1
|
Xing X, Yuan X, Zhang Y, Men C, Zhang Z, Zheng X, Ni D, Xi H, Zuo J. Enhanced denitrification of the AO-MBBR system used for expressway service area sewage treatment: A new perspective on decentralized wastewater treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118763. [PMID: 37683385 DOI: 10.1016/j.jenvman.2023.118763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/28/2023] [Accepted: 08/09/2023] [Indexed: 09/10/2023]
Abstract
Decentralized wastewater treatment warrants considerable development in numerous countries and regions. Owing to the unique characteristics of high ammonia nitrogen concentrations and low carbon/nitrogen ratio, nitrogen removal is a key challenge in treating expressway service area sewage. In this study, an anoxic/oxic-moving bed biofilm reactor (A/O-MBBR) and a traditional A/O bioreactor were continuously operated for 115 days and their outcomes were compared to investigate the enhancement effect of carriers on the total nitrogen removal (TN) for expressway service area sewage. Results revealed that A/O-MBBR required lower dissolved oxygen, exhibited higher tolerance toward harsh conditions, and demonstrated better shock load resistance than traditional A/O bioreactor. The TN removal load of A/O-MBBR reached 181.5 g‧N/(m3‧d), which was 15.24% higher than that of the A/O bioreactor. Furthermore, under load shock resistance, the TN removal load of A/O-MBBR still reached 327.0 g‧N/(m3‧d), with a TN removal efficiency of above 80%. Moreover, kinetics demonstrated that the denitrification rate of the A/O-MBBR was 121.9% higher than that of the A/O bioreactor, with the anoxic tank biofilm contributing 60.9% of the total denitrification rate. Community analysis results revealed that the genera OLB8, uncultured_f_Saprospiraceae and OLB12 were the dominant in biofilm loaded on carriers, and OLB8 was the key for enhanced denitrification. FAPROTAX and PICRUSt2 analyses confirmed that more bacteria associated with nitrogen metabolism were enriched by the A/O-MBBR carriers through full denitrification metabolic pathway and dissimilatory nitrate reduction pathway. This study offers a perspective into the development of cost-effective and high-efficiency treatment solutions for expressway service area sewage.
Collapse
Affiliation(s)
- Xin Xing
- Research Institute of Highway Ministry of Transport, Beijing, 100088, China; State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China.
| | - Xin Yuan
- Research Institute of Highway Ministry of Transport, Beijing, 100088, China; State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China.
| | - Yu Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China.
| | - Cong Men
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China.
| | - Zhuowei Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China.
| | - Xiaoying Zheng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China.
| | - Dong Ni
- Research Institute of Highway Ministry of Transport, Beijing, 100088, China.
| | - Huatian Xi
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China.
| | - Jiane Zuo
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
2
|
Kim JW, Lee HS, Lim HB, Shin HS. Identification of the cause of the difference among TOC quantitative methods according to the water sample characteristics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162530. [PMID: 36871741 DOI: 10.1016/j.scitotenv.2023.162530] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/24/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Total organic carbon (TOC) analysis with accurate determination of particulate organic carbon (POC) content in suspended solids (SS) containing water is critical for evaluating the environmental impact of particulate organic pollutants in water and calculating the carbon cycle mass balance. TOC analysis is divided into the non-purgeable organic carbon (NPOC) and differential (known as TC-TIC) methods; although the selection of method is greatly affected by the sample matrix characteristics of SS, no studies have investigated this. This study quantitatively evaluates the effect of SS containing inorganic carbon (IC) and purgeable organic carbon (PuOC), as well as that of sample pretreatment, on the accuracy and precision of TOC measurement in both methods for various environmental water sample types (12 wastewater influents and effluents and 12 types of stream water). For influent and stream water with high SS, the TC-TIC method expressed 110-200 % higher TOC recovery than that for the NPOC method due to POC component losses in SS owing to its conversion into PuOC during sample pretreatment (using ultrasonic) and subsequent loss in the NPOC purging process. Correlation analysis confirmed that particulated organic matter (POM, mg/L) content in SS directly affected this difference (r > 0.74, p < 0.01, n = 24); for POC water samples (those containing >10 mg/L of POM) featuring purgeable dissolved organic matter, TC-TIC was appropriate in securing TOC measurement accuracy. In constrast, in effluent and stream water with low SS (i.e., < ∼5 mg/L) and high IC (> 70 %) contents, the TOC measurement ratios (TC-TIC/NPOC) of both methods were similar, between 0.96 and 1.08, suggesting that NPOC is appropriate for improving precision. Our results provide useful basic data to establish the most reliable TOC analysis method considering SS contents and its properties along with the matrix characteristics of the sample.
Collapse
Affiliation(s)
- Joo-Won Kim
- Department of Environmental Energy Engineering, Seoul National University of Science & Technology, Seoul 01811, South Korea
| | - Han-Saem Lee
- Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary T2N 1N4, Canada
| | - Hye-Bin Lim
- Department of Environmental Energy Engineering, Seoul National University of Science & Technology, Seoul 01811, South Korea
| | - Hyun-Sang Shin
- Department of Environmental Energy Engineering, Seoul National University of Science & Technology, Seoul 01811, South Korea.
| |
Collapse
|
3
|
Wang C, Wu L, Zhang YT, Wei W, Ni BJ. Unravelling the impacts of perfluorooctanoic acid on anaerobic sludge digestion process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 796:149057. [PMID: 34328882 DOI: 10.1016/j.scitotenv.2021.149057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/11/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
Perfluorooctanoic acid (PFOA) is a type of persistent organic pollutant that has been detected in wastewater treatment systems, subsequently entering the waste activated sludge (WAS) anaerobic digesters. Nevertheless, how PFOA affects the anaerobic digestion of WAS has never been reported till now. In this study, a series of batch digesters were set up to assess the performance of the anaerobic sludge digestion processes with exposures to different levels of PFOA. Experimental results revealed that the increased PFOA concentration (3-60 μg/g-TS) caused the 11.1-19.2% decrease in methane production than the control. Correspondingly, the relative abundances of several key microbes related to acidification (e.g., Longilinea sp.) and methanation (e.g., Methanosaeta sp.) decreased when exposed to PFOA, as demonstrated by microbial community analysis. Further investigations based on modelling and intermediate metabolites analysis confirmed the inhibition of acidification and methanation caused by PFOA, thus decreasing the methane production potential of WAS in anaerobic digestion.
Collapse
Affiliation(s)
- Chen Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Lan Wu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Yu-Ting Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Wei Wei
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia.
| |
Collapse
|
4
|
Gao M, Li S, Zou H, Wen F, Cai A, Zhu R, Tian W, Shi D, Chai H, Gu L. Aged landfill leachate enhances anaerobic digestion of waste activated sludge. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 293:112853. [PMID: 34044237 DOI: 10.1016/j.jenvman.2021.112853] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 05/08/2021] [Accepted: 05/18/2021] [Indexed: 06/12/2023]
Abstract
Anaerobic digestion (AD) is considered as a sustainable pathway to recover energy from organic wastes, but the digestive efficiency for waste activated sludge (WAS) is not as expected due to the limitations in WAS hydrolysis. This study proposes an effective strategy to simultaneously treat WAS and landfill leachate, aiming to promote WAS hydrolysis and enhance organics converting to methane. The effects of landfill leachate on the four stages (i.e., solubilization, hydrolysis, acidogenesis, and methanogenesis) of AD of WAS, as well as the effect mechanisms were investigated. Results showed that adding appropriate amounts of landfill leachate could promote the steps of solubilization, hydrolysis and acidogenesis of WAS, but had no-effect on methanogenesis. The hydrolysis and acidogenesis efficiency in the leachate added digesters were 2.0%-8.4% and 35.2%-72.7% higher than the control digester. Mechanism studies indicated that humic acid (HA) contained in the leachate was conducive to the processes of both hydrolysis and acidogenesis, but detrimental to the methanogenesis. Effects of heavy metals (HMs) on AD of WAS was also dose-dependent. Digestive performance was inhibited by excessive HMs but promoted by moderate dosages. Humic acid and metal ions tend to interact to form complexes, and thus relieve their each inhibition effects. It is also found that the stability of sludge flocs was reduced by the leachate through reducing both apparent activation energy (AAE) and median particle size (MPS) of the sludge. Microbial community and diversity results revealed that the relative abundance of microbes responsible for hydrolysis and acidogenesis increased when landfill leachate was present. This research provides a more technically and economically feasible approach to co-treating and co-utilizing WAS and landfill leachate.
