1
|
Said M, Ali KM, Alfadhel MM, Afzal O, Aldosari BN, Alsunbul M, Bafail R, Zaki RM. Ocular mucoadhesive and biodegradable spanlastics loaded cationic spongy insert for enhancing and sustaining the anti-inflammatory effect of prednisolone Na phosphate; Preparation, I-optimal optimization, and In-vivo evaluation. Int J Pharm X 2024; 8:100293. [PMID: 39498272 PMCID: PMC11533070 DOI: 10.1016/j.ijpx.2024.100293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/10/2024] [Accepted: 10/15/2024] [Indexed: 11/07/2024] Open
Abstract
This study aimed to formulate and statistically optimize spanlastics loaded spongy insert (SPLs-SI) of prednisolone Na phosphate (PRED) to enhance and sustain its anti-inflammatory effect in a controlled manner. An I-optimal optimization was employed using Design-Expert® software. The formulation variables were sonication time, the Span 60: EA ratio and type of edge activator (Tween 80 or PVA) while Entrapment efficiency (EE%), Vesicles' size (VS) and Zeta potential (ZP) were set as the dependent responses. This resulted in an optimum spanlastics (SPLs) formulation with a desirability of 0.919. It had a Span60:Tween80 ratio of 6:1 with a sonication time of 9.5 min. It was evaluated in terms of its EE%, VS, ZP, release behavior in comparison to drug solution in addition to the effect of aging on its characteristics. It had EE% of 87.56, VS of 152.2 nm and ZP of -37.38 Mv. It showed sustained release behavior of PRED in comparison to drug solution with good stability for thirty days. TEM images of the optimized PRED SPLs formulation showed spherical non-aggregated nanovesicles. Then it was loaded into chitosan spongy insert and evaluated in terms of its visual appearance, pH and mucoadhesion properties. It showed good mucoadhesive properties and pH in the safe ocular region. The FTIR, DSC and XRD spectra showed that PRED was successfully entrapped inside the SPLs vesicles. It was then exposed to an in-vivo studies where it was capable of enhancing the anti-inflammatory effect of PRED in a sustained manner with once daily application compared to commercial PRED solution. The spongy insert has the potential to be a promising carrier for the ocular delivery of PRED.
Collapse
Affiliation(s)
- Mayada Said
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, P.O. Box 11562, Cairo, Egypt
| | - Khaled M. Ali
- Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary medicine, Cairo University, PO Box 12211, Giza, Egypt
| | - Munerah M. Alfadhel
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Basmah Nasser Aldosari
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Maha Alsunbul
- Department of Pharmaceutical Sciences., College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Rawan Bafail
- Department of Pharmaceutics and Pharmaceutical Industries, College of Pharmacy, Taibah University, P.O. Box 30039, Al-Madinah, Al-munawarah 41477, Saudi Arabia
| | - Randa Mohammed Zaki
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| |
Collapse
|
2
|
Priya, Gaur PK, Kumar S. Nanocarrier-Mediated Dermal Drug Delivery System of Antimicrobial Agents for Targeting Skin and Soft Tissue Infections. Assay Drug Dev Technol 2024. [PMID: 39587945 DOI: 10.1089/adt.2024.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024] Open
Abstract
Antimicrobial resistance in disease-causing microbes is seen as a severe problem that affects the entire world, makes therapy less effective, and raises mortality rates. Dermal antimicrobial therapy becomes a desirable choice in the management of infectious disorders since the rising resistance to systemic antimicrobial treatment frequently necessitates the use of more toxic drugs. Nanoparticulate systems such as nanobactericides, which have built-in antibacterial activity, and nanocarriers, which function as drug delivery systems for conventional antimicrobials, are just two examples of the treatment methods made feasible by nanotechnology. Silver nanoparticles, zinc oxide nanoparticles, and titanium dioxide nanoparticles are examples of inorganic nanoparticles that are efficient on sensitive and multidrug-resistant bacterial strains both as nanobactericides and nanocarriers. To stop the growth of microorganisms that are resistant to standard antimicrobials, various antimicrobials for dermal application are widely used. This review covers the most prevalent microbes responsible for skin and soft tissue infections, techniques to deliver dermal antimicrobials, topical antimicrobial safety concerns, current issues, challenges, and potential future developments. A thorough and methodical search of databases, such as Google Scholar, PubMed, Science Direct, and others, using specified keyword combinations, such as "antimicrobials," "dermal," "nanocarriers," and numerous others, was used to gather relevant literature for this work.
Collapse
Affiliation(s)
- Priya
- Department of Pharmaceutical Technology, Meerut Institute of Engineering & Technology, Meerut, Uttar Pradesh, India
| | - Praveen Kumar Gaur
- Department of Pharmaceutics, Metro College of Health Sciences & Research, Greater Noida, Uttar Pradesh, India
| | - Shobhit Kumar
- Department of Pharmaceutical Technology, Meerut Institute of Engineering & Technology, Meerut, Uttar Pradesh, India
| |
Collapse
|
3
|
Sarma H, Dutta A, Bharali A, Rahman SS, Baruah S, Biswas N, Sahu BP. pH sensitive lipid polymeric hybrid nanoparticle (LPHNP) of paclitaxel and curcumin for targeted delivery in breast cancer. Drug Dev Ind Pharm 2024:1-9. [PMID: 39461888 DOI: 10.1080/03639045.2024.2421198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/08/2024] [Accepted: 10/10/2024] [Indexed: 10/29/2024]
Abstract
OBJECTIVE The study aimed at designing a pH sensitive Lipid polymeric Hybrid nanoparticle (LPHNP) for targeted release of Paclitaxel (PTX) and Curcumin (CUR) in breast cancer. SIGNIFICANCE Such systems shall result in controlled triggered release in acidic microenvironment of tumor cells with improved pharmacokinetic profile. METHODS Chitosan-coated CUR and PTX coloaded pH-sensitive LPHNPs were synthesized employing nanoprecipitation technique. The synthesized NPs were characterized in terms of particle size, polydispersity index (PDI), zeta potential, and morphology. RESULTS LPHNPs co-loaded with curcumin (CUR) and paclitaxel (PTX) were successfully formulated, achieving a size of 146 nm, a PDI of 0.18, and an entrapment efficiency exceeding 90%. In vitro release studies demonstrated controlled release of CUR and PTX under tumor pH conditions showing 1.6 fold and 1.7 fold higher release in ABS pH 5 in comparison to PBS 7.4 for PTX and CUR respectively. MTT-assay studies revealed enhanced cytotoxicity of CUR and PTX as LPHNPs showing IC50 value of free CUR & PTX 480.06 µg/mL decreasing to 282.97 µg/mL for CS-CUR-PTX-LPHNPs. In vivo pharmacokinetic evaluations in rats confirmed significantly improved bioavailability, with a 3.8-fold increase in AUC for CUR and a 6.6-fold increase for PTX. Additionally, the LPHNPs demonstrated controlled release and prolonged retention, evidenced by a 2.2-fold increase in the half-life (t1/2) of CUR and a 1.3-fold increase in the half-life of PTX. The results underscores potential of chitosan-coated LPHNP as a promising delivery platform, offering high drug loading, optimal size for cellular penetration, and prolonged blood circulation for cancer.
Collapse
Affiliation(s)
- Hrishikesh Sarma
- Pharmaceutics Research Lab, GIPS, Assam Science and Technology University, Guwahati, Assam, India
| | - Ankit Dutta
- Pharmaceutics Research Lab, GIPS, Assam Science and Technology University, Guwahati, Assam, India
| | - Alakesh Bharali
- Pharmaceutics Research Lab, GIPS, Assam Science and Technology University, Guwahati, Assam, India
- Advanced Drug Delivery Lab, School of Pharmaceutical Sciences, Girijananda Chowdhury University, Guwahati, Assam, India
| | - Sheikh Sofiur Rahman
- Pharmaceutics Research Lab, GIPS, Assam Science and Technology University, Guwahati, Assam, India
| | - Sunayana Baruah
- Animal House Facility, Girijananda Chowdhury University, Guwahati, Assam, India
| | - Nikhil Biswas
- Pharmaceutics Research Lab, GIPS, Assam Science and Technology University, Guwahati, Assam, India
- Advanced Drug Delivery Lab, School of Pharmaceutical Sciences, Girijananda Chowdhury University, Guwahati, Assam, India
| | - Bhanu P Sahu
- Pharmaceutics Research Lab, GIPS, Assam Science and Technology University, Guwahati, Assam, India
- Advanced Drug Delivery Lab, School of Pharmaceutical Sciences, Girijananda Chowdhury University, Guwahati, Assam, India
| |
Collapse
|
4
|
Lamie C, Elmowafy E, Attia D, Mortada ND. Glucospanlastics: innovative antioxidant and anticancer ascorbyl-2-glucoside vesicles for striking topical performance of repurposed itraconazole. RSC Adv 2024; 14:26524-26543. [PMID: 39175684 PMCID: PMC11339782 DOI: 10.1039/d4ra03542a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/18/2024] [Indexed: 08/24/2024] Open
Abstract
Presently, the development of functional derivatives exploiting biocompatible pharmaceutical materials has become a pressing demand. Among them, ascorbyl-2-glucoside (AA-2G), an ascorbic acid derivative, has significant potential owing to its stability, solubilization and antioxidant prospects. Herein, AA-2G was utilized for the fabrication of itraconazole (ITZ) spanlastics, which were denoted as "glucospanlastics". Subsequently, the newly designed glucospanlastics were characterized to determine their dimensions, charge, entrapment, solubilization efficiency, morphology, stability and antioxidant activity. Further, their cytotoxicity towards A431 cells and their ex vivo skin deposition were investigated. Subsequently, the competence of the formulated cream containing glucospanlastics to suppress Ehrlich carcinoma and modulate the antioxidant profile was evaluated in vivo. The results revealed that the proposed nano-sized glucospanlastics performed better than conventional spanlastics (without AA-2G) with respect to optimal solubilization efficiency and ITZ entrapment (>95%) together with antioxidant, cytotoxic and skin permeation potentials. More importantly, glucospanlastics containing 10 and 20 mg AA-2G demonstrated considerable tumor suppression and necrosis, improvement in glutathione (GSH) content by 1.68- and 2.26-fold, elevation of total antioxidant capacity (TAC) levels by 1.67- and 2.84-fold and 1.78- and 2.03-fold reduction in malondialdehyde (MDA) levels, respectively, compared to a conventional ITZ cream. These innovative antioxidant vesicles show future potential for the dermal delivery of cancer-directed therapies.
Collapse
Affiliation(s)
- Caroline Lamie
- Department of Pharmaceutics and Pharmaceutical Technology, The British University in Egypt Cairo 11837 Egypt +20-2-26300010/20 +20-2-01111414144
- Drug Discovery, Delivery and Patient Care (DDDPC), School of Life Sciences, Pharmacy and Chemistry, Kingston University London Kingston Upon Thames Surrey KT1 2EE UK
| | - Enas Elmowafy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University Monazzamet Elwehda Elafrikeya Street, Abbaseyya Cairo 11566 Egypt
| | - Dalia Attia
- Department of Pharmaceutics and Pharmaceutical Technology, The British University in Egypt Cairo 11837 Egypt +20-2-26300010/20 +20-2-01111414144
| | - Nahed D Mortada
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University Monazzamet Elwehda Elafrikeya Street, Abbaseyya Cairo 11566 Egypt
| |
Collapse
|
5
|
El-Marasy SA, AbouSamra MM, Moustafa PE, Mabrok HB, Ahmed-Farid OA, Galal AF, Farouk H. Anti-depressant effect of Naringenin-loaded hybridized nanoparticles in diabetic rats via PPARγ/NLRP3 pathway. Sci Rep 2024; 14:13559. [PMID: 38866877 PMCID: PMC11169681 DOI: 10.1038/s41598-024-62676-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/20/2024] [Indexed: 06/14/2024] Open
Abstract
Naringenin (NAR) has various biological activities but low bioavailability. The current study examines the effect of Naringenin-loaded hybridized nanoparticles (NAR-HNPs) and NAR on depression induced by streptozotocin (STZ) in rats. NAR-HNPs formula with the highest in vitro NAR released profile, lowest polydispersity index value (0.21 ± 0.02), highest entrapment efficiency (98.7 ± 2.01%), as well as an acceptable particle size and zeta potential of 415.2 ± 9.54 nm and 52.8 ± 1.04 mV, respectively, was considered the optimum formulation. It was characterized by differential scanning calorimetry, examined using a transmission electron microscope, and a stability study was conducted at different temperatures to monitor its stability efficiency showing that NAR-HNP formulation maintains stability at 4 °C. The selected formulation was subjected to an acute toxicological test, a pharmacokinetic analysis, and a Diabetes mellitus (DM) experimental model. STZ (50 mg/kg) given as a single i.p. rendered rats diabetic. Diabetic rat groups were allocated into 4 groups: one group received no treatment, while the remaining three received oral doses of unloaded HNPs, NAR (50 mg/kg), NAR-HNPs (50 mg/kg) and NAR (50 mg/kg) + peroxisome proliferator-activated receptor-γ (PPAR-γ) antagonist, GW9662 (1mg/kg, i.p.) for three weeks. Additional four non-diabetic rat groups received: distilled water (normal), free NAR, and NAR-HNPs, respectively for three weeks. NAR and NAR-HNPs reduced immobility time in forced swimming test and serum blood glucose while increasing serum insulin level. They also reduced cortical and hippocampal 5-hydroxyindoeacetic acid, 3,4-Dihydroxy-phenylacetic acid, malondialdehyde, NLR family pyrin domain containing-3 (NLRP3) and interleukin-1beta content while raised serotonin, nor-epinephrine, dopamine and glutathione level. PPAR-γ gene expression was elevated too. So, NAR and NAR-HNPs reduced DM-induced depression by influencing brain neurotransmitters and exhibiting anti-oxidant and anti-inflammatory effects through the activation PPAR-γ/ NLRP3 pathway. NAR-HNPs showed the best pharmacokinetic and therapeutic results.
