1
|
Ramshini E, Shabani M. Cannabinoid receptor type 1 agonist disrupts methamphetamine-induced conditioned place preference in adolescent male rats. Neurosci Lett 2024; 844:138033. [PMID: 39489281 DOI: 10.1016/j.neulet.2024.138033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/28/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024]
Abstract
Addiction can be viewed as a state of compulsive engagement in drug use. It is believed that drug-associated memories maintain compulsive drug-seeking behavior. Therefore, disrupting drug-associated memories may reduce drug-seeking behavior. In the present study, a conditioned place preference (CPP) apparatus was conducted to evaluate the effect of cannabinoid receptor type 1 (CB1R) agonist and antagonist on the acquisition of CPP induced by methamphetamine (METH). Anxiety behaviors and memory retrieval were assessed using elevated plus maze (EPM) and step-through passive avoidance tasks. In this study using a 5-day schedule of CPP, exposure to METH increased the time spent in the drug-paired compartment, and CB1Rs agonist (WIN 55,212-2, WIN) disrupted the METH-induced CPP. In the EPM experiment, METH significantly decreased the ratio of times spent in the open arms to total times spent in any arms (OAT) and the ratio of entries into open arms to total entries (OAE), indicating that METH increases anxiety-like behaviors. However, the CB1Rs antagonist (SR141716A, SR) reversed METH-induced anxiety behaviors. The results obtained in the passive avoidance experiment showed that blockade of brain CB1Rs by SR improves METH-induced amnesia. In summary, CB1Rs appear to modulate METH-associated memories, and antagonists of CB1Rs may serve as a therapeutic target for METH-induced anxiety behaviors.
Collapse
Affiliation(s)
- Effat Ramshini
- Department of Physiology, Kerman University of Medical Sciences, Kerman Neuroscience Research Center, Kerman, Iran
| | - Mohammad Shabani
- Kerman Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
2
|
Buechler HM, Sumi M, Madhuranthakam IM, Donegan C, DiGiorgio F, Acosta AA, Uribe S, Rahman MA, Sorbello A, Fischer BD, Keck TM. The CB1 negative allosteric modulator PSNCBAM-1 reduces ethanol self-administration via a nonspecific hypophagic effect. Pharmacol Biochem Behav 2024; 240:173776. [PMID: 38679080 PMCID: PMC11373428 DOI: 10.1016/j.pbb.2024.173776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 03/22/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
Alcohol use disorder (AUD) affects >15 million people in the United States. Current pharmacotherapeutic treatments for AUD are only modestly effective, necessitating the identification of new targets for medications development. The cannabinoid receptor type 1 (CB1) has been a target of interest for the development of medications for substance use disorders and other compulsive disorders. However, CB1 antagonists/inverse agonists (e.g., rimonabant) have severe side effects that limit their clinical utility, including anxiety, depression, and suicide. Recent development of CB1 negative allosteric modulators (NAMs), including PSNCBAM-1, may provide an alternative mechanism of attenuating CB1 signaling with reduced side effects. PSNCBAM-1 has not yet been evaluated for effects in models of AUD. In this study, we investigated the effects of the CB1 NAM, PSNCBAM-1, in rodent models of AUD using adult male mice. PSNCBAM-1 dose-dependently attenuated oral ethanol self-administration (8 % w/v ethanol in water), significantly reducing ethanol rewards at a dose of 30 mg/kg, but not at 10 or 18 mg/kg. PSNCBAM-1 also dose-dependently attenuated palatable food self-administration (diluted vanilla Ensure), significantly reducing food rewards at 18 and 30 mg/kg PSNCBAM-1. PSNCBAM-1 did not affect conditioned place preference for 2 g/kg ethanol. These results suggest PSNCBAM-1 reduces ethanol-taking behavior via a nonspecific hypophagic effect and does not reduce the rewarding effects of ethanol.
Collapse
Affiliation(s)
| | - Mousumi Sumi
- Rowan University, Glassboro, NJ 08028, United States
| | | | | | | | | | - Sarah Uribe
- Rowan University, Glassboro, NJ 08028, United States
| | | | | | - Bradford D Fischer
- Cooper Medical School of Rowan University, Camden, NJ 08103, United States
| | - Thomas M Keck
- Rowan University, Glassboro, NJ 08028, United States.
| |
Collapse
|
3
|
Socha J, Grochecki P, Marszalek-Grabska M, Skrok A, Smaga I, Slowik T, Prazmo W, Kotlinski R, Filip M, Kotlinska JH. Cannabidiol Protects against the Reinstatement of Oxycodone-Induced Conditioned Place Preference in Adolescent Male but Not Female Rats: The Role of MOR and CB1R. Int J Mol Sci 2024; 25:6651. [PMID: 38928357 PMCID: PMC11204276 DOI: 10.3390/ijms25126651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/04/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Cannabidiol (CBD), a phytocannabinoid, appeared to satisfy several criteria for a safe approach to preventing drug-taking behavior, including opioids. However, most successful preclinical and clinical results come from studies in adult males. We examined whether systemic injections of CBD (10 mg/kg, i.p.) during extinction of oxycodone (OXY, 3 mg/kg, i.p.) induced conditioned place preference (CPP) could attenuate the reinstatement of CPP brought about by OXY (1.5 mg/kg, i.p.) priming in adolescent rats of both sexes, and whether this effect is sex dependent. Accordingly, a priming dose of OXY produced reinstatement of the previously extinguished CPP in males and females. In both sexes, this effect was linked to locomotor sensitization that was blunted by CBD pretreatments. However, CBD was able to prevent the reinstatement of OXY-induced CPP only in adolescent males and this outcome was associated with an increased cannabinoid 1 receptor (CB1R) and a decreased mu opioid receptor (MOR) expression in the prefrontal cortex (PFC). The reinstatement of CCP in females was associated with a decreased MOR expression, but no changes were detected in CB1R in the hippocampus (HIP). Moreover, CBD administration during extinction significantly potentialized the reduced MOR expression in the PFC of males and showed a tendency to potentiate the reduced MOR in the HIP of females. Additionally, CBD reversed OXY-induced deficits of recognition memory only in males. These results suggest that CBD could reduce reinstatement to OXY seeking after a period of abstinence in adolescent male but not female rats. However, more investigation is required.
Collapse
Affiliation(s)
- Justyna Socha
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodzki 4a, 20-093 Lublin, Poland; (J.S.); (P.G.); (A.S.)
| | - Pawel Grochecki
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodzki 4a, 20-093 Lublin, Poland; (J.S.); (P.G.); (A.S.)
| | - Marta Marszalek-Grabska
- Department of Experimental and Clinical Pharmacology, Medical University, Jaczewskiego 8b, 20-090 Lublin, Poland;
| | - Aleksandra Skrok
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodzki 4a, 20-093 Lublin, Poland; (J.S.); (P.G.); (A.S.)
| | - Irena Smaga
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland; (I.S.); (M.F.)
| | - Tymoteusz Slowik
- Experimental Medicine Center, Medical University, Jaczewskiego 8, 20-090 Lublin, Poland;
| | - Wojciech Prazmo
- Breast Surgery Department, Provincial Specialist Hospital, Al. Krasnicka 100, 20-718 Lublin, Poland;
| | - Robert Kotlinski
- Clinical Department of Cardiac Surgery, University of Rzeszow, Lwowska 60, 35-301 Rzeszow, Poland;
| | - Malgorzata Filip
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland; (I.S.); (M.F.)
| | - Jolanta H. Kotlinska
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodzki 4a, 20-093 Lublin, Poland; (J.S.); (P.G.); (A.S.)
| |
Collapse
|
4
|
Le K, Le KDR, Nguyen J, Hua J, Munday S. The Role of Medicinal Cannabis as an Emerging Therapy for Opioid Use Disorder. Pain Ther 2024; 13:435-455. [PMID: 38676910 PMCID: PMC11111657 DOI: 10.1007/s40122-024-00599-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/28/2024] [Indexed: 04/29/2024] Open
Abstract
This narrative review explores current insights into the potential use of medicinal cannabis-related products as an emerging therapy for opioid use disorder in the landscape of increasing knowledge about medicinal cannabis-based products, commercialisation and global legalisation. Preclinical studies have provided preliminary insight into the putative neurobiological mechanisms that underpin the potential for medicinal cannabis to be considered a therapeutic in opioid use disorder and addiction. With the progressive legalisation of cannabis in many jurisdictions worldwide, contemporary research has highlighted further evidence that medicinal cannabis may have efficacy in reducing cravings and withdrawal effects, and therefore may be considered as an adjunct or standalone to current medications for opioid use disorder. Despite this potential, the landscape of research in this space draws from a large number of observational studies, with a paucity of rigorous randomised controlled trials to ascertain a true understanding of effect size and safety profile. With current challenges in implementation that arise from political and legal qualms about adopting medicinal cannabis on the background of associated social stigma, significant hurdles remain to be addressed by government, policy-makers, healthcare providers and researchers before medical cannabis can be introduced globally for the treatment of opioid use disorder.
Collapse
Affiliation(s)
- Kelvin Le
- Melbourne Medical School, The University of Melbourne, Melbourne, VIC, Australia
| | - Khang Duy Ricky Le
- Department of General Surgical Specialties, The Royal Melbourne Hospital, 300 Grattan St., Parkville, Melbourne, VIC, 3050, Australia.
- Department of Surgical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.
- Geelong Clinical School, Deakin University, Geelong, VIC, Australia.
- Department of Medical Education, Melbourne Medical School, The University of Melbourne, Melbourne, VIC, Australia.
| | - Johnny Nguyen
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, Parkville, VIC, Australia
- Department of Pharmacy, Alfred Health, Melbourne, VIC, Australia
| | - Jean Hua
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, Parkville, VIC, Australia
- Department of Pharmacy, The Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Sarah Munday
- The Royal Children's Hospital, Melbourne, VIC, Australia
- Monash Bioethics Centre, Faculty of Arts, Monash University, Clayton, VIC, Australia
| |
Collapse
|
5
|
Kataria S, Patel U, Yabut K, Patel J, Patel R, Patel S, Wijaya JH, Maniyar P, Karki Y, Makrani MP, Viswanath O, Kaye AD. Recent Advances in Management of Neuropathic, Nociceptive, and Chronic Pain: A Narrative Review with Focus on Nanomedicine, Gene Therapy, Stem Cell Therapy, and Newer Therapeutic Options. Curr Pain Headache Rep 2024; 28:321-333. [PMID: 38386244 PMCID: PMC11126447 DOI: 10.1007/s11916-024-01227-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2024] [Indexed: 02/23/2024]
Abstract
PURPOSE OF REVIEW This manuscript summarizes novel clinical and interventional approaches in the management of chronic, nociceptive, and neuropathic pain. RECENT FINDINGS Pain can be defined as a feeling of physical or emotional distress caused by an external stimulus. Pain can be grouped into distinct types according to characteristics including neuropathic pain, which is a pain caused by disease or lesion in the sensory nervous system; nociceptive pain, which is pain that can be sharp, aching, or throbbing and is caused by injury to bodily tissues; and chronic pain, which is long lasting or persisting beyond 6 months. With improved understanding of different signaling systems for pain in recent years, there has been an upscale of methods of analgesia to counteract these pathological processes. Novel treatment methods such as use of cannabinoids, stem cells, gene therapy, nanoparticles, monoclonal antibodies, and platelet-rich plasma have played a significant role in improved strategies for therapeutic interventions. Although many management options appear to be promising, extensive additional clinical research is warranted to determine best practice strategies in the future for clinicians.
Collapse
Affiliation(s)
- Saurabh Kataria
- Department of Neurology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, 71103, USA.
- LSU Health Science Center at Shreveport, 1501 Kings Highway, Shreveport, LA, 71104, USA.
| | | | - Kevin Yabut
- Louisiana State University Health Science Center, Shreveport, LA, 71103, USA
| | - Jayshil Patel
- Benchmark Physical Therapy, Upstream Rehabilitation, Knoxville, TN, 37920, USA
| | - Rajkumar Patel
- GMERS Medical College, Gotri, Vadodara, Gujarat, 390021, India
| | - Savan Patel
- Pramukhswami Medical College, Karamsad, Gujarat, 388325, India
| | | | - Pankti Maniyar
- GMERS Medical College, Gotri, Vadodara, Gujarat, 390021, India
| | - Yukti Karki
- Kathmandu Medical College and Teaching Hospital, Kathmandu, 44600, Nepal
| | - Moinulhaq P Makrani
- Department of Pharmacology, Parul Institute of Medical Science and Research, Waghodia, Gujarat, 291760, India
| | - Omar Viswanath
- Department of Anesthesiology and Interventional Pain, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, 71103, USA
| | - Alan D Kaye
- Department of Anesthesiology and Interventional Pain, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, 71103, USA
- Louisiana Addiction Research Center, Shreveport, LA, 71103, USA
| |
Collapse
|
6
|
Dammann I, Rohleder C, Leweke FM. Cannabidiol and its Potential Evidence-Based Psychiatric Benefits - A Critical Review. PHARMACOPSYCHIATRY 2024; 57:115-132. [PMID: 38267003 DOI: 10.1055/a-2228-6118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
The endocannabinoid system shows promise as a novel target for treating psychiatric conditions. Cannabidiol (CBD), a naturally occurring cannabinoid, has been investigated in several psychiatric conditions, with diverse effects and an excellent safety profile compared to standard treatments. Even though the body of evidence from randomised clinical trials is growing, it remains relatively limited in most indications. This review comprises a comprehensive literature search to identify clinical studies on the effects of CBD in psychiatric conditions. The literature search included case studies, case reports, observational studies, and RCTs published in English before July 27, 2023, excluding studies involving nabiximols or cannabis extracts containing CBD and ∆9-tetrahydrocannabinol. Completed studies were considered, and all authors independently assessed relevant publications.Of the 150 articles identified, 54 publications were included, covering the effects of CBD on healthy subjects and various psychiatric conditions, such as schizophrenia, substance use disorders (SUDs), anxiety, post-traumatic stress disorder (PTSD), and autism spectrum disorders. No clinical studies have been published for other potential indications, such as alcohol use disorder, borderline personality disorder, depression, dementia, and attention-deficit/hyperactivity disorder. This critical review highlights that CBD can potentially ameliorate certain psychiatric conditions, including schizophrenia, SUDs, and PTSD. However, more controlled studies and clinical trials, particularly investigating the mid- to long-term use of CBD, are required to conclusively establish its efficacy and safety in treating these conditions. The complex effects of CBD on neural activity patterns, likely by impacting the endocannabinoid system, warrant further research to reveal its therapeutic potential in psychiatry.
