1
|
Li Y, Gu Y, Shi Y, Zhang B, Pan S, Chai Y, Chen X, Yuan Y. Application of a dual channel MPTS-modified two-dimensional cell membrane chromatography system for rapid screening of effective ingredients in Saposhnikovia divaricata targeting inflammatory macrophages and fibroblast synovial cells in the treatment of rheumatoid arthritis. J Pharm Biomed Anal 2025; 255:116595. [PMID: 39631165 DOI: 10.1016/j.jpba.2024.116595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024]
Abstract
Saposhnikovia divaricata (SD) is a traditional Chinese medicine (TCM) which has been commonly used for the treatment of rheumatoid arthritis (RA). However, its active components and mechanism of anti-RA are still unclear. Targeting rheumatoid arthritis-fibroblastoid synovial (RA-FLS) and synovial macrophages are promising strategies for RA treatment, and their membrane receptors are important targets for anti-RA active substances. A dual channel 3-mercaptopropyltrimethoxysilane (MPTS) modified 2D cell membrane chromatography (CMC) system was established to characterize dual-cell membrane binding active components in SD. Nine components retained on RAW-CMC column and 8 components retained on FLS-CMC column were screened out. Among them, 8 components retained well on both CMC columns. We further validate the pharmacological activity of 5-O-methylvisammioside, 3'-O-angeloylhamaudol, imperatorin, phellopterin and anomalin. They could efficiently target both inflammatory macrophages and fibroblast synovial cells, reduce the release of inflammatory factors, inhibit abnormal cell proliferation, and promote cell apoptosis. 5-O-methylvisammioside, which exhibited the best pharmacological ability on both target cells, inhibited the NF-κB pathway. Our results showed that the dual channel MPTS modified 2D CMC system is a practical method for rapid screening the active components in TCM binding on multiple target cells' membrane protein of a disease. The method is very suitable for elucidating the mechanism of TCM with multiple-components and targets, and rapid screening of lead compounds.
Collapse
Affiliation(s)
- Yueyue Li
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
| | - Yanqiu Gu
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
| | - Yuhuan Shi
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
| | - Bin Zhang
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
| | - Shu Pan
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
| | - Yifeng Chai
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Xiaofei Chen
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Yongfang Yuan
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China.
| |
Collapse
|
2
|
Lin YY, Huang CC, Ko CY, Tsai CH, Chang JW, Achudhan D, Tang CH. Omentin-1 modulates interleukin expression and macrophage polarization: Implications for rheumatoid arthritis therapy. Int Immunopharmacol 2025; 149:114205. [PMID: 39908806 DOI: 10.1016/j.intimp.2025.114205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/23/2025] [Accepted: 01/30/2025] [Indexed: 02/07/2025]
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a systemic inflammatory and autoimmune disorder in which monocytes/macrophage infiltrate synovial membrane, differentiating into the pro- and anti-inflammatory M1 and M2 macrophage phenotypes. Omentin-1 is one of the adipokines that has anti-inflammatory and immunomodulatory effects; nevertheless, investigators have yet to elucidate the function of omentin-1 in RA development. It is still unclear how omentin-1 affects human autoimmune disease and what its beneficial role is. Thus, we show that omentin-1 exhibits a therapeutic effect on RA. METHODS Utilizing patient or animal tissue, MH7A cell-line, ELISA, and qPCR, we examined the expression of omentin-1 and inflammatory cytokines in the GEO databases. Omentin-1's effects on macrophage polarization were investigated using Immunofluorescence staining (IF) and qPCR. Additionally, the method by which omentin-1 regulates interleukins was discovered by IF labeling for STAT6 translocation, siRNA transfection, IPA software using several and pharmacological inhibitors. Omentin-1's effects were examined in an in vivo investigation using the type II collagen-induced arthritis model, micro-CT, and histological evaluation. RESULTS Results from the GSE97779 dataset and patients' tissues discovered that the level of omentin-1 and M2 macrophage markers are downregulated in human RA tissue samples compared to healthy tissue and negatively correlated with the expression of pro-inflammatory interleukins (ILs) and M1 macrophage. Stimulation of RA synovial fibroblasts with omentin-1 augmented IL-4 synthesis and subsequently enhanced anti-inflammatory ability as well as M2 polarization. The STAT6 transactivation through AMPK, PI3K, ERK, and JAK cascades regulates omentin-1-induced promotion of IL-4. Importantly, intra-articular injection of omentin-1 blocked collagen-induced arthritis-augmented pro-inflammatory response, cartilage degradation, and bone loss through upregulating IL-4 and M2 macrophages in vivo. CONCLUSION Our findings support a potential therapy goal for RA and a tenable mechanism to explain the relationship between omentin-1.
Collapse
Affiliation(s)
- Yen-You Lin
- Translational Medicine Center, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan; Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Chien-Chung Huang
- School of Medicine, China Medical University, Taichung, Taiwan; Division of Immunology and Rheumatology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Chih-Yuan Ko
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan; Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Chun-Hao Tsai
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan; Department of Sports Medicine, College of Health Care, China Medical University, Taichung, Taiwan
| | - Jun-Way Chang
- The Ph.D. Program of Biotechnology and Biomedical Industry, China Medical University, Taichung, Taiwan
| | - David Achudhan
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Chih-Hsin Tang
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan; Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan; The Ph.D. Program of Biotechnology and Biomedical Industry, China Medical University, Taichung, Taiwan; Chinese Medicine Research Center, China Medical University, Taichung, Taiwan; Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan.
| |
Collapse
|
3
|
Luo Y, Jiang LY, Liao ZZ, Wang YY, Wang YD, Xiao XH. Metabolic Regulation of Inflammation: Exploring the Potential Benefits of Itaconate in Autoimmune Disorders. Immunology 2025; 174:189-202. [PMID: 39542834 DOI: 10.1111/imm.13875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/17/2024] Open
Abstract
Itaconic acid and its metabolites have demonstrated significant therapeutic potential in various immune diseases. Originating from the tricarboxylic acid cycle in immune cells, itaconic acid can modulate immune responses, diminish inflammation, and combat oxidative stress. Recent research has uncovered multiple mechanisms through which itaconic acid exerts its effects, including the inhibition of inflammatory cytokine production, activation of anti-inflammatory pathways, and modulation of immune cell function by regulating cellular metabolism. Cellular actions are influenced by the modulation of metabolic pathways, such as inhibiting succinate dehydrogenase (SDH) activity or glycolysis, activation of nuclear-factor-E2-related factor 2 (Nrf2), boosting cellular defences against oxidative stress, and suppression of immune cell inflammation through the NF-κB pathway. This comprehensive review discusses the initiation, progression, and mechanisms of action of itaconic acid and its metabolites, highlighting their modulatory effects on various immune cell types. Additionally, it examines their involvement in immune disease like rheumatoid arthritis, multiple sclerosis, type 1 diabetes mellitus, and autoimmune hepatitis, offering greater understanding for creating new therapies for these ailments.
Collapse
Affiliation(s)
- Yin Luo
- The First Affiliated Hospital, Department of Metabolism and Endocrinology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Li-Yan Jiang
- The First Affiliated Hospital, Department of Metabolism and Endocrinology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Zhe-Zhen Liao
- The First Affiliated Hospital, Department of Metabolism and Endocrinology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yuan-Yuan Wang
- The First Affiliated Hospital, Department of Metabolism and Endocrinology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Ya-Di Wang
- The First Affiliated Hospital, Department of Metabolism and Endocrinology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xin-Hua Xiao
- The First Affiliated Hospital, Department of Metabolism and Endocrinology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
4
|
Liu H, Li Q, Chen Y, Dong M, Liu H, Zhang J, Yang L, Yin G, Xie Q. Suberosin attenuates rheumatoid arthritis by repolarizing macrophages and inhibiting synovitis via the JAK/STAT signaling pathway. Arthritis Res Ther 2025; 27:12. [PMID: 39838477 PMCID: PMC11748358 DOI: 10.1186/s13075-025-03481-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 01/12/2025] [Indexed: 01/23/2025] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a systemic disease that primarily manifests as chronic synovitis of the symmetric small joints. Despite the availability of various targeted drugs for RA, these treatments are limited by adverse reactions, warranting new treatment approaches. Suberosin (SBR), isolated from Plumbago zeylanica-a medicinal plant traditionally used to treat RA in Asia-possesses notable biological activities. This study aimed to investigate the effects and potential underlying pathways of SBR on RA. METHODS Tumor necrosis factor-alpha (TNF-α) induced inflammation in RA-derived fibroblast-like synoviocytes (RA-FLS), and the expression of proinflammatory mediators was assessed using q-RT PCR and ELISA after treatment with various SBR concentrations. Bone marrow-derived macrophages (BMDMs) were induced to differentiate into M1 and M2 macrophages, followed by treatment with various SBR concentrations and macrophage polarization assessment. Low-dose (0.5 mg/kg/d) and high-dose (2 mg/kg/d) SBR regimens were administered to a collagen-induced arthritis (CIA) mouse model for 21 days, and the anti-arthritic effects of SBR were evaluated. Network pharmacology and molecular docking analyses were used to predict the anti-arthritic targets of SBR. The effect of SBR on the Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway was evaluated. RESULTS SBR suppressed macrophage polarization toward the M1 phenotype while enhancing their polarization toward the M2 phenotype. SBR reduced the levels of proinflammatory mediators in TNF-α-induced RA-FLS. Mechanistically, SBR inhibited the phosphorylation of the JAK1/STAT3 signaling pathway in RA-FLS and M1 macrophages and promoted the phosphorylation of the JAK1/STAT6 pathway in M2 macrophages, enhancing M2 polarization. In vivo, prophylactic treatment of low-dose SBR reduced M1 macrophage infiltration into synovial tissue, increased the proportion of M2 macrophages, and decreased the expression of inflammatory mediators in the serum and synovial tissue, alleviating synovial inflammation. SBR significantly alleviated arthritis in CIA mice through macrophage repolarization and inhibition of inflammation. CONCLUSION SBR significantly reduced clinical symptoms, joint pathological damage, and expression inflammatory cytokine expression in CIA mice. SBR exhibited anti-arthritic effects via the JAK1/STAT3 and JAK1/STAT6 signaling pathways, inhibiting synovial tissue inflammation and M1 macrophage polarization while promoting M2 macrophage polarization. Therefore, SBR may be an effective candidate for RA treatment.
Collapse
Affiliation(s)
- Huan Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qianwei Li
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuehong Chen
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Min Dong
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hongjiang Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiaqian Zhang
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Leiyi Yang
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Geng Yin
- Department of General Practice, West China Hospital, General Practice Medical Center, Sichuan University, Chengdu, 610041, China.
| | - Qibing Xie
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
5
|
Lu W, Wen J. Anti-Inflammatory Effects of Hydrogen Sulfide in Axes Between Gut and Other Organs. Antioxid Redox Signal 2024. [DOI: 10.1089/ars.2023.0531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Weizhuo Lu
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Medical Branch, Hefei Technology College, Hefei, China
| | - Jiyue Wen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
6
|
Puppala ER, Prasad N, Prakash AN, Abubakar M, Syamprasad NP, Gangasani JK, Naidu VGM. Mesua assamica (King & Prain) kosterm. bark ethanolic extract attenuates rheumatoid arthritis via down-regulating TLR4/NF-κB/COX-2/iNOS and activation of Nrf2/HO-1 pathways: A comprehensive study on in-vitro and in-vivo models. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118671. [PMID: 39103024 DOI: 10.1016/j.jep.2024.118671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/14/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Rheumatoid arthritis (RA) is a multifactorial, polygenic inflammatory disease. Mesua assamica (King & Prain) Kosterm. (MA) is an endangered medicinal plant indigenous to South Asia, primarily to Assam in India. The tree bark is claimed to possess anti-inflammatory, anti-diabetic, anti-cancer, and anti-malarial properties; nevertheless, its role in RA has not been elucidated. Hence, this study aims to investigate the in-vitro and in-vivo anti-arthritic effects of Mesua assamica bark ethanolic extract (MAE). AIM OF THE STUDY This study aims to investigate the anti-rheumatic potential of MAE in-vitro on RAW 264.7 cells for its anti-oxidant and anti-inflammatory activities and in-vivo on the CFA-induced adjuvant arthritis in the rat model. MATERIALS AND METHODS We investigated the possible therapeutic effects of MAE in-vitro using RAW 264.7 cells triggered by LPS. Meanwhile, adult Wistar rats were injected intradermally with 100 μl of CFA to induce arthritis, and they were given MAE orally at doses of 100 and 200 mg/kg for up to 28 days. Paw volume analysis, X-ray radiography, anti-oxidant levels analysis, gene and protein expression studies, and histological analysis were carried out to assess the effects of MAE in-vivo. RESULTS MAE significantly mitigated the inflammation by reducing ROS levels and dropped the nitrite, PGE2, and COX-2 levels enhanced by LPS in-vitro. At the same time, MAE treatment reduced the paw and joint inflammation and increased the immune organ index in the CFA rats. Histopathology data revealed that MAE mitigated the CFA-induced lesions of the ankle joints and synovial tissues. Similarly, MAE significantly abated the secretion of pro-inflammatory cytokines, inhibited the protein expression of TLR4, NF-кB, COX-2, and iNOS, as well as improved the Nrf2 and HO-1 levels in-vitro and in-vivo. CONCLUSION All the results highlighted the anti-rheumatic potential of MAE in RA in-vitro and in-vivo by inhibiting the TLR4/NF-кB/COX-2/iNOS and promoting the Nrf2/HO-1 signaling axis.
Collapse
Affiliation(s)
- Eswara Rao Puppala
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Assam, 781101, India; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Baltimore School of Medicine, Baltimore, MD, 21201, USA
| | - Neethu Prasad
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Assam, 781101, India
| | - Arun N Prakash
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Assam, 781101, India
| | - Md Abubakar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Assam, 781101, India
| | - N P Syamprasad
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Assam, 781101, India
| | - Jagadeesh Kumar Gangasani
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Assam, 781101, India
| | - V G M Naidu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Assam, 781101, India.
| |
Collapse
|
7
|
Poon EK, Liu L, Wu KC, Lim J, Sweet MJ, Lohman RJ, Iyer A, Fairlie DP. A novel inhibitor of class IIa histone deacetylases attenuates collagen-induced arthritis. Br J Pharmacol 2024; 181:4804-4821. [PMID: 39223784 DOI: 10.1111/bph.17306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 06/15/2024] [Accepted: 06/27/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND AND PURPOSE Most inhibitors of histone deacetylases (HDACs) are not selective and are cytotoxic. Some have anti-inflammatory activity in disease models, but cytotoxicity prevents long-term uses in non-fatal diseases. Inhibitors selective for class IIa HDACs are much less cytotoxic and may have applications in management of chronic inflammatory diseases. EXPERIMENTAL APPROACH LL87 is a novel HDAC inhibitor examined here for HDAC enzyme selectivity. It was also investigated in macrophages for cytotoxicity and for inhibition of lipopolysaccharide (LPS)-stimulated cytokine secretion. In a rat model of collagen-induced arthritis, LL87 was investigated for effects on joint inflammation in Dark Agouti rats. Histological, immunohistochemical, micro-computed tomography and molecular analyses characterise developing arthritis and anti-inflammatory efficacy. KEY RESULTS LL87 was significantly more inhibitory against class IIa than class I or IIb HDAC enzymes. In macrophages, LL87 was not cytotoxic and reduced both LPS-induced secretion of pro-inflammatory cytokines, and IL6-induced class IIa HDAC activity. In rats, LL87 attenuated paw swelling and clinical signs of arthritis, reducing collagen loss and histological damage in ankle joints. LL87 decreased immune cell infiltration, especially pro-inflammatory macrophages and osteoclasts, into synovial joints and significantly reduced expression of pro-inflammatory cytokines and tissue-degrading proteases. CONCLUSION AND IMPLICATIONS A novel inhibitor of class IIa HDACs has been shown to have an anti-inflammatory and anti-arthritic profile distinct from current therapies. It is efficacious in reducing macrophage infiltration and joint inflammation in a chronic model of rat arthritis.
