1
|
Schaffer L, Rau S, Larsen IG, Clasen L, Warling A, Whitman ET, Nadig A, McDermott C, Xenophontos A, Wilson K, Blumenthal J, Torres E, Raznahan A. X- vs. Y-chromosome influences on human behavior: a deep phenotypic comparison of psychopathology in XXY and XYY syndromes. J Neurodev Disord 2024; 16:56. [PMID: 39363182 PMCID: PMC11451104 DOI: 10.1186/s11689-024-09574-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 09/22/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND Do different genetic disorders impart different psychiatric risk profiles? This question has major implications for biological and translational aspects of psychiatry, but has been difficult to tackle given limited access to shared batteries of fine-grained clinical data across genetic disorders. METHODS Using a new suite of generalizable analytic approaches, we examine gold-standard diagnostic ratings, scores on 66 dimensional measures of psychopathology, and measures of cognition and functioning in two different sex chromosome aneuploidies (SCAs)-Klinefelter (XXY/KS) and XYY syndrome (n = 102 and 64 vs. n = 74 and 60 matched XY controls, total n = 300). We focus on SCAs for their high collective prevalence, informativeness regarding differential X- vs. Y-chromosome effects, and potential relevance for normative sex differences. RESULTS We show that XXY/KS elevates rates for most psychiatric diagnoses as previously reported for XYY, but disproportionately so for anxiety disorders. Fine-mapping across all 66 traits provides a detailed profile of psychopathology in XXY/KS which is strongly correlated with that of XYY (r = .75 across traits) and robust to ascertainment biases, but reveals: (i) a greater penetrance of XYY than KS/XXY for most traits except mood/anxiety problems, and (ii) a disproportionate impact of XYY vs. XXY/KS on social problems. XXY/KS and XYY showed a similar coupling of psychopathology with adaptive function and caregiver strain, but not IQ. CONCLUSIONS This work provides new tools for deep-phenotypic comparisons of genetic disorders in psychiatry and uses these to detail unique and shared effects of the X- and Y-chromosome on human behavior.
Collapse
Affiliation(s)
- Lukas Schaffer
- Section On Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Magnuson Clinical Center, Room 4N242, MSC 1367, Bethesda, MD, 20814, USA
| | - Srishti Rau
- Center for Autism Spectrum Disorders and Division of Neuropsychology, Children's National Hospital, Washington, DC, USA
| | - Isabella G Larsen
- Section On Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Magnuson Clinical Center, Room 4N242, MSC 1367, Bethesda, MD, 20814, USA
| | - Liv Clasen
- Section On Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Magnuson Clinical Center, Room 4N242, MSC 1367, Bethesda, MD, 20814, USA
| | - Allysa Warling
- Section On Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Magnuson Clinical Center, Room 4N242, MSC 1367, Bethesda, MD, 20814, USA
| | - Ethan T Whitman
- Section On Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Magnuson Clinical Center, Room 4N242, MSC 1367, Bethesda, MD, 20814, USA
| | - Ajay Nadig
- Section On Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Magnuson Clinical Center, Room 4N242, MSC 1367, Bethesda, MD, 20814, USA
| | - Cassidy McDermott
- Section On Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Magnuson Clinical Center, Room 4N242, MSC 1367, Bethesda, MD, 20814, USA
| | - Anastasia Xenophontos
- Section On Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Magnuson Clinical Center, Room 4N242, MSC 1367, Bethesda, MD, 20814, USA
| | - Kathleen Wilson
- Section On Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Magnuson Clinical Center, Room 4N242, MSC 1367, Bethesda, MD, 20814, USA
| | - Jonathan Blumenthal
- Section On Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Magnuson Clinical Center, Room 4N242, MSC 1367, Bethesda, MD, 20814, USA
| | - Erin Torres
- Section On Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Magnuson Clinical Center, Room 4N242, MSC 1367, Bethesda, MD, 20814, USA
| | - Armin Raznahan
- Section On Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Magnuson Clinical Center, Room 4N242, MSC 1367, Bethesda, MD, 20814, USA.
| |
Collapse
|
2
|
Görgülü I, Jagannath V, Pons S, Koniuszewski F, Groszer M, Maskos U, Huck S, Scholze P. The human-specific nicotinic receptor subunit CHRFAM7A reduces α7 receptor function in human induced pluripotent stem cells-derived and transgenic mouse neurons. Eur J Neurosci 2024; 60:4893-4906. [PMID: 39073048 DOI: 10.1111/ejn.16474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 06/12/2024] [Accepted: 07/07/2024] [Indexed: 07/30/2024]
Abstract
We investigated the impact of the human-specific gene CHRFAM7A on the function of α7 nicotinic acetylcholine receptors (α7 nAChRs) in two different types of neurons: human-induced pluripotent stem cell (hiPSC)-derived cortical neurons, and superior cervical ganglion (SCG) neurons, taken from transgenic mice expressing CHRFAM7A. dupα7, the gene product of CHRFAM7A, which lacks a major part of the extracellular N-terminal ligand-binding domain, co-assembles with α7, the gene product of CHRNA7. We assessed the receptor function in hiPSC-derived cortical and SCG neurons with Fura-2 calcium imaging and three different α7-specific ligands: PNU282987, choline, and 4BP-TQS. Given the short-lived open state of α7 receptors, we combined the two orthosteric agonists PNU282987 and choline with the type-2 positive allosteric modulator (PAM II) PNU120596. In line with different cellular models used previously, we demonstrate that CHRFAM7A has a major impact on nicotinic α7 nAChRs by reducing calcium transients in response to all three agonists.
Collapse
Affiliation(s)
- Ilayda Görgülü
- Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Vinita Jagannath
- Institut du Fer à Moulin, Sorbonne University, UMR-S 1270, Paris, France
- MSD R&D Innovation Centre, London, UK
| | - Stephanie Pons
- Integrative Neurobiology of Cholinergic Systems, Institut Pasteur, Université Paris Cité, UMR 3571, Paris, France
| | - Filip Koniuszewski
- Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Matthias Groszer
- Institut du Fer à Moulin, Sorbonne University, UMR-S 1270, Paris, France
| | - Uwe Maskos
- Integrative Neurobiology of Cholinergic Systems, Institut Pasteur, Université Paris Cité, UMR 3571, Paris, France
| | - Sigismund Huck
- Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Petra Scholze
- Center for Brain Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
3
|
Biswal SR, Kumar A, Muthuswamy S, Kumar S. Genetic components of microdeletion syndromes and their role in determining schizophrenia traits. Mol Biol Rep 2024; 51:804. [PMID: 39001960 DOI: 10.1007/s11033-024-09731-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 06/17/2024] [Indexed: 07/15/2024]
Abstract
Schizophrenia is a neuropsychiatric disorder characterized by various symptoms such as hallucinations, delusions, and disordered thinking. The etiology of this disease is unknown; however, it has been linked to many microdeletion syndromes that are likely to contribute to the pathology of schizophrenia. In this review we have comprehensively analyzed the role of various microdeletion syndromes, like 3q29, 15q13.3, and 22q11.2, which are known to be involved with schizophrenia. A variety of factors lead to schizophrenia phenotypes, but copy number variants that disrupt gene regulation and impair brain function and cognition are one of the causes that have been identified. Multiple case studies have shown that loss of one or more genes in the microdeletion regions lead to brain activity defects. In this article, we present a coherent paradigm that connects copy number variations (CNVs) to numerous neurological and behavioral abnormalities associated with schizophrenia. It would be helpful in understanding the different aspects of the microdeletions and how they contribute in the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Smruti Rekha Biswal
- Department of Life Science, National Institute of Technology (NIT), Rourkela, Odisha, 769008, India
| | - Ajay Kumar
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Srinivasan Muthuswamy
- Department of Life Science, National Institute of Technology (NIT), Rourkela, Odisha, 769008, India.
| | - Santosh Kumar
- Department of Life Science, National Institute of Technology (NIT), Rourkela, Odisha, 769008, India.
| |
Collapse
|
4
|
Abedini SS, Akhavantabasi S, Liang Y, Heng JIT, Alizadehsani R, Dehzangi I, Bauer DC, Alinejad-Rokny H. A critical review of the impact of candidate copy number variants on autism spectrum disorder. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2024; 794:108509. [PMID: 38977176 DOI: 10.1016/j.mrrev.2024.108509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/14/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024]
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder (NDD) influenced by genetic, epigenetic, and environmental factors. Recent advancements in genomic analysis have shed light on numerous genes associated with ASD, highlighting the significant role of both common and rare genetic mutations, as well as copy number variations (CNVs), single nucleotide polymorphisms (SNPs) and unique de novo variants. These genetic variations disrupt neurodevelopmental pathways, contributing to the disorder's complexity. Notably, CNVs are present in 10 %-20 % of individuals with autism, with 3 %-7 % detectable through cytogenetic methods. While the role of submicroscopic CNVs in ASD has been recently studied, their association with genomic loci and genes has not been thoroughly explored. In this review, we focus on 47 CNV regions linked to ASD, encompassing 1632 genes, including protein-coding genes and long non-coding RNAs (lncRNAs), of which 659 show significant brain expression. Using a list of ASD-associated genes from SFARI, we detect 17 regions harboring at least one known ASD-related protein-coding gene. Of the remaining 30 regions, we identify 24 regions containing at least one protein-coding gene with brain-enriched expression and a nervous system phenotype in mouse mutants, and one lncRNA with both brain-enriched expression and upregulation in iPSC to neuron differentiation. This review not only expands our understanding of the genetic diversity associated with ASD but also underscores the potential of lncRNAs in contributing to its etiology. Additionally, the discovered CNVs will be a valuable resource for future diagnostic, therapeutic, and research endeavors aimed at prioritizing genetic variations in ASD.
Collapse
Affiliation(s)
- Seyedeh Sedigheh Abedini
- UNSW BioMedical Machine Learning Lab (BML), The Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW 2052, Australia; School of Biotechnology & Biomolecular Sciences, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Shiva Akhavantabasi
- Department of Molecular Biology and Genetics, Yeni Yuzyil University, Istanbul, Turkey; Ghiaseddin Jamshid Kashani University, Andisheh University Town, Danesh Blvd, 3441356611, Abyek, Qazvin, Iran
| | - Yuheng Liang
- UNSW BioMedical Machine Learning Lab (BML), The Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Julian Ik-Tsen Heng
- Curtin Health Innovation Research Institute, Curtin University, Bentley 6845, Australia
| | - Roohallah Alizadehsani
- Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Victoria, Australia
| | - Iman Dehzangi
- Center for Computational and Integrative Biology, Rutgers University, Camden, NJ 08102, USA; Department of Computer Science, Rutgers University, Camden, NJ 08102, USA
| | - Denis C Bauer
- Transformational Bioinformatics, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Sydney, Australia; Applied BioSciences, Faculty of Science and Engineering, Macquarie University, Macquarie Park, Australia
| | - Hamid Alinejad-Rokny
- UNSW BioMedical Machine Learning Lab (BML), The Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW 2052, Australia; Tyree Institute of Health Engineering (IHealthE), UNSW Sydney, Sydney, NSW 2052, Australia.
| |
Collapse
|
5
|
Dangoni GD, Teixeira ACB, da Costa SS, Scliar MO, Carvalho LML, Silva LN, Novak EM, Vince CSC, Maschietto MC, Sugayama SMM, Odone-Filho V, Krepischi ACV. Germline mutations in cancer predisposition genes among pediatric patients with cancer and congenital anomalies. Pediatr Res 2024; 95:1346-1355. [PMID: 38182823 DOI: 10.1038/s41390-023-03000-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/08/2023] [Accepted: 12/20/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND Childhood cancer has a poorly known etiology, and investigating the underlying genetic background may provide novel insights. A recognized association exists between non-chromosomal birth defects and childhood cancer susceptibility. METHODS We performed whole-exome sequencing and chromosomal microarray analysis in a cohort of childhood cancer (22 individuals, 50% with congenital anomalies) to unravel deleterious germline variants. RESULTS A diagnostic yield of 14% was found, encompassing heterozygous variants in bona fide dominant Cancer Predisposition Genes (CPGs). Considering candidate and recessive CPGs harboring monoallelic variants, which were also deemed to play a role in the phenotype, the yield escalated to 45%. Most of the deleterious variants were mapped in genes not conventionally linked to the patient's tumor type. Relevant findings were detected in 55% of the syndromic individuals, mostly variants potentially underlying both phenotypes. CONCLUSION We uncovered a remarkable prevalence of germline deleterious CPG variants, highlighting the significance of a comprehensive genetic analysis in pediatric cancer, especially when coupled with additional clinical signs. Moreover, our findings emphasized the potential for oligogenic inheritance, wherein multiple genes synergistically increase cancer risk. Lastly, our investigation unveiled potentially novel genotype-phenotype associations, such as SETD5 in neuroblastoma, KAT6A in gliomas, JAG1 in hepatoblastomas, and TNFRSF13B in Langerhans cell histiocytosis. IMPACT Novel gene-phenotype associations and candidate genes for pediatric cancer were unraveled, such as KAT6A in gliomas, SETD5 in neuroblastoma, JAG1 in hepatoblastomas, and TNFRSF13B in Langerhans cell histiocytosis. Our analysis revealed a high frequency of deleterious germline variants, particularly in cases accompanied by additional clinical signs, highlighting the importance of a comprehensive genetic evaluation in childhood cancer. Our findings also underscored the potential for oligogenic inheritance in pediatric cancer risk. Understanding the cancer etiology is crucial for genetic counseling, often influencing therapeutic decisions and offering valuable insights into molecular targets for the development of oncological therapies.
Collapse
Affiliation(s)
- Gustavo D Dangoni
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, SP, Brazil
| | - Anne Caroline B Teixeira
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, SP, Brazil
| | - Silvia S da Costa
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, SP, Brazil
| | - Marília O Scliar
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, SP, Brazil
| | - Laura M L Carvalho
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, SP, Brazil
| | - Luciana N Silva
- Department of Pediatrics, Instituto de Tratamento do Câncer Infantil (ITACI), Faculty of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Estela M Novak
- Department of Pediatrics, Instituto de Tratamento do Câncer Infantil (ITACI), Faculty of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | | | | | - Sofia M M Sugayama
- Department of Pediatrics, Instituto de Tratamento do Câncer Infantil (ITACI), Faculty of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Vicente Odone-Filho
- Department of Pediatrics, Instituto de Tratamento do Câncer Infantil (ITACI), Faculty of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Ana Cristina V Krepischi
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
6
|
Alfayyadh MM, Maksemous N, Sutherland HG, Lea RA, Griffiths LR. Unravelling the Genetic Landscape of Hemiplegic Migraine: Exploring Innovative Strategies and Emerging Approaches. Genes (Basel) 2024; 15:443. [PMID: 38674378 PMCID: PMC11049430 DOI: 10.3390/genes15040443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Migraine is a severe, debilitating neurovascular disorder. Hemiplegic migraine (HM) is a rare and debilitating neurological condition with a strong genetic basis. Sequencing technologies have improved the diagnosis and our understanding of the molecular pathophysiology of HM. Linkage analysis and sequencing studies in HM families have identified pathogenic variants in ion channels and related genes, including CACNA1A, ATP1A2, and SCN1A, that cause HM. However, approximately 75% of HM patients are negative for these mutations, indicating there are other genes involved in disease causation. In this review, we explored our current understanding of the genetics of HM. The evidence presented herein summarises the current knowledge of the genetics of HM, which can be expanded further to explain the remaining heritability of this debilitating condition. Innovative bioinformatics and computational strategies to cover the entire genetic spectrum of HM are also discussed in this review.
Collapse
Affiliation(s)
| | | | | | | | - Lyn R. Griffiths
- Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia; (M.M.A.); (N.M.); (H.G.S.); (R.A.L.)
| |
Collapse
|
7
|
Ranieri A, La Monica I, Di Iorio MR, Lombardo B, Pastore L. Genetic Alterations in a Large Population of Italian Patients Affected by Neurodevelopmental Disorders. Genes (Basel) 2024; 15:427. [PMID: 38674362 PMCID: PMC11050211 DOI: 10.3390/genes15040427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Neurodevelopmental disorders are a group of complex multifactorial disorders characterized by cognitive impairment, communication deficits, abnormal behaviour, and/or motor skills resulting from abnormal neural development. Copy number variants (CNVs) are genetic alterations often associated with neurodevelopmental disorders. We evaluated the diagnostic efficacy of the array-comparative genomic hybridization (a-CGH) method and its relevance as a routine diagnostic test in patients with neurodevelopmental disorders for the identification of the molecular alterations underlying or contributing to the clinical manifestations. In the present study, we analysed 1800 subjects with neurodevelopmental disorders using a CGH microarray. We identified 208 (7%) pathogenetic CNVs, 2202 (78%) variants of uncertain significance (VOUS), and 504 (18%) benign CNVs in the 1800 patients analysed. Some alterations contain genes potentially related to neurodevelopmental disorders including CHRNA7, ANKS1B, ANKRD11, RBFOX1, ASTN2, GABRG3, SHANK2, KIF1A SETBP1, SNTG2, CTNNA2, TOP3B, CNTN4, CNTN5, and CNTN6. The identification of interesting significant genes related to neurological disorders with a-CGH is therefore an essential step in the diagnostic procedure, allowing a better understanding of both the pathophysiology of these disorders and the mechanisms underlying their clinical manifestations.
