1
|
Conte E, Boccanegra B, Dinoi G, Pusch M, De Luca A, Liantonio A, Imbrici P. Therapeutic Approaches to Tuberous Sclerosis Complex: From Available Therapies to Promising Drug Targets. Biomolecules 2024; 14:1190. [PMID: 39334956 PMCID: PMC11429992 DOI: 10.3390/biom14091190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/29/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Tuberous sclerosis complex (TSC) is a rare multisystem disorder caused by heterozygous loss-of-function pathogenic variants in the tumour suppressor genes TSC1 and TSC2 encoding the tuberin and hamartin proteins, respectively. Both TSC1 and TSC2 inhibit the mammalian target of rapamycin (mTOR) complexes pathway, which is crucial for cell proliferation, growth, and differentiation, and is stimulated by various energy sources and hormonal signaling pathways. Pathogenic variants in TSC1 and TSC2 lead to mTORC1 hyperactivation, producing benign tumours in multiple organs, including the brain and kidneys, and drug-resistant epilepsy, a typical sign of TSC. Brain tumours, sudden unexpected death from epilepsy, and respiratory conditions are the three leading causes of morbidity and mortality. Even though several therapeutic options are available for the treatment of TSC, there is further need for a better understanding of the pathophysiological basis of the neurologic and other manifestations seen in TSC, and for novel therapeutic approaches. This review provides an overview of the main current therapies for TSC and discusses recent studies highlighting the repurposing of approved drugs and the emerging role of novel targets for future drug design.
Collapse
Affiliation(s)
- Elena Conte
- Department of Pharmacy—Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (E.C.); (B.B.); (G.D.); (A.D.L.); (A.L.)
| | - Brigida Boccanegra
- Department of Pharmacy—Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (E.C.); (B.B.); (G.D.); (A.D.L.); (A.L.)
| | - Giorgia Dinoi
- Department of Pharmacy—Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (E.C.); (B.B.); (G.D.); (A.D.L.); (A.L.)
| | - Michael Pusch
- Institute of Biophysics, National Research Council, 16149 Genova, Italy;
| | - Annamaria De Luca
- Department of Pharmacy—Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (E.C.); (B.B.); (G.D.); (A.D.L.); (A.L.)
| | - Antonella Liantonio
- Department of Pharmacy—Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (E.C.); (B.B.); (G.D.); (A.D.L.); (A.L.)
| | - Paola Imbrici
- Department of Pharmacy—Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (E.C.); (B.B.); (G.D.); (A.D.L.); (A.L.)
| |
Collapse
|
2
|
Casati SR, Cervia D, Roux-Biejat P, Moscheni C, Perrotta C, De Palma C. Mitochondria and Reactive Oxygen Species: The Therapeutic Balance of Powers for Duchenne Muscular Dystrophy. Cells 2024; 13:574. [PMID: 38607013 PMCID: PMC11011272 DOI: 10.3390/cells13070574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/18/2024] [Accepted: 03/22/2024] [Indexed: 04/13/2024] Open
Abstract
Duchenne muscular dystrophy (DMD) is a genetic progressive muscle-wasting disorder that leads to rapid loss of mobility and premature death. The absence of functional dystrophin in DMD patients reduces sarcolemma stiffness and increases contraction damage, triggering a cascade of events leading to muscle cell degeneration, chronic inflammation, and deposition of fibrotic and adipose tissue. Efforts in the last decade have led to the clinical approval of novel drugs for DMD that aim to restore dystrophin function. However, combination therapies able to restore dystrophin expression and target the myriad of cellular events found impaired in dystrophic muscle are desirable. Muscles are higher energy consumers susceptible to mitochondrial defects. Mitochondria generate a significant source of reactive oxygen species (ROS), and they are, in turn, sensitive to proper redox balance. In both DMD patients and animal models there is compelling evidence that mitochondrial impairments have a key role in the failure of energy homeostasis. Here, we highlighted the main aspects of mitochondrial dysfunction and oxidative stress in DMD and discussed the recent findings linked to mitochondria/ROS-targeted molecules as a therapeutic approach. In this respect, dual targeting of both mitochondria and redox homeostasis emerges as a potential clinical option in DMD.
Collapse
Affiliation(s)
- Silvia Rosanna Casati
- Department of Medical Biotechnology and Translational Medicine (BioMeTra), Università degli Studi di Milano, via Fratelli Cervi 93, 20054 Segrate, Italy; (S.R.C.); (C.D.P.)
| | - Davide Cervia
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), Università degli Studi della Tuscia, Largo dell’Università snc, 01100 Viterbo, Italy;
| | - Paulina Roux-Biejat
- Department of Biomedical and Clinical Sciences (DIBIC), Università degli Studi di Milano, via G.B. Grassi 74, 20157 Milano, Italy; (P.R.-B.); (C.M.)
| | - Claudia Moscheni
- Department of Biomedical and Clinical Sciences (DIBIC), Università degli Studi di Milano, via G.B. Grassi 74, 20157 Milano, Italy; (P.R.-B.); (C.M.)
| | - Cristiana Perrotta
- Department of Biomedical and Clinical Sciences (DIBIC), Università degli Studi di Milano, via G.B. Grassi 74, 20157 Milano, Italy; (P.R.-B.); (C.M.)
| | - Clara De Palma
- Department of Medical Biotechnology and Translational Medicine (BioMeTra), Università degli Studi di Milano, via Fratelli Cervi 93, 20054 Segrate, Italy; (S.R.C.); (C.D.P.)
| |
Collapse
|
3
|
Shang R, Miao J. Mechanisms and effects of metformin on skeletal muscle disorders. Front Neurol 2023; 14:1275266. [PMID: 37928155 PMCID: PMC10621799 DOI: 10.3389/fneur.2023.1275266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/09/2023] [Indexed: 11/07/2023] Open
Abstract
Skeletal muscle disorders are mostly genetic and include several rare diseases. With disease progression, muscle fibrosis and adiposis occur, resulting in limited mobility. The long course of these diseases combined with limited treatment options affect patients both psychologically and economically, hence the development of novel treatments for neuromuscular diseases is crucial to obtain a better quality of life. As a widely used hypoglycemic drug in clinical practice, metformin not only has anti-inflammatory, autophagy-regulating, and mitochondrial biogenesis-regulating effects, but it has also been reported to improve the symptoms of neuromuscular diseases, delay hypokinesia, and regulate skeletal muscle mass. However, metformin's specific mechanism of action in neuromuscular diseases requires further elucidation. This review summarizes the evidence showing that metformin can regulate inflammation, autophagy, and mitochondrial biogenesis through different pathways, and further explores its mechanism of action in Duchenne muscular dystrophy, statin-associated muscle disorders, and age-related sarcopenia. This review clarifies the directions of future research on therapy for neuromuscular diseases.
Collapse
Affiliation(s)
| | - Jing Miao
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
4
|
Mikhail AI, Ng SY, Mattina SR, Ljubicic V. AMPK is mitochondrial medicine for neuromuscular disorders. Trends Mol Med 2023:S1471-4914(23)00070-9. [PMID: 37080889 DOI: 10.1016/j.molmed.2023.03.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 04/22/2023]
Abstract
Duchenne muscular dystrophy (DMD), myotonic dystrophy type 1 (DM1), and spinal muscular atrophy (SMA) are the most prevalent neuromuscular disorders (NMDs) in children and adults. Central to a healthy neuromuscular system are the processes that govern mitochondrial turnover and dynamics, which are regulated by AMP-activated protein kinase (AMPK). Here, we survey mitochondrial stresses that are common between, as well as unique to, DMD, DM1, and SMA, and which may serve as potential therapeutic targets to mitigate neuromuscular disease. We also highlight recent advances that leverage a mutation-agnostic strategy featuring physiological or pharmacological AMPK activation to enhance mitochondrial health in these conditions, as well as identify outstanding questions and opportunities for future pursuit.
Collapse
Affiliation(s)
- Andrew I Mikhail
- Department of Kinesiology, Faculty of Science, McMaster University, Hamilton, Ontario, Canada.
| | - Sean Y Ng
- Department of Kinesiology, Faculty of Science, McMaster University, Hamilton, Ontario, Canada.
| | - Stephanie R Mattina
- Department of Kinesiology, Faculty of Science, McMaster University, Hamilton, Ontario, Canada.
| | - Vladimir Ljubicic
- Department of Kinesiology, Faculty of Science, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
5
|
Boccanegra B, Cappellari O, Mantuano P, Trisciuzzi D, Mele A, Tulimiero L, De Bellis M, Cirmi S, Sanarica F, Cerchiara AG, Conte E, Meanti R, Rizzi L, Bresciani E, Denoyelle S, Fehrentz JA, Cruciani G, Nicolotti O, Liantonio A, Torsello A, De Luca A. Growth hormone secretagogues modulate inflammation and fibrosis in mdx mouse model of Duchenne muscular dystrophy. Front Immunol 2023; 14:1119888. [PMID: 37122711 PMCID: PMC10130389 DOI: 10.3389/fimmu.2023.1119888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/27/2023] [Indexed: 05/02/2023] Open
Abstract
Introduction Growth hormone secretagogues (GHSs) exert multiple actions, being able to activate GHS-receptor 1a, control inflammation and metabolism, to enhance GH/insulin-like growth factor-1 (IGF-1)-mediated myogenesis, and to inhibit angiotensin-converting enzyme. These mechanisms are of interest for potentially targeting multiple steps of pathogenic cascade in Duchenne muscular dystrophy (DMD). Methods Here, we aimed to provide preclinical evidence for potential benefits of GHSs in DMD, via a multidisciplinary in vivo and ex vivo comparison in mdx mice, of two ad hoc synthesized compounds (EP80317 and JMV2894), with a wide but different profile. 4-week-old mdx mice were treated for 8 weeks with EP80317 or JMV2894 (320 µg/kg/d, s.c.). Results In vivo, both GHSs increased mice forelimb force (recovery score, RS towards WT: 20% for EP80317 and 32% for JMV2894 at week 8). In parallel, GHSs also reduced diaphragm (DIA) and gastrocnemius (GC) ultrasound echodensity, a fibrosis-related parameter (RS: ranging between 26% and 75%). Ex vivo, both drugs ameliorated DIA isometric force and calcium-related indices (e.g., RS: 40% for tetanic force). Histological analysis highlighted a relevant reduction of fibrosis in GC and DIA muscles of treated mice, paralleled by a decrease in gene expression of TGF-β1 and Col1a1. Also, decreased levels of pro-inflammatory genes (IL-6, CD68), accompanied by an increment in Sirt-1, PGC-1α and MEF2c expression, were observed in response to treatments, suggesting an overall improvement of myofiber metabolism. No detectable transcript levels of GHS receptor-1a, nor an increase of circulating IGF-1 were found, suggesting the presence of a novel receptor-independent mechanism in skeletal muscle. Preliminary docking studies revealed a potential binding capability of JMV2894 on metalloproteases involved in extracellular matrix remodeling and cytokine production, such as ADAMTS-5 and MMP-9, overactivated in DMD. Discussion Our results support the interest of GHSs as modulators of pathology progression in mdx mice, disclosing a direct anti-fibrotic action that may prove beneficial to contrast pathological remodeling.