Collapse
Affiliation(s)
- Meng Gao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China
| | - Siqi Li
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China
| | - Huijing Zou
- Hunan Architectural Design Institute Co., Ltd, Hunan, 410125, PR China
| | - Fushan Wen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China
| | - Anrong Cai
- Chongqing Yuxi Water Co., Ltd, Chongqing, 400045, PR China
| | - Ruilin Zhu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China
| | - Wenjing Tian
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China
| | - Dezhi Shi
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China
| | - Hongxiang Chai
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China
| | - Li Gu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China.
| |
Collapse
|
5
|
Lai C, Sun Y, Guo Y, Cai Q, Yang P. A novel integrated bio-reactor of moving bed and constructed wetland (MBCW) for domestic wastewater treatment and its microbial community diversity. ENVIRONMENTAL TECHNOLOGY 2021; 42:2653-2668. [PMID: 31902307 DOI: 10.1080/09593330.2019.1709904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 12/22/2019] [Indexed: 06/10/2023]
Abstract
An MBBR and CW combo bio-reactor (MBCW) was designed as a novel hybrid process for simultaneous organic, nitrogen and phosphate removal through the long-term operation. The effect of the internal recycling rate (IRR), hydraulic retention time (HRT) and chemical oxygen demand/total nitrogen (C/N) ratio were all discussed, and the recommended values were 5:1, 12 h and >6, respectively. A higher C/N ratio was a key factor for achieving a higher TN removal. The mixed biocarrier system was realized by inoculating porous polymer carriers (PPC) and cylindrical polyethylene carriers (CPC) and achieving a higher organic biodegradation and nitrification rate compared to a single carrier system. Microorganism activities and plants' uptake or utilization both contributed to the nutrient removal in a constructed wetland. High-throughput sequencing results revealed an abundant microbial diversity and a distinct microbial distribution in the whole system where Flavobacterium (14.2%), Acinetobacter (12.87%) and Rhodobacter (10.83%) dominated on PPC, Terrimonas (8.88%), Reyranella (6.61%) and Rubinisphaera (5.63%) dominated on CPC, Comamonas (4.18%), Gemmobacter (4.02%) and Hydrogenophaga (3.97%) dominated on CWs, as well as Citrobacter (53.13%) on suspended floc.
Collapse
Affiliation(s)
- Changmiao Lai
- College of Architecture and Environment, Sichuan University, Chengdu, People's Republic of China
| | - Yu Sun
- College of Architecture and Environment, Sichuan University, Chengdu, People's Republic of China
| | - Yong Guo
- School of Chemical Engineering, Sichuan University, Chengdu, People's Republic of China
| | - Qin Cai
- College of Architecture and Environment, Sichuan University, Chengdu, People's Republic of China
| | - Ping Yang
- College of Architecture and Environment, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
6
|
Xing Y, Chen XD, Wang SP, Zhang ZQ, Liu X, Lu JS. Effect of minocycline on the changes in the sewage chemical index and microbial communities in sewage pipes. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123792. [PMID: 33254801 DOI: 10.1016/j.jhazmat.2020.123792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/11/2020] [Accepted: 08/18/2020] [Indexed: 06/12/2023]
Abstract
With the increasing use of drugs in cities, the sewer is becoming the most suitable place for antibiotic accumulation and transfer. In order to reveal the occurrence and fate of antibiotic sewage during pipeline migration, we used an anaerobic reactor device to simulate the concentration change of minocycline in the sewer and its impact on the sewage quality. The results showed that 90.8 % of minocycline was removed during sewer transportation. In the presence of minocycline, although the consumption of Chemical Oxygen Demand and total nitrogen in the sewage did not change significantly, the consumption rate of total phosphorus, nitrate nitrogen and the growth rate of ammonia nitrogen at the front end of the pipeline were decreased from 29.4 %, 86.3 %, 60.3 % to 3.7 %, 81.5 %, 18.3 % respectively. Minocycline inhibited the reduction of SO42-, while also reducing the production of H2S gas and increasing the release of CH4 gas. Moreover, the decline in the abundance of functional bacteria such as phosphorus accumulating organisms was consistent with the consumption of sewage nutrients. This experiment provides data support for the risk of wastewater leakage of medical and pharmaceutical wastewater into domestic sewage, and will helps to maintain the safe operation of actual sewage pipes.
Collapse
Affiliation(s)
- Yi Xing
- Environmental and Municipal Engineering Department, Xi'an University of Architecture and Technology, Xi'an, Shaanxi, PR China
| | - Xing-du Chen
- Environmental and Municipal Engineering Department, Xi'an University of Architecture and Technology, Xi'an, Shaanxi, PR China; Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, PR China; Key Laboratory of Environmental Engineering, Shaanxi Province, PR China
| | - She-Ping Wang
- Environmental and Municipal Engineering Department, Xi'an University of Architecture and Technology, Xi'an, Shaanxi, PR China
| | - Zhi-Qiang Zhang
- Environmental and Municipal Engineering Department, Xi'an University of Architecture and Technology, Xi'an, Shaanxi, PR China
| | - Xin Liu
- Environmental and Municipal Engineering Department, Xi'an University of Architecture and Technology, Xi'an, Shaanxi, PR China
| | - Jin-Suo Lu
- Environmental and Municipal Engineering Department, Xi'an University of Architecture and Technology, Xi'an, Shaanxi, PR China; Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, PR China; Key Laboratory of Environmental Engineering, Shaanxi Province, PR China.
| |
Collapse
|
7
|
Cui H, Yang SS, Pang JW, Mi HR, Nuer CC, Ding J. An improved ASM-GDA approach to evaluate the production kinetics of loosely bound and tightly bound extracellular polymeric substances in biological phosphorus removal process. RSC Adv 2020; 10:2495-2506. [PMID: 35496100 PMCID: PMC9048850 DOI: 10.1039/c9ra06845g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 12/03/2019] [Indexed: 11/21/2022] Open
Abstract
This study established an extended activated sludge model no. 2 (ASM2) for providing a new recognition of the contributions of both loosely-bound EPS (LB-EPS) and tightly-bound EPS (TB-EPS) into phosphorus (P) removal by incorporating their formation and degradation processes during the anaerobic-aerobic cycle. For determining the best-fit values for the new model parameters (k h,TB-EPS, k h,LB-EPS, f PP,TB-EPS, and f PP,LB-EPS) in this extended ASM2, a novel and convenient gradient descent algorithm (GDA) based ASM (ASM-GDA) method was developed. Sensitivity analysis of f PP,TB-EPS, f PP,LB-EPS, k h,TB-EPS, and k h,LB-EPS on the model target outputs of S PO4 , X TB-EPS, X LB-EPS, and X PP proved the accuracy of the chosen parameters. Eight batch experiments conducted under different influential chemical oxygen demand (COD) and P conditions were quantitatively and qualitatively analyzed. Respectively, 9.37-9.64% and 4.17-4.29% of P removal by TB-EPS and LB-EPS were achieved. Self-Organizing Map (SOM) has shown its high performance for visualization and abstraction for exhibiting the high correlations of the influential COD/P concentrations and the P% removal by TB-EPS (and LB-EPS). Comprehensive analyses of the influences of influential COD and P concentration on the biological phosphorus removal process help us in successfully establishing the mechanism kinetics of production and degradation of P in a dynamic P biological-treatment model.
Collapse
Affiliation(s)
- Hai Cui
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology Harbin 150000 PR China
| | - Shan-Shan Yang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology Harbin 150000 PR China
| | - Ji-Wei Pang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology Harbin 150000 PR China
| | - Hai-Rong Mi
- College of Aerospace and Civil Engineering, Harbin Engineering University Harbin 150001 PR China
| | - Chen-Chen Nuer
- College of Aerospace and Civil Engineering, Harbin Engineering University Harbin 150001 PR China
| | - Jie Ding
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology Harbin 150000 PR China
| |
Collapse
|
8
|
Liu X, Xu Q, Wang D, Wu Y, Yang Q, Liu Y, Wang Q, Li X, Li H, Zeng G, Yang G. Unveiling the mechanisms of how cationic polyacrylamide affects short-chain fatty acids accumulation during long-term anaerobic fermentation of waste activated sludge. WATER RESEARCH 2019; 155:142-151. [PMID: 30844675 DOI: 10.1016/j.watres.2019.02.036] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/16/2019] [Accepted: 02/20/2019] [Indexed: 05/16/2023]
Abstract
Cationic polyacrylamide, a flocculation powder widely used in wastewater pretreatment and sludge dewatering, was highly accumulated in waste activated sludge. However, its effect on short-chain fatty acids (SCFAs) accumulation from anaerobic fermentation of waste activated sludge has not been investigated. This work therefore aims to deeply unveil how cationic polyacrylamide affects SCFAs production, through both long-term and batch tests using either real waste activated sludge or synthetic wastewaters as fermentation substrates. Experimental results showed that the presence of cationic polyacrylamide not only significantly decreased the accumulation of SCFAs but also affected the composition of individual SCFA. The concentration of SCFAs decreased from 3374.7 to 2391.7 mg COD/L with cationic polyacrylamide level increasing from 0 to 12 g/kg of total suspended solids, whereas the corresponding percentage of acetic acid increased from 45.2% to 55.5%. The mechanism studies revealed that although cationic polyacrylamide could be partially degraded to produce SCFAs during anaerobic fermentation, cationic polyacrylamide and its major degradation metabolite, polyacrylic acid, inhibited all the sludge solubilization, hydrolysis, acidogenesis, acetogenesis and homoacetogenesis processes to some extents. As a result, the accumulation of SCFAs in the cationic polyacrylamide added systems decreased rather than increased. However, the inhibition to acetogenesis and homoacetogenesis was slighter than that to acidogenesis, leading to an increase of acetic acid to total SCFAs. It was further found that cationic polyacrylamide had stronger ability to adhere to protein molecules surface, which inhibited the bioconversion of proteins more severely. Illumina MiSeq sequencing analyses showed that cationic polyacrylamide decreased microbial community diversity, altered community structure and changed activities of key enzymes responsible for SCFAs accumulation.
