1
|
Weidenauer A, Garani R, Lalang N, Watts J, Lepage M, Rusjan PM, Mizrahi R. The Role of Fatty Acid Amide Hydrolase, a Key Regulatory Endocannabinoid Enzyme, in Domain-Specific Cognitive Performance in Psychosis. Schizophr Bull 2024:sbae212. [PMID: 39729518 DOI: 10.1093/schbul/sbae212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2024]
Abstract
BACKGROUND AND HYPOTHESIS Cognitive impairments are particularly disabling for patients with a psychotic disorder and often persist despite optimization of antipsychotic treatment. Thus, motivating an extension of the research focus on the endocannabinoid system. The aim of this study was to evaluate group differences in brain fatty acid amid hydrolase (FAAH), an endocannabinoid enzyme between first-episode psychosis (FEP), individuals with clinical high risk (CHR) for psychosis and healthy controls (HCs). Furthermore, to test the hypothesis that FAAH is linked with cognition using positron emission tomography (PET). STUDY DESIGN We analyzed 80 PET scans with the highly selective FAAH radioligand [11C]CURB, including 30 patients with FEP (6 female), 15 CHR (5 female), and 35 HC (19 female). The Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) and the Berg Card Sorting Test (BCST) were applied to test cognitive performance. STUDY RESULTS There was no difference in FAAH activity between groups (F2, 75 = 0.75, P = .48; Cohen's f = 0.141; small effect). Overall, there was a difference in the association between groups regarding FAAH activity and the domain visuospatial construction (F2, 72 = 4.67, P = .01; Cohen's f = .36; medium effect). Furthermore, across the sample, lower FAAH activity was associated with a higher percentage of perseverative responses (F1, 66 = 5.06, P = .03; Cohen's f = 0.28, medium effect). CONCLUSIONS We report evidence for associations between endocannabinoid alterations in FEP and CHR with specific domains of cognition (visuospatial construction and perseverative response), not overall cognition.
Collapse
Affiliation(s)
- Ana Weidenauer
- Division of General Psychiatry, Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna 1090, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna 1090, Austria
| | - Ranjini Garani
- Clinical and Translational Sciences Lab, Douglas Research Centre, Montreal, Quebec H4H 1R3, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec H3A 1A1, Canada
| | - Nittha Lalang
- Vertex Pharmaceuticals, Boston, MA 02210, United States
| | - Jeremy Watts
- Research Centre, CHU Sainte-Justine, Montreal, Quebec H3T 1C5, Canada
- Department of Psychiatry, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Martin Lepage
- Douglas Research Centre, Montreal, Quebec H4H 1R3, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec H3A 1A1, Canada
| | - Pablo M Rusjan
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec H3A 1A1, Canada
- Douglas Research Centre, Montreal, Quebec H4H 1R3, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec H3A 1A1, Canada
| | - Romina Mizrahi
- Clinical and Translational Sciences Lab, Douglas Research Centre, Montreal, Quebec H4H 1R3, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec H3A 1A1, Canada
- Douglas Research Centre, Montreal, Quebec H4H 1R3, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec H3A 1A1, Canada
| |
Collapse
|
2
|
Portugalov A, Akirav I. FAAH Inhibition Reverses Depressive-like Behavior and Sex-Specific Neuroinflammatory Alterations Induced by Early Life Stress. Cells 2024; 13:1881. [PMID: 39594629 PMCID: PMC11593135 DOI: 10.3390/cells13221881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/07/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Early life stress (ELS) increases predisposition to major depressive disorder (MDD), with neuroinflammation playing a crucial role. This study investigated the long-term effects of the fatty acid amide hydrolase (FAAH) inhibitor URB597 on ELS-induced depressive-like behavior and messenger RNA (mRNA) of pro-inflammatory cytokines in the medial prefrontal cortex (mPFC) and CA1 regions. We also assessed whether these gene expression alterations were present at the onset of URB597 treatment during late adolescence. ELS induced a depressive-like phenotype in adult male and female rats, which was reversed by URB597. In the mPFC, ELS downregulated nuclear factor kappa B1 (nfκb1) in both sexes, while URB597 normalized this expression exclusively in males. In females, ELS downregulated interleukin (il) 6 and tumor necrosis factor alpha (tnfα) but upregulated il1β and corticotropin-releasing factor (crf); URB597 normalized il6, il1β, and crf. In the CA1, ELS downregulated il1β and tnfα in males and upregulated il1β expression in females, which was reversed by URB597. Some of these effects began in late adolescence, including mPFC-nfκb1 expression in both sexes, mPFC-il6 and mPFC-il1β in females, CA1-il1β and CA1-tnfα in males, and CA1-il1β in females. These findings highlight URB597 as a therapeutic approach for reversing ELS-induced depressive-like behavior by associating with changes in the gene expression of neuroinflammatory cytokines, with notable sex differences.
Collapse
Affiliation(s)
- Anna Portugalov
- School of Psychological Sciences, Department of Psychology, University of Haifa, Haifa 3498838, Israel;
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa 3498838, Israel
| | - Irit Akirav
- School of Psychological Sciences, Department of Psychology, University of Haifa, Haifa 3498838, Israel;
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa 3498838, Israel
| |
Collapse
|
3
|
Carnicelli V, De Dominicis N, Scipioni L, Fava M, Fanti F, Cinque B, Leuti A, Angelucci CB, Lizzi AR, Giacominelli-Stuffler R, Flati V, Sergi M, Compagnone D, Sardanelli AM, Tisi A, Oddi S, Maccarrone M. Protective effects of fatty acid amide hydrolase inhibition in UVB-activated microglia. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159524. [PMID: 38857757 DOI: 10.1016/j.bbalip.2024.159524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/30/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024]
Abstract
Neuroinflammation is a hallmark of several neurodegenerative disorders that has been extensively studied in recent years. Microglia, the primary immune cells of the central nervous system (CNS), are key players in this physiological process, demonstrating a remarkable adaptability in responding to various stimuli in the eye and the brain. Within the complex network of neuroinflammatory signals, the fatty acid N-ethanolamines, in particular N-arachidonylethanolamine (anandamide, AEA), emerged as crucial regulators of microglial activity under both physiological and pathological states. In this study, we interrogated for the first time the impact of the signaling of these bioactive lipids on microglial cell responses to a sub-lethal acute UVB radiation, a physical stressor responsible of microglia reactivity in either the retina or the brain. To this end, we developed an in vitro model using mouse microglial BV-2 cells. Upon 24 h of UVB exposure, BV-2 cells showed elevated oxidative stress markers and, cyclooxygenase (COX-2) expression, enhanced phagocytic and chemotactic activities, along with an altered immune profiling. Notably, UVB exposure led to a selective increase in expression and activity of fatty acid amide hydrolase (FAAH), the main enzyme responsible for degradation of fatty acid ethanolamides. Pharmacological FAAH inhibition via URB597 counteracted the effects of UVB exposure, decreasing tumor necrosis factor α (TNF-α) and nitric oxide (NO) release and reverting reactive oxidative species (ROS), interleukin-1β (IL-1β), and interleukin-10 (IL-10) levels to the control levels. Our findings support the potential of enhanced fatty acid amide signaling in mitigating UVB-induced cellular damage, paving the way to further exploration of these lipids in light-induced immune responses.
Collapse
Affiliation(s)
- Veronica Carnicelli
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Noemi De Dominicis
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy; Department of Physics, University of Trento, 38123 Trento, Italy
| | - Lucia Scipioni
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy; European Center for Brain Research/IRCCS Santa Lucia Foundation, 00143 Rome, Italy
| | - Marina Fava
- Department of Medicine, Campus Bio-Medico University of Rome, 00128 Rome, Italy
| | - Federico Fanti
- Department of Bioscience and Technology for Agriculture, Food and Environment, Campus Universitario di Coste Sant'Agostino, University of Teramo, Italy
| | - Benedetta Cinque
- Department of Life, Health & Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Alessandro Leuti
- European Center for Brain Research/IRCCS Santa Lucia Foundation, 00143 Rome, Italy; Department of Medicine, Campus Bio-Medico University of Rome, 00128 Rome, Italy
| | | | - Anna Rita Lizzi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | | | - Vincenzo Flati
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Manuel Sergi
- Department of Chemistry, Sapienza University of Rome, Rome, Italy
| | - Dario Compagnone
- Department of Bioscience and Technology for Agriculture, Food and Environment, Campus Universitario di Coste Sant'Agostino, University of Teramo, Italy
| | - Anna Maria Sardanelli
- Department of Translational Biomedicine and Neuroscience 'DiBraiN', University of Bari "Aldo Moro", 70121 Bari, Italy
| | - Annamaria Tisi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Sergio Oddi
- European Center for Brain Research/IRCCS Santa Lucia Foundation, 00143 Rome, Italy; Department of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy.
| | - Mauro Maccarrone
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy; European Center for Brain Research/IRCCS Santa Lucia Foundation, 00143 Rome, Italy.