Collapse
Affiliation(s)
- Annaluisa Ranieri
- CEINGE-Biotecnologie Avanzate Franco Salvatore, via G. Salvatore 486, 80145 Naples, Italy; (A.R.); (I.L.M.); (M.R.D.I.); (L.P.)
| | - Ilaria La Monica
- CEINGE-Biotecnologie Avanzate Franco Salvatore, via G. Salvatore 486, 80145 Naples, Italy; (A.R.); (I.L.M.); (M.R.D.I.); (L.P.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, via Sergio Pansini 5, 80131 Naples, Italy
| | - Maria Rosaria Di Iorio
- CEINGE-Biotecnologie Avanzate Franco Salvatore, via G. Salvatore 486, 80145 Naples, Italy; (A.R.); (I.L.M.); (M.R.D.I.); (L.P.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, via Sergio Pansini 5, 80131 Naples, Italy
| | - Barbara Lombardo
- CEINGE-Biotecnologie Avanzate Franco Salvatore, via G. Salvatore 486, 80145 Naples, Italy; (A.R.); (I.L.M.); (M.R.D.I.); (L.P.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, via Sergio Pansini 5, 80131 Naples, Italy
| | - Lucio Pastore
- CEINGE-Biotecnologie Avanzate Franco Salvatore, via G. Salvatore 486, 80145 Naples, Italy; (A.R.); (I.L.M.); (M.R.D.I.); (L.P.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, via Sergio Pansini 5, 80131 Naples, Italy
| |
Collapse
|
8
|
Pradhan A, Mounford H, Peixinho J, Rea E, Epeslidou E, Scott JS, Cull J, Maxwell S, Webster R, Beeson D, Dong YY, Prekovic S, Bermudez I, Newbury DF. Unraveling the molecular interactions between α7 nicotinic receptor and a RIC3 variant associated with backward speech. Cell Mol Life Sci 2024; 81:129. [PMID: 38472514 DOI: 10.1007/s00018-024-05149-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 03/14/2024]
Abstract
Recent work putatively linked a rare genetic variant of the chaperone Resistant to Inhibitors of acetylcholinesterase (RIC3) (NM_024557.4:c.262G > A, NP_078833.3:p.G88R) to a unique ability to speak backwards, a language skill that is associated with exceptional working memory capacity. RIC3 is important for the folding, maturation, and functional expression of α7 nicotinic acetylcholine receptors (nAChR). We compared and contrasted the effects of RIC3G88R on assembly, cell surface expression, and function of human α7 receptors using fluorescent protein tagged α7 nAChR and Förster resonance energy transfer (FRET) microscopy imaging in combination with functional assays and 125I-α-bungarotoxin binding. As expected, the wild-type RIC3 protein was found to increase both cell surface and functional expression of α7 receptors. In contrast, the variant form of RIC3 decreased both. FRET analysis showed that RICG88R increased the interactions between RIC3 and α7 protein in the endoplasmic reticulum. These results provide interesting and novel data to show that a RIC3 variant alters the interaction of RIC3 and α7, which translates to decreased cell surface and functional expression of α7 nAChR.
Collapse
Affiliation(s)
- Aditi Pradhan
- Department of Biological and Molecular Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, OX3 0BP, England
| | - Hayley Mounford
- Department of Biological and Molecular Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, OX3 0BP, England
| | - Jessica Peixinho
- Department of Biological and Molecular Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, OX3 0BP, England
| | - Edward Rea
- Department of Biological and Molecular Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, OX3 0BP, England
- Oxford Brookes Centre for Bioimaging, Oxford Brookes University, Oxford, OX3 0BP, England
| | - Emmanouela Epeslidou
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Julia S Scott
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Joanna Cull
- Department of Biological and Molecular Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, OX3 0BP, England
| | - Susan Maxwell
- Neurosciences Group, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, OX3 9DS, England
| | - Richard Webster
- Neurosciences Group, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, OX3 9DS, England
| | - David Beeson
- Neurosciences Group, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, OX3 9DS, England
| | - Yin Yao Dong
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DS, England
| | - Stefan Prekovic
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Isabel Bermudez
- Department of Biological and Molecular Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, OX3 0BP, England
| | - Dianne F Newbury
- Department of Biological and Molecular Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, OX3 0BP, England.
| |
Collapse
|
9
|
Auwerx C, Jõeloo M, Sadler MC, Tesio N, Ojavee S, Clark CJ, Mägi R, Reymond A, Kutalik Z. Rare copy-number variants as modulators of common disease susceptibility. Genome Med 2024; 16:5. [PMID: 38185688 PMCID: PMC10773105 DOI: 10.1186/s13073-023-01265-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/27/2023] [Indexed: 01/09/2024] Open
Abstract
BACKGROUND Copy-number variations (CNVs) have been associated with rare and debilitating genomic disorders (GDs) but their impact on health later in life in the general population remains poorly described. METHODS Assessing four modes of CNV action, we performed genome-wide association scans (GWASs) between the copy-number of CNV-proxy probes and 60 curated ICD-10 based clinical diagnoses in 331,522 unrelated white British UK Biobank (UKBB) participants with replication in the Estonian Biobank. RESULTS We identified 73 signals involving 40 diseases, all of which indicating that CNVs increased disease risk and caused earlier onset. We estimated that 16% of these associations are indirect, acting by increasing body mass index (BMI). Signals mapped to 45 unique, non-overlapping regions, nine of which being linked to known GDs. Number and identity of genes affected by CNVs modulated their pathogenicity, with many associations being supported by colocalization with both common and rare single-nucleotide variant association signals. Dissection of association signals provided insights into the epidemiology of known gene-disease pairs (e.g., deletions in BRCA1 and LDLR increased risk for ovarian cancer and ischemic heart disease, respectively), clarified dosage mechanisms of action (e.g., both increased and decreased dosage of 17q12 impacted renal health), and identified putative causal genes (e.g., ABCC6 for kidney stones). Characterization of the pleiotropic pathological consequences of recurrent CNVs at 15q13, 16p13.11, 16p12.2, and 22q11.2 in adulthood indicated variable expressivity of these regions and the involvement of multiple genes. Finally, we show that while the total burden of rare CNVs-and especially deletions-strongly associated with disease risk, it only accounted for ~ 0.02% of the UKBB disease burden. These associations are mainly driven by CNVs at known GD CNV regions, whose pleiotropic effect on common diseases was broader than anticipated by our CNV-GWAS. CONCLUSIONS Our results shed light on the prominent role of rare CNVs in determining common disease susceptibility within the general population and provide actionable insights for anticipating later-onset comorbidities in carriers of recurrent CNVs.
Collapse
Affiliation(s)
- Chiara Auwerx
- Center for Integrative Genomics, University of Lausanne, Genopode building, 1015, Lausanne, Switzerland.
- Department of Computational Biology, University of Lausanne, Genopode building, 1015, Lausanne, Switzerland.
- Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland.
- University Center for Primary Care and Public Health, 1005, Lausanne, Switzerland.
| | - Maarja Jõeloo
- Institute of Molecular and Cell Biology, University of Tartu, 51010, Tartu, Estonia
- Estonian Genome Centre, Institute of Genomics, University of Tartu, 51010, Tartu, Estonia
| | - Marie C Sadler
- Department of Computational Biology, University of Lausanne, Genopode building, 1015, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
- University Center for Primary Care and Public Health, 1005, Lausanne, Switzerland
| | - Nicolò Tesio
- Center for Integrative Genomics, University of Lausanne, Genopode building, 1015, Lausanne, Switzerland
| | - Sven Ojavee
- Department of Computational Biology, University of Lausanne, Genopode building, 1015, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | - Charlie J Clark
- Center for Integrative Genomics, University of Lausanne, Genopode building, 1015, Lausanne, Switzerland
| | - Reedik Mägi
- Estonian Genome Centre, Institute of Genomics, University of Tartu, 51010, Tartu, Estonia
| | - Alexandre Reymond
- Center for Integrative Genomics, University of Lausanne, Genopode building, 1015, Lausanne, Switzerland.
| | - Zoltán Kutalik
- Department of Computational Biology, University of Lausanne, Genopode building, 1015, Lausanne, Switzerland.
- Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland.
- University Center for Primary Care and Public Health, 1005, Lausanne, Switzerland.
| |
Collapse
|
10
|
Manohar S, Gofin Y, Streff H, Vossaert L, Camacho P, Murali CN. A familial deletion of 10p12.1 associated with thrombocytopenia. Am J Med Genet A 2024; 194:77-81. [PMID: 37746810 DOI: 10.1002/ajmg.a.63403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 08/23/2023] [Accepted: 09/01/2023] [Indexed: 09/26/2023]
Abstract
Thrombocytopenia can be inherited or acquired from a variety of causes. While hereditary causes of thrombocytopenia are rare, several genes have been associated with the condition. In this report, we describe an 18-year-old man and his mother, both of whom have congenital thrombocytopenia. Exome sequencing in the man revealed a 1006 kb maternally inherited deletion in the 10p12.1 region (arr[GRCh37] 10p12.1(27378928_28384564)x1) of uncertain clinical significance. This deletion in the THC2 locus includes genes ANKRD26, known to be involved in normal megakaryocyte differentiation, and MASTL, which some studies suggest is linked to autosomal dominant thrombocytopenia. In the family presented here, the deletion segregated with the congenital thrombocytopenia phenotype, suggesting that haploinsufficiency of one or both genes may be the cause. To our knowledge, this is the first report of a deletion of the THC2 locus associated with thrombocytopenia. Future functional studies of deletions of the THC2 locus may elucidate the mechanism for this phenotype observed clinically.
Collapse
Affiliation(s)
- Sujal Manohar
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Yoel Gofin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Haley Streff
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Liesbeth Vossaert
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Pamela Camacho
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
- Texas Children's Cancer and Hematology Centers, Houston, Texas, USA
| | - Chaya N Murali
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
11
|
Sinclair P, Kabbani N. Ionotropic and metabotropic responses by alpha 7 nicotinic acetylcholine receptors. Pharmacol Res 2023; 197:106975. [PMID: 38032294 DOI: 10.1016/j.phrs.2023.106975] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/12/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023]
Abstract
Nicotinic acetylcholine receptors (nAChRs) belong to a superfamily of cys-loop receptors characterized by the assembly of five subunits into a multi-protein channel complex. Ligand binding to nAChRs activates rapid allosteric transitions of the receptor leading to channel opening and ion flux in neuronal and non-neuronal cell. Thus, while ionotropic properties of nAChRs are well recognized, less is known about ligand-mediated intracellular metabotropic signaling responses. Studies in neural and non-neural cells confirm ionotropic and metabotropic channel responses following ligand binding. In this review we summarize evidence on the existence of ionotropic and metabotropic signaling responses by homopentameric α7 nAChRs in various cell types. We explore how coordinated calcium entry through the ion channel and calcium release from nearby stores gives rise to signaling important for the modulation of cytoskeletal motility and cell growth. Amino acid residues for intracellular protein binding within the α7 nAChR support engagement in metabotropic responses including signaling through heterotrimeric G proteins in neural and immune cells. Understanding the dual properties of ionotropic and metabotropic nAChR responses is essential in advancing drug development for the treatment of various human disease.
Collapse
Affiliation(s)
| | - Nadine Kabbani
- Interdisciplinary Program in Neuroscience, Fairfax, VA, USA; School of Systems Biology, George Mason University, Fairfax, VA, USA.
| |
Collapse
|
12
|
Liu Z, Huang YF. Deep multiple-instance learning accurately predicts gene haploinsufficiency and deletion pathogenicity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.29.555384. [PMID: 37693607 PMCID: PMC10491176 DOI: 10.1101/2023.08.29.555384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Copy number losses (deletions) are a major contributor to the etiology of severe genetic disorders. Although haploinsufficient genes play a critical role in deletion pathogenicity, current methods for deletion pathogenicity prediction fail to integrate multiple lines of evidence for haploinsufficiency at the gene level, limiting their power to pinpoint deleterious deletions associated with genetic disorders. Here we introduce DosaCNV, a deep multiple-instance learning framework that, for the first time, models deletion pathogenicity jointly with gene haploinsufficiency. By integrating over 30 gene-level features potentially predictive of haploinsufficiency, DosaCNV shows unmatched performance in prioritizing pathogenic deletions associated with a broad spectrum of genetic disorders. Furthermore, DosaCNV outperforms existing methods in predicting gene haploinsufficiency even though it is not trained on known haploinsufficient genes. Finally, DosaCNV leverages a state-of-the-art technique to quantify the contributions of individual gene-level features to haploinsufficiency, allowing for human-understandable explanations of model predictions. Altogether, DosaCNV is a powerful computational tool for both fundamental and translational research.
Collapse
Affiliation(s)
- Zhihan Liu
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
- Molecular, Cellular, and Integrative Biosciences Program, Pennsylvania State University, University Park, PA 16802, USA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Yi-Fei Huang
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
13
|
Büki G, Hadzsiev K, Bene J. Copy Number Variations in Neuropsychiatric Disorders. Int J Mol Sci 2023; 24:13671. [PMID: 37761973 PMCID: PMC10530736 DOI: 10.3390/ijms241813671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/23/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Neuropsychiatric disorders are complex conditions that represent a significant global health burden with complex and multifactorial etiologies. Technological advances in recent years have improved our understanding of the genetic architecture of the major neuropsychiatric disorders and the genetic loci involved. Previous studies mainly investigated genome-wide significant SNPs to elucidate the cross-disorder and disorder-specific genetic basis of neuropsychiatric disorders. Although copy number variations represent a major source of genetic variations, they are known risk factors in developing a variety of human disorders, including certain neuropsychiatric diseases. In this review, we demonstrate the current understanding of CNVs contributing to liability for schizophrenia, bipolar disorder, and major depressive disorder.
Collapse
Affiliation(s)
| | | | - Judit Bene
- Department of Medical Genetics, Clinical Center, Medical School, University of Pécs, 7624 Pécs, Hungary; (G.B.); (K.H.)
| |
Collapse
|
14
|
Viscarra F, Chrestia JF, Sanchez Y, Pérez EG, Biggin PC, Bouzat C, Bermudez I, López JJ. Side Groups Convert the α7 Nicotinic Receptor Agonist Ether Quinuclidine into a Type I Positive Allosteric Modulator. ACS Chem Neurosci 2023; 14:2876-2887. [PMID: 37535446 DOI: 10.1021/acschemneuro.3c00225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023] Open
Abstract
The quinuclidine scaffold has been extensively used for the development of nicotinic acetylcholine receptor (nAChR) agonists, with hydrophobic substituents at position 3 of the quinuclidine framework providing selectivity for α7 nAChRs. In this study, six new ligands (4-9) containing a 3-(pyridin-3-yloxy)quinuclidine moiety (ether quinuclidine) were synthesized to gain a better understanding of the structural-functional properties of ether quinuclidines. To evaluate the pharmacological activity of these ligands, two-electrode voltage-clamp and single-channel recordings were performed. Only ligand 4 activated α7 nAChR. Ligands 5 and 7 had no effects on α7 nAChR, but ligands 6, 8, and 9 potentiated the currents evoked by ACh. Ligand 6 was the most potent and efficacious of the potentiating ligands, with an estimated EC50 for potentiation of 12.6 ± 3.32 μM and a maximal potentiation of EC20 ACh responses of 850 ± 120%. Ligand 6 increased the maximal ACh responses without changing the kinetics of the current responses. At the single-channel level, the potentiation exerted by ligand 6 was evidenced in the low micromolar concentration range by the appearance of prolonged bursts of channel openings. Furthermore, computational studies revealed the preference of ligand 6 for an intersubunit site in the transmembrane domain and highlighted some putative key interactions that explain the different profiles of the synthesized ligands. Notably, Met276 in the 15' position of the transmembrane domain 2 almost abolished the effects of ligand 6 when mutated to Leu. We conclude that ligand 6 is a novel type I positive allosteric modulator (PAM-I) of α7 nAChR.
Collapse
Affiliation(s)
- Franco Viscarra
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford OX3 0BP, U.K
- Structural Bioinformatics and Computational Biochemistry, Department of Biochemistry, Oxford University, South Parks Road, Oxford OX1 3QU, U.K
| | - Juan Facundo Chrestia
- Departamento de Biología, Bioquímica y Farmacia, Instituto de Investigaciones Bioquímicas de Bahía Blanca, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Camino La Carrindanga Km 7, Bahía Blanca 8000, Argentina
| | - Yaima Sanchez
- Department of Organic Chemistry, Faculty of Chemistry, Universidad de Concepción, Edmundo Larenas 129, Concepción 4070371, Chile
| | - Edwin G Pérez
- Department of Organic Chemistry, Faculty of Chemistry and Pharmacy, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago 7820436, Chile
| | - Philip C Biggin
- Structural Bioinformatics and Computational Biochemistry, Department of Biochemistry, Oxford University, South Parks Road, Oxford OX1 3QU, U.K
| | - Cecilia Bouzat
- Departamento de Biología, Bioquímica y Farmacia, Instituto de Investigaciones Bioquímicas de Bahía Blanca, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Camino La Carrindanga Km 7, Bahía Blanca 8000, Argentina
| | - Isabel Bermudez
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford OX3 0BP, U.K
| | - Jhon J López
- Department of Organic Chemistry, Faculty of Chemistry, Universidad de Concepción, Edmundo Larenas 129, Concepción 4070371, Chile
| |
Collapse
|
15
|
Schaffer L, Rau S, Clasen L, Warling A, Whitman ET, Nadig A, McDermott C, Xenophontos A, Wilson K, Blumenthal J, Torres E, Raznahan A. X- vs. Y-Chromosome Influences on Human Behavior: A Deep Phenotypic Comparison of Psychopathology in XXY and XYY Syndromes. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.06.19.23291614. [PMID: 37502878 PMCID: PMC10371113 DOI: 10.1101/2023.06.19.23291614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Do different genetic disorders impart different psychiatric risk profiles? This question has major implications for biological and translational aspects of psychiatry, but has been difficult to tackle given limited access to shared batteries of fine-grained clinical data across genetic disorders. Using a new suite of generalizable analytic approaches, we examine gold-standard diagnostic ratings, scores on 66 dimensional measures of psychopathology, and measures of cognition and functioning in two different sex chromosome aneuploidies (SCAs) - Klinefelter (XXY/KS) and XYY syndrome (n=102 and 64 vs. n=74 and 60 matched XY controls, total n=300). We focus on SCAs for their high collective prevalence, informativeness regarding differential X- vs. Y-chromosome effects, and potential relevance for normative sex differences. We show that XXY/KS elevates rates for most psychiatric diagnoses as previously reported for XYY, but disproportionately so for anxiety disorders. Fine-mapping across all 66 traits provides a detailed profile of psychopathology in XXY/KS which is strongly correlated with that of XYY (r=.75 across traits) and robust to ascertainment biases, but reveals: (i) a greater penetrance of XYY than KS/XXY for most traits except mood/anxiety problems, and (ii) a disproportionate impact of XYY vs. XXY/KS on social problems. XXY/KS and XXY showed a similar coupling of psychopathology with adaptive function and caregiver strain, but not IQ. This work provides new tools for deep-phenotypic comparisons of genetic disorders in psychiatry and uses these to detail unique and shared effects of the X- and Y-chromosome on human behavior.