Collapse
Affiliation(s)
- Inga Dammann
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Endosane Pharmaceuticals GmbH, Berlin, Germany
| | - Cathrin Rohleder
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Endosane Pharmaceuticals GmbH, Berlin, Germany
- Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - F Markus Leweke
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| |
Collapse
|
7
|
Gobira PH, Joca SR, Moreira FA. Roles of cannabinoid CB1 and CB2 receptors in the modulation of psychostimulant responses. Acta Neuropsychiatr 2024; 36:67-77. [PMID: 35993329 DOI: 10.1017/neu.2022.23] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Addiction to psychostimulant drugs, such as cocaine, D-amphetamine, and methamphetamine, is a public health issue that substantially contributes to the global burden of disease. Psychostimulant drugs promote an increase in dopamine levels within the mesocorticolimbic system, which is central to the rewarding properties of such drugs. Cannabinoid receptors (CB1R and CB2R) are expressed in the main areas of this system and implicated in the neuronal mechanisms underlying the rewarding effect of psychostimulant drugs. Here, we reviewed studies focusing on pharmacological intervention targeting cannabinoid CB1R and CB2R and their interaction in the modulation of psychostimulant responses.
Collapse
Affiliation(s)
- P H Gobira
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - S R Joca
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - F A Moreira
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
8
|
Martín-Llorente A, Serrano M, Bonilla-Del Río I, Lekunberri L, Ocerin G, Puente N, Ramos A, Rico-Barrio I, Gerrikagoitia I, Grandes P. Omega-3 Recovers Cannabinoid 1 Receptor Expression in the Adult Mouse Brain after Adolescent Binge Drinking. Int J Mol Sci 2023; 24:17316. [PMID: 38139145 PMCID: PMC10744058 DOI: 10.3390/ijms242417316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Adolescent binge drinking is a social problem with a long-lasting impact on cognitive functions. The cannabinoid type-1 (CB1) receptor of the endocannabinoid system (ECS) is involved in brain synaptic plasticity, cognition and behavior via receptor localization at specific subcellular compartments of the cortical, limbic and motor regions. Alcohol (EtOH) intake affects the ECS, CB1 and their functions. Evidence indicates that binge drinking during adolescence impairs memory via the abrogation of CB1-dependent synaptic plasticity in the hippocampus. However, the impact of EtOH consumption on global CB1 receptor expression in the adult brain is unknown. We studied this using optical density analysis throughout brain regions processed for light microscopy (LM) immunohistotochemistry. CB1 staining decreased significantly in the secondary motor cortex, cerebellum, cingulate cortex, amygdala and nucleus accumbens. Next, as omega-3 (n-3) polyunsaturated fatty acids (PUFAs) rescue synaptic plasticity and improve EtOH-impaired cognition, we investigated whether docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) had any effect on CB1 receptors. N-3 intake during EtOH abstinence restored CB1 immunostaining in the secondary motor cortex, cerebellum and amygdala, and ameliorated receptor density in the cingulate cortex. These results show that n-3 supplementation recovers CB1 receptor expression disrupted by EtOH in distinct brain regions involved in motor functions and cognition.
Collapse
Affiliation(s)
- Ane Martín-Llorente
- Laboratory of Ultrastructural and Functional Neuroanatomy of the Synapse, Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; (A.M.-L.); (M.S.); (I.B.-D.R.); (L.L.); (G.O.); (N.P.); (A.R.); (I.R.-B.)
| | - Maitane Serrano
- Laboratory of Ultrastructural and Functional Neuroanatomy of the Synapse, Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; (A.M.-L.); (M.S.); (I.B.-D.R.); (L.L.); (G.O.); (N.P.); (A.R.); (I.R.-B.)
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, 48940 Leioa, Spain
| | - Itziar Bonilla-Del Río
- Laboratory of Ultrastructural and Functional Neuroanatomy of the Synapse, Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; (A.M.-L.); (M.S.); (I.B.-D.R.); (L.L.); (G.O.); (N.P.); (A.R.); (I.R.-B.)
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, 48940 Leioa, Spain
| | - Leire Lekunberri
- Laboratory of Ultrastructural and Functional Neuroanatomy of the Synapse, Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; (A.M.-L.); (M.S.); (I.B.-D.R.); (L.L.); (G.O.); (N.P.); (A.R.); (I.R.-B.)
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, 48940 Leioa, Spain
| | - Garazi Ocerin
- Laboratory of Ultrastructural and Functional Neuroanatomy of the Synapse, Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; (A.M.-L.); (M.S.); (I.B.-D.R.); (L.L.); (G.O.); (N.P.); (A.R.); (I.R.-B.)
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, 48940 Leioa, Spain
| | - Nagore Puente
- Laboratory of Ultrastructural and Functional Neuroanatomy of the Synapse, Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; (A.M.-L.); (M.S.); (I.B.-D.R.); (L.L.); (G.O.); (N.P.); (A.R.); (I.R.-B.)
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, 48940 Leioa, Spain
| | - Almudena Ramos
- Laboratory of Ultrastructural and Functional Neuroanatomy of the Synapse, Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; (A.M.-L.); (M.S.); (I.B.-D.R.); (L.L.); (G.O.); (N.P.); (A.R.); (I.R.-B.)
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, 48940 Leioa, Spain
| | - Irantzu Rico-Barrio
- Laboratory of Ultrastructural and Functional Neuroanatomy of the Synapse, Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; (A.M.-L.); (M.S.); (I.B.-D.R.); (L.L.); (G.O.); (N.P.); (A.R.); (I.R.-B.)
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, 48940 Leioa, Spain
| | - Inmaculada Gerrikagoitia
- Laboratory of Ultrastructural and Functional Neuroanatomy of the Synapse, Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; (A.M.-L.); (M.S.); (I.B.-D.R.); (L.L.); (G.O.); (N.P.); (A.R.); (I.R.-B.)
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, 48940 Leioa, Spain
| | - Pedro Grandes
- Laboratory of Ultrastructural and Functional Neuroanatomy of the Synapse, Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; (A.M.-L.); (M.S.); (I.B.-D.R.); (L.L.); (G.O.); (N.P.); (A.R.); (I.R.-B.)
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, 48940 Leioa, Spain
| |
Collapse
|
9
|
Le K, Au J, Hua J, Le KDR. The Therapeutic Potential of Cannabidiol in Revolutionising Opioid Use Disorder Management. Cureus 2023; 15:e50634. [PMID: 38226097 PMCID: PMC10789504 DOI: 10.7759/cureus.50634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2023] [Indexed: 01/17/2024] Open
Abstract
Opioid use disorder (OUD) is a significant cause of morbidity and mortality worldwide and is linked to a complex interplay of biopsychosocial factors as well as the increasing overprescription and availability of opioid medications. Current OUD management relies on the controlled provision of opioid medications, such as methadone or buprenorphine, known as opioid replacement therapy. There is variable evidence regarding the long-term efficacy of these medications in improving the management of OUD, thereby necessitating an exploration into innovative approaches to complement, or even take the place of, existing treatment paradigms. Cannabidiol (CBD), a non-psychoactive compound derived from the cannabis plant, has garnered attention for its diverse pharmacological properties, including anti-inflammatory, analgesic, and anxiolytic effects. Preliminary studies suggest that CBD may target opioid withdrawal pathways that make CBD a potential therapeutic option for OUD. This narrative review synthesises current literature surrounding OUD and offers a nuanced review of the current and future role of CBD in managing this condition. In doing so, we highlight the potential avenues to explore with respect to CBD research for the guidance and development of further research opportunities, framework and policy development, and clinical considerations before medicinal CBD can be integrated into evidence-based clinical guidelines.
Collapse
Affiliation(s)
- Kelvin Le
- Melbourne Medical School, The University of Melbourne, Melbourne, AUS
| | - Joanne Au
- Department of Anaesthesia & Pain Management, The Royal Melbourne Hospital, Melbourne, AUS
| | - Jean Hua
- Department of Pharmacy, The Royal Melbourne Hospital, Melbourne, AUS
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, AUS
| | - Khang Duy Ricky Le
- Geelong Clinical School, Deakin University, Geelong, AUS
- Department of General Surgical Specialties, The Royal Melbourne Hospital, Melbourne, AUS
- Department of Surgical Oncology, Peter MacCallum Cancer Centre, Melbourne, AUS
- Department of Medical Education, Melbourne Medical School, The University of Melbourne, Melbourne, AUS
| |
Collapse
|
10
|
Mohammad Aghaei A, Saali A, Canas MA, Weleff J, D'Souza DC, Angarita GA, Bassir Nia A. Dysregulation of the endogenous cannabinoid system following opioid exposure. Psychiatry Res 2023; 330:115586. [PMID: 37931479 PMCID: PMC10842415 DOI: 10.1016/j.psychres.2023.115586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 10/05/2023] [Accepted: 10/28/2023] [Indexed: 11/08/2023]
Abstract
Rates of opioid-related deaths and overdoses in the United States are at record-high levels. Thus, novel neurobiological targets for the treatment of OUD are greatly needed. Given the close interaction between the endogenous opioid system and the endocannabinoid system (ECS), targeting the ECS may have therapeutic potential in OUD. The various components of the ECS, including cannabinoid receptors, their lipid-derived endogenous ligands (endocannabinoids [eCBs]), and the related enzymes, present potential targets for developing new medications in OUD treatment. The purpose of this paper is to review the clinical and preclinical literature on the dysregulation of the ECS after exposure to opioids. We review the evidence of ECS dysregulation across various study types, exposure protocols, and measurement protocols and summarize the evidence for dysregulation of ECS components at specific brain regions. Preclinical research has shown that opioids disrupt various ECS components that are region-specific. However, the results in the literature are highly heterogenous and sometimes contradictory, possibly due to variety of different methods used. Further research is needed before a confident conclusion could be made on how exposure to opioids can affect ECS components in various brain regions.
Collapse
Affiliation(s)
- Ardavan Mohammad Aghaei
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519, United States
| | - Alexandra Saali
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | | | - Jeremy Weleff
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519, United States
| | - Deepak Cyril D'Souza
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519, United States; VA Connecticut Healthcare System, West Haven, CT, United States
| | - Gustavo A Angarita
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519, United States
| | - Anahita Bassir Nia
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519, United States.
| |
Collapse
|
11
|
Gobira PH, LaMar J, Marques J, Sartim A, Silveira K, Santos L, Wegener G, Guimaraes FS, Mackie K, Lu HC, Joca S. CB1 Receptor Silencing Attenuates Ketamine-Induced Hyperlocomotion Without Compromising Its Antidepressant-Like Effects. Cannabis Cannabinoid Res 2023; 8:768-778. [PMID: 36067014 PMCID: PMC10771879 DOI: 10.1089/can.2022.0072] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Introduction: The antidepressant properties of ketamine have been extensively demonstrated in experimental and clinical settings. However, the psychotomimetic side effects still limit its wider use as an antidepressant. It was recently observed that endocannabinoids are inolved in ketamine induced reward properties. As an increase in endocannabinoid signaling induces antidepressant effects, this study aimed to investigate the involvement of cannabinoid type 1 receptors (CB1R) in the antidepressant and psychostimulant effects induced by ketamine. Methods: We tested the effects of genetic and pharmacological inhibition of CB1R in the hyperlocomotion and antidepressant-like properties of ketamine. The effects of ketamine (10-20 mg/kg) were assessed in the open-field and the forced swim tests (FSTs) in CB1R knockout (KO) and wild-type (WT) mice (male and female), and mice pre-treated with rimonabant (CB1R antagonist, 3-10 mg/kg). Results: We found that the motor hyperactivity elicited by ketamine was impaired in CB1R male and female KO mice. A similar effect was observed upon pharmacological blockade of CB1R in WT mice. However, genetic CB1R deletion did not modify the antidepressant effect of ketamine in male mice submitted to the FST. Surprisingly, pharmacological blockade of CB1R induced an antidepressant-like effect in both male and female mice, which was not further potentiated by ketamine. Conclusions: Our results support the hypothesis that CB1R mediate the psychostimulant side effects induced by ketamine, but not its antidepressant properties.
Collapse
Affiliation(s)
- Pedro Henrique Gobira
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Jacob LaMar
- The Linda and Jack Gill Center for Biomolecular Science, Indiana University, Bloomington, Indiana, USA
| | - Jade Marques
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Ariandra Sartim
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Kennia Silveira
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Luana Santos
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Gregers Wegener
- Translational Neuropsychiatry Unit, Aarhus University, Aarhus, Denmark
| | | | - Ken Mackie
- The Linda and Jack Gill Center for Biomolecular Science, Indiana University, Bloomington, Indiana, USA
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, USA
- Program in Neuroscience, Indiana University, Bloomington, Indiana, USA
| | - Hui-Chen Lu
- The Linda and Jack Gill Center for Biomolecular Science, Indiana University, Bloomington, Indiana, USA
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, USA
- Program in Neuroscience, Indiana University, Bloomington, Indiana, USA
| | - Sâmia Joca
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
12
|
Maccioni P, Mugnaini C, Carai MAM, Gessa GL, Corelli F, Colombo G. Anorectic effect of COR659 in a rat model of overeating. Behav Pharmacol 2023; 34:437-442. [PMID: 37712580 DOI: 10.1097/fbp.0000000000000751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
COR659 is a new compound, the action of which is exerted via a dual mechanism: positive allosteric modulation of the GABAB receptor; antagonism or inverse agonism at the cannabinoid CB1 receptor. Recent lines of experimental evidence have indicated that COR659 potently and effectively reduced operant self-administration of and reinstatement of seeking behaviour for a chocolate-flavoured beverage. The present study was designed to assess whether the ability of COR659 to diminish these addictive-like, food-motivated behaviours extended to a rat model of overeating palatable food. To this end, rats were habituated to feed on a standard rat chow for 3 h/day; every 4 days, the 3-hour chow-feeding session was followed by a 1-hour feeding session with highly palatable, calorie-rich Danish butter cookies. Even though satiated, rats overconsumed cookies. COR659 (0, 2.5, 5, and 10 mg/kg, i.p.) was administered before the start of the cookie-feeding session. Treatment with all 3 doses of COR659 produced a substantial decrease in intake of cookies and calories from cookies. These results extend the anorectic profile of COR659 to overconsumption of a highly palatable food and intake of large amounts of unnecessary calories.