Collapse
Affiliation(s)
- Salma A El-Marasy
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt.
| | - Mona M AbouSamra
- Pharmaceutical Technology Department, Pharmaceutical Drug Industries Research Institute, National Research Centre, Giza, Egypt
| | - Passant E Moustafa
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| | - Hoda B Mabrok
- Nutrition and Food Science Department, Food Industries and Nutrition Research Institute, National Research Centre, Giza, Egypt
| | | | - Asmaa F Galal
- Narcotics, Ergogenics and Poisons Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| | - Hadir Farouk
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| |
Collapse
|
6
|
Yadav RB, Pathak DP, Varshney R, Arora R. Elucidation of the Role of TRPV1, VEGF-A, TXA2, Redox Homeostasis, and Inflammatory Cascades in Protection against Cold Injuries by Herbosomal-Loaded PEG-Poloxamer Topical Formulation. ACS APPLIED BIO MATERIALS 2024; 7:2836-2850. [PMID: 38717017 DOI: 10.1021/acsabm.3c01197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
High-altitude regions, cold deserts, permafrost regions, and the polar region have some of the severest cold conditions on earth and pose immense perils of cold injuries to exposed individuals. Accidental and unintended exposures to severe cold, either unintentionally or due to occupational risks, can greatly increase the risk of serious conditions including hypothermia, trench foot, and cold injuries like frostbite. Cold-induced vasoconstriction and intracellular/intravascular ice crystal formation lead to hypoxic conditions at the cellular level. The condition is exacerbated in individuals having inadequate and proper covering and layering, particularly when large area of the body are exposed to extremely cold environments. There is a paucity of preventive and therapeutic pharmacological modalities that have been explored for managing and treating cold injuries. Given this, an efficient modality that can potentiate the healing of frostbite was investigated by studying various complex pathophysiological changes that occur during severe cold injuries. In the current research, we report the effectiveness and healing properties of a standardized formulation, i.e., a herbosomal-loaded PEG-poloxamer topical formulation (n-HPTF), on frostbite. The intricate mechanistic pathways modulated by the novel formulation have been elucidated by studying the pathophysiological sequelae that occur following severe cold exposures leading to frostbite. The results indicate that n-HPTF ameliorates the outcome of frostbite, as it activates positive sensory nerves widely distributed in the epidermis transient receptor potential vanilloid 1 (TRPV1), significantly (p < 0.05) upregulates cytokeratin-14, promotes angiogenesis (VEGF-A), prominently represses the expression of thromboxane formation (TXA2), and significantly (p < 0.05) restores levels of enzymatic (glutathione reductase, superoxide dismutase, and catalase) and nonenzymatic antioxidants (glutathione). Additionally, n-HPTF attenuates oxidative stress and the expression of inflammatory proteins PGF-2α, NFκB-p65, TNF-α, IL-6, IL-1β, malondialdehyde (MDA), advanced oxidative protein products (AOPP), and protein carbonylation (PCO). Masson's Trichrome staining showed that n-HPTF stimulates cellular proliferation, and increases collagen fiber deposition, which significantly (p < 0.05) promotes the healing of frostbitten tissue, as compared to control. We conclude that protection against severe cold injuries by n-HPTF is mediated via modulation of pathways involving TRPV1, VEGF-A, TXA2, redox homeostasis, and inflammatory cascades. The study is likely to have widespread implications for the prophylaxis and management of moderate-to-severe frostbite conditions.
Collapse
Affiliation(s)
- Renu Bala Yadav
- Disruptive and Deterrence Technologies Division, Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, New Delhi 110054, India
- Delhi Pharmaceutical Science and Research University, Pushp Vihar, New Delhi 110017, India
| | - Dharam Pal Pathak
- Delhi Pharmaceutical Science and Research University, Pushp Vihar, New Delhi 110017, India
| | - Rajeev Varshney
- Disruptive and Deterrence Technologies Division, Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, New Delhi 110054, India
| | - Rajesh Arora
- Disruptive and Deterrence Technologies Division, Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, New Delhi 110054, India
| |
Collapse
|
7
|
Li J, Wang F, Liu X, Yang Z, Hua X, Zhu H, Valdivia CR, Xiao L, Gao S, Valdivia HH, Xiao L, Wang J. OpiCa1-PEG-PLGA nanomicelles antagonize acute heart failure induced by the cocktail of epinephrine and caffeine. Mater Today Bio 2023; 23:100859. [PMID: 38033368 PMCID: PMC10682124 DOI: 10.1016/j.mtbio.2023.100859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/17/2023] [Accepted: 11/07/2023] [Indexed: 12/02/2023] Open
Abstract
Background Reducing Ca2+ content in the sarcoplasmic reticulum (SR) through ryanodine receptors (RyRs) by calcin is a potential intervention strategy for the SR Ca2+ overload triggered by β-adrenergic stress in acute heart diseases. Methods OpiCal-PEG-PLGA nanomicelles were prepared by thin film dispersion, of which the antagonistic effects were observed using an acute heart failure model induced by epinephrine and caffeine in mice. In addition, cardiac targeting, self-stability as well as biotoxicity were determined. Results The synthesized OpiCa1-PEG-PLGA nanomicelles were elliptical with a particle size of 72.26 nm, a PDI value of 0.3, and a molecular weight of 10.39 kDa. The nanomicelles showed a significant antagonistic effect with 100 % survival rate to the death induced by epinephrine and caffeine, which was supported by echocardiography with significantly recovered heart rate, ejection fraction and left ventricular fractional shortening rate. The FITC labeled nanomicelles had a strong membrance penetrating capacity within 2 h and cardiac targeting within 12 h that was further confirmed by immunohistochemistry with a self-prepared OpiCa1 polyclonal antibody. Meanwhile, the nanomicelles can keep better stability and dispersibility in vitro at 4 °C rather than 20 °C or 37 °C, while maintain a low but stable plasma OpiCa1 concentration in vivo within 72 h. Finally, no obvious biotoxicities were observed by CCK-8, flow cytometry, H&E staining and blood biochemical examinations. Conclusion Our study also provide a novel nanodelivery pathway for targeting RyRs and antagonizing the SR Ca2+ disordered heart diseases by actively releasing SR Ca2+ through RyRs with calcin.
Collapse
Affiliation(s)
- Jun Li
- College of Veterinary Medicine, Shanxi Agricultural University, ShanXi, TaiGu, 030801, China
- Department of Occupational and Environmental Health, Faculty of Naval Medicine, Naval Medical University (Second Military Medical University), Shanghai, 200433, China
| | - Fei Wang
- Department of Occupational and Environmental Health, Faculty of Naval Medicine, Naval Medical University (Second Military Medical University), Shanghai, 200433, China
| | - Xinyan Liu
- Department of Traditional Chinese Medicine Surgery, The First Affiliated Hospital of the Navy Medical University (Changhai Hospital), Shanghai, 200433, China
| | - Zhixiao Yang
- Department of Occupational and Environmental Health, Faculty of Naval Medicine, Naval Medical University (Second Military Medical University), Shanghai, 200433, China
- Teaching and Research Department of Chinese Pharmacy, Yunnan Traditional Chinese Medicine, YunNan, KunMing, 650500, China
| | - Xiaoyu Hua
- Department of Occupational and Environmental Health, Faculty of Naval Medicine, Naval Medical University (Second Military Medical University), Shanghai, 200433, China
| | - Hongqiao Zhu
- Department of Traditional Chinese Medicine Surgery, The First Affiliated Hospital of the Navy Medical University (Changhai Hospital), Shanghai, 200433, China
| | - Carmen R. Valdivia
- Department of Medicine and Cardiovascular Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Li Xiao
- Department of Medicine and Cardiovascular Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Department of Forensic Toxicological Analysis, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610065, China
| | - Songyu Gao
- Department of Occupational and Environmental Health, Faculty of Naval Medicine, Naval Medical University (Second Military Medical University), Shanghai, 200433, China
| | - Héctor H. Valdivia
- Department of Medicine and Cardiovascular Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Liang Xiao
- Department of Occupational and Environmental Health, Faculty of Naval Medicine, Naval Medical University (Second Military Medical University), Shanghai, 200433, China
| | - Jinming Wang
- College of Veterinary Medicine, Shanxi Agricultural University, ShanXi, TaiGu, 030801, China
| |
Collapse
|
8
|
Awadeen RH, Boughdady MF, Zaghloul RA, Elsaed WM, Abu Hashim II, Meshali MM. Formulation of lipid polymer hybrid nanoparticles of the phytochemical Fisetin and its in vivo assessment against severe acute pancreatitis. Sci Rep 2023; 13:19110. [PMID: 37925581 PMCID: PMC10625596 DOI: 10.1038/s41598-023-46215-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 10/30/2023] [Indexed: 11/06/2023] Open
Abstract
Fisetin (FST) is a naturally occurring flavonol that has recently emerged as a bioactive phytochemical with an impressive array of biological activities. To the author knowledge, boosting the activity of FST against severe acute pancreatitis (SAP) through a nanostructured delivery system (Nanophytomedicine) has not been achieved before. Thereupon, FST-loaded lipid polymer hybrid nanoparticles (FST-loaded LPHNPs) were prepared through conjoined ultrasonication and double emulsion (w/o/w) techniques. Comprehensive in vitro and in vivo evaluations were conducted. The optimized nanoparticle formula displayed a high entrapment efficiency % of 61.76 ± 1.254%, high loading capacity % of 32.18 ± 0.734, low particle size of 125.39 ± 0.924 nm, low particle size distribution of 0.357 ± 0.012, high zeta potential of + 30.16 ± 1.416 mV, and high mucoadhesive strength of 35.64 ± 0.548%. In addition, it exhibited a sustained in vitro release pattern of FST. In the in vivo study, oral pre-treatment of FST-loaded LPHNPs protected against L-arginine induced SAP and multiple organ injuries in rats compared to both FST alone and plain LPHNPs, as well as the untreated group, proven by both biochemical studies, that included both amylase and lipase activities, and histochemical studies of pancreas, liver, kidney and lungs. Therefore, the study could conclude the potential efficacy of the novel phytopharmaceutical delivery system of FST as a prophylactic regimen for SAP and consequently, associated multiple organ injuries.