Collapse
Affiliation(s)
- Brigida Boccanegra
- Department of Pharmacy – Drug Sciences, University of Bari “Aldo Moro”, Bari, Italy
| | - Ornella Cappellari
- Department of Pharmacy – Drug Sciences, University of Bari “Aldo Moro”, Bari, Italy
| | - Paola Mantuano
- Department of Pharmacy – Drug Sciences, University of Bari “Aldo Moro”, Bari, Italy
| | - Daniela Trisciuzzi
- Department of Pharmacy – Drug Sciences, University of Bari “Aldo Moro”, Bari, Italy
| | - Antonietta Mele
- Department of Pharmacy – Drug Sciences, University of Bari “Aldo Moro”, Bari, Italy
| | - Lisamaura Tulimiero
- Department of Pharmacy – Drug Sciences, University of Bari “Aldo Moro”, Bari, Italy
| | - Michela De Bellis
- Department of Pharmacy – Drug Sciences, University of Bari “Aldo Moro”, Bari, Italy
| | - Santa Cirmi
- Department of Pharmacy – Drug Sciences, University of Bari “Aldo Moro”, Bari, Italy
| | - Francesca Sanarica
- Department of Pharmacy – Drug Sciences, University of Bari “Aldo Moro”, Bari, Italy
| | | | - Elena Conte
- Department of Pharmacy – Drug Sciences, University of Bari “Aldo Moro”, Bari, Italy
| | - Ramona Meanti
- School of Medicine and Surgery, University of Milan-BICOCCA, Milan, Italy
| | - Laura Rizzi
- School of Medicine and Surgery, University of Milan-BICOCCA, Milan, Italy
| | - Elena Bresciani
- School of Medicine and Surgery, University of Milan-BICOCCA, Milan, Italy
| | - Severine Denoyelle
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS-Université Montpellier-ENSCM, Faculté de Pharmacie, Montpellier, France
| | - Jean-Alain Fehrentz
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS-Université Montpellier-ENSCM, Faculté de Pharmacie, Montpellier, France
| | - Gabriele Cruciani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Orazio Nicolotti
- Department of Pharmacy – Drug Sciences, University of Bari “Aldo Moro”, Bari, Italy
| | - Antonella Liantonio
- Department of Pharmacy – Drug Sciences, University of Bari “Aldo Moro”, Bari, Italy
| | - Antonio Torsello
- School of Medicine and Surgery, University of Milan-BICOCCA, Milan, Italy
| | - Annamaria De Luca
- Department of Pharmacy – Drug Sciences, University of Bari “Aldo Moro”, Bari, Italy
| |
Collapse
|
6
|
Signorelli M, Tsonaka R, Aartsma-Rus A, Spitali P. Multiomic characterization of disease progression in mice lacking dystrophin. PLoS One 2023; 18:e0283869. [PMID: 37000843 PMCID: PMC10065259 DOI: 10.1371/journal.pone.0283869] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 03/19/2023] [Indexed: 04/03/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is caused by genetic mutations leading to lack of dystrophin in skeletal muscle. A better understanding of how objective biomarkers for DMD vary across subjects and over time is needed to model disease progression and response to therapy more effectively, both in pre-clinical and clinical research. We present an in-depth characterization of disease progression in 3 murine models of DMD by multiomic analysis of longitudinal trajectories between 6 and 30 weeks of age. Integration of RNA-seq, mass spectrometry-based metabolomic and lipidomic data obtained in muscle and blood samples by Multi-Omics Factor Analysis (MOFA) led to the identification of 8 latent factors that explained 78.8% of the variance in the multiomic dataset. Latent factors could discriminate dystrophic and healthy mice, as well as different time-points. MOFA enabled to connect the gene expression signature in dystrophic muscles, characterized by pro-fibrotic and energy metabolism alterations, to inflammation and lipid signatures in blood. Our results show that omic observations in blood can be directly related to skeletal muscle pathology in dystrophic muscle.
Collapse
Affiliation(s)
- Mirko Signorelli
- Mathematical Institute, Leiden University, Leiden, The Netherlands
| | - Roula Tsonaka
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Annemieke Aartsma-Rus
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Pietro Spitali
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
7
|
Mahon N, Glennon JC. The Bi-directional Relationship Between Sleep and Inflammation in Muscular Dystrophies: A Narrative Review. Neurosci Biobehav Rev 2023; 150:105116. [PMID: 36870583 DOI: 10.1016/j.neubiorev.2023.105116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 01/31/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023]
Abstract
Muscular dystrophies vary in presentation and severity, but are associated with profound disability in many people. Although characterised by muscle weakness and wasting, there is also a very high prevalence of sleep problems and disorders which have significant impacts on quality of life in these individuals. There are no curative therapies for muscular dystrophies, with the only options for patients being supportive therapies to aid with symptoms. Therefore, there is an urgent need for new therapeutic targets and a greater understanding of pathogenesis. Inflammation and altered immunity are factors which have prominent roles in some muscular dystrophies and emerging roles in others such as type 1 myotonic dystrophy, signifying a link to pathogenesis. Interestingly, there is also a strong link between inflammation/immunity and sleep. In this review, we will explore this link in the context of muscular dystrophies and how it may influence potential therapeutic targets and interventions.
Collapse
Affiliation(s)
- Niamh Mahon
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Jeffrey C Glennon
- School of Medicine, University College Dublin, Dublin, Ireland; UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| |
Collapse
|
8
|
Branched-Chain Amino Acids and Di-Alanine Supplementation in Aged Mice: A Translational Study on Sarcopenia. Nutrients 2023; 15:nu15020330. [PMID: 36678201 PMCID: PMC9861351 DOI: 10.3390/nu15020330] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
In age-related sarcopenia, the gradual loss of skeletal muscle mass, function and strength is underpinned by an imbalanced rate of protein synthesis/breakdown. Hence, an adequate protein intake is considered a valuable strategy to mitigate sarcopenia. Here, we investigated the effects of a 12-week oral supplementation with branched-chain amino acids (BCAAs: leucine, isoleucine, and valine) with recognized anabolic properties, in 17-month-old (AGED) C57BL/6J male mice. BCAAs (2:1:1) were formulated in drinking water, alone or plus two L-Alanine equivalents (2ALA) or dipeptide L-Alanyl-L-Alanine (Di-ALA) to boost BCAAs bioavailability. Outcomes were evaluated on in/ex vivo readouts vs. 6-month-old (ADULT) mice. In vivo hind limb plantar flexor torque was improved in AGED mice treated with BCAAs + Di-ALA or 2ALA (recovery score, R.S., towards ADULT: ≥20%), and all mixtures significantly increased hind limb volume. Ex vivo, myofiber cross-sectional areas were higher in gastrocnemius (GC) and soleus (SOL) muscles from treated mice (R.S. ≥ 69%). Contractile indices of isolated muscles were improved by the mixtures, especially in SOL muscle (R.S. ≥ 20%). The latter displayed higher mTOR protein levels in mice supplemented with 2ALA/Di-ALA-enriched mixtures (R.S. ≥ 65%). Overall, these findings support the usefulness of BCAAs-based supplements in sarcopenia, particularly as innovative formulations potentiating BCAAs bioavailability and effects.
Collapse
|
9
|
Aartsma-Rus A, van Putten M, Mantuano P, De Luca A. On the use of D2.B10-Dmdmdx/J (D2.mdx) Versus C57BL/10ScSn-Dmdmdx/J (mdx) Mouse Models for Preclinical Studies on Duchenne Muscular Dystrophy: A Cautionary Note from Members of the TREAT-NMD Advisory Committee on Therapeutics. J Neuromuscul Dis 2023; 10:155-158. [PMID: 36336938 DOI: 10.3233/jnd-221547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The C57BL/10ScSn-Dmdmdx/J (mdx) mouse model has been used by researchers for decades as a model to study pathology of and develop therapies for Duchenne muscular dystrophy. However, the model is relatively mildly affected compared to the human situation. Recently, the D2.B10-Dmdmdx/J (D2.mdx) mouse model was suggested as a more severely affected and therefore better alternative. While the pathology of this model is indeed more pronounced early in life, it is not progressive, and increasing evidence suggest that it actually partially resolves with age. As such, caution is needed when using this model. However, as preclinical experts of the TREAT-NMD advisory committee for therapeutics (TACT), we frequently encounter study designs that underestimate this caveat. We here provide context for how to best use the two models for preclinical studies at the current stage of knowledge.
Collapse
Affiliation(s)
- Annemieke Aartsma-Rus
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Maaike van Putten
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Paola Mantuano
- Department of Pharmacy-Drug Sciences, Section of Pharmacology, University of Bari "Aldo Moro", Bari, Italy
| | - Annamaria De Luca
- Department of Pharmacy-Drug Sciences, Section of Pharmacology, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
10
|
Guo Z, Geng M, Huang Y, Han G, Jing R, Lin C, Zhang X, Zhang M, Fan G, Wang F, Yin H. Upregulation of Wilms' Tumor 1 in epicardial cells increases cardiac fibrosis in dystrophic mice. Cell Death Differ 2022; 29:1928-1940. [PMID: 35306537 PMCID: PMC9525265 DOI: 10.1038/s41418-022-00979-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 11/09/2022] Open
Abstract
Cardiomyopathy is a primary cause of mortality in Duchenne muscular dystrophy (DMD) patients. Mechanistic understanding of cardiac fibrosis holds the key to effective DMD cardiomyopathy treatments. Here we demonstrate that upregulation of Wilms' tumor 1 (Wt1) gene in epicardial cells increased cardiac fibrosis and impaired cardiac function in 8-month old mdx mice lacking the RNA component of telomerase (mdx/mTR-/-). Levels of phosphorylated IƙBα and p65 significantly rose in mdx/mTR-/- dystrophic hearts and Wt1 expression declined in the epicardium of mdx/mTR-/- mice when nuclear factor κB (NF-κB) and inflammation were inhibited by metformin. This demonstrates that Wt1 expression in epicardial cells is dependent on inflammation-triggered NF-κB activation. Metformin effectively prevented cardiac fibrosis and improved cardiac function in mdx/mTR-/- mice. Our study demonstrates that upregulation of Wt1 in epicardial cells contributes to fibrosis in dystrophic hearts and metformin-mediated inhibition of NF-κB can ameliorate the pathology, and thus showing clinical potential for dystrophic cardiomyopathy. Translational Perspective: Cardiomyopathy is a major cause of mortality in Duchenne muscular dystrophy (DMD) patients. Promising exon-skipping treatments are moving to the clinic, but getting sufficient dystrophin expression in the heart has proven challenging. The present study shows that Wilms' Tumor 1 (Wt1) upregulation in epicardial cells is primarily responsible for cardiac fibrosis and dysfunction of dystrophic mice and likely of DMD patients. Metformin effectively prevents cardiac fibrosis and improves cardiac function in dystrophic mice, thus representing a treatment option for DMD patients on top of existing therapies.