Collapse
Affiliation(s)
- Paola Maccioni
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy, Monserrato (CA)
| | - Claudia Mugnaini
- Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, Siena (SI)
| | | | - Gian Luigi Gessa
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy, Monserrato (CA)
| | - Federico Corelli
- Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, Siena (SI)
| | - Giancarlo Colombo
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy, Monserrato (CA)
| |
Collapse
|
13
|
Herrera-Imbroda J, Flores-López M, Requena-Ocaña N, Araos P, García-Marchena N, Ropero J, Bordallo A, Suarez J, Pavón-Morón FJ, Serrano A, Mayoral F, Rodríguez de Fonseca F. Antidepressant Medication Does Not Contribute to the Elevated Circulating Concentrations of Acylethanolamides Found in Substance Use Disorder Patients. Int J Mol Sci 2023; 24:14788. [PMID: 37834235 PMCID: PMC10573451 DOI: 10.3390/ijms241914788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Circulating acylethanolamides (NAEs) are bioactive signaling molecules that modulate multiple homeostatic functions including mood and hedonic responses. Variations in their plasma concentrations are associated with substance use disorders (SUD) and recent studies suggest that psychotropic medication might influence its circulating levels, limiting its use as a clinical biomarker of addiction. In addition, they might have a role as mediators of the pharmacological effects of psychotropic drugs. Thus, in mild depression, the response to selective serotonin reuptake inhibitor-type antidepressants (SSRI) is associated with a marked increase in circulating NAEs. To further investigate if antidepressants are able to modify the plasma concentration of NAEs in SUD patients, we analyzed the circulating levels of NAEs in 333 abstinent and 175 healthy controls on the basis of the treatment with SSRI antidepressants. As described previously, SUD patients display higher concentrations of NAEs than those measured in a control population. This increase was not further modified by antidepressant therapy. Only marginal increases in palmitoylethanolamide (PEA), oleoylethanolamide (OEA), or docosatetraenoyl-ethanolamide (DEA) were found, and the net effect was very small. Thus, our study shows that treatment with SSRI-type antidepressants does not modify the clinical utility of monitoring enhanced NAE production as biomarkers of SUD. In addition, the possibility that a blunted NAE response to antidepressant therapy might be related to the loss of efficacy of SSRIs in dual depression emerges as an attractive hypothesis that needs to be addressed in future studies.
Collapse
Affiliation(s)
- Jesús Herrera-Imbroda
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina—IBIMA Plataforma Bionand, 29590 Málaga, Spain; (J.H.-I.); (M.F.-L.); (N.R.-O.); (P.A.); (N.G.-M.); (J.R.); (J.S.); (F.J.P.-M.); (F.M.)
- Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain;
- Departamento de Farmacología y Pediatría, Facultad de Medicina, Universidad de Málaga, 29071 Málaga, Spain
| | - María Flores-López
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina—IBIMA Plataforma Bionand, 29590 Málaga, Spain; (J.H.-I.); (M.F.-L.); (N.R.-O.); (P.A.); (N.G.-M.); (J.R.); (J.S.); (F.J.P.-M.); (F.M.)
- Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain;
| | - Nerea Requena-Ocaña
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina—IBIMA Plataforma Bionand, 29590 Málaga, Spain; (J.H.-I.); (M.F.-L.); (N.R.-O.); (P.A.); (N.G.-M.); (J.R.); (J.S.); (F.J.P.-M.); (F.M.)
- Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain;
| | - Pedro Araos
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina—IBIMA Plataforma Bionand, 29590 Málaga, Spain; (J.H.-I.); (M.F.-L.); (N.R.-O.); (P.A.); (N.G.-M.); (J.R.); (J.S.); (F.J.P.-M.); (F.M.)
- Departamento de Psicología Básica, Facultad de Psicología, Universidad de Málaga, 29071 Málaga, Spain
| | - Nuria García-Marchena
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina—IBIMA Plataforma Bionand, 29590 Málaga, Spain; (J.H.-I.); (M.F.-L.); (N.R.-O.); (P.A.); (N.G.-M.); (J.R.); (J.S.); (F.J.P.-M.); (F.M.)
- Departamento de Psicobiología y Metodología, Facultad de Psicología, Universidad Complutense de Madrid, 28223 Madrid, Spain
| | - Jessica Ropero
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina—IBIMA Plataforma Bionand, 29590 Málaga, Spain; (J.H.-I.); (M.F.-L.); (N.R.-O.); (P.A.); (N.G.-M.); (J.R.); (J.S.); (F.J.P.-M.); (F.M.)
- Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain;
| | - Antonio Bordallo
- Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain;
| | - Juan Suarez
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina—IBIMA Plataforma Bionand, 29590 Málaga, Spain; (J.H.-I.); (M.F.-L.); (N.R.-O.); (P.A.); (N.G.-M.); (J.R.); (J.S.); (F.J.P.-M.); (F.M.)
- Departamento of Anatomía, Medicina Legal e Historia de la Ciencia, Facultad de Medicina, Universidad de Málaga, 29071 Málaga, Spain
| | - Francisco J. Pavón-Morón
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina—IBIMA Plataforma Bionand, 29590 Málaga, Spain; (J.H.-I.); (M.F.-L.); (N.R.-O.); (P.A.); (N.G.-M.); (J.R.); (J.S.); (F.J.P.-M.); (F.M.)
- Unidad Clínica Área del Corazón, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Antonia Serrano
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina—IBIMA Plataforma Bionand, 29590 Málaga, Spain; (J.H.-I.); (M.F.-L.); (N.R.-O.); (P.A.); (N.G.-M.); (J.R.); (J.S.); (F.J.P.-M.); (F.M.)
- Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain;
| | - Fermín Mayoral
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina—IBIMA Plataforma Bionand, 29590 Málaga, Spain; (J.H.-I.); (M.F.-L.); (N.R.-O.); (P.A.); (N.G.-M.); (J.R.); (J.S.); (F.J.P.-M.); (F.M.)
- Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain;
| | - Fernando Rodríguez de Fonseca
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina—IBIMA Plataforma Bionand, 29590 Málaga, Spain; (J.H.-I.); (M.F.-L.); (N.R.-O.); (P.A.); (N.G.-M.); (J.R.); (J.S.); (F.J.P.-M.); (F.M.)
- Unidad Clínica de Neurología, Hospital Regional Universitario de Málaga, 29010 Malaga, Spain
- Andalusian Network for Clinical and Translational Research in Neurology (NEURO-RECA), 29001 Malaga, Spain
| |
Collapse
|
14
|
Yuan J, Yang B, Hou G, Xie XQ, Feng Z. Targeting the endocannabinoid system: Structural determinants and molecular mechanism of allosteric modulation. Drug Discov Today 2023; 28:103615. [PMID: 37172889 PMCID: PMC10330941 DOI: 10.1016/j.drudis.2023.103615] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/17/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023]
Abstract
Although drugs targeting the orthosteric binding site of cannabinoid receptors (CBRs) have several therapeutic effects on human physiological and pathological conditions, they can also cause serious adverse effects. Only a few orthosteric ligands have successfully passed clinical trials. Recently, allosteric modulation has become a novel option for drug discovery, with fewer adverse effects and the potential to avoid drug overdose. In this review, we highlight novel findings related to the drug discovery of allosteric modulators (AMs) targeting CBRs. We summarize newly synthesized AMs and the reported/predicted allosteric binding sites. We also discuss the structural determinants of the AMs binding as well as the molecular mechanism of CBR allostery.
Collapse
Affiliation(s)
- Jiayi Yuan
- Department of Pharmaceutical Sciences, Computational Chemical Genomics Screening Center, and Pharmacometrics & System Pharmacology PharmacoAnalytics, School of Pharmacy; National Center of Excellence for Computational Drug Abuse Research; Drug Discovery Institute; Departments of Computational Biology and Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Bo Yang
- Department of Pharmaceutical Sciences, Computational Chemical Genomics Screening Center, and Pharmacometrics & System Pharmacology PharmacoAnalytics, School of Pharmacy; National Center of Excellence for Computational Drug Abuse Research; Drug Discovery Institute; Departments of Computational Biology and Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Guanyu Hou
- Department of Pharmaceutical Sciences, Computational Chemical Genomics Screening Center, and Pharmacometrics & System Pharmacology PharmacoAnalytics, School of Pharmacy; National Center of Excellence for Computational Drug Abuse Research; Drug Discovery Institute; Departments of Computational Biology and Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Xiang-Qun Xie
- Department of Pharmaceutical Sciences, Computational Chemical Genomics Screening Center, and Pharmacometrics & System Pharmacology PharmacoAnalytics, School of Pharmacy; National Center of Excellence for Computational Drug Abuse Research; Drug Discovery Institute; Departments of Computational Biology and Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Zhiwei Feng
- Department of Pharmaceutical Sciences, Computational Chemical Genomics Screening Center, and Pharmacometrics & System Pharmacology PharmacoAnalytics, School of Pharmacy; National Center of Excellence for Computational Drug Abuse Research; Drug Discovery Institute; Departments of Computational Biology and Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States.
| |
Collapse
|
15
|
Coelho A, Lima-Bastos S, Gobira P, Lisboa S. Endocannabinoid signaling and epigenetics modifications in the neurobiology of stress-related disorders. Neuronal Signal 2023; 7:NS20220034. [PMID: 37520658 PMCID: PMC10372471 DOI: 10.1042/ns20220034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 06/30/2023] [Accepted: 07/07/2023] [Indexed: 08/01/2023] Open
Abstract
Stress exposure is associated with psychiatric conditions, such as depression, anxiety, and post-traumatic stress disorder (PTSD). It is also a vulnerability factor to developing or reinstating substance use disorder. Stress causes several changes in the neuro-immune-endocrine axis, potentially resulting in prolonged dysfunction and diseases. Changes in several transmitters, including serotonin, dopamine, glutamate, gamma-aminobutyric acid (GABA), glucocorticoids, and cytokines, are associated with psychiatric disorders or behavioral alterations in preclinical studies. Complex and interacting mechanisms make it very difficult to understand the physiopathology of psychiatry conditions; therefore, studying regulatory mechanisms that impact these alterations is a good approach. In the last decades, the impact of stress on biology through epigenetic markers, which directly impact gene expression, is under intense investigation; these mechanisms are associated with behavioral alterations in animal models after stress or drug exposure, for example. The endocannabinoid (eCB) system modulates stress response, reward circuits, and other physiological functions, including hypothalamus-pituitary-adrenal axis activation and immune response. eCBs, for example, act retrogradely at presynaptic neurons, limiting the release of neurotransmitters, a mechanism implicated in the antidepressant and anxiolytic effects after stress. Epigenetic mechanisms can impact the expression of eCB system molecules, which in turn can regulate epigenetic mechanisms. This review will present evidence of how the eCB system and epigenetic mechanisms interact and the consequences of this interaction in modulating behavioral changes after stress exposure in preclinical studies or psychiatric conditions. Moreover, evidence that correlates the involvement of the eCB system and epigenetic mechanisms in drug abuse contexts will be discussed.
Collapse
Affiliation(s)
- Arthur A. Coelho
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Brazil
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Brazil
| | - Sávio Lima-Bastos
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Brazil
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Brazil
| | - Pedro H. Gobira
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Brazil
| | - Sabrina F. Lisboa
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Brazil
| |
Collapse
|
16
|
Kibret BG, Roberts A, Kneebone A, Embaby S, Fernandez J, Liu QR, Onaivi ES. Cannabinoid CB2 receptors modulate alcohol induced behavior, and neuro-immune dysregulation in mice. Behav Brain Res 2023; 448:114439. [PMID: 37061199 DOI: 10.1016/j.bbr.2023.114439] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/17/2023]
Abstract
The identification of additional lipid mediators, enzymes, and receptors revealed an expanded endocannabinoid system (ECS) called the endocannabinoidome (eCBome). Furthermore, eCBome research using wild type and genetically modified mice indicate the involvement of this system in modulating alcohol induced neuroinflammatory alterations associated with behavioral impairments and the release of proinflammatory cytokines. We investigated the role of cannabinoid type 2 receptors (CB2Rs) in modulating behavioral and neuro-immune changes induced by alcohol using conditional knockout (cKO) mice with selective deletion of CB2Rs in dopamine neurons (DAT-Cnr2) and in microglia (Cx3Cr1-Cnr2) cKO mice. We used a battery of behavioral tests including locomotor and wheel running activity, rotarod performance test, and alcohol preference tests to evaluate behavioral changes induced by alcohol. ELISA assay was used, to detect alterations in IL-6, IL-1α, and IL-1β in the prefrontal cortex, striatum, and hippocampal regions of mice to investigate the role of CB2Rs in neuroinflammation induced by alcohol in the brain. The involvement of cannabinoid receptors in alcohol-induced behavior was also evaluated using the non-selective cannabinoid receptor mixed agonist WIN 55,212-2. The results showed that cell-type specific deletion of CB2Rs in dopamine neurons and microglia significantly and differentially altered locomotor activity and rotarod performance activities. The result also revealed that cell-type specific deletion of CB2Rs enhanced alcohol-induced inflammation, and WIN significantly reduced alcohol preference in all genotypes compared to the vehicle controls. These findings suggest that the involvement of CB2Rs in modulating behavioral and neuroinflammatory alterations induced by alcohol may be potential therapeutic targets in the treatment of alcohol use disorder.
Collapse
Affiliation(s)
- Berhanu Geresu Kibret
- Department of Biology, College of Science and Health, William Paterson University, Wayne, NJ 07470, USA.
| | - Aaliyah Roberts
- Department of Biology, College of Science and Health, William Paterson University, Wayne, NJ 07470, USA
| | - Adam Kneebone
- Department of Biology, College of Science and Health, William Paterson University, Wayne, NJ 07470, USA
| | - Shymaa Embaby
- Department of Biology, College of Science and Health, William Paterson University, Wayne, NJ 07470, USA
| | - Justin Fernandez
- Department of Biology, College of Science and Health, William Paterson University, Wayne, NJ 07470, USA
| | - Qing-Rong Liu
- Laboratory of Clinical Investigation, national Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Emmanuel S Onaivi
- Department of Biology, College of Science and Health, William Paterson University, Wayne, NJ 07470, USA.
| |
Collapse
|
17
|
Sánchez-Zavaleta R, Becerril-Meléndez LA, Ruiz-Contreras AE, Escobar-Elías AP, Herrera-Solís A, Méndez-Díaz M, de la Mora MP, Prospéro-García OE. CB1R chronic intermittent pharmacological activation facilitates amphetamine seeking and self-administration and changes in CB1R/CRFR1 expression in the amygdala and nucleus accumbens in rats. Pharmacol Biochem Behav 2023:173587. [PMID: 37308040 DOI: 10.1016/j.pbb.2023.173587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/14/2023]
Abstract
Patterns of drug ingestion may have a dissimilar impact on the brain, and therefore also the development of drug addiction. One pattern is binge intoxication that refers to the ingestion of a high amount of drug on a single occasion followed by an abstinence period of variable duration. In this study, our goal was to contrast the effect of continuous low amounts with intermittent higher amounts of Arachidonyl-chloro-ethylamide (ACEA), a CB1R agonist, on amphetamine seeking and ingestion, and describe the effects on the expression of CB1R and CRFR1 in the central nucleus of the amygdala (CeA) and in the nucleus accumbens shell (NAcS). Adult male Wistar rats were treated with a daily administration of vehicle or 20 μg of ACEA, or four days of vehicle followed by 100 μg of ACEA on the fifth day, for a total of 30 days. Upon completion of this treatment, the CB1R and CRFR1 expression in the CeA and NAcS was evaluated by immunofluorescence. Additional groups of rats were evaluated for their anxiety levels (elevated plus maze, EPM), amphetamine (AMPH) self-administration (ASA) and breakpoint (A-BP), as well as AMPH-induced conditioned place preference (A-CPP). Results indicated that ACEA induced changes in the CB1R and CRFR1 expression in both the NAcS and CeA. An increase in anxiety-like behavior, ASA, A-BP and A-CPP was also observed. Since the intermittent administration of 100 μg of ACEA induced the most evident changes in most of the parameters studied, we concluded that binge-like ingestion of drugs induces changes in the brain that may make the subject more vulnerable to developing drug addiction.