Collapse
Affiliation(s)
- Randa Hanie Awadeen
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, El-Gomhoria Street, Mansoura, 35516, Dakahlia, Egypt.
| | - Mariza Fouad Boughdady
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, El-Gomhoria Street, Mansoura, 35516, Dakahlia, Egypt
| | - Randa A Zaghloul
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Wael M Elsaed
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Irhan Ibrahim Abu Hashim
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, El-Gomhoria Street, Mansoura, 35516, Dakahlia, Egypt
| | - Mahasen Mohamed Meshali
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, El-Gomhoria Street, Mansoura, 35516, Dakahlia, Egypt
| |
Collapse
|
9
|
Aman RM, Zaghloul RA, Elsaed WM, Hashim IIA. In vitro-in vivo assessments of apocynin-hybrid nanoparticle-based gel as an effective nanophytomedicine for treatment of rheumatoid arthritis. Drug Deliv Transl Res 2023; 13:2903-2929. [PMID: 37284937 PMCID: PMC10545657 DOI: 10.1007/s13346-023-01360-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2023] [Indexed: 06/08/2023]
Abstract
Apocynin (APO), a well-known bioactive plant-based phenolic phytochemical with renowned anti-inflammatory and antioxidant pharmacological activities, has recently emerged as a specific nicotinamide adenine dinucleotide phosphate-oxidase (NADPH) oxidase inhibitor. As far as we know, no information has been issued yet regarding its topical application as a nanostructured-based delivery system. Herein, APO-loaded Compritol® 888 ATO (lipid)/chitosan (polymer) hybrid nanoparticles (APO-loaded CPT/CS hybrid NPs) were successfully developed, characterized, and optimized, adopting a fully randomized design (32) with two independent active parameters (IAPs), namely, CPT amount (XA) and Pluronic® F-68 (PF-68) concentration (XB), at three levels. Further in vitro-ex vivo investigation of the optimized formulation was performed before its incorporation into a gel base matrix to prolong its residence time with consequent therapeutic efficacy enhancement. Subsequently, scrupulous ex vivo-in vivo evaluations of APO-hybrid NPs-based gel (containing the optimized formulation) to scout out its momentous activity as a topical nanostructured system for beneficial remedy of rheumatoid arthritis (RA) were performed. Imperatively, the results support an anticipated effectual therapeutic activity of the APO-hybrid NPs-based gel formulation against Complete Freund's Adjuvant-induced rheumatoid arthritis (CFA-induced RA) in rats. In conclusion, APO-hybrid NPs-based gel could be considered a promising topical nanostructured system to break new ground for phytopharmaceutical medical involvement in inflammatory-dependent ailments.
Collapse
Affiliation(s)
- Reham Mokhtar Aman
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, El-Gomhoria Street, Mansoura, 35516, Dakahlia, Egypt.
| | - Randa Ahmed Zaghloul
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, El-Gomhoria Street, Mansoura, 35516, Dakahlia, Egypt
| | - Wael M Elsaed
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, El-Gomhoria Street, Mansoura, 35516, Dakahlia, Egypt
| | - Irhan Ibrahim Abu Hashim
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, El-Gomhoria Street, Mansoura, 35516, Dakahlia, Egypt
| |
Collapse
|
10
|
Gajbhiye KR, Salve R, Narwade M, Sheikh A, Kesharwani P, Gajbhiye V. Lipid polymer hybrid nanoparticles: a custom-tailored next-generation approach for cancer therapeutics. Mol Cancer 2023; 22:160. [PMID: 37784179 PMCID: PMC10546754 DOI: 10.1186/s12943-023-01849-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/23/2023] [Indexed: 10/04/2023] Open
Abstract
Lipid-based polymeric nanoparticles are the highly popular carrier systems for cancer drug therapy. But presently, detailed investigations have revealed their flaws as drug delivery carriers. Lipid polymer hybrid nanoparticles (LPHNPs) are advanced core-shell nanoconstructs with a polymeric core region enclosed by a lipidic layer, presumed to be derived from both liposomes and polymeric nanounits. This unique concept is of utmost importance as a combinable drug delivery platform in oncology due to its dual structured character. To add advantage and restrict one's limitation by other, LPHNPs have been designed so to gain number of advantages such as stability, high loading of cargo, increased biocompatibility, rate-limiting controlled release, and elevated drug half-lives as well as therapeutic effectiveness while minimizing their drawbacks. The outer shell, in particular, can be functionalized in a variety of ways with stimuli-responsive moieties and ligands to provide intelligent holding and for active targeting of antineoplastic medicines, transport of genes, and theragnostic. This review comprehensively provides insight into recent substantial advancements in developing strategies for treating various cancer using LPHNPs. The bioactivity assessment factors have also been highlighted with a discussion of LPHNPs future clinical prospects.
Collapse
Affiliation(s)
- Kavita R Gajbhiye
- Department of Pharmaceutics, Poona College of Pharmacy, Bharati Vidyapeeth, Erandwane, Pune, 411038, India
| | - Rajesh Salve
- Nanobioscience, Agharkar Research Institute, Pune, 411038, India
- Savitribai Phule Pune University, Pune, 411007, India
| | - Mahavir Narwade
- Department of Pharmaceutics, Poona College of Pharmacy, Bharati Vidyapeeth, Erandwane, Pune, 411038, India
| | - Afsana Sheikh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
- Center for Global health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| | - Virendra Gajbhiye
- Nanobioscience, Agharkar Research Institute, Pune, 411038, India.
- Savitribai Phule Pune University, Pune, 411007, India.
| |
Collapse
|
11
|
Jain S, Kumar M, Kumar P, Verma J, Rosenholm JM, Bansal KK, Vaidya A. Lipid-Polymer Hybrid Nanosystems: A Rational Fusion for Advanced Therapeutic Delivery. J Funct Biomater 2023; 14:437. [PMID: 37754852 PMCID: PMC10531762 DOI: 10.3390/jfb14090437] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/28/2023] Open
Abstract
Lipid nanoparticles (LNPs) are spherical vesicles composed of ionizable lipids that are neutral at physiological pH. Despite their benefits, unmodified LNP drug delivery systems have substantial drawbacks, including a lack of targeted selectivity, a short blood circulation period, and in vivo instability. lipid-polymer hybrid nanoparticles (LPHNPs) are the next generation of nanoparticles, having the combined benefits of polymeric nanoparticles and liposomes. LPHNPs are being prepared from both natural and synthetic polymers with various techniques, including one- or two-step methods, emulsification solvent evaporation (ESE) method, and the nanoprecipitation method. Varieties of LPHNPs, including monolithic hybrid nanoparticles, core-shell nanoparticles, hollow core-shell nanoparticles, biomimetic lipid-polymer hybrid nanoparticles, and polymer-caged liposomes, have been investigated for various drug delivery applications. However, core-shell nanoparticles having a polymeric core surrounded by a highly biocompatible lipid shell are the most commonly explored LPHNPs for the treatment of various diseases. In this review, we will shed light on the composition, methods of preparation, classification, surface functionalization, release mechanism, advantages and disadvantages, patents, and clinical trials of LPHNPs, with an emphasis on core-shell-structured LPHNPs.
Collapse
Affiliation(s)
- Shweta Jain
- Sir Madan Lal Institute of Pharmacy, Etawah 206310, India;
| | - Mudit Kumar
- Faculty of Pharmacy, Uttar Pradesh University of Medical Sciences, Saifai, Etawah 206130, India; (M.K.); (P.K.)
| | - Pushpendra Kumar
- Faculty of Pharmacy, Uttar Pradesh University of Medical Sciences, Saifai, Etawah 206130, India; (M.K.); (P.K.)
| | - Jyoti Verma
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland; (J.V.); (J.M.R.)
| | - Jessica M. Rosenholm
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland; (J.V.); (J.M.R.)
| | - Kuldeep K. Bansal
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland; (J.V.); (J.M.R.)
| | - Ankur Vaidya
- Faculty of Pharmacy, Uttar Pradesh University of Medical Sciences, Saifai, Etawah 206130, India; (M.K.); (P.K.)
| |
Collapse
|
12
|
Eid RK, Arafa MF, Ashour DS, Essa EA, El-Wakil ES, Younis SS, El Maghraby GM. Surfactant vesicles for enhanced antitoxoplasmic effect of norfloxacin: in vitro and in vivo evaluations. Int J Pharm 2023; 638:122912. [PMID: 37015296 DOI: 10.1016/j.ijpharm.2023.122912] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/06/2023]
Abstract
The goal was to scrutinize niosomes as potential carriers for enhanced efficacy of norfloxacin against Toxoplasma gondii RH strain. This was assessed in vitro and in vivo. Standard niosomes of Span 60 and cholesterol were prepared. Gelucire 48/16 or Tween 80 was incorporated as hydrophilic fluidizer. The prepared vesicles were characterized for shape, size, viscosity and norfloxacin release. The in vitro anti-Toxoplasma was assessed by monitoring tachyzoites viability after incubation with niosomes. In vivo efficacy of niosomes encapsulated norfloxacin was evaluated on infected mice. Transmission electron micrographs showed nano-sized spherical vesicles. Norfloxacin release varied with niosomal composition to show faster liberation in presence of fluidizing agent. The half maximum effective concentration of norfloxacin against tachyzoites (EC50) was significantly reduced after niosomal encapsulation compared with simple drug solution with no significant difference between vesicular formulations. Tachyzoite count in the peritoneal fluid of infected mice was reduced by 45.2, 90.8, 88.3 and 84% after treatment with simple drug dispersion, standard niosomes, Gelucire containing and Tween containing vesicles, respectively compared to infected untreated mice. These results correlate with the in vitro data and reflects the efficacy of niosomes. The study introduced surfactant vesicles as a tool for enhanced efficacy of norfloxacin against toxoplasma.
Collapse
Affiliation(s)
- Rania K Eid
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University, Tanta, Egypt.
| | - Mona F Arafa
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University, Tanta, Egypt.
| | - Dalia S Ashour
- Department of Parasitology, Faculty of Medicine, Tanta University, Tanta, Egypt.
| | - Ebtessam A Essa
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University, Tanta, Egypt.
| | - Eman S El-Wakil
- Department of Parasitology, Theodor Bilharz Research Institute, Kornaish El-Nile, Warrak El-Hadar, Imbaba (P.O. 30), Giza, 12411, Egypt.
| | - Salwa S Younis
- Medical Parasitology Department, Faculty of Medicine, Alexandria University, Egypt.
| | - Gamal M El Maghraby
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University, Tanta, Egypt.
| |
Collapse
|
13
|
Irfan MM, Shah SU, Shah KU, Anton N, Idoux-Gillet Y, Conzatti G, Shah KU, Perennes E, Vandamme T. Impact of formulation design and lyophilisation on the physicochemical characteristics of finasteride nanosystems. J Microencapsul 2023; 40:106-123. [PMID: 36749573 DOI: 10.1080/02652048.2023.2178537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The fundamental purpose of this study was to develop a stable lyophilised finasteride nanosystem (FNS-NS) for topical delivery. The FNS-NS was fabricated using an ultrasonication technique. The impact of two different cryoprotectants on the physicochemical characteristics of FNS-NS before and after lyophilisation was thoroughly investigated. The lyophilised FNS-NS had spherical shape with particle size lied between 188.6 nm ± 4.4 and 298.7 nm ± 4.7, low PDI values (0.26 ± 0.02 to 0.32 ± 0.02) and zeta potential ranging from -38.3 to +53.3 mV. The confocal laser microscopy depicted a comparatively higher cellular internalisation achieved for undecorated FNS-NS with respect to its chitosan-decorated counterpart. The lyophilised FNS-NS was stable for 90 days at proper storage conditions. The FNS-NS with 15% trehalose had appropriate physicochemical attributes that could be a promising carrier for topical delivery to treat androgenic alopecia.