Collapse
Affiliation(s)
- Xuran Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| | - Qiuxiang Xu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| | - Yanxin Wu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Qi Yang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Yiwen Liu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Qilin Wang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Xiaoming Li
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Hailong Li
- School of Energy Science and Engineering, Central South University, Changsha, 410083, PR China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Guojing Yang
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, PR China.
| |
Collapse
|
9
|
Chen J, Lu Y, Cheng J, Zhang J. Effect of starvation on the nitrification performance of constructed rapid infiltration systems. ENVIRONMENTAL TECHNOLOGY 2019; 40:1408-1417. [PMID: 29300138 DOI: 10.1080/09593330.2017.1422554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 12/22/2017] [Indexed: 06/07/2023]
Abstract
Three constructed rapid infiltration (CRI) systems (C1, C2 and C3) were operated under 7, 14 and 21 days of continuous starvation, respectively. The effect of starvation on the ammonia removal efficiency (ARE), nitrite accumulation rate (NAR), bioactivity of nitrifiers and content of extracellular polymeric substances (EPS) was investigated. The results showed that the activity of nitrite-oxidizing bacteria (NOB) was higher than that of ammonia-oxidizing bacteria (AOB) in stabilization periods, leading to a complete nitrification in CRI systems. During starvation periods, the activity decay rates of AOB (kAOB) for C1, C2 and C3 were 0.172 ± 0.008, 0.132 ± 0.009 and 0.128 ± 0.009 d-1, respectively, and those of NOB (kNOB) were 0.159 ± 0.005, 0.152 ± 0.009 and 0.150 ± 0.005 d-1, respectively, implying that kAOB was higher than kNOB in a 7-day starvation period, while showing a contrasting result in a 14- or 21-day starvation period. When resuming wastewater supply, AOB activity as well as the ARE in C1, C2 and C3 gradually restored to their initial levels within 6, 10 and 23 days, respectively. However, NOB activity was unable to fully restore after a 14- or 21-day starvation period, causing the final NAR of C2 and C3 to remain at 25% and 60%, respectively. Furthermore, EPS could be used as the source of carbon and energy for hungry microorganisms to guarantee the metabolic activity of living cells in a starvation environment. These findings could provide a theoretical foundation for operational optimization of CRI systems under starvation conditions.
Collapse
Affiliation(s)
- Jiao Chen
- a Faculty of Geosciences and Environmental Engineering , Southwest Jiaotong University , Chengdu , People's Republic of China
| | - Yixin Lu
- a Faculty of Geosciences and Environmental Engineering , Southwest Jiaotong University , Chengdu , People's Republic of China
- b Department of Architectural and Environmental Engineering , Chengdu Technological University , Chengdu , People's Republic of China
| | - Jun Cheng
- a Faculty of Geosciences and Environmental Engineering , Southwest Jiaotong University , Chengdu , People's Republic of China
| | - Jianqiang Zhang
- a Faculty of Geosciences and Environmental Engineering , Southwest Jiaotong University , Chengdu , People's Republic of China
| |
Collapse
|
10
|
Liang J, Chen N, Tong S, Liu Y, Feng C. Sulfur autotrophic denitrification (SAD) driven by homogeneous composite particles containing CaCO 3-type kitchen waste for groundwater remediation. CHEMOSPHERE 2018; 212:954-963. [PMID: 30286552 DOI: 10.1016/j.chemosphere.2018.08.161] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 08/16/2018] [Accepted: 08/31/2018] [Indexed: 06/08/2023]
Abstract
This study first developed homogeneous sulfur/buffer composite particles to obtain an alkalinity-uniform and cost-effective sulfur autotrophic denitrification (SAD) technology. As single solid-phase material, the composites performed better in enrichment of microorganisms and stabilization of S/C ratio throughout the reaction. Natural CaCO3-type kitchen waste, used as a buffer in the developed composites, was conducive to providing rich metal nutrients (K, Na, Mg, Al, and Ca) for the metabolism of microorganisms. Maximum denitrification efficiency of 96.4%, 96.8% and 96.8% were obtained by the 1.25:1 PSL, 1.72:1 PSE and 1.25:1 PSS composites, respectively, and nitrate removal rates of >0.6 mg-N/L-h and stable pH between 6.20 and 8.00 were achieved. The S0-eggshell microcosms showed more significant accumulations of ammonium-N and sulfate, reaching ∼1.2 mg-N/L and 405.99 ± 9.47 mg/L, respectively. When dealing with nitrate in real groundwater, the composites showed a great advantage over the dispersed materials at a denitrification efficiency of more than 99.7% and rate of 0.40 mg-N/L-h. No ammonium was observed by PSE and PSS throughout the batch. This study confirmed the potential of waste composites to enhance SAD performance in nitrate-contaminated groundwater remediation.
Collapse
Affiliation(s)
- Jing Liang
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, PR China; School of Water Resources and Environment, PR China
| | - Nan Chen
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, PR China
| | - Shuang Tong
- Beijing Key Laboratory of Meat Processing Technology, China Meat Research Center, Beijing 100068, PR China
| | - Yongjie Liu
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, PR China
| | - Chuanping Feng
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, PR China.
| |
Collapse
|
11
|
Wang Y, Zhao J, Wang D, Liu Y, Wang Q, Ni BJ, Chen F, Yang Q, Li X, Zeng G, Yuan Z. Free nitrous acid promotes hydrogen production from dark fermentation of waste activated sludge. WATER RESEARCH 2018; 145:113-124. [PMID: 30121432 DOI: 10.1016/j.watres.2018.08.011] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 07/10/2018] [Accepted: 08/02/2018] [Indexed: 06/08/2023]
Abstract
Simultaneous sludge fermentation and nitrite removal is an effective approach to enhance nutrient removal from low carbon-wastewater. It was found in this work that the presence of nitrite largely promoted hydrogen production from acidic fermentation of waste activated sludge (WAS). The results showed that with an increase of nitrite from 0 to 250 mg/L, the maximal hydrogen yield increased from 8.5 to 15.0 mL/g VSS at pH 5.5 fermentation and 8.1-13.0 mL/g VSS at pH 6 fermentation. However, the maximal hydrogen yield from WAS fermentation at pH 8 remained almost constant (2.9-3.7 mL/g VSS) when nitrite was in the range of 0-250 mg/L. Further analyses revealed that free nitrous acid (FNA) rather than nitrite was the major contributor to the promotion of hydrogen yield. The mechanism investigations showed that FNA not only accelerated the disruption of sludge cells but also promoted the biodegradability of organics released, thereby provided more biodegradable substrates for subsequent hydrogen production. Although FNA inhibited activities of all microbes involved in the anaerobic fermentation, its inhibitions to hydrogen consumers were much severer than those to hydrolytic microorganisms and hydrogen producers. Further investigations with microbial community showed that FNA increased the abundances of hydrogen producers (e.g., Citrobacter sp.) and denitrifiers (e.g., Dechloromonas sp.), but reduced the abundances of hydrogen consumers (e.g., Clostridium_aceticum). This work demonstrated for the first time that FNA in WAS fermentation systems enhanced hydrogen production. The findings obtained expand the application field of FNA and may provide supports for sustainable operation of wastewater treatment plants.