Collapse
Affiliation(s)
- Eunice K Poon
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia
| | - Ligong Liu
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Kai-Chen Wu
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia
| | - Junxian Lim
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia
| | - Matthew J Sweet
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Rink-Jan Lohman
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Abishek Iyer
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - David P Fairlie
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
8
|
Khot S, Tackley G, Choy E. How to Distinguish Non-Inflammatory from Inflammatory Pain in RA? Curr Rheumatol Rep 2024; 26:403-413. [PMID: 39120749 PMCID: PMC11527911 DOI: 10.1007/s11926-024-01159-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2024] [Indexed: 08/10/2024]
Abstract
PURPOSE OF THE REVIEW Managing non-inflammatory pain in rheumatoid arthritis (RA) can be a huge burden for the rheumatologist. Pain that persists despite optimal RA treatment is extremely challenging for patient and physician alike. Here, we outline the latest research relevant to distinguishing non-inflammatory from inflammatory RA pain and review the current understanding of its neurobiology and management. RECENT FINDINGS Nociplastic pain is a recently introduced term by the international pain community. Its definition encompasses the non-inflammatory pain of RA and describes pain that is not driven by inflamed joints or compromised nerves, but that is instead driven by a functional reorganisation of the central nervous system (CNS). Insights from all areas of nociplastic pain research, including fibromyalgia, support a personalised pain management approach for non-inflammatory pain of RA, with evidence-based guidelines favouring use of non-pharmacological interventions. Future developments include novel CNS targeting pharmacotherapeutic approaches to treat nociplastic pain.
Collapse
Affiliation(s)
- Sharmila Khot
- Department of Anaesthesia, Intensive Care and Pain Medicine, Cardiff and Vale University Health Board, Cardiff CF14 4XW and Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Maindy Road, Cardiff, Wales, CF24 4HQ, UK.
| | - George Tackley
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Maindy Road, Cardiff, Wales, CF24 4HQ, UK
| | - Ernest Choy
- Head of Rheumatology and Translational Research at the Division of Infection and Immunity and Director of the Cardiff Regional Experimental Arthritis Treatment and Evaluation (CREATE) Centre at Cardiff University School of Medicine, Cardiff, Wales, UK, CF14 4YS
| |
Collapse
|
9
|
Cao J, Yang Z. FOXA2 inhibits the TLR4/NF-κB signaling pathway and alleviates inflammatory activation of macrophages in rheumatoid arthritis by repressing LY96 transcription. Cytokine 2024; 184:156796. [PMID: 39486110 DOI: 10.1016/j.cyto.2024.156796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/21/2024] [Accepted: 10/24/2024] [Indexed: 11/04/2024]
Abstract
BACKGROUND Rheumatoid arthritis (RA) remains a devastating autoimmune disease characterized by joint damage, inflammation, and disability. This study investigates the function of lymphocyte antigen 96 (LY96) in the inflammatory response in RA and explores its regulatory mechanism. METHODS A mouse model of RA was developed using type II collagen, and the LY96 expression in the ankle joint tissue was determined. Upstream regulators targeting LY96 were investigated using bioinformatics, followed by chromatin immunoprecipitation and luciferase reporter assays for validation. Gain- or loss-of-functions of LY96 and forkhead box A2 (FOXA2) were performed to analyze their roles in arthritis score, pathological changes, and inflammatory responses in mice. The effects of FOXA2 and LY96 on pro-inflammatory activation of macrophages were additionally investigated in vitro using a mouse RAW264.7 macrophage model with lipopolysaccharide treatment. RESULTS LY96 mRNA and protein (MD-2) levels were increased in the RA mice. Knockdown of LY96 alleviated arthritis severity, joint deformities, inflammation, and cartilage destruction in mice. In vitro, the LY96 knockdown reduced the pro-inflammatory activation of RAW264.7 macrophages by inhibiting the TLR4/NF-κB inflammatory signaling transduction. FOXA2 was identified as a transcriptional repressor of LP96 poorly expressed in RA. Overexpression of FOXA2 similarly alleviated inflammation and reduced M1-type macrophages in vivo and in vitro. However, these changes were reversed by the additional LY96 upregulation. CONCLUSION This study suggests that FOXA2 represses LY96 transcription to inhibit the TLR4/NF-κB signaling transduction, thus reducing pro-inflammatory activation of macrophages in the context of RA.
Collapse
Affiliation(s)
- Jin Cao
- Department of Rheumatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, PR China
| | - Zhaowen Yang
- Department of Rheumatology, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, Shandong, PR China.
| |
Collapse
|
10
|
Liu X, Wang T, Xiang R, Sun H, Zhao M, Ye X, Zhou Y, Wang G, Zhou Y. Anti-inflammatory effects of 1,7-dihydroxy-3,4-dimethoxyxanthone through inhibition of M1-phenotype macrophages via arginine/mitochondrial axis. Immunol Res 2024; 72:1404-1416. [PMID: 39349673 DOI: 10.1007/s12026-024-09538-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/02/2024] [Indexed: 02/06/2025]
Abstract
It is known that 1,7-dihydroxy-3,4-dimethoxyxanthone (XAN), derived from Securidaca inappendiculata Hassk., exhibits anti-inflammatory and analgesic activities and inhibits M1 polarization of macrophages. However, its ability to alleviate inflammation induced by pro-inflammatory cytokines in THP-1 cells and its anti-inflammatory mechanisms remain unclear. THP-1 cells were treated with phorbol 12-myristate-13-acetate to differentiate and divided into three groups. They were stimulated with lipopolysaccharide (LPS) and interferon-γ (IFN-γ). The toxicity of XAN was assessed using Cell Counting Kit-8, and the expression of various genes and proteins was analyzed using real-time quantitative polymerase chain reaction, flow cytometry, and western blotting. Transmission electron microscopy was used to observe changes in mitochondrial structure. XAN at concentrations ≤ 10 µg/mL did not affect THP-1 cell viability and reduced the mRNA expression of pro-inflammatory factors, including interleukin (IL)-1β, inducible nitric oxide synthase (iNOS), NOD-like receptor thermal protein domain protein 3 (NLRP3), and tumor necrosis factor-α (TNF-α). XAN also increased the levels of anti-inflammatory factors, including chemokine ligand 22, mannose receptor (CD206), IL-10, peroxisome proliferator-activated receptor-γ, and transglutaminase 2. Additionally, XAN downregulated the expression of inflammation-related proteins iNOS, NLRP3, and IL-1β; significantly increased the expression of arginase 1, ornithine decarboxylase, and arginine metabolism-related proteins and genes; inhibited mitochondrial damage; and reduced reactive oxygen species (ROS) generation. XAN enhanced the arginine metabolism pathway, prevented mitochondrial damage, reduced ROS levels, and provided an effective defensive response against LPS/IFN-γ-induced inflammation.
Collapse
Affiliation(s)
- Xin Liu
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Wannan Medical College, Wuhu, 241002, China
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Wannan Medical College, Wuhu, 241002, China
| | - Ting Wang
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Wannan Medical College, Wuhu, 241002, China
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Wannan Medical College, Wuhu, 241002, China
| | - Ruoxuan Xiang
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Wannan Medical College, Wuhu, 241002, China
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Wannan Medical College, Wuhu, 241002, China
| | - Huazhan Sun
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Wannan Medical College, Wuhu, 241002, China
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Wannan Medical College, Wuhu, 241002, China
| | - Mengyan Zhao
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Wannan Medical College, Wuhu, 241002, China
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Wannan Medical College, Wuhu, 241002, China
| | - Xiaojuan Ye
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Wannan Medical College, Wuhu, 241002, China
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Wannan Medical College, Wuhu, 241002, China
| | - Yuyun Zhou
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Wannan Medical College, Wuhu, 241002, China
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Wannan Medical College, Wuhu, 241002, China
| | - Guodong Wang
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Wannan Medical College, Wuhu, 241002, China.
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Wannan Medical College, Wuhu, 241002, China.
- Anhui Provincial Engineering Laboratory for Screening and Re-Evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Wannan Medical College, Wuhu, 241002, China.
- Anhui Provincial Key Laboratory of Active Biological Macromolecules, Wannan Medical College, Wuhu, 241002, China.
| | - Yuyan Zhou
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Wannan Medical College, Wuhu, 241002, China.
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Wannan Medical College, Wuhu, 241002, China.
- Anhui Provincial Engineering Laboratory for Screening and Re-Evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Wannan Medical College, Wuhu, 241002, China.
- Anhui Provincial Key Laboratory of Active Biological Macromolecules, Wannan Medical College, Wuhu, 241002, China.
| |
Collapse
|
11
|
Abebaw D, Akelew Y, Adugna A, Teffera ZH, Tegegne BA, Fenta A, Selabat B, Amare GA, Getinet M, Jemal M, Baylie T, Atnaf A. Extracellular vesicles: immunomodulation, diagnosis, and promising therapeutic roles for rheumatoid arthritis. Front Immunol 2024; 15:1499929. [PMID: 39624102 PMCID: PMC11609219 DOI: 10.3389/fimmu.2024.1499929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 10/30/2024] [Indexed: 01/03/2025] Open
Abstract
Extracellular vesicles (EV) can be produced as part of pathology and physiology with increased amounts in pathological conditions. EVs can carry and transfer cargo such as proteins, nucleic acids, and lipids to target cells and mediate intercellular communication resulting in modulation of gene expression, signaling pathways, and phenotype of recipient cells. EVs greatly influence the extracellular environment and the immune response. Their immunomodulatory properties are crucial in rheumatoid arthritis (RA), a condition marked by dysregulated immune response. EVs can modulate the functions of innate and adaptive immune cells in RA pathogenesis. Differentially expressed EV-associated molecules in RA, such as microRNAs (miRNAs), long-noncoding RNAs (lncRNAs), messenger RNAs (mRNAs) and proteins are promising markers to diagnose the disease. miRNA, lncRNA, and circular RNA (circRNA) cargos in EV regulate inflammation and the pathogenic functions of RA fibroblast-like synoviocytes (RA-FLS). Downregulated molecules in RA tissue and drugs can be encapsulated in EVs for RA therapy. This review provides an updated overview of EVs' immunomodulatory, diagnostic, and therapeutic roles, particularly emphasizing mesenchymal stem cell-derived EVs (MSC-EVs).
Collapse
Affiliation(s)
- Desalegn Abebaw
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Yibeltal Akelew
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Debre Markos University, Debre Markos, Ethiopia
- Department of Medicine, Centre for Inflammatory Diseases, Monash University, Clayton, VIC, Australia
| | - Adane Adugna
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Zigale Hibstu Teffera
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Bantayehu Addis Tegegne
- Department of Pharmacy, College of Medicine and Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Abebe Fenta
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Bantegize Selabat
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Gashaw Azanaw Amare
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Mamaru Getinet
- Department of Biomedical Sciences, School of Medicine, Debre Markos University, Debre Markos, Ethiopia
| | - Mohammed Jemal
- Department of Biomedical Sciences, School of Medicine, Debre Markos University, Debre Markos, Ethiopia
| | - Temesgen Baylie
- Department of Biomedical Sciences, School of Medicine, Debre Markos University, Debre Markos, Ethiopia
| | - Aytenew Atnaf
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| |
Collapse
|
12
|
Zhang P, Yang J, Wang Z, Wang H, An M, Yakufu M, Wang W, Liu Y, Liu W, Li C. An injectable self-lubricating supramolecular polymer hydrogel loaded with platelet lysate to boost osteoarthritis treatment. J Control Release 2024; 376:20-36. [PMID: 39362609 DOI: 10.1016/j.jconrel.2024.09.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
Globally, osteoarthritis (OA) is the most prevalent joint disease and is characterized by infiltration of M1 macrophages in the synovium, anabolic-catabolic imbalance of the extracellular matrix (ECM), increased articular shear force and overproduction of reactive oxygen species (ROS). Disease-modifying OA drugs are not yet available, and treatments for OA focus solely on reducing pain and inflammation and have limited therapeutic effect. Herein, we developed an injectable self-lubricating poly(N-acryloyl alaninamide) (PNAAA) hydrogel loaded with platelet lysate (PL) (termed "PNAAA@PL") for treating OA. Tribological and drug release tests revealed suitable lubrication properties and sustained release of bioactive factors in PNAAA@PL. In vitro experiments showed that PNAAA@PL alleviated interleukin-1β (IL-1β)-induced anabolic-catabolic imbalance of chondrocytes and repolarized pro-inflammatory M1 macrophages to the anti-inflammatory M2 phenotype via intracellular ROS scavenging. Additionally, the PNAAA@PL hydrogel enhanced the migratory capacity and chemotaxis ability of stem cells, which are essential for chondrogenesis. In vivo, the functionalized PNAAA@PL hydrogel acted like synovial fluid following intra-articular injection into a rat OA model with anterior cruciate ligament transection, ultimately attenuating cartilage degeneration and synovitis. According to molecular mechanism studies, PNAAA@PL repairs cartilage in the OA model by inhibiting the NF-ĸB pathway. Overall, this self-lubricating PNAAA@PL hydrogel offers a comprehensive strategy for preventing OA progression by engineering a biophysiochemical microenvironment to generate high-quality hyaline cartilage.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing 100048, China; Department of Sports Medicine, Characteristic Medical Center of Chinese People's Armed Police Forces, Tianjin 300162, China
| | - Jianhai Yang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Zhuoya Wang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Hongying Wang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Mingyang An
- Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing 100048, China
| | - Maihemuti Yakufu
- Department of Orthopedic Research Center, Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi 830002, China
| | - Wenliang Wang
- Department of Sports Medicine, Characteristic Medical Center of Chinese People's Armed Police Forces, Tianjin 300162, China
| | - Yujie Liu
- Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing 100048, China.
| | - Wenguang Liu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China.
| | - Chunbao Li
- Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing 100048, China.
| |
Collapse
|
13
|
Wu Y, Zhang Y, Wang Z, Lu Y, Wang Y, Pan J, Liu C, Zhu W, Wang Y. Bitongqing Attenuates CIA Rats by Suppressing Macrophage Pyroptosis and Modulating the NLRP3/Caspase-1/GSDMD Pathway. J Inflamm Res 2024; 17:5453-5469. [PMID: 39165322 PMCID: PMC11335010 DOI: 10.2147/jir.s466624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/02/2024] [Indexed: 08/22/2024] Open
Abstract
Background Rheumatoid arthritis (RA) is an autoimmune disease characterized by synovitis and inflammatory cell infiltration. The traditional Chinese medicine prescription, Bitongqing (BTQ) exhibited significant efficacy in the clinical treatment of RA. However, the potential therapeutic mechanisms of BTQ in treating RA have not been fully investigated. This study aims to elucidate the effect of BTQ on collagen-induced arthritis (CIA) rat macrophage pyroptosis, providing a theoretical basis for treating RA. Methods This research employed liquid chromatography-mass spectrometry (LC-MS) to identify the primary components of BTQ. The therapeutic effects of BTQ were evaluated in a rat model of CIA. In vivo experiments were conducted using pathohistological staining, immunofluorescence, micro-CT, and Western blotting. Next, Mouse leukemia cells of monocyte macrophage cells (RAW264.7) were induced to undergo pyroptosis using lipopolysaccharide (LPS) and adenosine triphosphate (ATP), and the impact of BTQ on RAW264.7 macrophages was assessed through cell viability, immunofluorescence analysis, lactate dehydrogenase (LDH) secretion measurement, and Western blotting. Results BTQ had a therapeutic effect on CIA rats, which was mainly manifested as a reduction in joint inflammation, foot swelling, bone erosion, and amelioration of pathological changes in these rats. Further studies revealed that BTQ inhibited the levels of cytokine production interleukin-18 (IL-18) and interleukin-1β (IL-1β), and likewise, it inhibited the expression of key proteins in the NOD-like receptor thermal protein domain associated protein 3 (NLRP3) mediated pyroptosis in the synovial tissues of CIA rats. The results of in vitro experiments demonstrated that BTQ attenuated LDH secretion, decreased IL-18 and IL-1β cytokine production, and downregulated expression of key proteins involved in the NLRP3-mediated pyroptosis on RAW264.7 macrophages. Conclusion The therapeutic potential of BTQ in CIA lies in its ability to inhibit NLRP3-mediated macrophage pyroptosis, thereby suggesting a promising strategy for the treatment of RA.