Collapse
Affiliation(s)
- Malik Muhammad Irfan
- Gomal Centre of Pharmaceutical Sciences (GCPS), Faculty of Pharmacy, Gomal University, Dera Ismail Khan, Pakistan
- Faculty of Pharmacy, Universite de Strasbourg, Illkirch, Strasbourg, France
- INSERM, Regenerative Nanomedicine UMR 1260, Centre de Recherche en Biomédecine de Strasbourg (CRBS), Université de Strasbourg, Strasbourg, France
| | - Shefaat Ullah Shah
- Gomal Centre of Pharmaceutical Sciences (GCPS), Faculty of Pharmacy, Gomal University, Dera Ismail Khan, Pakistan
| | | | - Nicolas Anton
- Faculty of Pharmacy, Universite de Strasbourg, Illkirch, Strasbourg, France
- INSERM, Regenerative Nanomedicine UMR 1260, Centre de Recherche en Biomédecine de Strasbourg (CRBS), Université de Strasbourg, Strasbourg, France
| | - Ysia Idoux-Gillet
- INSERM, Regenerative Nanomedicine UMR 1260, Centre de Recherche en Biomédecine de Strasbourg (CRBS), Université de Strasbourg, Strasbourg, France
| | - Guillaume Conzatti
- Faculty of Pharmacy, Universite de Strasbourg, Illkirch, Strasbourg, France
- INSERM, Regenerative Nanomedicine UMR 1260, Centre de Recherche en Biomédecine de Strasbourg (CRBS), Université de Strasbourg, Strasbourg, France
| | - Kifayat Ullah Shah
- Gomal Centre of Pharmaceutical Sciences (GCPS), Faculty of Pharmacy, Gomal University, Dera Ismail Khan, Pakistan
| | - Elise Perennes
- INSERM, Regenerative Nanomedicine UMR 1260, Centre de Recherche en Biomédecine de Strasbourg (CRBS), Université de Strasbourg, Strasbourg, France
| | - Thierry Vandamme
- Faculty of Pharmacy, Universite de Strasbourg, Illkirch, Strasbourg, France
- INSERM, Regenerative Nanomedicine UMR 1260, Centre de Recherche en Biomédecine de Strasbourg (CRBS), Université de Strasbourg, Strasbourg, France
| |
Collapse
|
14
|
Promising prospects of lipid-based topical nanocarriers for the treatment of psoriasis. OPENNANO 2023. [DOI: 10.1016/j.onano.2023.100123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
15
|
Elmowafy M, Shalaby K, Elkomy MH, Alsaidan OA, Gomaa HAM, Abdelgawad MA, Mostafa EM. Polymeric Nanoparticles for Delivery of Natural Bioactive Agents: Recent Advances and Challenges. Polymers (Basel) 2023; 15:1123. [PMID: 36904364 PMCID: PMC10007077 DOI: 10.3390/polym15051123] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
In the last few decades, several natural bioactive agents have been widely utilized in the treatment and prevention of many diseases owing to their unique and versatile therapeutic effects, including antioxidant, anti-inflammatory, anticancer, and neuroprotective action. However, their poor aqueous solubility, poor bioavailability, low GIT stability, extensive metabolism as well as short duration of action are the most shortfalls hampering their biomedical/pharmaceutical applications. Different drug delivery platforms have developed in this regard, and a captivating tool of this has been the fabrication of nanocarriers. In particular, polymeric nanoparticles were reported to offer proficient delivery of various natural bioactive agents with good entrapment potential and stability, an efficiently controlled release, improved bioavailability, and fascinating therapeutic efficacy. In addition, surface decoration and polymer functionalization have opened the door to improving the characteristics of polymeric nanoparticles and alleviating the reported toxicity. Herein, a review of the state of knowledge on polymeric nanoparticles loaded with natural bioactive agents is presented. The review focuses on frequently used polymeric materials and their corresponding methods of fabrication, the needs of such systems for natural bioactive agents, polymeric nanoparticles loaded with natural bioactive agents in the literature, and the potential role of polymer functionalization, hybrid systems, and stimuli-responsive systems in overcoming most of the system drawbacks. This exploration may offer a thorough idea of viewing the polymeric nanoparticles as a potential candidate for the delivery of natural bioactive agents as well as the challenges and the combating tools used to overcome any hurdles.
Collapse
Affiliation(s)
- Mohammed Elmowafy
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia
| | - Khaled Shalaby
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia
| | - Mohammed H. Elkomy
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia
| | - Omar Awad Alsaidan
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia
| | - Hesham A. M. Gomaa
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia
| | - Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia
| | - Ehab M. Mostafa
- Department of Pharmacognosy, College of Pharmacy, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia
| |
Collapse
|
16
|
Brar B, Marwaha S, Poonia AK, Koul B, Kajla S, Rajput VD. Nanotechnology: a contemporary therapeutic approach in combating infections from multidrug-resistant bacteria. Arch Microbiol 2023; 205:62. [PMID: 36629918 DOI: 10.1007/s00203-023-03404-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/24/2022] [Accepted: 01/02/2023] [Indexed: 01/12/2023]
Abstract
In the 20th century, the discovery of antibiotics played an essential role in the fight against infectious diseases, including meningitis, typhoid fever, pneumonia and Mycobacterium tuberculosis. The development of multidrug resistance in microflora due to improper antibiotic use created significant public health issues. Antibiotic resistance has increased at an alarming rate in the past few decades. Multidrug-resistant bacteria (superbugs) such as methicillin-resistant Staphylococcus aureus (MRSA) as well as drug-resistant tuberculosis pose serious health implications. Despite the continuous increase in resistant microbes, the discovery of novel antibiotics is constrained by the cost and complexities of discovery of drugs. The nanotechnology has given new hope in combating this problem. In the present review, recent developments in therapeutics utilizing nanotechnology for novel antimicrobial drug development are discussed. The nanoparticles of silver, gold and zinc oxide have proved to be efficient antimicrobial agents against multidrug-resistant Klebsiella, Pseudomonas, Escherichia Coli and MRSA. Using nanostructures as carriers for antimicrobial agents provides better bioavailability, less chances of sub-therapeutic drug accumulation and less drug-related toxicity. Nanophotothermal therapy using fullerene and antibody functionalized nanostructures are other strategies that can prove to be helpful.
Collapse
Affiliation(s)
- Basanti Brar
- HABITAT, Genome Improvement Primary Producer Company Ltd. Centre of Biofertilizer Production and Technology, HAU, Hisar, 125004, India
| | - Sumnil Marwaha
- ICAR-National Research Centre On Camel, Bikaner, 334001, Rajasthan, India
| | - Anil Kumar Poonia
- Department of Botany, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, 144411, Punjab, India. .,Department of Molecular Biology &Biotechnology, CCSHAU, Hisar, 125004, Haryana, India.
| | - Bhupendra Koul
- Department of Botany, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, 144411, Punjab, India.
| | - Subhash Kajla
- Department of Molecular Biology &Biotechnology, CCSHAU, Hisar, 125004, Haryana, India.
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-On-Don, 344090, Russia.
| |
Collapse
|
17
|
Kumar R, Srivastava VR, Mahapatra S, Dkhar DS, Kumari R, Prerna K, Dubey VK, Chandra P. Drug Encapsulated Lipid-Polymeric Nanohybrid as a Chemo-therapeutic Platform of Cancer. Nanotheranostics 2023; 7:167-175. [PMID: 36793351 PMCID: PMC9925353 DOI: 10.7150/ntno.81173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/20/2022] [Indexed: 02/15/2023] Open
Abstract
The focus of this research is to design a bioengineered drug delivery vehicle that is efficient in anti-cancer drug delivery in a controlled manner. The experimental work focuses on constructing a methotrexate-loaded nano lipid polymer system (MTX-NLPHS) that can transport methotrexate (MTX) in MCF-7 cell lines in a controlled manner through endocytosis via phosphatidylcholine. In this experiment, MTX is embedded with polylactic-co-glycolic acid (PLGA) in phosphatidylcholine, which acts as a liposomal framework for regulated drug delivery. Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and dynamic light scattering (DLS) were utilized to characterize the developed nanohybrid system. The particle size and encapsulation efficiency of the MTX-NLPHS were found to be 198 ± 8.44 nm and 86.48 ± 0.31 %, respectively, which is suitable for biological applications. The polydispersity index (PDI) and zeta potential of the final system were found to be 0.134 ± 0.048 and -28 ± 3.50 mV, respectively. The lower value of PDI showed the homogenous nature of the particle size, whereas higher negative zeta potential prevented the system from agglomeration. An in vitro release kinetics was conducted to see the release pattern of the system, which took 250 h for 100% drug release This kind of system may carry the drug for a long time in the circulatory system and prevent the drug discharge. Other cell culture assays such as 3-(4, 5-dimethyl thiazolyl-2)-2, 5-diphenyltetrazolium bromide (MTT) and reactive oxygen species (ROS) monitoring were used to see the effect of inducers on the cellular system. MTT assay showed cell toxicity of MTX-NLPHS reduced at the lower concentration of the MTX, however, toxicity increased at the higher concentration of the MTX as compared to free MTX. ROS monitoring c revealed more scavenging of ROS using MTX-NLPHS as compared to free MTX. Confocal microscopy suggested the MTX-NLPHS induced more nuclear elongation with cell shrinkage comparatively.
Collapse
Affiliation(s)
- Rahul Kumar
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi- 221005, Uttar Pradesh, India
| | - Vinish Ranjan Srivastava
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi- 221005, Uttar Pradesh, India
| | - Supratim Mahapatra
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi- 221005, Uttar Pradesh, India
| | - Daphika S Dkhar
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi- 221005, Uttar Pradesh, India
| | - Rohini Kumari
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi- 221005, Uttar Pradesh, India
| | - Kumari Prerna
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi- 221005, Uttar Pradesh, India
| | - Vikash Kumar Dubey
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi- 221005, Uttar Pradesh, India
| | - Pranjal Chandra
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi- 221005, Uttar Pradesh, India
| |
Collapse
|
18
|
Arshad S, Anwar N, Rauf M, Anwar Z, Shah M, Hamayun M, Ud-Din J, Gul H, Nasim S, Lee IJ, Arif M. Biological synthesis of hybrid silver nanoparticles by Periploca aphylla Dcne. From nanotechnology to biotechnology applications. Front Chem 2022; 10:994895. [PMID: 36505740 PMCID: PMC9727244 DOI: 10.3389/fchem.2022.994895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/28/2022] [Indexed: 11/24/2022] Open
Abstract
Nanotechnology is one of the advanced technologies that have almost universal implications in every field of science. The importance is due to the unique properties of nanoparticles; however, green synthesized nanoparticles are considered eco-friendly. The current project was rationalized to prepare green-synthesized biogenic Periploca aphylla Dcne. silver nanoparticles (Pe-AgNPs) and poly (ethylene glycol) methacrylate coated AgNPs nanocomposites (PEGMA-AgNPs) with higher potential for their application in plant tissue culture for enhancing the biomass of Stevia rebaudiana calli. The increased biomass accumulation (17.61 g/3 plates) was observed on a medium containing virgin Pe-AgNPs 40th days after incubation, while the maximum increase was found by supplementing virgin Pe-AgNPs and PEGMA capped AgNPs (19.56 g/3 plates), compared with control (12.01 g/3 plates). In this study, PEGMA capped AgNPs supplementation also induced the maximum increase in total phenolics content (2.46 mg GAE/g-FW), total flavonoids content (3.68 mg QE/g-FW), SOD activity (53.78 U/ml protein), GSH content (139.75 μg/g FW), antioxidant activity (54.3 mg AAE/g FW), FRAP (54 mg AAE/g FW), and DPPH (76.3%) in S. rebaudiana calli compared with the control. It was concluded that virgin Pe-AgNPs and PEGMA capped AgNPs (hybrid polymer) are potent growth regulator agents and elicitors that can be exploited in the biotechnology field for growth promotion and induction of essential bioactive compounds and secondary metabolites from various commercially important and medicinally valuable plants such as S. rebaudiana without laborious field cultivation.
Collapse
Affiliation(s)
- Saba Arshad
- Department of Biotechnology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Natasha Anwar
- Department of Chemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Mamoona Rauf
- Department of Botany, Abdul Wali Khan University Mardan, Mardan, Pakistan,*Correspondence: Mamoona Rauf, ; In-Jung Lee, ; Muhammad Arif,
| | - Zeeshan Anwar
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Mohib Shah
- Department of Botany, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Muhammad Hamayun
- Department of Botany, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Jalal Ud-Din
- Department of Biotechnology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Humaira Gul
- Department of Botany, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Sahar Nasim
- Department of Botany, University of Malakand, Totakan, Pakistan
| | - In-Jung Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu, South Korea,*Correspondence: Mamoona Rauf, ; In-Jung Lee, ; Muhammad Arif,
| | - Muhammad Arif
- Department of Biotechnology, Abdul Wali Khan University Mardan, Mardan, Pakistan,*Correspondence: Mamoona Rauf, ; In-Jung Lee, ; Muhammad Arif,
| |
Collapse
|
19
|
siRNA Functionalized Lipid Nanoparticles (LNPs) in Management of Diseases. Pharmaceutics 2022; 14:pharmaceutics14112520. [PMID: 36432711 PMCID: PMC9694336 DOI: 10.3390/pharmaceutics14112520] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/13/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
RNAi (RNA interference)-based technology is emerging as a versatile tool which has been widely utilized in the treatment of various diseases. siRNA can alter gene expression by binding to the target mRNA and thereby inhibiting its translation. This remarkable potential of siRNA makes it a useful candidate, and it has been successively used in the treatment of diseases, including cancer. However, certain properties of siRNA such as its large size and susceptibility to degradation by RNases are major drawbacks of using this technology at the broader scale. To overcome these challenges, there is a requirement for versatile tools for safe and efficient delivery of siRNA to its target site. Lipid nanoparticles (LNPs) have been extensively explored to this end, and this paper reviews different types of LNPs, namely liposomes, solid lipid NPs, nanostructured lipid carriers, and nanoemulsions, to highlight this delivery mode. The materials and methods of preparation of the LNPs have been described here, and pertinent physicochemical properties such as particle size, surface charge, surface modifications, and PEGylation in enhancing the delivery performance (stability and specificity) have been summarized. We have discussed in detail various challenges facing LNPs and various strategies to overcome biological barriers to undertake the safe delivery of siRNA to a target site. We additionally highlighted representative therapeutic applications of LNP formulations with siRNA that may offer unique therapeutic benefits in such wide areas as acute myeloid leukaemia, breast cancer, liver disease, hepatitis B and COVID-19 as recent examples.