Collapse
Affiliation(s)
- Rodolfo Sánchez-Zavaleta
- Laboratorio de Cannabinoides, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico
| | - Lorena Alline Becerril-Meléndez
- Laboratorio de Cannabinoides, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico
| | - Alejandra E Ruiz-Contreras
- Laboratorio de Neurogenómica Cognitiva, Coordinación de Psicobiología y Neurociencias, Facultad de Psicología, Universidad Nacional Autónoma de México, Mexico
| | - Ana Paula Escobar-Elías
- Laboratorio de Cannabinoides, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico
| | - Andrea Herrera-Solís
- Laboratorio de Efectos Terapéuticos de los Cannabinoides, Subdirección de Investigación Biomédica, Hospital General Dr. Manuel Gea González, Chile
| | - Mónica Méndez-Díaz
- Laboratorio de Cannabinoides, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico
| | - Miguel Pérez de la Mora
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico
| | - Oscar E Prospéro-García
- Laboratorio de Cannabinoides, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico.
| |
Collapse
|
18
|
Qiu Y, Zhao Y, Hu T, Yang M, Li F, Li C, Gu W, Yang X, Zhao S, Tao H. Development of Yin-Yang ligand for cannabinoid receptors. Bioorg Chem 2023; 133:106377. [PMID: 36731294 DOI: 10.1016/j.bioorg.2023.106377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/13/2023] [Accepted: 01/14/2023] [Indexed: 01/22/2023]
Abstract
Cannabinoid receptors (CBs), including CB1 and CB2, are the key components of a lipid signaling endocannabinoid system (ECS). Development of synthetic cannabinoids has been attractive to modulate ECS functions. CB1 and CB2 are structurally closely related subtypes but with distinct functions. While most efforts focus on the development of selective ligands for single subtype to circumvent the undesired off-target effect, Yin-Yang ligands with opposite pharmacological activities simultaneously on two subtypes, offer unique therapeutic potential. Herein we report the development of a new Yin-Yang ligand which functions as an antagonist for CB1 and concurrently an agonist for CB2. We found that in the pyrazole-cored scaffold, the arm of N1-phenyl group could be a switch, modification of which yielded various ligands with distinct activities. As such, the ortho-morpholine substitution exerted the desired Yin-Yang bifunctionality which, based on the docking study and molecular dynamic simulation, was proposed to be resulted from the hydrogen bonding with S173 and S285 in CB1 and CB2, respectively. Our results demonstrated the feasibility of structure guided ligand evolution for challenging Yin-Yang ligand.
Collapse
Affiliation(s)
- Yanli Qiu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yitian Zhao
- Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Tao Hu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Meifang Yang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Fei Li
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Cuixia Li
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Weiliang Gu
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiaodi Yang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Suwen Zhao
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| | - Houchao Tao
- Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
19
|
Karimi-Haghighi S, Mahmoudi M, Sayehmiri F, Mozafari R, Haghparast A. Endocannabinoid system as a therapeutic target for psychostimulants relapse: A systematic review of preclinical studies. Eur J Pharmacol 2023; 951:175669. [PMID: 36965745 DOI: 10.1016/j.ejphar.2023.175669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 03/04/2023] [Accepted: 03/20/2023] [Indexed: 03/27/2023]
Abstract
The mechanism behind the reinstament of psychostimulant, as a major obstacle in addiction treatment is not fully understood. Controversial data are available in the literature concerning the role of the endocannabinoid (eCB) system in regulating the relapse to psychostimulant addiction in preclinical studies. The current systematic review aims to evaluate eCB modulators' effect in the reinstatement of commonly abused psychostimulants, including cocaine, amphetamine, methamphetamine, and 3,4-methylenedioxymethamphetamine. By searching the PubMed, Web of Science, and Scopus databases, studies were selected. Then the studies, quality was evaluated by the SYRCLE risk of bias tool. The results have still been limited to preclinical studies. Thirty-nine articles that employed self-administration and CPP as the most prevalent animal models of addiction were selected. This data indicates that cannabinoid receptor 1 antagonists and some cannabinoid receptor 2 agonists could suppress the reinstatement of cocaine and methamphetamine addiction in a dose-dependent manner. However, only AM251 was efficient to block the reinstatement of 3,4-methylenedioxymethamphetamine. In conclusion, cannabinoid receptor 1 antagonists and some cannabinoid receptor 2 agonists may have curative potential in the relapse of psychostimulant abuse. However, time, dose, and route of administration are crucial factors in their inhibitory impacts.
Collapse
Affiliation(s)
- Saeideh Karimi-Haghighi
- Community Based Psychiatric Care Research Center, School of Nursing and Midwifery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maedeh Mahmoudi
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Sayehmiri
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Roghayeh Mozafari
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Haghparast
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Tehran, Iran; Department of Basic Sciences, Iranian Academy of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
Kibret BG, Canseco-Alba A, Onaivi ES, Engidawork E. Crosstalk between the endocannabinoid and mid-brain dopaminergic systems: Implication in dopamine dysregulation. Front Behav Neurosci 2023; 17:1137957. [PMID: 37009000 PMCID: PMC10061032 DOI: 10.3389/fnbeh.2023.1137957] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/22/2023] [Indexed: 03/18/2023] Open
Abstract
Endocannabinoids (eCBs) and the expanded endocannabinoid system (ECS)-"endocannabinoidome", consists of the endogenous ligands, eCBs, their canonical and non-canonical receptor subtypes, and their synthesizing and metabolizing enzymes. This system modulates a wide range of body functions and acts as a retrograde signaling system within the central nervous system (CNS) by inhibition of classical transmitters, and plays a vital modulatory function on dopamine, a major neurotransmitter in the CNS. Dopamine is involved in different behavioral processes and contributes to different brain disorders-including Parkinson's disease, schizophrenia, and drug addiction. After synthesis in the neuronal cytosol, dopamine is packaged into synaptic vesicles until released by extracellular signals. Calcium dependent neuronal activation results in the vesicular release of dopamine and interacts with different neurotransmitter systems. The ECS, among others, is involved in the regulation of dopamine release and the interaction occurs either through direct or indirect mechanisms. The cross-talk between the ECS and the dopaminergic system has important influence in various dopamine-related neurobiological and pathologic conditions and investigating this interaction might help identify therapeutic targets and options in disorders of the CNS associated with dopamine dysregulation.
Collapse
Affiliation(s)
- Berhanu Geresu Kibret
- Department of Biology, College of Science and Health, William Paterson University, Wayne, NJ, United States
| | - Ana Canseco-Alba
- Direction de Investigacion, Instituto Nacional de Neurologia y Neurocircirugia “Manuel Velasco Suarez”, Mexico City, Mexico
| | - Emmanuel S. Onaivi
- Department of Biology, College of Science and Health, William Paterson University, Wayne, NJ, United States
| | - Ephrem Engidawork
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
21
|
Asth L, Cruz LC, Soyombo N, Rigo P, Moreira FA. Effects of β -caryophyllene, A Dietary Cannabinoid, in Animal Models of Drug Addiction. Curr Neuropharmacol 2023; 21:213-218. [PMID: 36173065 PMCID: PMC10190141 DOI: 10.2174/1570159x20666220927115811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND β-caryophyllene (BCP) is a natural bicyclic sesquiterpene found in Cannabis and other plants. BCP is currently used as a food additive, although pharmacological studies suggest its potential therapeutic application for the treatment of certain brain disorders. The mechanisms of action of BCP remain uncertain, possibly including full agonism at the cannabinoid CB2 receptor (CB2R). OBJECTIVE The study aims to investigate BCP's potential as a new drug for the treatment of substance use disorders by reviewing preclinical studies with animal models. RESULTS BCP has been investigated in behavioral paradigms, including drug self-administration, conditioned place preference, and intracranial self-stimulation; the drugs tested were cocaine, nicotine, alcohol, and methamphetamine. Remarkably, BCP prevented or reversed behavioral changes resulting from drug exposure. As expected, the mechanism of action entails CB2R activation, although this is unlikely to constitute the only molecular target to explain such effects. Another potential target is the peroxisome proliferator-activated receptor. CONCLUSION Preclinical studies have reported promising results with BCP in animal models of substance use disorders. Further research, including studies in humans, are warranted to establish its therapeutic potential and its mechanisms of action.
Collapse
Affiliation(s)
- Laila Asth
- Department of Pharmacology, Institute of Biological Science, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Leonardo Cardoso Cruz
- Department of Pharmacology, Institute of Biological Science, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Nicholas Soyombo
- Department of Pharmacology, Institute of Biological Science, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Pedro Rigo
- Department of Pharmacology, Institute of Biological Science, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fabrício A. Moreira
- Department of Pharmacology, Institute of Biological Science, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
22
|
Alizamini MM, Li Y, Zhang JJ, Liang J, Haghparast A. Endocannabinoids and addiction memory: Relevance to methamphetamine/morphine abuse. World J Biol Psychiatry 2022; 23:743-763. [PMID: 35137652 DOI: 10.1080/15622975.2022.2039408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
AIM This review aims to summarise the role of endocannabinoid system (ECS), incluing cannabinoid receptors and their endogenous lipid ligands in the modulation of methamphetamine (METH)/morphine-induced memory impairments. METHODS Here, we utilized the results from researches which have investigated regulatory role of ECS (including cannabinoid receptor agonists and antagonists) on METH/morphine-induced memory impairments. RESULTS Among the neurotransmitters, glutamate and dopamine seem to play a critical role in association with the ECS to heal the drug-induced memory damages. Also, the amygdala, hippocampus, and prefrontal cortex are three important brain regions that participate in both drug addiction and memory task processes, and endocannabinoid neurotransmission have been investigated. CONCLUSION ECS can be regarded as a treatment for the side effects of METH and morphine, and their memory-impairing effects.
Collapse
Affiliation(s)
- Mirmohammadali Mirramezani Alizamini
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Yonghui Li
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Jian-Jun Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Jing Liang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
Neutral CB1 Receptor Antagonists as Pharmacotherapies for Substance Use Disorders: Rationale, Evidence, and Challenge. Cells 2022; 11:cells11203262. [PMID: 36291128 PMCID: PMC9600259 DOI: 10.3390/cells11203262] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/03/2022] [Accepted: 10/10/2022] [Indexed: 11/17/2022] Open
Abstract
Cannabinoid receptor 1 (CB1R) has been one of the major targets in medication development for treating substance use disorders (SUDs). Early studies indicated that rimonabant, a selective CB1R antagonist with an inverse agonist profile, was highly promising as a therapeutic for SUDs. However, its adverse side effects, such as depression and suicidality, led to its withdrawal from clinical trials worldwide in 2008. Consequently, much research interest shifted to developing neutral CB1R antagonists based on the recognition that rimonabant’s side effects may be related to its inverse agonist profile. In this article, we first review rimonabant’s research background as a potential pharmacotherapy for SUDs. Then, we discuss the possible mechanisms underlying its therapeutic anti-addictive effects versus its adverse effects. Lastly, we discuss the rationale for developing neutral CB1R antagonists as potential treatments for SUDs, the supporting evidence in recent research, and the challenges of this strategy. We conclude that developing neutral CB1R antagonists without inverse agonist profile may represent attractive strategies for the treatment of SUDs.
Collapse
|
24
|
Ferranti AS, Foster DJ. Cannabinoid type-2 receptors: An emerging target for regulating schizophrenia-relevant brain circuits. Front Neurosci 2022; 16:925792. [PMID: 36033626 PMCID: PMC9403189 DOI: 10.3389/fnins.2022.925792] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022] Open
Abstract
Although the cannabinoid type-2 receptor (CB2) is highly expressed in the immune system, emerging evidence points to CB2 playing a key role in regulating neuronal function in the central nervous system. Recent anatomical studies, combined with electrophysiological studies, indicate that CB2 receptors are expressed in specific dopaminergic and glutamatergic brain circuits that are hyperactive in schizophrenia patients. The ability of CB2 receptors to inhibit dopaminergic and hippocampal circuits, combined with the anti-inflammatory effects of CB2 receptor activation, make this receptor an intriguing target for treating schizophrenia, a disease where novel interventions that move beyond dopamine receptor antagonists are desperately needed. The development of new CB2-related pharmacological and genetic tools, including the first small molecule positive allosteric modulator of CB2 receptors, has greatly advanced our understanding of this receptor. While more work is needed to further elucidate the translational value of selectively targeting CB2 receptors with respect to schizophrenia, the studies discussed below could suggest that CB2 receptors are anatomically located in schizophrenia-relevant circuits, where the physiological consequence of CB2 receptor activation could correct circuit-based deficits commonly associated with positive and cognitive deficits.
Collapse
Affiliation(s)
- Anthony S. Ferranti
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, United States
| | - Daniel J. Foster
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| |
Collapse
|
25
|
Henson JD, Vitetta L, Hall S. Tetrahydrocannabinol and cannabidiol medicines for chronic pain and mental health conditions. Inflammopharmacology 2022; 30:1167-1178. [PMID: 35796920 PMCID: PMC9294022 DOI: 10.1007/s10787-022-01020-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 06/13/2022] [Indexed: 01/07/2023]
Abstract
Combination tetrahydrocannabinol (THC)/cannabidiol (CBD) medicines or CBD-only medicines are prospective treatments for chronic pain, stress, anxiety, depression, and insomnia. THC and CBD increase signaling from cannabinoid receptors, which reduces synaptic transmission in parts of the central and peripheral nervous systems and reduces the secretion of inflammatory factors from immune and glial cells. The overall effect of adding CBD to THC medicines is to enhance the analgesic effect but counteract some of the adverse effects. There is substantial evidence for the effectiveness of THC/CBD combination medicines for chronic pain, especially neuropathic and nociplastic pain or pain with an inflammatory component. For CBD-only medication, there is substantial evidence for stress, moderate evidence for anxiety and insomnia, and minimal evidence for depression and pain. THC/CBD combination medicines have a good tolerability and safety profile relative to opioid analgesics and have negligible dependence and abuse potential; however, should be avoided in patients predisposed to depression, psychosis and suicide as these conditions appear to be exacerbated. Non-serious adverse events are usually dose-proportional, subject to tachyphylaxis and are rarely dose limiting when patients are commenced on a low dose with gradual up-titration. THC and CBD inhibit several Phase I and II metabolism enzymes, which increases the exposure to a wide range of drugs and appropriate care needs to be taken. Low-dose CBD that appears effective for chronic pain and mental health has good tolerability and safety, with few adverse effects and is appropriate as an initial treatment.