Collapse
Affiliation(s)
- Yali Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| | - Jianwei Zhao
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| | - Yiwen Liu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Qilin Wang
- Griffith School of Engineering & Centre for Clean Environment and Energy, Griffith University, QLD, Australia
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Fei Chen
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Qi Yang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Xiaoming Li
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Zhiguo Yuan
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Brisbane, Queensland, 4072, Australia.
| |
Collapse
|
12
|
Yang G, Xu Q, Wang D, Tang L, Xia J, Wang Q, Zeng G, Yang Q, Li X. Free ammonia-based sludge treatment reduces sludge production in the wastewater treatment process. CHEMOSPHERE 2018; 205:484-492. [PMID: 29705639 DOI: 10.1016/j.chemosphere.2018.04.140] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/14/2018] [Accepted: 04/21/2018] [Indexed: 06/08/2023]
Abstract
Excessive sludge production is one of the major challenges for biological wastewater treatment plants. This paper reports a new strategy to enhance sludge reduction from the wastewater treatment process. In this strategy, 1/5 of the sludge is withdrawn from the mainstream reactor into a side-stream unit for sludge treatment with 16 mg/L free ammonia (FA) for 24-40 h. The FA-treated sludge mixture is then returned to the mainstream reactor. To demonstrate this concept, two reactors treating synthetic domestic wastewater were operated, with one serving as the experimental reactor and the other as the control. Experimental results showed that the experimental reactor exhibited 20% lower in sludge production than the control. FA treatment effectively disintegrated a portion of extracellular or intracellular substances of sludge cells in the FA treatment unit and lowered the observed sludge yields in the mainstream reactor, which were the main reasons for the sludge reduction. Although FA treatment decreased the activities of nitrifiers, denitrifiers, and polyphosphate accumulating organisms in the FA treatment unit, this strategy did not negatively affect the reactor performance and sludge properties of the experimental reactor such as sludge settleability, organic removal, nitrogen removal and phosphorus removal. Further investigation showed that the organics released from the FA treatment process could be used by PAOs and denitrifiers for carbon sources.
Collapse
Affiliation(s)
- Guojing Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China; College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, PR China
| | - Qiuxiang Xu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Li Tang
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, PR China
| | - Jingfen Xia
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, PR China
| | - Qilin Wang
- Griffith School of Engineering & Centre for Clean Environment and Energy, Griffith University, QLD, Australia
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Qi Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Xiaoming Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
13
|
Yang G, Wang D, Yang Q, Zhao J, Liu Y, Wang Q, Zeng G, Li X, Li H. Effect of acetate to glycerol ratio on enhanced biological phosphorus removal. CHEMOSPHERE 2018; 196:78-86. [PMID: 29291517 DOI: 10.1016/j.chemosphere.2017.12.167] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 12/07/2017] [Accepted: 12/26/2017] [Indexed: 05/22/2023]
Abstract
Enhanced biological phosphorus removal (EBPR) is a sustainable and promising technology for phosphorus removal from wastewater. The efficiency of this technology, however, is often discounted due to the insufficient carbon sources in influent. In this work, the effect of acetate to glycerol ratio on the EBPR performance was evaluated. The experimental results showed when the ratio of acetate to glycerol decreased from 100/0% to 50/50%, the EBPR efficiency increased from 90.2% to 96.2%. Further decrease of acetate to glycerol ratio to 0/100% decreased the efficiency of EBPR to 30.5%. Fluorescence in situ hybridization analysis demonstrated appropriate increase of glycerol benefited to increase the relative abundance of phosphate accumulating organisms. Further investigation revealed the proper addition of glycerol increased the amount of polyhydroxyalkanoates synthesis, and then produced sufficient energy for oxic luxury phosphorus in the subsequent oxic phase.
Collapse
Affiliation(s)
- Guojing Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China; College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China.
| | - Qi Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Jianwei Zhao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China.
| | - Yiwen Liu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Qilin Wang
- Griffith School of Engineering, Griffith University, Nathan, QLD 4111, Australia
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Xiaoming Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Hailong Li
- School of Energy Science and Engineering, Central South University, Changsha, 410083, China
| |
Collapse
|
14
|
Wang D, Liu X, Zeng G, Zhao J, Liu Y, Wang Q, Chen F, Li X, Yang Q. Understanding the impact of cationic polyacrylamide on anaerobic digestion of waste activated sludge. WATER RESEARCH 2018; 130:281-290. [PMID: 29241114 DOI: 10.1016/j.watres.2017.12.007] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 11/15/2017] [Accepted: 12/04/2017] [Indexed: 06/07/2023]
Abstract
Previous investigations showed that cationic polyacrylamide (cPAM), a flocculant widely used in wastewater pretreatment and waste activated sludge dewatering, deteriorated methane production during anaerobic digestion of sludge. However, details of how cPAM affects methane production are poorly understood, hindering deep control of sludge anaerobic digestion systems. In this study, the mechanisms of cPAM affecting sludge anaerobic digestion were investigated in batch and long-term tests using either real sludge or synthetic wastewaters as the digestion substrates. Experimental results showed that the presence of cPAM not only slowed the process of anaerobic digestion but also decreased methane yield. The maximal methane yield decreased from 139.1 to 86.7 mL/g of volatile suspended solids (i.e., 1861.5 to 1187.0 mL/L) with the cPAM level increasing from 0 to 12 g/kg of total suspended solids (i.e., 0-236.7 mg/L), whereas the corresponding digestion time increased from 22 to 26 d. Mechanism explorations revealed that the addition of cPAM significantly restrained the sludge solubilization, hydrolysis, acidogenesis, and methanogenesis processes. It was found that ∼46% of cAPM was degraded in the anaerobic digestion, and the degradation products significantly affected methane production. Although the theoretically biochemical methane potential of cPAM is higher than that of protein and carbohydrate, only 6.7% of the degraded cPAM was transformed to the final product, methane. Acrylamide, acrylic acid, and polyacrylic acid were found to be the main degradation metabolites, and their amount accounted for ∼50% of the degraded cPAM. Further investigations showed that polyacrylic acid inhibited all the solubilization, hydrolysis, acidogenesis, and methanogenesis processes while acrylamide and acrylic acid inhibited the methanogenesis significantly.
Collapse
Affiliation(s)
- Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Xuran Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| | - Jianwei Zhao
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Yiwen Liu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Qilin Wang
- Griffith School of Engineering & Centre for Clean Environment and Energy, Griffith University, QLD, Australia
| | - Fei Chen
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Xiaoming Li
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Qi Yang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| |
Collapse
|
15
|
Qiu L, Zhang M, Yu X, Zheng P. A novel Fe(II)-Ca synergistic phosphorus removal process: process optimization and phosphorus recovery. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:1543-1550. [PMID: 29098579 DOI: 10.1007/s11356-017-0183-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 09/11/2017] [Indexed: 06/07/2023]
Abstract
Phosphorus removal from wastewater is an important means to control eutrophication and to recover phosphorus from wastewater. In this study, a novel Fe(II)-Ca synergistic phosphorus removal process is developed using the complex of ferrous and calcium salts. The results showed that ferrous and calcium had an antagonistic effect at Fe(II)/Ca molar ratio of lower than 1:4, but a synergistic effect at Fe(II)/Ca molar ratio of higher than 1:4, with the strongest synergistic effect at Fe(II)/Ca molar ratio of 7:3. The optimal parameters of this novel process were as follows: Fe(II)/Ca = 3:1, ferrous-calcium complex/phosphorous (M/P) ≥ 1.5:1, pH = 7.0-8.0, and fast mixing speed (FMS) = 100-150 rpm. The cost of phosphorus removal agents was US$1.024 (kg P)-1, reduced by 30.39% compared with that of the traditional phosphorus removal process. The phosphorus content (by P2O5) in the precipitate produced in the new process was 32.70%, which had a high recycling value.
Collapse
Affiliation(s)
- Lin Qiu
- Department of Environmental Engineering, Zhejiang University, No. 866, Yuhangtang Road, Xihu District, Hangzhou, Zhejiang, China
| | - Meng Zhang
- Department of Environmental Engineering, Zhejiang University, No. 866, Yuhangtang Road, Xihu District, Hangzhou, Zhejiang, China
| | - Xiaoqing Yu
- Department of Environmental Engineering, Zhejiang University, No. 866, Yuhangtang Road, Xihu District, Hangzhou, Zhejiang, China
| | - Ping Zheng
- Department of Environmental Engineering, Zhejiang University, No. 866, Yuhangtang Road, Xihu District, Hangzhou, Zhejiang, China.
| |
Collapse
|
16
|
Yi K, Wang D, Li X, Chen H, Sun J, An H, Wang L, Deng Y, Liu J, Zeng G. Effect of ciprofloxacin on biological nitrogen and phosphorus removal from wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 605-606:368-375. [PMID: 28668748 DOI: 10.1016/j.scitotenv.2017.06.215] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 06/17/2017] [Accepted: 06/25/2017] [Indexed: 06/07/2023]
Abstract
In this work, both short-term and long-term experiments were therefore conducted to assess the effects of ciprofloxacin (0.2 and 2mg·L-1) on wastewater nutrient removal. The results showed that both levels of ciprofloxacin had no acute and chronic adverse effects on the surface integrity and viability of activated sludge. Short-term exposure to all the ciprofloxacin levels induced negligible influences on wastewater nutrient removal. However, the prolonged exposure to ciprofloxacin decreased total phosphorus and nitrogen removal efficiencies from 96.8, 95.8% (control) to 91.7, 84.9% (0.2mg·L-1) and 90.5%, 80.2% (2mg·L-1), respectively. The mechanism study showed that ciprofloxacin exposure suppressed denitrification and phosphorus uptake processes. It was also found that ciprofloxacin affected the transformations of intracellular polyhydroxyalkanoates and glycogen in the oxic and anoxic stages. Moreover the activities of nitrite reductase and polyphosphate kinase were inhibited by the presence of ciprofloxacin. Further analysis with high-throughput sequencing revealed that compared with the control, the abundances of polyphosphate accumulating organisms, glycogen accumulating organisms and denitrifying bacteria in ciprofloxacin exposure reactors reduced, which were consistent with the decreased nutrient removal performance measured in these reactors.