Collapse
|
20
|
BalaYadav R, Pathak DP, Varshney R, Arora R. Design and optimization of a novel herbosomal-loaded PEG-poloxamer topical formulation for the treatment of cold injuries: a quality-by-design approach. Drug Deliv Transl Res 2022; 12:2793-2823. [PMID: 35445943 DOI: 10.1007/s13346-022-01140-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2022] [Indexed: 12/16/2022]
Abstract
The spectrum of cold injuries ranges from frostnip, chilblains to severe frostbite. Cold injuries occur upon prolonged exposure to freezing temperature and are pathologically a combination of ice crystal formation in the tissue resulting in inflammation, thrombosis and ischemia in the extremities, often necessitating limb amputation in extreme cases due to tissue necrosis. Severe forms of frostbite are a cause of major concern to patients as well as the treating physician. Due to the lack of effective treatment modalities and paucity of research on prophylaxis and therapeutics of cold injuries, we developed a novel herbosomal-loaded PEG-poloxamer topical formulation (n-HPTF) employing quality-by-design (QBD) approach. Natural compounds exhibiting potent therapeutic potential for the management of cold injuries were incorporated in novel lipid vesicles (herbosomes) loaded in PEG-poloxamer polymers. The herbosomal formulation effectively creates an occlusion barrier that promotes epithelial regeneration, desmosome scale-up and angiogenesis and thus promotes rapid healing, indicating controlled release of herbosomes. Optimized novel herbosomes showed entrapment efficiency > 90% and < 300 nm mean particle size and in vitro drug permeation of about 2 µg/cm2 followed Higuchi's release kinetics. Skin irritancy study on female Sprague-Dawley rats showed no edema or erythema. In vivo bio-efficacy study revealed significant efficacy (p < 0.05) when compared to the standard treatment groups. Graphical abstract presenting the designing and optimization of novel herbosomal-loaded PEG-poloxamer topical formulation (n-HPTF) and predictive model for the in vivo study of the developed n-HPTF on cold injury rat skin model.
Collapse
Affiliation(s)
- Renu BalaYadav
- Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, Delhi, India
| | - Dharam Pal Pathak
- Delhi Institute of Pharmaceutical Science and Research, Pushp Vihar, New Delhi, India
| | - Rajeev Varshney
- Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, Delhi, India
| | - Rajesh Arora
- Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, Delhi, India.
| |
Collapse
|
21
|
Elhassan E, Devnarain N, Mohammed M, Govender T, Omolo CA. Engineering hybrid nanosystems for efficient and targeted delivery against bacterial infections. J Control Release 2022; 351:598-622. [DOI: 10.1016/j.jconrel.2022.09.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/25/2022] [Accepted: 09/25/2022] [Indexed: 11/30/2022]
|
22
|
Ren R, Lim C, Li S, Wang Y, Song J, Lin TW, Muir BW, Hsu HY, Shen HH. Recent Advances in the Development of Lipid-, Metal-, Carbon-, and Polymer-Based Nanomaterials for Antibacterial Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3855. [PMID: 36364631 PMCID: PMC9658259 DOI: 10.3390/nano12213855] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 05/29/2023]
Abstract
Infections caused by multidrug-resistant (MDR) bacteria are becoming a serious threat to public health worldwide. With an ever-reducing pipeline of last-resort drugs further complicating the current dire situation arising due to antibiotic resistance, there has never been a greater urgency to attempt to discover potential new antibiotics. The use of nanotechnology, encompassing a broad range of organic and inorganic nanomaterials, offers promising solutions. Organic nanomaterials, including lipid-, polymer-, and carbon-based nanomaterials, have inherent antibacterial activity or can act as nanocarriers in delivering antibacterial agents. Nanocarriers, owing to the protection and enhanced bioavailability of the encapsulated drugs, have the ability to enable an increased concentration of a drug to be delivered to an infected site and reduce the associated toxicity elsewhere. On the other hand, inorganic metal-based nanomaterials exhibit multivalent antibacterial mechanisms that combat MDR bacteria effectively and reduce the occurrence of bacterial resistance. These nanomaterials have great potential for the prevention and treatment of MDR bacterial infection. Recent advances in the field of nanotechnology are enabling researchers to utilize nanomaterial building blocks in intriguing ways to create multi-functional nanocomposite materials. These nanocomposite materials, formed by lipid-, polymer-, carbon-, and metal-based nanomaterial building blocks, have opened a new avenue for researchers due to the unprecedented physiochemical properties and enhanced antibacterial activities being observed when compared to their mono-constituent parts. This review covers the latest advances of nanotechnologies used in the design and development of nano- and nanocomposite materials to fight MDR bacteria with different purposes. Our aim is to discuss and summarize these recently established nanomaterials and the respective nanocomposites, their current application, and challenges for use in applications treating MDR bacteria. In addition, we discuss the prospects for antimicrobial nanomaterials and look forward to further develop these materials, emphasizing their potential for clinical translation.
Collapse
Affiliation(s)
- Ruohua Ren
- Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Chiaxin Lim
- Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Clayton, VIC 3800, Australia
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Shiqi Li
- Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Yajun Wang
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Jiangning Song
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Tsung-Wu Lin
- Department of Chemistry, Tunghai University, No.1727, Sec.4, Taiwan Boulevard, Xitun District, Taichung 40704, Taiwan
| | | | - Hsien-Yi Hsu
- School of Energy and Environment, Department of Materials Science and Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong 518057, China
| | - Hsin-Hui Shen
- Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Clayton, VIC 3800, Australia
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
23
|
Ali M, Kwak SH, Lee BT, Choi HJ. Controlled release of vascular endothelial growth factor (VEGF) in alginate and hyaluronic acid (ALG–HA) bead system to promote wound healing in punch-induced wound rat model. JOURNAL OF BIOMATERIALS SCIENCE, POLYMER EDITION 2022; 34:612-631. [PMID: 36218190 DOI: 10.1080/09205063.2022.2135264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
For wound healing, angiogenesis is one of the main therapeutic factors for recovering the injured tissue. To address this issue, a combination of two different polymers, alginate (ALG) and hyaluronic acid (HA) in an 80:20 ratio composition is used to optimize the bead system along with the 5 IU heparin (Hep) by crosslinking into calcium chloride (CaCl2). Encapsulation of Vascular endothelial growth factor (VEGF) in the bead system shows delayed cumulative release in phosphate buffer saline (PBS). For in vitro studies, calf pulmonary artery endothelial (CPAE) cells showed biocompatibility. ALG-HA/VEGF150 improves endothelial Vascular cell adhesion protein 1 (VCAM1) and endothelial nitric oxide synthase (eNOS) expression markers in CPAE cells. In vivo evaluation of the bead system shows around 68% of wound closure 2 weeks post-implantation in 8 mm punch wound models. The treatment group shows decreased epithelial gap between the ends of the wound and neo-epidermal regeneration. ALG-HA/VEGF150 induced significant vascularization, collagen type-1 (Col-1) and fibronectin (FN) development in the in vivo models after 2 weeks of the implantation. Hence, ALG-HA/VEGF150 beads can be used to promote wound healing.
Collapse
Affiliation(s)
- Maqsood Ali
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, South Korea
| | - Si Hyun Kwak
- Department of Plastic and Reconstructive surgery, College of Medicine, Soonchunhyang University, Cheonan, South Korea
| | - Byong-Taek Lee
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, South Korea
- Institute of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, South Korea
| | - Hwan Jun Choi
- Department of Plastic and Reconstructive surgery, College of Medicine, Soonchunhyang University, Cheonan, South Korea
- Institute of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, South Korea
| |
Collapse
|
24
|
Almajidi YQ, Maraie NK, Raauf AMR. Modified solid in oil nanodispersion containing vemurafenib-lipid complex- in vitro/ in vivo study. F1000Res 2022; 11:841. [PMID: 36339973 PMCID: PMC9627402 DOI: 10.12688/f1000research.123041.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/05/2022] [Indexed: 01/13/2023] Open
Abstract
Background: Vemurafenib (VEM) was a licensed drug for the treatment of skin melanoma and is available only in the market as oral tablets prescribed in huge doses (1920 mg/day). One reason for the high dose is vemurafenib's low oral bioavailability. Methods: VEM-lipid complex (DLC) was predicted based on Conquest and Mercury programs and prepared using the solvent evaporation method using the lipid (phosphatidylethanolamine). DLC was subjected to characterization (FT-IR, Raman spectroscopy, DSC, TGA, P-XRD, and FESEM) to confirm complexation. DLC was used to prepare solid in oil nanodispersion (DLC-SON) and subjected to in vitro, ex vivo, and in vivo evaluation in comparison to our recently prepared conventional SON (VEM-SON) and DLC-control. Results: Conquest and Mercury predict the availability of intermolecular hydrogen bonding between VEM and phosphatidylethanolamine (PE). All characterization tests of DLC ensure the complexation of the drug with PE. Ex vivo studies showed that the drug in DLC-SON has significantly (P<0.05) higher skin permeation than DLC-control but lower drug permeation than conventional SON but it has a higher % skin deposition (P<0.05) than others. The half-maximal inhibitory concentration (IC50) of the prepared DLC-SON is significantly high (P<0.05) in comparison to the conventional SON and pure VEM. In vivo permeation using confocal laser scanning microscopy (on the rat) results indicated that both conventional SON and DLC-SON can cross the SC and infiltrate the dermis and epidermis but DLC-SON has a higher luminance/gray value after 24 h in the dermis in comparison to the conventional SON. Conclusion: The novel lipid complex for VEM prepared using PE as a lipid and enclosed in SON showed higher anticancer activity and topical permeation as well as sustained delivery and good retention time in the dermis that localize the drug in a sufficient concentration to eliminate early diagnosed skin melanoma.
Collapse
Affiliation(s)
- Yasir Q. Almajidi
- Department of Pharmaceutics, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq, Iraq,
| | - Nidhal K. Maraie
- Department of Pharmaceutics, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq, Iraq
| | - Ayad M. R. Raauf
- Department of Pharmaceutics, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq, Iraq
| |
Collapse
|
25
|
Craparo EF, Cabibbo M, Scialabba C, Giammona G, Cavallaro G. Inhalable Formulation Based on Lipid-Polymer Hybrid Nanoparticles for the Macrophage Targeted Delivery of Roflumilast. Biomacromolecules 2022; 23:3439-3451. [PMID: 35899612 PMCID: PMC9364311 DOI: 10.1021/acs.biomac.2c00576] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Here, novel lipid–polymer hybrid nanoparticles
(LPHNPs),
targeted to lung macrophages, were realized as potential carriers
for Roflumilast administration in the management of chronic obstructive
pulmonary disease (COPD). To achieve this, Roflumilast-loaded fluorescent
polymeric nanoparticles, based on a polyaspartamide-polycaprolactone
graft copolymer, and lipid vesicles, made from 1,2-dipalmitoyl-sn-glycero-3-phosphocholine and 1,2-distearoyl-sn-glycero-phosphoethanolamine-N-(polyethylene glycol)-mannose,
were properly combined using a two-step method, successfully obtaining
Roflumilast-loaded hybrid fluorescent nanoparticles (Man-LPHFNPs@Roflumilast).
These exhibit colloidal size and a negative ζ potential, 50
wt % phospholipids, and a core–shell-type morphology; they
slowly release the entrapped drug in a simulated physiological fluid.