Collapse
Affiliation(s)
- Yunxia Wu
- Academy of First Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
| | - Yue Zhang
- Academy of First Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
| | - Zishan Wang
- Academy of First Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
| | - Yun Lu
- Academy of First Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
| | - Yabei Wang
- Academy of First Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
| | - Jie Pan
- Academy of First Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
| | - Chenxi Liu
- Academy of First Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
| | - Wen Zhu
- Department of Rheumatology & Immunology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
| | - Yue Wang
- Department of Rheumatology & Immunology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
| |
Collapse
|
14
|
Laha A, Nasra S, Bhatia D, Kumar A. Advancements in rheumatoid arthritis therapy: a journey from conventional therapy to precision medicine via nanoparticles targeting immune cells. NANOSCALE 2024; 16:14975-14993. [PMID: 39056352 DOI: 10.1039/d4nr02182g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Rheumatoid arthritis (RA) is a progressive autoimmune disease that mainly affects the inner lining of the synovial joints and leads to chronic inflammation. While RA is not known as lethal, recent research indicates that it may be a silent killer because of its strong association with an increased risk of chronic lung and heart diseases. Patients develop these systemic consequences due to the regular uptake of heavy drugs such as disease-modifying antirheumatic medications (DMARDs), glucocorticoids (GCs), nonsteroidal anti-inflammatory medicines (NSAIDs), etc. Nevertheless, a number of these medications have off-target effects, which might cause adverse toxicity, and have started to become resistant in patients as well. Therefore, alternative and promising therapeutic techniques must be explored and adopted, such as post-translational modification inhibitors (like protein arginine deiminase inhibitors), RNA interference by siRNA, epigenetic drugs, peptide therapy, etc., specifically in macrophages, neutrophils, Treg cells and dendritic cells (DCs). As the target cells are specific, ensuring targeted delivery is also equally important, which can be achieved with the advent of nanotechnology. Furthermore, these nanocarriers have fewer off-site side effects, enable drug combinations, and allow for lower drug dosages. Among the nanoparticles that can be used for targeting, there are both inorganic and organic nanomaterials such as solid-lipid nanoparticles, liposomes, hydrogels, dendrimers, and biomimetics that have been discussed. This review highlights contemporary therapy options targeting macrophages, neutrophils, Treg cells, and DCs and explores the application of diverse nanotechnological techniques to enhance precision RA therapies.
Collapse
Affiliation(s)
- Anwesha Laha
- Biological and Life Sciences, School of Arts & Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad 380009, Gujarat, India.
| | - Simran Nasra
- Biological and Life Sciences, School of Arts & Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad 380009, Gujarat, India.
| | - Dhiraj Bhatia
- Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar - 382055, Gujarat, India
| | - Ashutosh Kumar
- Biological and Life Sciences, School of Arts & Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad 380009, Gujarat, India.
| |
Collapse
|
15
|
Mu KL, Ran F, Peng LQ, Zhou LL, Wu YT, Shao MH, Chen XG, Guo CM, Luo QM, Wang TJ, Liu YC, Liu G. Identification of diagnostic biomarkers of rheumatoid arthritis based on machine learning-assisted comprehensive bioinformatics and its correlation with immune cells. Heliyon 2024; 10:e35511. [PMID: 39170142 PMCID: PMC11336745 DOI: 10.1016/j.heliyon.2024.e35511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/23/2024] Open
Abstract
Background Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease characterized by inflammatory cell infiltration, which can lead to chronic disability, joint destruction and loss of function. At present, the pathogenesis of RA is still unclear. The purpose of this study is to explore the potential biomarkers and immune molecular mechanisms of rheumatoid arthritis through machine learning-assisted bioinformatics analysis, in order to provide reference for the early diagnosis and treatment of RA disease. Methods RA gene chips were screened from the public gene GEO database, and batch correction of different groups of RA gene chips was performed using Strawberry Perl. DEGs were obtained using the limma package of R software, and functional enrichment analysis such as gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), disease ontology (DO), and gene set (GSEA) were performed. Three machine learning methods, least absolute shrinkage and selection operator regression (LASSO), support vector machine recursive feature elimination (SVM-RFE) and random forest tree (Random Forest), were used to identify potential biomarkers of RA. The validation group data set was used to verify and further confirm its expression and diagnostic value. In addition, CIBERSORT algorithm was used to evaluate the infiltration of immune cells in RA and control samples, and the correlation between confirmed RA diagnostic biomarkers and immune cells was analyzed. Results Through feature screening, 79 key DEGs were obtained, mainly involving virus response, Parkinson's pathway, dermatitis and cell junction components. A total of 29 hub genes were screened by LASSO regression, 34 hub genes were screened by SVM-RFE, and 39 hub genes were screened by Random Forest. Combined with the three algorithms, a total of 12 hub genes were obtained. Through the expression and diagnostic value verification in the validation group data set, 7 genes that can be used as diagnostic biomarkers for RA were preliminarily confirmed. At the same time, the correlation analysis of immune cells found that γδT cells, CD4+ memory activated T cells, activated dendritic cells and other immune cells were positively correlated with multiple RA diagnostic biomarkers, CD4+ naive T cells, regulatory T cells and other immune cells were negatively correlated with multiple RA diagnostic biomarkers. Conclusions The results of novel characteristic gene analysis of RA showed that KYNU, EVI2A, CD52, C1QB, BATF, AIM2 and NDC80 had good diagnostic and clinical value for the diagnosis of RA, and were closely related to immune cells. Therefore, these seven DEGs may become new diagnostic markers and immunotherapy markers for RA.
Collapse
Affiliation(s)
| | | | - Le-qiang Peng
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, Guizhou, China
| | - Ling-li Zhou
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, Guizhou, China
| | - Yu-tong Wu
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, Guizhou, China
| | - Ming-hui Shao
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, Guizhou, China
| | - Xiang-gui Chen
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, Guizhou, China
| | - Chang-mao Guo
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, Guizhou, China
| | - Qiu-mei Luo
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, Guizhou, China
| | - Tian-jian Wang
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, Guizhou, China
| | - Yu-chen Liu
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, Guizhou, China
| | - Gang Liu
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, Guizhou, China
| |
Collapse
|
16
|
Angela S, Fadhilah G, Hsiao WWW, Lin HY, Ko J, Lu SCW, Lee CC, Chang YS, Lin CY, Chang HC, Chiang WH. Nanomaterials in the treatment and diagnosis of rheumatoid arthritis: Advanced approaches. SLAS Technol 2024; 29:100146. [PMID: 38844139 DOI: 10.1016/j.slast.2024.100146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 04/06/2024] [Accepted: 05/22/2024] [Indexed: 06/11/2024]
Abstract
Rheumatoid arthritis (RA), a chronic inflammatory condition that affects persons between the ages of 20 and 40, causes synovium inflammation, cartilage loss, and joint discomfort as some of its symptoms. Diagnostic techniques for RA have traditionally been split into two main categories: imaging and serological tests. However, significant issues are associated with both of these methods. Imaging methods are costly and only helpful in people with obvious symptoms, while serological assays are time-consuming and require specialist knowledge. The drawbacks of these traditional techniques have led to the development of novel diagnostic approaches. The unique properties of nanomaterials make them well-suited as biosensors. Their compact dimensions are frequently cited for their outstanding performance, and their positive impact on the signal-to-noise ratio accounts for their capacity to detect biomarkers at low detection limits, with excellent repeatability and a robust dynamic range. In this review, we discuss the use of nanomaterials in RA theranostics. Scientists have recently synthesized, characterized, and modified nanomaterials and biomarkers commonly used to enhance RA diagnosis and therapy capabilities. We hope to provide scientists with the promising potential that nanomaterials hold for future theranostics and offer suggestions on further improving nanomaterials as biosensors, particularly for detecting autoimmune disorders.
Collapse
Affiliation(s)
- Stefanny Angela
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Gianna Fadhilah
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Wesley Wei-Wen Hsiao
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Hsuan-Yi Lin
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Joshua Ko
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Steven Che-Wei Lu
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Cheng-Chung Lee
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Yu-Sheng Chang
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Shuang Ho Hospital, New Taipei City, Taiwan; Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ching-Yu Lin
- The Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Huan-Cheng Chang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan; Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan; Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan; Sustainable Electrochemical Energy Development (SEED) Center, National Taiwan University of Science and Technology, Taipei, Taiwan; Advanced Manufacturing Research Center, National Taiwan University of Science and Technology, Taipei, Taiwan.
| |
Collapse
|
17
|
Baek HS, Hong VS, Kang H, Lee SJ, Lee JY, Kang H, Jeong S, Jung H, Park JW, Kwon TK, Son CN, Kim SH, Lee J, Kim KS, Kim S. Anti-rheumatic property and physiological safety of KMU-11342 in in vitro and in vivo models. Inflamm Res 2024; 73:1371-1391. [PMID: 38879731 PMCID: PMC11281989 DOI: 10.1007/s00011-024-01904-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/17/2024] [Accepted: 06/03/2024] [Indexed: 07/28/2024] Open
Abstract
Rheumatoid arthritis (RA) is a chronic, systemic inflammatory disorder characterized by joint destruction due to synovial hypertrophy and the infiltration of inflammatory cells. Despite substantial progress in RA treatment, challenges persist, including suboptimal treatment responses and adverse effects associated with current therapies. This study investigates the anti-rheumatic capabilities of the newly identified multi-protein kinase inhibitor, KMU-11342, aiming to develop innovative agents targeting RA. In this study, we synthesized the novel multi-protein kinase inhibitor KMU-11342, based on indolin-2-one. We assessed its cardiac electrophysiological safety using the Langendorff system in rat hearts and evaluated its toxicity in zebrafish in vivo. Additionally, we examined the anti-rheumatic effects of KMU-11342 on human rheumatoid arthritis fibroblast-like synoviocytes (RA-FLS), THP-1 cells, and osteoclastogenesis in RAW264.7 cells. KMU-11342 demonstrated the ability to inhibit LPS-induced chemokine inhibition and the upregulation of pro-inflammatory cytokines, cyclooxygenase-2, inducible nitric oxide synthase, p-IKKα/β, p-NF-κB p65, and the nuclear translocation of NF-κB p65 in RA-FLS. It effectively suppressed the upregulation of NLR family pyrin domain containing 3 (NLRP3) and caspase-1 cleavage. Furthermore, KMU-11342 hindered the activation of osteoclast differentiation factors such as RANKL-induced TRAP, cathepsin K, NFATc-1, and c-Fos in RAW264.7 cells. KMU-11342 mitigates LPS-mediated inflammatory responses in THP-1 cells by inhibiting the activation of NLRP3 inflammasome. Notably, KMU-11342 exhibited minimal cytotoxicity in vivo and electrophysiological cardiotoxicity ex vivo. Consequently, KMU-11342 holds promise for development as a therapeutic agent in RA treatment.
Collapse
Affiliation(s)
- Hye Suk Baek
- Department of Immunology, School of Medicine, Keimyung University, 1095 Dalgubeol-daero, Daegu, 42601, Republic of Korea
| | - Victor Sukbong Hong
- Department of Chemistry, Keimyung University, 1095 Dalgubeol-daero, Daegu, 42601, Republic of Korea
| | - Hyunsu Kang
- R&D Center for Advanced Pharmaceuticals & Evaluation, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Sang-Jin Lee
- Department of Biological Sciences, Keimyung University, Daegu, 42601, Republic of Korea
| | - Jin-Young Lee
- Department of Biological Sciences, Keimyung University, Daegu, 42601, Republic of Korea
| | - Hyunju Kang
- Department of Food and Nutrition, Keimyung University, Daegu, 42601, Republic of Korea
| | - Seungik Jeong
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, 41061, Republic of Korea
| | - Hyunho Jung
- Department of Chemistry, Keimyung University, 1095 Dalgubeol-daero, Daegu, 42601, Republic of Korea
| | - Jong Wook Park
- Department of Immunology, School of Medicine, Keimyung University, 1095 Dalgubeol-daero, Daegu, 42601, Republic of Korea
- Institute of Medical Science, School of Medicine, Keimyung University, 1095 Dalgubeol-daero, Daegu, 42601, Republic of Korea
| | - Taeg Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, 1095 Dalgubeol-daero, Daegu, 42601, Republic of Korea
- Institute of Medical Science, School of Medicine, Keimyung University, 1095 Dalgubeol-daero, Daegu, 42601, Republic of Korea
- Institute for Cancer Research, School of Medicine, Keimyung University, 1095 Dalgubeol-daero, Daegu, 42601, Republic of Korea
| | - Chang-Nam Son
- Department of Rheumatology, Uijeongbu Eulji Medical Center, Eulji University School of Medicine, 712, Dongil-ro, Uijeongbu-si, 11759, Gyeonggi-do, Republic of Korea
| | - Sang Hyon Kim
- Division of Rheumatology, Department of Internal Medicine, School of Medicine, Keimyung University, Daegu, 42601, Republic of Korea
| | - Jinho Lee
- Department of Chemistry, Keimyung University, 1095 Dalgubeol-daero, Daegu, 42601, Republic of Korea.
| | - Ki-Suk Kim
- R&D Center for Advanced Pharmaceuticals & Evaluation, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea.
| | - Shin Kim
- Department of Immunology, School of Medicine, Keimyung University, 1095 Dalgubeol-daero, Daegu, 42601, Republic of Korea.
- Institute of Medical Science, School of Medicine, Keimyung University, 1095 Dalgubeol-daero, Daegu, 42601, Republic of Korea.
- Institute for Cancer Research, School of Medicine, Keimyung University, 1095 Dalgubeol-daero, Daegu, 42601, Republic of Korea.
| |
Collapse
|
18
|
Kiełbowski K, Plewa P, Bratborska AW, Bakinowska E, Pawlik A. JAK Inhibitors in Rheumatoid Arthritis: Immunomodulatory Properties and Clinical Efficacy. Int J Mol Sci 2024; 25:8327. [PMID: 39125897 PMCID: PMC11311960 DOI: 10.3390/ijms25158327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/20/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024] Open
Abstract
Rheumatoid arthritis (RA) is a highly prevalent autoimmune disorder. The pathogenesis of the disease is complex and involves various cellular populations, including fibroblast-like synoviocytes, macrophages, and T cells, among others. Identification of signalling pathways and molecules that actively contribute to the development of the disease is crucial to understanding the mechanisms involved in the chronic inflammatory environment present in affected joints. Recent studies have demonstrated that the Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway regulates the behaviour of immune cells and contributes to the progression of RA. Several JAK inhibitors, such as tofacitinib, baricitinib, upadacitinib, and filgocitinib, have been developed, and their efficacy and safety in patients with RA have been comprehensively investigated in a number of clinical trials. Consequently, JAK inhibitors have been approved and registered as a treatment for patients with RA. In this review, we discuss the involvement of JAK/STAT signalling in the pathogenesis of RA and summarise the potential beneficial effects of JAK inhibitors in cells implicated in the pathogenesis of the disease. Moreover, we present the most important phase 3 clinical trials that evaluated the use of these agents in patients.