Collapse
Affiliation(s)
- Kaixin Yi
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Xiaoming Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Hongbo Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Jian Sun
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Hongxue An
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Liqun Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yongchao Deng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Jun Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
17
|
Peng L, Carvajal-Arroyo JM, Seuntjens D, Prat D, Colica G, Pintucci C, Vlaeminck SE. Smart operation of nitritation/denitritation virtually abolishes nitrous oxide emission during treatment of co-digested pig slurry centrate. WATER RESEARCH 2017; 127:1-10. [PMID: 28992459 DOI: 10.1016/j.watres.2017.09.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 09/16/2017] [Accepted: 09/27/2017] [Indexed: 06/07/2023]
Abstract
The implementation of nitritation/denitritation (Nit/DNit) as alternative to nitrification/denitrification (N/DN) is driven by operational cost savings, e.g. 1.0-1.8 EUR/ton slurry treated. However, as for any biological nitrogen removal process, Nit/DNit can emit the potent greenhouse gas nitrous oxide (N2O). Challenges remain in understanding formation mechanisms and in mitigating the emissions, particularly at a low ratio of organic carbon consumption to nitrogen removal (CODrem/Nrem). In this study, the centrate (centrifuge supernatant) from anaerobic co-digestion of pig slurry was treated in a sequencing batch reactor. The process removed approximately 100% of ammonium a satisfactory nitrogen loading rate (0.4 g N/L/d), with minimum nitrite and nitrate in the effluent. Substantial N2O emission (around 17% of the ammonium nitrogen loading) was observed at the baseline operational condition (dissolved oxygen, DO, levels averaged at 0.85 mg O2/L; CODrem/Nrem of 2.8) with ∼68% of the total emission contributed by nitritation. Emissions increased with higher nitrite accumulation and lower organic carbon to nitrogen ratio. Yet, higher DO levels (∼2.2 mg O2/L) lowered the aerobic N2O emission and weakened the dependency on nitrite concentration, suggesting a shift in N2O production pathway. The most effective N2O mitigation strategy combined intermittent patterns of aeration, anoxic feeding and anoxic carbon dosage, decreasing emission by over 99% (down to ∼0.12% of the ammonium nitrogen loading). Without anaerobic digestion, mitigated Nit/DNit decreases the operational carbon footprint with about 80% compared to N/DN. With anaerobic digestion included, about 4 times more carbon is sequestered. In conclusion, the low CODrem/Nrem feature of Nit/DNit no longer offsets its environmental sustainability provided the process is smartly operated.
Collapse
Affiliation(s)
- Lai Peng
- Center for Microbial Ecology and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium; Research Group of Sustainable Energy, Air and Water Technology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium
| | - José M Carvajal-Arroyo
- Center for Microbial Ecology and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium
| | - Dries Seuntjens
- Center for Microbial Ecology and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium
| | - Delphine Prat
- Center for Microbial Ecology and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium
| | - Giovanni Colica
- Center for Microbial Ecology and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium
| | - Cristina Pintucci
- Center for Microbial Ecology and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium
| | - Siegfried E Vlaeminck
- Center for Microbial Ecology and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium; Research Group of Sustainable Energy, Air and Water Technology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium.
| |
Collapse
|
18
|
Long X, Tang R, Fang Z, Xie C, Li Y, Xian G. The roles of loosely-bound and tightly-bound extracellular polymer substances in enhanced biological phosphorus removal. CHEMOSPHERE 2017; 189:679-688. [PMID: 28965063 DOI: 10.1016/j.chemosphere.2017.09.067] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 09/07/2017] [Accepted: 09/15/2017] [Indexed: 06/07/2023]
Abstract
Extracellular polymeric substances (EPS) have be founded to participate in the process of enhanced biological phosphorus removal (EBPR), but the exact role of EPS in EBPR process is unclear. In this work, the roles of loosely-bound EPS (LB-EPS), tightly-bound EPS (TB-EPS) and microbial cell in EBPR were explored, taking the activated sludge from 4 lab-scale A/O-SBR reactors with different temperatures and organic substrates as objects. It was founded that the P of EBPR activated sludge was mainly stored in TB-EPS, but the P of non-EBPR activated sludge was primarily located in microbial cell. The P release and uptake of EBPR activated sludge was attributed to the combined action of TB-EPS and microbial cell. Furthermore, TB-EPS played an more important role than microbial cell in EBPR process. With the analysis of 31P NMR spectroscopy, both polyP and orthoP were the main phosphorus species of TB-EPS in EBPR sludge, but only orthoP was the main phosphorus species of LB-EPS and microbial cell. During the anaerobic-aerobic cycle, the roles of LB-EPS, TB-EPS and microbial cell in transfer and transformation of P in EBPR sludge were obviously different. LB-EPS transported and retained orthoP, and microbial cell directly anaerobically released or aerobically absorbed orthoP. Importantly, TB-EPS not only transported and retained orthoP, but also participated in biological phosphorus accumulation. The EBPR performance of sludge was closely related with the polyp in TB-EPS, which might be synthesized and decomposed by extracellular enzyme.
Collapse
Affiliation(s)
- Xiangyu Long
- Department of National Defense Architectural Planning & Environmental Engineering, Logistic Engineering University, Chongqing, 401311, China
| | - Ran Tang
- Department of National Defense Architectural Planning & Environmental Engineering, Logistic Engineering University, Chongqing, 401311, China.
| | - Zhendong Fang
- Department of National Defense Architectural Planning & Environmental Engineering, Logistic Engineering University, Chongqing, 401311, China
| | - Chaoxin Xie
- Department of National Defense Architectural Planning & Environmental Engineering, Logistic Engineering University, Chongqing, 401311, China
| | - Yongqin Li
- Department of National Defense Architectural Planning & Environmental Engineering, Logistic Engineering University, Chongqing, 401311, China
| | - Guang Xian
- Department of National Defense Architectural Planning & Environmental Engineering, Logistic Engineering University, Chongqing, 401311, China
| |
Collapse
|
19
|
Wang D, Fu Q, Xu Q, Liu Y, Hao Ngo H, Yang Q, Zeng G, Li X, Ni BJ. Free nitrous acid-based nitrifying sludge treatment in a two-sludge system enhances nutrient removal from low-carbon wastewater. BIORESOURCE TECHNOLOGY 2017; 244:920-928. [PMID: 28847081 DOI: 10.1016/j.biortech.2017.08.045] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 08/08/2017] [Accepted: 08/09/2017] [Indexed: 06/07/2023]
Abstract
A new method to enhance nutrient removal from low carbon-wastewater was developed. The method consists of a two-sludge system (i.e., an anaerobic-anoxic-oxic reactor coupled to a nitrifying reactor (N-SBR)) and a nitrifying-sludge treatment unit using free nitrous acid (FNA). Initially, 65.1±2.9% in total nitrogen removal and 69.6±3.4% in phosphate removal were obtained without nitrite accumulation. When 1/16 of the nitrifying sludge was daily treated with FNA at 1.1mgN/L for 24h, ∼28.5% of nitrite was accumulated in the N-SBR, and total nitrogen and phosphate removal increased to 72.4±3.2% and 76.7±2.9%, respectively. About 67.8% of nitrite was accumulated at 1.9mgN/L FNA, resulting in 82.9±3.8% in total nitrogen removal and 87.9±3.5% in phosphate removal. Fluorescence in-situ hybridization analysis showed that FNA treatment reduced the abundance of nitrite oxidizing bacteria (NOB), especially that of Nitrospira sp.