The surface analysis also demonstrated their high surface PEG density,
which confers mucus-penetrating properties. Man-LPHFNPs@Roflumilast
show high cytocompatibility toward human bronchial epithelium cells
and macrophages and are uptaken by the latter through an active mannose-mediated
targeting process. To achieve an inhalable formulation, the nano-into-micro
strategy was applied, encapsulating Man-LPHFNPs@Roflumilast in poly(vinyl
alcohol)/leucine-based microparticles by spray-drying.
Collapse
Affiliation(s)
- Emanuela F Craparo
- Lab of Biocompatible Polymers, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, Palermo 90123, Italy.,Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM) of Palermo, Palermo, Italy
| | - Marta Cabibbo
- Lab of Biocompatible Polymers, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, Palermo 90123, Italy
| | - Cinzia Scialabba
- Lab of Biocompatible Polymers, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, Palermo 90123, Italy
| | - Gaetano Giammona
- Lab of Biocompatible Polymers, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, Palermo 90123, Italy.,Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM) of Palermo, Palermo, Italy
| | - Gennara Cavallaro
- Lab of Biocompatible Polymers, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, Palermo 90123, Italy.,Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM) of Palermo, Palermo, Italy.,Advanced Technology and Network Center (ATeN Center), Università di Palermo, Palermo 90133, Italy
| |
Collapse
|
26
|
Almajidi YQ, Maraie NK, Raauf AMR. Modified solid in oil nanodispersion containing vemurafenib-lipid complex- in vitro/ in vivo study. F1000Res 2022; 11:841. [PMID: 36339973 PMCID: PMC9627402 DOI: 10.12688/f1000research.123041.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/05/2022] [Indexed: 07/30/2023] Open
Abstract
Background: Vemurafenib (VEM) was a licensed drug for the treatment of skin melanoma and is available only in the market as oral tablets prescribed in huge doses (1920 mg/day). One reason for the high dose is vemurafenib's low oral bioavailability. Methods: VEM-lipid complex (DLC) was predicted based on Conquest and Mercury programs and prepared using the solvent evaporation method using the lipid (phosphatidylethanolamine). DLC was subjected to characterization (FT-IR, Raman spectroscopy, DSC, TGA, P-XRD, and FESEM) to confirm complexation. DLC was used to prepare solid in oil nanodispersion (DLC-SON) and subjected to in vitro, ex vivo, and in vivo evaluation in comparison to our recently prepared conventional SON (VEM-SON) and DLC-control. Results: Conquest and Mercury predict the availability of intermolecular hydrogen bonding between VEM and phosphatidylethanolamine (PE). All characterization tests of DLC ensure the complexation of the drug with PE. Ex vivo studies showed that the drug in DLC-SON has significantly (P<0.05) higher skin permeation than DLC-control but lower drug permeation than conventional SON but it has a higher % skin deposition (P<0.05) than others. The half-maximal inhibitory concentration (IC50) of the prepared DLC-SON is significantly high (P<0.05) in comparison to the conventional SON and pure VEM. In vivo permeation using confocal laser scanning microscopy (on the rat) results indicated that both conventional SON and DLC-SON can cross the SC and infiltrate the dermis and epidermis but DLC-SON has a higher luminance/gray value after 24 h in the dermis in comparison to the conventional SON. Conclusion: The novel lipid complex for VEM prepared using PE as a lipid and enclosed in SON showed higher anticancer activity and topical permeation as well as sustained delivery and good retention time in the dermis that localize the drug in a sufficient concentration to eliminate early diagnosed skin melanoma.
Collapse
Affiliation(s)
- Yasir Q. Almajidi
- Department of Pharmaceutics, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq, Iraq
| | - Nidhal K. Maraie
- Department of Pharmaceutics, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq, Iraq
| | - Ayad M. R. Raauf
- Department of Pharmaceutics, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq, Iraq
| |
Collapse
|
27
|
Formulation of Chitosan-Coated Brigatinib Nanospanlastics: Optimization, Characterization, Stability Assessment and In-Vitro Cytotoxicity Activity against H-1975 Cell Lines. Pharmaceuticals (Basel) 2022; 15:ph15030348. [PMID: 35337145 PMCID: PMC8948618 DOI: 10.3390/ph15030348] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/04/2022] [Accepted: 03/11/2022] [Indexed: 02/04/2023] Open
Abstract
The purpose of the current study was to develop Brigatinib (BGT)-loaded nanospanlastics (BGT-loaded NSPs) (S1-S13) containing Span 60 with different edge activators (Tween 80 and Pluronic F127) and optimized based on the vesicle size, zeta potential (ZP), and percent entrapment efficiency (%EE) using Design-Expert® software. The optimum formula was recommended with desirability of 0.819 and composed of Span-60:Tween 80 at a ratio of 4:1 and 10 min as a sonication time (S13). It showed predicted EE% (81.58%), vesicle size (386.55 nm), and ZP (−29.51 mv). The optimized nanospanlastics (S13) was further coated with chitosan and further evaluated for Differential Scanning Calorimetry (DSC), X-ray Diffraction (XRD), in vitro release, Transmission Electron Microscopy (TEM), stability and in-vitro cytotoxicity studies against H-1975 lung cancer cell lines. The DSC and XRD revealed complete encapsulation of the drug. TEM imagery revealed spherical nanovesicles with a smooth surface. Also, the coated formula showed high stability for three months in two different conditions. Moreover, it resulted in improved and sustained drug release than free BGT suspension and exhibited Higuchi kinetic release mechanism. The cytotoxic activity of BGT-loaded SPs (S13) was enhanced three times in comparison to free the BGT drug against the H-1975 cell lines. Overall, these results confirmed that BGT-loaded SPs could be a promising nanocarrier to improve the anticancer efficacy of BGT.
Collapse
|
28
|
Jangde R, Elhassan GO, Khute S, Singh D, Singh M, Sahu RK, Khan J. Hesperidin-Loaded Lipid Polymer Hybrid Nanoparticles for Topical Delivery of Bioactive Drugs. Pharmaceuticals (Basel) 2022; 15:211. [PMID: 35215324 PMCID: PMC8877258 DOI: 10.3390/ph15020211] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 01/01/2023] Open
Abstract
Hesperidin is a bioflavonoid constituent that among many other biological activities shows significant wound healing properties. However, the bioavailability of hesperidin when applied topically is limited due to its low solubility and systemic absorption, so novel dosage forms are needed to improve its therapeutic efficacy. The objectives of this study were to develop hesperidin-loaded lipid-polymer hybrid nanoparticles (HLPHNs) to enhance the delivery of hesperidin to endogenous sites in the wound bed and promote the efficacy of hesperidin. HLPHNs were optimized by response surface methodology (RSM) using the Box-Behnken design. HLPHNs were prepared using an emulsion-solvent evaporation method based on a double emulsion of water-in-oil-in-water (w/o/w) followed by freeze-drying to obtain nanoparticles. The prepared formulations were characterized using various evaluation parameters. In addition, the antioxidant activity of HLPHN 4 was investigated in vitro using the DPPH model. Seventeen different HLPHNs were prepared and the HLPHN4 exhibited the best mean particle size distribution, zeta potential, drug release and entrapment efficiency. The values are 91.43 nm, +23 mV, 79.97% and 92.8%, respectively. Transmission electron microscope showed similar spherical morphology as HLPHN4. Differential scanning calorimetry verified the physical stability of the loaded drug in a hybrid system. In vitro release studies showed uniform release of the drug over 24 h. HLPHN4 showed potent antioxidant activity in vitro in the DPPH model. The results of this study suggest that HLPHNs can achieve sustained release of the drug at the wound site and exhibit potent in vitro antioxidant activity.
Collapse
Affiliation(s)
- Rajendra Jangde
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur 492010, India; (S.K.); (D.S.); (M.S.)
| | - Gamal Osman Elhassan
- Department of Pharmaceutics, Unaizah College of Pharmacy, Qassim University, Unaizah 51911, Saudi Arabia;
| | - Sulekha Khute
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur 492010, India; (S.K.); (D.S.); (M.S.)
| | - Deependra Singh
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur 492010, India; (S.K.); (D.S.); (M.S.)
| | - Manju Singh
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur 492010, India; (S.K.); (D.S.); (M.S.)
| | - Ram Kumar Sahu
- Department of Pharmaceutical Sciences, Assam University (A Central University), Silchar 788011, India
| | - Jiyauddin Khan
- School of Pharmacy, Management & Science University, Shah Alam 40100, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
29
|
Anwar N, Khan A, Shah M, Walsh JJ, Saleem S, Anwar Z, Aslam S, Irshad M. Hybridization of green synthesized silver nanoparticles with poly(ethylene glycol) methacrylate and their biomedical applications. PeerJ 2022; 10:e12540. [PMID: 35111388 PMCID: PMC8772450 DOI: 10.7717/peerj.12540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 11/04/2021] [Indexed: 01/06/2023] Open
Abstract
In the present research, a rapid, simple and efficient green method is used for the incorporation of silver nanoparticles (AgNPs) into poly(ethylene glycol) methacrylate (PEGMA) to create biocatalysts with excellent properties for pharmaceutical purpose. In the first phase, Caralluma tuberculata capped AgNPs (Ca-AgNPs) were prepared using green synthetic approach and in the second phase Caralluma tuberculata capped AgNPs were hybridized with poly(ethylene glycol) methacrylate to form PEGMA-AgNPs. Both the virgin (naked or uncapped) and polymer-capped materials were characterized spectroscopically and their results were compared. Fourier transform infrared spectroscopy showed no new peak after the capping procedure, showing that only physical interactions takes place during capping. After PEGMA capping, the spectra of the AgNPs red shifted (from 450 nm to 520 nm) and the overall particle size of AgNPs increased. Catalytic activity of the nanoparticles and hybrid system were tested by choosing the catalytic reduction of 4-nitrophenol (4-NP) as a model reaction. Both synthesized NPs and polymer capped NPs exhibits catalytic activity for the reduction of 4-NP to 4-aminophenol. The polymer hybrid exhibits remarkable antiproliferative, antioxidant, cytotoxic, antidiabetic and antileishmanial activities.
Collapse
Affiliation(s)
- Natasha Anwar
- Chemistry Department, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Abbas Khan
- Chemistry Department, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Mohib Shah
- Botany Department, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - John J. Walsh
- School of Pharmacy and Pharmaceutical Sciences, University of Dublin, Trinity College, Dublin, Ireland
| | - Samreen Saleem
- Faculty of Allied Health Sciences & Technology, Women University Swabi, Swabi, Pakistan
| | - Zeeshan Anwar
- Pharmacy Department, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Sobia Aslam
- Chemistry Department, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Muhammad Irshad
- Botany Department, Abdul Wali Khan University Mardan, Mardan, Pakistan
| |
Collapse
|
30
|
Gorjian H, Raftani Amiri Z, Mohammadzadeh Milani J, Ghaffari Khaligh N. Influence of Nanovesicle Type, Nanoliposome and Nanoniosome, on Antioxidant and Antimicrobial Activities of Encapsulated Myrtle Extract: A Comparative Study. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-021-02747-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
31
|
Anwar N, Khan A, Shah M, Walsh JJ, Anwar Z. Hybridization of Gold Nanoparticles with Poly(ethylene glycol) Methacrylate and Their Biomedical Applications. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2021. [DOI: 10.1134/s0036024421130033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
32
|
Abd-Elsalam WH, Ibrahim RR. Span 80/TPGS modified lipid-coated chitosan nanocomplexes of acyclovir as a topical delivery system for viral skin infections. Int J Pharm 2021; 609:121214. [PMID: 34678396 DOI: 10.1016/j.ijpharm.2021.121214] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 01/17/2023]
Abstract
Acyclovir (ACR) is considered the gold standard drug for the treatment of skin viral infections caused by the herpes simplex or varicella-zoster virus. However, topical therapy with ACR is hindered by its poor skin penetrability, thus necessitating high doses and frequent administrations. This study was proposed to formulate a modified lipid-coated chitosan nanocomplexes (LCNCs) of acyclovir (ACR), containing span 80 and TPGS, to boost the dermal delivery of ACR and improve the therapeutic outcomes. LCNCs were formulated through a self-assembly method, and the statistical analysis and the optimization were performed via a general 23 factorial design. Three formulation variables were selected; namely, the amount of chitosan (A), the amount of glyceryl monooleate (GMO) (B), and span 80: D-α-tocopheryl polyethylene glycol succinate (Vitamin ETPGSorTPGS) ratio (C). Four measured attributes were determined; viz., the particle size (PS) in nm, the polydispersity index (PDI), the zeta potential (ZP) in mV, and the entrapment efficiency percentages (EE%). The optimal formulation (LCNCs 8), formulated with 600 mg chitosan, 120 mg GMO, and 3:1 span 80: TPGS ratio, possessed PS of 177.50 ± 1.41 nm, PDI value of 0.28 ± 0.02, ZP of -10.70 ± 0.85 mV, and EE% of 77.20 ± 2.40 %, and was able to sustain ACR release over 24 h. Transmission electron microscopy displayed LCNCs architecture as a polymeric core of chitosan with a lipid coat of GMO, and the solid-state characterization results confirmed the dispersion of ACR in LCNCs. The ex vivo permeation study and the in vivo dermatokinetics profile verified the boosted accumulation of ACR in the skin via LCNCs, while the confocal laser scanning microscopy revealed the heightened penetrability of LCNCs. The topical application of LCNCs demonstrated a safe profile via the modified Draize test and histopathological examinations. Inclusively, ACR-loaded LCNCs could be a promising topical formulation with an advanced dermal delivery status for the treatment of skin viral infections.