Collapse
Affiliation(s)
- Kajetan Kiełbowski
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.K.); (E.B.)
| | - Paulina Plewa
- Institute of Biology, University of Szczecin, 71-412 Szczecin, Poland;
| | | | - Estera Bakinowska
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.K.); (E.B.)
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.K.); (E.B.)
| |
Collapse
|
19
|
Fan P, Liu R, Li Y, Wang S, Li T. Study on the Mechanisms of Glrα3 in Pain Sensitization of Endometriosis. Int J Mol Sci 2024; 25:8143. [PMID: 39125713 PMCID: PMC11312134 DOI: 10.3390/ijms25158143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Endometriosis, often associated with chronic pelvic pain, can lead to anxiety and depression. This study investigates the role and mechanism of Glycine receptor alpha 3 (Glrα3) in the central sensitization of pain in endometriosis, aiming to identify new therapeutic targets. Using a Glrα3 knockout mouse model of endometriosis, we employed behavioral tests, qPCR, immunofluorescence, Nissl staining, MRI, and Western blot to assess the involvement of Glrα3 in central pain sensitization. Our results indicate that endometriosis-induced hyperalgesia and anxiety-depressive-like behaviors are linked to increased Glrα3 expression. Chronic pain in endometriosis leads to gray matter changes in the sensory and insular cortices, with Glrα3 playing a significant role. The inhibition of Glrα3 alleviates pain, reduces neuronal abnormalities, and decreases glial cell activation. The absence of Glrα3 effectively regulates the central sensitization of pain in endometriosis by inhibiting glial cell activation and maintaining neuronal stability. This study offers new therapeutic avenues for the clinical treatment of endometriosis-related pain.
Collapse
Affiliation(s)
- Peiya Fan
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; (P.F.); (R.L.); (Y.L.); (S.W.)
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Rong Liu
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; (P.F.); (R.L.); (Y.L.); (S.W.)
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Yan Li
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; (P.F.); (R.L.); (Y.L.); (S.W.)
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; (P.F.); (R.L.); (Y.L.); (S.W.)
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Tian Li
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; (P.F.); (R.L.); (Y.L.); (S.W.)
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| |
Collapse
|
20
|
Ren S, Xu Y, Dong X, Mu Q, Chen X, Yu Y, Su G. Nanotechnology-empowered combination therapy for rheumatoid arthritis: principles, strategies, and challenges. J Nanobiotechnology 2024; 22:431. [PMID: 39034407 PMCID: PMC11265020 DOI: 10.1186/s12951-024-02670-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/25/2024] [Indexed: 07/23/2024] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease with multifactorial etiology and intricate pathogenesis. In RA, repeated monotherapy is frequently associated with inadequate efficacy, drug resistance, and severe side effects. Therefore, a shift has occurred in clinical practice toward combination therapy. However, conventional combination therapy encounters several hindrances, including low selectivity to arthritic joints, short half-lives, and varying pharmacokinetics among coupled drugs. Emerging nanotechnology offers an incomparable opportunity for developing advanced combination therapy against RA. First, it allows for co-delivering multiple drugs with augmented physicochemical properties, targeted delivery capabilities, and controlled release profiles. Second, it enables therapeutic nanomaterials development, thereby expanding combination regimens to include multifunctional nanomedicines. Lastly, it facilitates the construction of all-in-one nanoplatforms assembled with multiple modalities, such as phototherapy, sonodynamic therapy, and imaging. Thus, nanotechnology offers a promising solution to the current bottleneck in both RA treatment and diagnosis. This review summarizes the rationale, advantages, and recent advances in nano-empowered combination therapy for RA. It also discusses safety considerations, drug-drug interactions, and the potential for clinical translation. Additionally, it provides design tips and an outlook on future developments in nano-empowered combination therapy. The objective of this review is to achieve a comprehensive understanding of the mechanisms underlying combination therapy for RA and unlock the maximum potential of nanotechnology, thereby facilitating the smooth transition of research findings from the laboratory to clinical practice.
Collapse
Affiliation(s)
- Shujing Ren
- Department of Pharmacy, Affiliated Hospital 2 of Nantong University, Nantong, 226000, PR China
| | - Yuhang Xu
- School of Pharmacy, Nantong University, Nantong, 226000, PR China
| | - Xingpeng Dong
- School of Pharmacy, Nantong University, Nantong, 226000, PR China
| | - Qingxin Mu
- Department of Pharmaceutics, University of Washington, Seattle, WA, 98195, USA
| | - Xia Chen
- Department of Pharmacy, Affiliated Hospital 2 of Nantong University, Nantong, 226000, PR China.
| | - Yanyan Yu
- School of Pharmacy, Nantong University, Nantong, 226000, PR China.
| | - Gaoxing Su
- School of Pharmacy, Nantong University, Nantong, 226000, PR China.
| |
Collapse
|
21
|
Zhang Y, He X, Yin D, Zhang Y. Redefinition of Synovial Fibroblasts in Rheumatoid Arthritis. Aging Dis 2024:AD.2024.0514. [PMID: 39122458 DOI: 10.14336/ad.2024.0514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/16/2024] [Indexed: 08/12/2024] Open
Abstract
The breakdown of immune tolerance and the rise in autoimmunity contribute to the onset of rheumatoid arthritis (RA), driven by significant changes in immune components. Recent advances in single-cell and spatial transcriptome profiling have revealed shifts in cell distribution and composition, expanding our understanding beyond molecular-level changes in inflammatory cytokines, autoantibodies, and autoantigens in RA. Surprisingly, synovial fibroblasts (SFs) play an active immunopathogenic role rather than remaining passive bystanders in RA, with notable alterations in their subpopulation distribution and composition. This study examines these changes in SF heterogeneity, assesses their impact on RA progression, and elucidates the immune characteristics and functions of SF subsets in the RA autoimmunity, encompassing both intrinsic and adaptive immunity. Additionally, this review discusses therapeutic strategies targeting immune SF subsets, highlighting the potential of future interventions in SF phenotypic reprogramming. Overall, this review redefines the role of SFs in RA and suggests targeting SF phenotypic reprogramming and its upstream molecules as a promising therapeutic approach to restore immune balance and modulate immune tolerance in RA.
Collapse
Affiliation(s)
- Yinci Zhang
- First Affiliated Hospital of Medical School, Anhui University of Science and Technology, Huainan, China
| | - Xiong He
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Dongdong Yin
- First Affiliated Hospital of Medical School, Anhui University of Science and Technology, Huainan, China
| | - Yihao Zhang
- Department of health inspection and quarantine, School of Public Health, Anhui Medical University, Hefei, China
| |
Collapse
|
22
|
Abbasifard M, Bagherzadeh K, Khorramdelazad H. The story of clobenpropit and CXCR4: can be an effective drug in cancer and autoimmune diseases? Front Pharmacol 2024; 15:1410104. [PMID: 39070795 PMCID: PMC11272485 DOI: 10.3389/fphar.2024.1410104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 06/25/2024] [Indexed: 07/30/2024] Open
Abstract
Clobenpropit is a histamine H3 receptor antagonist and has developed as a potential therapeutic drug due to its ability to inhibit CXCR4, a chemokine receptor involved in autoimmune diseases and cancer pathogenesis. The CXCL12/CXCR4 axis involves several biological phenomena, including cell proliferation, migration, angiogenesis, inflammation, and metastasis. Accordingly, inhibiting CXCR4 can have promising clinical outcomes in patients with malignancy or autoimmune disorders. Based on available knowledge, Clobenpropit can effectively regulate the release of monocyte-derived inflammatory cytokine in autoimmune diseases such as juvenile idiopathic arthritis (JIA), presenting a potential targeted target with possible advantages over current therapeutic approaches. This review summarizes the intricate interplay between Clobenpropit and CXCR4 and the molecular mechanisms underlying their interactions, comprehensively analyzing their impact on immune regulation. Furthermore, we discuss preclinical and clinical investigations highlighting the probable efficacy of Clobenpropit for managing autoimmune diseases and cancer. Through this study, we aim to clarify the immunomodulatory role of Clobenpropit and its advantages and disadvantages as a novel therapeutic opportunity.
Collapse
Affiliation(s)
- Mitra Abbasifard
- Department of Internal Medicine, School of Medicine, Ali-Ibn Abi-Talib Hospital, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Kowsar Bagherzadeh
- Eye Research Center, The Five Senses Health Institute, Rassoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
23
|
Ali M, Benfante V, Di Raimondo D, Laudicella R, Tuttolomondo A, Comelli A. A Review of Advances in Molecular Imaging of Rheumatoid Arthritis: From In Vitro to Clinic Applications Using Radiolabeled Targeting Vectors with Technetium-99m. Life (Basel) 2024; 14:751. [PMID: 38929734 PMCID: PMC11204982 DOI: 10.3390/life14060751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/24/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disorder caused by inflammation of cartilaginous diarthrodial joints that destroys joints and cartilage, resulting in synovitis and pannus formation. Timely detection and effective management of RA are pivotal for mitigating inflammatory arthritis consequences, potentially influencing disease progression. Nuclear medicine using radiolabeled targeted vectors presents a promising avenue for RA diagnosis and response to treatment assessment. Radiopharmaceutical such as technetium-99m (99mTc), combined with single photon emission computed tomography (SPECT) combined with CT (SPECT/CT), introduces a more refined diagnostic approach, enhancing accuracy through precise anatomical localization, representing a notable advancement in hybrid molecular imaging for RA evaluation. This comprehensive review discusses existing research, encompassing in vitro, in vivo, and clinical studies to explore the application of 99mTc radiolabeled targeting vectors with SPECT imaging for RA diagnosis. The purpose of this review is to highlight the potential of this strategy to enhance patient outcomes by improving the early detection and management of RA.
Collapse
Affiliation(s)
- Muhammad Ali
- Ri.MED Foundation, Via Bandiera 11, 90133 Palermo, Italy; (M.A.); (A.C.)
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Molecular and Clinical Medicine, University of Palermo, 90127 Palermo, Italy; (D.D.R.); (A.T.)
| | - Viviana Benfante
- Ri.MED Foundation, Via Bandiera 11, 90133 Palermo, Italy; (M.A.); (A.C.)
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Molecular and Clinical Medicine, University of Palermo, 90127 Palermo, Italy; (D.D.R.); (A.T.)
| | - Domenico Di Raimondo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Molecular and Clinical Medicine, University of Palermo, 90127 Palermo, Italy; (D.D.R.); (A.T.)
| | - Riccardo Laudicella
- Nuclear Medicine Unit, Department of Biomedical and Dental Sciences and Morpho-Functional Imaging, Messina University, 98124 Messina, Italy;
| | - Antonino Tuttolomondo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Molecular and Clinical Medicine, University of Palermo, 90127 Palermo, Italy; (D.D.R.); (A.T.)
| | - Albert Comelli
- Ri.MED Foundation, Via Bandiera 11, 90133 Palermo, Italy; (M.A.); (A.C.)
- NBFC—National Biodiversity Future Center, 90133 Palermo, Italy
| |
Collapse
|
24
|
Chen Y, Huang X, Liu A, Fan S, Liu S, Li Z, Yang X, Guo H, Wu M, Liu M, Liu P, Fu F, Liu S, Xuan K. Lactobacillus Reuteri Vesicles Regulate Mitochondrial Function of Macrophages to Promote Mucosal and Cutaneous Wound Healing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309725. [PMID: 38647360 PMCID: PMC11199966 DOI: 10.1002/advs.202309725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/07/2024] [Indexed: 04/25/2024]
Abstract
The interplay between bacteria and their host influences the homeostasis of the human immune microenvironment, and this reciprocal interaction also affects the process of tissue damage repair. A variety of immunomodulatory commensal bacteria reside in the body, capable of delivering membrane vesicles (MVs) to host cells to regulate the local immune microenvironment. This research revealed, for the initial time, the significant enhancement of mucosal and cutaneous wound healing by MVs secreted by the human commensal Lactobacillus reuteri (RMVs) through modulation of the inflammatory environment in wound tissue. Local administration of RMVs reduces the proportion of pro-inflammatory macrophages in inflamed tissues and mitigates the level of local inflammation, thereby facilitating the healing of oral mucosa and cutaneous wounds. The elevated oxidative stress levels in activated pro-inflammatory macrophages can be modulated by RMVs, resulting in phenotypic transformation of macrophages. Furthermore, 3-hydroxypropionaldehyde present in RMVs can decrease the mitochondrial permeability of macrophages and stabilize the mitochondrial membrane potential, thereby promoting the conversion of macrophages to an anti-inflammatory phenotype. This study pioneers the significance of commensal bacterial MVs in tissue injury repair and presents a novel concept for the repair of tissue damage.
Collapse
Affiliation(s)
- Yuan Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral DiseasesDepartment of Preventive DentistrySchool of StomatologyThe Fourth Military Medical UniversityXi'an710032China
| | - Xiaoyao Huang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral DiseasesDepartment of Preventive DentistrySchool of StomatologyThe Fourth Military Medical UniversityXi'an710032China
| | - Anqi Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral DiseasesDepartment of Preventive DentistrySchool of StomatologyThe Fourth Military Medical UniversityXi'an710032China
| | - Siyuan Fan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral DiseasesDepartment of Preventive DentistrySchool of StomatologyThe Fourth Military Medical UniversityXi'an710032China
| | - Shiyu Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral DiseasesCenter for Tissue EngineeringSchool of StomatologyThe Fourth Military Medical UniversityXi'an710032China
| | - Zihan Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral DiseasesCenter for Tissue EngineeringSchool of StomatologyThe Fourth Military Medical UniversityXi'an710032China
| | - Xiaoxue Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral DiseasesDepartment of Preventive DentistrySchool of StomatologyThe Fourth Military Medical UniversityXi'an710032China
| | - Hao Guo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral DiseasesDepartment of Preventive DentistrySchool of StomatologyThe Fourth Military Medical UniversityXi'an710032China
| | - Meiling Wu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral DiseasesDepartment of Preventive DentistrySchool of StomatologyThe Fourth Military Medical UniversityXi'an710032China
| | - Meng Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral DiseasesDepartment of Preventive DentistrySchool of StomatologyThe Fourth Military Medical UniversityXi'an710032China
| | - Peisheng Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral DiseasesDepartment of Preventive DentistrySchool of StomatologyThe Fourth Military Medical UniversityXi'an710032China
| | - Fei Fu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral DiseasesDepartment of Preventive DentistrySchool of StomatologyThe Fourth Military Medical UniversityXi'an710032China
| | - Siying Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral DiseasesCenter for Tissue EngineeringSchool of StomatologyThe Fourth Military Medical UniversityXi'an710032China
| | - Kun Xuan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral DiseasesDepartment of Preventive DentistrySchool of StomatologyThe Fourth Military Medical UniversityXi'an710032China
| |
Collapse
|
25
|
Bakinowska E, Bratborska AW, Kiełbowski K, Ćmil M, Biniek WJ, Pawlik A. The Role of Mesenchymal Stromal Cells in the Treatment of Rheumatoid Arthritis. Cells 2024; 13:915. [PMID: 38891047 PMCID: PMC11171813 DOI: 10.3390/cells13110915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/15/2024] [Accepted: 05/23/2024] [Indexed: 06/20/2024] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory joint disease characterised by the formation of a hyperplastic pannus, as well as cartilage and bone damage. The pathogenesis of RA is complex and involves broad interactions between various cells present in the inflamed synovium, including fibroblast-like synoviocytes (FLSs), macrophages, and T cells, among others. Under inflammatory conditions, these cells are activated, further enhancing inflammatory responses and angiogenesis and promoting bone and cartilage degradation. Novel treatment methods for RA are greatly needed, and mesenchymal stromal cells (MSCs) have been suggested as a promising new regenerative and immunomodulatory treatment. In this paper, we present the interactions between MSCs and RA-FLSs, and macrophages and T cells, and summarise studies examining the use of MSCs in preclinical and clinical RA studies.