Collapse
Affiliation(s)
- Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Qizi Fu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Qiuxiang Xu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yiwen Liu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia.
| | - Qi Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Xiaoming Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Bing-Jie Ni
- Department of Civil Engineering, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
20
|
Liu Y, Ngo HH, Guo W, Zhou J, Peng L, Wang D, Chen X, Sun J, Ni BJ. Optimizing sulfur-driven mixotrophic denitrification process: System performance and nitrous oxide emission. Chem Eng Sci 2017. [DOI: 10.1016/j.ces.2017.07.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
21
|
Xu Q, Li X, Ding R, Wang D, Liu Y, Wang Q, Zhao J, Chen F, Zeng G, Yang Q, Li H. Understanding and mitigating the toxicity of cadmium to the anaerobic fermentation of waste activated sludge. WATER RESEARCH 2017; 124:269-279. [PMID: 28772139 DOI: 10.1016/j.watres.2017.07.067] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 07/15/2017] [Accepted: 07/25/2017] [Indexed: 06/07/2023]
Abstract
Cadmium (Cd) is present in significant levels in waste activated sludge, but its potential toxicities on anaerobic fermentation of sludge remain largely unknown. This work therefore aims to provide such support. Experimental results showed that the impact of Cd on short-chain fatty acids (SCFA) production from sludge anaerobic fermentation was dose-dependent. The presence of environmentally relevant level of Cd (e.g., 0.1 mg/g VSS) enhanced SCFA production by 10.6%, but 10 mg/g VSS of Cd caused 68.1% of inhibition. Mechanism exploration revealed that although all levels of Cd did not cause extra leakage of intracellular substrates, 0.1 mg/g VSS Cd increased the contents of both soluble and loosely-bound extracellular polymeric substances (EPS), thereby benefitting sludge solubilization. On the contrary, 10 mg/g VSS Cd decreased the levels of all EPS layers, which reduced the content of soluble substrates. It was also found that 0.1 mg/g VSS Cd benefited both the hydrolysis and acidogenesis but 10 mg/g VSS Cd inhibited all the hydrolysis, acidogenesis, and methanogenesis processes. Further investigations with microbial community and enzyme analysis showed that the pertinent presence of Cd enhanced the activities of protease, acetate kinase, and oxaloacetate transcarboxylase whereas 10 mg/g VSS Cd decreased the microbial diversity, the abundances of functional microbes, and the activities of key enzymes. Finally, one strategy that could effectively mitigate the adverse impact of high Cd levels on SCFA production was proposed and examined. This work provides insights into Cd-present sludge fermentation systems, and the findings obtained may guide engineers to manipulate sludge treatment systems in the future.
Collapse
Affiliation(s)
- Qiuxiang Xu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Xiaoming Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Rongrong Ding
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Yiwen Liu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Qilin Wang
- Griffith School of Engineering & Centre for Clean Environment and Energy, Griffith University, QLD, Australia
| | - Jianwei Zhao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Fei Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Qi Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Hailong Li
- School of Energy Science and Engineering, Central South University, Changsha 410083, PR China
| |
Collapse
|
22
|
Zhao J, Gui L, Wang Q, Liu Y, Wang D, Ni BJ, Li X, Xu R, Zeng G, Yang Q. Aged refuse enhances anaerobic digestion of waste activated sludge. WATER RESEARCH 2017; 123:724-733. [PMID: 28719817 DOI: 10.1016/j.watres.2017.07.026] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/26/2017] [Accepted: 07/13/2017] [Indexed: 05/16/2023]
Abstract
In this work, a low-cost alternative approach (i.e., adding aged refuse (AR) into waste activated sludge) to significantly enhance anaerobic digestion of sludge was reported. Experimental results showed that with the addition dosage of AR increasing from 0 to 400 mg/g dry sludge soluble chemical oxygen demand (COD) increased from 1150 to 5240 mg/L at the digestion time of 5 d, while the maximal production of volatile fatty acids (VFA) increased from 82.6 to 183.9 mg COD/g volatile suspended solids. Although further increase of AR addition decreased the concentrations of both soluble COD and VFA, their contents in these systems with AR addition at any concentration investigated were still higher than those in the blank, which resulted in higher methane yields in these systems. Mechanism studies revealed that pertinent addition of AR promoted solubilization, hydrolysis, and acidogenesis processes and did not affect methanogenesis significantly. It was found that varieties of enzymes and anaerobes in AR were primary reason for the enhancement of anaerobic digestion. Humic substances in AR benefited hydrolysis and acidogenesis but inhibited methanogenesis. The effect of heavy metals in AR on sludge anaerobic digestion was dosage dependent. Sludge anaerobic digestion was enhanced by appropriate amounts of heavy metals but inhibited by excessive amounts of heavy metals. The relative abundances of microorganisms responsible for sludge hydrolysis and acidogenesis were also observed to be improved in the system with AR addition, which was consistent with the performance of anaerobic digestion.
Collapse
Affiliation(s)
- Jianwei Zhao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Lin Gui
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Qilin Wang
- Advanced Water Management Centre (AWMC), The University of Queensland, QLD 4072, Australia
| | - Yiwen Liu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Bing-Jie Ni
- Advanced Water Management Centre (AWMC), The University of Queensland, QLD 4072, Australia
| | - Xiaoming Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Rui Xu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Qi Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| |
Collapse
|
23
|
Zhao J, Liu Y, Wang D, Chen F, Li X, Zeng G, Yang Q. Potential impact of salinity on methane production from food waste anaerobic digestion. WASTE MANAGEMENT (NEW YORK, N.Y.) 2017; 67:308-314. [PMID: 28526189 DOI: 10.1016/j.wasman.2017.05.016] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 04/21/2017] [Accepted: 05/10/2017] [Indexed: 05/08/2023]
Abstract
Previous studies have demonstrated that the presence of sodium chloride (NaCl) inhibited the production of methane from food waste anaerobic digestion. However, the details of how NaCl affects methane production from food waste remain unknown by now and the efficient approach to mitigate the impact of NaCl on methane production was seldom reported. In this paper, the details of how NaCl affects methane production was first investigated via a series of batch experiments. Experimental results showed the effect of NaCl on methane production was dosage dependent. Low level of NaCl improved the hydrolysis and acidification but inhibited the process of methanogenesis whereas high level of NaCl inhibit both steps of acidification and methanogenesis. Then an efficient approach, i.e. co-digestion of food waste and waste activated sludge, to mitigate the impact of NaCl on methane production was reported. Finally, the mechanisms of how co-digestion mitigates the effect on methane production caused by NaCl in co-digestion system were revealed. These findings obtained in this work might be of great importance for the operation of methane recovery from food waste in the presence of NaCl.
Collapse
Affiliation(s)
- Jianwei Zhao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Yiwen Liu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Fei Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Xiaoming Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Qi Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| |
Collapse
|
24
|
Ge G, Zhao J, Li X, Ding X, Chen A, Chen Y, Hu B, Wang S. Effects of influent COD/N ratios on nitrous oxide emission in a sequencing biofilm batch reactor for simultaneous nitrogen and phosphorus removal. Sci Rep 2017; 7:7417. [PMID: 28784983 PMCID: PMC5547147 DOI: 10.1038/s41598-017-06943-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 06/21/2017] [Indexed: 11/09/2022] Open
Abstract
The characteristics of N2O emissions from an anaerobic/aerobic/anoxic (A/O/A) sequencing biofilm batch reactor (SBBR) were investigated under different influent COD/nitrogen (C/N) ratios (from 1-4). Results indicated that the C/N ratios affected the quantity of polyhydroxybutyrate (PHB) and residual organic substances after the anaerobic period, resulting in the largest N2O emission during aerobic period occurred at a C/N of 2. Moreover, during the anoxic PHB-driven denitrification period, the rapid decline in the dissolved N2O concentration indicated that the nitrite inhibition threshold for N2O reduction increased with the increased C/N ratios, which means the higher influent C/N ratios could lower the inhibition of nitrite on N2O reduction. Finally, more PHB and residual organic substances were provided to denitrification at a high C/N ratio, resulting in less total N2O emission was achieved at a high C/N ratio in the A/O/A SBBR.
Collapse
Affiliation(s)
- Guanghuan Ge
- School of Environmental Science and Engineering, Chang'an University, Xi'an, China
| | - Jianqiang Zhao
- School of Environmental Science and Engineering, Chang'an University, Xi'an, China. .,Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Xi'an, China.
| | - Xiaoling Li
- School of Civil Engineering, Chang'an University, Xi'an, China
| | - Xiaoqian Ding
- School of Environmental Science and Engineering, Chang'an University, Xi'an, China
| | - Aixia Chen
- School of Environmental Science and Engineering, Chang'an University, Xi'an, China.,Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Xi'an, China
| | - Ying Chen
- School of Environmental Science and Engineering, Chang'an University, Xi'an, China
| | - Bo Hu
- School of Civil Engineering, Chang'an University, Xi'an, China
| | - Sha Wang
- School of Environmental Science and Engineering, Chang'an University, Xi'an, China
| |
Collapse
|
25
|
Wang D, Liu Y, Ngo HH, Zhang C, Yang Q, Peng L, He D, Zeng G, Li X, Ni BJ. Approach of describing dynamic production of volatile fatty acids from sludge alkaline fermentation. BIORESOURCE TECHNOLOGY 2017; 238:343-351. [PMID: 28456042 DOI: 10.1016/j.biortech.2017.04.054] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 04/12/2017] [Accepted: 04/13/2017] [Indexed: 06/07/2023]
Abstract
In this work, a mathematical model was developed to describe the dynamics of fermentation products in sludge alkaline fermentation systems for the first time. In this model, the impacts of alkaline fermentation on sludge disintegration, hydrolysis, acidogenesis, acetogenesis, and methanogenesis processes are specifically considered for describing the high-level formation of fermentation products. The model proposed successfully reproduced the experimental data obtained from five independent sludge alkaline fermentation studies. The modeling results showed that alkaline fermentation largely facilitated the disintegration, acidogenesis, and acetogenesis processes and severely inhibited methanogenesis process. With the pH increase from 7.0 to 10.0, the disintegration, acidogenesis, and acetogenesis processes respectively increased by 53%, 1030%, and 30% while methane production decreased by 3800%. However, no substantial effect on hydrolysis process was found. The model also indicated that the pathway of acetoclastic methanogenesis was more severely inhibited by alkaline condition than that of hydrogentrophic methanogenesis.