Collapse
Affiliation(s)
- Zhenglong Guo
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics & Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases & School of Medical Technology & Department of Cell Biology, Tianjin Medical University, Guangdong Road, Tianjin, 300203, China
- Medical Genetic Institute of Henan Province, Henan Provincial Key laboratory of Genetic Diseases and Functional Genomics, National Health Commission Key Laboratory of Birth Defects Prevention, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Mengyuan Geng
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics & Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases & School of Medical Technology & Department of Cell Biology, Tianjin Medical University, Guangdong Road, Tianjin, 300203, China
| | - Yuting Huang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Changling Road, Xiqing District, Tianjin, 300193, China
| | - Gang Han
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics & Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases & School of Medical Technology & Department of Cell Biology, Tianjin Medical University, Guangdong Road, Tianjin, 300203, China
| | - Renwei Jing
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics & Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases & School of Medical Technology & Department of Cell Biology, Tianjin Medical University, Guangdong Road, Tianjin, 300203, China
| | - Caorui Lin
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics & Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases & School of Medical Technology & Department of Cell Biology, Tianjin Medical University, Guangdong Road, Tianjin, 300203, China
| | - Xiaoning Zhang
- Department of Genetics, Tianjin Medical University, Qixiangtai Road, Heping District, Tianjin, 300070, China
| | - Miaomiao Zhang
- Department of Genetics, Tianjin Medical University, Qixiangtai Road, Heping District, Tianjin, 300070, China
| | - Guanwei Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Changling Road, Xiqing District, Tianjin, 300193, China
| | - Feng Wang
- Department of Genetics, Tianjin Medical University, Qixiangtai Road, Heping District, Tianjin, 300070, China
| | - HaiFang Yin
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics & Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases & School of Medical Technology & Department of Cell Biology, Tianjin Medical University, Guangdong Road, Tianjin, 300203, China.
- Department of Clinical Laboratory, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| |
Collapse
|
11
|
Tarantino N, Canfora I, Camerino GM, Pierno S. Therapeutic Targets in Amyotrophic Lateral Sclerosis: Focus on Ion Channels and Skeletal Muscle. Cells 2022; 11:cells11030415. [PMID: 35159225 PMCID: PMC8834084 DOI: 10.3390/cells11030415] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/18/2022] [Accepted: 01/22/2022] [Indexed: 02/04/2023] Open
Abstract
Amyotrophic Lateral Sclerosis is a neurodegenerative disease caused by progressive loss of motor neurons, which severely compromises skeletal muscle function. Evidence shows that muscle may act as a molecular powerhouse, whose final signals generate in patients a progressive loss of voluntary muscle function and weakness leading to paralysis. This pathology is the result of a complex cascade of events that involves a crosstalk among motor neurons, glia, and muscles, and evolves through the action of converging toxic mechanisms. In fact, mitochondrial dysfunction, which leads to oxidative stress, is one of the mechanisms causing cell death. It is a common denominator for the two existing forms of the disease: sporadic and familial. Other factors include excitotoxicity, inflammation, and protein aggregation. Currently, there are limited cures. The only approved drug for therapy is riluzole, that modestly prolongs survival, with edaravone now waiting for new clinical trial aimed to clarify its efficacy. Thus, there is a need of effective treatments to reverse the damage in this devastating pathology. Many drugs have been already tested in clinical trials and are currently under investigation. This review summarizes the already tested drugs aimed at restoring muscle-nerve cross-talk and on new treatment options targeting this tissue.
Collapse
|
12
|
Mantuano P, Boccanegra B, Conte E, De Bellis M, Cirmi S, Sanarica F, Cappellari O, Arduino I, Cutrignelli A, Lopedota AA, Mele A, Denora N, De Luca A. β-Dystroglycan Restoration and Pathology Progression in the Dystrophic mdx Mouse: Outcome and Implication of a Clinically Oriented Study with a Novel Oral Dasatinib Formulation. Biomolecules 2021; 11:1742. [PMID: 34827740 PMCID: PMC8615430 DOI: 10.3390/biom11111742] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/19/2021] [Accepted: 11/21/2021] [Indexed: 01/17/2023] Open
Abstract
ROS-activated cSrc tyrosine kinase (TK) promotes the degradation of β-dystroglycan (β-DG), a dystrophin-glycoprotein complex component, which may reinforce damaging signals in Duchenne muscular dystrophy (DMD). Therefore, cSrc-TK represents a promising therapeutic target. In mdx mice, a 4-week subcutaneous treatment with dasatinib (DAS), a pan-Src-TKs inhibitor approved as anti-leukemic agent, increased muscle β-DG, with minimal amelioration of morphofunctional indices. To address possible dose/pharmacokinetic (PK) issues, a new oral DAS/hydroxypropyl(HP)-β-cyclodextrin(CD) complex was developed and chronically administered to mdx mice. The aim was to better assess the role of β-DG in pathology progression, meanwhile confirming DAS mechanism of action over the long-term, along with its efficacy and tolerability. The 4-week old mdx mice underwent a 12-week treatment with DAS/HP-β-CD10% dissolved in drinking water, at 10 or 20 mg/kg/day. The outcome was evaluated via in vivo/ex vivo disease-relevant readouts. Oral DAS/HP-β-CD efficiently distributed in mdx mice plasma and tissues in a dose-related fashion. The new DAS formulation confirmed its main upstream mechanism of action, by reducing β-DG phosphorylation and restoring its levels dose-dependently in both diaphragm and gastrocnemius muscle. However, it modestly improved in vivo neuromuscular function, ex vivo muscle force, and histopathology, although the partial recovery of muscle elasticity and the decrease of CK and LDH plasma levels suggest an increased sarcolemmal stability of dystrophic muscles. Our clinically oriented study supports the interest in this new, pediatric-suitable DAS formulation for proper exposure and safety and for enhancing β-DG expression. This latter mechanism is, however, not sufficient by itself to impact on pathology progression. In-depth analyses will be dedicated to elucidating the mechanism limiting DAS effectiveness in dystrophic settings, meanwhile assessing its potential synergy with dystrophin-based molecular therapies.
Collapse
Affiliation(s)
- Paola Mantuano
- Section of Pharmacology, Department of Pharmacy—Drug Sciences, Orabona 4—Campus, University of Bari “Aldo Moro”, 70125 Bari, Italy; (P.M.); (B.B.); (E.C.); (M.D.B.); (S.C.); (F.S.); (O.C.); (A.M.)
| | - Brigida Boccanegra
- Section of Pharmacology, Department of Pharmacy—Drug Sciences, Orabona 4—Campus, University of Bari “Aldo Moro”, 70125 Bari, Italy; (P.M.); (B.B.); (E.C.); (M.D.B.); (S.C.); (F.S.); (O.C.); (A.M.)
| | - Elena Conte
- Section of Pharmacology, Department of Pharmacy—Drug Sciences, Orabona 4—Campus, University of Bari “Aldo Moro”, 70125 Bari, Italy; (P.M.); (B.B.); (E.C.); (M.D.B.); (S.C.); (F.S.); (O.C.); (A.M.)
| | - Michela De Bellis
- Section of Pharmacology, Department of Pharmacy—Drug Sciences, Orabona 4—Campus, University of Bari “Aldo Moro”, 70125 Bari, Italy; (P.M.); (B.B.); (E.C.); (M.D.B.); (S.C.); (F.S.); (O.C.); (A.M.)
| | - Santa Cirmi
- Section of Pharmacology, Department of Pharmacy—Drug Sciences, Orabona 4—Campus, University of Bari “Aldo Moro”, 70125 Bari, Italy; (P.M.); (B.B.); (E.C.); (M.D.B.); (S.C.); (F.S.); (O.C.); (A.M.)
| | - Francesca Sanarica
- Section of Pharmacology, Department of Pharmacy—Drug Sciences, Orabona 4—Campus, University of Bari “Aldo Moro”, 70125 Bari, Italy; (P.M.); (B.B.); (E.C.); (M.D.B.); (S.C.); (F.S.); (O.C.); (A.M.)
| | - Ornella Cappellari
- Section of Pharmacology, Department of Pharmacy—Drug Sciences, Orabona 4—Campus, University of Bari “Aldo Moro”, 70125 Bari, Italy; (P.M.); (B.B.); (E.C.); (M.D.B.); (S.C.); (F.S.); (O.C.); (A.M.)
| | - Ilaria Arduino
- Section of Pharmaceutical Technologies, Department of Pharmacy—Drug Sciences, Orabona 4—Campus, University of Bari “Aldo Moro”, 70125 Bari, Italy; (I.A.); (A.C.); (A.A.L.); (N.D.)
| | - Annalisa Cutrignelli
- Section of Pharmaceutical Technologies, Department of Pharmacy—Drug Sciences, Orabona 4—Campus, University of Bari “Aldo Moro”, 70125 Bari, Italy; (I.A.); (A.C.); (A.A.L.); (N.D.)
| | - Angela Assunta Lopedota
- Section of Pharmaceutical Technologies, Department of Pharmacy—Drug Sciences, Orabona 4—Campus, University of Bari “Aldo Moro”, 70125 Bari, Italy; (I.A.); (A.C.); (A.A.L.); (N.D.)
| | - Antonietta Mele
- Section of Pharmacology, Department of Pharmacy—Drug Sciences, Orabona 4—Campus, University of Bari “Aldo Moro”, 70125 Bari, Italy; (P.M.); (B.B.); (E.C.); (M.D.B.); (S.C.); (F.S.); (O.C.); (A.M.)
| | - Nunzio Denora
- Section of Pharmaceutical Technologies, Department of Pharmacy—Drug Sciences, Orabona 4—Campus, University of Bari “Aldo Moro”, 70125 Bari, Italy; (I.A.); (A.C.); (A.A.L.); (N.D.)
| | - Annamaria De Luca
- Section of Pharmacology, Department of Pharmacy—Drug Sciences, Orabona 4—Campus, University of Bari “Aldo Moro”, 70125 Bari, Italy; (P.M.); (B.B.); (E.C.); (M.D.B.); (S.C.); (F.S.); (O.C.); (A.M.)
| |
Collapse
|
13
|
Mantuano P, Boccanegra B, Bianchini G, Conte E, De Bellis M, Sanarica F, Camerino GM, Pierno S, Cappellari O, Allegretti M, Aramini A, De Luca A. BCAAs and Di-Alanine supplementation in the prevention of skeletal muscle atrophy: preclinical evaluation in a murine model of hind limb unloading. Pharmacol Res 2021; 171:105798. [PMID: 34352400 DOI: 10.1016/j.phrs.2021.105798] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 01/07/2023]
Abstract
Skeletal muscle atrophy occurs in response to various pathophysiological stimuli, including disuse, aging, and neuromuscular disorders, mainly due to an imbalance of anabolic/catabolic signaling. Branched Chain Amino Acids (BCAAs: leucine, isoleucine, valine) supplements can be beneficial for counteracting muscle atrophy, in virtue of their reported anabolic properties. Here, we carried out a proof-of-concept study to assess the in vivo/ex vivo effects of a 4-week treatment with BCAAs on disuse-induced atrophy, in a murine model of hind limb unloading (HU). BCAAs were formulated in drinking water, alone, or plus two equivalents of L-Alanine (2 ALA) or the dipeptide L-Alanyl-L-Alanine (Di-ALA), to boost BCAAs bioavailability. HU mice were characterized by reduction of body mass, decrease of soleus - SOL - muscle mass and total protein, alteration of postural muscles architecture and fiber size, dysregulation of atrophy-related genes (Atrogin-1, MuRF-1, mTOR, Mstn). In parallel, we provided new robust readouts in the HU murine model, such as impaired in vivo isometric torque and ex vivo SOL muscle contractility and elasticity, as well as altered immune response. An acute pharmacokinetic study confirmed that L-ALA, also as dipeptide, enhanced plasma exposure of BCAAs. Globally, the most sensitive parameters to BCAAs action were muscle atrophy and myofiber cross-sectional area, muscle force and compliance to stress, protein synthesis via mTOR and innate immunity, with the new BCAAs + Di-ALA formulation being the most effective treatment. Our results support the working hypothesis and highlight the importance of developing innovative formulations to optimize BCAAs biodistribution.