| |
Collapse
|
4
|
Zhao H, Liu Y, Cai N, Liao X, Tang L, Wang Y. Endocannabinoid Hydrolase Inhibitors: Potential Novel Anxiolytic Drugs. Drug Des Devel Ther 2024; 18:2143-2167. [PMID: 38882045 PMCID: PMC11179644 DOI: 10.2147/dddt.s462785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 05/27/2024] [Indexed: 06/18/2024] Open
Abstract
Over the past decade, the idea of targeting the endocannabinoid system to treat anxiety disorders has received increasing attention. Previous studies focused more on developing cannabinoid receptor agonists or supplementing exogenous cannabinoids, which are prone to various adverse effects due to their strong pharmacological activity and poor receptor selectivity, limiting their application in clinical research. Endocannabinoid hydrolase inhibitors are considered to be the most promising development strategies for the treatment of anxiety disorders. More recent efforts have emphasized that inhibition of two major endogenous cannabinoid hydrolases, monoacylglycerol lipase (MAGL) and fatty acid amide hydrolase (FAAH), indirectly activates cannabinoid receptors by increasing endogenous cannabinoid levels in the synaptic gap, circumventing receptor desensitization resulting from direct enhancement of endogenous cannabinoid signaling. In this review, we comprehensively summarize the anxiolytic effects of MAGL and FAAH inhibitors and their potential pharmacological mechanisms, highlight reported novel inhibitors or natural products, and provide an outlook on future directions in this field.
Collapse
Affiliation(s)
- Hongqing Zhao
- Science & Technology Innovation Center, Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
- Hunan Key Laboratory of Traditional Chinese Medicine Prevention & Treatment of Depressive Diseases, Changsha, Hunan, People’s Republic of China
| | - Yang Liu
- Science & Technology Innovation Center, Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
- Hunan Key Laboratory of Traditional Chinese Medicine Prevention & Treatment of Depressive Diseases, Changsha, Hunan, People’s Republic of China
| | - Na Cai
- Outpatient Department, the First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
| | - Xiaolin Liao
- Science & Technology Innovation Center, Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
- Hunan Key Laboratory of Traditional Chinese Medicine Prevention & Treatment of Depressive Diseases, Changsha, Hunan, People’s Republic of China
| | - Lin Tang
- Hunan Key Laboratory of Traditional Chinese Medicine Prevention & Treatment of Depressive Diseases, Changsha, Hunan, People’s Republic of China
- Department of Pharmacy, the First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
| | - Yuhong Wang
- Science & Technology Innovation Center, Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
- Hunan Key Laboratory of Traditional Chinese Medicine Prevention & Treatment of Depressive Diseases, Changsha, Hunan, People’s Republic of China
| |
Collapse
|
5
|
Gonzalo-Consuegra C, Santos-García I, García-Toscano L, Martín-Baquero R, Rodríguez-Cueto C, Wittwer MB, Dzygiel P, Grether U, de Lago E, Fernández-Ruiz J. Involvement of CB 1 and CB 2 receptors in neuroprotective effects of cannabinoids in experimental TDP-43 related frontotemporal dementia using male mice. Biomed Pharmacother 2024; 174:116473. [PMID: 38522237 DOI: 10.1016/j.biopha.2024.116473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/16/2024] [Accepted: 03/18/2024] [Indexed: 03/26/2024] Open
Abstract
BACKGROUND The elevation of endocannabinoid levels through inhibiting their degradation afforded neuroprotection in CaMKIIα-TDP-43 mice, a conditional transgenic model of frontotemporal dementia. However, which cannabinoid receptors are mediating these benefits is still pending to be elucidated. METHODS We have investigated the involvement of the CB1 and the CB2 receptor using chronic treatments with selective ligands in CaMKIIα-TDP-43 mice, analysis of their cognitive deterioration with the Novel Object Recognition test, and immunostaining for neuronal and glial markers in two areas of interest in frontotemporal dementia. RESULTS Our results confirmed the therapeutic value of activating either the CB1 or the CB2 receptor, with improvements in the animal performance in the Novel Object Recognition test, preservation of pyramidal neurons, in particular in the medial prefrontal cortex, and attenuation of glial reactivity, in particular in the hippocampus. In addition, the activation of both CB1 and CB2 receptors reduced the elevated levels of TDP-43 in the medial prefrontal cortex of CaMKIIα-TDP-43 mice, an effect exerted by mechanisms that are currently under investigation. CONCLUSIONS These data reinforce the notion that the activation of CB1 and CB2 receptors may represent a promising therapy against TDP-43-induced neuropathology in frontotemporal dementia. Future studies will have to confirm these benefits, in particular with one of the selective CB2 agonists used here, which has been thoroughly characterized for clinical development.
Collapse
MESH Headings
- Animals
- Receptor, Cannabinoid, CB2/agonists
- Receptor, Cannabinoid, CB2/metabolism
- Male
- Neuroprotective Agents/pharmacology
- Mice, Transgenic
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB1/agonists
- Frontotemporal Dementia/drug therapy
- Frontotemporal Dementia/metabolism
- Frontotemporal Dementia/pathology
- Mice
- Cannabinoids/pharmacology
- Disease Models, Animal
- Prefrontal Cortex/drug effects
- Prefrontal Cortex/metabolism
- Prefrontal Cortex/pathology
- Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism
- DNA-Binding Proteins/metabolism
- Mice, Inbred C57BL
- Hippocampus/drug effects
- Hippocampus/metabolism
- Hippocampus/pathology
Collapse
Affiliation(s)
- Claudia Gonzalo-Consuegra
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Irene Santos-García
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Laura García-Toscano
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Raquel Martín-Baquero
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Carmen Rodríguez-Cueto
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Matthias B Wittwer
- Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Pawel Dzygiel
- Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Uwe Grether
- Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Eva de Lago
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.
| | - Javier Fernández-Ruiz
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.
| |
Collapse
|
6
|
Alegre-Zurano L, García-Baos A, Castro-Zavala A, Medrano M, Gallego-Landin I, Valverde O. The FAAH inhibitor URB597 reduces cocaine intake during conditioned punishment and mitigates cocaine seeking during withdrawal. Biomed Pharmacother 2023; 165:115194. [PMID: 37499453 DOI: 10.1016/j.biopha.2023.115194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/30/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023] Open
Abstract
The endocannabinoid system is prominently implicated in the control of cocaine reinforcement due to its relevant role in synaptic plasticity and neurotransmitter modulation in the mesocorticolimbic system. The inhibition of fatty acid amide hydrolase (FAAH), and the resulting increase in anandamide and other N-acylethanolamines, represents a promising strategy for reducing drug seeking. In the present study, we aimed to assess the effects of the FAAH inhibitor URB597 (1 mg/kg) on crucial features of cocaine addictive-like behaviour in mice. Therefore, we tested the effects of URB597 on acquisition of cocaine (0.6 mg/kg/inf) self-administration, compulsive-like cocaine intake and cue-induced drug-seeking behaviour during withdrawal. URB597 reduced cocaine intake under conditioned punishment while having no impact on acquisition. This result was associated to increased cannabinoid receptor 1 gene expression in the ventral striatum and medium spiny neurons activation in the nucleus accumbens shell. Moreover, URB597 mitigated cue-induced drug-seeking behaviour during prolonged abstinence and prevented the withdrawal-induced increase in FAAH gene expression in the ventral striatum. In this case, URB597 decreased activation of medium spiny neurons in the nucleus accumbens core. Our findings evidence the prominent role of endocannabinoids in the development of cocaine addictive-like behaviours and support the potential of FAAH inhibition as a therapeutical target for the treatment of cocaine addiction.
Collapse
Affiliation(s)
- Laia Alegre-Zurano
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Alba García-Baos
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain; Neuroscience Research Program, IMIM-Hospital Del Mar Research Institute, Barcelona, Spain
| | - Adriana Castro-Zavala
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Mireia Medrano
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Ines Gallego-Landin
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Olga Valverde
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain; Neuroscience Research Program, IMIM-Hospital Del Mar Research Institute, Barcelona, Spain.
| |
Collapse
|
7
|
Garcia-Baos A, Pastor A, Gallego-Landin I, de la Torre R, Sanz F, Valverde O. The role of PPAR-γ in memory deficits induced by prenatal and lactation alcohol exposure in mice. Mol Psychiatry 2023; 28:3373-3383. [PMID: 37491462 DOI: 10.1038/s41380-023-02191-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 07/27/2023]
Abstract
Patients diagnosed with fetal alcohol spectrum disorder (FASD) show persistent cognitive disabilities, including memory deficits. However, the neurobiological substrates underlying these deficits remain unclear. Here, we show that prenatal and lactation alcohol exposure (PLAE) in mice induces FASD-like memory impairments. This is accompanied by a reduction of N-acylethanolamines (NAEs) and peroxisome proliferator-activated receptor gamma (PPAR-γ) in the hippocampus specifically in a childhood-like period (at post-natal day (PD) 25). To determine their role in memory deficits, two pharmacological approaches were performed during this specific period of early life. Thus, memory performance was tested after the repeated administration (from PD25 to PD34) of: i) URB597, to increase NAEs, with GW9662, a PPAR-γ antagonist; ii) pioglitazone, a PPAR-γ agonist. We observed that URB597 suppresses PLAE-induced memory deficits through a PPAR-γ dependent mechanism, since its effects are prevented by GW9662. Direct PPAR-γ activation, using pioglitazone, also ameliorates memory impairments. Lastly, to further investigate the region and cellular specificity, we demonstrate that an early overexpression of PPAR-γ, by means of a viral vector, in hippocampal astrocytes mitigates memory deficits induced by PLAE. Together, our data reveal that disruptions of PPAR-γ signaling during neurodevelopment contribute to PLAE-induced memory dysfunction. In turn, PPAR-γ activation during a childhood-like period is a promising therapeutic approach for memory deficits in the context of early alcohol exposure. Thus, these findings contribute to the gaining insight into the mechanisms that might underlie memory impairments in FASD patients.