Collapse
Affiliation(s)
- Jeremy D. Henson
- Prince of Wales Clinical School, University of NSW, Sydney, NSW 2052 Australia
- Medlab Clinical Ltd, Sydney, NSW 2015 Australia
| | - Luis Vitetta
- Prince of Wales Clinical School, University of NSW, Sydney, NSW 2052 Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006 Australia
| | - Sean Hall
- Medlab Clinical Ltd, Sydney, NSW 2015 Australia
| |
Collapse
|
26
|
Cortez IL, Silva NR, Rodrigues NS, Pedrazzi JFC, Del Bel EA, Mechoulam R, Gomes FV, Guimarães FS. HU-910, a CB2 receptor agonist, reverses behavioral changes in pharmacological rodent models for schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2022; 117:110553. [PMID: 35341823 DOI: 10.1016/j.pnpbp.2022.110553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/05/2022] [Accepted: 03/20/2022] [Indexed: 12/09/2022]
Abstract
Despite attenuating the positive symptoms, drugs currently used to treat schizophrenia frequently do not improve the negative symptoms and cognitive impairments. In addition, they show low tolerability, which has been associated with high rates of treatment discontinuation. Recent evidence suggests that the endocannabinoid system may be a target for schizophrenia treatment. The CB2 receptor modulates dopaminergic neurotransmission, which is abnormally enhanced in schizophrenia patients. Here, we aimed to evaluate whether HU-910, a selective CB2 receptor agonist, would reverse schizophrenia-related behavioral changes observed after the acute injections of amphetamine or the N-methyl-d-aspartate receptor (NMDAR) antagonist MK-801. We also investigated the effects of HU-910 in the memory impairment caused by repeated MK-801 administration. Finally, we tested whether HU-910 would produce the cannabinoid tetrad (catalepsy, hypolocomotion, hypothermia, and antinociception). In male C57BL/6 mice, the acute treatment with HU-910 (30 mg/kg) prevented the hyperlocomotion induced by acute MK-801. This effect was blocked by the CB2 receptor antagonist AM630 (1 mg/kg). On the contrary, HU-910 did not prevent the increased locomotor activity caused by acute amphetamine. The acute treatment with HU-910 (3, 10, and 30 mg/kg) also attenuated the impairments in the prepulse inhibition test induced by acute MK-801 and amphetamine. The repeated treatment with HU-910 attenuated the cognitive impairment caused by chronic administration of MK-801 in the novel object recognition test. Furthermore, HU-910 did not produce the cannabinoid tetrad. These results indicate that HU-910 produced antipsychotic-like effects and support further research on the potential therapeutic properties of this compound to treat schizophrenia.
Collapse
Affiliation(s)
- Isadora Lopes Cortez
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.
| | - Nicole R Silva
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Naielly S Rodrigues
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | - Elaine A Del Bel
- Department of Physiology, Ribeirão Preto Dentistry School, University of São Paulo, Brazil
| | - Raphael Mechoulam
- Department of Medicinal Chemistry and Natural Products, Hebrew University Medical Faculty, Jerusalem, Israel
| | - Felipe V Gomes
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Francisco S Guimarães
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
27
|
Metz VG, da Rosa JLO, Rossato DR, Burger ME, Pase CS. Cannabidiol treatment prevents drug reinstatement and the molecular alterations evoked by amphetamine on receptors and enzymes from dopaminergic and endocannabinoid systems in rats. Pharmacol Biochem Behav 2022; 218:173427. [PMID: 35810923 DOI: 10.1016/j.pbb.2022.173427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/19/2022] [Accepted: 07/04/2022] [Indexed: 11/16/2022]
Abstract
In psychostimulant drug addiction, relapse is the most concerning outcome to be managed, considering there is no approved treatment for this neuropsychiatric condition. Here, we investigated the effects of the CBD treatment on the relapse behavior triggered by stress, after being submitted to the amphetamine (AMPH)-induced conditioned place preference (CPP) in rats. To elucidate the mechanisms of action underlying the CBD treatment, we evaluated the neuroadaptations on dopaminergic and endocannabinoid targets in the ventral striatum (VS) and ventral tegmental area (VTA) of the brain. Animals received d,l-AMPH (4 mg/kg, i.p.) or vehicle in the CPP paradigm for 8 days. Following the first CPP test, animals were treated with CBD (10 mg/kg, i.p.) or its vehicle for 5 days and subsequently submitted to forced swim stress protocol to induce AMPH-CPP relapse. Behavioral findings showed that CBD treatment prevented AMPH-reinstatement, also exerting anxiolytic activity. At the molecular level, in the VTA, CBD restored the CB1R levels decreased by AMPH-exposure, increased NAPE-PLD, and decreased FAAH levels. In the VS, the increase of D1R and D2R, as well as the decrease of DAT levels induced by AMPH were restored by CBD treatment. The current outcomes evidence a substantial preventive action of the CBD on the AMPH-reinstatement evoked by stress, also involving neuroadaptations in both dopaminergic and endocannabinoid systems in brain areas closely involved in the addiction. Although further studies are needed, these findings support the therapeutic potential of CBD in AMPH-relapse prevention.
Collapse
Affiliation(s)
- Vinícia Garzella Metz
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, RS, Brazil
| | | | | | | | - Camila Simonetti Pase
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, RS, Brazil; Universidade Federal do Pampa, Campus Uruguaiana, RS, Brazil.
| |
Collapse
|
28
|
Alizadeh S, Djafarian K, Mofidi Nejad M, Yekaninejad MS, Javanbakht MH. The effect of β-caryophyllene on food addiction and its related behaviors: A randomized, double-blind, placebo-controlled trial. Appetite 2022; 178:106160. [PMID: 35809704 DOI: 10.1016/j.appet.2022.106160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 07/03/2022] [Accepted: 07/03/2022] [Indexed: 11/02/2022]
Abstract
Food addiction (FA) is a psychological construct that may be involved in the etiology of obesity. The cannabinoid system is involved in the addictive-like food preferences by acting on the dopaminergic pathway of the brain. β-caryophyllene is a dietary cannabinoid that is a cannabinoid type 2 (CB2) receptor agonist. This study explored the impacts of β-caryophyllene supplementation on eating behavior, appetite, mental health, anthropometric parameters, body composition, and some hormones related to appetite in women with obesity diagnosed with FA. Women with obesity and FA, diagnosed by the Yale Food Addiction Scale Score (YFAS-S) ≥3, were randomly allocated to receive a β-caryophyllene softgel (n = 26) (100 mg/daily with meal) or placebo (n = 26) for 8 weeks. Anthropometric measurements, body composition, eating behavior, biochemical markers, dietary intake, appetite, stress, anxiety, and depression were evaluated during the study period. β-caryophyllene administration significantly reduced YFAS-S compared to the placebo group (changes in FA score: 1.5 ± 0.9 vs. - 0.7 ± 1.4; corrected P = 0.05). Serum levels of orexin-A significantly decreased in the β-caryophyllene group (p = 0.02); however, no significant difference was observed compared to the placebo group (corrected P = 0.09). β-caryophyllene supplementation had no significant effect on body composition, anthropometric indices, appetite, eating behavior, dietary intake, physical activity level, mental health, and levels of oxytocin and neuropeptide Y (NPY), compared to the placebo. β-caryophyllene supplementation may have beneficial effects on improving YFAS-S in women with obesity diagnosed with FA. TRIAL REGISTRATION: Iranian Registry of Clinical Trials identifier: IRCT20200914048712N1.
Collapse
Affiliation(s)
- Shahab Alizadeh
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Kurosh Djafarian
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Mofidi Nejad
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Mir Saeed Yekaninejad
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hassan Javanbakht
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
29
|
Hammad AM, Meknas SJ, Hall FS, Hikmat S, Sari Y, Al-Qirim TM, Alfaraj M, Amawi H. Effects of waterpipe tobacco smoke and ceftriaxone treatment on the expression of endocannabinoid receptors in mesocorticolimbic brain regions. Brain Res Bull 2022; 185:56-63. [PMID: 35490908 DOI: 10.1016/j.brainresbull.2022.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 04/15/2022] [Accepted: 04/26/2022] [Indexed: 11/17/2022]
Abstract
Chronic tobacco exposure can alter the endocannabinoid (eCB) system, consequently leading to an anxiety state. In this study, we investigated the effects of waterpipe tobacco smoke (WTS) on cannabinoid receptor 1 and 2 (CBR1 and CBR2) gene and protein expression in mesocorticolimbic brain regions. Using elevated plus maze (EPM) and open field (OF) tests, the effects of WTS exposure on withdrawal-induced anxiety-like behavior were examined. The effect of ceftriaxone (CEF), a β-lactam known to upregulate glutamate transporter 1 (GLT-1), on anxiety and the expression of cannabinoid receptors was also determined. Male Sprague-Dawley rats were randomly assigned to four groups: 1) the Control group was exposed only to standard room air; 2) the WTS group was exposed to tobacco smoke and treated with saline vehicle; 3) the WTS-CEF group was exposed to WTS and treated with ceftriaxone; and 4) the CEF group was exposed only to standard room air and treated with ceftriaxone. Rats were exposed to WTS (or room air) for two hours per day, five days per week for a period of four weeks. Behavioral tests (EPM and OF) were conducted weekly during acute withdrawal, 24 h following WTS exposure. Rats were given either saline or ceftriaxone (200 mg/kg i.p.) for five days during Week 4, 30 min prior to WTS exposure. Withdrawal-induced anxiety was induced by WTS exposure but was reduced by ceftriaxone treatment. WTS exposure decreased CBR1 mRNA and protein expression in the NAc and VTA, but not PFC, and ceftriaxone treatment attenuated these effects. WTS exposure did not change CBR2 mRNA expression in the NAc, VTA, or PFC. These findings demonstrate that WTS exposure dysregulated the endocannabinoid system and increased anxiety-like behavior, and these effects were reversed by ceftriaxone treatment, which suggest the involvement of glutamate transporter 1 in these effects.
Collapse
Affiliation(s)
- Alaa M Hammad
- Department of Pharmacy, College of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan.
| | - Sara Jamal Meknas
- Department of Pharmacy, College of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - F Scott Hall
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Suhair Hikmat
- Department of Pharmacy, College of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - Youssef Sari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - T M Al-Qirim
- Department of Pharmacy, College of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - Malek Alfaraj
- Department of Pharmacy, College of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - Haneen Amawi
- Department of Clinical Pharmacy and Pharmacy Practice, College of Pharmacy, Yarmouk University, Irbid 21163, Jordan
| |
Collapse
|
30
|
Ishiguro H, Kibret BG, Horiuchi Y, Onaivi ES. Potential Role of Cannabinoid Type 2 Receptors in Neuropsychiatric and Neurodegenerative Disorders. Front Psychiatry 2022; 13:828895. [PMID: 35774086 PMCID: PMC9237241 DOI: 10.3389/fpsyt.2022.828895] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 05/02/2022] [Indexed: 12/12/2022] Open
Abstract
The endocannabinoid system (ECS) is composed of the two canonical receptor subtypes; type-1 cannabinoid (CB1R) and type 2 receptor (CB2R), endocannabinoids (eCBs) and enzymes responsible for the synthesis and degradation of eCBs. Recently, with the identification of additional lipid mediators, enzymes and receptors, the expanded ECS called the endocannabinoidome (eCBome) has been identified and recognized. Activation of CB1R is associated with a plethora of physiological effects and some central nervous system (CNS) side effects, whereas, CB2R activation is devoid of such effects and hence CB2Rs might be utilized as potential new targets for the treatment of different disorders including neuropsychiatric disorders. Previous studies suggested that CB2Rs were absent in the brain and they were considered as peripheral receptors, however, recent studies confirmed the presence of CB2Rs in different brain regions. Several studies have now focused on the characterization of its physiological and pathological roles. Studies done on the role of CB2Rs as a therapeutic target for treating different disorders revealed important putative role of CB2R in neuropsychiatric disorders that requires further clinical validation. Here we provide current insights and knowledge on the potential role of targeting CB2Rs in neuropsychiatric and neurodegenerative disorders. Its non-psychoactive effect makes the CB2R a potential target for treating CNS disorders; however, a better understanding of the fundamental pharmacology of CB2R activation is essential for the design of novel therapeutic strategies.
Collapse
Affiliation(s)
- Hiroki Ishiguro
- Department of Clinical Genetics, Graduate School of Medical Science, University of Yamanashi, Kofu, Japan
- Department of Neuropsychiatry, Graduate School of Medical Science, University of Yamanashi, Kofu, Japan
| | - Berhanu Geresu Kibret
- Department of Biology, College of Science and Health, William Paterson University, Wayne, NJ, United States
| | - Yasue Horiuchi
- Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Emmanuel S. Onaivi
- Department of Biology, College of Science and Health, William Paterson University, Wayne, NJ, United States
| |
Collapse
|
31
|
Longitudinal effects of cannabis use on attentional processes in patients with first episode of psychosis. Schizophr Res 2022; 244:71-80. [PMID: 35640355 DOI: 10.1016/j.schres.2022.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/31/2022] [Accepted: 05/15/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Attention deficits have been considered to be a central characteristic of schizophrenia-spectrum disorders. However, the specific interactions with, and longitudinal effects of, cannabis use at the different stages of the disorder remain unknown. Due to the high percentage of patients who are cannabis users at the onset of the disease, our objective was to explore this relationship and how it evolves in the first three years of the disease. METHOD A total of 461 patients with a first episode of psychosis (FEP) and 187 healthy controls were studied. The differences between cannabis users and non-users at baseline were explored based on both sociodemographic variables and performance in neuropsychological tests of attention. The interaction between cannabis, attentional, and clinical variables was followed up at 3 years. RESULTS Of the 648 participants included in this study, 229 (35.34%) were cannabis users. Of them, 187 (40.6%) were patients and 42 (22.5%) were healthy controls. At baseline, control groups [cannabis users (N = 42); non-users (N = 145)] outperformed the patient groups [cannabis users (N = 187); non-users (N = 274)] in all attention tasks. Longitudinal analyses showed significant improvements in the attentional domains at 3-year follow-up, mainly in the group of patients who had never used cannabis (N = 238), followed by ex-users (N = 105), and persistent users (N = 43). At 3-year follow-up, the group of ex-users was the one that achieved scores closer to those of healthy controls. CONCLUSION FEP patients, both cannabis users and non-users, showed attention deficits. However, the patients who had never used cannabis fared better than cannabis users.