Collapse
Affiliation(s)
- Paola Mantuano
- Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Orabona 4 - Campus, 70125 Bari, Italy
| | - Brigida Boccanegra
- Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Orabona 4 - Campus, 70125 Bari, Italy
| | - Gianluca Bianchini
- Research & Early Development, Dompé farmaceutici S.p.A., Via Campo di Pile, s.n.c., 67100 L'Aquila, Italy
| | - Elena Conte
- Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Orabona 4 - Campus, 70125 Bari, Italy
| | - Michela De Bellis
- Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Orabona 4 - Campus, 70125 Bari, Italy
| | - Francesca Sanarica
- Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Orabona 4 - Campus, 70125 Bari, Italy
| | - Giulia Maria Camerino
- Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Orabona 4 - Campus, 70125 Bari, Italy
| | - Sabata Pierno
- Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Orabona 4 - Campus, 70125 Bari, Italy
| | - Ornella Cappellari
- Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Orabona 4 - Campus, 70125 Bari, Italy
| | - Marcello Allegretti
- Research & Early Development, Dompé farmaceutici S.p.A., Via Campo di Pile, s.n.c., 67100 L'Aquila, Italy
| | - Andrea Aramini
- Research & Early Development, Dompé farmaceutici S.p.A., Via Campo di Pile, s.n.c., 67100 L'Aquila, Italy.
| | - Annamaria De Luca
- Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Orabona 4 - Campus, 70125 Bari, Italy.
| |
Collapse
|
14
|
Lai X, Chen J. C-X-C motif chemokine ligand 12: a potential therapeutic target in Duchenne muscular dystrophy. Bioengineered 2021; 12:5428-5439. [PMID: 34424816 PMCID: PMC8806931 DOI: 10.1080/21655979.2021.1967029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked recessive disease caused by a mutant dystrophin protein. DMD patients undergo gradual progressive paralysis until death. Chronic glucocorticoid therapy remains one of the main treatments for DMD, despite the significant side effects. However, its mechanisms of action remain largely unknown. We used bioinformatics tools to identify pathogenic genes involved in DMD and glucocorticoid target genes. Two gene expression profiles containing data from DMD patients and healthy controls (GSE38417 and GSE109178) were downloaded for further analysis. Differentially expressed genes (DEGs) between DMD patients and controls were identified using GEO2R, and glucocorticoid target genes were predicted from the Pharmacogenetics and Pharmacogenomics Knowledge Base. Surprisingly, only one gene, CXCL12 (C-X-C motif chemokine ligand 12), was both a glucocorticoid target and a DEG. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis, Gene Ontology term enrichment analysis, and gene set enrichment analysis were performed. A protein-protein interaction network was constructed and hub genes identified using the Search Tool for the Retrieval of Interacting Genes (STRING) database and Cytoscape. Enriched pathways involving the DEGs, including CXCL12, were associated with the immune response and inflammation. Levels of CXCL12 and its receptor CXCR4 (C-X-C motif chemokine receptor 4) were increased in X-linked muscular dystrophy (mdx) mice (DMD models) but became significantly reduced after prednisone treatment. Metformin also reduced the expression of CXCL12 and CXCR4 in mdx mice. In conclusion, the CXCL12-CXCR4 pathway may be a potential target for DMD therapy.
Collapse
Affiliation(s)
- Xinsheng Lai
- School of Life Science, Nanchang University, Nanchang, Jiangxi, China.,Laboratory of Synaptic Development and Plasticity, Institute of Life Science, Nanchang University, Nanchang, Jiangxi, China
| | - Jie Chen
- School of Life Science, Nanchang University, Nanchang, Jiangxi, China.,Laboratory of Synaptic Development and Plasticity, Institute of Life Science, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
15
|
Giovarelli M, Zecchini S, Catarinella G, Moscheni C, Sartori P, Barbieri C, Roux-Biejat P, Napoli A, Vantaggiato C, Cervia D, Perrotta C, Clementi E, Latella L, De Palma C. Givinostat as metabolic enhancer reverting mitochondrial biogenesis deficit in Duchenne Muscular Dystrophy. Pharmacol Res 2021; 170:105751. [PMID: 34197911 DOI: 10.1016/j.phrs.2021.105751] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/11/2021] [Accepted: 06/27/2021] [Indexed: 12/13/2022]
Abstract
Duchenne Muscular Dystrophy (DMD) is a rare disorder characterized by progressive muscle wasting, weakness, and premature death. Remarkable progress has been made in genetic approaches, restoring dystrophin, or its function. However, the targeting of secondary pathological mechanisms, such as increasing muscle blood flow or stopping fibrosis, remains important to improve the therapeutic benefits, that depend on tackling both the genetic disease and the downstream consequences. Mitochondrial dysfunctions are one of the earliest deficits in DMD, arise from multiple cellular stressors and result in less than 50% of ATP content in dystrophic muscles. Here we establish that there are two temporally distinct phases of mitochondrial damage with depletion of mitochondrial mass at early stages and an accumulation of dysfunctional mitochondria at later stages, leading to a different oxidative fibers pattern, in young and adult mdx mice. We also observe a progressive mitochondrial biogenesis impairment associated with increased deacetylation of peroxisome proliferator-activated receptor-gamma coactivator 1 α (PGC-1α) promoter. Such histone deacetylation is inhibited by givinostat that positively modifies the epigenetic profile of PGC-1α promoter, sustaining mitochondrial biogenesis and oxidative fiber type switch. We, therefore, demonstrate that givinostat exerts relevant effects at mitochondrial level, acting as a metabolic remodeling agent capable of efficiently promoting mitochondrial biogenesis in dystrophic muscle.
Collapse
MESH Headings
- Acetylation
- Animals
- Carbamates/pharmacology
- Disease Models, Animal
- Energy Metabolism/drug effects
- Epigenesis, Genetic
- Histone Deacetylase Inhibitors/pharmacology
- Mice, Inbred mdx
- Mitochondria, Muscle/drug effects
- Mitochondria, Muscle/metabolism
- Mitochondria, Muscle/pathology
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscular Dystrophy, Duchenne/drug therapy
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/pathology
- Organelle Biogenesis
- Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics
- Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism
- Promoter Regions, Genetic
- Mice
Collapse
Affiliation(s)
- Matteo Giovarelli
- Department of Biomedical and Clinical Sciences "Luigi Sacco" (DIBIC), Università degli Studi di Milano, via G.B. Grassi 74, 20157 Milan, Italy
| | - Silvia Zecchini
- Department of Biomedical and Clinical Sciences "Luigi Sacco" (DIBIC), Università degli Studi di Milano, via G.B. Grassi 74, 20157 Milan, Italy
| | - Giorgia Catarinella
- IRCCS, Fondazione Santa Lucia, Rome 00142, Italy; DAHFMO, Unit of Histology and Medical Embryology, Sapienza, University of Rome, Rome, Italy
| | - Claudia Moscheni
- Department of Biomedical and Clinical Sciences "Luigi Sacco" (DIBIC), Università degli Studi di Milano, via G.B. Grassi 74, 20157 Milan, Italy
| | - Patrizia Sartori
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, via Mangiagalli 31, 20133 Milan, Italy
| | - Cecilia Barbieri
- Department of Biomedical and Clinical Sciences "Luigi Sacco" (DIBIC), Università degli Studi di Milano, via G.B. Grassi 74, 20157 Milan, Italy
| | - Paulina Roux-Biejat
- Department of Biomedical and Clinical Sciences "Luigi Sacco" (DIBIC), Università degli Studi di Milano, via G.B. Grassi 74, 20157 Milan, Italy
| | - Alessandra Napoli
- Department of Biomedical and Clinical Sciences "Luigi Sacco" (DIBIC), Università degli Studi di Milano, via G.B. Grassi 74, 20157 Milan, Italy
| | - Chiara Vantaggiato
- Scientific Institute, IRCCS Eugenio Medea, Laboratory of Molecular Biology, via Don Luigi Monza 20, 23842 Bosisio Parini, Italy
| | - Davide Cervia
- Department for Innovation in Biological, Agro-food and Forest Systems (DIBAF), Università degli Studi della Tuscia, largo dell'Università snc, 01100 Viterbo, Italy
| | - Cristiana Perrotta
- Department of Biomedical and Clinical Sciences "Luigi Sacco" (DIBIC), Università degli Studi di Milano, via G.B. Grassi 74, 20157 Milan, Italy
| | - Emilio Clementi
- Department of Biomedical and Clinical Sciences "Luigi Sacco" (DIBIC), Università degli Studi di Milano, via G.B. Grassi 74, 20157 Milan, Italy; Scientific Institute, IRCCS Eugenio Medea, Laboratory of Molecular Biology, via Don Luigi Monza 20, 23842 Bosisio Parini, Italy
| | - Lucia Latella
- IRCCS, Fondazione Santa Lucia, Rome 00142, Italy; Institute of Translational Pharmacology, National Research Council of Italy, Via Fosso del Cavaliere 100, Rome 00133, Italy
| | - Clara De Palma
- Department of Medical Biotechnology and Translational Medicine (BioMeTra), Università degli Studi di Milano, via L. Vanvitelli 32, 20129 Milan, Italy.
| |
Collapse
|
16
|
Licandro SA, Crippa L, Pomarico R, Perego R, Fossati G, Leoni F, Steinkühler C. The pan HDAC inhibitor Givinostat improves muscle function and histological parameters in two Duchenne muscular dystrophy murine models expressing different haplotypes of the LTBP4 gene. Skelet Muscle 2021; 11:19. [PMID: 34294164 PMCID: PMC8296708 DOI: 10.1186/s13395-021-00273-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/27/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND In the search of genetic determinants of Duchenne muscular dystrophy (DMD) severity, LTBP4, a member of the latent TGF-β binding protein family, emerged as an important predictor of functional outcome trajectories in mice and humans. Nonsynonymous single-nucleotide polymorphisms in LTBP4 gene associate with prolonged ambulation in DMD patients, whereas an in-frame insertion polymorphism in the mouse LTBP4 locus modulates disease severity in mice by altering proteolytic stability of the Ltbp4 protein and release of transforming growth factor-β (TGF-β). Givinostat, a pan-histone deacetylase inhibitor currently in phase III clinical trials for DMD treatment, significantly reduces fibrosis in muscle tissue and promotes the increase of the cross-sectional area (CSA) of muscles in mdx mice. In this study, we investigated the activity of Givinostat in mdx and in D2.B10 mice, two mouse models expressing different Ltbp4 variants and developing mild or more severe disease as a function of Ltbp4 polymorphism. METHODS Givinostat and steroids were administrated for 15 weeks in both DMD murine models and their efficacy was evaluated by grip strength and run to exhaustion functional tests. Histological examinations of skeletal muscles were also performed to assess the percentage of fibrotic area and CSA increase. RESULTS Givinostat treatment increased maximal normalized strength to levels that were comparable to those of healthy mice in both DMD models. The effect of Givinostat in both grip strength and exhaustion tests was dose-dependent in both strains, and in D2.B10 mice, Givinostat outperformed steroids at its highest dose. The in vivo treatment with Givinostat was effective in improving muscle morphology in both mdx and D2.B10 mice by reducing fibrosis. CONCLUSION Our study provides evidence that Givinostat has a significant effect in ameliorating both muscle function and histological parameters in mdx and D2.B10 murine models suggesting a potential benefit also for patients with a poor prognosis LTBP4 genotype.