Collapse
Affiliation(s)
- Lukas Schaffer
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Bethesda, MD, USA
| | - Srishti Rau
- Center for Autism Spectrum Disorders and Division of Neuropsychology, Children’s National Hospital, Washington DC, USA
| | - Liv Clasen
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Bethesda, MD, USA
| | - Allysa Warling
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Bethesda, MD, USA
| | - Ethan T. Whitman
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Bethesda, MD, USA
| | - Ajay Nadig
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Bethesda, MD, USA
| | - Cassidy McDermott
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Bethesda, MD, USA
| | - Anastasia Xenophontos
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Bethesda, MD, USA
| | - Kathleen Wilson
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Bethesda, MD, USA
| | - Jonathan Blumenthal
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Bethesda, MD, USA
| | - Erin Torres
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Bethesda, MD, USA
| | - Armin Raznahan
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Bethesda, MD, USA
| |
Collapse
|
16
|
Antony I, Narasimhan M, Shen R, Prakasam R, Kaushik K, Chapman G, Kroll KL. Duplication Versus Deletion Through the Lens of 15q13.3: Clinical and Research Implications of Studying Copy Number Variants Associated with Neuropsychiatric Disorders in Induced Pluripotent Stem Cell-Derived Neurons. Stem Cell Rev Rep 2023; 19:639-650. [PMID: 36370261 PMCID: PMC10115185 DOI: 10.1007/s12015-022-10475-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2022] [Indexed: 11/15/2022]
Abstract
Copy number variants (CNVs), involving duplication or deletion of susceptible intervals of the human genome, underlie a range of neurodevelopmental and neuropsychiatric disorders. As accessible in vivo animal models of these disorders often cannot be generated, induced pluripotent stem cell (iPSC) models derived from patients carrying these CNVs can reveal alterations of brain development and neuronal function that contribute to these disorders. CNVs involving deletion versus duplication of a particular genomic interval often result both in distinct clinical phenotypes and in differential phenotypic penetrance. This review initially focuses on CNVs at 15q13.3, which contribute to autism spectrum disorder, attention deficit/hyperactivity disorder, and schizophrenia. Like most CNVs, deletions at 15q13.3 usually cause severe clinical phenotypes, while duplications instead result in highly variable penetrance, with some carriers exhibiting no clinical phenotype. Here, we describe cellular and molecular phenotypes seen in iPSC-derived neuronal models of 15q13.3 duplication and deletion, which may contribute both to the differential clinical consequences and phenotypic penetrance. We then relate this work to many other CNVs involving both duplication and deletion, summarizing findings from iPSC studies and their relationship to clinical phenotype. Together, this work highlights how CNVs involving duplication versus deletion can differentially alter neural development and function to contribute to neuropsychiatric disorders. iPSC-derived neuronal models of these disorders can be used both to understand the underlying neurodevelopmental alterations and to develop pharmacological or molecular approaches for phenotypic rescue that may suggest leads for patient intervention. Top: Deletion versus duplication of the same genomic interval results in different clinical phenotypes and degrees of phenotypic penetrance. Example findings schematized. Bottom: iPSC-derived neurons from individuals with these CNVs involving deletion versus duplication likewise often differential phenotypes (increases or decreases) in the categories shown. Figure created with BioRender.com.
Collapse
Affiliation(s)
- Irene Antony
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Mishka Narasimhan
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Renata Shen
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Ramachandran Prakasam
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Komal Kaushik
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Gareth Chapman
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Kristen L Kroll
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO, 63110, USA.
| |
Collapse
|
17
|
Ohno Y, Taura D, Okamoto K, Fujita H, Honda-Kohmo K, Matsuo K, Sone M. Nicotine reduces ROS and enhances cell proliferation via the α4 nicotinic acetylcholine receptor subunit in human induced pluripotent stem cells. Stem Cells Dev 2023; 32:237-245. [PMID: 36860198 DOI: 10.1089/scd.2022.0258] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
The effects of smoking on fetal development and stem cell differentiation are not fully understood. Although nicotinic acetylcholine receptors (nAChRs) are expressed in many organs of the human body, their significance in human induced pluripotent stem cells (hiPSCs) remains unclear. After expression levels of nAChR subunits in hiPSCs were determined, the effects of the nAChR agonist, nicotine, on undifferentiated hiPSCs were evaluated using a Clariom S Array. We also determined the effect of nicotine alone and with a nAChR subunit antagonist on hiPSC cells. NAChR α4, α7, and β4 subunits were strongly expressed in hiPSCs. cDNA microarray, gene ontology, and enrichment analyses showed that exposing hiPSCs to nicotine altered expression of genes associated with immune responses, neurological system, carcinogenesis, cell differentiation, and cell proliferation. Particularly affected was metallothionein, which acts to decrease reactive oxygen species (ROS). The nicotine-induced reduction of ROS in hiPSCs was canceled by an α4 subunit or nonselective nAChR antagonist. HiPSC proliferation was increased by nicotine, and this effect, too, was canceled by an α4 antagonist. In conclusion, nicotine reduces ROS and enhances cell proliferation via the α4 nAChR subunit in hiPSCs. These findings provide new insight into the significance of nAChRs on human stem cells and fertilized human ova.
Collapse
Affiliation(s)
- Youichi Ohno
- Kyoto University Graduate School of Medicine, Department of Diabetes, Endocrinology and Nutrition, Kyoto, Japan;
| | - Daisuke Taura
- Kyoto University Graduate School of Medicine, Department of Diabetes, Endocrinology and Nutrition, Kyoto, Japan;
| | - Kentaro Okamoto
- Kyoto University Graduate School of Medicine, Department of Diabetes, Endocrinology and Nutrition, Kyoto, Japan;
| | - Haruka Fujita
- Kyoto University Graduate School of Medicine, Department of Diabetes, Endocrinology and Nutrition, Kyoto, Kyoto, Japan;
| | - Kyoko Honda-Kohmo
- National Cerebral and Cardiovascular Center, 13875, Division of Preventive Healthcare, Suita, Osaka, Japan;
| | - Koji Matsuo
- Kyoto University Graduate School of Medicine, Department of Diabetes, Endocrinology and Nutrition, Kyoto, Japan;
| | - Masakatsu Sone
- St Marianna University School of Medicine, 12927, Division of Metabolism and Endocrinology, Department of Internal Medicine, Kawasaki, Kanagawa, Japan;
| |
Collapse
|
18
|
Effects of Different Exercise Types on Chrna7 and Chrfam7a Expression in Healthy Normal Weight and Overweight Type 2 Diabetic Adults. Biomedicines 2023; 11:biomedicines11020565. [PMID: 36831101 PMCID: PMC9953734 DOI: 10.3390/biomedicines11020565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/17/2023] [Accepted: 01/29/2023] [Indexed: 02/17/2023] Open
Abstract
Purpose: Considering that the CHRNA7 and CHRFAM7A genes can be modulated by acute or chronic inflammation, and exercise modulates inflammatory responses, the question that arises is whether physical exercise could exert any effect on the expression of these genes. Thus, the aim of this work is to identify the effects of different types of exercises on the expression of the CHRNA7, CHRFAM7A and tumor necrosis factor-α (TNF-α) in leukocytes of healthy normal weight (HNW), and overweight with type 2 diabetes (OT2D) individuals. Methods: 15 OT2D and 13 HNW participants (men and women, from 40 to 60 years old) performed in a randomized crossover design three exercise sessions: aerobic exercise (AE), resistance exercise (RE) and combined exercise (CE). Blood samples were collected at rest and post-60-min of the exercise sessions. The leukocytes were the analysis of the CHRNA7, CHRFAM7A and (TNF-α) gene expression. Results: At baseline, OT2D had higher CHRFAM7A and TNF-α expression compared to HNW. No statistical differences were observed between groups for CHRNA7; however, the HNW group presented almost twice as many subjects with the expression of this gene (24% vs. 49%). Post exercise, the CHRFAM7A increased in AE, RE and CE for HNW, and in AE and CE for OT2D. There was no significant difference for TNF-α and CHRNA7 expression between any type of exercise and group. Conclusions: Our study shows that OT2D individuals presented higher baseline expression of TNF-α and CHRFAM7A, besides evidence of decreased CHRNA7A expression in leukocytes when compared with HNW. On the other hand, acutely physical exercise induces increased CHRFAM7A expression, especially when the aerobic component is present.
Collapse
|
19
|
Qiu S, Qiu Y, Li Y, Zhu X, Liu Y, Qiao Y, Cheng Y, Liu Y. Nexus between genome-wide copy number variations and autism spectrum disorder in Northeast Han Chinese population. BMC Psychiatry 2023; 23:96. [PMID: 36750796 PMCID: PMC9906952 DOI: 10.1186/s12888-023-04565-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/23/2023] [Indexed: 02/09/2023] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a common neurodevelopmental disorder, with an increasing prevalence worldwide. Copy number variation (CNV), as one of genetic factors, is involved in ASD etiology. However, there exist substantial differences in terms of location and frequency of some CNVs in the general Asian population. Whole-genome studies of CNVs in Northeast Han Chinese samples are still lacking, necessitating our ongoing work to investigate the characteristics of CNVs in a Northeast Han Chinese population with clinically diagnosed ASD. METHODS We performed a genome-wide CNVs screening in Northeast Han Chinese individuals with ASD using array-based comparative genomic hybridization. RESULTS We found that 22 kinds of CNVs (6 deletions and 16 duplications) were potentially pathogenic. These CNVs were distributed in chromosome 1p36.33, 1p36.31, 1q42.13, 2p23.1-p22.3, 5p15.33, 5p15.33-p15.2, 7p22.3, 7p22.3-p22.2, 7q22.1-q22.2, 10q23.2-q23.31, 10q26.2-q26.3, 11p15.5, 11q25, 12p12.1-p11.23, 14q11.2, 15q13.3, 16p13.3, 16q21, 22q13.31-q13.33, and Xq12-q13.1. Additionally, we found 20 potential pathogenic genes of ASD in our population, including eight protein coding genes (six duplications [DRD4, HRAS, OPHN1, SHANK3, SLC6A3, and TSC2] and two deletions [CHRNA7 and PTEN]) and 12 microRNAs-coding genes (ten duplications [MIR202, MIR210, MIR3178, MIR339, MIR4516, MIR4717, MIR483, MIR675, MIR6821, and MIR940] and two deletions [MIR107 and MIR558]). CONCLUSION We identified CNVs and genes implicated in ASD risks, conferring perception to further reveal ASD etiology.
Collapse
Affiliation(s)
- Shuang Qiu
- grid.64924.3d0000 0004 1760 5735Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021 Jilin China ,grid.64924.3d0000 0004 1760 5735Department of Laboratory Medicine, Jilin University Hospital, Changchun, 130000 Jilin China
| | - Yingjia Qiu
- grid.415954.80000 0004 1771 3349China-Japan Union Hospital, Jilin University, Changchun, 130033 Jilin China
| | - Yong Li
- grid.64924.3d0000 0004 1760 5735Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021 Jilin China
| | - Xiaojuan Zhu
- grid.27446.330000 0004 1789 9163The Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Cytology and Genetics, Northeast Normal University, Changchun, 130021 Jilin China
| | - Yunkai Liu
- grid.430605.40000 0004 1758 4110Department of Cardiovascular Diseases, the First Hospital of Jilin University, Changchun, 130021 Jilin China ,Key Laboratory for Cardiovascular Mechanism of Traditional Chinese Medicine, Changchun, 130021 Jilin China ,grid.430605.40000 0004 1758 4110Institute of Translational Medicine, the First Hospital of Jilin University, Changchun, 130021 Jilin China
| | - Yichun Qiao
- grid.64924.3d0000 0004 1760 5735Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021 Jilin China
| | - Yi Cheng
- Department of Cardiovascular Diseases, the First Hospital of Jilin University, Changchun, 130021, Jilin, China. .,Key Laboratory for Cardiovascular Mechanism of Traditional Chinese Medicine, Changchun, 130021, Jilin, China. .,Institute of Translational Medicine, the First Hospital of Jilin University, Changchun, 130021, Jilin, China.
| | - Yawen Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, Jilin, China.
| |
Collapse
|
20
|
Impaired OTUD7A-dependent Ankyrin regulation mediates neuronal dysfunction in mouse and human models of the 15q13.3 microdeletion syndrome. Mol Psychiatry 2023; 28:1747-1769. [PMID: 36604605 DOI: 10.1038/s41380-022-01937-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 01/07/2023]
Abstract
Copy number variations (CNVs) are associated with psychiatric and neurodevelopmental disorders (NDDs), and most, including the recurrent 15q13.3 microdeletion disorder, have unknown disease mechanisms. We used a heterozygous 15q13.3 microdeletion mouse model and patient iPSC-derived neurons to reveal developmental defects in neuronal maturation and network activity. To identify the underlying molecular dysfunction, we developed a neuron-specific proximity-labeling proteomics (BioID2) pipeline, combined with patient mutations, to target the 15q13.3 CNV genetic driver OTUD7A. OTUD7A is an emerging independent NDD risk gene with no known function in the brain, but has putative deubiquitinase function. The OTUD7A protein-protein interaction network included synaptic, axonal, and cytoskeletal proteins and was enriched for ASD and epilepsy risk genes (Ank3, Ank2, SPTAN1, SPTBN1). The interactions between OTUD7A and Ankyrin-G (Ank3) and Ankyrin-B (Ank2) were disrupted by an epilepsy-associated OTUD7A L233F variant. Further investigation of Ankyrin-G in mouse and human 15q13.3 microdeletion and OTUD7AL233F/L233F models revealed protein instability, increased polyubiquitination, and decreased levels in the axon initial segment, while structured illumination microscopy identified reduced Ankyrin-G nanodomains in dendritic spines. Functional analysis of human 15q13.3 microdeletion and OTUD7AL233F/L233F models revealed shared and distinct impairments to axonal growth and intrinsic excitability. Importantly, restoring OTUD7A or Ankyrin-G expression in 15q13.3 microdeletion neurons led to a reversal of abnormalities. These data reveal a critical OTUD7A-Ankyrin pathway in neuronal development, which is impaired in the 15q13.3 microdeletion syndrome, leading to neuronal dysfunction. Furthermore, our study highlights the utility of targeting CNV genes using cell type-specific proteomics to identify shared and unexplored disease mechanisms across NDDs.
Collapse
|
21
|
Koevoet D, Deschamps PKH, Kenemans JL. Catecholaminergic and cholinergic neuromodulation in autism spectrum disorder: A comparison to attention-deficit hyperactivity disorder. Front Neurosci 2023; 16:1078586. [PMID: 36685234 PMCID: PMC9853424 DOI: 10.3389/fnins.2022.1078586] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/15/2022] [Indexed: 01/09/2023] Open
Abstract
Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental disorder characterized by social impairments and restricted, repetitive behaviors. Treatment of ASD is notoriously difficult and might benefit from identification of underlying mechanisms that overlap with those disturbed in other developmental disorders, for which treatment options are more obvious. One example of the latter is attention-deficit hyperactivity disorder (ADHD), given the efficacy of especially stimulants in treatment of ADHD. Deficiencies in catecholaminergic systems [dopamine (DA), norepinephrine (NE)] in ADHD are obvious targets for stimulant treatment. Recent findings suggest that dysfunction in catecholaminergic systems may also be a factor in at least a subgroup of ASD. In this review we scrutinize the evidence for catecholaminergic mechanisms underlying ASD symptoms, and also include in this analysis a third classic ascending arousing system, the acetylcholinergic (ACh) network. We complement this with a comprehensive review of DA-, NE-, and ACh-targeted interventions in ASD, and an exploratory search for potential treatment-response predictors (biomarkers) in ASD, genetically or otherwise. Based on this review and analysis we propose that (1) stimulant treatment may be a viable option for an ASD subcategory, possibly defined by genetic subtyping; (2) cerebellar dysfunction is pronounced for a relatively small ADHD subgroup but much more common in ASD and in both cases may point toward NE- or ACh-directed intervention; (3) deficiency of the cortical salience network is sizable in subgroups of both disorders, and biomarkers such as eye blink rate and pupillometric data may predict the efficacy of targeting this underlying deficiency via DA, NE, or ACh in both ASD and ADHD.