Collapse
Affiliation(s)
- Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China.
| | - Yiwen Liu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Chang Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Qi Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Lai Peng
- Research Group of Sustainable Energy, Air and Water Technology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium
| | - Dandan He
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Xiaoming Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Bing-Jie Ni
- Department of Civil Engineering, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
26
|
Liu J, Shi S, Ji X, Jiang B, Xue L, Li M, Tan L. Performance and microbial community dynamics of electricity-assisted sequencing batch reactor (SBR) for treatment of saline petrochemical wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:17556-17565. [PMID: 28597382 DOI: 10.1007/s11356-017-9446-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 06/01/2017] [Indexed: 06/07/2023]
Abstract
High-salinity wastewater is often difficult to treat by common biological technologies due to salinity stress on the bacterial community. Electricity-assisted anaerobic technologies have significantly enhanced the treatment performance by alleviating the impact of salinity stress on the bacterial community, but electricity-assisted aerobic technologies have less been reported. Herein, a novel bio-electrochemistry system has been designed and operated in which a pair of stainless iron mesh-graphite plate electrodes were installed into a sequencing batch reactor (SBR, designated as S1) to strengthen the performance of saline petrochemical wastewater under aerobic conditions. The removal efficiency of phenol and chemical oxygen demand (COD) in S1 were 94.1 and 91.2%, respectively, on day 45, which was clearly higher than the removal efficiency of a single SBR (S2) and an electrochemical reactor (S3), indicating that a coupling effect existed between the electrochemical process and biodegradation. A certain amount of salinity (≤8000 mg/L) could enhance the treatment performance in S1 but weaken that in S2. Illumina sequencing revealed that microbial communities in S1 on days 45 and 91 were richer and more diverse than in S2, which suggests that electrical stimulation could enhance the diversity and richness of the microbial community, and reduce the negative effect of salinity on the microorganisms and enrich some salt-adapted microorganisms, thus improve the ability of S1 to respond to salinity stress. This novel bio-electrochemistry system was shown to be an alternative technology for the high saline petrochemical wastewater.
Collapse
Affiliation(s)
- Jiaxin Liu
- School of Life Science, Liaoning Normal University, Dalian, 116081, China
| | - Shengnan Shi
- School of Life Science, Liaoning Normal University, Dalian, 116081, China.
| | - Xiangyu Ji
- School of Life Science, Liaoning Normal University, Dalian, 116081, China
| | - Bei Jiang
- School of Life Science, Liaoning Normal University, Dalian, 116081, China.
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023, China.
| | - Lanlan Xue
- School of Life Science, Liaoning Normal University, Dalian, 116081, China
| | - Meidi Li
- School of Life Science, Liaoning Normal University, Dalian, 116081, China
| | - Liang Tan
- School of Life Science, Liaoning Normal University, Dalian, 116081, China
| |
Collapse
|
27
|
Wang D, Wang Y, Liu Y, Ngo HH, Lian Y, Zhao J, Chen F, Yang Q, Zeng G, Li X. Is denitrifying anaerobic methane oxidation-centered technologies a solution for the sustainable operation of wastewater treatment Plants? BIORESOURCE TECHNOLOGY 2017; 234:456-465. [PMID: 28363395 DOI: 10.1016/j.biortech.2017.02.059] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 02/14/2017] [Accepted: 02/15/2017] [Indexed: 06/07/2023]
Abstract
With the world's increasing energy crisis, society is growingly considered that the operation of wastewater treatment plants (WWTPs) should be shifted in sustainable paradigms with low energy input, or energy-neutral, or even energy output. There is a lack of critical thinking on whether and how new paradigms can be implemented in WWTPs based on the conventional process. The denitrifying anaerobic methane oxidation (DAMO) process, which uses methane and nitrate (or nitrite) as electron donor and acceptor, respectively, has recently been discovered. Based on critical analyses of this process, DAMO-centered technologies can be considered as a solution for sustainable operation of WWTPs. In this review, a possible strategy with DAMO-centered technologies was outlined and illustrated how this applies for the existing WWTPs energy-saving and newly designed WWTPs energy-neutral (or even energy-producing) towards sustainable operations.
Collapse
Affiliation(s)
- Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Yali Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Yiwen Liu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia.
| | - Yu Lian
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Jianwei Zhao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Fei Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Qi Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Xiaoming Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
28
|
Shang Y, Xu X, Qi S, Zhao Y, Ren Z, Gao B. Preferable uptake of phosphate by hydrous zirconium oxide nanoparticles embedded in quaternary-ammonium Chinese reed. J Colloid Interface Sci 2017; 496:118-129. [PMID: 28214622 DOI: 10.1016/j.jcis.2017.02.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/31/2017] [Accepted: 02/09/2017] [Indexed: 12/26/2022]
Abstract
Phosphate capture from aqueous was conducted using hydrous zirconium oxide (HZO) embedded in quaternary-ammonium Chinese reed (CR-N+-HZO), and the characteristics of adsorbent was determined. HZO was dispersed as nanoparticles or nano-clusters on the external or inside the networking pores of CR-N+-HZO. The surface of CR-N+-HZO was heterogeneous with multiple adsorption sites, HZO nanocomposite and N+(CH2CH3)3Cl-, which both contributed to the adsorption process. The phosphate uptake by CR-N+-HZO was optimal at pH 3.0 and phosphate uptake by HZO nanocomposite was greatly inhibited at alkaline pH. Kinetics studies suggested that both the intra-particle mass-transfer and external resistances were likely to be the rate controlling steps. The Qmax (maximum adsorption capacity) of phosphate uptake by CR-N+-HZO and CR-N+ (30°C) calculated based on Langmuir model was about 59.2mg(P)/g(CR-N+-HZO) and 30.4mg(P)/g(CR-N+). A high usage efficiency of Zr in CR-N+-HZO was observed with calculated molar ratio of P/Zr to be 3.07.
Collapse
Affiliation(s)
- Yanan Shang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, PR China.
| | - Xing Xu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, PR China
| | - Shuto Qi
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China
| | - Yanxia Zhao
- Key Laboratory for Special Functional Aggregated Materials of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China; Department of Civil Engineering, Faculty of Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Zhongfei Ren
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, PR China
| | - Baoyu Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, PR China
| |
Collapse
|
29
|
Wang Z, Fei X, He S, Huang J, Zhou W. Comparison of heterotrophic and autotrophic denitrification processes for treating nitrate-contaminated surface water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 579:1706-1714. [PMID: 27923576 DOI: 10.1016/j.scitotenv.2016.11.194] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 11/25/2016] [Accepted: 11/27/2016] [Indexed: 06/06/2023]
Abstract
The goal of this study was to compare the nitrogen removal rate, effluent algal growth potential (AGP), nitrous oxide (N2O) emissions and global warming potential (GWP) between two laboratory-scale bioreactors: the autotrophic denitrification biofilter (ADBF) and heterotrophic denitrification biofilter (HDBF) for treating nitrate-contaminated surface water. The comparative study of nitrogen removal rate between ADBF and HDBF was conducted by a long-term experiment, and the comparative study of the effluent AGP, N2O emissions and GWP between ADBF and HDBF were carried out by the corresponding batch tests. The results show that the heterotrophic and autotrophic denitrification rates were close to each other. Besides, the AGP of the ADBF effluent was 2.08 times lower than that of the HDBF effluent, while the N2O concentration in off-gas emitted from HDBF was 6-8 times higher than that from ADBF. The higher N2O-N emission rate of HDBF was mainly responsible for the higher GWP of HDBF than that of ADBF. Furthermore, with a novel light-weight filtration media (NLWFM) for filtration, the autotrophic denitrification (ADN) process combined with biofilter process would be the optimal denitrification process for nitrogen removal from nitrate-contaminated surface water. The study also provided a systematic method for evaluation of biological nitrogen removal (BNR) process.