Collapse
Affiliation(s)
| | - Luca Crippa
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | | | | | | | - Flavio Leoni
- Preclinical Development, Italfarmaco S.p.A., Milan, Italy
| | | |
Collapse
|
17
|
Soblechero-Martín P, López-Martínez A, de la Puente-Ovejero L, Vallejo-Illarramendi A, Arechavala-Gomeza V. Utrophin modulator drugs as potential therapies for Duchenne and Becker muscular dystrophies. Neuropathol Appl Neurobiol 2021; 47:711-723. [PMID: 33999469 PMCID: PMC8518368 DOI: 10.1111/nan.12735] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/28/2021] [Accepted: 05/10/2021] [Indexed: 12/25/2022]
Abstract
Utrophin is an autosomal paralogue of dystrophin, a protein whose deficit causes Duchenne and Becker muscular dystrophies (DMD/BMD). Utrophin is naturally overexpressed at the sarcolemma of mature dystrophin‐deficient fibres in DMD and BMD patients as well as in the mdx Duchenne mouse model. Dystrophin and utrophin can co‐localise in human foetal muscle, in the dystrophin‐competent fibres from DMD/BMD carriers, and revertant fibre clusters in biopsies from DMD patients. These findings suggest that utrophin overexpression could act as a surrogate, compensating for the lack of dystrophin, and, as such, it could be used in combination with dystrophin restoration therapies. Different strategies to overexpress utrophin are currently under investigation. In recent years, many compounds have been reported to modulate utrophin expression efficiently in preclinical studies and ameliorate the dystrophic phenotype in animal models of the disease. In this manuscript, we discuss the current knowledge on utrophin protein and the different mechanisms that modulate its expression in skeletal muscle. We also include a comprehensive review of compounds proposed as utrophin regulators and, as such, potential therapeutic candidates for these muscular dystrophies.
Collapse
Affiliation(s)
- Patricia Soblechero-Martín
- Neuromuscular Disorders, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain.,Clinical Laboratory Service, Osakidetza Basque Health Service, Bilbao-Basurto Integrated Health Organisation, Basurto University Hospital, Bilbao, Spain
| | - Andrea López-Martínez
- Neuromuscular Disorders, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | | | | | - Virginia Arechavala-Gomeza
- Neuromuscular Disorders, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
18
|
Dong X, Hui T, Chen J, Yu Z, Ren D, Zou S, Wang S, Fei E, Jiao H, Lai X. Metformin Increases Sarcolemma Integrity and Ameliorates Neuromuscular Deficits in a Murine Model of Duchenne Muscular Dystrophy. Front Physiol 2021; 12:642908. [PMID: 34012406 PMCID: PMC8126699 DOI: 10.3389/fphys.2021.642908] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/12/2021] [Indexed: 12/12/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a genetic neuromuscular disease characterized by progressive muscle weakness and wasting. Stimulation of AMP-activated protein kinase (AMPK) has been demonstrated to increase muscle function and protect muscle against damage in dystrophic mice. Metformin is a widely used anti-hyperglycemic drug and has been shown to be an indirect activator of AMPK. Based on these findings, we sought to determine the effects of metformin on neuromuscular deficits in mdx murine model of DMD. In this study, we found metformin treatment increased muscle strength accompanied by elevated twitch and tetanic force of tibialis anterior (TA) muscle in mdx mice. Immunofluorescence and electron microscopy analysis of metformin-treated mdx muscles revealed an improvement in muscle fiber membrane integrity. Electrophysiological studies showed the amplitude of miniature endplate potentials (mEPP) was increased in treated mice, indicating metformin also improved neuromuscular transmission of the mdx mice. Analysis of mRNA and protein levels from muscles of treated mice showed an upregulation of AMPK phosphorylation and dystrophin-glycoprotein complex protein expression. In conclusion, metformin can indeed improve muscle function and diminish neuromuscular deficits in mdx mice, suggesting its potential use as a therapeutic drug in DMD patients.
Collapse
Affiliation(s)
- Xia Dong
- School of Basic Medical Sciences, Nanchang University, Nanchang, China.,Laboratory of Synaptic Development and Plasticity, Institute of Life Science, Nanchang University, Nanchang, China
| | - Tiankun Hui
- Laboratory of Synaptic Development and Plasticity, Institute of Life Science, Nanchang University, Nanchang, China.,School of Life Sciences, Nanchang University, Nanchang, China
| | - Jie Chen
- Laboratory of Synaptic Development and Plasticity, Institute of Life Science, Nanchang University, Nanchang, China.,School of Life Sciences, Nanchang University, Nanchang, China
| | - Zheng Yu
- Laboratory of Synaptic Development and Plasticity, Institute of Life Science, Nanchang University, Nanchang, China
| | - Dongyan Ren
- Laboratory of Synaptic Development and Plasticity, Institute of Life Science, Nanchang University, Nanchang, China.,School of Life Sciences, Nanchang University, Nanchang, China
| | - Suqi Zou
- Laboratory of Synaptic Development and Plasticity, Institute of Life Science, Nanchang University, Nanchang, China.,School of Life Sciences, Nanchang University, Nanchang, China
| | - Shunqi Wang
- Laboratory of Synaptic Development and Plasticity, Institute of Life Science, Nanchang University, Nanchang, China.,School of Life Sciences, Nanchang University, Nanchang, China
| | - Erkang Fei
- Laboratory of Synaptic Development and Plasticity, Institute of Life Science, Nanchang University, Nanchang, China.,School of Life Sciences, Nanchang University, Nanchang, China
| | - Huifeng Jiao
- School of Basic Medical Sciences, Nanchang University, Nanchang, China
| | - Xinsheng Lai
- Laboratory of Synaptic Development and Plasticity, Institute of Life Science, Nanchang University, Nanchang, China.,School of Life Sciences, Nanchang University, Nanchang, China
| |
Collapse
|
19
|
Angebault C, Panel M, Lacôte M, Rieusset J, Lacampagne A, Fauconnier J. Metformin Reverses the Enhanced Myocardial SR/ER-Mitochondria Interaction and Impaired Complex I-Driven Respiration in Dystrophin-Deficient Mice. Front Cell Dev Biol 2021; 8:609493. [PMID: 33569379 PMCID: PMC7868535 DOI: 10.3389/fcell.2020.609493] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/08/2020] [Indexed: 12/12/2022] Open
Abstract
Besides skeletal muscle dysfunction, Duchenne muscular dystrophy (DMD) exhibits a progressive cardiomyopathy characterized by an impaired calcium (Ca2+) homeostasis and a mitochondrial dysfunction. Here we aimed to determine whether sarco-endoplasmic reticulum (SR/ER)–mitochondria interactions and mitochondrial function were impaired in dystrophic heart at the early stage of the pathology. For this purpose, ventricular cardiomyocytes and mitochondria were isolated from 3-month-old dystrophin-deficient mice (mdx mice). The number of contacts points between the SR/ER Ca2+ release channels (IP3R1) and the porine of the outer membrane of the mitochondria, VDAC1, measured using in situ proximity ligation assay, was greater in mdx cardiomyocytes. Expression levels of IP3R1 as well as the mitochondrial Ca2+ uniporter (MCU) and its regulated subunit, MICU1, were also increased in mdx heart. MICU2 expression was however unchanged. Furthermore, the mitochondrial Ca2+ uptake kinetics and the mitochondrial Ca2+ content were significantly increased. Meanwhile, the Ca2+-dependent pyruvate dehydrogenase phosphorylation was reduced, and its activity significantly increased. In Ca2+-free conditions, pyruvate-driven complex I respiration was decreased whereas in the presence of Ca2+, complex I-mediated respiration was boosted. Further, impaired complex I-mediated respiration was independent of its intrinsic activity or expression, which remains unchanged but is accompanied by an increase in mitochondrial reactive oxygen species production. Finally, mdx mice were treated with the complex I modulator metformin for 1 month. Metformin normalized the SR/ER-mitochondria interaction, decreased MICU1 expression and mitochondrial Ca2+ content, and enhanced complex I-driven respiration. In summary, before any sign of dilated cardiomyopathy, the DMD heart displays an aberrant SR/ER-mitochondria coupling with an increase mitochondrial Ca2+ homeostasis and a complex I dysfunction. Such remodeling could be reversed by metformin providing a novel therapeutic perspective in DMD.
Collapse
Affiliation(s)
- Claire Angebault
- PhyMedExp, Université de Montpellier, INSERM, CNRS, Montpellier, France
| | - Mathieu Panel
- PhyMedExp, Université de Montpellier, INSERM, CNRS, Montpellier, France
| | - Mathilde Lacôte
- PhyMedExp, Université de Montpellier, INSERM, CNRS, Montpellier, France
| | - Jennifer Rieusset
- CarMeN Laboratory, Inserm, INRA, INSA Lyon, Université Claude Bernard Lyon 1-Univ Lyon, Lyon, France
| | - Alain Lacampagne
- PhyMedExp, Université de Montpellier, INSERM, CNRS, Montpellier, France
| | - Jérémy Fauconnier
- PhyMedExp, Université de Montpellier, INSERM, CNRS, Montpellier, France
| |
Collapse
|
20
|
Mele A, Mantuano P, Fonzino A, Rana F, Capogrosso RF, Sanarica F, Rolland JF, Cappellari O, De Luca A. Ultrasonography validation for early alteration of diaphragm echodensity and function in the mdx mouse model of Duchenne muscular dystrophy. PLoS One 2021; 16:e0245397. [PMID: 33434240 PMCID: PMC7802948 DOI: 10.1371/journal.pone.0245397] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 12/29/2020] [Indexed: 12/26/2022] Open
Abstract
The mdx mouse model of Duchenne muscular dystrophy is characterized by functional and structural alterations of the diaphragm since early stages of pathology, closely resembling patients' condition. In recent years, ultrasonography has been proposed as a useful longitudinal non-invasive technique to assess mdx diaphragm dysfunction and evaluate drug efficacy over time. To date, only a few preclinical studies have been conducted. Therefore, an independent validation of this method by different laboratories is needed to increase results reliability and reduce biases. Here, we performed diaphragm ultrasonography in 3- and 6-month-old mdx mice, the preferred age-window for pharmacology studies. The alteration of diaphragm function over time was measured as diaphragm ultrasound movement amplitude. At the same time points, a first-time assessment of diaphragm echodensity was performed, as an experimental index of progressive loss of contractile tissue. A parallel evaluation of other in vivo and ex vivo dystrophy-relevant readouts was carried out. Both 3- and 6-month-old mdx mice showed a significant decrease in diaphragm amplitude compared to wild type (wt) mice. This index was well-correlated either with in vivo running performance or ex vivo isometric tetanic force of isolated diaphragm. In addition, diaphragms from 6-month-old dystrophic mice were also highly susceptible to eccentric contraction ex vivo. Importantly, we disclosed an age-dependent increase in echodensity in mdx mice not observed in wt animals, which was independent from abdominal wall thickness. This was accompanied by a notable increase of pro-fibrotic TGF-β1 levels in the mdx diaphragm and of non-muscle tissue amount in diaphragm sections stained by hematoxylin & eosin. Our findings corroborate the usefulness of diaphragm ultrasonography in preclinical drug studies as a powerful tool to monitor mdx pathology progression since early stages.