Collapse
Affiliation(s)
- Alba Garcia-Baos
- Neurobiology of Behavior Research Group (GReNeC-NeuroBio), Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Neuroscience Research Program, IMIM-Hospital del Mar Research Institute, Barcelona, Spain
| | - Antoni Pastor
- Neuroscience Research Program, IMIM-Hospital del Mar Research Institute, Barcelona, Spain
| | - Ines Gallego-Landin
- Neurobiology of Behavior Research Group (GReNeC-NeuroBio), Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Rafael de la Torre
- Neurobiology of Behavior Research Group (GReNeC-NeuroBio), Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Neuroscience Research Program, IMIM-Hospital del Mar Research Institute, Barcelona, Spain
| | - Ferran Sanz
- Research Program on Biomedical Informatics (GRIB), IMIM-Hospital del Mar Research Institute, Universitat Pompeu Fabra, Barcelona, Spain
| | - Olga Valverde
- Neurobiology of Behavior Research Group (GReNeC-NeuroBio), Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain.
- Neuroscience Research Program, IMIM-Hospital del Mar Research Institute, Barcelona, Spain.
| |
Collapse
|
8
|
Kruk-Slomka M, Adamski B, Slomka T, Biala G. Inhibitors of Endocannabinoids' Enzymatic Degradation as a Potential Target of the Memory Disturbances in an Acute N-Methyl-D-Aspartate (NMDA) Receptor Hypofunction Model of Schizophrenia in Mice. Int J Mol Sci 2023; 24:11400. [PMID: 37511157 PMCID: PMC10380236 DOI: 10.3390/ijms241411400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/08/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Treating schizophrenia with the available pharmacotherapy is difficult. One possible strategy is focused on the modulation of the function of the endocannabinoid system (ECS). The ECS is comprised of cannabinoid (CB) receptors, endocannabinoids and enzymes responsible for the metabolism of endocannabinoids (fatty acid hydrolase (FAAH) and monoacylglycerol lipase (MAGL)). Here, the aim of the experiments was to evaluate the impact of inhibitors of endocannabinoids' enzymatic degradation in the brain: KML-29 (MAGL inhibitor), JZL-195 (MAGL/FAAH inhibitor) and PF-3845 (FAAH inhibitor), on the memory disturbances typical for schizophrenia in an acute N-methyl-D-aspartate (NMDA) receptor hypofunction animal model of schizophrenia (i.e., injection of MK-801, an NMDA receptor antagonist). The memory-like responses were assessed in the passive avoidance (PA) test. A single administration of KML-29 or PF-3845 had a positive effect on the memory processes, but an acute administration of JZL-195 impaired cognition in mice in the PA test. Additionally, the combined administration of a PA-ineffective dose of KML-29 (5 mg/kg) or PF-3845 (3 mg/kg) attenuated the MK-801-induced cognitive impairment (0.6 mg/kg). Our results suggest that the indirect regulation of endocannabinoids' concentration in the brain through the use of selected inhibitors may positively affect memory disorders, and thus increase the effectiveness of modern pharmacotherapy of schizophrenia.
Collapse
Affiliation(s)
- Marta Kruk-Slomka
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, 4a Chodzki Street, 20-093 Lublin, Poland
| | - Bartlomiej Adamski
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, 4a Chodzki Street, 20-093 Lublin, Poland
| | - Tomasz Slomka
- Department of Medical Informatics and Statistics with E-Health Lab, Medical University of Lublin, Jaczewskiego 4 Street, 20-954 Lublin, Poland
| | - Grazyna Biala
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, 4a Chodzki Street, 20-093 Lublin, Poland
| |
Collapse
|
9
|
González-Portilla M, Montagud-Romero S, Rodríguez de Fonseca F, Rodríguez-Arias M. Oleoylethanolamide restores stress-induced prepulse inhibition deficits and modulates inflammatory signaling in a sex-dependent manner. Psychopharmacology (Berl) 2023:10.1007/s00213-023-06403-w. [PMID: 37314479 DOI: 10.1007/s00213-023-06403-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 06/05/2023] [Indexed: 06/15/2023]
Abstract
RATIONALE Social stress contributes to the development of depressive and anxiety symptomatology and promotes pro-inflammatory signaling in the central nervous system. In this study, we explored the effects of a lipid messenger with anti-inflammatory properties - oleoylethanolamide (OEA) - on the behavioral deficits caused by social stress in both male and female mice. METHODS Adult mice were assigned to an experimental group according to the stress condition (control or stress) and treatment (vehicle or OEA, 10 mg/kg, i.p.). Male mice in the stress condition underwent a protocol consisting of four social defeat (SD) encounters. In the case of female mice, we employed a procedure of vicarious SD. After the stress protocol resumed, anxiety, depressive-like behavior, social interaction, and prepulse inhibition (PPI) were assessed. In addition, we characterized the stress-induced inflammatory profile by measuring IL-6 and CX3CL1 levels in the striatum and hippocampus. RESULTS Our results showed that both SD and VSD induced behavioral alterations. We found that OEA treatment restored PPI deficits in socially defeated mice. Also, OEA affected differently stress-induced anxiety and depressive-like behavior in male and female mice. Biochemical analyses showed that both male and female stressed mice showed increased levels of IL-6 in the striatum compared to control mice. Similarly, VSD female mice exhibited increased striatal CX3CL1 levels. These neuroinflammation-associated signals were not affected by OEA treatment. CONCLUSIONS In summary, our results confirm that SD and VSD induced behavioral deficits together with inflammatory signaling in the striatum and hippocampus. We observed that OEA treatment reverses stress-induced PPI alterations in male and female mice. These data suggest that OEA can exert a buffering effect on stress-related sensorimotor gating behavioral processing.
Collapse
Affiliation(s)
- Macarena González-Portilla
- Department of Psychobiology, Faculty of Psychology, Universitat de València, Avda. Blasco Ibáñez 21, 46010, Valencia, Spain
| | - Sandra Montagud-Romero
- Department of Psychobiology, Faculty of Psychology, Universitat de València, Avda. Blasco Ibáñez 21, 46010, Valencia, Spain
| | - Fernando Rodríguez de Fonseca
- Unidad Clínica de Neurología, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Regional Universitario de Málaga, 29010, Málaga, Spain
- Atención Primaria, Cronicidad Y Promoción de La Salud. Red de Investigación en Atención Primaria de Adicciones (RIAPAD) Rd21/0009/0005, Málaga, Spain
| | - Marta Rodríguez-Arias
- Department of Psychobiology, Faculty of Psychology, Universitat de València, Avda. Blasco Ibáñez 21, 46010, Valencia, Spain.