Collapse
Affiliation(s)
- Estera Bakinowska
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (E.B.); (K.K.); (M.Ć.); (W.J.B.)
| | | | - Kajetan Kiełbowski
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (E.B.); (K.K.); (M.Ć.); (W.J.B.)
| | - Maciej Ćmil
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (E.B.); (K.K.); (M.Ć.); (W.J.B.)
| | - Wojciech Jerzy Biniek
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (E.B.); (K.K.); (M.Ć.); (W.J.B.)
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (E.B.); (K.K.); (M.Ć.); (W.J.B.)
| |
Collapse
|
26
|
Hsieh SL, Yang SY, Lin CY, He XY, Tsai CH, Fong YC, Lo YS, Tang CH. MCP-1 controls IL-17-promoted monocyte migration and M1 polarization in osteoarthritis. Int Immunopharmacol 2024; 132:112016. [PMID: 38593506 DOI: 10.1016/j.intimp.2024.112016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/25/2024] [Accepted: 04/03/2024] [Indexed: 04/11/2024]
Abstract
Osteoarthritis (OA) is a low-grade inflammatory joint illness in which monocytes migrate and infiltrate synovial tissue, differentiating into the pro-inflammatory M1 macrophage phenotype. IL-17 is a proinflammatory mediator principally generated by Th17 cells, which is elevated in OA patients; nevertheless, investigators have yet to elucidate the function of IL-17 in M1 polarization during OA development. Our analysis of clinical tissues and results from the open online dataset discovered that the level of M1 macrophage markers is elevated in human OA tissue samples than in normal tissue. High-throughput screening demonstrated that MCP-1 is a potential candidate factor after IL-17 treatment in OA synovial fibroblasts (OASFs). Immunohistochemistry data revealed that the level of MCP-1 is higher in humans and mice with OA than in normal tissues. IL-17 stimulation facilitates MCP-1-dependent macrophage polarization to the M1 phenotype. It also appears that IL-17 enhances MCP-1 synthesis in human OASFs, enhancing monocyte migration via the JAK and STAT3 signaling cascades. Our findings indicate the IL-17/MCP-1 axis as a novel strategy for the remedy of OA.
Collapse
Affiliation(s)
- Shang-Lin Hsieh
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan; Minimally Invasive Spine and Joint Center, Buddhist Tzu Chi General Hospital Taichung Branch, Taichung, Taiwan
| | - Shang-Yu Yang
- Department of Healthcare Administration, College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Chih-Yang Lin
- Translational Medicine Center, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Xiu-Yuan He
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Chun-Hao Tsai
- Department of Sports Medicine, College of Health Care, China Medical University, Taichung, Taiwan; Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Yi-Chin Fong
- Department of Sports Medicine, College of Health Care, China Medical University, Taichung, Taiwan; Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan; Department of Orthopedic Surgery, China Medical University Beigang Hospital, Yunlin, Taiwan
| | - Yuan-Shun Lo
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan; Department of Orthopedic Surgery, China Medical University Beigang Hospital, Yunlin, Taiwan; Graduate Institute of Precision Engineering, National Chung Hsing University, Taichung, Taiwan
| | - Chih-Hsin Tang
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan; Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan; Chinese Medicine Research Center, China Medical University, Taichung, Taiwan; Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan; Department of Medical Research, China Medical University Hsinchu Hospital, Hsinchu, Taiwan.
| |
Collapse
|
27
|
More NE, Mandlik R, Zine S, Gawali VS, Godad AP. Exploring the therapeutic opportunities of potassium channels for the treatment of rheumatoid arthritis. Front Pharmacol 2024; 15:1286069. [PMID: 38783950 PMCID: PMC11111972 DOI: 10.3389/fphar.2024.1286069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/18/2024] [Indexed: 05/25/2024] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease that affects the synovial joint, which leads to inflammation, loss of function, joint destruction, and disability. The disease biology of RA involves complex interactions between genetic and environmental factors and is strongly associated with various immune cells, and each of the cell types contributes differently to disease pathogenesis. Several immunomodulatory molecules, such as cytokines, are secreted from the immune cells and intervene in the pathogenesis of RA. In immune cells, membrane proteins such as ion channels and transporters mediate the transport of charged ions to regulate intracellular signaling pathways. Ion channels control the membrane potential and effector functions such as cytotoxic activity. Moreover, clinical studies investigating patients with mutations and alterations in ion channels and transporters revealed their importance in effective immune responses. Recent studies have shown that voltage-gated potassium channels and calcium-activated potassium channels and their subtypes are involved in the regulation of immune cells and RA. Due to the role of these channels in the pathogenesis of RA and from multiple pieces of clinical evidence, they can be considered therapeutic targets for the treatment of RA. Here, we describe the role of voltage-gated and calcium-activated potassium channels and their subtypes in RA and their pharmacological application as drug targets.
Collapse
Affiliation(s)
| | - Rahul Mandlik
- Medical Affairs, Shalina Healthcare DMCC, Dubai, United Arab Emirates
| | - Sandip Zine
- SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | | | - Angel Pavalu Godad
- SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| |
Collapse
|
28
|
Tang J, Wang X, Lin X, Wu C. Mesenchymal stem cell-derived extracellular vesicles: a regulator and carrier for targeting bone-related diseases. Cell Death Discov 2024; 10:212. [PMID: 38697996 PMCID: PMC11066013 DOI: 10.1038/s41420-024-01973-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/05/2024] Open
Abstract
The escalating threat of bone-related diseases poses a significant challenge to human health. Mesenchymal stem cell (MSC)-derived extracellular vesicles (MSC-EVs), as inherent cell-secreted natural products, have emerged as promising treatments for bone-related diseases. Leveraging outstanding features such as high biocompatibility, low immunogenicity, superior biological barrier penetration, and extended circulating half-life, MSC-EVs serve as potent carriers for microRNAs (miRNAs), long no-code RNAs (lncRNAs), and other biomolecules. These cargo molecules play pivotal roles in orchestrating bone metabolism and vascularity through diverse mechanisms, thereby contributing to the amelioration of bone diseases. Additionally, engineering modifications enhance the bone-targeting ability of MSC-EVs, mitigating systemic side effects and bolstering their clinical translational potential. This review comprehensively explores the mechanisms through which MSC-EVs regulate bone-related disease progression. It delves into the therapeutic potential of MSC-EVs as adept drug carriers, augmented by engineered modification strategies tailored for osteoarthritis (OA), rheumatoid arthritis (RA), osteoporosis, and osteosarcoma. In conclusion, the exceptional promise exhibited by MSC-EVs positions them as an excellent solution with considerable translational applications in clinical orthopedics.
Collapse
Affiliation(s)
- Jiandong Tang
- Orthopaedics Center, Zigong Fourth People's Hospital, Tan mu lin Street 19#, Zigong, 643099, Sichuan Province, China
| | - Xiangyu Wang
- Orthopaedics Center, Zigong Fourth People's Hospital, Tan mu lin Street 19#, Zigong, 643099, Sichuan Province, China
| | - Xu Lin
- Orthopaedics Center, Zigong Fourth People's Hospital, Tan mu lin Street 19#, Zigong, 643099, Sichuan Province, China
| | - Chao Wu
- Orthopaedics Center, Zigong Fourth People's Hospital, Tan mu lin Street 19#, Zigong, 643099, Sichuan Province, China.
| |
Collapse
|
29
|
Siouti E, Salagianni M, Manioudaki M, Pavlos E, Klinakis A, Galani IE, Andreakos E. Notch signaling in adipose tissue macrophages prevents diet-induced inflammation and metabolic dysregulation. Eur J Immunol 2024; 54:e2350669. [PMID: 38339772 DOI: 10.1002/eji.202350669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
The importance of macrophages in adipose tissue (AT) homeostasis and inflammation is well established. However, the potential cues that regulate their function remain incompletely understood. To bridge this important gap, we sought to characterize novel pathways involved using a mouse model of diet-induced obesity. By performing transcriptomics analysis of AT macrophages (ATMs), we found that late-stage ATMs from high-fat diet mice presented with perturbed Notch signaling accompanied by robust proinflammatory and metabolic changes. To explore the hypothesis that the deregulated Notch pathway contributes to the development of AT inflammation and diet-induced obesity, we employed a genetic approach to abrogate myeloid Notch1 and Notch2 receptors. Our results revealed that the combined loss of Notch1 and Notch2 worsened obesity-related metabolic dysregulation. Body and AT weight gain was higher, blood glucose levels increased and metabolic parameters were substantially worsened in deficient mice fed high-fat diet. Moreover, serum insulin and leptin were elevated as were triglycerides. Molecular analysis of ATMs showed that deletion of Notch receptors escalated inflammation through the induction of an M1-like pro-inflammatory phenotype. Our findings thus support a protective role of myeloid Notch signaling in adipose tissue inflammation and metabolic dysregulation.
Collapse
Affiliation(s)
- Eleni Siouti
- Laboratory of Immunobiology, Center for Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Maria Salagianni
- Laboratory of Immunobiology, Center for Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Maria Manioudaki
- Laboratory of Immunobiology, Center for Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Eleftherios Pavlos
- Laboratory of Immunobiology, Center for Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Apostolos Klinakis
- Center for Basic Research, Biomedical Research Foundation Academy of Athens, Athens, 11527, Greece
| | - Ioanna-Evdokia Galani
- Laboratory of Immunobiology, Center for Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Evangelos Andreakos
- Laboratory of Immunobiology, Center for Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| |
Collapse
|
30
|
Liu H, Chen Y, Huang Y, Wei L, Ran J, Li Q, Tian Y, Luo Z, Yang L, Liu H, Yin G, Xie Q. Macrophage-derived mir-100-5p orchestrates synovial proliferation and inflammation in rheumatoid arthritis through mTOR signaling. J Nanobiotechnology 2024; 22:197. [PMID: 38644475 PMCID: PMC11034106 DOI: 10.1186/s12951-024-02444-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 03/28/2024] [Indexed: 04/23/2024] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a chronic autoimmune disorder characterized by synovial inflammation, causing substantial disability and reducing life quality. While macrophages are widely appreciated as a master regulator in the inflammatory response of RA, the precise mechanisms underlying the regulation of proliferation and inflammation in RA-derived fibroblast-like synoviocytes (RA-FLS) remain elusive. Here, we provide extensive evidence to demonstrate that macrophage contributes to RA microenvironment remodeling by extracellular vesicles (sEVs) and downstream miR-100-5p/ mammalian target of rapamycin (mTOR) axis. RESULTS We showed that bone marrow derived macrophage (BMDM) derived-sEVs (BMDM-sEVs) from collagen-induced arthritis (CIA) mice (cBMDM-sEVs) exhibited a notable increase in abundance compared with BMDM-sEVs from normal mice (nBMDM-sEVs). cBMDM-sEVs induced significant RA-FLS proliferation and potent inflammatory responses. Mechanistically, decreased levels of miR-100-5p were detected in cBMDM-sEVs compared with nBMDM-sEVs. miR-100-5p overexpression ameliorated RA-FLS proliferation and inflammation by targeting the mTOR pathway. Partial attenuation of the inflammatory effects induced by cBMDM-sEVs on RA-FLS was achieved through the introduction of an overexpression of miR-100-5p. CONCLUSIONS Our work reveals the critical role of macrophages in exacerbating RA by facilitating the transfer of miR-100-5p-deficient sEVs to RA-FLS, and sheds light on novel disease mechanisms and provides potential therapeutic targets for RA interventions.
Collapse
Affiliation(s)
- Huan Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuehong Chen
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yupeng Huang
- Department of General Practice, West China Hospital, General Practice Medical Center, Sichuan University, Chengdu, 610041, China
| | - Ling Wei
- Hospital of Chengdu Office of People's Government of Tibetan Autonomous region, Chengdu, 610041, China
| | - Jingjing Ran
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qianwei Li
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yunru Tian
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhongling Luo
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Leiyi Yang
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hongjiang Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Geng Yin
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Department of General Practice, West China Hospital, General Practice Medical Center, Sichuan University, Chengdu, 610041, China.
| | - Qibing Xie
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
31
|
Kiełbowski K, Stańska W, Bakinowska E, Rusiński M, Pawlik A. The Role of Alarmins in the Pathogenesis of Rheumatoid Arthritis, Osteoarthritis, and Psoriasis. Curr Issues Mol Biol 2024; 46:3640-3675. [PMID: 38666958 PMCID: PMC11049642 DOI: 10.3390/cimb46040228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/13/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Alarmins are immune-activating factors released after cellular injury or death. By secreting alarmins, cells can interact with immune cells and induce a variety of inflammatory responses. The broad family of alarmins involves several members, such as high-mobility group box 1, S100 proteins, interleukin-33, and heat shock proteins, among others. Studies have found that the concentrations and expression profiles of alarmins are altered in immune-mediated diseases. Furthermore, they are involved in the pathogenesis of inflammatory conditions. The aim of this narrative review is to present the current evidence on the role of alarmins in rheumatoid arthritis, osteoarthritis, and psoriasis. We discuss their potential involvement in mechanisms underlying the progression of these diseases and whether they could become therapeutic targets. Moreover, we summarize the impact of pharmacological agents used in the treatment of these diseases on the expression of alarmins.
Collapse
Affiliation(s)
- Kajetan Kiełbowski
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.K.); (E.B.); (M.R.)
| | - Wiktoria Stańska
- Department of Medical Biology, Medical University of Warsaw, 00-575 Warsaw, Poland;
| | - Estera Bakinowska
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.K.); (E.B.); (M.R.)
| | - Marcin Rusiński
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.K.); (E.B.); (M.R.)
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.K.); (E.B.); (M.R.)
| |
Collapse
|
32
|
Wood MK, Daoud A, Talor MV, Kalinoski HM, Hughes DM, Jaime CM, Hooper JE, Won T, Čiháková D. Programmed Death Ligand 1-Expressing Macrophages and Their Protective Role in the Joint During Arthritis. Arthritis Rheumatol 2024; 76:553-565. [PMID: 37997621 DOI: 10.1002/art.42749] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/04/2023] [Accepted: 10/09/2023] [Indexed: 11/25/2023]
Abstract
OBJECTIVE Arthritis associated with immune checkpoint inhibitor therapies highlights the importance of immune checkpoint expression for joint homeostasis. We investigated the role of programmed death ligand (PD-L) 1 in the synovium using a collagen-induced arthritis (CIA) mouse model. METHODS We blocked PD-L1 using blocking antibodies during CIA and assessed the arthritis severity by clinical and histologic scoring. PD-L1 expression and the origin of synovial macrophages were investigated using flow cytometry and parabiosis. We used Cre-Lox mice to ascertain the protective role of PD-L1-expressing macrophages in arthritis. The immune profile of human and murine synovial PD-L1+ macrophages was determined by reverse transcriptase-polymerase chain reaction, flow cytometry, and single-cell RNA sequencing. RESULTS Anti-PD-L1 antibody treatment during CIA worsened arthritis with increased immune cell infiltration compared with isotype control, supporting the regulatory role of PD-L1 in the joint. The main cells expressing PD-L1 in the synovium were macrophages. Using parabiosis, we showed that synovial PD-L1+ macrophages were both locally proliferating and partially replaced by the circulation. PD-L1+ macrophages had increased levels of MER proto-oncogene tyrosine kinase (MerTK) and interleukin (IL)-10 expression during acute CIA. Genetic depletion of PD-L1 on macrophages in LyzcrePD-L1fl/fl mice resulted in worsened CIA compared with controls. We found that human PD-L1+ macrophages in the synovium of healthy individuals and patients with rheumatoid arthritis express MerTK and IL-10. CONCLUSION PD-L1+ macrophages with efferocytotic and anti-inflammatory characteristics protect the synovium from severe arthritis in the CIA mouse model. Tissue-protective, PD-L1-expressing macrophages are also present in the human synovium at homeostasis and during rheumatoid arthritis.