Collapse
Affiliation(s)
- Zheng Wang
- School of Environmental Science and Engineering, Shanghai Jiaotong University, Shanghai 200240, PR China
| | - Xiang Fei
- School of Environmental Science and Engineering, Shanghai Jiaotong University, Shanghai 200240, PR China
| | - Shengbing He
- School of Environmental Science and Engineering, Shanghai Jiaotong University, Shanghai 200240, PR China.
| | - Jungchen Huang
- School of Environmental Science and Engineering, Shanghai Jiaotong University, Shanghai 200240, PR China
| | - Weili Zhou
- School of Environmental Science and Engineering, Shanghai Jiaotong University, Shanghai 200240, PR China
| |
Collapse
|
30
|
An H, Li X, Yang Q, Wang D, Xie T, Zhao J, Xu Q, Chen F, Zhong Y, Yuan Y, Zeng G. The behavior of melamine in biological wastewater treatment system. JOURNAL OF HAZARDOUS MATERIALS 2017; 322:445-453. [PMID: 27773438 DOI: 10.1016/j.jhazmat.2016.10.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 10/13/2016] [Accepted: 10/16/2016] [Indexed: 05/14/2023]
Abstract
Melamine (MA) is a significant raw material for industry and home furnishing, and an intermediate for pharmacy. However it is also a hazardous material when being added to food as a protein substitute due to the high nitrogen content. In this study, the behavior of MA in activated sludge was investigated. Experiments showed that MA was removed during biological wastewater treatment process, and the removal was mainly achieved by activated sludge adsorption instead of biodegradation. Low levels of MA (0.001-0.10mg/L) in wastewater had negligible influence on the performance of activated sludge, but high levels of MA deteriorated biological nitrogen and phosphorus removal. The presence of MA (1.00 and 5.00mg/L) decreased total nitrogen removal efficiency from 94.15% to 79.47% and 68.04%, respectively. The corresponding concentration of effluent phosphorus increased from 0.11 to 1.45 and 2.06mg/L, respectively. It was also observed that MA inhibited the enzyme activities of nitrite oxidoreductase, nitrate reductase, nitrite reductase and exopolyphosphatase, which were closely relevant to nitrogen and phosphorus removal. Further investigation showed that the presence of high MA concentrations promoted the consumption and synthesis of glycogen, thereby providing the advantage for the growth of glycogen accumulating organisms.
Collapse
Affiliation(s)
- Hongxue An
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Xiaoming Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China.
| | - Qi Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China.
| | - Ting Xie
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Jianwei Zhao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Qiuxiang Xu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Fei Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Yu Zhong
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Yujie Yuan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| |
Collapse
|
31
|
Huang W, Sun S, Gao Z, Chen Y, Wu L. Acute and chronic effects of roxarsone on biological nitrogen and phosphorus removal and its mechanism. RSC Adv 2017. [DOI: 10.1039/c7ra02561k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Effect of roxarsone on the removal of nutrients from wastewater.
Collapse
Affiliation(s)
- Weijiang Huang
- School of Tropical and Laboratory Medicine
- Hainan Medical University
- Haikou
- P. R. China
| | - Shengjin Sun
- School of Tropical and Laboratory Medicine
- Hainan Medical University
- Haikou
- P. R. China
| | - Zhao Gao
- School of Tropical and Laboratory Medicine
- Hainan Medical University
- Haikou
- P. R. China
| | - Yu Chen
- School of Tropical and Laboratory Medicine
- Hainan Medical University
- Haikou
- P. R. China
| | - Lin Wu
- School of Tropical and Laboratory Medicine
- Hainan Medical University
- Haikou
- P. R. China
| |
Collapse
|
32
|
Zhang C, Geng X, Wang H, Zhou L, Wang B. Emission factor for atmospheric ammonia from a typical municipal wastewater treatment plant in South China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 220:963-970. [PMID: 27823866 DOI: 10.1016/j.envpol.2016.10.082] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 10/07/2016] [Accepted: 10/27/2016] [Indexed: 06/06/2023]
Abstract
Atmospheric ammonia (NH3), a common alkaline gas found in air, plays a significant role in atmospheric chemistry, such as in the formation of secondary particles. However, large uncertainties remain in the estimation of ammonia emissions from nonagricultural sources, such as wastewater treatment plants (WWTPs). In this study, the ammonia emission factors from a large WWTP utilizing three typical biological treatment techniques to process wastewater in South China were calculated using the US EPA's WATER9 model with three years of raw sewage measurements and information about the facility. The individual emission factors calculated were 0.15 ± 0.03, 0.24 ± 0.05, 0.29 ± 0.06, and 0.25 ± 0.05 g NH3 m-3 sewage for the adsorption-biodegradation activated sludge treatment process, the UNITANK process (an upgrade of the sequencing batch reactor activated sludge treatment process), and two slightly different anaerobic-anoxic-oxic treatment processes, respectively. The overall emission factor of the WWTP was 0.24 ± 0.06 g NH3m-3 sewage. The pH of the wastewater influent is likely an important factor affecting ammonia emissions, because higher emission factors existed at higher pH values. Based on the ammonia emission factor generated in this study, sewage treatment accounted for approximately 4% of the ammonia emissions for the urban area of South China's Pearl River Delta (PRD) in 2006, which is much less than the value of 34% estimated in previous studies. To reduce the large uncertainty in the estimation of ammonia emissions in China, more field measurements are required.
Collapse
Affiliation(s)
- Chunlin Zhang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, PR China
| | - Xuesong Geng
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, PR China
| | - Hao Wang
- Department of Applied Physics, University of Eastern Finland, P.O.Box 1627, 70211, Kuopio, Finland.
| | - Lei Zhou
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, PR China
| | - Boguang Wang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, PR China.
| |
Collapse
|
33
|
Yuan J, Dong W, Sun F, Zhao K, Du C, Shao Y. Bacterial communities and enzymatic activities in the vegetation-activated sludge process (V-ASP) and related advantages by comparison with conventional constructed wetland. BIORESOURCE TECHNOLOGY 2016; 220:341-351. [PMID: 27591520 DOI: 10.1016/j.biortech.2016.08.095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 08/24/2016] [Accepted: 08/25/2016] [Indexed: 06/06/2023]
Abstract
A new-developed vegetation-activated sludge process (V-ASP) was implemented for decentralized domestic wastewater treatment, and studied in lab-scale and full-scale. The main purpose of this work was the investigation of biomass activities and microbial communities in V-ASP by comparison with conventional constructed wetland (CW), to unveil the causations of its consistently higher pollutants removal efficiencies. Compared with CWs, V-ASP has greater vegetation nitrogen and phosphorus uptake rates, higher biomass and enzymatic activities, and more bacteria community diversity. The microbial community structure was comprehensively analyzed by using high-throughput sequencing. It was observed that Proteobacteria was dominated in both CWs and V-ASPs, while their subdivisions distribution was rather different. V-ASPs contained a higher nitrite-oxidizing bacteria (Nitrospira) abundances that resulted in a consistently better nitrogen removal efficiency. Hence, a long-term experiment of full-scale V-ASP displayed stably excellent capability in resistance of influent loading shocks and seasonal temperature effect.
Collapse
Affiliation(s)
- Jiajia Yuan
- Harbin Institute of Technology Shenzhen Graduate School, Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055, China
| | - Wenyi Dong
- Harbin Institute of Technology Shenzhen Graduate School, Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055, China
| | - Feiyun Sun
- Harbin Institute of Technology Shenzhen Graduate School, Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055, China.
| | - Ke Zhao
- Harbin Institute of Technology Shenzhen Graduate School, Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055, China
| | - Changhang Du
- Harbin Institute of Technology Shenzhen Graduate School, Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055, China
| | - Yunxian Shao
- Harbin Institute of Technology Shenzhen Graduate School, Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055, China
| |
Collapse
|
34
|
Zhao J, Wang D, Li X, Zeng G, Yang Q. Improved biological phosphorus removal induced by an oxic/extended-idle process using glycerol and acetate at equal fractions. RSC Adv 2016. [DOI: 10.1039/c6ra18799d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Variations of effluent SOP concentration and SOP removal efficiency in O/EI reactor during long-term operation.
Collapse
Affiliation(s)
- Jianwei Zhao
- College of Environmental Science and Engineering
- Hunan University
- Changsha 410082
- China
- Key Laboratory of Environmental Biology and Pollution Control
| | - Dongbo Wang
- College of Environmental Science and Engineering
- Hunan University
- Changsha 410082
- China
- Key Laboratory of Environmental Biology and Pollution Control
| | - Xiaoming Li
- College of Environmental Science and Engineering
- Hunan University
- Changsha 410082
- China
- Key Laboratory of Environmental Biology and Pollution Control
| | - Guangming Zeng
- College of Environmental Science and Engineering
- Hunan University
- Changsha 410082
- China
- Key Laboratory of Environmental Biology and Pollution Control
| | - Qi Yang
- College of Environmental Science and Engineering
- Hunan University
- Changsha 410082
- China
- Key Laboratory of Environmental Biology and Pollution Control
| |
Collapse
|