- Atención Primaria, Cronicidad Y Promoción de La Salud. Red de Investigación en Atención Primaria de Adicciones (RIAPAD) Rd21/0009/0005, Málaga, Spain.
| |
Collapse
|
10
|
Santos-García I, Rodríguez-Cueto C, Villegas P, Piscitelli F, Lauritano A, Shen CKJ, Di Marzo V, Fernández-Ruiz J, de Lago E. Preclinical investigation in FAAH inhibition as a neuroprotective therapy for frontotemporal dementia using TDP-43 transgenic male mice. J Neuroinflammation 2023; 20:108. [PMID: 37149645 PMCID: PMC10163746 DOI: 10.1186/s12974-023-02792-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 04/24/2023] [Indexed: 05/08/2023] Open
Abstract
BACKGROUND Frontotemporal dementia (FTD) is a heterogeneous group of early onset and progressive neurodegenerative disorders, characterized by degeneration in the frontal and temporal lobes, which causes deterioration in cognition, personality, social behavior and language. Around 45% of the cases are characterized by the presence of aggregates of the RNA-binding protein TDP-43. METHODS In this study, we have used a murine model of FTD that overexpresses this protein exclusively in the forebrain (under the control of the CaMKIIα promoter) for several biochemical, histological and pharmacological studies focused on the endocannabinoid system. RESULTS These mice exhibited at postnatal day 90 (PND90) important cognitive deficits, signs of emotional impairment and disinhibited social behaviour, which were, in most of cases, maintained during the first year of life of these animals. Motor activity was apparently normal, but FTD mice exhibited higher mortality. Their MRI imaging analysis and their ex-vivo histopathological evaluation proved changes compatible with atrophy (loss of specific groups of pyramidal neurons: Ctip2- and NeuN-positive cells) and inflammatory events (astroglial and microglial reactivities) in both cortical (medial prefrontal cortex) and subcortical (hippocampus) structures at PND90 and also at PND365. The analysis of the endocannabinoid system in these mice proved a decrease in the hydrolysing enzyme FAAH in the prefrontal cortex and the hippocampus, with an increase in the synthesizing enzyme NAPE-PLD only in the hippocampus, responses that were accompanied by modest elevations in anandamide and related N-acylethanolamines. The potentiation of these elevated levels of anandamide after the pharmacological inactivation of FAAH with URB597 resulted in a general improvement in behaviour, in particular in cognitive deterioration, associated with the preservation of pyramidal neurons of the medial prefrontal cortex and the CA1 layer of the hippocampus, and with the reduction of gliosis in both structures. CONCLUSIONS Our data confirmed the potential of elevating the endocannabinoid tone as a therapy against TDP-43-induced neuropathology in FTD, limiting glial reactivity, preserving neuronal integrity and improving cognitive, emotional and social deficits.
Collapse
Affiliation(s)
- Irene Santos-García
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense, 28040, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Carmen Rodríguez-Cueto
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense, 28040, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Patricia Villegas
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense, 28040, Madrid, Spain
| | - Fabiana Piscitelli
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale Delle Ricerche Pozzuoli, Naples, Italy
| | - Anna Lauritano
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale Delle Ricerche Pozzuoli, Naples, Italy
| | - Che-Kun J Shen
- The PhD Program for Neural Regenerative Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale Delle Ricerche Pozzuoli, Naples, Italy
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, CRIUCPQ and INAF, Centre NUTRISS, Faculties of Medicine and Agriculture and Food Sciences, Université Laval, Quebéc City, QC, G1V 0A6, Canada
| | - Javier Fernández-Ruiz
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense, 28040, Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.
| | - Eva de Lago
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense, 28040, Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.
| |
Collapse
|
11
|
Role of Cannabinoid CB2 Receptor in Alcohol Use Disorders: From Animal to Human Studies. Int J Mol Sci 2022; 23:ijms23115908. [PMID: 35682586 PMCID: PMC9180470 DOI: 10.3390/ijms23115908] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/22/2022] [Accepted: 05/23/2022] [Indexed: 12/04/2022] Open
Abstract
Cumulative evidence has pointed out cannabinoid CB2 receptors (CB2r) as a potential therapeutic key target for treating alcohol use disorder (AUD). This review provides the most relevant results obtained from rodent and human studies, including an integrative section focused on the involvement of CB2r in the neurobiology of alcohol addiction. A literature search was conducted using the electronic databases Medline and Scopus for articles. The search strategy was as follows: “Receptor, Cannabinoid, CB2” AND “Alcohol-Related Disorders” AND “human/or patients”; “Receptor, Cannabinoid, CB2” AND “Alcohol” OR “Ethanol” AND “rodents/or mice/or rats”. Pharmacological approaches demonstrated that the activation or blockade of CB2r modulated different alcohol-addictive behaviors. Rodent models of alcoholism revealed significant alterations of CB2r in brain areas of the reward system. In addition, mice lacking CB2r (CB2KO) show increased alcohol consumption, motivation, and relapse alterations. It has been stressed that the potential neurobiological mechanisms underlying their behavioral effects involve critical elements of the alcohol reward system. Interestingly, recent postmortem studies showed CNR2 alterations in brain areas of alcoholic patients. Moreover, although the number of studies is limited, the results revealed an association between some genetic alterations of the CNR2 and an increased risk for developing AUD. This review provides evidence that CB2r may play a role in alcohol addiction. Clinical studies are necessary to figure out whether CB2r ligands may prove useful for the treatment of AUD in humans.
Collapse
|
12
|
Scipioni L, Ciaramellano F, Carnicelli V, Leuti A, Lizzi AR, De Dominicis N, Oddi S, Maccarrone M. Microglial Endocannabinoid Signalling in AD. Cells 2022; 11:1237. [PMID: 35406803 PMCID: PMC8997504 DOI: 10.3390/cells11071237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 03/30/2022] [Accepted: 04/04/2022] [Indexed: 02/01/2023] Open
Abstract
Chronic inflammation in Alzheimer's disease (AD) has been recently identified as a major contributor to disease pathogenesis. Once activated, microglial cells, which are brain-resident immune cells, exert several key actions, including phagocytosis, chemotaxis, and the release of pro- or anti-inflammatory mediators, which could have opposite effects on brain homeostasis, depending on the stage of disease and the particular phenotype of microglial cells. The endocannabinoids (eCBs) are pleiotropic bioactive lipids increasingly recognized for their essential roles in regulating microglial activity both under normal and AD-driven pathological conditions. Here, we review the current literature regarding the involvement of this signalling system in modulating microglial phenotypes and activity in the context of homeostasis and AD-related neurodegeneration.
Collapse
Affiliation(s)
- Lucia Scipioni
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio Snc, 67100 L’Aquila, Italy; (L.S.); (V.C.); (A.R.L.); (N.D.D.)
- European Center for Brain Research/IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 64, 00143 Rome, Italy; (F.C.); (A.L.)
| | - Francesca Ciaramellano
- European Center for Brain Research/IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 64, 00143 Rome, Italy; (F.C.); (A.L.)
- Faculty of Veterinary Medicine, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy
| | - Veronica Carnicelli
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio Snc, 67100 L’Aquila, Italy; (L.S.); (V.C.); (A.R.L.); (N.D.D.)
| | - Alessandro Leuti
- European Center for Brain Research/IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 64, 00143 Rome, Italy; (F.C.); (A.L.)
- Department of Medicine, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy
| | - Anna Rita Lizzi
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio Snc, 67100 L’Aquila, Italy; (L.S.); (V.C.); (A.R.L.); (N.D.D.)
| | - Noemi De Dominicis
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio Snc, 67100 L’Aquila, Italy; (L.S.); (V.C.); (A.R.L.); (N.D.D.)
- Department of Medicine, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy
| | - Sergio Oddi
- European Center for Brain Research/IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 64, 00143 Rome, Italy; (F.C.); (A.L.)
- Faculty of Veterinary Medicine, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy
| | - Mauro Maccarrone
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio Snc, 67100 L’Aquila, Italy; (L.S.); (V.C.); (A.R.L.); (N.D.D.)
- European Center for Brain Research/IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 64, 00143 Rome, Italy; (F.C.); (A.L.)
| |
Collapse
|
13
|
Vecchiarelli HA, Aukema RJ, Hume C, Chiang V, Morena M, Keenan CM, Nastase AS, Lee FS, Pittman QJ, Sharkey KA, Hill MN. Genetic Variants of Fatty Acid Amide Hydrolase Modulate Acute Inflammatory Responses to Colitis in Adult Male Mice. Front Cell Neurosci 2021; 15:764706. [PMID: 34916909 PMCID: PMC8670533 DOI: 10.3389/fncel.2021.764706] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/25/2021] [Indexed: 11/13/2022] Open
Abstract
Cannabinoids, including cannabis derived phytocannabinoids and endogenous cannabinoids (endocannabinoids), are typically considered anti-inflammatory. One such endocannabinoid is N-arachidonoylethanolamine (anandamide, AEA), which is metabolized by fatty acid amide hydrolase (FAAH). In humans, there is a loss of function single nucleotide polymorphism (SNP) in the FAAH gene (C385A, rs324420), that leads to increases in the levels of AEA. Using a mouse model with this SNP, we investigated how this SNP affects inflammation in a model of inflammatory bowel disease. We administered 2,4,6-trinitrobenzene sulfonic acid (TNBS) intracolonically, to adult male FAAH SNP mice and examined colonic macroscopic tissue damage and myeloperoxidase activity, as well as levels of plasma and amygdalar cytokines and chemokines 3 days after administration, at the peak of colitis. We found that mice possessing the loss of function alleles (AC and AA), displayed no differences in colonic damage or myeloperoxidase activity compared to mice with wild type alleles (CC). In contrast, in plasma, colitis-induced increases in interleukin (IL)-2, leukemia inhibitory factor (LIF), monocyte chemoattractant protein (MCP)-1, and tumor necrosis factor (TNF) were reduced in animals with an A allele. A similar pattern was observed in the amygdala for granulocyte colony stimulating factor (G-CSF) and MCP-1. In the amygdala, the mutant A allele led to lower levels of IL-1α, IL-9, macrophage inflammatory protein (MIP)-1β, and MIP-2 independent of colitis-providing additional understanding of how FAAH may serve as a regulator of inflammatory responses in the brain. Together, these data provide insights into how FAAH regulates inflammatory processes in disease.