Collapse
Affiliation(s)
- Megan Kay Wood
- Johns Hopkins University, Bloomberg School of Public Health, Baltimore, Maryland
| | - Abdel Daoud
- Johns Hopkins University, Bloomberg School of Public Health, Baltimore, Maryland
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | | | - David Matthew Hughes
- Johns Hopkins University School of Medicine, Baltimore, Maryland
- Johns Hopkins University Whiting School of Engineering, Baltimore, Maryland
| | - Camille Marie Jaime
- Johns Hopkins University School of Medicine, Baltimore, Maryland
- Johns Hopkins University School of Medicine, Graduate Program in Immunology, Baltimore, Maryland
| | - Jody Elizabeth Hooper
- Johns Hopkins University School of Medicine, Baltimore, Maryland
- Stanford University School of Medicine, Stanford, California
| | - Taejoon Won
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Daniela Čiháková
- Johns Hopkins University, Bloomberg School of Public Health, Baltimore, Maryland
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
33
|
Lin CY, Lee KT, Lin YY, Tsai CH, Ko CY, Fong YC, Hou SM, Chen WL, Huang CC, Tang CH. NGF facilitates ICAM-1-dependent monocyte adhesion and M1 macrophage polarization in rheumatoid arthritis. Int Immunopharmacol 2024; 130:111733. [PMID: 38387191 DOI: 10.1016/j.intimp.2024.111733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/07/2024] [Accepted: 02/18/2024] [Indexed: 02/24/2024]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory disorder in which monocytes adhering to synovial tissue differentiate into the pro-inflammatory M1 macrophage phenotype. Nerve growth factors (NGF) referred to as neurotrophins have been associated with inflammatory events; however, researchers have yet to elucidate the role of NGF in RA. Our examination of clinical tissue samples and analysis of data sourced from the Gene Expression Omnibus dataset unveiled elevated expression levels of M1 macrophage markers in human RA synovial tissue samples compared to normal tissue, with no such distinction observed for M2 markers. Furthermore, immunofluorescence data depicted increased expression levels of NGF and M1 macrophages in RA mice in contrast to normal mice. It appears that NGF stimulation facilitates macrophage polarization from the M0 to the M1 phenotype. It also appears that NGF promotes ICAM-1 production in human RA synovial fibroblasts, which enhances monocyte adhesion through the TrkA, MEK/ERK, and AP-1 signaling cascades. Our findings indicate NGF/TrkA axis as a novel target for the treatment of RA.
Collapse
Affiliation(s)
- Chih-Yang Lin
- Translational Medicine Center, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Kun-Tsan Lee
- Department of Post-Baccalaureate Medicine, National Chung-Hsing University, Taichung, Taiwan; Department of Orthopedics, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yen-You Lin
- School of Medicine, China Medical University, Taichung, Taiwan
| | - Chun-Hao Tsai
- Department of Sports Medicine, College of Health Care, China Medical University, Taichung, Taiwan; Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Chih-Yuan Ko
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan; Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Yi-Chin Fong
- Department of Sports Medicine, College of Health Care, China Medical University, Taichung, Taiwan; Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan; Department of Orthopedic Surgery, China Medical University Beigang Hospital, Yunlin, Taiwan
| | - Sheng-Mou Hou
- The Director's Office, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan; Department of Research, Taiwan Blood Services Foundation, Taipei, Taiwan
| | - Wei-Li Chen
- Translational Medicine Center, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Chien-Chung Huang
- School of Medicine, China Medical University, Taichung, Taiwan; Division of Immunology and Rheumatology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Chih-Hsin Tang
- School of Medicine, China Medical University, Taichung, Taiwan; Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan; Chinese Medicine Research Center, China Medical University, Taichung, Taiwan; Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan; Department of Medical Research, China Medical University Hsinchu Hospital, Hsinchu, Taiwan.
| |
Collapse
|
34
|
Zhu J, Wei J, Lin Y, Tang Y, Su Z, Li L, Liu B, Cai X. Inhibition of IL-17 signaling in macrophages underlies the anti-arthritic effects of halofuginone hydrobromide: Network pharmacology, molecular docking, and experimental validation. BMC Complement Med Ther 2024; 24:105. [PMID: 38413973 PMCID: PMC10900594 DOI: 10.1186/s12906-024-04397-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/11/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a prevalent autoimmune disease marked by chronic synovitis as well as cartilage and bone destruction. Halofuginone hydrobromide (HF), a bioactive compound derived from the Chinese herbal plant Dichroa febrifuga Lour., has demonstrated substantial anti-arthritic effects in RA. Nevertheless, the molecular mechanisms responsible for the anti-RA effects of HF remain unclear. METHODS This study employed a combination of network pharmacology, molecular docking, and experimental validation to investigate potential targets of HF in RA. RESULTS Network pharmacology analyses identified 109 differentially expressed genes (DEGs) resulting from HF treatment in RA. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses unveiled a robust association between these DEGs and the IL-17 signaling pathway. Subsequently, a protein-protein interaction (PPI) network analysis revealed 10 core DEGs, that is, EGFR, MMP9, TLR4, ESR1, MMP2, PPARG, MAPK1, JAK2, STAT1, and MAPK8. Among them, MMP9 displayed the greatest binding energy for HF. In an in vitro assay, HF significantly inhibited the activity of inflammatory macrophages, and regulated the IL-17 signaling pathway by decreasing the levels of IL-17 C, p-NF-κB, and MMP9. CONCLUSION In summary, these findings suggest that HF has the potential to inhibit the activation of inflammatory macrophages through its regulation of the IL-17 signaling pathway, underscoring its potential in the suppression of immune-mediated inflammation in RA.
Collapse
Affiliation(s)
- Junping Zhu
- Department of Rheumatology, First Hospital, School of Chinese Medical Sciences, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Jiaming Wei
- Department of Rheumatology, First Hospital, School of Chinese Medical Sciences, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Ye Lin
- Department of Rheumatology, First Hospital, School of Chinese Medical Sciences, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Yuanyuan Tang
- Department of Rheumatology, First Hospital, School of Chinese Medical Sciences, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
- College of Biology, Hunan University, Changsha, Hunan, 410082, China
| | - Zhaoli Su
- Department of Rheumatology, First Hospital, School of Chinese Medical Sciences, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
- The Central Research Laboratory, Hunan Traditional Chinese Medical College, Zhuzhou, China
- Guangxi Provincial Key Laboratory of Preventive and Therapeutic Research in Prevalent Diseases in West Guangxi, Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China
| | - Liqing Li
- The Central Research Laboratory, Hunan Traditional Chinese Medical College, Zhuzhou, China.
- Guangxi Provincial Key Laboratory of Preventive and Therapeutic Research in Prevalent Diseases in West Guangxi, Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China.
| | - Bin Liu
- College of Biology, Hunan University, Changsha, Hunan, 410082, China.
| | - Xiong Cai
- Department of Rheumatology, First Hospital, School of Chinese Medical Sciences, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.
| |
Collapse
|
35
|
Wei H, Huang H, He H, Xiao Y, Chun L, Jin Z, Li H, Zheng L, Zhao J, Qin Z. Pt-Se Hybrid Nanozymes with Potent Catalytic Activities to Scavenge ROS/RONS and Regulate Macrophage Polarization for Osteoarthritis Therapy. RESEARCH (WASHINGTON, D.C.) 2024; 7:0310. [PMID: 38410279 PMCID: PMC10895487 DOI: 10.34133/research.0310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/12/2024] [Indexed: 02/28/2024]
Abstract
The activation of pro-inflammatory M1-type macrophages by overexpression of reactive oxygen species (ROS) and reactive nitrogen species (RONS) in synovial membranes contributes to osteoarthritis (OA) progression and cartilage matrix degradation. Here, combing Pt and Se with potent catalytic activities, we developed a hybrid Pt-Se nanozymes as ROS and RONS scavengers to exert synergistic effects for OA therapy. As a result, Pt-Se nanozymes exhibited efficient scavenging effect on ROS and RONS levels, leading to repolarization of M1-type macrophages. Furthermore, the polarization of synovial macrophages to the M2 phenotype inhibited the expression of pro-inflammatory factors and salvaged mitochondrial function in arthritic chondrocytes. In vivo results also suggest that Pt-Se nanozymes effectively suppress the early progression of OA with an Osteoarthritis Research International Association score reduction of 68.21% and 82.66% for 4 and 8 weeks, respectively. In conclusion, this study provides a promising strategy to regulate inflammatory responses by macrophage repolarization processes for OA therapeutic.
Collapse
Affiliation(s)
- Hong Wei
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration & Collaborative Innovation Center of Regenerative Medicine and MedicalBioResource Development and Application Co-constructed by the Province and Ministry,
The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Hongjun Huang
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration & Collaborative Innovation Center of Regenerative Medicine and MedicalBioResource Development and Application Co-constructed by the Province and Ministry,
The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
- Department of Orthopaedics,
Affiliated Hospital of Guilin Medical University, Guilin 541000, China
| | - Haoqiang He
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration & Collaborative Innovation Center of Regenerative Medicine and MedicalBioResource Development and Application Co-constructed by the Province and Ministry,
The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Yuanming Xiao
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration & Collaborative Innovation Center of Regenerative Medicine and MedicalBioResource Development and Application Co-constructed by the Province and Ministry,
The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
- Life Sciences Institute,
Guangxi Medical University, Nanning 530021, China
- Department of Orthopaedics Trauma and Hand Surgery,
The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China.
| | - Lu Chun
- School of Materials and Environment,
Guangxi Minzu University, Nanning, Guangxi 53000, China
| | - Zhiqiang Jin
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration & Collaborative Innovation Center of Regenerative Medicine and MedicalBioResource Development and Application Co-constructed by the Province and Ministry,
The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
- Department of Orthopaedics Trauma and Hand Surgery,
The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China.
| | - Hanyang Li
- Department of Orthopaedics,
Affiliated Hospital of Guilin Medical University, Guilin 541000, China
| | - Li Zheng
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration & Collaborative Innovation Center of Regenerative Medicine and MedicalBioResource Development and Application Co-constructed by the Province and Ministry,
The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Jinmin Zhao
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration & Collaborative Innovation Center of Regenerative Medicine and MedicalBioResource Development and Application Co-constructed by the Province and Ministry,
The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
- Department of Orthopaedics Trauma and Hand Surgery,
The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China.
- Guangxi Key Laboratory of Regenerative Medicine,
The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Zainen Qin
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration & Collaborative Innovation Center of Regenerative Medicine and MedicalBioResource Development and Application Co-constructed by the Province and Ministry,
The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
36
|
Fu H, Guo Y, Fang W, Wang J, Hu P, Shi J. Anti-Acidification and Immune Regulation by Nano-Ceria-Loaded Mg-Al Layered Double Hydroxide for Rheumatoid Arthritis Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307094. [PMID: 38064119 PMCID: PMC10853726 DOI: 10.1002/advs.202307094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/14/2023] [Indexed: 02/10/2024]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease featuring an abnormal immune microenvironment and resultant accumulation of hydrogen ions (H+ ) produced by activated osteoclasts (OCs). Currently, clinic RA therapy can hardly achieve sustained or efficient therapeutic outcomes due to the failures in generating sufficient immune modulation and manipulating the accumulation of H+ that deteriorates bone damage. Herein, a highly effective immune modulatory nanocatalytic platform, nanoceria-loaded magnesium aluminum layered double hydroxide (LDH-CeO2 ), is proposed for enhanced immune modulation based on acid neutralization and metal ion inherent bioactivity. Specifically, the mild alkaline LDH initiates significant M2 repolarization of macrophages triggered by the elevated antioxidation effect of CeO2 via neutralizing excessive H+ in RA microenvironment, thus resulting in the efficient recruitment of regulatory T cell (Treg) and suppressions on T helper 17 cell (Th 17) and plasma cells. Moreover, the osteogenic activity is stimulated by the Mg ion released from LDH, thereby promoting the damaged bone healing. The encouraging therapeutic outcomes in adjuvant-induced RA model mice demonstrate the high feasibility of such a therapeutic concept, which provides a novel and efficient RA therapeutic modality by the immune modulatory and bone-repairing effects of inorganic nanocatalytic material.
Collapse
Affiliation(s)
- Hao Fu
- Shanghai Institute of CeramicsChinese Academy of SciencesResearch Unit of Nanocatalytic Medicine in Specific Therapy for Serious DiseaseChinese Academy of Medical Sciences (2021RU012)Shanghai200050P. R. China
| | - Yuedong Guo
- Platform of Nanomedicine TranslationShanghai Tenth People's HospitalMedical School of Tongji University38 Yun‐xin RoadShanghai200435P. R. China
| | - Wenming Fang
- Shanghai Institute of CeramicsChinese Academy of SciencesResearch Unit of Nanocatalytic Medicine in Specific Therapy for Serious DiseaseChinese Academy of Medical Sciences (2021RU012)Shanghai200050P. R. China
| | - Jiaxing Wang
- Department of OrthopaedicsShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai Jiao Tong UniversityShanghai200233P. R. China
| | - Ping Hu
- Shanghai Institute of CeramicsChinese Academy of SciencesResearch Unit of Nanocatalytic Medicine in Specific Therapy for Serious DiseaseChinese Academy of Medical Sciences (2021RU012)Shanghai200050P. R. China
- Platform of Nanomedicine TranslationShanghai Tenth People's HospitalMedical School of Tongji University38 Yun‐xin RoadShanghai200435P. R. China
| | - Jianlin Shi
- Shanghai Institute of CeramicsChinese Academy of SciencesResearch Unit of Nanocatalytic Medicine in Specific Therapy for Serious DiseaseChinese Academy of Medical Sciences (2021RU012)Shanghai200050P. R. China
- Platform of Nanomedicine TranslationShanghai Tenth People's HospitalMedical School of Tongji University38 Yun‐xin RoadShanghai200435P. R. China
| |
Collapse
|
37
|
Kotsovilis S, Salagianni M, Varela A, Davos CH, Galani IE, Andreakos E. Comprehensive Analysis of 1-Year-Old Female Apolipoprotein E-Deficient Mice Reveals Advanced Atherosclerosis with Vulnerable Plaque Characteristics. Int J Mol Sci 2024; 25:1355. [PMID: 38279355 PMCID: PMC10816800 DOI: 10.3390/ijms25021355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/14/2024] [Accepted: 01/15/2024] [Indexed: 01/28/2024] Open
Abstract
Apolipoprotein E-knockout (Apoe-/-) mice constitute the most widely employed animal model of atherosclerosis. Deletion of Apoe induces profound hypercholesterolemia and promotes the development of atherosclerosis. However, despite its widespread use, the Apoe-/- mouse model remains incompletely characterized, especially at late time points and advanced disease stages. Thus, it is unclear how late atherosclerotic plaques compare to earlier ones in terms of lipid deposition, calcification, macrophage accumulation, smooth muscle cell presence, or plaque necrosis. Additionally, it is unknown how cardiac function and hemodynamic parameters are affected at late disease stages. Here, we used a comprehensive analysis based on histology, fluorescence microscopy, and Doppler ultrasonography to show that in normal chow diet-fed Apoe-/- mice, atherosclerotic lesions at the level of the aortic valve evolve from a more cellular macrophage-rich phenotype at 26 weeks to an acellular, lipid-rich, and more necrotic phenotype at 52 weeks of age, also marked by enhanced lipid deposition and calcification. Coronary artery atherosclerotic lesions are sparse at 26 weeks but ubiquitous and extensive at 52 weeks; yet, left ventricular function was not significantly affected. These findings demonstrate that atherosclerosis in Apoe-/- mice is a highly dynamic process, with atherosclerotic plaques evolving over time. At late disease stages, histopathological characteristics of increased plaque vulnerability predominate in combination with frequent and extensive coronary artery lesions, which nevertheless may not necessarily result in impaired cardiac function.