Collapse
Affiliation(s)
- Antonietta Mele
- Section of Pharmacology, Department of Pharmacy—Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Paola Mantuano
- Section of Pharmacology, Department of Pharmacy—Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Adriano Fonzino
- Section of Pharmacology, Department of Pharmacy—Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Francesco Rana
- Section of Pharmacology, Department of Pharmacy—Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | | | - Francesca Sanarica
- Section of Pharmacology, Department of Pharmacy—Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | | | - Ornella Cappellari
- Section of Pharmacology, Department of Pharmacy—Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Annamaria De Luca
- Section of Pharmacology, Department of Pharmacy—Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
21
|
Boccanegra B, Verhaart IEC, Cappellari O, Vroom E, De Luca A. Safety issues and harmful pharmacological interactions of nutritional supplements in Duchenne muscular dystrophy: considerations for Standard of Care and emerging virus outbreaks. Pharmacol Res 2020; 158:104917. [PMID: 32485610 PMCID: PMC7261230 DOI: 10.1016/j.phrs.2020.104917] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/08/2020] [Accepted: 05/08/2020] [Indexed: 12/13/2022]
Abstract
At the moment, little treatment options are available for Duchenne muscular dystrophy (DMD). The absence of the dystrophin protein leads to a complex cascade of pathogenic events in myofibres, including chronic inflammation and oxidative stress as well as altered metabolism. The attention towards dietary supplements in DMD is rapidly increasing, with the aim to counteract pathology-related alteration in nutrient intake, the consequences of catabolic distress or to enhance the immunological response of patients as nowadays for the COVID-19 pandemic emergency. By definition, supplements do not exert therapeutic actions, although a great confusion may arise in daily life by the improper distinction between supplements and therapeutic compounds. For most supplements, little research has been done and little evidence is available concerning their effects in DMD as well as their preventing actions against infections. Often these are not prescribed by clinicians and patients/caregivers do not discuss the use with their clinical team. Then, little is known about the real extent of supplement use in DMD patients. It is mistakenly assumed that, since compounds are of natural origin, if a supplement is not effective, it will also do no harm. However, supplements can have serious side effects and also have harmful interactions, in terms of reducing efficacy or leading to toxicity, with other therapies. It is therefore pivotal to shed light on this unclear scenario for the sake of patients. This review discusses the supplements mostly used by DMD patients, focusing on their potential toxicity, due to a variety of mechanisms including pharmacodynamic or pharmacokinetic interactions and contaminations, as well as on reports of adverse events. This overview underlines the need for caution in uncontrolled use of dietary supplements in fragile populations such as DMD patients. A culture of appropriate use has to be implemented between clinicians and patients' groups.
Collapse
Affiliation(s)
- Brigida Boccanegra
- Unit of Pharmacology, Department of Pharmacy and Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Ingrid E C Verhaart
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands; Duchenne Parent Project, the Netherlands
| | - Ornella Cappellari
- Unit of Pharmacology, Department of Pharmacy and Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Elizabeth Vroom
- Duchenne Parent Project, the Netherlands; World Duchenne Organisation (UPPMD), the Netherlands
| | - Annamaria De Luca
- Unit of Pharmacology, Department of Pharmacy and Drug Sciences, University of Bari Aldo Moro, Bari, Italy.
| |
Collapse
|
22
|
Ergogenic Effect of BCAAs and L-Alanine Supplementation: Proof-of-Concept Study in a Murine Model of Physiological Exercise. Nutrients 2020; 12:nu12082295. [PMID: 32751732 PMCID: PMC7468919 DOI: 10.3390/nu12082295] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/23/2020] [Accepted: 07/27/2020] [Indexed: 12/20/2022] Open
Abstract
Background: Branched-chain amino acids (BCAAs: leucine, isoleucine, valine) account for 35% of skeletal muscle essential amino acids (AAs). As such, they must be provided in the diet to support peptide synthesis and inhibit protein breakdown. Although substantial evidence has been collected about the potential usefulness of BCAAs in supporting muscle function and structure, dietary supplements containing BCAAs alone may not be effective in controlling muscle protein turnover, due to the rate-limiting bioavailability of other AAs involved in BCAAs metabolism. Methods: We aimed to evaluate the in vivo/ex vivo effects of a 4-week treatment with an oral formulation containing BCAAs alone (2:1:1) on muscle function, structure, and metabolism in a murine model of physiological exercise, which was compared to three modified formulations combining BCAAs with increasing concentrations of L-Alanine (ALA), an AA controlling BCAAs catabolism. Results: A preliminary pharmacokinetic study confirmed the ability of ALA to boost up BCAAs bioavailability. After 4 weeks, mix 2 (BCAAs + 2ALA) had the best protective effect on mice force and fatigability, as well as on muscle morphology and metabolic indices. Conclusion: Our study corroborates the use of BCAAs + ALA to support muscle health during physiological exercise, underlining how the relative BCAAs/ALA ratio is important to control BCAAs distribution.
Collapse
|
23
|
Cappellari O, Mantuano P, De Luca A. "The Social Network" and Muscular Dystrophies: The Lesson Learnt about the Niche Environment as a Target for Therapeutic Strategies. Cells 2020; 9:cells9071659. [PMID: 32660168 PMCID: PMC7407800 DOI: 10.3390/cells9071659] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 12/12/2022] Open
Abstract
The muscle stem cells niche is essential in neuromuscular disorders. Muscle injury and myofiber death are the main triggers of muscle regeneration via satellite cell activation. However, in degenerative diseases such as muscular dystrophy, regeneration still keep elusive. In these pathologies, stem cell loss occurs over time, and missing signals limiting damaged tissue from activating the regenerative process can be envisaged. It is unclear what comes first: the lack of regeneration due to satellite cell defects, their pool exhaustion for degeneration/regeneration cycles, or the inhibitory mechanisms caused by muscle damage and fibrosis mediators. Herein, Duchenne muscular dystrophy has been taken as a paradigm, as several drugs have been tested at the preclinical and clinical levels, targeting secondary events in the complex pathogenesis derived from lack of dystrophin. We focused on the crucial roles that pro-inflammatory and pro-fibrotic cytokines play in triggering muscle necrosis after damage and stimulating satellite cell activation and self-renewal, along with growth and mechanical factors. These processes contribute to regeneration and niche maintenance. We review the main effects of drugs on regeneration biomarkers to assess whether targeting pathogenic events can help to protect niche homeostasis and enhance regeneration efficiency other than protecting newly formed fibers from further damage.
Collapse
|
24
|
Anti-Inflammatory and General Glucocorticoid Physiology in Skeletal Muscles Affected by Duchenne Muscular Dystrophy: Exploration of Steroid-Sparing Agents. Int J Mol Sci 2020; 21:ijms21134596. [PMID: 32605223 PMCID: PMC7369834 DOI: 10.3390/ijms21134596] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/22/2020] [Accepted: 06/27/2020] [Indexed: 12/13/2022] Open
Abstract
In Duchenne muscular dystrophy (DMD), the activation of proinflammatory and metabolic cellular pathways in skeletal muscle cells is an inherent characteristic. Synthetic glucocorticoid intake counteracts the majority of these mechanisms. However, glucocorticoids induce burdensome secondary effects, including hypertension, arrhythmias, hyperglycemia, osteoporosis, weight gain, growth delay, skin thinning, cushingoid appearance, and tissue-specific glucocorticoid resistance. Hence, lowering the glucocorticoid dosage could be beneficial for DMD patients. A more profound insight into the major cellular pathways that are stabilized after synthetic glucocorticoid administration in DMD is needed when searching for the molecules able to achieve similar pathway stabilization. This review provides a concise overview of the major anti-inflammatory pathways, as well as the metabolic effects of glucocorticoids in the skeletal muscle affected in DMD. The known drugs able to stabilize these pathways, and which could potentially be combined with glucocorticoid therapy as steroid-sparing agents, are described. This could create new opportunities for testing in DMD animal models and/or clinical trials, possibly leading to smaller glucocorticoids dosage regimens for DMD patients.
Collapse
|
25
|
van Putten M, Lloyd EM, de Greef JC, Raz V, Willmann R, Grounds MD. Mouse models for muscular dystrophies: an overview. Dis Model Mech 2020; 13:dmm043562. [PMID: 32224495 PMCID: PMC7044454 DOI: 10.1242/dmm.043562] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Muscular dystrophies (MDs) encompass a wide variety of inherited disorders that are characterized by loss of muscle tissue associated with a progressive reduction in muscle function. With a cure lacking for MDs, preclinical developments of therapeutic approaches depend on well-characterized animal models that recapitulate the specific pathology in patients. The mouse is the most widely and extensively used model for MDs, and it has played a key role in our understanding of the molecular mechanisms underlying MD pathogenesis. This has enabled the development of therapeutic strategies. Owing to advancements in genetic engineering, a wide variety of mouse models are available for the majority of MDs. Here, we summarize the characteristics of the most commonly used mouse models for a subset of highly studied MDs, collated into a table. Together with references to key publications describing these models, this brief but detailed overview would be useful for those interested in, or working with, mouse models of MD.