Collapse
Affiliation(s)
- Haley A Vecchiarelli
- Neuroscience Graduate Program, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Mathison Centre for Mental Health Research and Education, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Robert J Aukema
- Neuroscience Graduate Program, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Mathison Centre for Mental Health Research and Education, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Catherine Hume
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Mathison Centre for Mental Health Research and Education, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Vincent Chiang
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Mathison Centre for Mental Health Research and Education, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Maria Morena
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Mathison Centre for Mental Health Research and Education, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Catherine M Keenan
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Andrei S Nastase
- Neuroscience Graduate Program, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Mathison Centre for Mental Health Research and Education, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Francis S Lee
- Department of Psychiatry, Weill Cornell Medical College, New York, NY, United States
| | - Quentin J Pittman
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Mathison Centre for Mental Health Research and Education, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Keith A Sharkey
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Matthew N Hill
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Mathison Centre for Mental Health Research and Education, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
14
|
Hashiesh HM, Jha NK, Sharma C, Gupta PK, Jha SK, Patil CR, Goyal SN, Ojha SK. Pharmacological potential of JWH133, a cannabinoid type 2 receptor agonist in neurodegenerative, neurodevelopmental and neuropsychiatric diseases. Eur J Pharmacol 2021; 909:174398. [PMID: 34332924 DOI: 10.1016/j.ejphar.2021.174398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/15/2021] [Accepted: 07/28/2021] [Indexed: 12/09/2022]
Abstract
The pharmacological activation of cannabinoid type 2 receptors (CB2R) gained attention due to its ability to mitigate neuroinflammatory events without eliciting psychotropic actions, a limiting factor for the drugs targeting cannabinoid type 1 receptors (CB1R). Therefore, ligands activating CB2R are receiving enormous importance for therapeutic targeting in numerous neurological diseases including neurodegenerative, neuropsychiatric and neurodevelopmental disorders as well as traumatic injuries and neuropathic pain where neuroinflammation is a common accompaniment. Since the characterization of CB2R, many CB2R selective synthetic ligands have been developed with high selectivity and functional activity. Among numerous ligands, JWH133 has been found one of the compounds with high selectivity for CB2R. JWH133 has been reported to exhibit numerous pharmacological activities including antioxidant, anti-inflammatory, anticancer, cardioprotective, hepatoprotective, gastroprotective, nephroprotective, and immunomodulatory. Recent studies have shown that JWH133 possesses potent neuroprotective properties in several neurological disorders, including neuropathic pain, anxiety, epilepsy, depression, alcoholism, psychosis, stroke, and neurodegeneration. Additionally, JWH133 showed to protect neurons from oxidative damage and inflammation, promote neuronal survival and neurogenesis, and serve as an immunomodulatory agent. The present review comprehensively examined neuropharmacological activities of JWH133 in neurological disorders including neurodegenerative, neurodevelopmental and neuropsychiatric using synoptic tables and elucidated pharmacological mechanisms based on reported observations. Considering the cumulative data, JWH133 appears to be a promising CB2R agonist molecule for further evaluation and it can be a prototype agent in drug discovery and development for a unique class of agents in neurotherapeutics. Further, regulatory toxicology and pharmacokinetic studies are required to determine safety and proceed for clinical evaluation.
Collapse
Affiliation(s)
- Hebaallah Mamdouh Hashiesh
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, PO Box - 17666, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, 201310, India
| | - Charu Sharma
- Department of Internal Medicine, College of Medicine and Health Sciences, PO Box - 17666, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Piyush Kumar Gupta
- Department of Life Science, School of Basic Sciences and Research, Sharda University, Greater Noida, 201310, Uttar Pradesh, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, 201310, India
| | - Chandragouda R Patil
- Department of Pharmacology, Delhi Pharmaceutical Sciences & Research University, Pushp Vihar, New Delhi, 110017, India
| | - Sameer N Goyal
- Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, 424001, Maharashtra, India
| | - Shreesh K Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, PO Box - 17666, United Arab Emirates University, Al Ain, United Arab Emirates.
| |
Collapse
|
15
|
Fatty Acid Amide Hydrolase (FAAH) Inhibition Modulates Amyloid-Beta-Induced Microglia Polarization. Int J Mol Sci 2021; 22:ijms22147711. [PMID: 34299330 PMCID: PMC8306898 DOI: 10.3390/ijms22147711] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 12/19/2022] Open
Abstract
The ability of endocannabinoid (eCB) to change functional microglial phenotype can be explored as a possible target for therapeutic intervention. Since the inhibition of fatty acid amide hydrolase (FAAH), the main catabolic enzyme of anandamide (AEA), may provide beneficial effects in mice model of Alzheimer’s disease (AD)-like pathology, we aimed at determining whether the FAAH inhibitor URB597 might target microglia polarization and alter the cytoskeleton reorganization induced by the amyloid-β peptide (Aβ). The morphological evaluation showed that Aβ treatment increased the surface area of BV-2 cells, which acquired a flat and polygonal morphology. URB597 treatment partially rescued the control phenotype of BV-2 cells when co-incubated with Aβ. Moreover, URB597 reduced both the increase of Rho protein activation in Aβ-treated BV-2 cells and the Aβ-induced migration of BV-2 cells, while an increase of Cdc42 protein activation was observed in all samples. URB597 also increased the number of BV-2 cells involved in phagocytosis. URB597 treatment induced the polarization of microglial cells towards an anti-inflammatory phenotype, as demonstrated by the decreased expression of iNOS and pro-inflammatory cytokines along with the parallel increase of Arg-1 and anti-inflammatory cytokines. Taken together, these data suggest that FAAH inhibition promotes cytoskeleton reorganization, regulates phagocytosis and cell migration processes, thus driving microglial polarization towards an anti-inflammatory phenotype.
Collapse
|
16
|
Sudden cessation of fluoxetine before alcohol drinking reinstatement alters microglial morphology and TLR4/inflammatory neuroadaptation in the rat brain. Brain Struct Funct 2021; 226:2243-2264. [PMID: 34236532 PMCID: PMC8354990 DOI: 10.1007/s00429-021-02321-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 06/14/2021] [Indexed: 02/05/2023]
Abstract
Preclinical studies on the effects of abrupt cessation of selective serotonin reuptake inhibitors (SSRIs), a medication often prescribed in alcohol use disorder (AUD) patients with depression, results in alcohol consumption escalation after resuming drinking. However, a potential neuroinflammatory component on this escalation remains unexplored despite the immunomodulatory role of serotonin. Here, we utilized a rat model of 14-daily administration of the SSRI fluoxetine (10 mg/kg/day) along alcohol self-administration deprivation to study the effects of fluoxetine cessation on neuroinflammation after resuming alcohol drinking. Microglial morphology and inflammatory gene expression were analyzed in prelimbic cortex, striatum, basolateral amygdala and dorsal hippocampus. Results indicated that alcohol drinking reinstatement increased microglial IBA1 immunoreactivity and altered morphometric features of activated microglia (fractal dimension, lacunarity, density, roughness, and cell area, perimeter and circularity). Despite alcohol reinstatement, fluoxetine cessation modified microglial morphology in a brain region-specific manner, resulting in hyper-ramified (spatial complexity of branching), reactive (lower heterogeneity and circularity)-like microglia. We also found that microglial cell area correlated with changes in mRNA expression of chemokines (Cx3cl1/fractalkine, Cxcl12/SDF1α, Ccl2/MCP1), cytokines (IL1β, IL6, IL10) and the innate immune toll-like receptor 4 (TLR4) in dorsal hippocampus. Specifically, TLR4 correlated with microglial spatial complexity assessed by fractal dimension in striatum, suggesting a role in process branching. These findings suggest that alcohol drinking reinstatement after fluoxetine treatment cessation disturbs microglial morphology and reactive phenotype associated with a TLR4/inflammatory response to alcohol in a brain region-specific manner, facts that might contribute to alcohol-induced damage through the promotion of escalation of alcohol drinking behavior.