Collapse
Affiliation(s)
- Damian Koevoet
- Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, Netherlands,*Correspondence: Damian Koevoet,
| | - P. K. H. Deschamps
- Department of Psychiatry, University Medical Center Utrecht, Utrecht, Netherlands
| | - J. L. Kenemans
- Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
22
|
Giovenale AMG, Ruotolo G, Soriano AA, Turco EM, Rotundo G, Casamassa A, D’Anzi A, Vescovi AL, Rosati J. Deepening the understanding of CNVs on chromosome 15q11-13 by using hiPSCs: An overview. Front Cell Dev Biol 2023; 10:1107881. [PMID: 36684422 PMCID: PMC9852989 DOI: 10.3389/fcell.2022.1107881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 12/16/2022] [Indexed: 01/09/2023] Open
Abstract
The human α7 neuronal nicotinic acetylcholine receptor gene (CHRNA7) is widely expressed in the central and peripheral nervous systems. This receptor is implicated in both brain development and adult neurogenesis thanks to its ability to mediate acetylcholine stimulus (Ach). Copy number variations (CNVs) of CHRNA7 gene have been identified in humans and are genetically linked to cognitive impairments associated with multiple disorders, including schizophrenia, bipolar disorder, epilepsy, Alzheimer's disease, and others. Currently, α7 receptor analysis has been commonly performed in animal models due to the impossibility of direct investigation of the living human brain. But the use of model systems has shown that there are very large differences between humans and mice when researchers must study the CNVs and, in particular, the CNV of chromosome 15q13.3 where the CHRNA7 gene is present. In fact, human beings present genomic alterations as well as the presence of genes of recent origin that are not present in other model systems as well as they show a very heterogeneous symptomatology that is associated with both their genetic background and the environment where they live. To date, the induced pluripotent stem cells, obtained from patients carrying CNV in CHRNA7 gene, are a good in vitro model for studying the association of the α7 receptor to human diseases. In this review, we will outline the current state of hiPSCs technology applications in neurological diseases caused by CNVs in CHRNA7 gene. Furthermore, we will discuss some weaknesses that emerge from the overall analysis of the published articles.
Collapse
Affiliation(s)
- Angela Maria Giada Giovenale
- Cellular Reprogramming Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy,Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Giorgia Ruotolo
- Cellular Reprogramming Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy,Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Amata Amy Soriano
- Cellular Reprogramming Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Elisa Maria Turco
- Cellular Reprogramming Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Giovannina Rotundo
- Cellular Reprogramming Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Alessia Casamassa
- Cellular Reprogramming Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Angela D’Anzi
- Cellular Reprogramming Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Angelo Luigi Vescovi
- Cellular Reprogramming Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy,Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy,*Correspondence: Jessica Rosati, ; Angelo Luigi Vescovi,
| | - Jessica Rosati
- Cellular Reprogramming Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy,*Correspondence: Jessica Rosati, ; Angelo Luigi Vescovi,
| |
Collapse
|
23
|
Akter H, Rahman MM, Sarker S, Basiruzzaman M, Islam MM, Rahaman MA, Rahaman MA, Eshaque TB, Dity NJ, Sarker S, Amin MR, Hossain MM, Lopa M, Jahan N, Hossain S, Islam A, Mondol A, Faruk MO, Saha N, Kundu GK, Kanta SI, Kazal RK, Fatema K, Rahman MA, Hasan M, Hossain Mollah MA, Hosen MI, Karuvantevida N, Begum G, Zehra B, Nassir N, Nabi AHMN, Uddin KMF, Uddin M. Construction of copy number variation landscape and characterization of associated genes in a Bangladeshi cohort of neurodevelopmental disorders. Front Genet 2023; 14:955631. [PMID: 36959829 PMCID: PMC10028086 DOI: 10.3389/fgene.2023.955631] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 02/14/2023] [Indexed: 03/09/2023] Open
Abstract
Introduction: Copy number variations (CNVs) play a critical role in the pathogenesis of neurodevelopmental disorders (NDD) among children. In this study, we aim to identify clinically relevant CNVs, genes and their phenotypic characteristics in an ethnically underrepresented homogenous population of Bangladesh. Methods: We have conducted chromosomal microarray analysis (CMA) for 212 NDD patients with male to female ratio of 2.2:1.0 to identify rare CNVs. To identify candidate genes within the rare CNVs, gene constraint metrics [i.e., "Critical-Exon Genes (CEGs)"] were applied to the population data. Autism Diagnostic Observation Schedule-Second Edition (ADOS-2) was followed in a subset of 95 NDD patients to assess the severity of autism and all statistical tests were performed using the R package. Results: Of all the samples assayed, 12.26% (26/212) and 57.08% (121/212) patients carried pathogenic and variant of uncertain significance (VOUS) CNVs, respectively. While 2.83% (6/212) patients' pathogenic CNVs were found to be located in the subtelomeric regions. Further burden test identified females are significant carriers of pathogenic CNVs compared to males (OR = 4.2; p = 0.0007). We have observed an increased number of Loss of heterozygosity (LOH) within cases with 23.85% (26/109) consanguineous parents. Our analyses on imprinting genes show, 36 LOH variants disrupting 69 unique imprinted genes and classified these variants as VOUS. ADOS-2 subset shows severe social communication deficit (p = 0.014) and overall ASD symptoms severity (p = 0.026) among the patients carrying duplication CNV compared to the CNV negative group. Candidate gene analysis identified 153 unique CEGs in pathogenic CNVs and 31 in VOUS. Of the unique genes, 18 genes were found to be in smaller (<1 MB) focal CNVs in our NDD cohort and we identified PSMC3 gene as a strong candidate gene for Autism Spectrum Disorder (ASD). Moreover, we hypothesized that KMT2B gene duplication might be associated with intellectual disability. Conclusion: Our results show the utility of CMA for precise genetic diagnosis and its integration into the diagnosis, therapy and management of NDD patients.
Collapse
Affiliation(s)
- Hosneara Akter
- Genetics and Genomic Medicine Centre, NeuroGen Healthcare, Dhaka, Bangladesh
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Muhammad Mizanur Rahman
- Department of Paediatric Neurology, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | - Shaoli Sarker
- Department of Child Neurology, NeuroGen Healthcare, Dhaka, Bangladesh
- Department of Paediatric Neuroscience, Dhaka Shishu Hospital, Dhaka, Bangladesh
| | - Mohammed Basiruzzaman
- Department of Child Neurology, NeuroGen Healthcare, Dhaka, Bangladesh
- Department of Neurology, National Institute of Neurosciences and Hospital, Dhaka, Bangladesh
| | - Md. Mazharul Islam
- Department of Child Neurology, NeuroGen Healthcare, Dhaka, Bangladesh
- Department of Neurology, National Institute of Neurosciences and Hospital, Dhaka, Bangladesh
| | - Md. Atikur Rahaman
- Genetics and Genomic Medicine Centre, NeuroGen Healthcare, Dhaka, Bangladesh
| | | | | | - Nushrat Jahan Dity
- Genetics and Genomic Medicine Centre, NeuroGen Healthcare, Dhaka, Bangladesh
| | - Shouvik Sarker
- Institute of Plant Genetics, Department of Plant Biotechnology, Leibniz University Hannover, Hanover, Germany
| | - Md. Robed Amin
- Department of Medicine, Dhaka Medical College, Dhaka, Bangladesh
| | - Mohammad Monir Hossain
- Department of Paediatric Neurology, National Institute of Neuroscience and Hospital, Dhaka, Bangladesh
| | - Maksuda Lopa
- Centre for Precision Therapeutics, NeuroGen Healthcare, Dhaka, Bangladesh
| | - Nargis Jahan
- Centre for Precision Therapeutics, NeuroGen Healthcare, Dhaka, Bangladesh
| | - Shafaat Hossain
- Department of Biology and Biochemistry, University of Houston, Houston, TX, United States
| | - Amirul Islam
- Genetics and Genomic Medicine Centre, NeuroGen Healthcare, Dhaka, Bangladesh
- Cellular Intelligence Lab, GenomeArc Inc, Toronto, ON, Canada
| | | | - Md Omar Faruk
- Centre for Precision Therapeutics, NeuroGen Healthcare, Dhaka, Bangladesh
| | - Narayan Saha
- Department of Paediatric Neurology, National Institute of Neuroscience and Hospital, Dhaka, Bangladesh
| | - Gopen kumar Kundu
- Department of Child Neurology, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | - Shayla Imam Kanta
- Department of Paediatric Neuroscience, Dhaka Shishu Hospital, Dhaka, Bangladesh
| | - Rezaul Karim Kazal
- Department of Obstetrics and Gynaecology, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | - Kanij Fatema
- Department of Paediatric Neurology, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | - Md. Ashrafur Rahman
- Department of Pharmaceutical Sciences, Wilkes University, Pennsylvania, PA, United States
| | - Maruf Hasan
- Department of Biomedical Engineering, Military Institute of Science and Technology, Dhaka, Bangladesh
| | | | - Md. Ismail Hosen
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Noushad Karuvantevida
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Ghausia Begum
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Binte Zehra
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Nasna Nassir
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - A. H. M. Nurun Nabi
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - K. M. Furkan Uddin
- Genetics and Genomic Medicine Centre, NeuroGen Healthcare, Dhaka, Bangladesh
- Department of Biochemistry, Holy Family Red Crescent Medical College, Dhaka, Bangladesh
| | - Mohammed Uddin
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
- Cellular Intelligence (Ci) Lab, GenomeArc Inc, Toronto, ON, Canada
- *Correspondence: Mohammed Uddin,
| |
Collapse
|
24
|
Yasin S, Görücü Yılmaz Ş, Geyik S, Oğuzkan Balcı S. The holistic approach to the CHRNA7 gene, hsa-miR-3158-5p, and 15q13.3 hotspot CNVs in migraineurs. Mol Pain 2023; 19:17448069231152104. [PMID: 36604774 PMCID: PMC9850133 DOI: 10.1177/17448069231152104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/03/2022] [Accepted: 12/29/2022] [Indexed: 01/07/2023] Open
Abstract
Migraine is a neurological disease characterized by severe headache attacks. Combinations of different genetic variations such as copy number variation (CNV) in a gene and microRNA (miRNA) expression can provide a holistic approach to the disease as a pathophysiological, diagnostic, and therapeutic target. CNVs, the Cholinergic Receptor Nicotinic Alpha 7 Subunit (CHRNA7) gene, and expression of gene-targeting miRNAs (hsa-miR-548e-5p and hsa-miR-3158-5p) in migraineurs (n = 102; with aura, n = 43; without aura, n = 59) and non-migraines (n = 120) aged 15-60 years, comparative, case-control study was conducted. Genetic markers were compared with biochemical parameters (BMI, WBC, Urea, GFR, ESR, CRP, HBG). All analyzes were performed by quantitative Real-Time PCR (q-PCR) and fold change was calculated with the 2-ΔΔCT method. The diagnostic power of the CHRNA7 gene, CNV, and miRNAs were analyzed with the receiver operating curve (ROC). CHRNA7 gene and hsa-miR-3158-5p are down-regulated in migraineurs and the gene is controlled by this miRNA via CNVs (p < .05). Both deletion and duplication were detected in patients with migraine for CVN numbers (p = .05). The number of CNV deletions was higher than duplications. When CHRNA7-CNV-hsa-miR-3158-5p was modeled together in the ROC analysis, the area under the curve (AUC) was 0.805, and the diagnostic power was "good". In migraineurs, the CHRNA7 gene can be controlled by hsa-miR-3158-5p via CNVs to modulate the mechanism of pain. These three genetic markers have diagnostic potential and may be used in antimigraine treatments.
Collapse
Affiliation(s)
- Sedat Yasin
- Department of Neurology,
Gaziantep
University, Gaziantep, Turkey
| | - Şenay Görücü Yılmaz
- Department of Nutrition and
Dietetics, Gaziantep
University, Gaziantep, Turkey
| | - Sırma Geyik
- Department of Neurology,
Gaziantep
University, Gaziantep, Turkey
| | | |
Collapse
|
25
|
Hyblova M, Gnip A, Kucharik M, Budis J, Sekelska M, Minarik G. Maternal Copy Number Imbalances in Non-Invasive Prenatal Testing: Do They Matter? Diagnostics (Basel) 2022; 12:diagnostics12123056. [PMID: 36553064 PMCID: PMC9777446 DOI: 10.3390/diagnostics12123056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Non-invasive prenatal testing (NIPT) has become a routine practice in screening for common aneuploidies of chromosomes 21, 18, and 13 and gonosomes X and Y in fetuses worldwide since 2015 and has even expanded to include smaller subchromosomal events. In fact, the fetal fraction represents only a small proportion of cell-free DNA on a predominant background of maternal DNA. Unlike fetal findings that have to be confirmed using invasive testing, it has been well documented that NIPT provides information on maternal mosaicism, occult malignancies, and hidden health conditions due to copy number variations (CNVs) with diagnostic resolution. Although large duplications or deletions associated with certain medical conditions or syndromes are usually well recognized and easy to interpret, very little is known about small, relatively common copy number variations on the order of a few hundred kilobases and their potential impact on human health. We analyzed data from 6422 NIPT patient samples with a CNV detection resolution of 200 kb for the maternal genome and identified 942 distinct CNVs; 328 occurred repeatedly. We defined them as multiple occurring variants (MOVs). We scrutinized the most common ones, compared them with frequencies in the gnomAD SVs v2.1, dbVar, and DGV population databases, and analyzed them with an emphasis on genomic content and potential association with specific phenotypes.
Collapse
Affiliation(s)
- Michaela Hyblova
- Medirex Group Academy n.o., Novozamocka 67, 949 05 Nitra, Slovakia
- Trisomy Test s.r.o., Novozamocka 67, 949 05 Nitra, Slovakia
- Correspondence:
| | - Andrej Gnip
- Medirex a.s., Galvaniho 17/C, 820 16 Bratislava, Slovakia
| | | | - Jaroslav Budis
- Geneton s.r.o., Ilkovicova 8, 841 04 Bratislava, Slovakia
| | - Martina Sekelska
- Medirex Group Academy n.o., Novozamocka 67, 949 05 Nitra, Slovakia
- Trisomy Test s.r.o., Novozamocka 67, 949 05 Nitra, Slovakia
| | - Gabriel Minarik
- Medirex Group Academy n.o., Novozamocka 67, 949 05 Nitra, Slovakia
- Trisomy Test s.r.o., Novozamocka 67, 949 05 Nitra, Slovakia
| |
Collapse
|
26
|
Mirceta M, Shum N, Schmidt MHM, Pearson CE. Fragile sites, chromosomal lesions, tandem repeats, and disease. Front Genet 2022; 13:985975. [PMID: 36468036 PMCID: PMC9714581 DOI: 10.3389/fgene.2022.985975] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/02/2022] [Indexed: 09/16/2023] Open
Abstract
Expanded tandem repeat DNAs are associated with various unusual chromosomal lesions, despiralizations, multi-branched inter-chromosomal associations, and fragile sites. Fragile sites cytogenetically manifest as localized gaps or discontinuities in chromosome structure and are an important genetic, biological, and health-related phenomena. Common fragile sites (∼230), present in most individuals, are induced by aphidicolin and can be associated with cancer; of the 27 molecularly-mapped common sites, none are associated with a particular DNA sequence motif. Rare fragile sites ( ≳ 40 known), ≤ 5% of the population (may be as few as a single individual), can be associated with neurodevelopmental disease. All 10 molecularly-mapped folate-sensitive fragile sites, the largest category of rare fragile sites, are caused by gene-specific CGG/CCG tandem repeat expansions that are aberrantly CpG methylated and include FRAXA, FRAXE, FRAXF, FRA2A, FRA7A, FRA10A, FRA11A, FRA11B, FRA12A, and FRA16A. The minisatellite-associated rare fragile sites, FRA10B, FRA16B, can be induced by AT-rich DNA-ligands or nucleotide analogs. Despiralized lesions and multi-branched inter-chromosomal associations at the heterochromatic satellite repeats of chromosomes 1, 9, 16 are inducible by de-methylating agents like 5-azadeoxycytidine and can spontaneously arise in patients with ICF syndrome (Immunodeficiency Centromeric instability and Facial anomalies) with mutations in genes regulating DNA methylation. ICF individuals have hypomethylated satellites I-III, alpha-satellites, and subtelomeric repeats. Ribosomal repeats and subtelomeric D4Z4 megasatellites/macrosatellites, are associated with chromosome location, fragility, and disease. Telomere repeats can also assume fragile sites. Dietary deficiencies of folate or vitamin B12, or drug insults are associated with megaloblastic and/or pernicious anemia, that display chromosomes with fragile sites. The recent discovery of many new tandem repeat expansion loci, with varied repeat motifs, where motif lengths can range from mono-nucleotides to megabase units, could be the molecular cause of new fragile sites, or other chromosomal lesions. This review focuses on repeat-associated fragility, covering their induction, cytogenetics, epigenetics, cell type specificity, genetic instability (repeat instability, micronuclei, deletions/rearrangements, and sister chromatid exchange), unusual heritability, disease association, and penetrance. Understanding tandem repeat-associated chromosomal fragile sites provides insight to chromosome structure, genome packaging, genetic instability, and disease.