Collapse
Affiliation(s)
- Wessam H Abd-Elsalam
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Reem R Ibrahim
- Department of Pharmaceutics, Faculty of Pharmacy, Ahram Candian University, 6 October, Cairo, Egypt; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Helwan, Ain Helwan University, Cairo, Egypt
| |
Collapse
|
33
|
Khan S, Aamir MN, Madni A, Jan N, Khan A, Jabar A, Shah H, Rahim MA, Ali A. Lipid poly (ɛ-caprolactone) hybrid nanoparticles of 5-fluorouracil for sustained release and enhanced anticancer efficacy. Life Sci 2021; 284:119909. [PMID: 34450169 DOI: 10.1016/j.lfs.2021.119909] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/06/2021] [Accepted: 08/14/2021] [Indexed: 11/28/2022]
Abstract
AIMS The present study aimed to develop and characterize poly (ɛ-caprolactone) (PCL) based lipid polymer hybrid nanoparticles for sustained delivery and in-vitro anti-cancer activity in MCF-7 and HeLa cells cancer cell line. MATERIALS AND METHODS The nanoprecipitation method was used for the development of 5-fluorouracil loaded lipid polymer hybrid nanoparticles (LPHNPs). The developed LPHNPs were characterized for physicochemical characteristics and the anti-cancer effect was evaluated in MCF-7 and HeLa cells. SIGNIFICANT FINDINGS Six formulations having fixed amount of drug and varied lipid, polymer and emulsifier concentrations were prepared. The particle size was in the range of 174 ± 4 to 267 ± 2.65 nm, entrapment efficiency (92.87 ± 0.594 to 94.13 ± 0.772%), negative zeta potential, optimum polydispersity index and spherical shape. FTIR analysis shows no chemical interaction among the formulation components, DSC analysis reveals the disappearance of 5-FU melting endotherm in the developed LPHNPs suggesting amorphization of 5-FU in the developed system, XRD analysis indicates successful encapsulation of the drug in the lipid polymer matrix. The in-vitro release shows a biphasic release pattern with an initial burst release followed by a sustained release profile for 72 h. The drug loaded LPHNPs exhibited a greater cytotoxic effect than 5-FU solution due to sustained release and increased cellular internalization. The acute toxicity study revealed the safety of the developed carrier system for potential delivery of chemotherapeutic agents. SIGNIFICANCE The developed LPHNPs of 5-fluorouracil will provide the sustained release behavior of 5-fluorouracil to maximize the therapeutic efficacy and minimize the dose related toxicity.
Collapse
Affiliation(s)
- Safiullah Khan
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan
| | - Muhammad Naeem Aamir
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan.
| | - Asadullah Madni
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan.
| | - Nasrullah Jan
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan
| | - Arshad Khan
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan
| | - Abdul Jabar
- College of Pharmacy, University of Sargodha, Sargodha 40100, Punjab, Pakistan
| | - Hassan Shah
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan
| | - Muhammad Abdur Rahim
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan
| | - Ahsan Ali
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan
| |
Collapse
|
34
|
Khater SE, El-Khouly A, Abdel-Bar HM, Al-Mahallawi AM, Ghorab DM. Fluoxetine hydrochloride loaded lipid polymer hybrid nanoparticles showed possible efficiency against SARS-CoV-2 infection. Int J Pharm 2021; 607:121023. [PMID: 34416332 PMCID: PMC8372442 DOI: 10.1016/j.ijpharm.2021.121023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/05/2021] [Accepted: 08/15/2021] [Indexed: 12/11/2022]
Abstract
Up to date, there were no approved drugs against coronavirus (COVID-19) disease that dangerously affects global health and the economy. Repurposing the existing drugs would be a promising approach for COVID-19 management. The antidepressant drugs, selective serotonin reuptake inhibitors (SSRIs) class, have antiviral, anti-inflammatory, and anticoagulant effects, which makes them auspicious drugs for COVID 19 treatment. Therefore, this study aimed to predict the possible therapeutic activity of SSRIs against COVID-19. Firstly, molecular docking studies were performed to hypothesize the possible interaction of SSRIs to the Severe Acute Respiratory Syndrome coronavirus 2 (SARS-COV-2) main protease. Secondly, the candidate drug was loaded in lipid polymer hybrid (LPH) nanoparticles to enhance its activity. The studied SSRIs were Fluoxetine hydrochloride (FH), Atomoxteine, Paroxetine, Nisoxteine, Repoxteine RR, and Repoxteine SS. Interestingly, FH could effectively bind with SARS-COV-2 main protease via hydrogen bond formation with low binding energy (-6.7 kcal/mol). Moreover, the optimization of FH-LPH formulation achieved 65.1 ± 2.7% encapsulation efficiency, 10.3 ± 0.4% loading efficiency, 98.5 ± 3.5 nm particle size, and -10.5 ± 0.45 mV zeta potential. Additionally, it improved cellular internalization in a time-dependent manner with good biocompatibility on Human lung fibroblast (CCD-19Lu) cells. Therefore, the study suggested the potential activity of FH-LPH nanoparticles against the COVID-19 pandemic.
Collapse
Affiliation(s)
- Shaymaa Elsayed Khater
- Department of Pharmaceutics, Faculty of Pharmacy, University of Sadat City, Sadat City, Egypt
| | - Ahmed El-Khouly
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, Egypt; Department of Pharmaceutical Sciences, Faculty of Pharmacy, Jerash University, Jerash, Jordan
| | - Hend Mohamed Abdel-Bar
- Department of Pharmaceutics, Faculty of Pharmacy, University of Sadat City, Sadat City, Egypt.
| | - Abdulaziz Mohsen Al-Mahallawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Egypt; School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, New Administrative Capital, Cairo, Egypt
| | - Dalia Mahmoud Ghorab
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Egypt
| |
Collapse
|
35
|
Salahuddin N, Rehab A, Emad S. Synthesis and efficacy of norfloxacin loaded onto magnetic hydrogel nanocomposites. RSC Adv 2021; 11:30183-30194. [PMID: 35480245 PMCID: PMC9041092 DOI: 10.1039/d1ra04230k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/18/2021] [Indexed: 01/07/2023] Open
Abstract
A targeted drug delivery system based on biocompatible magnetic hydrogel nanocomposites consisting of poly[oligo(oxyethylene methacrylate)] anchored Fe3O4 nanoparticles was synthesized. The characteristics, thermal properties, morphology and magnetic properties were studied by XRD, FT-IR, TGA, SEM, TEM and VSM. A norfloxacin (NOR) anti-bacterial agent with a potential antitumor activity was immobilized into hydrogels, Fe3O4 nanoparticles and their magnetic hydrogel nanocomposites. The in vitro drug release manner of NOR was explored at different temperatures and pH values. The behavior of the drug release has been studied via different kinetic models. The antibacterial efficacy was tested against Streptococcus, Staphylococcus aureus, Kelebsella pneumonia and Escherichia coli via well diffusion method, and showed significant activity compared to the unloaded drug. Furthermore, an antitumor efficacy against HCT-116, HepG-2, PC3 and MCF-7 cancer cells revealed the highest cytotoxic efficacy with no influence on healthy cells. These nanodrugs, retaining both antibacterial and anticancer efficacy, have a talented therapeutic potential because of their selective cytotoxicity, connected with the ability to minimize the risk of bacterial infection in a cancer patient who is frequently immunocompromised.
Collapse
Affiliation(s)
- Nehal Salahuddin
- Chemistry Department, Faculty of Science, Tanta University Tanta 31527 Egypt
| | - Ahmed Rehab
- Chemistry Department, Faculty of Science, Tanta University Tanta 31527 Egypt
| | - Sahar Emad
- Chemistry Department, Faculty of Science, Tanta University Tanta 31527 Egypt
| |
Collapse
|
36
|
Ceftriaxone sodium loaded onto polymer-lipid hybrid nanoparticles enhances antibacterial effect on gram-negative and gram-positive bacteria: Effects of lipid - polymer ratio on particles size, characteristics, in vitro drug release and antibacterial drug efficacy. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102457] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
37
|
Tănase MA, Raducan A, Oancea P, Diţu LM, Stan M, Petcu C, Scomoroşcenco C, Ninciuleanu CM, Nistor CL, Cinteza LO. Mixed Pluronic-Cremophor Polymeric Micelles as Nanocarriers for Poorly Soluble Antibiotics-The Influence on the Antibacterial Activity. Pharmaceutics 2021; 13:pharmaceutics13040435. [PMID: 33804932 PMCID: PMC8063824 DOI: 10.3390/pharmaceutics13040435] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/21/2021] [Accepted: 03/22/2021] [Indexed: 11/21/2022] Open
Abstract
In this work, novel polymeric mixed micelles from Pluronic F127 and Cremophor EL were investigated as drug delivery systems for Norfloxacin as model antibiotic drug. The optimal molar ratio of surfactants was determined, in order to decrease critical micellar concentration (CMC) and prepare carriers with minimal surfactant concentrations. The particle size, zeta potential, and encapsulation efficiency were determined for both pure and mixed micelles with selected composition. In vitro release kinetics of Norfloxacin from micelles show that the composition of surfactant mixture generates tunable extended release. The mixed micelles exhibit good biocompatibility against normal fibroblasts MRC-5 cells, while some cytotoxicity was found in all micellar systems at high concentrations. The influence of the surfactant components in the carrier on the antibacterial properties of Norfloxacin was investigated. The drug loaded mixed micellar formulation exhibit good activity against clinical isolated strains, compared with the CLSI recommended standard strains (Staphylococcus aureus ATCC 25923, Enterococcus faecalis ATCC 29213, Pseudomonas aeruginosa ATCC 27853, Escherichia coli ATCC 25922). P. aeruginosa 5399 clinical strain shows low sensitivity to Norfloxacin in all tested micelle systems. The results suggest that Cremophor EL-Pluronic F127 mixed micelles can be considered as novel controlled release delivery systems for hydrophobic antimicrobial drugs.
Collapse
Affiliation(s)
- Maria Antonia Tănase
- Physical Chemistry Department, University of Bucharest, 030018 Bucharest, Romania; (M.A.T.); (A.R.); (P.O.)
| | - Adina Raducan
- Physical Chemistry Department, University of Bucharest, 030018 Bucharest, Romania; (M.A.T.); (A.R.); (P.O.)
| | - Petruţa Oancea
- Physical Chemistry Department, University of Bucharest, 030018 Bucharest, Romania; (M.A.T.); (A.R.); (P.O.)
| | - Lia Mara Diţu
- Microbiology Department, Faculty of Biology, University of Bucharest, 60101 Bucharest, Romania;
| | - Miruna Stan
- Department of Biochemistry and Molecular Biology, Faculty of Biology, ICUB-Research Institute of the University of Bucharest, University of Bucharest, 050095 Bucharest, Romania;
| | - Cristian Petcu
- National Institute for Research and Development in Chemistry and Petrochemistry-ICECHIM, Polymer Department, 202 Spl. Independentei, 060021 Bucharest, Romania; (C.S.); (C.M.N.); (C.L.N.)