Collapse
Affiliation(s)
- Sotirios Kotsovilis
- Laboratory of Immunobiology, Center for Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation, Academy of Athens, GR 11527 Athens, Greece; (S.K.); (M.S.); (I.E.G.)
| | - Maria Salagianni
- Laboratory of Immunobiology, Center for Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation, Academy of Athens, GR 11527 Athens, Greece; (S.K.); (M.S.); (I.E.G.)
| | - Aimilia Varela
- Cardiovascular Research Laboratory, Center for Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation, Academy of Athens, GR 11527 Athens, Greece; (A.V.); (C.H.D.)
| | - Constantinos H. Davos
- Cardiovascular Research Laboratory, Center for Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation, Academy of Athens, GR 11527 Athens, Greece; (A.V.); (C.H.D.)
| | - Ioanna E. Galani
- Laboratory of Immunobiology, Center for Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation, Academy of Athens, GR 11527 Athens, Greece; (S.K.); (M.S.); (I.E.G.)
| | - Evangelos Andreakos
- Laboratory of Immunobiology, Center for Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation, Academy of Athens, GR 11527 Athens, Greece; (S.K.); (M.S.); (I.E.G.)
| |
Collapse
|
38
|
Ma C, Wu J, Lei H, Huang H, Li Y. Significance of m6A in subtype identification, immunological evolution, and therapeutic sensitivity of RA. Immunobiology 2024; 229:152781. [PMID: 38154164 DOI: 10.1016/j.imbio.2023.152781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 11/20/2023] [Accepted: 12/18/2023] [Indexed: 12/30/2023]
Abstract
N6-methyladenosine (m6A) is one kind of important epigenetic modification pattern which is extensively involved in immune regulation. The development and progression of autoimmune diseases are closely related to immune dysregulation. Considering that rheumatoid arthritis (RA) is a typical autoimmune disease, the m6A process might be one of the important regulatory mechanisms in the pathogenesis of RA. In this study, we identified five differentially expressed m6A regulators in normal and RA samples from the GEO database. With these five regulators, we constructed the nomogram, and it could accurately identify the risk of RA morbidity. Next, we identified 121 differentially expressed genes (DEGs) between normal and RA samples, of which 36 DEGs were co-expressed with these five m6A regulators. We noted that these DEGs were highly enriched in multiple immunoregulatory signaling pathways, such as cytokine-mediated immune cell chemotaxis, adhesion, and activation. To further characterize the heterogeneity of immunological features, we clustered the RA samples into two subtypes. The C2 subtype has higher infiltration levels of pro-inflammatory cells and activity of pro-inflammatory signaling pathways. Thus, the inflammatory response might be more vigorous in the C2 subtype. Next, we constructed the m6Asig system with the SVM machine learning algorithms and least absolute shrinkage and selection operator (LASSO) regression. The m6Asig could accurately distinguish the C1 and C2 subtypes, which indicated that the m6Asig could be a potential biomarker for the inflammatory activity of RA. Finally, by comparing the information from the CellMiner, TTD, and DrugBank databases, we determined 25 drugs. The targets of these drugs were positively correlated with m6Asig. To be clarified, the above findings were derived from bioinformatics and statistical analyses, and further experimental validation still requires. In summary, this study further revealed the m6A and immunoregulation mechanisms in RA pathogenesis. Also, the m6Asig could be a novel biomarker with potential applicability in the clinical management of RA.
Collapse
Affiliation(s)
- Chenxi Ma
- Department of Rheumatology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Jiasheng Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Hongwei Lei
- Department of Rheumatology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - He Huang
- Department of Rheumatology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Yingnan Li
- Department of Rheumatology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China.
| |
Collapse
|
39
|
Li X, Peng X, Zoulikha M, Boafo GF, Magar KT, Ju Y, He W. Multifunctional nanoparticle-mediated combining therapy for human diseases. Signal Transduct Target Ther 2024; 9:1. [PMID: 38161204 PMCID: PMC10758001 DOI: 10.1038/s41392-023-01668-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 09/14/2023] [Accepted: 10/10/2023] [Indexed: 01/03/2024] Open
Abstract
Combining existing drug therapy is essential in developing new therapeutic agents in disease prevention and treatment. In preclinical investigations, combined effect of certain known drugs has been well established in treating extensive human diseases. Attributed to synergistic effects by targeting various disease pathways and advantages, such as reduced administration dose, decreased toxicity, and alleviated drug resistance, combinatorial treatment is now being pursued by delivering therapeutic agents to combat major clinical illnesses, such as cancer, atherosclerosis, pulmonary hypertension, myocarditis, rheumatoid arthritis, inflammatory bowel disease, metabolic disorders and neurodegenerative diseases. Combinatorial therapy involves combining or co-delivering two or more drugs for treating a specific disease. Nanoparticle (NP)-mediated drug delivery systems, i.e., liposomal NPs, polymeric NPs and nanocrystals, are of great interest in combinatorial therapy for a wide range of disorders due to targeted drug delivery, extended drug release, and higher drug stability to avoid rapid clearance at infected areas. This review summarizes various targets of diseases, preclinical or clinically approved drug combinations and the development of multifunctional NPs for combining therapy and emphasizes combinatorial therapeutic strategies based on drug delivery for treating severe clinical diseases. Ultimately, we discuss the challenging of developing NP-codelivery and translation and provide potential approaches to address the limitations. This review offers a comprehensive overview for recent cutting-edge and challenging in developing NP-mediated combination therapy for human diseases.
Collapse
Affiliation(s)
- Xiaotong Li
- School of Pharmacy, China Pharmaceutical University, Nanjing, 2111198, PR China
| | - Xiuju Peng
- School of Pharmacy, China Pharmaceutical University, Nanjing, 2111198, PR China
| | - Makhloufi Zoulikha
- School of Pharmacy, China Pharmaceutical University, Nanjing, 2111198, PR China
| | - George Frimpong Boafo
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, PR China
| | - Kosheli Thapa Magar
- School of Pharmacy, China Pharmaceutical University, Nanjing, 2111198, PR China
| | - Yanmin Ju
- School of Pharmacy, China Pharmaceutical University, Nanjing, 2111198, PR China.
| | - Wei He
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443, China.
| |
Collapse
|
40
|
Bakinowska E, Kiełbowski K, Pawlik A. The Role of Extracellular Vesicles in the Pathogenesis and Treatment of Rheumatoid Arthritis and Osteoarthritis. Cells 2023; 12:2716. [PMID: 38067147 PMCID: PMC10706487 DOI: 10.3390/cells12232716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/24/2023] [Accepted: 11/25/2023] [Indexed: 12/18/2023] Open
Abstract
Cells can communicate with each other through extracellular vesicles (EVs), which are membrane-bound structures that transport proteins, lipids and nucleic acids. These structures have been found to mediate cellular differentiation and proliferation apoptosis, as well as inflammatory responses and senescence, among others. The cargo of these vesicles may include immunomodulatory molecules, which can then contribute to the pathogenesis of various diseases. By contrast, EVs secreted by mesenchymal stem cells (MSCs) have shown important immunosuppressive and regenerative properties. Moreover, EVs can be modified and used as drug carriers to precisely deliver therapeutic agents. In this review, we aim to summarize the current evidence on the roles of EVs in the progression and treatment of rheumatoid arthritis (RA) and osteoarthritis (OA), which are important and prevalent joint diseases with a significant global burden.
Collapse
Affiliation(s)
| | | | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (E.B.); (K.K.)
| |
Collapse
|
41
|
Jin Y, Ge X, Xu Y, Wang S, Lu Q, Deng A, Li J, Gu Z. A pH-Responsive DNA Tetrahedron/Methotrexate Drug Delivery System Used for Rheumatoid Arthritis Treatment. J Funct Biomater 2023; 14:541. [PMID: 37998110 PMCID: PMC10672632 DOI: 10.3390/jfb14110541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/05/2023] [Accepted: 10/26/2023] [Indexed: 11/25/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disorder that leads to progressive and aggressive joint inflammation. The disease process is characterized by the activation of macrophages, which then release tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), accelerating tissue damage. Tackling tissue damage is a crucial target in the treatment of RA. In this study, a macrophage-targeted and pH-response DNA tetrahedron/methotrexate drug delivery system was constructed by loading methotrexate (MTX) onto a DNA duplex. MTX was used as a drug model, and a pH-response DNA tetrahedron (TET) was used as the drug carrier, which was modified with hyaluronic acid (HA) to target macrophages. The aim of this study was to evaluate the potential of TET as an effective drug carrier for the treatment of RA. On this basis, we successfully prepared TETs loaded with MTX, and in vitro assays showed that the MTX-TET treatment could successfully target macrophages and induce macrophages to polarize to M1 phenotype. At the same time, we also injected MTX-TET intravenously into collagen-induced arthritis (CIA) model mice, and the redness and swelling of the paws of mice were significantly alleviated, proving that the MTX-TET could successfully target inflamed joints and release MTX to treat joint swelling. In addition, the histochemical results showed that the MTX-TET could reduce synovitis and joint swelling in CIA mice, reduce the level of inflammatory factors in vivo, and improve the disease status while maintaining a good biosafety profile. This study showed that the MTX-TET treatment has beneficial therapeutic effects on RA, providing a new strategy for the clinical treatment of RA.
Collapse
Affiliation(s)
- Yi Jin
- Department of Rheumatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226000, China; (Y.J.)
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226000, China
| | - Xingyu Ge
- Department of Rheumatology, Yancheng Third People’s Hospital, Yancheng 224000, China;
| | - Yinjin Xu
- Department of Rheumatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226000, China; (Y.J.)
| | - Siyi Wang
- Department of Rheumatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226000, China; (Y.J.)
| | - Qian Lu
- Department of Rheumatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226000, China; (Y.J.)
| | - Aidong Deng
- Department of Hand Surgery, Affiliated Hospital of Nantong University, Nantong 226000, China
| | - Jingjing Li
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226000, China
| | - Zhifeng Gu
- Department of Hand Surgery, Affiliated Hospital of Nantong University, Nantong 226000, China
| |
Collapse
|
42
|
Yan LS, Cheng BCY, Wang YW, Zhang SF, Qiu XY, Kang JY, Zhang C, Jia ZH, Luo G, Zhang Y. Xuelian injection ameliorates complete Freund's adjuvant-induced acute arthritis in rats via inhibiting TLR4 signaling. Heliyon 2023; 9:e21635. [PMID: 38027703 PMCID: PMC10658240 DOI: 10.1016/j.heliyon.2023.e21635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 10/19/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Background Xuelian injection (XI), a classic preparation extracted from Saussureae Involucratae Herba, has been clinically used to manage rheumatoid arthritis (RA) for nearly twenty years in China. However, the underlying anti-RA mechanism of XI remains unclear. In this study, complete Freund's adjuvant (CFA)-induced acute arthritic model was used to examine the anti-RA effects of XI in vivo. The molecular mechanisms of this action were further investigated using lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. Methods XI and XI freeze dried powder were characterized by UPLC analysis. CD68 and TLR4 expression in the ankle joints was measured by immunohistochemistry. The secretion of inflammatory mediators was detected by ELISA. The expression levels of TLR4 involved components were measured by Western blotting. The localization of transcription factors was measured by immunofluorescence assay. Results XI treatment ameliorated arthritic symptoms induced by CFA in the ankle joints of rats. The serum levels of inflammatory mediators, including TNF-α, MCP-1, and Rantes were decreased by XI treatment. The elevation of CD68 and TLR4 levels in ankle joints caused by CFA was suppressed by XI treatment. Moreover, XI treatment inhibited the secretion of nitric oxide and prostaglandin E2 in LPS-treated RAW264.7 macrophages. The expression of their enzymes iNOS and COX-2 was also decreased after XI treatment. The production of inflammatory mediators, including TNF-α, IL-6, IL-1β, MCP-1, MIP-1α, and Rantes was reduced by XI treatment in LPS-stimulated RAW264.7 cells. The phosphorylation of p38, JNK, ERK, TBK1, IKKα/β, IκB, p65, c-Jun, and IRF3 was reduced after XI treatment. Additionally, the expression levels of nuclear proteins of p65, c-Jun, and IRF3 were inhibited by XI treatment. Conclusions Taken together, XI possesses potential anti-RA effect and the underlying mechanism may be closely associated with the inhibition of TLR4 signaling. Our findings provide further pharmacological justifications for the clinical use of XI in RA treatment.
Collapse
Affiliation(s)
- Li-Shan Yan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | | | - Yi-Wei Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Shuo-Feng Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Xin-Yu Qiu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Jian-Ying Kang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Chao Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Zhan-Hong Jia
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Gan Luo
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Yi Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, PR China
| |
Collapse
|
43
|
Cheng JW, Yu Y, Zong SY, Cai WW, Wang Y, Song YN, Xian H, Wei F. Berberine ameliorates collagen-induced arthritis in mice by restoring macrophage polarization via AMPK/mTORC1 pathway switching glycolytic reprogramming. Int Immunopharmacol 2023; 124:111024. [PMID: 37827054 DOI: 10.1016/j.intimp.2023.111024] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 10/14/2023]
Abstract
Dysfunction of macrophage polarization majorly contributes to the progression of rheumatoid arthritis (RA). Polarization and functions of activated macrophages are closely associated with the reprogramming of intracellular metabolisms. Previously, we demonstrated that the anti-arthritis effect of berberine (BBR) in rats with adjuvant-induced arthritis (AA) may be related to AMP-activated protein kinase (AMPK) activation (a key regulator in the biological energy metabolism), and balanced macrophage polarization. However, the specific molecular mechanism of BBR in macrophage metabolism is yet to be elucidated. In this study, we clarified that BBR ameliorated articular inflammation and restored M1/M2 ratio in collagen-induced arthritis (CIA) mice in an AMPK-dependent manner. Mechanistically, BBR reversed the effects of mTORC1 agonist leucine (Leu) on regulating macrophage polarization through activation of AMPK to switch glycolytic reprogramming. Furthermore, BBR inhibition of mTORC1 rely on activation of AMPK to phosphorylate raptor and TSC2 instead of destroying its structure. Our study revealed that the activation of AMPK is required for the BBR-mediated anti-arthritis effect by downregulating mTORC1/HIF-1α and inhibiting the glycolysis in M1 macrophages.