Collapse
Affiliation(s)
- Mila Mirceta
- Program of Genetics and Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, ON, Canada
- Program of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Natalie Shum
- Program of Genetics and Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, ON, Canada
- Program of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Monika H. M. Schmidt
- Program of Genetics and Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, ON, Canada
- Program of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Christopher E. Pearson
- Program of Genetics and Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, ON, Canada
- Program of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
27
|
Krepischi ACV, Villela D, da Costa SS, Mazzonetto PC, Schauren J, Migliavacca MP, Milanezi F, Santos JG, Guida G, Guarischi-Sousa R, Campana G, Kok F, Schlesinger D, Kitajima JP, Campagnari F, Bertola DR, Vianna-Morgante AM, Pearson PL, Rosenberg C. Chromosomal microarray analyses from 5778 patients with neurodevelopmental disorders and congenital anomalies in Brazil. Sci Rep 2022; 12:15184. [PMID: 36071085 PMCID: PMC9452501 DOI: 10.1038/s41598-022-19274-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 08/26/2022] [Indexed: 11/09/2022] Open
Abstract
Chromosomal microarray analysis (CMA) has been recommended and practiced routinely since 2010 both in the USA and Europe as the first-tier cytogenetic test for patients with unexplained neurodevelopmental delay/intellectual disability, autism spectrum disorders, and/or multiple congenital anomalies. However, in Brazil, the use of CMA is still limited, due to its high cost and complexity in integrating the results from both the private and public health systems. Although Brazil has one of the world’s largest single-payer public healthcare systems, nearly all patients referred for CMA come from the private sector, resulting in only a small number of CMA studies in Brazilian cohorts. To date, this study is by far the largest Brazilian cohort (n = 5788) studied by CMA and is derived from a joint collaboration formed by the University of São Paulo and three private genetic diagnostic centers to investigate the genetic bases of neurodevelopmental disorders and congenital abnormalities. We identified 2,279 clinically relevant CNVs in 1886 patients, not including the 26 cases of UPD found. Among detected CNVs, the corresponding frequency of each category was 55.6% Pathogenic, 4.4% Likely Pathogenic and 40% VUS. The diagnostic yield, by taking into account Pathogenic, Likely Pathogenic and UPDs, was 19.7%. Since the rational for the classification is mostly based on Mendelian or highly penetrant variants, it was not surprising that a second event was detected in 26% of those cases of predisposition syndromes. Although it is common practice to investigate the inheritance of VUS in most laboratories around the world to determine the inheritance of the variant, our results indicate an extremely low cost–benefit of this approach, and strongly suggest that in cases of a limited budget, investigation of the parents of VUS carriers using CMA should not be prioritized.
Collapse
Affiliation(s)
- Ana C V Krepischi
- The Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, Rua do Matão 277, São Paulo, ZIP Code 05508-090, Brazil.,Diagnósticos da América S.A., DASA, São Paulo, Brazil
| | | | - Silvia Souza da Costa
- The Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, Rua do Matão 277, São Paulo, ZIP Code 05508-090, Brazil
| | | | | | | | | | | | - Gustavo Guida
- Diagnósticos da América S.A., DASA, São Paulo, Brazil
| | | | | | | | | | | | | | - Debora R Bertola
- The Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, Rua do Matão 277, São Paulo, ZIP Code 05508-090, Brazil.,Instituto da Criança Do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Angela M Vianna-Morgante
- The Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, Rua do Matão 277, São Paulo, ZIP Code 05508-090, Brazil
| | - Peter L Pearson
- The Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, Rua do Matão 277, São Paulo, ZIP Code 05508-090, Brazil
| | - Carla Rosenberg
- The Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, Rua do Matão 277, São Paulo, ZIP Code 05508-090, Brazil. .,Diagnósticos da América S.A., DASA, São Paulo, Brazil.
| |
Collapse
|
28
|
Kozlova A, Zhang S, Kotlar AV, Jamison B, Zhang H, Shi S, Forrest MP, McDaid J, Cutler DJ, Epstein MP, Zwick ME, Pang ZP, Sanders AR, Warren ST, Gejman PV, Mulle JG, Duan J. Loss of function of OTUD7A in the schizophrenia- associated 15q13.3 deletion impairs synapse development and function in human neurons. Am J Hum Genet 2022; 109:1500-1519. [PMID: 35931052 PMCID: PMC9388388 DOI: 10.1016/j.ajhg.2022.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 06/27/2022] [Indexed: 02/06/2023] Open
Abstract
Identifying causative gene(s) within disease-associated large genomic regions of copy-number variants (CNVs) is challenging. Here, by targeted sequencing of genes within schizophrenia (SZ)-associated CNVs in 1,779 SZ cases and 1,418 controls, we identified three rare putative loss-of-function (LoF) mutations in OTU deubiquitinase 7A (OTUD7A) within the 15q13.3 deletion in cases but none in controls. To tie OTUD7A LoF with any SZ-relevant cellular phenotypes, we modeled the OTUD7A LoF mutation, rs757148409, in human induced pluripotent stem cell (hiPSC)-derived induced excitatory neurons (iNs) by CRISPR-Cas9 engineering. The mutant iNs showed a ∼50% decrease in OTUD7A expression without undergoing nonsense-mediated mRNA decay. The mutant iNs also exhibited marked reduction of dendritic complexity, density of synaptic proteins GluA1 and PSD-95, and neuronal network activity. Congruent with the neuronal phenotypes in mutant iNs, our transcriptomic analysis showed that the set of OTUD7A LoF-downregulated genes was enriched for those relating to synapse development and function and was associated with SZ and other neuropsychiatric disorders. These results suggest that OTUD7A LoF impairs synapse development and neuronal function in human neurons, providing mechanistic insight into the possible role of OTUD7A in driving neuropsychiatric phenotypes associated with the 15q13.3 deletion.
Collapse
Affiliation(s)
- Alena Kozlova
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL 60201, USA
| | - Siwei Zhang
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL 60201, USA; Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL 60637, USA
| | - Alex V Kotlar
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA; Pillar Biosciences Inc., Natick, MA 01760, USA
| | - Brendan Jamison
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL 60201, USA
| | - Hanwen Zhang
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL 60201, USA
| | - Serena Shi
- Winston Churchill High School, Potomac, MD 20854, USA
| | - Marc P Forrest
- Department of Neuroscience, Northwestern University, Chicago, IL 60611, USA; Center for Autism and Neurodevelopment, Northwestern University, Chicago, IL 60611, USA
| | - John McDaid
- Department of Neurosurgery, NorthShore University HealthSystem, Evanston, IL 60201, USA
| | - David J Cutler
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Michael P Epstein
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Michael E Zwick
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA; Senior Vice President for Research, Rutgers University, New Brunswick, NJ 08901, USA
| | - Zhiping P Pang
- Department of Neuroscience and Cell Biology, Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Alan R Sanders
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL 60201, USA; Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL 60637, USA
| | - Stephen T Warren
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Pablo V Gejman
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL 60201, USA; Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL 60637, USA
| | - Jennifer G Mulle
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA
| | - Jubao Duan
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL 60201, USA; Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
29
|
Chehbani F, Tomaiuolo P, Picinelli C, Baccarin M, Castronovo P, Scattoni ML, Gaddour N, Persico AM. Yield of array-CGH analysis in Tunisian children with autism spectrum disorder. Mol Genet Genomic Med 2022; 10:e1939. [PMID: 35762097 PMCID: PMC9356560 DOI: 10.1002/mgg3.1939] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 03/07/2022] [Accepted: 03/23/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a neurodevelopmental disorder with strong genetic underpinnings. Microarray-based comparative genomic hybridization (aCGH) technology has been proposed as a first-level test in the genetic diagnosis of ASD and of neurodevelopmental disorders in general. METHODS We performed aCGH on 98 Tunisian children (83 boys and 15 girls) diagnosed with ASD according to DSM-IV criteria. RESULTS "Pathogenic" or "likely pathogenic" copy number variants (CNVs) were detected in 11 (11.2%) patients, CNVs of "uncertain clinical significance" in 26 (26.5%), "likely benign" or "benign" CNVs were found in 37 (37.8%) and 24 (24.5%) patients, respectively. Gene set enrichment analysis involving genes spanning rare "pathogenic," "likely pathogenic," or "uncertain clinical significance" CNVs, as well as SFARI database "autism genes" in common CNVs, detected eight neuronal Gene Ontology classes among the top 10 most significant, including synapse, neuron differentiation, synaptic signaling, neurogenesis, and others. Similar results were obtained performing g: Profiler analysis. Neither transcriptional regulation nor immune pathways reached significance. CONCLUSIONS aCGH confirms its sizable diagnostic yield in a novel sample of autistic children from North Africa. Recruitment of additional families is under way, to verify whether genetic contributions to ASD in the Tunisian population, differently from other ethnic groups, may involve primarily neuronal genes, more than transcriptional regulation and immune-related pathways.
Collapse
Affiliation(s)
- Fethia Chehbani
- Department of Psychiatry, Research Laboratory “Vulnerability to Psychotic Disorders LR 05 ES 10”Monastir University HospitalMonastirTunisia
- Faculty of PharmacyUniversity of MonastirMonastirTunisia
| | | | - Chiara Picinelli
- Mafalda Luce Center for Pervasive Developmental DisordersMilanItaly
| | - Marco Baccarin
- Mafalda Luce Center for Pervasive Developmental DisordersMilanItaly
- Department of GeneticsSynlab Suisse SABioggioSwitzerland
| | - Paola Castronovo
- Mafalda Luce Center for Pervasive Developmental DisordersMilanItaly
| | | | - Naoufel Gaddour
- Unit of Child PsychiatryMonastir University HospitalMonastirTunisia
| | - Antonio M. Persico
- Child & Adolescent Neuropsychiatry ProgramModena University Hospital & Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio EmiliaModenaItaly
| |
Collapse
|
30
|
Liu YX, Yu Y, Liu JP, Liu WJ, Cao Y, Yan RM, Yao YM. Neuroimmune Regulation in Sepsis-Associated Encephalopathy: The Interaction Between the Brain and Peripheral Immunity. Front Neurol 2022; 13:892480. [PMID: 35832175 PMCID: PMC9271799 DOI: 10.3389/fneur.2022.892480] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/27/2022] [Indexed: 11/15/2022] Open
Abstract
Sepsis-associated encephalopathy (SAE), the most popular cause of coma in the intensive care unit (ICU), is the diffuse cerebral damage caused by the septic challenge. SAE is closely related to high mortality and extended cognitive impairment in patients in septic shock. At present, many studies have demonstrated that SAE might be mainly associated with blood–brain barrier damage, abnormal neurotransmitter secretion, oxidative stress, and neuroimmune dysfunction. Nevertheless, the precise mechanism which initiates SAE and contributes to the long-term cognitive impairment remains largely unknown. Recently, a growing body of evidence has indicated that there is close crosstalk between SAE and peripheral immunity. The excessive migration of peripheral immune cells to the brain, the activation of glia, and resulting dysfunction of the central immune system are the main causes of septic nerve damage. This study reviews the update on the pathogenesis of septic encephalopathy, focusing on the over-activation of immune cells in the central nervous system (CNS) and the “neurocentral–endocrine–immune” networks in the development of SAE, aiming to further understand the potential mechanism of SAE and provide new targets for diagnosis and management of septic complications.
Collapse
Affiliation(s)
- Yu-xiao Liu
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing, China
- Department of Neurosurgery, The Chinese PLA General Hospital, Beijing, China
| | - Yang Yu
- Department of Traditional Chinese Medical Science, Sixth Medical Center of the Chinese PLA General Hospital, Beijing, China
| | - Jing-peng Liu
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing, China
- Department of Traditional Chinese Medical Science, Sixth Medical Center of the Chinese PLA General Hospital, Beijing, China
| | - Wen-jia Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing, China
| | - Yang Cao
- Department of Neurosurgery, The Chinese PLA General Hospital, Beijing, China
| | - Run-min Yan
- Department of Neurosurgery, The Chinese PLA General Hospital, Beijing, China
- *Correspondence: Yong-ming Yao
| | - Yong-ming Yao
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing, China
- Run-min Yan
| |
Collapse
|
31
|
Chilakamarri L, Mellin‐Sanchez EL. Complex chromosomal rearrangement involving 15q11‐q13 interstitial triplication and duplication: A new case report of dysmorphic and neuropsychiatric features. Clin Case Rep 2022; 10:e05835. [PMID: 35600042 PMCID: PMC9107916 DOI: 10.1002/ccr3.5835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 04/18/2022] [Accepted: 04/22/2022] [Indexed: 11/11/2022] Open
Affiliation(s)
- Lekha Chilakamarri
- University of Texas Rio Grande Valley School of Medicine Edinburg Texas USA
| | | |
Collapse
|
32
|
Letsinger AC, Gu Z, Yakel JL. α7 nicotinic acetylcholine receptors in the hippocampal circuit: taming complexity. Trends Neurosci 2022; 45:145-157. [PMID: 34916082 PMCID: PMC8914277 DOI: 10.1016/j.tins.2021.11.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/04/2021] [Accepted: 11/19/2021] [Indexed: 02/03/2023]
Abstract
Cholinergic innervation of the hippocampus uses the neurotransmitter acetylcholine (ACh) to coordinate neuronal circuit activity while simultaneously influencing the function of non-neuronal cell types. The α7 nicotinic ACh receptor (nAChR) subtype is highly expressed throughout the hippocampus, has the highest calcium permeability compared with other subtypes of nAChRs, and is of high therapeutic interest due to its association with a variety of neurological disorders and neurodegenerative diseases. In this review, we synthesize research describing α7 nAChR properties, function, and relationship to cognitive dysfunction within the hippocampal circuit and highlight approaches to help improve therapeutic development.
Collapse
Affiliation(s)
- Ayland C. Letsinger
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, Mail Drop F2-08, P.O. Box 12233, Durham, NC, 27709, USA
| | - Zhenglin Gu
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, Mail Drop F2-08, P.O. Box 12233, Durham, NC, 27709, USA
| | - Jerrel L. Yakel
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, Mail Drop F2-08, P.O. Box 12233, Durham, NC, 27709, USA,Corresponding Author,
| |
Collapse
|
33
|
Chen CH, Cheng MC, Hu TM, Ping LY. Chromosomal Microarray Analysis as First-Tier Genetic Test for Schizophrenia. Front Genet 2021; 12:620496. [PMID: 34659328 PMCID: PMC8517076 DOI: 10.3389/fgene.2021.620496] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 09/20/2021] [Indexed: 01/07/2023] Open
Abstract
Schizophrenia is a chronic, devastating mental disorder with complex genetic components. Given the advancements in the molecular genetic research of schizophrenia in recent years, there is still a lack of genetic tests that can be used in clinical settings. Chromosomal microarray analysis (CMA) has been used as first-tier genetic testing for congenital abnormalities, developmental delay, and autism spectrum disorders. This study attempted to gain some experience in applying chromosomal microarray analysis as a first-tier genetic test for patients with schizophrenia. We consecutively enrolled patients with schizophrenia spectrum disorder from a clinical setting and conducted genome-wide copy number variation (CNV) analysis using a chromosomal microarray platform. We followed the 2020 “Technical Standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen)” to interpret the clinical significance of CNVs detected from patients. We recruited a total of 60 patients (36 females and 24 males) into this study. We detected three pathogenic CNVs and one likely pathogenic CNV in four patients, respectively. The detection rate was 6.7% (4/60, 95% CI: 0.004–0.13), comparable with previous studies in the literature. Also, we detected thirteen CNVs classified as uncertain clinical significance in nine patients. Detecting these CNVs can help establish the molecular genetic diagnosis of schizophrenia patients and provide helpful information for genetic counseling and clinical management. Also, it can increase our understanding of the pathogenesis of schizophrenia. Hence, we suggest CMA is a valuable genetic tool and considered first-tier genetic testing for schizophrenia spectrum disorders in clinical settings.
Collapse
Affiliation(s)
- Chia-Hsiang Chen
- Department of Psychiatry, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Department and Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Min-Chih Cheng
- Department of Psychiatry, Yuli Branch, Taipei Veterans General Hospital, Hualien, Taiwan
| | - Tsung-Ming Hu
- Department of Psychiatry, Yuli Branch, Taipei Veterans General Hospital, Hualien, Taiwan
| | - Lieh-Yung Ping
- Department of Psychiatry, Yuli Branch, Taipei Veterans General Hospital, Hualien, Taiwan
| |
Collapse
|
34
|
Özaltun MF, Geyik S, Yılmaz ŞG. Screening for Copy Number Variations of the 15q13.3 Hotspot in CHRNA7 Gene and Expression in Patients with Migraines. Curr Issues Mol Biol 2021; 43:1090-1113. [PMID: 34563047 PMCID: PMC8929100 DOI: 10.3390/cimb43020078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/24/2021] [Accepted: 09/02/2021] [Indexed: 12/02/2022] Open
Abstract
Background: a migraine is a neurological disease. Copy number variation (CNV) is a phenomenon in which parts of the genome are repeated. We investigated the effects of the CNV and gene expression at the location 15q13.3 in the Cholinergic Receptor Nicotinic Alpha 7 Subunit (CHRNA7) gene, which we believe to be effective in the migraine clinic. Methods: we evaluated changes in CHRNA7 gene expression levels and CNV of 15q13.3 in patients with migraine (n = 102, with aura, n = 43; without aura, n = 59) according to healthy controls (n = 120) by q-PCR. The data obtained were analyzed against the reference telomerase reverse transcriptase (TERT) gene with the double copy number by standard curve analysis. Copy numbers were graded as a normal copy (2), gain (2>), and loss (<2). Results: we analyzed using the 2−ΔΔCT calculation method. The CHRNA7 gene was significantly downregulated in patients (p < 0.05). The analysis of CNV in the CHRNA7 gene was statistically significant in the patient group, according to healthy controls (p < 0.05). A decreased copy number indicates a dosage loss. However, no significant difference was observed among gain, normal, and loss copy numbers and expression values in patients (p > 0.05). The change in CNV was not associated with the downregulation of the CHRNA7 gene. Conclusion: Downregulation of the CHRNA7 gene may contribute to the formation of migraine by inactivation of the alpha-7 nicotinic receptor (α7nAChR). The association of CNV gains and losses with migraines will lead to better understanding of the molecular mechanisms and pathogenesis, to better define the disease, to be used as a treatment target.