Collapse
Affiliation(s)
- Maaike van Putten
- Leiden University Medical Center, Department of Human Genetics, Leiden, 2333 ZA, The Netherlands
| | - Erin M Lloyd
- The University of Western Australia, School of Human Sciences, Perth 6009, Australia
| | - Jessica C de Greef
- Leiden University Medical Center, Department of Human Genetics, Leiden, 2333 ZA, The Netherlands
| | - Vered Raz
- Leiden University Medical Center, Department of Human Genetics, Leiden, 2333 ZA, The Netherlands
| | | | - Miranda D Grounds
- The University of Western Australia, School of Human Sciences, Perth 6009, Australia
| |
Collapse
|
26
|
Affiliation(s)
- David W Hammers
- Department of Pharmacology and Therapeutics, Myology Institute, University of Florida College of Medicine, Gainesville
| |
Collapse
|
27
|
Willmann R, Lee J, Turner C, Nagaraju K, Aartsma-Rus A, Wells DJ, Wagner KR, Csimma C, Straub V, Grounds MD, De Luca A. Improving translatability of preclinical studies for neuromuscular disorders: lessons from the TREAT-NMD Advisory Committee for Therapeutics (TACT). Dis Model Mech 2020; 13:dmm042903. [PMID: 32066568 PMCID: PMC7044444 DOI: 10.1242/dmm.042903] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Clinical trials for rare neuromuscular diseases imply, among other investments, a high emotional burden for the whole disease community. Translation of data from preclinical studies to justify any clinical trial must be carefully pondered in order to minimize the risk of clinical trial withdrawal or failure. A rigorous distinction between proof-of-concept and preclinical efficacy studies using animal models is key to support the rationale of a clinical trial involving patients. This Review evaluates the experience accumulated by the TREAT-NMD Advisory Committee for Therapeutics, which provides detailed constructive feedback on clinical proposals for neuromuscular diseases submitted by researchers in both academia and industry, and emphasizes that a timely critical review of preclinical efficacy data from animal models, including biomarkers for specific diseases, combined with adherence to existing guidelines and standard protocols, can significantly help to de-risk clinical programs and prevent disappointments and costly engagement.
Collapse
Affiliation(s)
- Raffaella Willmann
- Swiss Foundation for Research on Muscle Diseases, 2016 Cortaillod, Switzerland
| | - Joanne Lee
- John Walton Muscular Dystrophy Research Centre, Centre for Life, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne NE7 7DN, UK
| | - Cathy Turner
- John Walton Muscular Dystrophy Research Centre, Centre for Life, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne NE7 7DN, UK
| | - Kanneboyina Nagaraju
- School of Pharmacy and Pharmaceutical Sciences, Binghamton University, New York, NY 13902-6000, USA
| | - Annemieke Aartsma-Rus
- John Walton Muscular Dystrophy Research Centre, Centre for Life, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne NE7 7DN, UK
- Department of Human Genetics, Leiden University Medical Center, Leiden, 2300 RC, the Netherlands
| | - Dominic J Wells
- Neuromuscular Disease Group, Royal Veterinary College, London NW1 0TU, UK
| | - Kathryn R Wagner
- Center for Genetic Muscle Disorders, Kennedy Krieger Institute and the Departments of Neurology and Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | | | - Volker Straub
- John Walton Muscular Dystrophy Research Centre, Centre for Life, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne NE7 7DN, UK
| | - Miranda D Grounds
- School of Human Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Annamaria De Luca
- Unit of Pharmacology, Department of Pharmacy and Drug Sciences, University of Bari Aldo Moro, 70125 Bari, Italy
| |
Collapse
|
28
|
Vitiello L, Tibaudo L, Pegoraro E, Bello L, Canton M. Teaching an Old Molecule New Tricks: Drug Repositioning for Duchenne Muscular Dystrophy. Int J Mol Sci 2019; 20:E6053. [PMID: 31801292 PMCID: PMC6929176 DOI: 10.3390/ijms20236053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/28/2019] [Accepted: 11/28/2019] [Indexed: 02/07/2023] Open
Abstract
: Duchenne muscular dystrophy (DMD) is one of the most severe forms of inherited muscular dystrophies. The disease is caused by the lack of dystrophin, a structurally essential protein; hence, a definitive cure would necessarily have to pass through some form of gene and/or cell therapy. Cell- and genetic-based therapeutics for DMD have been explored since the 1990s and recently, two of the latter have been approved for clinical use, but their efficacy is still very low. In parallel, there have been great ongoing efforts aimed at targeting the downstream pathogenic effects of dystrophin deficiency using classical pharmacological approaches, with synthetic or biological molecules. However, as it is always the case with rare diseases, R&D costs for new drugs can represent a major hurdle for researchers and patients alike. This problem can be greatly alleviated by experimenting the use of molecules that had originally been developed for different conditions, a process known as drug repurposing or drug repositioning. In this review, we will describe the state of the art of such an approach for DMD, both in the context of clinical trials and pre-clinical studies.
Collapse
Affiliation(s)
- Libero Vitiello
- Department of Biology, University of Padova, via U. Bassi 58/B, 35131 Padova, Italy;
- Interuniversity Institute of Myology (IIM), Administrative headquarters University of Perugia, Piazza Lucio Severi 1, 06132, Perugia, Italy;
| | - Lucia Tibaudo
- Interuniversity Institute of Myology (IIM), Administrative headquarters University of Perugia, Piazza Lucio Severi 1, 06132, Perugia, Italy;
- Department of Biomedical Sciences, University of Padova, via U. Bassi 58/B, 35131 Padova, Italy
| | - Elena Pegoraro
- Department of Neurosciences, University of Padova, Via Giustiniani, 5-35128 Padova, Italy;
| | - Luca Bello
- Department of Neurosciences, University of Padova, Via Giustiniani, 5-35128 Padova, Italy;
| | - Marcella Canton
- Interuniversity Institute of Myology (IIM), Administrative headquarters University of Perugia, Piazza Lucio Severi 1, 06132, Perugia, Italy;
- Department of Biomedical Sciences, University of Padova, via U. Bassi 58/B, 35131 Padova, Italy
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza-IRP, Corso Stati Uniti, 4, 35127 Padova, Italy
| |
Collapse
|
29
|
Hafner P, Bonati U, Klein A, Rubino D, Gocheva V, Schmidt S, Schroeder J, Bernert G, Laugel V, Steinlin M, Capone A, Gloor M, Bieri O, Hemkens LG, Speich B, Zumbrunn T, Gueven N, Fischer D. Effect of Combination l-Citrulline and Metformin Treatment on Motor Function in Patients With Duchenne Muscular Dystrophy: A Randomized Clinical Trial. JAMA Netw Open 2019; 2:e1914171. [PMID: 31664444 PMCID: PMC6824222 DOI: 10.1001/jamanetworkopen.2019.14171] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
IMPORTANCE Nitric oxide precursors, such as the amino acid l-arginine and the biguanide antidiabetic drug metformin, have been associated with metabolism and muscle function in patients with Duchenne muscular dystrophy (DMD). The treatment of DMD remains an unmet medical need. OBJECTIVE To evaluate the benefits and harms of a combination of l-citrulline and metformin treatment among patients with DMD. DESIGN, SETTING, AND PARTICIPANTS A single-center randomized double-blind placebo-controlled parallel-group clinical trial was conducted between December 12, 2013, and March 30, 2016, at the University Children's Hospital Basel in Switzerland. A total of 47 ambulant male patients aged 6.5 to 10 years with genetically confirmed DMD were recruited locally and from the patient registries of Switzerland, Germany, Austria, and France. Data were analyzed from April 6, 2016, to September 5, 2019. INTERVENTIONS Patients in the treatment group received 2500 mg of l-citrulline and 250 mg of metformin (combination therapy) 3 times a day for 26 weeks compared with patients in the control group, who received placebo. MAIN OUTCOMES AND MEASURES The primary end point was the change in transfer and standing posture, as assessed by the first dimension of the Motor Function Measure, version 32, from baseline to week 26. Secondary end points included assessments of timed function, quantitative muscle force, biomarkers for muscle necrosis, and adverse events. The 2 prespecified subgroups comprised patients who were able to walk 350 m or more in 6 minutes (stable subgroup) and patients who were not able to walk 350 m in 6 minutes (unstable subgroup) at baseline. RESULTS Among 49 ambulant male children with DMD who were screened for eligibility, 47 patients with a mean (SD) age of 8.2 (1.1) years were randomized to a treatment group receiving combination therapy (n = 23) or a control group receiving placebo (n = 24), and 45 patients completed the study. No significant differences between groups were found in the results of timed function and muscle force tests for overall, proximal and axial, and distal motor function. Among patients receiving combination therapy, the Motor Function Measure first dimension subscore decrease was 5.5% greater than that of patients receiving placebo (95% CI, -1.0% to 12.1%; P = .09). The administration of combination therapy had significantly favorable effects on the first dimension subscore decrease among the 29 patients in the stable subgroup (6.7%; 95% CI, 0.9%-12.6%; P = .03) but not among the 15 patients in the unstable subgroup (3.9%; 95% CI, -13.2% to 20.9%; P = .63). Overall, the treatment was well tolerated with only mild adverse effects. CONCLUSIONS AND RELEVANCE Treatment with combination therapy was not associated with an overall reduction in motor function decline among ambulant patients with DMD; however, a reduction in motor function decline was observed among the stable subgroup of patients treated with combination therapy. The statistically nonsignificant difference of distal motor function in favor of combination therapy and the reduced degeneration of muscle tissue appear to support the treatment concept, but the study may have lacked sufficient statistical power. Further research exploring this treatment option with a greater number of patients is warranted. TRIAL REGISTRATION ClinicalTrials.gov identifier: NCT01995032.