Collapse
Affiliation(s)
- Jing-Wen Cheng
- School of Pharmacy, Bengbu Medical College, No. 2600, Donghai Avenue, Bengbu, Anhui, China
| | - Yun Yu
- School of Pharmacy, Bengbu Medical College, No. 2600, Donghai Avenue, Bengbu, Anhui, China
| | - Shi-Ye Zong
- School of Pharmacy, Bengbu Medical College, No. 2600, Donghai Avenue, Bengbu, Anhui, China
| | - Wei-Wei Cai
- School of Pharmacy, Bengbu Medical College, No. 2600, Donghai Avenue, Bengbu, Anhui, China
| | - Ying Wang
- School of Pharmacy, Bengbu Medical College, No. 2600, Donghai Avenue, Bengbu, Anhui, China; Biochemical Engineering Center of Anhui, Bengbu, Anhui, China
| | - Yi-Ning Song
- School of Pharmacy, Bengbu Medical College, No. 2600, Donghai Avenue, Bengbu, Anhui, China; Biochemical Engineering Center of Anhui, Bengbu, Anhui, China
| | - Hao Xian
- School of Pharmacy, Bengbu Medical College, No. 2600, Donghai Avenue, Bengbu, Anhui, China
| | - Fang Wei
- School of Pharmacy, Bengbu Medical College, No. 2600, Donghai Avenue, Bengbu, Anhui, China; Biochemical Engineering Center of Anhui, Bengbu, Anhui, China.
| |
Collapse
|
44
|
Yang J, Yang B, Shi J. A Nanomedicine-Enabled Ion-Exchange Strategy for Enhancing Curcumin-Based Rheumatoid Arthritis Therapy. Angew Chem Int Ed Engl 2023; 62:e202310061. [PMID: 37707122 DOI: 10.1002/anie.202310061] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/15/2023]
Abstract
Curcumin (Cur) has been clinically used for rheumatoid arthritis treatment by the means of reactive oxygen species (ROS) scavenging and immune microenvironment regulation. However, this compound has a poor water solubility and moderate antioxidative activity, favoring no further broadened application. Metal complexes of curcumin such as zinc-curcumin (Zn-Cur) features enhanced water solubilities, while copper-curcumin (Cu-Cur) shows a higher antioxidant activity but lower solubility than Zn-Cur. Based on their inherent biological properties, this work proposes a nanomedicine-based ion-exchange strategy to enhance the efficacy of Cur for rheumatoid arthritis treatment. Copper silicate nanoparticles with hollow mesoporous structure were prepared to load water-soluble Zn-Cur for constructing a composite nanomedicine, which can degrade in acidic microenvironment of arthritic region, releasing Cu2+ and Zn-Cur. Cu2+ then substitute for Zn2+ in Zn-Cur to form Cu-Cur with a significantly enhanced antioxidative effect, capable of efficiently scavenging ROS in M1 macrophages, promoting their transition to an anti-inflammatory M2 phenotype. In addition, the silicate released after nanocarrier degradation and the Zn2+ released after ion exchange reaction synergistically promote the biomineralization of osteoblasts. This work provides a new approach for enhancing the antiarthritic effect of Cur via an ion-exchange strategy.
Collapse
Affiliation(s)
- Jiacai Yang
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Bowen Yang
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai, 200050, P. R. China
| | - Jianlin Shi
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai, 200050, P. R. China
- Tenth People's Hospital and School of Medicine, Tongji University, Shanghai, 200092, P. R. China
| |
Collapse
|
45
|
Zhang C, Ma P, Qin A, Wang L, Dai K, Liu Y, Zhao J, Lu Z. Current Immunotherapy Strategies for Rheumatoid Arthritis: The Immunoengineering and Delivery Systems. RESEARCH (WASHINGTON, D.C.) 2023; 6:0220. [PMID: 39902178 PMCID: PMC11789687 DOI: 10.34133/research.0220] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/16/2023] [Indexed: 02/05/2025]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease accompanied by persistent multiarticular synovitis and cartilage degradation. The present clinical treatments are limited to disease-modifying anti-rheumatic drugs (DMARDs) and aims to relieve pain and control the inflammation of RA. Despite considerable advances in the research of RA, the employment of current clinical procedure is enormous, hindered by systemic side effect, frequent administration, tolerance from long-lasting administration, and high costs. Emerging immunoengineering-based strategies, such as multiple immune-active nanotechnologies via mechanism-based immunology approaches, have been developed to improve specific targeting and to reduce adverse reactions for RA treatments. Here, we review recent studies in immunoengineering for the treatment of RA. The prospect of future immunoengineering treatment for RA has also been discussed.
Collapse
Affiliation(s)
- Chenyu Zhang
- School of Medicine, Shanghai University, Shanghai, China
- Clinical and Translational Research Center for 3D Printing Technology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peixiang Ma
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Frontiers Science Center of Degeneration and Regeneration in Skeletal System, Shanghai, China
| | - An Qin
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Frontiers Science Center of Degeneration and Regeneration in Skeletal System, Shanghai, China
| | - Liao Wang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kerong Dai
- Clinical and Translational Research Center for 3D Printing Technology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanyuan Liu
- School of Medicine, Shanghai University, Shanghai, China
| | - Jie Zhao
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Frontiers Science Center of Degeneration and Regeneration in Skeletal System, Shanghai, China
| | - Zuyan Lu
- Clinical and Translational Research Center for 3D Printing Technology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
46
|
Zhang F, Cheng T, Zhang SX. Mechanistic target of rapamycin (mTOR): a potential new therapeutic target for rheumatoid arthritis. Arthritis Res Ther 2023; 25:187. [PMID: 37784141 PMCID: PMC10544394 DOI: 10.1186/s13075-023-03181-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 09/25/2023] [Indexed: 10/04/2023] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by systemic synovitis and bone destruction. Proinflammatory cytokines activate pathways of immune-mediated inflammation, which aggravates RA. The mechanistic target of rapamycin (mTOR) signaling pathway associated with RA connects immune and metabolic signals, which regulates immune cell proliferation and differentiation, macrophage polarization and migration, antigen presentation, and synovial cell activation. Therefore, therapy strategies targeting mTOR have become an important direction of current RA treatment research. In the current review, we summarize the biological functions of mTOR, its regulatory effects on inflammation, and the curative effects of mTOR inhibitors in RA, thus providing references for the development of RA therapeutic targets and new drugs.
Collapse
Affiliation(s)
- Fen Zhang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, No. 382, Wuyi Road, Xinghualing District, Taiyuan, 030001, Shanxi Province, China
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China
| | - Ting Cheng
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, No. 382, Wuyi Road, Xinghualing District, Taiyuan, 030001, Shanxi Province, China
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China
| | - Sheng-Xiao Zhang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, No. 382, Wuyi Road, Xinghualing District, Taiyuan, 030001, Shanxi Province, China.
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China.
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China.
| |
Collapse
|
47
|
Zhang A, Suzuki T, Adachi S, Yoshida E, Sakaguchi S, Yamamoto M. Nrf2 activation improves experimental rheumatoid arthritis. Free Radic Biol Med 2023; 207:279-295. [PMID: 37494986 DOI: 10.1016/j.freeradbiomed.2023.07.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/03/2023] [Accepted: 07/16/2023] [Indexed: 07/28/2023]
Abstract
Rheumatoid arthritis is a systemic autoimmune disease with pain and functional disorder of joints. Multiple strategies toward treatment of the rheumatoid arthritis are operating, while there are concerns of serious adverse effects of the therapeutic drugs. Here, we show that activation of Nrf2 (Nuclear factor erythroid 2-related factor 2) efficiently improves arthritis of SKG mice, which develop T cell-mediated autoimmune arthritis by zymosan A injection. We found that genetic Nrf2 activation by knockdown of Keap1 (Kelch-like ECH-associated protein 1), a negative regulator of Nrf2, repressed arthritis by inhibiting the expression of pro-inflammatory cytokines and inducing the expression of antioxidant enzymes in SKG mice. In addition, oral administration of CDDO-Im, a representative chemical inducer of Nrf2, had effects of both prevention and treatment toward arthritis of SKG mice in an Nrf2-dependent manner. We also found that Nrf2 activation through myeloid-cell lineage-specific Keap1 disruption did not achieve significant improvement in the arthritis of SKG mice. In contrast, expressions of pro-inflammatory cytokine genes were decreased, and those of antioxidant enzyme genes were increased in fibroblast-like synoviocytes (FLS) isolated from SKG mouse. Our results thus demonstrate that Nrf2 activation exerts marked anti-arthritis effects in the SKG experimental rheumatoid arthritis model mice, supporting the contention that the Nrf2 activation is a new therapeutic strategy for the rheumatoid arthritis.
Collapse
Affiliation(s)
- Anqi Zhang
- Departments of Biochemistry and Molecular Biology, Tohoku Medical-Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8573, Japan; Departments of Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8573, Japan
| | - Takafumi Suzuki
- Departments of Biochemistry and Molecular Biology, Tohoku Medical-Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8573, Japan; Departments of Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8573, Japan.
| | - Saki Adachi
- Departments of Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8573, Japan
| | - Eiki Yoshida
- Departments of Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8573, Japan
| | - Shimon Sakaguchi
- Experimental Immunology, Immunology Frontier Research Center (IFReC), Osaka University, Osaka 565-0871, Japan
| | - Masayuki Yamamoto
- Departments of Biochemistry and Molecular Biology, Tohoku Medical-Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8573, Japan; Departments of Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8573, Japan; The Advanced Research Center for Innovations in Next-Generation Medicine (INGEM), Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8573, Japan.
| |
Collapse
|
48
|
Liu Y, Nie X, Wu Y, Lin L, Liao Q, Li J, Lee SMY, Li H, Zhang J. Carrier-Free Gambogic Acid Dimer Self-Assembly Nanomedicines for Rheumatoid Arthritis Treatment. Int J Nanomedicine 2023; 18:5457-5472. [PMID: 37771407 PMCID: PMC10522496 DOI: 10.2147/ijn.s422096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/17/2023] [Indexed: 09/30/2023] Open
Abstract
Introduction The insufficient targeting delivery of therapeutic agents greatly impeded the treatment outcomes of rheumatoid arthritis (RA). Despite the recognized therapeutic advantages of gambogic acid (GBA) in inflammatory diseases, its high delivery efficiency to inflammatory site still limits its clinical application. Self-assembly of drug dimers into carrier-free nanoparticles (NPs) has become a straightforward and attractive approach to develop nanomedicines for RA treatment. Herein, homodimers of GBA were designed to form the carrier-free NPs by self-assembly for RA treatment. Methods The synthetic gambogic acid dimers (GBA2) were self-assembled into NPs using a one-step solvent evaporation method. The size distribution, morphology, drug-loading efficiency (DLE) and storage stability were evaluated. A molecular dynamic simulation was conducted to gain further insight into the self-assembly mechanisms of GBA2/NPs. Besides, we investigated the cytotoxicity, apoptosis and cellular uptake profiles of GBA2/NPs in macrophages and osteoclasts. Finally, the specific biodistribution on the ankles of adjuvant-induced arthritis (AIA) mice, and the anti-RA efficacy of the AIA rat model were assessed. Results GBA2/NPs exhibited the uniform spherical structure, possessing excellent colloidal stability, high self-assembly stability, high drug loading and low hemolytic activity. Comparing with GBA, GBA2/NPs showed higher cytotoxicity, cellular uptake and apoptosis rate against osteoclasts. In addition, GBA2/NPs exhibited much higher accumulation in ankle joints in vivo. As expected, the systematic administration of GBA2/NPs resulted in the greater alleviation of arthritic symptoms, cartilage protection, and inflammation, notably the reduced systemic toxicity compared to free GBA. Conclusion GBA2/NPs formed GBA dimers exhibited the superior accumulation in the inflamed joint and anti-RA activity, potentially attributing to the similar extravasation through leaky vasculature and subsequent inflammatory cell-mediated sequestration ("ELVIS") effects in inflamed joint and the enhanced cellular uptake in macrophages and osteoclasts. Our findings provide substantial evidence that self-assembly of GBA2/NPs would be a promising therapeutic alternative for RA treatment.
Collapse
Affiliation(s)
- Yuling Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Xin Nie
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, Macau Special Administrative Region, People’s Republic of China
| | - Yihan Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Longfei Lin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Qian Liao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Jingjing Li
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong, Hong Kong Special Administrative Region, People’s Republic of China
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, Macau Special Administrative Region, People’s Republic of China
| | - Hui Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
- Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences, Nanchang, People’s Republic of China
| | - Jinming Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| |
Collapse
|
49
|
Liu Y, Zhou Y, Chu C, Jiang X. The role of macrophages in rosacea: implications for targeted therapies. Front Immunol 2023; 14:1211953. [PMID: 37691916 PMCID: PMC10484341 DOI: 10.3389/fimmu.2023.1211953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/14/2023] [Indexed: 09/12/2023] Open
Abstract
Introduction Rosacea, a widespread chronic skin condition, may be influenced by macrophages, key immune cells in the skin, although their exact role is not yet fully understood. This review delves into the function of macrophages, their potential contribution to rosacea pathogenesis, current treatments, and promising macrophage-targeted therapies. It concludes by identifying knowledge gaps and potential areas for future rosacea research. Method Leveraging systematic and narrative literature review techniques, we conducted a comprehensive search of databases such as PubMed, Embase, and Web of Science. Utilizing keywords like "rosacea" and "macrophages", we targeted English articles from the last 5 years (2018-2023). We manually checked reference lists of relevant articles for additional studies. We included only articles emphasizing macrophages' role in rosacea and/or the development of related therapies and published within the specified timeframe. Results The systematic search of electronic databases yielded a total of 4,263 articles. After applying the inclusion and exclusion criteria, 156 articles were selected for inclusion in this review. These articles included original research studies, review articles, and clinical trials that focused on the role of macrophages in rosacea and/or the development of macrophage-targeted therapies for the disease. The selected articles provided a comprehensive and up-to-date overview of the current state of research on macrophages in rosacea, including their function in the skin, the potential mechanisms through which they may contribute to rosacea pathogenesis, and the current treatments and therapies available for the disease. Additionally, the articles identified gaps in knowledge regarding the role of macrophages in rosacea and suggested potential areas for future research. Conclusion This literature review emphasizes the important role that macrophages, vital immune cells in the skin, may play in the pathogenesis of rosacea, a common chronic inflammatory skin disorder. The selected studies suggest potential mechanisms by which these cells might contribute to rosacea progression, although these mechanisms are not yet fully understood. The studies also spotlight current rosacea treatments and illuminate the promising potential of new macrophage-focused therapies. Despite these insights, significant gaps persist in our understanding of the precise role of macrophages in rosacea. Future research in this area could provide further insights into the pathogenesis of rosacea and contribute to the development of more effective, targeted therapeutic strategies.
Collapse
Affiliation(s)
- Yi Liu
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- Medical Cosmetic Center, Chengdu Second People’s Hospital, Chengdu, Sichuan, China
| | - Yin Zhou
- Medical Cosmetic Center, Chengdu Second People’s Hospital, Chengdu, Sichuan, China
| | - Chenyu Chu
- Medical Cosmetic Center, Chengdu Second People’s Hospital, Chengdu, Sichuan, China
| | - Xian Jiang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
50
|
Sharma A, Goel A, Lin Z. In Vitro and In Silico Anti-Rheumatic Arthritis Activity of Nyctanthes arbor-tristis. Molecules 2023; 28:6125. [PMID: 37630377 PMCID: PMC10458195 DOI: 10.3390/molecules28166125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/07/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by bone and joint degeneration. Existing anti-inflammatory chemotherapy drugs offer temporary relief but come with undesirable side effects. Herbal medications have shown positive effects on RA symptoms with minimal adverse reactions. In this study, we investigated the potential of Nyctanthes arbor-tristis (NAT) through in vitro and in silico research. Hydroethanolic extracts of harsingar were prepared using the reflux method, containing alkaloids, phenol, saponin, steroids, proteins, tannins, terpenoids, carbohydrates, glycosides, and flavonoids, which exhibited TPC (98.56 ± 0.46 mg GAE/g) and TFC (34.51 ± 0.45 mg CE/g). LC-MS/MS analyzes the active compounds in the extract. NAT exhibited the best scavenging capabilities at 1 mg/mL in anti-oxidant and anti-arthritic activity. Maximum splenocyte proliferation occurred at 250 µg/mL. In vitro cell splenocyte studies revealed the downregulation of TNF-α and the upregulation of IL-10. Additionally, an in silico study demonstrated that bioactive constituents and targets bind with favorable binding affinity. These findings demonstrate the potential of Nyctanthes arbor-tristis in exerting anti-arthritic effects, as supported by in vitro and in silico studies. Further mechanistic research is necessary to validate the therapeutic potential of all phytoconstituents in RA treatment.
Collapse
Affiliation(s)
- Ayushi Sharma
- Department of Biotechnology, GLA University, Mathura 281406, India;
| | - Anjana Goel
- Department of Biotechnology, GLA University, Mathura 281406, India;
| | - Zhijian Lin
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| |
Collapse
|