Collapse
Affiliation(s)
- Mehmet Fatih Özaltun
- Department of Neurology, Gaziantep University, Gaziantep 27310, Turkey; (M.F.Ö.); (S.G.)
| | - Sırma Geyik
- Department of Neurology, Gaziantep University, Gaziantep 27310, Turkey; (M.F.Ö.); (S.G.)
| | - Şenay Görücü Yılmaz
- Department of Nutrition and Dietetics, Gaziantep University, Gaziantep 27310, Turkey
- Correspondence: or ; Tel.: +90-(342)-360-1200; Fax: +90-(342)-360-8795
| |
Collapse
|
35
|
Meganathan K, Prakasam R, Baldridge D, Gontarz P, Zhang B, Urano F, Bonni A, Maloney SE, Turner TN, Huettner JE, Constantino JN, Kroll KL. Altered neuronal physiology, development, and function associated with a common chromosome 15 duplication involving CHRNA7. BMC Biol 2021; 19:147. [PMID: 34320968 PMCID: PMC8317352 DOI: 10.1186/s12915-021-01080-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/30/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Copy number variants (CNVs) linked to genes involved in nervous system development or function are often associated with neuropsychiatric disease. While CNVs involving deletions generally cause severe and highly penetrant patient phenotypes, CNVs leading to duplications tend instead to exhibit widely variable and less penetrant phenotypic expressivity among affected individuals. CNVs located on chromosome 15q13.3 affecting the alpha-7 nicotinic acetylcholine receptor subunit (CHRNA7) gene contribute to multiple neuropsychiatric disorders with highly variable penetrance. However, the basis of such differential penetrance remains uncharacterized. Here, we generated induced pluripotent stem cell (iPSC) models from first-degree relatives with a 15q13.3 duplication and analyzed their cellular phenotypes to uncover a basis for the dissimilar phenotypic expressivity. RESULTS The first-degree relatives studied included a boy with autism and emotional dysregulation (the affected proband-AP) and his clinically unaffected mother (UM), with comparison to unrelated control models lacking this duplication. Potential contributors to neuropsychiatric impairment were modeled in iPSC-derived cortical excitatory and inhibitory neurons. The AP-derived model uniquely exhibited disruptions of cellular physiology and neurodevelopment not observed in either the UM or unrelated controls. These included enhanced neural progenitor proliferation but impaired neuronal differentiation, maturation, and migration, and increased endoplasmic reticulum (ER) stress. Both the neuronal migration deficit and elevated ER stress could be selectively rescued by different pharmacologic agents. Neuronal gene expression was also dysregulated in the AP, including reduced expression of genes related to behavior, psychological disorders, neuritogenesis, neuronal migration, and Wnt, axonal guidance, and GABA receptor signaling. The UM model instead exhibited upregulated expression of genes in many of these same pathways, suggesting that molecular compensation could have contributed to the lack of neurodevelopmental phenotypes in this model. However, both AP- and UM-derived neurons exhibited shared alterations of neuronal function, including increased action potential firing and elevated cholinergic activity, consistent with increased homomeric CHRNA7 channel activity. CONCLUSIONS These data define both diagnosis-associated cellular phenotypes and shared functional anomalies related to CHRNA7 duplication that may contribute to variable phenotypic penetrance in individuals with 15q13.3 duplication. The capacity for pharmacological agents to rescue some neurodevelopmental anomalies associated with diagnosis suggests avenues for intervention for carriers of this duplication and other CNVs that cause related disorders.
Collapse
Affiliation(s)
- Kesavan Meganathan
- Department of Developmental Biology, Washington University School of Medicine, 660 S. Euclid Avenue, Campus, Box 8103, St. Louis, MO 63110 USA
| | - Ramachandran Prakasam
- Department of Developmental Biology, Washington University School of Medicine, 660 S. Euclid Avenue, Campus, Box 8103, St. Louis, MO 63110 USA
| | - Dustin Baldridge
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Paul Gontarz
- Department of Developmental Biology, Washington University School of Medicine, 660 S. Euclid Avenue, Campus, Box 8103, St. Louis, MO 63110 USA
| | - Bo Zhang
- Department of Developmental Biology, Washington University School of Medicine, 660 S. Euclid Avenue, Campus, Box 8103, St. Louis, MO 63110 USA
| | - Fumihiko Urano
- Department of Medicine, Division of Endocrinology, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Azad Bonni
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Susan E. Maloney
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Tychele N. Turner
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - James E. Huettner
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - John N. Constantino
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Kristen L. Kroll
- Department of Developmental Biology, Washington University School of Medicine, 660 S. Euclid Avenue, Campus, Box 8103, St. Louis, MO 63110 USA
| |
Collapse
|
36
|
Curcumin Potentiates α7 Nicotinic Acetylcholine Receptors and Alleviates Autistic-Like Social Deficits and Brain Oxidative Stress Status in Mice. Int J Mol Sci 2021; 22:ijms22147251. [PMID: 34298871 PMCID: PMC8303708 DOI: 10.3390/ijms22147251] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 12/15/2022] Open
Abstract
Autistic spectrum disorder (ASD) refers to a group of neurodevelopmental disorders characterized by impaired social interaction and cognitive deficit, restricted repetitive behaviors, altered immune responses, and imbalanced oxidative stress status. In recent years, there has been a growing interest in studying the role of nicotinic acetylcholine receptors (nAChRs), specifically α7-nAChRs, in the CNS. Influence of agonists for α7-nAChRs on the cognitive behavior, learning, and memory formation has been demonstrated in neuro-pathological condition such as ASD and attention-deficit hyperactivity disorder (ADHD). Curcumin (CUR), the active compound of the spice turmeric, has been shown to act as a positive allosteric modulator of α7-nAChRs. Here we hypothesize that CUR, acting through α7-nAChRs, influences the neuropathology of ASD. In patch clamp studies, fast inward currents activated by choline, a selective agonist of α7-nAChRs, were significantly potentiated by CUR. Moreover, choline induced enhancement of spontaneous inhibitory postsynaptic currents was markedly increased in the presence of CUR. Furthermore, CUR (25, 50, and 100 mg/kg, i.p.) ameliorated dose-dependent social deficits without affecting locomotor activity or anxiety-like behaviors of tested male Black and Tan BRachyury (BTBR) mice. In addition, CUR (50 and 100 mg/kg, i.p.) mitigated oxidative stress status by restoring the decreased levels of superoxide dismutase (SOD) and catalase (CAT) in the hippocampus and the cerebellum of treated mice. Collectively, the observed results indicate that CUR potentiates α7-nAChRs in native central nervous system neurons, mitigates disturbed oxidative stress, and alleviates ASD-like features in BTBR mice used as an idiopathic rodent model of ASD, and may represent a promising novel pharmacological strategy for ASD treatment.
Collapse
|
37
|
Budisteanu M, Papuc SM, Streata I, Cucu M, Pirvu A, Serban-Sosoi S, Erbescu A, Andrei E, Iliescu C, Ioana D, Severin E, Ioana M, Arghir A. The Phenotypic Spectrum of 15q13.3 Region Duplications: Report of 5 Patients. Genes (Basel) 2021; 12:1025. [PMID: 34356041 PMCID: PMC8306426 DOI: 10.3390/genes12071025] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/24/2021] [Accepted: 06/29/2021] [Indexed: 12/03/2022] Open
Abstract
Chromosome 15q13.3 microduplications are associated with a wide spectrum of clinical presentations ranging from normal to different neuropsychiatric conditions, such as developmental delay (DD), intellectual disability (ID), epilepsy, hypotonia, autism spectrum disorders (ASD), attention-deficit hyperactivity disorder, and schizophrenia. The smallest region of overlap for 15q13.3 duplications encompasses the Cholinergic Receptor Nicotinic Alpha 7 Subunit (CHRNA7) gene, a strong candidate for the behavioral abnormalities. We report on a series of five patients with 15q13.3 duplications detected by chromosomal microarray. The size of the duplications ranged from 378 to 537 kb, and involved the CHRNA7 gene in all patients. The most common clinical features, present in all patients, were speech delay, autistic behavior, and muscle hypotonia; DD/ID was present in three patients. One patient presented epileptic seizures; EEG anomalies were observed in three patients. No consistent dysmorphic features were noted. Neuroimaging studies revealed anomalies in two patients: Dandy-Walker malformation and a right temporal cyst. 15q13.3 duplications are associated with various neuropsychiatric features, including speech delay, hypotonia, ASD, and ID, also present in our patient group. Our study brings detailed clinical and molecular data from five ASD patients with 15q13.3 microduplications involving the CHRNA7 gene, contributing to the existing knowledge about the association of 15q13.3 duplications with neuropsychiatric phenotypes.
Collapse
Affiliation(s)
- Magdalena Budisteanu
- Department of Pediatric Neurology, Prof. Dr. Alex. Obregia Clinical Hospital of Psychiatry, 041914 Bucharest, Romania; (M.B.); (E.A.); (C.I.); (D.I.)
- Medical Genetics Laboratory, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (A.E.); (A.A.)
- Department of Genetics, Faculty of Medicine, Titu Maiorescu University, 031593 Bucharest, Romania
| | - Sorina Mihaela Papuc
- Medical Genetics Laboratory, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (A.E.); (A.A.)
| | - Ioana Streata
- Human Genomics Laboratory, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (I.S.); (M.C.); (A.P.); (S.S.-S.); (M.I.)
- Regional Center of Medical Genetics Dolj, 200642 Craiova, Romania
| | - Mihai Cucu
- Human Genomics Laboratory, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (I.S.); (M.C.); (A.P.); (S.S.-S.); (M.I.)
- Regional Center of Medical Genetics Dolj, 200642 Craiova, Romania
| | - Andrei Pirvu
- Human Genomics Laboratory, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (I.S.); (M.C.); (A.P.); (S.S.-S.); (M.I.)
- Regional Center of Medical Genetics Dolj, 200642 Craiova, Romania
| | - Simona Serban-Sosoi
- Human Genomics Laboratory, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (I.S.); (M.C.); (A.P.); (S.S.-S.); (M.I.)
- Regional Center of Medical Genetics Dolj, 200642 Craiova, Romania
| | - Alina Erbescu
- Medical Genetics Laboratory, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (A.E.); (A.A.)
| | - Emanuela Andrei
- Department of Pediatric Neurology, Prof. Dr. Alex. Obregia Clinical Hospital of Psychiatry, 041914 Bucharest, Romania; (M.B.); (E.A.); (C.I.); (D.I.)
| | - Catrinel Iliescu
- Department of Pediatric Neurology, Prof. Dr. Alex. Obregia Clinical Hospital of Psychiatry, 041914 Bucharest, Romania; (M.B.); (E.A.); (C.I.); (D.I.)
| | - Doina Ioana
- Department of Pediatric Neurology, Prof. Dr. Alex. Obregia Clinical Hospital of Psychiatry, 041914 Bucharest, Romania; (M.B.); (E.A.); (C.I.); (D.I.)
| | - Emilia Severin
- Department of Genetics, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy Bucharest, 050474 Bucharest, Romania;
| | - Mihai Ioana
- Human Genomics Laboratory, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (I.S.); (M.C.); (A.P.); (S.S.-S.); (M.I.)
- Regional Center of Medical Genetics Dolj, 200642 Craiova, Romania
| | - Aurora Arghir
- Medical Genetics Laboratory, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (A.E.); (A.A.)
| |
Collapse
|
38
|
Zieminska E, Ruszczynska A, Augustyniak J, Toczylowska B, Lazarewicz JW. Zinc and Copper Brain Levels and Expression of Neurotransmitter Receptors in Two Rat ASD Models. Front Mol Neurosci 2021; 14:656740. [PMID: 34267627 PMCID: PMC8277171 DOI: 10.3389/fnmol.2021.656740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 06/01/2021] [Indexed: 12/19/2022] Open
Abstract
Zinc and copper are important trace elements necessary for the proper functioning of neurons. Impaired zinc and/or copper metabolism and signaling are implicated in many brain diseases, including autism (ASD). In our studies, autistic-like behavior in rat offsprings was induced by application to pregnant mothers valproic acid or thalidomide. Zinc and copper contents were measured in serum and brain structures: hippocampus, cerebral cortex, and cerebellum. Our research shows no interconnections in the particular metal concentrations measured in autistic animal brains and their sera. Based on patient researches, we studied 26 genes belonging to disturbed neurotransmitter pathways. In the same brain regions, we examined the expression of genes encoding proteins of cholinergic, adrenergic, serotonin, and dopamine receptors. In both rats’ ASD models, 17 out of the tested gene expression were decreased. In the cerebellum and cerebral cortex, expression of genes encoding cholinergic, adrenergic, and dopaminergic receptors decreased, whereas in the hippocampus only expression of serotoninergic receptors genes was downregulated. The changes in metals content observed in the rat brain can be secondary phenomena, perhaps elements of mechanisms that compensate for neurotransmission dysfunctions.
Collapse
Affiliation(s)
- Elzbieta Zieminska
- Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Anna Ruszczynska
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Justyna Augustyniak
- Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Beata Toczylowska
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - Jerzy W Lazarewicz
- Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
39
|
Stern S, Hacohen N, Meiner V, Yagel S, Zenvirt S, Shkedi-Rafid S, Macarov M, Valsky DV, Porat S, Yanai N, Frumkin A, Daum H. Universal chromosomal microarray analysis reveals high proportion of copy-number variants in low-risk pregnancies. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2021; 57:813-820. [PMID: 32202684 DOI: 10.1002/uog.22026] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/12/2020] [Accepted: 03/16/2020] [Indexed: 06/10/2023]
Abstract
OBJECTIVES To evaluate the yield and utility of the routine use of chromosomal microarray analysis (CMA) for prenatal genetic diagnosis in a large cohort of pregnancies with normal ultrasound (US) at the time of genetic testing, compared with pregnancies with abnormal US findings. METHODS We reviewed all prenatal CMA results in our center between November 2013 and December 2018. The prevalence of different CMA results in pregnancies with normal US at the time of genetic testing ('low-risk pregnancies'), was compared with that in pregnancies with abnormal US findings ('high-risk pregnancies'). Medical records were searched in order to evaluate subsequent US follow-up and the outcome of pregnancies with a clinically relevant copy-number variant (CNV), i.e. a pathogenic or likely pathogenic CNV or a susceptibility locus for disease with > 10% penetrance, related to early-onset disease in the low-risk group. RESULTS In a cohort of 6431 low-risk pregnancies that underwent CMA, the prevalence of a clinically significant CNV related to early-onset disease was 1.1% (72/6431), which was significantly lower than the prevalence in high-risk pregnancies (4.9% (65/1326)). Of the low-risk pregnancies, 0.4% (27/6431) had a pathogenic or likely pathogenic CNV, and another 0.7% (45/6431) had a susceptibility locus with more than 10% penetrance. Follow-up of the low-risk pregnancies with a clinically significant early-onset CNV revealed that 31.9% (23/72) were terminated, while outcome data were missing in 26.4% (19/72). In 16.7% (12/72) of low-risk pregnancies, an US abnormality was discovered later on in gestation, after genetic testing had been performed. CONCLUSION Although the background risk of identifying a clinically significant early-onset abnormal CMA result in pregnancies with a low a-priori risk is lower than that observed in high-risk pregnancies, the risk is substantial and should be conveyed to all pregnant women. © 2020 International Society of Ultrasound in Obstetrics and Gynecology.
