anti-oxidative, anti-inflammatory, anti-proliferative and apoptosis-inducing properties. Moreover, withaferin-A sensitizes resistant cancer cells to existing chemotherapeutic agents. The purpose of this review is to highlight the mechanistic aspects underlying anticancer effects of withaferin-A.
Collapse
Affiliation(s)
- In-Chul Lee
- Department of Cosmetic science, Seowon University, Cheongju, Chungbuk 361-742, Korea.
| | - Bu Young Choi
- Department of Pharmaceutical Science & Engineering, Seowon University, Cheongju, Chungbuk 361-742, Korea.
| |
Collapse
|
45
|
Palliyaguru DL, Singh SV, Kensler TW. Withania somnifera: From prevention to treatment of cancer. Mol Nutr Food Res 2016; 60:1342-53. [PMID: 26718910 DOI: 10.1002/mnfr.201500756] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 12/03/2015] [Accepted: 12/04/2015] [Indexed: 12/21/2022]
Abstract
The identification of bioactive molecules that have potential to interrupt carcinogenesis continues to garner research interest. In particular, molecules that have dietary origin are most attractive because of their safety, cost-effectiveness and feasibility of oral administration. Nutraceuticals have played an important role in the overall well-being of humans for many years, with or without rigorous evidence backing their health claims. Traditional medicine systems around the world have utilized plants that have medicinal properties for millennia, providing an opportunity for modern day researchers to assess their efficacies against ailments such as cancer. Withania somnifera (WS) is a plant that has been used in Ayurveda (an ancient form of medicine in Asia) and in the recent past, has been demonstrated to have anti-tumorigenic properties in experimental models. While scientific research performed on WS has exploded in the past decade, much regarding the mode of action and molecular targets involved remains unknown. In this review, we discuss the traditional uses of the plant, the experimental evidence supporting its chemopreventive potential as well as roadblocks that need to be overcome in order for WS to be evaluated as a chemopreventive agent in humans.
Collapse
Affiliation(s)
- Dushani L Palliyaguru
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shivendra V Singh
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Thomas W Kensler
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
46
|
Abstract
Plant-based Ayurvedic medicine has been practiced in India for thousands of years for the treatment of a variety of disorders. They are rich sources of bioactive compounds potentially useful for prevention and treatment of cancer. Withania somnifera (commonly known as Ashwagandha in Ayurvedic medicine) is a widely used medicinal plant whose anticancer value was recognized after isolation of steroidal compounds withanolides from the leaves of this shrub. Withaferin A is the first member of withanolides to be isolated, and it is the most abundant withanolide present in W. somnifera. Its cancer-protective role has now been established using chemically induced and oncogene-driven rodent cancer models. The present review summarizes the key preclinical studies demonstrating anticancer effects of withaferin along with its molecular targets and mechanisms related to its anticancer effects. Anticancer potential of other withanolides is also discussed.
Collapse
|
47
|
Targeting Cdc20 as a novel cancer therapeutic strategy. Pharmacol Ther 2015; 151:141-51. [PMID: 25850036 DOI: 10.1016/j.pharmthera.2015.04.002] [Citation(s) in RCA: 178] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 03/31/2015] [Indexed: 12/25/2022]
Abstract
The Anaphase Promoting Complex (APC, also called APC/C) regulates cell cycle progression by forming two closely related, but functionally distinct E3 ubiquitin ligase sub-complexes, APC(Cdc20) and APC(Cdh1), respectively. Emerging evidence has begun to reveal that Cdc20 and Cdh1 have opposing functions in tumorigenesis. Specifically, Cdh1 functions largely as a tumor suppressor, whereas Cdc20 exhibits an oncogenic function, suggesting that Cdc20 could be a promising therapeutic target for combating human cancer. However, the exact underlying molecular mechanisms accounting for their differences in tumorigenesis remain largely unknown. Therefore, in this review, we summarize the downstream substrates of Cdc20 and the critical functions of Cdc20 in cell cycle progression, apoptosis, ciliary disassembly and brain development. Moreover, we briefly describe the upstream regulators of Cdc20 and the oncogenic role of Cdc20 in a variety of human malignancies. Furthermore, we summarize multiple pharmacological Cdc20 inhibitors including TAME and Apcin, and their potential clinical benefits. Taken together, development of specific Cdc20 inhibitors could be a novel strategy for the treatment of human cancers with elevated Cdc20 expression.
Collapse
|