Collapse
|
32
|
Molecular Alterations of the Endocannabinoid System in Psychiatric Disorders. Int J Mol Sci 2022; 23:ijms23094764. [PMID: 35563156 PMCID: PMC9104141 DOI: 10.3390/ijms23094764] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/22/2022] [Accepted: 04/23/2022] [Indexed: 02/07/2023] Open
Abstract
The therapeutic benefits of the current medications for patients with psychiatric disorders contrast with a great variety of adverse effects. The endocannabinoid system (ECS) components have gained high interest as potential new targets for treating psychiatry diseases because of their neuromodulator role, which is essential to understanding the regulation of many brain functions. This article reviewed the molecular alterations in ECS occurring in different psychiatric conditions. The methods used to identify alterations in the ECS were also described. We used a translational approach. The animal models reproducing some behavioral and/or neurochemical aspects of psychiatric disorders and the molecular alterations in clinical studies in post-mortem brain tissue or peripheral tissues were analyzed. This article reviewed the most relevant ECS changes in prevalent psychiatric diseases such as mood disorders, schizophrenia, autism, attentional deficit, eating disorders (ED), and addiction. The review concludes that clinical research studies are urgently needed for two different purposes: (1) To identify alterations of the ECS components potentially useful as new biomarkers relating to a specific disease or condition, and (2) to design new therapeutic targets based on the specific alterations found to improve the pharmacological treatment in psychiatry.
Collapse
|
33
|
Ortiz YT, McMahon LR, Wilkerson JL. Medicinal Cannabis and Central Nervous System Disorders. Front Pharmacol 2022; 13:881810. [PMID: 35529444 PMCID: PMC9070567 DOI: 10.3389/fphar.2022.881810] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/05/2022] [Indexed: 01/02/2023] Open
Abstract
Cannabinoids, including those found in cannabis, have shown promise as potential therapeutics for numerous health issues, including pathological pain and diseases that produce an impact on neurological processing and function. Thus, cannabis use for medicinal purposes has become accepted by a growing majority. However, clinical trials yielding satisfactory endpoints and unequivocal proof that medicinal cannabis should be considered a frontline therapeutic for most examined central nervous system indications remains largely elusive. Although cannabis contains over 100 + compounds, most preclinical and clinical research with well-controlled dosing and delivery methods utilize the various formulations of Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD), the two most abundant compounds in cannabis. These controlled dosing and delivery methods are in stark contrast to most clinical studies using whole plant cannabis products, as few clinical studies using whole plant cannabis profile the exact composition, including percentages of all compounds present within the studied product. This review will examine both preclinical and clinical evidence that supports or refutes the therapeutic utility of medicinal cannabis for the treatment of pathological pain, neurodegeneration, substance use disorders, as well as anxiety-related disorders. We will predominately focus on purified THC and CBD, as well as other compounds isolated from cannabis for the aforementioned reasons but will also include discussion over those studies where whole plant cannabis has been used. In this review we also consider the current challenges associated with the advancement of medicinal cannabis and its derived potential therapeutics into clinical applications.
Collapse
Affiliation(s)
- Yuma T. Ortiz
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, United States
| | - Lance R. McMahon
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, United States
| | - Jenny L. Wilkerson
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, United States
- *Correspondence: Jenny L. Wilkerson,
| |
Collapse
|
34
|
Abstract
Cannabinoids, including those found in cannabis, have shown promise as potential therapeutics for numerous health issues, including pathological pain and diseases that produce an impact on neurological processing and function. Thus, cannabis use for medicinal purposes has become accepted by a growing majority. However, clinical trials yielding satisfactory endpoints and unequivocal proof that medicinal cannabis should be considered a frontline therapeutic for most examined central nervous system indications remains largely elusive. Although cannabis contains over 100 + compounds, most preclinical and clinical research with well-controlled dosing and delivery methods utilize the various formulations of Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD), the two most abundant compounds in cannabis. These controlled dosing and delivery methods are in stark contrast to most clinical studies using whole plant cannabis products, as few clinical studies using whole plant cannabis profile the exact composition, including percentages of all compounds present within the studied product. This review will examine both preclinical and clinical evidence that supports or refutes the therapeutic utility of medicinal cannabis for the treatment of pathological pain, neurodegeneration, substance use disorders, as well as anxiety-related disorders. We will predominately focus on purified THC and CBD, as well as other compounds isolated from cannabis for the aforementioned reasons but will also include discussion over those studies where whole plant cannabis has been used. In this review we also consider the current challenges associated with the advancement of medicinal cannabis and its derived potential therapeutics into clinical applications.
Collapse
|
35
|
Zhang HY, De Biase L, Chandra R, Shen H, Liu QR, Gardner E, Lobo MK, Xi ZX. Repeated cocaine administration upregulates CB 2 receptor expression in striatal medium-spiny neurons that express dopamine D 1 receptors in mice. Acta Pharmacol Sin 2022; 43:876-888. [PMID: 34316031 DOI: 10.1038/s41401-021-00712-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 06/02/2021] [Indexed: 11/10/2022] Open
Abstract
Cannabinoid CB2 receptors (CB2R) are importantly involved in drug reward and addiction. However, the cellular mechanisms underlying CB2R action remain unclear. We have previously reported that cocaine self-administration upregulates CB2R expression in midbrain dopamine (DA) neurons. In the present study, we investigated whether cocaine or heroin also alters CB2R expression in striatal medium-spiny neurons that express dopamine D1 or D2 receptors (D1-MSNs, D2-MSNs) and microglia. Due to the concern of CB2R antibody specificity, we developed three mouse CB2-specific probes to detect CB2R mRNA using quantitative RT-PCR and RNAscope in situ hybridization (ISH) assays. We found that a single injection of cocaine failed to alter, while repeated cocaine injections or self-administration dose-dependently upregulated CB2R gene expression in both brain (cortex and striatum) and periphery (spleen). In contrast, repeated administration of heroin produced a dose-dependent reduction in striatal CB2 mRNA expression. RNAscope ISH assays detected CB2R mRNA in striatal D1- and D2-MSNs, not in microglia. We then used transgenic CX3CR1eGFP/+ microglia reporter mice and D1- or D2-Cre-RiboTag mice to purify striatal microglia or ribosome-associated mRNAs from CX3CR1eGFP/+, D1-MSNs, or D2-MSNs, respectively. We found that CB2R upregulation occurred mainly in D1-MSNs, not in D2-MSNs or microglia, in the nucleus accumbens rather than the dorsal striatum. These findings indicate that repeated cocaine exposure may upregulate CB2R expression in both brain and spleen, with regional and cell type-specific profiles. In the striatum, CB2R upregulation occurs mainly in D1-MSNs in the nucleus accumbens. Given the important role of D1-MSNs in brain reward function, the present findings provide new insight into mechanisms by which brain CB2Rs modulate cocaine action.
Collapse
|
36
|
Asth L, Santos AC, Moreira FA. The endocannabinoid system and drug-associated contextual memories. Behav Pharmacol 2022; 33:90-104. [PMID: 33491992 DOI: 10.1097/fbp.0000000000000621] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Drug abuse and addiction can be initiated and reinstated by contextual stimuli previously paired with the drug use. The influence exerted by the context on drug-seeking behaviour can be modelled in experimental animals with place-conditioning protocols. Here, we review the effects of cannabinoids in place conditioning and the therapeutic potential of the endocannabinoid system for interfering with drug-related memories. The phytocannabinoid Δ9-tetrahydrocannabinol (THC) tends to induce conditioned place preference (CPP) at low doses and conditioned place aversion at high doses; cannabidiol is devoid of any effect, yet it inhibits CPP induced by some drugs. Synthetic CB1 receptor agonists tend to recapitulate the biphasic profile observed with THC, whereas selective antagonists/inverse agonists inhibit CPP induced by cocaine, nicotine, alcohol and opioids. However, their therapeutic use is limited by potential psychiatric side effects. The CB2 receptor has also attracted attention, because selective CB2 receptor agonists inhibit cocaine-induced CPP. Inhibitors of endocannabinoid membrane transport and hydrolysis yield mixed results. In targeting the endocannabinoid system for developing new treatments for drug addiction, future research should focus on 'neutral' CB1 receptor antagonists and CB2 receptor agonists. Such compounds may offer a well-tolerated pharmacological profile and curb addiction by preventing drug-seeking triggered by conditioned contextual cues.
Collapse
Affiliation(s)
- Laila Asth
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | | |
Collapse
|
37
|
Navarrete F, García-Gutiérrez MS, Gasparyan A, Navarro D, López-Picón F, Morcuende Á, Femenía T, Manzanares J. Biomarkers of the Endocannabinoid System in Substance Use Disorders. Biomolecules 2022; 12:biom12030396. [PMID: 35327588 PMCID: PMC8946268 DOI: 10.3390/biom12030396] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/21/2022] [Accepted: 02/28/2022] [Indexed: 02/04/2023] Open
Abstract
Despite substance use disorders (SUD) being one of the leading causes of disability and mortality globally, available therapeutic approaches remain ineffective. The difficulty in accurately characterizing the neurobiological mechanisms involved with a purely qualitative diagnosis is an obstacle to improving the classification and treatment of SUD. In this regard, identifying central and peripheral biomarkers is essential to diagnosing the severity of drug dependence, monitoring therapeutic efficacy, predicting treatment response, and enhancing the development of safer and more effective pharmacological tools. In recent years, the crucial role that the endocannabinoid system (ECS) plays in regulating the reinforcing and motivational properties of drugs of abuse has been described. This has led to studies characterizing ECS alterations after exposure to various substances to identify biomarkers with potential diagnostic, prognostic, or therapeutic utility. This review aims to compile the primary evidence available from rodent and clinical studies on how the ECS components are modified in the context of different substance-related disorders, gathering data from genetic, molecular, functional, and neuroimaging experimental approaches. Finally, this report concludes that additional translational research is needed to further characterize the modifications of the ECS in the context of SUD, and their potential usefulness in the necessary search for biomarkers.
Collapse
Affiliation(s)
- Francisco Navarrete
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda. de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (A.G.); (D.N.); (Á.M.); (T.F.)
- Departamento de Medicina Clínica, Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Universidad Miguel Hernández, 03010 Alicante, Spain
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
| | - María S. García-Gutiérrez
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda. de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (A.G.); (D.N.); (Á.M.); (T.F.)
- Departamento de Medicina Clínica, Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Universidad Miguel Hernández, 03010 Alicante, Spain
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
| | - Ani Gasparyan
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda. de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (A.G.); (D.N.); (Á.M.); (T.F.)
- Departamento de Medicina Clínica, Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Universidad Miguel Hernández, 03010 Alicante, Spain
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
| | - Daniela Navarro
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda. de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (A.G.); (D.N.); (Á.M.); (T.F.)
- Departamento de Medicina Clínica, Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Universidad Miguel Hernández, 03010 Alicante, Spain
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
| | - Francisco López-Picón
- PET Preclinical Imaging Laboratory, Turku PET Centre, University of Turku, 20520 Turku, Finland;
| | - Álvaro Morcuende
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda. de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (A.G.); (D.N.); (Á.M.); (T.F.)
| | - Teresa Femenía
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda. de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (A.G.); (D.N.); (Á.M.); (T.F.)
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
| | - Jorge Manzanares
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda. de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (A.G.); (D.N.); (Á.M.); (T.F.)
- Departamento de Medicina Clínica, Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Universidad Miguel Hernández, 03010 Alicante, Spain
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-965-919-248
| |
Collapse
|
38
|
Hirjak D, Schmitgen MM, Werler F, Wittemann M, Kubera KM, Wolf ND, Sambataro F, Calhoun VD, Reith W, Wolf RC. Multimodal MRI data fusion reveals distinct structural, functional and neurochemical correlates of heavy cannabis use. Addict Biol 2022; 27:e13113. [PMID: 34808703 DOI: 10.1111/adb.13113] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/24/2021] [Accepted: 10/29/2021] [Indexed: 12/19/2022]
Abstract
Heavy cannabis use (HCU) is frequently associated with a plethora of cognitive, psychopathological and sensorimotor phenomena. Although HCU is frequent, specific patterns of abnormal brain structure and function underlying HCU in individuals presenting without cannabis-use disorder or other current and life-time major mental disorders are unclear at present. This multimodal magnetic resonance imaging (MRI) study examined resting-state functional MRI (rs-fMRI) and structural MRI (sMRI) data from 24 persons with HCU and 16 controls. Parallel independent component analysis (p-ICA) was used to examine covarying components among grey matter volume (GMV) maps computed from sMRI and intrinsic neural activity (INA), as derived from amplitude of low-frequency fluctuations (ALFF) maps computed from rs-fMRI data. Further, we used JuSpace toolbox for cross-modal correlations between MRI-based modalities with nuclear imaging derived estimates, to examine specific neurotransmitter system changes underlying HCU. We identified two transmodal components, which significantly differed between the HCU and controls (GMV: p = 0.01, ALFF p = 0.03, respectively). The GMV component comprised predominantly cerebello-temporo-thalamic regions, whereas the INA component included fronto-parietal regions. Across HCU, loading parameters of both components were significantly associated with distinct HCU behavior. Finally, significant associations between GMV and the serotonergic system as well as between INA and the serotonergic, dopaminergic and μ-opioid receptor system were detected. This study provides novel multimodal neuromechanistic insights into HCU suggesting co-altered structure/function-interactions in neural systems subserving cognitive and sensorimotor functions.
Collapse
Affiliation(s)
- Dusan Hirjak
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim Heidelberg University Mannheim Germany
| | - Mike M. Schmitgen
- Department of General Psychiatry at the Center for Psychosocial Medicine Heidelberg University Mannheim Germany
| | - Florian Werler
- Department of General Psychiatry at the Center for Psychosocial Medicine Heidelberg University Mannheim Germany
| | - Miriam Wittemann
- Department of Psychiatry and Psychotherapy Saarland University Saarbrücken Germany
| | - Katharina M. Kubera
- Department of General Psychiatry at the Center for Psychosocial Medicine Heidelberg University Mannheim Germany
| | - Nadine D. Wolf
- Department of General Psychiatry at the Center for Psychosocial Medicine Heidelberg University Mannheim Germany
| | - Fabio Sambataro
- Department of Neurosciences, Padua Neuroscience Center University of Padua Padua Italy
| | - Vince D. Calhoun
- Tri‐institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology Emory University Atlanta Georgia USA
| | - Wolfgang Reith
- Department of Neuroradiology Saarland University Saarbrücken Germany
| | - Robert Christian Wolf
- Department of General Psychiatry at the Center for Psychosocial Medicine Heidelberg University Mannheim Germany
| |
Collapse
|
39
|
Kibret BG, Ishiguro H, Horiuchi Y, Onaivi ES. New Insights and Potential Therapeutic Targeting of CB2 Cannabinoid Receptors in CNS Disorders. Int J Mol Sci 2022; 23:975. [PMID: 35055161 PMCID: PMC8778243 DOI: 10.3390/ijms23020975] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 12/22/2022] Open
Abstract
The endocannabinoid system (ECS) is ubiquitous in most human tissues, and involved in the regulation of mental health. Consequently, its dysregulation is associated with neuropsychiatric and neurodegenerative disorders. Together, the ECS and the expanded endocannabinoidome (eCBome) are composed of genes coding for CB1 and CB2 cannabinoid receptors (CB1R, CB2R), endocannabinoids (eCBs), and the metabolic enzyme machinery for their synthesis and catabolism. The activation of CB1R is associated with adverse effects on the central nervous system (CNS), which has limited the therapeutic use of drugs that bind this receptor. The discovery of the functional neuronal CB2R raised new possibilities for the potential and safe targeting of the ECS for the treatment of CNS disorders. Previous studies were not able to detect CB2R mRNA transcripts in brain tissue and suggested that CB2Rs were absent in the brain and were considered peripheral receptors. Studies done on the role of CB2Rs as a potential therapeutic target for treating different disorders revealed the important putative role of CB2Rs in certain CNS disorders, which requires further clinical validation. This review addresses recent advances on the role of CB2Rs in neuropsychiatric and neurodegenerative disorders, including, but not limited to, anxiety, depression, schizophrenia, Parkinson's disease (PD), Alzheimer's disease (AD), Huntington's disease (HD) and addiction.