Collapse
Affiliation(s)
- S Stern
- Department of Obstetrics and Gynecology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - N Hacohen
- Department of Genetics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - V Meiner
- Department of Genetics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - S Yagel
- Department of Obstetrics and Gynecology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - S Zenvirt
- Department of Genetics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - S Shkedi-Rafid
- Department of Genetics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - M Macarov
- Department of Genetics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - D V Valsky
- Department of Obstetrics and Gynecology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - S Porat
- Department of Obstetrics and Gynecology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - N Yanai
- Department of Obstetrics and Gynecology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - A Frumkin
- Department of Genetics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - H Daum
- Department of Genetics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
40
|
Dangles MT, Malan V, Dumas G, Romana S, Raoul O, Coste-Zeitoun D, Soufflet C, Vignolo-Diard P, Bahi-Buisson N, Barnérias C, Chemaly N, Desguerre I, Gitiaux C, Hully M, Bourgeois M, Guimier A, Rio M, Munnich A, Nabbout R, Kaminska A, Eisermann M. Electro-clinical features in epileptic children with chromosome 15q duplication syndrome. Clin Neurophysiol 2021; 132:1126-1137. [PMID: 33773177 DOI: 10.1016/j.clinph.2021.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/03/2021] [Accepted: 02/22/2021] [Indexed: 11/25/2022]
Abstract
OBJECTIVE We aimed to describe epilepsy and EEG patterns related to vigilance states and age, in chromosome15-long-arm-duplication-syndrome (dup15q) children with epilepsy, in both duplication types: interstitial (intdup15) and isodicentric (idic15). METHODS Clinical data and 70 EEGs of 12 patients (5 intdup15, 7 idic15), followed from 4.5 m.o to 17y4m (median follow-up 8y3m), were retrospectively reviewed. EEGs were analyzed visually and using power spectrum analysis. RESULTS Seventy video-EEGs were analyzed (1-16 per patient, median 6), follow-up lasting up to 8y10m (median 4y2m): 25 EEGs in intdup15 (8 m.o to 12y.o, median 4y6m) and 45 EEGs in idic15 (7 m.o to 12 y.o, median 15 m). Epilepsy: 6 West syndrome (WS) (2intdup15, 4idic15); 4 Lennox-Gastaut syndromes (LGS) (1 intdup15, 3 idic15), 2 evolving from WS; focal epilepsy (3 intdup15). In idic15, WS displayed additional myoclonic seizures (3), atypical (4) or no hypsarrhythmia (2) and posterior predominant spike and polyspike bursts (4). Beta-band rapid-rhythms (RR): present in 11 patients, power decreased during non-REM-sleep, localization shifted from diffuse to anterior, peak frequency increased with age. CONCLUSION WS with peculiar electro-clinical features and LGS, along with beta-band RR decreasing in non-REM-sleep and shifting from diffuse to anterior localization with age are recognizable features pointing towards dup15q diagnosis in children with autism spectrum disorder and developmental delay. SIGNIFICANCE This study describes electroclinical features in both interstitial and isodicentric duplications of chromosome 15q, in epileptic children, including some recent extensions regarding sleep features; and illustrates how the temporo-spatial organization of beta oscillations can be of significant help in directing towards dup15q diagnosis hypothesis.
Collapse
Affiliation(s)
- M-T Dangles
- Department of Clinical Neurophysiology, Necker-Enfants-Malades Hospital, Assistance Publique -Hôpitaux de Paris, Paris, France; Centre de Référence des Epilepsies Rares CRéER, Department of Pediatric Neurology, Necker-Enfants-Malades Hospital, Assistance Publique -Hôpitaux de Paris, Paris, France; Department of Pediatric Neurology, Necker-Enfants-Malades Hospital, Assistance Publique -Hôpitaux de Paris, Paris, France; Université de Paris, Paris, France.
| | - V Malan
- Université de Paris, Paris, France; Department of Cytogenetics, Necker-Enfants-Malades Hospital, Assistance Publique -Hôpitaux de Paris, Paris, France
| | - G Dumas
- Department of Clinical Neurophysiology, Necker-Enfants-Malades Hospital, Assistance Publique -Hôpitaux de Paris, Paris, France; Human Genetics and Cognitive Functions, Institut Pasteur, UMR3571 CNRS, Université de Paris, Paris, France; Department of Psychiatry, Université de Montreal, CHU Sainte-Justine Hospital, Montreal, QC, Canada
| | - S Romana
- Université de Paris, Paris, France; Department of Cytogenetics, Necker-Enfants-Malades Hospital, Assistance Publique -Hôpitaux de Paris, Paris, France
| | - O Raoul
- Department of Cytogenetics, Necker-Enfants-Malades Hospital, Assistance Publique -Hôpitaux de Paris, Paris, France
| | - D Coste-Zeitoun
- Department of Clinical Neurophysiology, Necker-Enfants-Malades Hospital, Assistance Publique -Hôpitaux de Paris, Paris, France; Centre de Référence des Epilepsies Rares CRéER, Department of Pediatric Neurology, Necker-Enfants-Malades Hospital, Assistance Publique -Hôpitaux de Paris, Paris, France
| | - C Soufflet
- Department of Clinical Neurophysiology, Necker-Enfants-Malades Hospital, Assistance Publique -Hôpitaux de Paris, Paris, France
| | - P Vignolo-Diard
- Department of Clinical Neurophysiology, Necker-Enfants-Malades Hospital, Assistance Publique -Hôpitaux de Paris, Paris, France
| | - N Bahi-Buisson
- Department of Pediatric Neurology, Necker-Enfants-Malades Hospital, Assistance Publique -Hôpitaux de Paris, Paris, France; Université de Paris, Paris, France
| | - C Barnérias
- Department of Pediatric Neurology, Necker-Enfants-Malades Hospital, Assistance Publique -Hôpitaux de Paris, Paris, France
| | - N Chemaly
- Centre de Référence des Epilepsies Rares CRéER, Department of Pediatric Neurology, Necker-Enfants-Malades Hospital, Assistance Publique -Hôpitaux de Paris, Paris, France; Department of Pediatric Neurology, Necker-Enfants-Malades Hospital, Assistance Publique -Hôpitaux de Paris, Paris, France
| | - I Desguerre
- Department of Pediatric Neurology, Necker-Enfants-Malades Hospital, Assistance Publique -Hôpitaux de Paris, Paris, France; Université de Paris, Paris, France
| | - C Gitiaux
- Department of Clinical Neurophysiology, Necker-Enfants-Malades Hospital, Assistance Publique -Hôpitaux de Paris, Paris, France; Department of Pediatric Neurology, Necker-Enfants-Malades Hospital, Assistance Publique -Hôpitaux de Paris, Paris, France; Université de Paris, Paris, France
| | - M Hully
- Department of Pediatric Neurology, Necker-Enfants-Malades Hospital, Assistance Publique -Hôpitaux de Paris, Paris, France
| | - M Bourgeois
- Department of Pediatric Neurosurgery, Necker-Enfants-Malades Hospital, Assistance Publique -Hôpitaux de Paris, Paris, France
| | - A Guimier
- Department of Genetics, Necker-Enfants Malades Hospital, Assistance Publique -Hôpitaux de Paris, Paris, France
| | - M Rio
- Department of Genetics, Necker-Enfants Malades Hospital, Assistance Publique -Hôpitaux de Paris, Paris, France
| | - A Munnich
- Université de Paris, Paris, France; Department of Genetics, Necker-Enfants Malades Hospital, Assistance Publique -Hôpitaux de Paris, Paris, France
| | - R Nabbout
- Centre de Référence des Epilepsies Rares CRéER, Department of Pediatric Neurology, Necker-Enfants-Malades Hospital, Assistance Publique -Hôpitaux de Paris, Paris, France; Department of Pediatric Neurology, Necker-Enfants-Malades Hospital, Assistance Publique -Hôpitaux de Paris, Paris, France; Université de Paris, Paris, France
| | - A Kaminska
- Department of Clinical Neurophysiology, Necker-Enfants-Malades Hospital, Assistance Publique -Hôpitaux de Paris, Paris, France; Université de Paris, Paris, France
| | - M Eisermann
- Department of Clinical Neurophysiology, Necker-Enfants-Malades Hospital, Assistance Publique -Hôpitaux de Paris, Paris, France; Université de Paris, Paris, France
| |
Collapse
|
41
|
Jiménez BL, Carlo S, De Jesús Rojas W. Rapid-Onset Obesity Due to Impulsive Food-Seeking Behavior in a Puerto Rican Child With CHRNA7 15q13.3 Microdeletion. Cureus 2021; 13:e14012. [PMID: 33884253 PMCID: PMC8054939 DOI: 10.7759/cureus.14012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
A microdeletion in the 15q13.3 locus is an exceedingly rare condition affecting the CHRNA7 gene. There have been 11 pediatric cases of this mutation reported worldwide. Clinical characteristics of the 15q13.3 microdeletion are rapid-onset obesity, hypotonia, autism, seizures, congenital cardiac defects, and neuropsychiatric disorders including impulsive hyperphagia. We describe the case of a four-year-old female with CHRNA7 15q13.3 microdeletion presenting with morbid obesity due to impulsive food-seeking behavior. We have also conducted a literature review on 15q13.3 microdeletion and compared the clinical features with other rapid-onset obesity disorders in the pediatric population. The goal of this case report is to increase awareness concerning CHRNA7 15q13.3 microdeletion as part of the differential diagnosis of rapid-onset obesity associated with neuropsychiatric disorders in pediatrics.
Collapse
Affiliation(s)
- Brian L Jiménez
- Pediatrics, Ponce Health Sciences University - School of Medicine, Ponce, PRI
| | - Simón Carlo
- Genetics, Ponce Health Sciences University - School of Medicine, Ponce, PRI
| | - Wilfredo De Jesús Rojas
- Pediatric Pulmonology, University of Puerto Rico - Medical Sciences Campus, San Juan, PRI.,Pediatric Pulmonology, Ponce Health Sciences University - School of Medicine, Ponce, PRI.,Pediatric Pulmonology, San Juan Bautista School of Medicine, Caguas, PRI
| |
Collapse
|
42
|
Al-Absi AR, Qvist P, Glerup S, Sanchez C, Nyengaard JR. Df(h15q13)/+ Mouse Model Reveals Loss of Astrocytes and Synaptic-Related Changes of the Excitatory and Inhibitory Circuits in the Medial Prefrontal Cortex. Cereb Cortex 2021; 31:1609-1621. [PMID: 33123721 DOI: 10.1093/cercor/bhaa313] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 08/19/2020] [Accepted: 09/20/2020] [Indexed: 11/13/2022] Open
Abstract
The 15q13.3 deletion is associated with multiple neurodevelopmental disorders including epilepsy, schizophrenia, and autism. The Df(h15q13)/+ mouse model was recently generated that recapitulates several phenotypic features of the human 15q13.3 deletion syndrome (DS). However, the biological substrates underlying these phenotypes in Df(h15q13)/+ mice have not yet been fully characterized. RNA sequencing followed by real-time quantitative PCR, western blotting, liquid chromatography-mass spectrometry, and stereological analysis were employed to dissect the molecular, structural, and neurochemical phenotypes of the medial prefrontal cortex (mPFC) circuits in Df(h15q13)/+ mouse model. Transcriptomic profiling revealed enrichment for astrocyte-specific genes among differentially expressed genes, translated by a decrease in the number of glial fibrillary acidic protein positive cells in mPFC of Df(h15q13)/+ mice compared with wild-type mice. mPFC in Df(h15q13)/+ mice also showed a deficit of the inhibitory presynaptic marker GAD65, in addition to a reduction in dendritic arborization and spine density of pyramidal neurons from layers II/III. mPFC levels of GABA and glutamate neurotransmitters were not different between genotypes. Our results suggest that the 15q13.3 deletion modulates nonneuronal circuits in mPFC and confers molecular and morphometric alterations in the inhibitory and excitatory neurocircuits, respectively. These alterations potentially contribute to the phenotypes accompanied with the 15q13.3DS.
Collapse
Affiliation(s)
- Abdel-Rahman Al-Absi
- Center for Molecular Morphology, Section for Stereology and Microscopy, Center for Stochastic Geometry and Advanced Bioimaging, Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark
| | - Per Qvist
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark.,The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, 8210 Aarhus, Denmark.,Centre for Integrative Sequencing, iSEQ, Aarhus University, 8000 Aarhus, Denmark.,Center for Genomics and Personalized Medicine, CGPM, Aarhus University, 8000 Aarhus, Denmark
| | - Simon Glerup
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | - Connie Sanchez
- Translational Neuropsychiatry Unit, Aarhus University, 8000 Aarhus, Denmark
| | - Jens R Nyengaard
- Center for Molecular Morphology, Section for Stereology and Microscopy, Center for Stochastic Geometry and Advanced Bioimaging, Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark
| |
Collapse
|
43
|
Stern T, Crutcher EH, McCarthy JM, Ali MA, Issachar G, Geva AB, Peremen Z, Schaaf CP. Brain Network Analysis of EEG Recordings Can Be Used to Assess Cognitive Function in Teenagers With 15q13.3 Microdeletion Syndrome. Front Neurosci 2021; 15:622329. [PMID: 33584189 PMCID: PMC7876406 DOI: 10.3389/fnins.2021.622329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/04/2021] [Indexed: 11/26/2022] Open
Abstract
15q13.3 microdeletion syndrome causes a spectrum of cognitive disorders, including intellectual disability and autism. We assessed the ability of the EEG analysis algorithm Brain Network Analysis (BNA) to measure cognitive function in 15q13.3 deletion patients, and to differentiate between patient and control groups. EEG data was collected from 10 individuals with 15q13.3 microdeletion syndrome (14–18 years of age), as well as 30 age-matched healthy controls, as the subjects responded to Auditory Oddball (AOB) and Go/NoGo cognitive tasks. It was determined that BNA can be used to evaluate cognitive function in 15q13.3 microdeletion patients. This analysis also significantly differentiates between patient and control groups using 5 scores, all of which are produced from ERP peaks related to late cortical components that represent higher cognitive functions of attention allocation and response inhibition (P < 0.05).
Collapse
Affiliation(s)
| | - Emeline H Crutcher
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, United States
| | - John M McCarthy
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, United States
| | - May A Ali
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, United States
| | | | | | | | - Christian P Schaaf
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, United States.,Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
44
|
Deshmukh AL, Porro A, Mohiuddin M, Lanni S, Panigrahi GB, Caron MC, Masson JY, Sartori AA, Pearson CE. FAN1, a DNA Repair Nuclease, as a Modifier of Repeat Expansion Disorders. J Huntingtons Dis 2021; 10:95-122. [PMID: 33579867 PMCID: PMC7990447 DOI: 10.3233/jhd-200448] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
FAN1 encodes a DNA repair nuclease. Genetic deficiencies, copy number variants, and single nucleotide variants of FAN1 have been linked to karyomegalic interstitial nephritis, 15q13.3 microdeletion/microduplication syndrome (autism, schizophrenia, and epilepsy), cancer, and most recently repeat expansion diseases. For seven CAG repeat expansion diseases (Huntington's disease (HD) and certain spinocerebellar ataxias), modification of age of onset is linked to variants of specific DNA repair proteins. FAN1 variants are the strongest modifiers. Non-coding disease-delaying FAN1 variants and coding disease-hastening variants (p.R507H and p.R377W) are known, where the former may lead to increased FAN1 levels and the latter have unknown effects upon FAN1 functions. Current thoughts are that ongoing repeat expansions in disease-vulnerable tissues, as individuals age, promote disease onset. Fan1 is required to suppress against high levels of ongoing somatic CAG and CGG repeat expansions in tissues of HD and FMR1 transgenic mice respectively, in addition to participating in DNA interstrand crosslink repair. FAN1 is also a modifier of autism, schizophrenia, and epilepsy. Coupled with the association of these diseases with repeat expansions, this suggests a common mechanism, by which FAN1 modifies repeat diseases. Yet how any of the FAN1 variants modify disease is unknown. Here, we review FAN1 variants, associated clinical effects, protein structure, and the enzyme's attributed functional roles. We highlight how variants may alter its activities in DNA damage response and/or repeat instability. A thorough awareness of the FAN1 gene and FAN1 protein functions will reveal if and how it may be targeted for clinical benefit.
Collapse
Affiliation(s)
- Amit L. Deshmukh
- Program of Genetics & Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada
| | - Antonio Porro
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Mohiuddin Mohiuddin
- Program of Genetics & Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada
| | - Stella Lanni
- Program of Genetics & Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada
| | - Gagan B. Panigrahi
- Program of Genetics & Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada
| | - Marie-Christine Caron
- Department of Molecular Biology, Medical Biochemistry and Pathology; Laval University Cancer Research Center, Québec City, Quebec, Canada
- Genome Stability Laboratory, CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Québec City, Quebec, Canada
| | - Jean-Yves Masson
- Department of Molecular Biology, Medical Biochemistry and Pathology; Laval University Cancer Research Center, Québec City, Quebec, Canada
- Genome Stability Laboratory, CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Québec City, Quebec, Canada
| | | | - Christopher E. Pearson
- Program of Genetics & Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada
- University of Toronto, Program of Molecular Genetics, Toronto, Ontario, Canada
| |
Collapse
|
45
|
Espeche LD, Solari AP, Mori MÁ, Arenas RM, Palomares M, Pérez M, Martínez C, Lotersztein V, Segovia M, Armando R, Dain LB, Nevado J, Lapunzina P, Rozental S. Implementation of chromosomal microarrays in a cohort of patients with intellectual disability at the Argentinean public health system. Mol Biol Rep 2020; 47:6863-6878. [PMID: 32920771 DOI: 10.1007/s11033-020-05743-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 08/28/2020] [Indexed: 01/03/2023]
Abstract
Intellectual disability is a neurodevelopmental disorder in which genetic, epigenetic and environmental factors are involved. In consequence, the determination of its etiology is usually complex. Though many countries have migrated from conventional cytogenetic analysis to chromosomal microarrays as the first-tier genetic test for patients with this condition, this last technique was implemented in our country a few years ago. We report on the results of the implementation of chromosomal microarrays in a cohort of 133 patients with intellectual disability and dysmorphic features, normal karyotype and normal subtelomeric MLPA results in an Argentinean public health institution. Clinically relevant copy number variants were found in 12% of the patients and one or more copy number variants classified as variants of uncertain significance were found in 5.3% of them. Although the diagnostic yield of chromosomal microarrays is greater than conventional cytogenetics for these patients, there are financial limitations to adopt this technique as a first-tier test in our country, especially in the public health system.