Collapse
|
17
|
Kasatkina LA, Rittchen S, Sturm EM. Neuroprotective and Immunomodulatory Action of the Endocannabinoid System under Neuroinflammation. Int J Mol Sci 2021; 22:ijms22115431. [PMID: 34063947 PMCID: PMC8196612 DOI: 10.3390/ijms22115431] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 12/17/2022] Open
Abstract
Endocannabinoids (eCBs) are lipid-based retrograde messengers with a relatively short half-life that are produced endogenously and, upon binding to the primary cannabinoid receptors CB1/2, mediate multiple mechanisms of intercellular communication within the body. Endocannabinoid signaling is implicated in brain development, memory formation, learning, mood, anxiety, depression, feeding behavior, analgesia, and drug addiction. It is now recognized that the endocannabinoid system mediates not only neuronal communications but also governs the crosstalk between neurons, glia, and immune cells, and thus represents an important player within the neuroimmune interface. Generation of primary endocannabinoids is accompanied by the production of their congeners, the N-acylethanolamines (NAEs), which together with N-acylneurotransmitters, lipoamino acids and primary fatty acid amides comprise expanded endocannabinoid/endovanilloid signaling systems. Most of these compounds do not bind CB1/2, but signal via several other pathways involving the transient receptor potential cation channel subfamily V member 1 (TRPV1), peroxisome proliferator-activated receptor (PPAR)-α and non-cannabinoid G-protein coupled receptors (GPRs) to mediate anti-inflammatory, immunomodulatory and neuroprotective activities. In vivo generation of the cannabinoid compounds is triggered by physiological and pathological stimuli and, specifically in the brain, mediates fine regulation of synaptic strength, neuroprotection, and resolution of neuroinflammation. Here, we review the role of the endocannabinoid system in intrinsic neuroprotective mechanisms and its therapeutic potential for the treatment of neuroinflammation and associated synaptopathy.
Collapse
Affiliation(s)
- Ludmila A. Kasatkina
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, 8010 Graz, Austria; (L.A.K.); (S.R.)
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Sonja Rittchen
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, 8010 Graz, Austria; (L.A.K.); (S.R.)
| | - Eva M. Sturm
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, 8010 Graz, Austria; (L.A.K.); (S.R.)
- Correspondence:
| |
Collapse
|
18
|
Hermes DJ, Yadav-Samudrala BJ, Xu C, Paniccia JE, Meeker RB, Armstrong ML, Reisdorph N, Cravatt BF, Mackie K, Lichtman AH, Ignatowska-Jankowska BM, Lysle DT, Fitting S. GPR18 drives FAAH inhibition-induced neuroprotection against HIV-1 Tat-induced neurodegeneration. Exp Neurol 2021; 341:113699. [PMID: 33736974 PMCID: PMC8984429 DOI: 10.1016/j.expneurol.2021.113699] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 02/05/2021] [Accepted: 03/11/2021] [Indexed: 02/03/2023]
Abstract
Human immunodeficiency virus type 1 (HIV-1) is known to provoke microglial immune responses which likely play a paramount role in the development of chronic neuroinflammatory conditions and neuronal damage related to HIV-1 associated neurocognitive disorders (HAND). In particular, HIV-1 Tat protein is a proinflammatory neurotoxin which predisposes neurons to synaptodendritic injury. Drugs targeting the degradative enzymes of endogenous cannabinoids have shown promise in reducing inflammation with minimal side effects in rodent models. Considering that markers of neuroinflammation can predict the extent of neuronal injury in HAND patients, we evaluated the neurotoxic effect of HIV-1 Tat-exposed microglia following blockade of fatty acid amid hydrolyze (FAAH), a catabolic enzyme responsible for degradation of endocannabinoids, e.g. anandamide (AEA). In the present study, cultured murine microglia were incubated with Tat and/or a FAAH inhibitor (PF3845). After 24 h, cells were imaged for morphological analysis and microglial conditioned media (MCM) was collected. Frontal cortex neuron cultures (DIV 7–11) were then exposed to MCM, and neurotoxicity was assessed via live cell calcium imaging and staining of actin positive dendritic structures. Results demonstrate a strong attenuation of microglial responses to Tat by PF3845 pretreatment, which is indicated by 1) microglial changes in morphology to a less proinflammatory phenotype using fractal analysis, 2) a decrease in release of neurotoxic cytokines/chemokines (MCP-1/CCL2) and matrix metalloproteinases (MMPs; MMP-9) using ELISA/multiplex assays, and 3) enhanced production of endocannabinoids (AEA) using LC/MS/MS. Additionally, PF3845’s effects on Tat-induced microglial-mediated neurotoxicity, decreased dysregulation of neuronal intracellular calcium and prevented the loss of actin-positive staining and punctate structure in frontal cortex neuron cultures. Interestingly, these observed neuroprotective effects appeared to be independent of cannabinoid receptor activity (CB1R & CB2R). We found that a purported GPR18 antagonist, CID-85469571, blocked the neuroprotective effects of PF3845 in all experiments. Collectively, these experiments increase understanding of the role of FAAH inhibition and Tat in mediating microglial neurotoxicity in the HAND condition.
Collapse
Affiliation(s)
- Douglas J Hermes
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America.
| | - Barkha J Yadav-Samudrala
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Changqing Xu
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Jacqueline E Paniccia
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Rick B Meeker
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Michael L Armstrong
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Denver, CO, United States of America
| | - Nichole Reisdorph
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Denver, CO, United States of America
| | - Benjamin F Cravatt
- Department of Chemistry, Scripps Research Institute, La Jolla, CA, United States of America
| | - Ken Mackie
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States of America
| | - Aron H Lichtman
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States of America
| | | | - Donald T Lysle
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Sylvia Fitting
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America.
| |
Collapse
|
19
|
Bielawski T, Albrechet-Souza L, Frydecka D. Endocannabinoid system in trauma and psychosis: distant guardian of mental stability. Rev Neurosci 2021; 32:707-722. [PMID: 33656307 DOI: 10.1515/revneuro-2020-0102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 01/08/2021] [Indexed: 11/15/2022]
Abstract
Central endocannabinoid system (eCBS) is a neuromodulatory system that inhibits potentially harmful, excessive synaptic activation. Endocannabinoid receptors are abundant among brain structures pivotal in different mental disorders development (for example, hippocampus, amygdala, medial-prefrontal cortex, hypothalamus). Here, we review eCBS function in etiology of psychosis, emphasizing its role in dealing with environmental pressures such as traumatic life events. Moreover, we explore eCBS as a guard against hypothalamic-pituitary-adrenal axis over-activation, and discuss its possible role in etiology of different psychopathologies. Additionally, we review eCBS function in creating adaptive behavioral patterns, as we explore its involvement in the memory formation process, extinction learning and emotional response. We discuss eCBS in the context of possible biomarkers of trauma, and in preclinical psychiatric conditions, such as at-risk mental states and clinical high risk states for psychosis. Finally, we describe the role of eCBS in the cannabinoid self-medication-theory and extinction learning.
Collapse
Affiliation(s)
- Tomasz Bielawski
- Department of Psychiatry, Wroclaw Medical University, 10 Pasteur Street, 50-367Wroclaw, Poland.,Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA70112, USA
| | - Lucas Albrechet-Souza
- Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA70112, USA.,Alcohol & Drug Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA70112, USA
| | - Dorota Frydecka
- Department of Psychiatry, Wroclaw Medical University, 10 Pasteur Street, 50-367Wroclaw, Poland
| |
Collapse
|
20
|
Giacobbe J, Marrocu A, Di Benedetto MG, Pariante CM, Borsini A. A systematic, integrative review of the effects of the endocannabinoid system on inflammation and neurogenesis in animal models of affective disorders. Brain Behav Immun 2021; 93:353-367. [PMID: 33383145 DOI: 10.1016/j.bbi.2020.12.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 12/09/2022] Open
Abstract
The endocannabinoid (eCB) system is considered relevant in the pathophysiology of affective disorders, and a potential therapeutic target, as its hypoactivity is considered an important risk factor of depression. However, the biological mechanisms whereby the eCB system affects mood remain elusive. Through a systematic review, thirty-seven articles were obtained from the PubMed/Medline, Web of Science, Embase, PsychInfo, and CINAHL databases, investigating the role of the eCB system on the immune system and neurogenesis, as well as resulting behavioural effects in rodent models of affective disorders. Overall, activation of the eCB system appears to decrease depressive-like behaviour and to be anti-inflammatory, while promoting neuro- and synaptogenesis in various models. Activation of cannabinoid receptors (CBRs) is shown to be crucial in improving depressive-like and anxiety-like behaviour, although cannabidiol administration suggests a role of additional mechanisms. CB1R signalling, as well as fatty acid amide hydrolase (FAAH) inhibition, are associated with decreased pro-inflammatory cytokines. Moreover, activation of CBRs is required for neurogenesis, which is also upregulated by FAAH inhibitors. This review is the first to assess the association between the eCB system, immune system and neurogenesis, alongside behavioural outcomes, across rodent models of affective disorders. We confirm the therapeutic potential of eCB system activation in depression and anxiety, highlighting immunoregulation as an important mechanism whereby dysfunctional behaviour and neurogenesis can be improved.