Collapse
Affiliation(s)
- Berhanu Geresu Kibret
- Department of Biology, College of Science and Health, William Paterson University, Wayne, NJ 07470, USA
| | - Hiroki Ishiguro
- Department of Neuropsychiatry and Clinical Ethics, Graduate School of Medical Science, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan;
| | - Yasue Horiuchi
- Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan;
| | - Emmanuel S. Onaivi
- Department of Biology, College of Science and Health, William Paterson University, Wayne, NJ 07470, USA
| |
Collapse
|
40
|
Sustkova-Fiserova M, Charalambous C, Khryakova A, Certilina A, Lapka M, Šlamberová R. The Role of Ghrelin/GHS-R1A Signaling in Nonalcohol Drug Addictions. Int J Mol Sci 2022; 23:761. [PMID: 35054944 PMCID: PMC8776007 DOI: 10.3390/ijms23020761] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 01/27/2023] Open
Abstract
Drug addiction causes constant serious health, social, and economic burden within the human society. The current drug dependence pharmacotherapies, particularly relapse prevention, remain limited, unsatisfactory, unreliable for opioids and tobacco, and even symptomatic for stimulants and cannabinoids, thus, new more effective treatment strategies are researched. The antagonism of the growth hormone secretagogue receptor type A (GHS-R1A) has been recently proposed as a novel alcohol addiction treatment strategy, and it has been intensively studied in experimental models of other addictive drugs, such as nicotine, stimulants, opioids and cannabinoids. The role of ghrelin signaling in these drugs effects has also been investigated. The present review aims to provide a comprehensive overview of preclinical and clinical studies focused on ghrelin's/GHS-R1A possible involvement in these nonalcohol addictive drugs reinforcing effects and addiction. Although the investigation is still in its early stage, majority of the existing reviewed experimental results from rodents with the addition of few human studies, that searched correlations between the genetic variations of the ghrelin signaling or the ghrelin blood content with the addictive drugs effects, have indicated the importance of the ghrelin's/GHS-R1As involvement in the nonalcohol abused drugs pro-addictive effects. Further research is necessary to elucidate the exact involved mechanisms and to verify the future potential utilization and safety of the GHS-R1A antagonism use for these drug addiction therapies, particularly for reducing the risk of relapse.
Collapse
Affiliation(s)
- Magdalena Sustkova-Fiserova
- Department of Pharmacology, Third Faculty of Medicine, Charles University, Ruska 87, 100 00 Prague, Czech Republic; (C.C.); (A.K.); (A.C.); (M.L.)
| | - Chrysostomos Charalambous
- Department of Pharmacology, Third Faculty of Medicine, Charles University, Ruska 87, 100 00 Prague, Czech Republic; (C.C.); (A.K.); (A.C.); (M.L.)
| | - Anna Khryakova
- Department of Pharmacology, Third Faculty of Medicine, Charles University, Ruska 87, 100 00 Prague, Czech Republic; (C.C.); (A.K.); (A.C.); (M.L.)
| | - Alina Certilina
- Department of Pharmacology, Third Faculty of Medicine, Charles University, Ruska 87, 100 00 Prague, Czech Republic; (C.C.); (A.K.); (A.C.); (M.L.)
| | - Marek Lapka
- Department of Pharmacology, Third Faculty of Medicine, Charles University, Ruska 87, 100 00 Prague, Czech Republic; (C.C.); (A.K.); (A.C.); (M.L.)
| | - Romana Šlamberová
- Department of Physiology, Third Faculty of Medicine, Charles University, Ke Karlovu 4, 120 00 Prague, Czech Republic;
| |
Collapse
|
41
|
Morcuende A, García-Gutiérrez MS, Tambaro S, Nieto E, Manzanares J, Femenia T. Immunomodulatory Role of CB2 Receptors in Emotional and Cognitive Disorders. Front Psychiatry 2022; 13:866052. [PMID: 35492718 PMCID: PMC9051035 DOI: 10.3389/fpsyt.2022.866052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/07/2022] [Indexed: 12/15/2022] Open
Abstract
Emotional behavior, memory, and learning have been associated with alterations in the immune system in neuropsychiatric and neurodegenerative diseases. In recent years, several studies pointed out the involvement of the cannabinoid receptor 2 (CB2r) in the immune system and the regulation of inflammation. This receptor is widely distributed in different tissues and organs with higher expression in spleen and immune system cells. However, CB2r has also been detected in several brain areas and different brain cell types, such as neurons and glia. These findings suggest that CB2r may closely relate the immune system and the brain circuits regulating inflammation, mood, and cognitive functions. Therefore, we review the studies that may help elucidate the molecular bases of CB2r in regulating inflammation in different brain cells and its role in the pathophysiology of psychiatric and neurodegenerative disorders.
Collapse
Affiliation(s)
- Alvaro Morcuende
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (CSIC), Alicante, Spain
| | - María Salud García-Gutiérrez
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (CSIC), Alicante, Spain.,Redes de Investigación Cooperativa Orientada a Resultados en Salud, Red de Investigación en Atención Primaria de Adicciones, Instituto de Salud Carlos III, Ministerio de Ciencia e Innovación (MICINN) and Fondo Europeo de Desarrollo Regional (FEDER), Madrid, Spain.,Instituto de Investigación Sanitaria y Biomédica de Alicante, Alicante, Spain
| | - Simone Tambaro
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Elena Nieto
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (CSIC), Alicante, Spain
| | - Jorge Manzanares
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (CSIC), Alicante, Spain.,Redes de Investigación Cooperativa Orientada a Resultados en Salud, Red de Investigación en Atención Primaria de Adicciones, Instituto de Salud Carlos III, Ministerio de Ciencia e Innovación (MICINN) and Fondo Europeo de Desarrollo Regional (FEDER), Madrid, Spain.,Instituto de Investigación Sanitaria y Biomédica de Alicante, Alicante, Spain
| | - Teresa Femenia
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (CSIC), Alicante, Spain.,Redes de Investigación Cooperativa Orientada a Resultados en Salud, Red de Investigación en Atención Primaria de Adicciones, Instituto de Salud Carlos III, Ministerio de Ciencia e Innovación (MICINN) and Fondo Europeo de Desarrollo Regional (FEDER), Madrid, Spain
| |
Collapse
|
42
|
Daldegan-Bueno D, Maia LO, Glass M, Jutras-Aswad D, Fischer B. Co-exposure of cannabinoids with amphetamines and biological, behavioural and health outcomes: a scoping review of animal and human studies. Psychopharmacology (Berl) 2022; 239:1211-1230. [PMID: 34613429 PMCID: PMC9110457 DOI: 10.1007/s00213-021-05960-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 08/02/2021] [Indexed: 02/04/2023]
Abstract
RATIONALE The growing prevalence of psychostimulant (including amphetamine) use and associated health harms, with limited treatment options, present a global challenge. There is an increasing availability and medical applications of cannabinoids, and growing interest in their therapeutic potential for addictive disorders. OBJECTIVES The objective of this study is to review available data regarding cannabis/cannabinoid co-use or exposure on amphetamine-related outcomes. METHODS Towards the present scoping review, we systematically searched four databases (Medline, Web-of-Science, CINAHL Plus and PsycInfo) using cannabis/cannabinoid and amphetamine text-terms identifying peer-reviewed, English-language studies published in 2000-2020 involving multiple methods approaches among both human and animal study samples, assessing the association of co-use/administration of cannabis/cannabinoids products with non-medical amphetamines on biological, behavioural or health outcomes. RESULTS Twenty-five articles were included. Pre-clinical studies (n = 15) found mostly protective effects of single or repeated cannabinoids administration on rodents in amphetamine addiction models, amphetamine-induced models of human mental disorders (e.g. schizophrenia) and amphetamine-induced neurotoxicity. Human studies (n = 10) were more heterogeneously designed (e.g. cross-sectional, case-control, longitudinal) and assessed natural ongoing cannabis and methamphetamine use or dependence, showing mostly enhanced harms in a diversity of outcomes (e.g. mental health, methamphetamine use, cognition). CONCLUSIONS While human studies suggest cannabis use as an adverse risk factor among non-medical amphetamine users, pre-clinical studies suggest therapeutic potential of cannabinoids, especially cannabidiol, to alleviate amphetamine addiction and harms, including treatment outcomes. Given increasing psychostimulant harms but lack of care options, rigorous, high-quality design studies should aim to translate and investigate pre-clinical study results for potential therapeutic benefits of cannabinoids for amphetamine use/abuse in human subjects.
Collapse
Affiliation(s)
- Dimitri Daldegan-Bueno
- Schools of Population Health and Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Rd, Grafton, Auckland 1023 New Zealand
| | - Lucas O. Maia
- Centre for Applied Research in Mental Health & Addiction, Simon Fraser University, 515 W. Hastings Street,, Vancouver, BC V6B 5K3 Canada
| | - Michelle Glass
- Department of Pharmacology and Toxicology, University of Otago, PO Box 56, Dunedin, 9054 Otago New Zealand
| | - Didier Jutras-Aswad
- Centre de Recherche, Centre Hospitalier Universitaire de Universite de Montreal (CHUM), 1051 Rue Sanguinet, Montréal, QC H2X 3E4 Canada ,Department of Psychiatry and Addiction, Faculty of Medicine, Université de Montréal, Pavillon Roger-Gaudry, 2900 Edouard Montpetit Blvd, Montreal, QC H3T 1J4 Canada
| | - Benedikt Fischer
- Schools of Population Health and Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Rd, Grafton, Auckland, 1023, New Zealand. .,Centre for Applied Research in Mental Health & Addiction, Simon Fraser University, 515 W. Hastings Street,, Vancouver, BC, V6B 5K3, Canada. .,Department of Psychiatry, University of Toronto, 250 College Street, 8Th Floor, Toronto, ON, M5T 1R8, Canada. .,Department of Psychiatry, Federal University of Sao Paulo (UNIFESP), R. Dr. Ovídio Pires de Campos, Sao Paulo, 785 05403-903, Brazil.
| |
Collapse
|
43
|
Rømer Thomsen K, Thylstrup B, Kenyon EA, Lees R, Baandrup L, Feldstein Ewing SW, Freeman TP. Cannabinoids for the treatment of cannabis use disorder: New avenues for reaching and helping youth? Neurosci Biobehav Rev 2022; 132:169-180. [PMID: 34822876 DOI: 10.1016/j.neubiorev.2021.11.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/17/2021] [Accepted: 11/21/2021] [Indexed: 11/16/2022]
Abstract
Cannabis use peaks during adolescence and emerging adulthood, and cannabis use disorder (CUD) is associated with a wide range of adverse outcomes. This is particularly pertinent in youth, because the developing brain may be more vulnerable to adverse effects of frequent cannabis use. Combining evidence-based psychosocial interventions with safe and effective pharmacotherapy is a potential avenue to improve youth outcomes, but we lack approved CUD pharmacotherapies. Here, we review new potential avenues for helping youth with CUD, with a particular focus on cannabinoid-based treatments. Evidence from placebo-controlled RCTs suggests synthetic delta-9-tetrahydrocannabinol (THC) decreases withdrawal symptoms, but not cannabis use, in adults with daily cannabis use/CUD, while findings regarding formulations containing THC combined with cannabidiol (CBD) are mixed. Preliminary evidence from two placebo-controlled RCTs in adults with CUD suggests that both Fatty Acid Amide Hydrolase inhibitors and CBD can reduce cannabis use. However, larger trials are needed to strengthen the evidence. Findings from adults point to cannabinoid-based treatments as a potential strategy that should be examined in youth with CUD.
Collapse
Affiliation(s)
- Kristine Rømer Thomsen
- Centre for Alcohol and Drug Research, Department of Psychology and Behavioral Sciences, Aarhus University, Denmark.
| | - Birgitte Thylstrup
- Centre for Alcohol and Drug Research, Department of Psychology and Behavioral Sciences, Aarhus University, Denmark
| | - Emily A Kenyon
- Department of Psychology, University of Rhode Island, USA
| | - Rachel Lees
- Addiction and Mental Health Group (AIM), Department of Psychology, University of Bath, UK
| | - Lone Baandrup
- Mental Health Centre Copenhagen and Department of Clinical Medicine, University of Copenhagen, Denmark
| | - Sarah W Feldstein Ewing
- Centre for Alcohol and Drug Research, Department of Psychology and Behavioral Sciences, Aarhus University, Denmark; Department of Psychology, University of Rhode Island, USA
| | - Tom P Freeman
- Addiction and Mental Health Group (AIM), Department of Psychology, University of Bath, UK
| |
Collapse
|
44
|
Enhancing Endocannabinoid Control of Stress with Cannabidiol. J Clin Med 2021; 10:jcm10245852. [PMID: 34945148 PMCID: PMC8704602 DOI: 10.3390/jcm10245852] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 02/08/2023] Open
Abstract
The stress response is a well-defined physiological function activated frequently by life events. However, sometimes the stress response can be inappropriate, excessive, or prolonged; in which case, it can hinder rather than help in coping with the stressor, impair normal functioning, and increase the risk of somatic and mental health disorders. There is a need for a more effective and safe pharmacological treatment that can dampen maladaptive stress responses. The endocannabinoid system is one of the main regulators of the stress response. A basal endocannabinoid tone inhibits the stress response, modulation of this tone permits/curtails an active stress response, and chronic deficiency in the endocannabinoid tone is associated with the pathological complications of chronic stress. Cannabidiol is a safe exogenous cannabinoid enhancer of the endocannabinoid system that could be a useful treatment for stress. There have been seven double-blind placebo controlled clinical trials of CBD for stress on a combined total of 232 participants and one partially controlled study on 120 participants. All showed that CBD was effective in significantly reducing the stress response and was non-inferior to pharmaceutical comparators, when included. The clinical trial results are supported by the established mechanisms of action of CBD (including increased N-arachidonylethanolamine levels) and extensive real-world and preclinical evidence of the effectiveness of CBD for treating stress.