Collapse
Affiliation(s)
- Patricia Hafner
- Division of Pediatric Neurology, University Children's Hospital Basel, Basel, Switzerland
- Division of Neurology, Medical University Clinic, Kantonsspital Baselland, Bruderholz, Switzerland
| | - Ulrike Bonati
- Division of Pediatric Neurology, University Children's Hospital Basel, Basel, Switzerland
| | - Andrea Klein
- Division of Pediatric Neurology, University Children's Hospital Basel, Basel, Switzerland
- Division of Pediatric Neurology, University of Berne Hospital, Berne, Switzerland
- Division of Pediatric Neurology, Lausanne University Hospital, Lausanne, Switzerland
| | - Daniela Rubino
- Division of Pediatric Neurology, University Children's Hospital Basel, Basel, Switzerland
| | - Vanya Gocheva
- Division of Pediatric Neurology, University Children's Hospital Basel, Basel, Switzerland
| | - Simone Schmidt
- Division of Pediatric Neurology, University Children's Hospital Basel, Basel, Switzerland
- Department of Neurology, University Hospital Basel, Basel, Switzerland
| | - Jonas Schroeder
- Division of Pediatric Neurology, University Children's Hospital Basel, Basel, Switzerland
| | - Günther Bernert
- Department of Pediatrics, Kaiser Franz Josef Hospital, Vienna, Austria
| | - Vincent Laugel
- Department of Pediatric Neurology, Strasbourg University Hospital, Strasbourg, France
| | - Maja Steinlin
- Division of Pediatric Neurology, University of Berne Hospital, Berne, Switzerland
| | - Andrea Capone
- Division of Pediatric Neurology, Children's Hospital, Aarau, Switzerland
| | - Monika Gloor
- Division of Radiological Physics, Department of Radiology, University Hospital Basel, Basel, Switzerland
| | - Oliver Bieri
- Division of Radiological Physics, Department of Radiology, University Hospital Basel, Basel, Switzerland
| | - Lars G. Hemkens
- Basel Institute for Clinical Epidemiology and Biostatistics, Department of Clinical Research, University Hospital Basel, Basel, Switzerland
| | - Benjamin Speich
- Basel Institute for Clinical Epidemiology and Biostatistics, Department of Clinical Research, University Hospital Basel, Basel, Switzerland
| | - Thomas Zumbrunn
- Clinical Trial Unit, Department of Clinical Research, University Hospital Basel, Basel, Switzerland
| | - Nuri Gueven
- Pharmacy, School of Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Dirk Fischer
- Division of Pediatric Neurology, University Children's Hospital Basel, Basel, Switzerland
- Division of Neurology, Medical University Clinic, Kantonsspital Baselland, Bruderholz, Switzerland
- Department of Neurology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
30
|
Sanarica F, Mantuano P, Conte E, Cozzoli A, Capogrosso RF, Giustino A, Cutrignelli A, Cappellari O, Rolland JF, De Bellis M, Denora N, Camerino GM, De Luca A. Proof-of-concept validation of the mechanism of action of Src tyrosine kinase inhibitors in dystrophic mdx mouse muscle: in vivo and in vitro studies. Pharmacol Res 2019; 145:104260. [PMID: 31059789 DOI: 10.1016/j.phrs.2019.104260] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 04/08/2019] [Accepted: 05/01/2019] [Indexed: 12/18/2022]
Abstract
Src tyrosine kinase (TK), a redox-sensitive protein overexpressed in dystrophin-deficient muscles, can contribute to damaging signaling by phosphorylation and degradation of β-dystroglycan (β-DG). We performed a proof-of-concept preclinical study to validate this hypothesis and the benefit-safety ratio of a pharmacological inhibition of Src-TK in Duchenne muscular dystrophy (DMD). Src-TK inhibitors PP2 and dasatinib were administered for 5 weeks to treadmill-exercised mdx mice. The outcome was evaluated in vivo and ex vivo on functional, histological and biochemical disease-related parameters. Considering the importance to maintain a proper myogenic program, the potential cytotoxic effects of both compounds, as well as their cytoprotection against oxidative stress-induced damage, was also assessed in C2C12 cells. In line with the hypothesis, both compounds restored the level of β-DG and reduced its phosphorylated form without changing basal expression of genes of interest, corroborating a mechanism at post-translational level. The histological profile of gastrocnemius muscle was slightly improved as well as the level of plasma biomarkers. However, amelioration of in vivo and ex vivo functional parameters was modest, with PP2 being more effective than dasatinib. Both compounds reached appreciable levels in skeletal muscle and liver, supporting proper animal exposure. Dasatinib exerted a greater concentration-dependent cytotoxic effect on C2C12 cells than the more selective PP2, while being less protective against H2O2 cytotoxicity, even though at concentrations higher than those experienced during in vivo treatments. Our results support the interest of Src-TK as drug target in dystrophinopathies, although further studies are necessary to assess the therapeutic potential of inhibitors in DMD.
Collapse
Affiliation(s)
- F Sanarica
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro", 70121 Bari, Italy
| | - P Mantuano
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro", 70121 Bari, Italy
| | - E Conte
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro", 70121 Bari, Italy
| | - A Cozzoli
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro", 70121 Bari, Italy
| | - R F Capogrosso
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro", 70121 Bari, Italy; Department of Chemical, Toxicological and Pharmacological Drug Studies, Catholic University "Our Lady of Good Counsel", Tirana, Albania
| | - A Giustino
- Department of Biomedical Sciences and Human Oncology, School of Medicine, University of Bari "Aldo Moro", 70121, Bari, Italy
| | - A Cutrignelli
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro", 70121 Bari, Italy
| | - O Cappellari
- Division of Cell Matrix Biology and Regenerative Medicine, University of Manchester, Manchester Academic Health Science Centre, UK
| | - J F Rolland
- AXXAM S.p.A., Openzone, 20091, Bresso, Milan, Italy
| | - M De Bellis
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro", 70121 Bari, Italy
| | - N Denora
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro", 70121 Bari, Italy
| | - G M Camerino
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro", 70121 Bari, Italy
| | - A De Luca
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro", 70121 Bari, Italy.
| |
Collapse
|
31
|
Mele A, Mantuano P, De Bellis M, Rana F, Sanarica F, Conte E, Morgese MG, Bove M, Rolland JF, Capogrosso RF, Pierno S, Camerino GM, Trabace L, De Luca A. A long-term treatment with taurine prevents cardiac dysfunction in mdx mice. Transl Res 2019; 204:82-99. [PMID: 30347179 DOI: 10.1016/j.trsl.2018.09.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 09/06/2018] [Accepted: 09/25/2018] [Indexed: 01/16/2023]
Abstract
Taurine is an amino acid abundantly present in heart and skeletal muscle. Duchenne muscular dystrophy (DMD) is a genetic disorder in which the absence of dystrophin leads to skeletal muscle wasting and heart failure. An altered taurine metabolism has been described in dystrophic animals and short-term taurine administration exerts promising amelioration of early muscular alterations in the mdx mouse model of DMD. To reinforce the therapeutic and nutraceutical taurine potential in DMD, we evaluated the effects of a long-term treatment on cardiac and skeletal muscle function of mdx mice in a later disease stage. Taurine was administered in drinking water (1 g/kg/day) to wt and mdx mice for 6 months, starting at 6 months of age. Ultrasonography evaluation of heart and hind limb was performed, in parallel with in vivo and ex vivo functional tests and biochemical, histological and gene expression analyses. 12-month-old mdx mice showed a significant worsening of left ventricular function parameters (shortening fraction, ejection fraction, stroke volume), which were significantly counteracted by the taurine treatment. In parallel, histologic signs of damage were reduced by taurine along with the expression of proinflammatory myocardial IL-6. Interestingly, no effects were observed on hind limb volume and percentage of vascularization or on in vivo and ex vivo muscle functional parameters, suggesting a tissue-specific action of taurine in relation to the disease phase. A trend toward increase in taurine was found in heart and quadriceps from treated animals, paralleled by a slight decrease in mdx mice plasma. Our study provides evidences that taurine can prevent late heart dysfunction in mdx mice, further corroborating the interest on this amino acid toward clinical trials.
Collapse
Affiliation(s)
- Antonietta Mele
- Section of Pharmacology, Department of Pharmacy - Drug Sciences, University of Bari "A. Moro", Bari, Italy
| | - Paola Mantuano
- Section of Pharmacology, Department of Pharmacy - Drug Sciences, University of Bari "A. Moro", Bari, Italy
| | - Michela De Bellis
- Section of Pharmacology, Department of Pharmacy - Drug Sciences, University of Bari "A. Moro", Bari, Italy
| | - Francesco Rana
- Section of Pharmacology, Department of Pharmacy - Drug Sciences, University of Bari "A. Moro", Bari, Italy
| | - Francesca Sanarica
- Section of Pharmacology, Department of Pharmacy - Drug Sciences, University of Bari "A. Moro", Bari, Italy
| | - Elena Conte
- Section of Pharmacology, Department of Pharmacy - Drug Sciences, University of Bari "A. Moro", Bari, Italy
| | - Maria Grazia Morgese
- Department of Experimental and Clinical Medicine, Faculty of Medicine, University of Foggia, Foggia, Italy
| | - Maria Bove
- Department of Experimental and Clinical Medicine, Faculty of Medicine, University of Foggia, Foggia, Italy
| | | | | | - Sabata Pierno
- Section of Pharmacology, Department of Pharmacy - Drug Sciences, University of Bari "A. Moro", Bari, Italy
| | - Giulia Maria Camerino
- Section of Pharmacology, Department of Pharmacy - Drug Sciences, University of Bari "A. Moro", Bari, Italy
| | - Luigia Trabace
- Department of Experimental and Clinical Medicine, Faculty of Medicine, University of Foggia, Foggia, Italy
| | - Annamaria De Luca
- Section of Pharmacology, Department of Pharmacy - Drug Sciences, University of Bari "A. Moro", Bari, Italy.
| |
Collapse
|
32
|
Effects of metformin on congenital muscular dystrophy type 1A disease progression in mice: a gender impact study. Sci Rep 2018; 8:16302. [PMID: 30389963 PMCID: PMC6214987 DOI: 10.1038/s41598-018-34362-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 10/06/2018] [Indexed: 02/08/2023] Open
Abstract
Congenital muscular dystrophy with laminin α2 chain-deficiency (LAMA2-CMD) is a severe muscle disorder with complex underlying pathogenesis. We have previously employed profiling techniques to elucidate molecular patterns and demonstrated significant metabolic impairment in skeletal muscle from LAMA2-CMD patients and mouse models. Thus, we hypothesize that skeletal muscle metabolism may be a promising pharmacological target to improve muscle function in LAMA2-CMD. Here, we have investigated whether the multifunctional medication metformin could be used to reduce disease in the dy2J/dy2J mouse model of LAMA2-CMD. First, we show gender disparity for several pathological hallmarks of LAMA2-CMD. Second, we demonstrate that metformin treatment significantly increases weight gain and energy efficiency, enhances muscle function and improves skeletal muscle histology in female dy2J/dy2J mice (and to a lesser extent in dy2J/dy2J males). Thus, our current data suggest that metformin may be a potential future supportive treatment that improves many of the pathological characteristics of LAMA2-CMD.
Collapse
|
33
|
Heydemann A. Skeletal Muscle Metabolism in Duchenne and Becker Muscular Dystrophy-Implications for Therapies. Nutrients 2018; 10:nu10060796. [PMID: 29925809 PMCID: PMC6024668 DOI: 10.3390/nu10060796] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/14/2018] [Accepted: 06/16/2018] [Indexed: 02/06/2023] Open
Abstract
The interactions between nutrition and metabolism and skeletal muscle have long been known. Muscle is the major metabolic organ—it consumes more calories than other organs—and therefore, there is a clear need to discuss these interactions and provide some direction for future research areas regarding muscle pathologies. In addition, new experiments and manuscripts continually reveal additional highly intricate, reciprocal interactions between metabolism and muscle. These reciprocal interactions include exercise, age, sex, diet, and pathologies including atrophy, hypoxia, obesity, diabetes, and muscle myopathies. Central to this review are the metabolic changes that occur in the skeletal muscle cells of muscular dystrophy patients and mouse models. Many of these metabolic changes are pathogenic (inappropriate body mass changes, mitochondrial dysfunction, reduced adenosine triphosphate (ATP) levels, and increased Ca2+) and others are compensatory (increased phosphorylated AMP activated protein kinase (pAMPK), increased slow fiber numbers, and increased utrophin). Therefore, reversing or enhancing these changes with therapies will aid the patients. The multiple therapeutic targets to reverse or enhance the metabolic pathways will be discussed. Among the therapeutic targets are increasing pAMPK, utrophin, mitochondrial number and slow fiber characteristics, and inhibiting reactive oxygen species. Because new data reveals many additional intricate levels of interactions, new questions are rapidly arising. How does muscular dystrophy alter metabolism, and are the changes compensatory or pathogenic? How does metabolism affect muscular dystrophy? Of course, the most profound question is whether clinicians can therapeutically target nutrition and metabolism for muscular dystrophy patient benefit? Obtaining the answers to these questions will greatly aid patients with muscular dystrophy.
Collapse
Affiliation(s)
- Ahlke Heydemann
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, USA.
- Center for Cardiovascular Research, The University of Illinois at Chicago, Chicago, IL 60612, USA.
| |
Collapse
|