Collapse
Affiliation(s)
- Juliette Giacobbe
- Stress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, United Kingdom
| | - Alessia Marrocu
- Stress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, United Kingdom
| | - Maria Grazia Di Benedetto
- Stress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, United Kingdom; Biological Psychiatry Unit, IRCCS Fatebenefratelli S. Giovanni di Dio, Brescia, Italy
| | - Carmine M Pariante
- Stress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, United Kingdom
| | - Alessandra Borsini
- Stress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, United Kingdom.
| |
Collapse
|
21
|
García-Baos A, Alegre-Zurano L, Cantacorps L, Martín-Sánchez A, Valverde O. Role of cannabinoids in alcohol-induced neuroinflammation. Prog Neuropsychopharmacol Biol Psychiatry 2021; 104:110054. [PMID: 32758518 DOI: 10.1016/j.pnpbp.2020.110054] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/13/2020] [Accepted: 07/29/2020] [Indexed: 02/06/2023]
Abstract
Alcohol is a psychoactive substance highly used worldwide, whose harmful use might cause a broad range of mental and behavioural disorders. Underlying brain impact, the neuroinflammatory response induced by alcohol is recognised as a key contributing factor in the progression of other neuropathological processes, such as neurodegeneration. These sequels are determined by multiple factors, including age of exposure. Strikingly, it seems that the endocannabinoid system modulation could regulate the alcohol-induced neuroinflammation. Although direct CB1 activation can worsen alcohol consequences, targeting other components of the expanded endocannabinoid system may counterbalance the pro-inflammatory response. Indeed, specific modulations of the expanded endocannabinoid system have been proved to exert anti-inflammatory effects, primarily through the CB2 and PPARγ signalling. Among them, some endo- and exogeneous cannabinoids can block certain pro-inflammatory mediators, such as NF-κB, thereby neutralizing the neuroinflammatory intracellular cascades. Furthermore, a number of cannabinoids are able to activate complementary anti-inflammatory pathways, which are necessary for the transition from chronically overactivated microglia to a regenerative microglial phenotype. Thus, cannabinoid modulation provides cooperative anti-inflammatory mechanisms that may be advantageous to resolve a pathological neuroinflammation in an alcohol-dependent context.
Collapse
Affiliation(s)
- Alba García-Baos
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Laia Alegre-Zurano
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Lídia Cantacorps
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Ana Martín-Sánchez
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain; Neuroscience Research Programme, IMIM-Hospital del Mar Research Institute, Barcelona, Spain
| | - Olga Valverde
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain; Neuroscience Research Programme, IMIM-Hospital del Mar Research Institute, Barcelona, Spain.
| |
Collapse
|
22
|
Potential application of endocannabinoid system agents in neuropsychiatric and neurodegenerative diseases-focusing on FAAH/MAGL inhibitors. Acta Pharmacol Sin 2020; 41:1263-1271. [PMID: 32203086 PMCID: PMC7608191 DOI: 10.1038/s41401-020-0385-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/15/2020] [Accepted: 02/19/2020] [Indexed: 01/01/2023] Open
Abstract
The endocannabinoid system (ECS) has received extensive attention for its neuroprotective effect on the brain. This system comprises endocannabinoids, endocannabinoid receptors, and the corresponding ligands and proteins. The molecular players involved in their regulation and metabolism are potential therapeutic targets for neuropsychiatric diseases including anxiety, depression and neurodegenerative diseases such as Alzheimer’s disease (AD) and Parkinson’s disease (PD). The inhibitors of two endocannabinoid hydrolases, i.e., fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL), have the capacity to increase the level of endocannabinoids indirectly, causing fewer side effects than those associated with direct supplementation of cannabinoids. Their antidepressant and anxiolytic mechanisms are considered to modulate the hypothalamic-pituitary-adrenal axis and regulate synaptic and neural plasticity. In terms of AD/PD, treatment with FAAH/MAGL inhibitors leads to reduction in amyloid β-protein deposition and inhibition of the death of dopamine neurons, which are commonly accepted to underlie the pathogenesis of AD and PD, respectively. Inflammation as the cause of depression/anxiety and PD/AD is also the target of FAAH/MAGL inhibitors. In this review, we summarize the application and involvement of FAAH/MAGL inhibitors in related neurological diseases. Focus on the latest research progress using FAAH/MAGL inhibitors is expected to facilitate the development of novel approaches with therapeutic potential.
Collapse
|
23
|
Jankovic M, Spasojevic N, Ferizovic H, Stefanovic B, Dronjak S. Inhibition of the fatty acid amide hydrolase changes behaviors and brain catecholamines in a sex-specific manner in rats exposed to chronic unpredictable stress. Physiol Behav 2020; 227:113174. [PMID: 32966816 DOI: 10.1016/j.physbeh.2020.113174] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/15/2020] [Accepted: 09/18/2020] [Indexed: 01/26/2023]
Abstract
Sex differences in the susceptibility to chronic unpredictable stress (CUS) and the effects of fatty acid amide hydrolase (FAAH) inhibitor URB597 in rats have been investigated in this study. In this context, we investigated the effects of prolonged treatment with URB597 on behavior, pro-inflammatory interleukin-6 (IL-6) and anti-inflammatory interleukin-10 (IL-10), catecholamine content and the expression of its biosynthetic and degrading enzymes in the hippocampus, hypothalamus and medial prefrontal cortex (mPFC) of rats subjected to CUS. The results show that CUS increases anxiety-like and depression-like behaviors but it was more pronounced in females. The data suggests sex differences in brain cytokines, catecholamines and their enzymes of synthesis and degradation expression in response to CUS. Our findings indicate that the FAAH inhibitor URB597 differently regulated catecholamine levels and its enzymes of synthesis and degradation in the examined brain areas of male and female rats. URB treatment failed to reduce anxiety or restore reduced norepinephrine and did not affect enzymes of catecholamine degradation in the mPFC, hippocampus and hypothalamus of CUS female rats. These studies are important because they investigate the neurochemical consequences of stress related mood disorders that might lead to the development of sex specific treatments.
Collapse
Affiliation(s)
- Milica Jankovic
- Department of Molecular Biology and Endocrinology, VINČA" Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Natasa Spasojevic
- Department of Molecular Biology and Endocrinology, VINČA" Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Harisa Ferizovic
- Department of Molecular Biology and Endocrinology, VINČA" Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Bojana Stefanovic
- Department of Molecular Biology and Endocrinology, VINČA" Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Sladjana Dronjak
- Department of Molecular Biology and Endocrinology, VINČA" Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia.
| |
Collapse
|
24
|
Stasiulewicz A, Znajdek K, Grudzień M, Pawiński T, Sulkowska JI. A Guide to Targeting the Endocannabinoid System in Drug Design. Int J Mol Sci 2020; 21:ijms21082778. [PMID: 32316328 PMCID: PMC7216112 DOI: 10.3390/ijms21082778] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/07/2020] [Accepted: 04/14/2020] [Indexed: 12/11/2022] Open
Abstract
The endocannabinoid system (ECS) is one of the most crucial systems in the human organism, exhibiting multi-purpose regulatory character. It is engaged in a vast array of physiological processes, including nociception, mood regulation, cognitive functions, neurogenesis and neuroprotection, appetite, lipid metabolism, as well as cell growth and proliferation. Thus, ECS proteins, including cannabinoid receptors and their endogenous ligands’ synthesizing and degrading enzymes, are promising therapeutic targets. Their modulation has been employed in or extensively studied as a treatment of multiple diseases. However, due to a complex nature of ECS and its crosstalk with other biological systems, the development of novel drugs turned out to be a challenging task. In this review, we summarize potential therapeutic applications for ECS-targeting drugs, especially focusing on promising synthetic compounds and preclinical studies. We put emphasis on modulation of specific proteins of ECS in different pathophysiological areas. In addition, we stress possible difficulties and risks and highlight proposed solutions. By presenting this review, we point out information pivotal in the spotlight of ECS-targeting drug design, as well as provide an overview of the current state of knowledge on ECS-related pharmacodynamics and show possible directions for needed research.
Collapse
Affiliation(s)
- Adam Stasiulewicz
- Department of Drug Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (M.G.); (T.P.)
- Interdisciplinary Laboratory of Biological Systems Modelling, Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland;
- Correspondence: (A.S.); (J.I.S.)
| | - Katarzyna Znajdek
- Interdisciplinary Laboratory of Biological Systems Modelling, Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland;
- Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Monika Grudzień
- Department of Drug Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (M.G.); (T.P.)
| | - Tomasz Pawiński
- Department of Drug Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (M.G.); (T.P.)
| | - Joanna I. Sulkowska
- Interdisciplinary Laboratory of Biological Systems Modelling, Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland;
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, CA 91125, USA
- Correspondence: (A.S.); (J.I.S.)
| |
Collapse
|
25
|
Lindsey LP, Daphney CM, Oppong-Damoah A, Uchakin PN, Abney SE, Uchakina ON, Khusial RD, Akil A, Murnane KS. The cannabinoid receptor 2 agonist, β-caryophyllene, improves working memory and reduces circulating levels of specific proinflammatory cytokines in aged male mice. Behav Brain Res 2019; 372:112012. [PMID: 31173795 DOI: 10.1016/j.bbr.2019.112012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/31/2019] [Accepted: 06/04/2019] [Indexed: 12/30/2022]
Abstract
Age-related cognitive decline has been associated with proinflammatory cytokines, yet the precise relationship between cognitive decline and cytokine load remains to be elucidated. β-caryophyllene (BCP) is a cannabinoid receptor 2 (CB2) agonist with established anti-inflammatory effects that is known to improve memory and increase lifespan. It is of interest to explore the potential of BCP to reduce age-related cognitive decline and proinflammatory cytokine load. In this study, we assessed changes in circulating cytokines across the lifespan, memory performance in young and aged mice, and the effects of BCP on memory function and cytokine load. The plasma levels of 12 cytokines were assessed in male Swiss-Webster mice at 3, 12, and 18 months of age using multiplexed flow cytometry. Working memory was compared in 3 and 12 month-old mice using spontaneous alternations. A dose-response function (100-300 mg/kg, subchronic administration) for BCP-induced memory restoration was determined in 3- and 12- month-old mice. Finally, the effects on cytokine levels of the peak memory enhancing dose of BCP were assessed in 18- month-old mice. Circulating levels of several cytokines significantly increased with age. Multilinear regression analysis showed that IL-23 levels were most strongly associated with age. Aged mice showed deficits in working memory and higher levels of IL-23, both of which were reversed by BCP treatment. BCP appears to reverse age-associated impairments in memory and modulates cytokine production. IL-23 may play a significant role in the aging process, and future research should determine whether it has utility as a biomarker for novel anti-aging therapeutics.