Collapse
Affiliation(s)
- Lucía Daniela Espeche
- Centro Nacional de Genética Médica "Dr. Eduardo Castilla"- ANLIS "Dr. Carlos G. Malbrán", Ministerio de Salud, Buenos Aires, Argentina
| | - Andrea Paula Solari
- Centro Nacional de Genética Médica "Dr. Eduardo Castilla"- ANLIS "Dr. Carlos G. Malbrán", Ministerio de Salud, Buenos Aires, Argentina
| | - María Ángeles Mori
- Instituto de Genética Médica y Molecular (INGEMM), IdiPAZ, Hospital Universitario La Paz, Universidad Autónoma de Madrid, Madrid, Spain.,CIBERER (Centro de Investigación Biomédica en Red de Enfermedades Raras), ISCIII, Madrid, Spain.,ITHACA European Reference Network, Madrid, Spain
| | - Rubén Martín Arenas
- Instituto de Genética Médica y Molecular (INGEMM), IdiPAZ, Hospital Universitario La Paz, Universidad Autónoma de Madrid, Madrid, Spain.,CIBERER (Centro de Investigación Biomédica en Red de Enfermedades Raras), ISCIII, Madrid, Spain.,ITHACA European Reference Network, Madrid, Spain
| | - María Palomares
- Instituto de Genética Médica y Molecular (INGEMM), IdiPAZ, Hospital Universitario La Paz, Universidad Autónoma de Madrid, Madrid, Spain.,CIBERER (Centro de Investigación Biomédica en Red de Enfermedades Raras), ISCIII, Madrid, Spain.,ITHACA European Reference Network, Madrid, Spain
| | - Myriam Pérez
- Centro Nacional de Genética Médica "Dr. Eduardo Castilla"- ANLIS "Dr. Carlos G. Malbrán", Ministerio de Salud, Buenos Aires, Argentina
| | - Cinthia Martínez
- Centro Nacional de Genética Médica "Dr. Eduardo Castilla"- ANLIS "Dr. Carlos G. Malbrán", Ministerio de Salud, Buenos Aires, Argentina
| | - Vanesa Lotersztein
- Centro Nacional de Genética Médica "Dr. Eduardo Castilla"- ANLIS "Dr. Carlos G. Malbrán", Ministerio de Salud, Buenos Aires, Argentina
| | - Mabel Segovia
- Centro Nacional de Genética Médica "Dr. Eduardo Castilla"- ANLIS "Dr. Carlos G. Malbrán", Ministerio de Salud, Buenos Aires, Argentina
| | - Romina Armando
- Servicio de Genética, Hospital de Niños "Dr. Ricardo Gutiérrez", Buenos Aires, Argentina
| | - Liliana Beatriz Dain
- Centro Nacional de Genética Médica "Dr. Eduardo Castilla"- ANLIS "Dr. Carlos G. Malbrán", Ministerio de Salud, Buenos Aires, Argentina
| | - Julián Nevado
- Instituto de Genética Médica y Molecular (INGEMM), IdiPAZ, Hospital Universitario La Paz, Universidad Autónoma de Madrid, Madrid, Spain.,CIBERER (Centro de Investigación Biomédica en Red de Enfermedades Raras), ISCIII, Madrid, Spain.,ITHACA European Reference Network, Madrid, Spain
| | - Pablo Lapunzina
- Instituto de Genética Médica y Molecular (INGEMM), IdiPAZ, Hospital Universitario La Paz, Universidad Autónoma de Madrid, Madrid, Spain.,CIBERER (Centro de Investigación Biomédica en Red de Enfermedades Raras), ISCIII, Madrid, Spain.,ITHACA European Reference Network, Madrid, Spain
| | - Sandra Rozental
- Centro Nacional de Genética Médica "Dr. Eduardo Castilla"- ANLIS "Dr. Carlos G. Malbrán", Ministerio de Salud, Buenos Aires, Argentina.
| |
Collapse
|
46
|
Paduano F, Colao E, Loddo S, Orlando V, Trapasso F, Novelli A, Perrotti N, Iuliano R. 7q35 Microdeletion and 15q13.3 and Xp22.33 Microduplications in a Patient with Severe Myoclonic Epilepsy, Microcephaly, Dysmorphisms, Severe Psychomotor Delay and Intellectual Disability. Genes (Basel) 2020; 11:genes11050525. [PMID: 32397165 PMCID: PMC7288449 DOI: 10.3390/genes11050525] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/29/2020] [Accepted: 05/06/2020] [Indexed: 11/16/2022] Open
Abstract
Copy number variations (CNVs) play a key role in the pathogenesis of several diseases, including a wide range of neurodevelopmental disorders. Here, we describe the detection of three CNVs simultaneously in a female patient with evidence of severe myoclonic epilepsy, microcephaly, hypertelorism, dimorphisms as well as severe psychomotor delay and intellectual disability. Array-CGH analysis revealed a ~240 kb microdeletion at the 7q35 inherited from her father, a ∼538 kb microduplication at the 15q13.3 region and a ∼178 kb microduplication at Xp22.33 region, both transmitted from her mother. The microdeletion in 7q35 was included within an intragenic region of the contactin associated protein-like 2 (CNTNAP2) gene, whereas the microduplications at 15q13.3 and Xp22.33 involved the cholinergic receptor nicotinic α 7 subunit (CHRNA7) and the cytokine receptor-like factor 2 (CRLF2) genes, respectively. Here, we describe a female patient harbouring three CNVs whose additive contribution could be responsible for her clinical phenotypes.
Collapse
MESH Headings
- Adult
- Chromosomes, Human, Pair 15/genetics
- Chromosomes, Human, Pair 15/ultrastructure
- Chromosomes, Human, Pair 7/genetics
- Chromosomes, Human, Pair 7/ultrastructure
- Chromosomes, Human, X/genetics
- Chromosomes, Human, X/ultrastructure
- Consanguinity
- DNA Copy Number Variations
- Epilepsies, Myoclonic/genetics
- Female
- Gene Duplication
- Genetic Association Studies
- Humans
- Membrane Proteins/genetics
- Microcephaly/genetics
- Nerve Tissue Proteins/genetics
- Neurodevelopmental Disorders/genetics
- Pedigree
- Receptors, Cytokine/genetics
- Sequence Deletion
- Tissue Array Analysis
- alpha7 Nicotinic Acetylcholine Receptor/genetics
Collapse
Affiliation(s)
- Francesco Paduano
- Medical Genetics Unit, University “Magna Graecia”, 88100 Catanzaro, Italy; (F.P.); (E.C.); (F.T.); (N.P.)
- Tecnologica Research Institute and Marrelli Health, Biomedical Section, Stem Cells Unit, 88900 Crotone, Italy
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Campus S. Venuta, Viale Europa, Località Germaneto, 88100 Catanzaro, Italy
| | - Emma Colao
- Medical Genetics Unit, University “Magna Graecia”, 88100 Catanzaro, Italy; (F.P.); (E.C.); (F.T.); (N.P.)
| | - Sara Loddo
- Medical Genetics Laboratory, Bambino Gesù Pediatric Hospital, IRCCS, 00165 Rome, Italy; (S.L.); (V.O.); (A.N.)
| | - Valeria Orlando
- Medical Genetics Laboratory, Bambino Gesù Pediatric Hospital, IRCCS, 00165 Rome, Italy; (S.L.); (V.O.); (A.N.)
| | - Francesco Trapasso
- Medical Genetics Unit, University “Magna Graecia”, 88100 Catanzaro, Italy; (F.P.); (E.C.); (F.T.); (N.P.)
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Campus S. Venuta, Viale Europa, Località Germaneto, 88100 Catanzaro, Italy
| | - Antonio Novelli
- Medical Genetics Laboratory, Bambino Gesù Pediatric Hospital, IRCCS, 00165 Rome, Italy; (S.L.); (V.O.); (A.N.)
| | - Nicola Perrotti
- Medical Genetics Unit, University “Magna Graecia”, 88100 Catanzaro, Italy; (F.P.); (E.C.); (F.T.); (N.P.)
- Department of Health Sciences, University “Magna Graecia”, 88100 Catanzaro, Italy
| | - Rodolfo Iuliano
- Medical Genetics Unit, University “Magna Graecia”, 88100 Catanzaro, Italy; (F.P.); (E.C.); (F.T.); (N.P.)
- Department of Health Sciences, University “Magna Graecia”, 88100 Catanzaro, Italy
- Correspondence:
| |
Collapse
|
47
|
Lewis AS, Picciotto MR. Regulation of aggressive behaviors by nicotinic acetylcholine receptors: Animal models, human genetics, and clinical studies. Neuropharmacology 2020; 167:107929. [PMID: 32058178 PMCID: PMC7080580 DOI: 10.1016/j.neuropharm.2019.107929] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 12/18/2019] [Accepted: 12/25/2019] [Indexed: 12/12/2022]
Abstract
Neuropsychiatric disorders are frequently complicated by aggressive behaviors. For some individuals, existing behavioral and psychopharmacological treatments are ineffective or confer significant side effects, necessitating development of new ways to treat patients with severe aggression. Nicotinic acetylcholine receptors (nAChRs) are a large and diverse family of ligand-gated ion channels expressed throughout the brain that influence behaviors highly relevant for neuropsychiatric disorders, including attention, mood, and impulsivity. Nicotine and other drugs targeting nAChRs can reduce aggression in animal models of offensive, defensive, and predatory aggression, as well as in human laboratory studies. Human genetic studies have suggested a relationship between the CHRNA7 gene encoding the alpha-7 nAChR and aggressive behavior, although these effects are heterogeneous and strongly influenced by genetic background and environment. Here we review animal, human genetic, and clinical studies supporting a consistent role of nicotine and nAChR signaling in modulation of aggressive behaviors. We integrate findings from recent studies of aggression neuroscience, discuss the circuitry that may be involved in these effects of nAChRs, and identify multiple key questions that must be answered prior to safe and effective translation for human patients. This article is part of the special issue on 'Contemporary Advances in Nicotine Neuropharmacology'.
Collapse
Affiliation(s)
- Alan S Lewis
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN, USA; Center for Cognitive Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA.
| | | |
Collapse
|
48
|
Deutsch SI, Burket JA. An Evolving Therapeutic Rationale for Targeting the α 7 Nicotinic Acetylcholine Receptor in Autism Spectrum Disorder. Curr Top Behav Neurosci 2020; 45:167-208. [PMID: 32468495 DOI: 10.1007/7854_2020_136] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Abnormalities of cholinergic nuclei, cholinergic projections, and cholinergic receptors, as well as abnormalities of growth factors involved in the maturation and maintenance of cholinergic neurons, have been described in postmortem brains of persons with autism spectrum disorder (ASD). Further, microdeletions of the 15q13.3 locus that encompasses CHRNA7, the gene coding the α7 nicotinic acetylcholine receptor (α7 nAChR), are associated with a spectrum of neurodevelopmental disorders, including ASD. The heterozygous 15q13.3 microdeletion syndrome suggests that diminished or impaired transduction of the acetylcholine (ACh) signal by the α7 nAChR can be a pathogenic mechanism of ASD. The α7 nAChR has a role in regulating the firing and function of parvalbumin (PV)-expressing GABAergic projections, which synchronize the oscillatory output of assemblies of pyramidal neurons onto which they project. Synchronous oscillatory output is an electrophysiological substrate for higher executive functions, such as working memory, and functional connectivity between discrete anatomic areas of the brain. The α7 nAChR regulates PV expression and works cooperatively with the co-expressed NMDA receptor in subpopulations of GABAergic interneurons in mouse models of ASD. An evolving literature supports therapeutic exploration of selectively targeted cholinergic interventions for the treatment of ASD, especially compounds that target the α7 nAChR subtype. Importantly, development and availability of high-affinity, brain-penetrable, α7 nAChR-selective agonists, partial agonists, allosteric agonists, and positive allosteric modulators (PAMs) should facilitate "proof-of-principle/concept" clinical trials. nAChRs are pentameric allosteric proteins that function as ligand-gated ion channel receptors constructed from five constituent polypeptide subunits, all of which share a common structural motif. Importantly, in addition to α7 nAChR-gated Ca2+ conductance causing membrane depolarization, there are emerging data consistent with possible metabotropic functions of this ionotropic receptor. The ability of α7-selective type II PAMs to "destabilize" the desensitized state and promote ion channel opening may afford them therapeutic advantages over orthosteric agonists. The current chapter reviews historic and recent literature supporting selective therapeutic targeting of the α7 nAChR in persons affected with ASD.
Collapse
Affiliation(s)
- Stephen I Deutsch
- Department of Psychiatry and Behavioral Sciences, Eastern Virginia Medical School, Norfolk, VA, USA.
| | - Jessica A Burket
- Department of Molecular Biology and Chemistry, Christopher Newport University, Newport News, VA, USA
| |
Collapse
|
49
|
Gregoric Kumperscak H, Krgovic D, Drobnic Radobuljac M, Senica N, Zagorac A, Kokalj Vokac N. CNVs and Chromosomal Aneuploidy in Patients With Early-Onset Schizophrenia and Bipolar Disorder: Genotype-Phenotype Associations. Front Psychiatry 2020; 11:606372. [PMID: 33510659 PMCID: PMC7837028 DOI: 10.3389/fpsyt.2020.606372] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/07/2020] [Indexed: 11/17/2022] Open
Abstract
Introduction: Early-onset schizophrenia (EOS) and bipolar disorder (EOB) start before the age of 18 years and have a more severe clinical course, a worse prognosis, and a greater genetic loading compared to the late-onset forms. Copy number variations (CNVs) are an important genetic factor in the etiology of psychiatric disorders. Therefore, this study aimed to analyze CNVs in patients with EOS and EOB and to establish genotype-phenotype relationships for contiguous gene syndromes or genes affected by identified CNVs. Methods: Molecular karyotyping was performed in 45 patients, 38 with EOS and seven with EOB hospitalized between 2010 and 2017. The exclusion criteria were medical or neurological disorders or IQ under 70. Detected CNVs were analyzed according to the standards and guidelines of the American College of Medical Genetics. Result: Molecular karyotyping showed CNVs in four patients with EOS (encompassing the PAK2, ADAMTS3, and ADAMTSL1 genes, and the 16p11.2 microduplication syndrome) and in two patients with EOB (encompassing the ARHGAP11B and PRODH genes). In one patient with EOB, a chromosomal aneuploidy 47, XYY was found. Discussion: Our study is the first study of CNVs in EOS and EOB patients in Slovenia. Our findings support the association of the PAK2, ARHGAP11B, and PRODH genes with schizophrenia and/or bipolar disorder. To our knowledge, this is also the first report of a multiplication of the ADAMTSL1 gene and the smallest deletion of the PAK2 gene in a patient with EOS, and one of the few reports of the 47, XYY karyotype in a patient with EOB.
Collapse
Affiliation(s)
- Hojka Gregoric Kumperscak
- Department of Pediatrics, University Medical Center Maribor, Maribor, Slovenia.,Medical Faculty, University of Maribor, Maribor, Slovenia
| | - Danijela Krgovic
- Medical Faculty, University of Maribor, Maribor, Slovenia.,Laboratory of Medical Genetics, University Medical Center Maribor, Maribor, Slovenia
| | - Maja Drobnic Radobuljac
- Unit for Intensive Child and Adolescent Psychiatry, Center for Mental Health, University Psychiatric Clinic Ljubljana, Ljubljana, Slovenia.,Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Nina Senica
- Department of Pediatrics, University Medical Center Maribor, Maribor, Slovenia
| | - Andreja Zagorac
- Laboratory of Medical Genetics, University Medical Center Maribor, Maribor, Slovenia
| | - Nadja Kokalj Vokac
- Medical Faculty, University of Maribor, Maribor, Slovenia.,Laboratory of Medical Genetics, University Medical Center Maribor, Maribor, Slovenia
| |
Collapse
|
50
|
McClain L, Segreti AM, Nau S, Shaw P, Finegold DN, Pan LA, Peters DG. Chromosome 15q13.3 microduplications are associated with treatment refractory major depressive disorder. GENES BRAIN AND BEHAVIOR 2019; 19:e12628. [PMID: 31828948 DOI: 10.1111/gbb.12628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 11/18/2019] [Accepted: 12/02/2019] [Indexed: 12/25/2022]
Abstract
Major depressive disorder (MDD) affects approximately 15 million Americans. Approximately 2 million of these are classified as being refractory to treatment (TR-MDD). Because of the lack of available therapies for TR-MDD, and the high risk of suicide, there is interest in identifying new treatment modalities and diagnostic methods. Understanding of the impact of genomic copy number variation in the etiology of a variety of neuropsychiatric phenotypes is increasing. Low copy repeat elements at 15q13.3 facilitate non-allelic homologous recombination, resulting in recurrent copy number variants (CNVs). Numerous reports have described association between microdeletions in this region and a variety of neuropsychiatric phenotypes, with CHRNA7 implicated as a candidate gene. However, the pathogenicity of 15q13.3 duplications is less clear. As part of an ongoing study, in which we have identified a number of metabolomic anomalies in spinal fluid from TR-MDD patients, we also evaluated genomic copy number variation in patients (n = 125) and controls (n = 26) via array-based copy number genomic hybridization (CGH); the case frequency was compared with frequencies reported in a prior study as well as a larger population-sized cohort. We identified five TR-MDD patients with microduplications involving CHRNA7. CHRNA7 duplications are the most common CNVs identified by clinical CGH in this cohort. Therefore, this study provides insight into the potential involvement of CHRNA7 duplications in the etiology of TR-MDD and informs those involved with care of affected individuals.
Collapse
Affiliation(s)
- Lora McClain
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Anna M Segreti
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Sharon Nau
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Patricia Shaw
- Magee-Womens Research Institute and Foundation, Pittsburgh, Pennsylvania
| | - David N Finegold
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Lisa A Pan
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - David G Peters
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.,Magee-Womens Research Institute and Foundation, Pittsburgh, Pennsylvania.,Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Obstetrics, Gynecology and Reproductive Sciences, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|