Collapse
|
45
|
Saravia R, Ten-Blanco M, Pereda-Pérez I, Berrendero F. New Insights in the Involvement of the Endocannabinoid System and Natural Cannabinoids in Nicotine Dependence. Int J Mol Sci 2021; 22:13316. [PMID: 34948106 PMCID: PMC8715672 DOI: 10.3390/ijms222413316] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 12/14/2022] Open
Abstract
Nicotine, the main psychoactive component in tobacco smoke, plays a major role in tobacco addiction, producing a high morbidity and mortality in the world. A great amount of research has been developed to elucidate the neural pathways and neurotransmitter systems involved in such a complex addictive behavior. The endocannabinoid system, which has been reported to participate in the addictive properties of most of the prototypical drugs of abuse, is also implicated in nicotine dependence. This review summarizes and updates the main behavioral and biochemical data involving the endocannabinoid system in the rewarding properties of nicotine as well as in nicotine withdrawal and relapse to nicotine-seeking behavior. Promising results from preclinical studies suggest that manipulation of the endocannabinoid system could be a potential therapeutic strategy for treating nicotine addiction.
Collapse
Affiliation(s)
- Rocio Saravia
- Laboratory of Neuropharmacology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, PRBB, 08003 Barcelona, Spain;
| | - Marc Ten-Blanco
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, UFV, Pozuelo de Alarcón, 28223 Madrid, Spain; (M.T.-B.); (I.P.-P.)
| | - Inmaculada Pereda-Pérez
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, UFV, Pozuelo de Alarcón, 28223 Madrid, Spain; (M.T.-B.); (I.P.-P.)
| | - Fernando Berrendero
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, UFV, Pozuelo de Alarcón, 28223 Madrid, Spain; (M.T.-B.); (I.P.-P.)
| |
Collapse
|
46
|
Veerappa A, Pendyala G, Guda C. A systems omics-based approach to decode substance use disorders and neuroadaptations. Neurosci Biobehav Rev 2021; 130:61-80. [PMID: 34411560 PMCID: PMC8511293 DOI: 10.1016/j.neubiorev.2021.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/23/2021] [Accepted: 08/14/2021] [Indexed: 11/15/2022]
Abstract
Substance use disorders (SUDs) are a group of neuropsychiatric conditions manifesting due to excessive dependence on potential drugs of abuse such as psychostimulants, opioids including prescription opioids, alcohol, inhalants, etc. Experimental studies have generated enormous data in the area of SUDs, but outcomes from such data have remained largely fragmented. In this review, we attempt to coalesce these data points providing an important first step towards our understanding of the etiology of SUDs. We propose and describe a 'core addictome' pathway that behaves central to all SUDs. Besides, we also have made some notable observations paving way for several hypotheses; MECP2 behaves as a master switch during substance use; five distinct gene clusters were identified based on respective substance addiction; a central cluster of genes serves as a hub of the addiction pathway connecting all other substance addiction clusters. In addition to describing these findings, we have emphasized the importance of some candidate genes that are of substantial interest for further investigation and serve as high-value targets for translational efforts.
Collapse
Affiliation(s)
- Avinash Veerappa
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Gurudutt Pendyala
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Chittibabu Guda
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Center for Biomedical Informatics Research and Innovation, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
47
|
Navarrete F, García-Gutiérrez MS, Gasparyan A, Navarro D, Manzanares J. CB2 Receptor Involvement in the Treatment of Substance Use Disorders. Biomolecules 2021; 11:1556. [PMID: 34827554 PMCID: PMC8615453 DOI: 10.3390/biom11111556] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/06/2021] [Accepted: 10/18/2021] [Indexed: 12/11/2022] Open
Abstract
The pharmacological modulation of the cannabinoid receptor 2 (CB2r) has emerged as a promising potential therapeutic option in addiction. The purpose of this review was to determine the functional involvement of CB2r in the effects produced by drugs of abuse at the central nervous system (CNS) level by assessing evidence from preclinical and clinical studies. In rodents, several reports suggest the functional involvement of CB2r in the effects produced by drugs of abuse such as alcohol, cocaine, or nicotine. In addition, the discovery of CB2r in brain areas that are part of the reward system supports the relevance of CB2r in the field of addiction. Interestingly, animal studies support that the CB2r regulates anxiety and depression behavioral traits. Due to its frequent comorbidity with neuropsychiatric disorders, these pharmacological actions may be of great interest in managing SUD. Preliminary clinical trials are focused on exploring the therapeutic potential of modulating CB2r in treating addictive disorders. These promising results support the development of new pharmacological tools regulating the CB2r that may help to increase the therapeutic success in the management of SUD.
Collapse
Affiliation(s)
- Francisco Navarrete
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda. de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (A.G.); (D.N.)
- Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
| | - María S. García-Gutiérrez
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda. de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (A.G.); (D.N.)
- Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
| | - Ani Gasparyan
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda. de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (A.G.); (D.N.)
- Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
| | - Daniela Navarro
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda. de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (A.G.); (D.N.)
| | - Jorge Manzanares
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda. de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (A.G.); (D.N.)
- Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
| |
Collapse
|
48
|
Iman IN, Ahmad NAZ, Mohd Yusof NA, Talib UN, Norazit A, Kumar J, Mehat MZ, Hassan Z, Müller CP, Muzaimi M. Mitragynine (Kratom)-Induced Cognitive Impairments in Mice Resemble Δ9-THC and Morphine Effects: Reversal by Cannabinoid CB 1 Receptor Antagonism. Front Pharmacol 2021; 12:708055. [PMID: 34603022 PMCID: PMC8481666 DOI: 10.3389/fphar.2021.708055] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/16/2021] [Indexed: 11/29/2022] Open
Abstract
Kratom is a widely abused plant-based drug preparation with a global interest in recent years, well beyond its native grounds in Southeast Asia. Mitragynine, its major psychoactive constituent is known to exhibit opioid-like behavioral effects with resultant neuroplasticity in the brain reward system. Its chronic administration is associated with cognitive impairments in animal studies. However, the underlying molecular mechanism for such a deficit remains elusive. In this study, the involvement of cannabinoid type-1 (CB1) receptors in cognitive deficits after chronic mitragynine exposures was investigated for 28 days (with incremental dose sensitization from 1 to 25 mg/kg) in adult male Swiss albino mice using the IntelliCage® system. Chronic high-dose mitragynine exposure (5–25 mg/kg, intraperitoneal [i.p.]), but not low-dose exposure (1–4 mg/kg, i.p.), induced hyperlocomotion, potentiated the preference for sucrose reward, increased resistance to punishment, and impaired place learning and its reversal. Comparable deficits were also observed after chronic treatments with Δ-9-tetrahydrocannabinol (THC, 2 mg/kg, i.p.) or morphine (5 mg/kg, subcutaneous). Mitragynine-, morphine-, and THC-induced learning and memory deficits were reversed by co-treatment with the CB1 receptor antagonist, NIDA-41020 (10 mg/kg, i.p.). A significant upregulation of CB1 receptor expression was found in the hippocampal CA1 region and ventral tegmental area after chronic high-dose mitragynine and morphine, whereas a downregulation was observed after chronic THC. In conclusion, the present study suggests a plausible role of the CB1 receptor in mediating the dose-dependent cognitive deficits after chronic high-dose mitragynine exposure. This also highlights the potential of CB1 receptor antagonism in ameliorating the cognitive deficits associated with long-term kratom/mitragynine consumption in humans.
Collapse
Affiliation(s)
- Ismail Nurul Iman
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kota Bharu, Malaysia
| | - Nur Aimi Zawami Ahmad
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kota Bharu, Malaysia
| | - Nurul Aiman Mohd Yusof
- Department of Anatomy, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kota Bharu, Malaysia
| | - Ummi Nasrah Talib
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kota Bharu, Malaysia
| | - Anwar Norazit
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Jaya Kumar
- Department of Physiology, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Muhammad Zulfadli Mehat
- Department of Human Anatomy, Faculty of Medicine and Health Science, Universiti Putra Malaysia, Serdang, Malaysia
| | - Zurina Hassan
- Centre for Drug Research, Universiti Sains Malaysia, Minden, Malaysia
| | - Christian P Müller
- Centre for Drug Research, Universiti Sains Malaysia, Minden, Malaysia.,Section of Addiction Medicine, Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
| | - Mustapha Muzaimi
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kota Bharu, Malaysia
| |
Collapse
|
49
|
Daldegan-Bueno D, Maia LO, Glass M, Jutras-Aswad D, Fischer B. Co-exposure of cocaine and cannabinoids and its association with select biological, behavioural and health outcomes: A systematic scoping review of multi-disciplinary studies. Eur Neuropsychopharmacol 2021; 51:106-131. [PMID: 34273801 DOI: 10.1016/j.euroneuro.2021.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/03/2021] [Accepted: 06/07/2021] [Indexed: 01/18/2023]
Abstract
Cocaine use entails severe health- and social-related harms globally. Treatment options for cocaine dependence are highly limited. Benefits of cannabinoids for addiction have been documented, making it opportune to examine existing data on the possible outcomes associated with cannabinoids and cocaine co-use. We conducted a systematic scoping review following the PRISMA guidelines of peer-reviewed, English-language studies published from 2000 to 2021 in four databases (Medline, Web-of-Science, CINAHL Plus, and PsycInfo), assessing the co-exposure of cannabis/cannabinoids with cocaine on behavioural, biological or health outcomes. Both quantitative and qualitative, as well as humans and pre-clinical animals' studies (n=46) were included. Pre-clinical studies (n=19) showed mostly protective effects of cannabidiol (CBD) administration on animal models of addiction (e.g., cocaine-craving, -relapse, and -withdrawal) and cocaine-toxicity. Tetrahydrocannabinol (THC) had more inconsistent results, with both protective and counter-protective effects. Human studies (n=27) were more heterogeneous and assessed natural ongoing cannabis and cocaine use or dependence. Quantitative-based studies showed mostly enhanced harms in several outcomes (e.g., cocaine use, mental health); two available clinical trials found no effect upon CBD administration on cocaine-related treatment outcomes. Qualitative data-based studies reported cannabis use as a substitute for or to alleviate harms of crack-cocaine use. While pre-clinical studies suggest a potential of cannabinoids, especially CBD, to treat cocaine addiction, the few trials conducted in humans found no benefits. Cannabis co-use by cocaine users commonly presents a risk factor, entailing enhanced harms for users. More rigorous, controlled trials are still necessary to investigate cannabinoids' potential considering pre-clinical findings and reported benefits from specific drug users.
Collapse
Affiliation(s)
- Dimitri Daldegan-Bueno
- Schools of Population Health and Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Lucas O Maia
- Centre for Applied Research in Mental Health & Addiction, Simon Fraser University, Vancouver, Canada
| | - Michelle Glass
- Department of Pharmacology and Toxicology, University of Otago, Otago, New Zealand
| | - Didier Jutras-Aswad
- Centre de Recherche, Centre Hospitalier Universitaire de Universite de Montreal (CHUM), Montreal, Canada; Department of Psychiatry and Addiction, Faculty of Medicine, Université de Montréal, Montreal, Canada
| | - Benedikt Fischer
- Schools of Population Health and Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; Centre for Applied Research in Mental Health & Addiction, Simon Fraser University, Vancouver, Canada; Department of Psychiatry, University of Toronto, Toronto, Canada; Department of Psychiatry, Federal University of Sao Paulo (UNIFESP), Sao Paulo, Brazil.
| |
Collapse
|
50
|
Lowe H, Toyang N, Steele B, Bryant J, Ngwa W, Nedamat K. The Current and Potential Application of Medicinal Cannabis Products in Dentistry. Dent J (Basel) 2021; 9:106. [PMID: 34562980 PMCID: PMC8466648 DOI: 10.3390/dj9090106] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/10/2021] [Accepted: 08/31/2021] [Indexed: 01/02/2023] Open
Abstract
Oral and dental diseases are a major global burden, the most common non-communicable diseases (NCDs), and may even affect an individual's general quality of life and health. The most prevalent dental and oral health conditions are tooth decay (otherwise referred to as dental caries/cavities), oral cancers, gingivitis, periodontitis, periodontal (gum) disease, Noma, oro-dental trauma, oral manifestations of HIV, sensitive teeth, cracked teeth, broken teeth, and congenital anomalies such as cleft lip and palate. Herbs have been utilized for hundreds of years in traditional Chinese, African and Indian medicine and even in some Western countries, for the treatment of oral and dental conditions including but not limited to dental caries, gingivitis and toothaches, dental pulpitis, halitosis (bad breath), mucositis, sore throat, oral wound infections, and periodontal abscesses. Herbs have also been used as plaque removers (chew sticks), antimicrobials, analgesics, anti-inflammatory agents, and antiseptics. Cannabis sativa L. in particular has been utilized in traditional Asian medicine for tooth-pain management, prevention of dental caries and reduction in gum inflammation. The distribution of cannabinoid (CB) receptors in the mouth suggest that the endocannabinoid system may be a target for the treatment of oral and dental diseases. Most recently, interest has been geared toward the use of Cannabidiol (CBD), one of several secondary metabolites produced by C. sativa L. CBD is a known anti-inflammatory, analgesic, anxiolytic, anti-microbial and anti-cancer agent, and as a result, may have therapeutic potential against conditions such burning mouth syndrome, dental anxiety, gingivitis, and possible oral cancer. Other major secondary metabolites of C. sativa L. such as terpenes and flavonoids also share anti-inflammatory, analgesic, anxiolytic and anti-microbial properties and may also have dental and oral applications. This review will investigate the potential of secondary metabolites of C. sativa L. in the treatment of dental and oral diseases.
Collapse
Affiliation(s)
- Henry Lowe
- Biotech R & D Institute, University of the West Indies, Mona 99999, Jamaica; (H.L.); (J.B.)
- Vilotos Pharmaceuticals Inc., Baltimore, MD 21202, USA;
- Flavocure Biotech Inc., Baltimore, MD 21202, USA
- Department of Medicine, University of Maryland Medical School, Baltimore, MD 21202, USA
| | - Ngeh Toyang
- Vilotos Pharmaceuticals Inc., Baltimore, MD 21202, USA;
- Flavocure Biotech Inc., Baltimore, MD 21202, USA
| | - Blair Steele
- Biotech R & D Institute, University of the West Indies, Mona 99999, Jamaica; (H.L.); (J.B.)
| | - Joseph Bryant
- Biotech R & D Institute, University of the West Indies, Mona 99999, Jamaica; (H.L.); (J.B.)
| | - Wilfred Ngwa
- Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA;
- School of Medicine, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Kaveh Nedamat
- Sloan School of Management, Massachusetts Institute of Technology, Cambridge, MA 02142, USA;
- Auraleaf Innovations, Toronto, ON M9B 4H6, Canada
| |
Collapse
|