Collapse
Affiliation(s)
- Lindsey Phillips Lindsey
- Department of Pharmaceutical Sciences, Mercer University College of Pharmacy, Mercer University Health Sciences Center, Atlanta, GA, USA
| | - Cedrick Maceo Daphney
- Department of Pharmaceutical Sciences, Mercer University College of Pharmacy, Mercer University Health Sciences Center, Atlanta, GA, USA
| | - Aboagyewaah Oppong-Damoah
- Department of Pharmaceutical Sciences, Mercer University College of Pharmacy, Mercer University Health Sciences Center, Atlanta, GA, USA
| | - Peter Nikolaevich Uchakin
- Department of Biomedical Sciences, Mercer University School of Medicine, Mercer University Health Sciences Center, Macon, GA, USA
| | - Sarah E Abney
- Department of Biomedical Sciences, Mercer University School of Medicine, Mercer University Health Sciences Center, Macon, GA, USA
| | - Olga N Uchakina
- Department of Biomedical Sciences, Mercer University School of Medicine, Mercer University Health Sciences Center, Macon, GA, USA
| | - Richard Darien Khusial
- Department of Pharmaceutical Sciences, Mercer University College of Pharmacy, Mercer University Health Sciences Center, Atlanta, GA, USA
| | - Ayman Akil
- Department of Pharmaceutical Sciences, Mercer University College of Pharmacy, Mercer University Health Sciences Center, Atlanta, GA, USA
| | - Kevin Sean Murnane
- Department of Pharmaceutical Sciences, Mercer University College of Pharmacy, Mercer University Health Sciences Center, Atlanta, GA, USA.
| |
Collapse
|
26
|
Loprinzi PD, Zou L, Li H. The Endocannabinoid System as a Potential Mechanism through which Exercise Influences Episodic Memory Function. Brain Sci 2019; 9:E112. [PMID: 31100856 PMCID: PMC6562547 DOI: 10.3390/brainsci9050112] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 12/17/2022] Open
Abstract
Emerging research demonstrates that exercise, including both acute and chronic exercise, may influence episodic memory function. To date, mechanistic explanations of this effect are often attributed to alterations in long-term potentiation, neurotrophic production, angiogenesis, and neurogenesis. Herein, we discuss a complementary mechanistic model, suggesting that the endocannabinoid system may, in part, influence the effects of exercise on memory function. We discuss the role of the endocannabinoid system on memory function as well as the effects of exercise on endocannabinoid alterations. This is an exciting line of inquiry that should help delineate new insights into the mechanistic role of exercise on memory function.
Collapse
Affiliation(s)
- Paul D Loprinzi
- Exercise & Memory Laboratory, Department of Health, Exercise Science and Recreation Management, The University of Mississippi, Oxford, MS 38677, USA.
| | - Liye Zou
- Lifestyle (Mind-Body Movement) Research Center, College of Psychology and Sociology, Shenzhen University, Shenzhen 518060, China.
| | - Hong Li
- Shenzhen Key Laboratory of Affective and Social Cognitive Science, College of Psychology and Sociology, Shenzhen University, Shenzhen 518060, China.
- Research Centre of Brain Function and Psychological Science, Shenzhen University, Shenzhen 518060, China.
- Shenzhen Institute of Neuroscience, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
27
|
Silva-Peña D, Rivera P, Alén F, Vargas A, Rubio L, García-Marchena N, Pavón FJ, Serrano A, Rodríguez de Fonseca F, Suárez J. Oleoylethanolamide Modulates BDNF-ERK Signaling and Neurogenesis in the Hippocampi of Rats Exposed to Δ 9-THC and Ethanol Binge Drinking During Adolescence. Front Mol Neurosci 2019; 12:96. [PMID: 31068789 PMCID: PMC6491684 DOI: 10.3389/fnmol.2019.00096] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 04/01/2019] [Indexed: 01/08/2023] Open
Abstract
Oleoylethanolamide is an endogenous NAE that modulates ethanol-seeking behavior and ethanol-induced neuroinflammation. In the present study we further analyze the role of OEA in hippocampal neurogenesis, BDNF-ERK signaling, and spatial memory that are affected by alcohol. Additionally, we addressed the effects of OEA on the association of alcohol and cannabis, a frequent combination in human alcohol addicts, and whose long-term effects are far from being understood. To this end, OEA (10 mg/kg/day, i.p.) was pharmacologically administered for 5 days/week in a preclinical model of adolescent rats with binge-like consumption (1 day/week) of ethanol (3 g/kg, i.g.) combined or not with acute administrations of Δ9-THC (5 mg/kg, i.p.) for 5 weeks. OEA restored ethanol/THC-related decreases in both short-term spatial memory (spontaneous alternation by Y-maze) and circulating levels of BDNF, reduced cell proliferation (Mki67 and IdU+ cells) and maturation (Dcx, Calb1), and improved cell survival (Casp3 and BrdU+ cells) in the dorsal hippocampus. Interestingly, OEA alone or combined with THC also decreased the mRNA levels of neurotrophic factors (Bdnf, Ntf3) and the NT3 receptor TrkC, but increased the BDNF receptor TrkB in the hippocampus of ethanol-exposed rats. These effects were likely associated with a OEA-specific phosphorylation of AKT and ERK1, key signaling regulators of cell proliferation and survival. These results suggest a regulatory role of OEA in short-term spatial memory and hippocampal neurogenesis through BDNF/AKT/ERK1 signaling in response to acute THC in an alcoholic context during adolescence.
Collapse
Affiliation(s)
- Daniel Silva-Peña
- Instituto de Investigación Biomédica de Málaga, U.G.C. de Salud Mental, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Patricia Rivera
- Department of Endocrinology, Fundación Investigación Biomédica del Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Francisco Alén
- Departamento de Psicobiología, Universidad Complutense Madrid, Pozuelo de Alarcón, Spain
| | - Antonio Vargas
- Instituto de Investigación Biomédica de Málaga, U.G.C. de Salud Mental, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Leticia Rubio
- Departamento de Anatomía y Medicina Legal, Universidad de Málaga, Málaga, Spain
| | - Nuria García-Marchena
- Instituto de Investigación Biomédica de Málaga, U.G.C. de Salud Mental, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Francisco Javier Pavón
- Instituto de Investigación Biomédica de Málaga, U.G.C. de Salud Mental, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Antonia Serrano
- Instituto de Investigación Biomédica de Málaga, U.G.C. de Salud Mental, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Fernando Rodríguez de Fonseca
- Instituto de Investigación Biomédica de Málaga, U.G.C. de Salud Mental, Hospital Regional Universitario de Málaga, Málaga, Spain.,Departamento de Psicobiología, Universidad Complutense Madrid, Pozuelo de Alarcón, Spain
| | - Juan Suárez
- Instituto de Investigación Biomédica de Málaga, U.G.C. de Salud Mental, Hospital Regional Universitario de Málaga, Málaga, Spain
| |
Collapse
|
28
|
Rivera P, Silva-Peña D, Blanco E, Vargas A, Arrabal S, Serrano A, Pavón FJ, Bindila L, Lutz B, Rodríguez de Fonseca F, Suárez J. Oleoylethanolamide restores alcohol-induced inhibition of neuronal proliferation and microglial activity in striatum. Neuropharmacology 2019; 146:184-197. [DOI: 10.1016/j.neuropharm.2018.11.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 11/08/2018] [Accepted: 11/25/2018] [Indexed: 01/19/2023]
|
29
|
Fernández-Ruiz J. Preface: Why a Special Issue on cannabinoid research in Spain? Biochem Pharmacol 2018; 157:1-7. [PMID: 30352232 DOI: 10.1016/j.bcp.2018.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 10/17/2018] [Indexed: 10/28/2022]
Affiliation(s)
- Javier Fernández-Ruiz
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.
| |
Collapse
|