- Correspondence: (C.P.); (L.O.C.)
| | - Cristina Scomoroşcenco
- National Institute for Research and Development in Chemistry and Petrochemistry-ICECHIM, Polymer Department, 202 Spl. Independentei, 060021 Bucharest, Romania; (C.S.); (C.M.N.); (C.L.N.)
| | - Claudia Mihaela Ninciuleanu
- National Institute for Research and Development in Chemistry and Petrochemistry-ICECHIM, Polymer Department, 202 Spl. Independentei, 060021 Bucharest, Romania; (C.S.); (C.M.N.); (C.L.N.)
| | - Cristina Lavinia Nistor
- National Institute for Research and Development in Chemistry and Petrochemistry-ICECHIM, Polymer Department, 202 Spl. Independentei, 060021 Bucharest, Romania; (C.S.); (C.M.N.); (C.L.N.)
| | - Ludmila Otilia Cinteza
- Physical Chemistry Department, University of Bucharest, 030018 Bucharest, Romania; (M.A.T.); (A.R.); (P.O.)
- Correspondence: (C.P.); (L.O.C.)
| |
Collapse
|
38
|
Co-delivery of norfloxacin and tenoxicam in Ag-TiO 2/poly(lactic acid) nanohybrid. Int J Biol Macromol 2021; 180:771-781. [PMID: 33705836 DOI: 10.1016/j.ijbiomac.2021.03.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 03/04/2021] [Accepted: 03/06/2021] [Indexed: 01/21/2023]
Abstract
A nanohybrid formulation of silver‑titanium dioxide nanoparticles/poly(lactic acid) (Ag-TiO2/PLA) was designed for Norfloxacin/Tenoxicam (NOR/TENO) targeted delivery to maximize the bioavailability and minimize the side effects of the drugs. Ag-TiO2 nanoparticles were prepared via Stober method. NOR, TENO and a mixture of NOR/TENO (NT) were loaded onto Ag-TiO2 nanoparticles and coated by PLA via solution casting. The physical interaction between the drugs and carrier was confirmed by Fourier-transform infrared (FTIR) analysis. X-ray diffraction (XRD) demonstrated that Ag-TiO2 consists of a cubic phase of Ag with two phases of TiO2 (anatase and brookite). Ag nanoparticle fine spots coated with TiO2 were collected to form spheres averaging at 100 nm in size. In-vitro release behavior of drugs was studied at different pH (5.4, 7.4) and the release of drug from NT/Ag-TiO2/PLA was faster at pH 7.4. Gram-positive and Gram-negative bacteria were used to investigate antibacterial properties of the nanohybrid. Cytotoxicity of the nanohybrid using an MTT assay was studied against different tumor and normal cell lines. It was found that NT/Ag-TiO2/PLA has an excellent cytotoxic effect against various bacterial cells and tumor cell lines. In addition, antioxidant properties of the nanohybrids were tested using ABTS method and the nanohybrid showed moderate antioxidant activity.
Collapse
|
39
|
Abou Assi R, Abdulbaqi IM, Siok Yee C. The Evaluation of Drug Delivery Nanocarrier Development and Pharmacological Briefing for Metabolic-Associated Fatty Liver Disease (MAFLD): An Update. Pharmaceuticals (Basel) 2021; 14:215. [PMID: 33806527 PMCID: PMC8001129 DOI: 10.3390/ph14030215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/22/2021] [Accepted: 01/27/2021] [Indexed: 12/11/2022] Open
Abstract
Current research indicates that the next silent epidemic will be linked to chronic liver diseases, specifically non-alcoholic fatty liver disease (NAFLD), which was renamed as metabolic-associated fatty liver disease (MAFLD) in 2020. Globally, MAFLD mortality is on the rise. The etiology of MAFLD is multifactorial and still incompletely understood, but includes the accumulation of intrahepatic lipids, alterations in energy metabolism, insulin resistance, and inflammatory processes. The available MAFLD treatment, therefore, relies on improving the patient's lifestyle and multidisciplinary pharmacotherapeutic options, whereas the option of surgery is useless without managing the comorbidities of the MAFLD. Nanotechnology is an emerging approach addressing MAFLD, where nanoformulations are suggested to improve the safety and physicochemical properties of conventional drugs/herbal medicines, physical, chemical, and physiological stability, and liver-targeting properties. A wide variety of liver nanosystems were constructed and delivered to the liver, only those that addressed the MAFLD were discussed in this review in terms of the nanocarrier classes, particle size, shape, zeta potential and offered dissolution rate(s), the suitable preparation method(s), excipients (with synergistic effects), and the suitable drug/compound for loading. The advantages and challenges of each nanocarrier and the focus on potential promising perspectives in the production of MAFLD nanomedicine were also highlighted.
Collapse
Affiliation(s)
- Reem Abou Assi
- Thoughts Formulation Laboratory, Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, University Sains Malaysia, Minden 11800, Penang, Malaysia;
- Discipline of Pharmaceutical Technology, College of Pharmacy, Al-Kitab University, Altun-Kupri, Kirkuk 36001, Iraq;
| | - Ibrahim M. Abdulbaqi
- Discipline of Pharmaceutical Technology, College of Pharmacy, Al-Kitab University, Altun-Kupri, Kirkuk 36001, Iraq;
- Pharmaceutical Design and Simulation (PhDS) Lab, Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, University Sains Malaysia, Minden 11800, Penang, Malaysia
| | - Chan Siok Yee
- Thoughts Formulation Laboratory, Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, University Sains Malaysia, Minden 11800, Penang, Malaysia;
| |
Collapse
|
40
|
Bochicchio S, Lamberti G, Barba AA. Polymer-Lipid Pharmaceutical Nanocarriers: Innovations by New Formulations and Production Technologies. Pharmaceutics 2021; 13:198. [PMID: 33540659 PMCID: PMC7913085 DOI: 10.3390/pharmaceutics13020198] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/24/2021] [Accepted: 01/29/2021] [Indexed: 12/17/2022] Open
Abstract
Some issues in pharmaceutical therapies such as instability, poor membrane permeability, and bioavailability of drugs can be solved by the design of suitable delivery systems based on the combination of two pillar classes of ingredients: polymers and lipids. At the same time, modern technologies are required to overcome production limitations (low productivity, high energy consumption, expensive setup, long process times) to pass at the industrial level. In this paper, a summary of applications of polymeric and lipid materials combined as nanostructures (hybrid nanocarriers) is reported. Then, recent techniques adopted in the production of hybrid nanoparticles are discussed, highlighting limitations still present that hold back the industrial implementation.
Collapse
Affiliation(s)
- Sabrina Bochicchio
- Eng4Life Srl, Spin-Off Accademico, Via Fiorentino, 32, 83100 Avellino, Italy
| | - Gaetano Lamberti
- Eng4Life Srl, Spin-Off Accademico, Via Fiorentino, 32, 83100 Avellino, Italy
- Dipartimento di Ingegneria Industriale, Università Degli Studi di Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Anna Angela Barba
- Eng4Life Srl, Spin-Off Accademico, Via Fiorentino, 32, 83100 Avellino, Italy
- Dipartimento di Farmacia, Università Degli Studi di Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| |
Collapse
|
41
|
Zhou JN, Rautio TC, Liu C, Xu XY, Wang DQ, Guo Y, Eriksson J, Zhang H. Delivery of Protein Kinase A by CRISPRMAX and Its Effects on Breast Cancer Stem-Like Properties. Pharmaceutics 2020; 13:E11. [PMID: 33374889 PMCID: PMC7824330 DOI: 10.3390/pharmaceutics13010011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/14/2020] [Accepted: 12/18/2020] [Indexed: 11/16/2022] Open
Abstract
Protein kinase A (PKA) activation has recently been reported to inhibit epithelial-mesenchymal transition (EMT) and cancer stem cell (CSC) ability, which is considered to be responsible for chemoresistance and tumor recurrence in patients. While current studies mainly focus on gene manipulation of the EMT process, the direct delivery of PKA enzymes to cancer cells has never been investigated. Here, we utilize the commercial Lipofectamine CRISPRMAX reagent to directly deliver PKAs to breast cancer cells and evaluate its effects on EMT regulation. We optimized the delivery parameters with fluorescent-labeled bovine serum albumin, and successfully delivered fluorescent PKAs through CRISPRMAX into breast cancer cells. Then, we evaluated the biological effects by immunofluorescence, flow cytometry, mammosphere assay, and chemoresistance assay. Our data showed the expression of EMT-related markers, α-smooth muscle actin and N-cadherin, was downregulated after CRISPRMAX-PKA treatment. Although the CD44+/CD24- population did not change considerably, the size of mammospheres significantly decreased. In paclitaxel and doxorubicin chemoresistance assays, we noticed PKA delivery significantly inhibited paclitaxel resistance rather than doxorubicin resistance. Taken together, these results suggest our direct enzyme delivery can be a potential strategy for inhibiting EMT/CSC-associated traits, providing a safer approach and having more clinical translational efficacy than gene manipulation. This strategy will also facilitate the direct testing of other target enzymes/proteins on their biological functions.
Collapse
Affiliation(s)
- Jun-Nian Zhou
- Experimental Hematology and Biochemistry Lab, Beijing Institute of Radiation Medicine, Beijing 100850, China;
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, Beijing 100850, China
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, 20520 Turku, Finland; (T.-C.R.); (C.L.); (X.-Y.X.)
- Turku Bioscience Center, University of Turku, 20520 Turku, Finland
- Turku Bioscience Center, Åbo Akademi University, 20520 Turku, Finland
| | - Tzu-Chen Rautio
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, 20520 Turku, Finland; (T.-C.R.); (C.L.); (X.-Y.X.)
- Institute of Biomedicine, Faculty of Medicine, University of Turku, 20520 Turku, Finland
| | - Chang Liu
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, 20520 Turku, Finland; (T.-C.R.); (C.L.); (X.-Y.X.)
- Turku Bioscience Center, University of Turku, 20520 Turku, Finland
- Turku Bioscience Center, Åbo Akademi University, 20520 Turku, Finland
| | - Xiao-Yu Xu
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, 20520 Turku, Finland; (T.-C.R.); (C.L.); (X.-Y.X.)
- Turku Bioscience Center, University of Turku, 20520 Turku, Finland
- Turku Bioscience Center, Åbo Akademi University, 20520 Turku, Finland
| | - Dong-Qing Wang
- Department of Radiology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, China;
| | - Yong Guo
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, 20520 Turku, Finland; (T.-C.R.); (C.L.); (X.-Y.X.)
- Turku Bioscience Center, University of Turku, 20520 Turku, Finland
- Turku Bioscience Center, Åbo Akademi University, 20520 Turku, Finland
- Department of Endocrinology, Key Laboratory of National Health and Family Planning Commission for Male Reproductive Health, National Research Institute for Family Planning, Beijing 100081, China
| | - John Eriksson
- Turku Bioscience Center, University of Turku, 20520 Turku, Finland
- Turku Bioscience Center, Åbo Akademi University, 20520 Turku, Finland
| | - Hongbo Zhang
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, 20520 Turku, Finland; (T.-C.R.); (C.L.); (X.-Y.X.)
- Turku Bioscience Center, University of Turku, 20520 Turku, Finland
- Turku Bioscience Center, Åbo Akademi University, 20520 Turku, Finland
| |
Collapse
|
42
|
Almeida JMFD, Damasceno Júnior E, Silva EMF, Veríssimo LM, Fernandes NS. pH-responsive release system of topiramate transported on silica nanoparticles by melting method. Drug Dev Ind Pharm 2020; 47:126-145. [PMID: 33295812 DOI: 10.1080/03639045.2020.1862171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Incorporating drugs into silica matrices by the melting method can be applied to obtain drug delivery systems because they are governed by electrostatic type interactions, hydrogen bonding and hydrophilic-hydrophobic interactions between the drug and the silica surface. the melting method is an environmentally correct tool since it is free of organic solvent, low cost and with easy execution for the incorporation of drugs in silicas. Drugs delivery systems are very important for improving the treatment of chronic diseases. Topiramate (TPM) is a potent antiepileptic used in high daily doses as it has low bioavailability. In this context, silica nanoparticles (NPS) were used as an inorganic matrix for TPM transport in (in vitro) release studies. The TPM was incorporated into the NPS by hot melt loading employing a new carrier preparation methodology (NPS/TPM) using a thermobalance (by Thermogravimetry-TG) with high temperature control system. The release study using dissolution media simulating gastrointestinal at pH 1.2 (stomach) and 7.4 (intestine), showed that NPS release TPM in a prolonged and pH-responsive manner. The drug was released at intestinal pH ensuring greater absorption, allowing fewer daily doses and less adverse effects. The kinetic study demonstrated the best fit to the zero-order model proving the pH-responsive profile of the developed system.
Collapse
Affiliation(s)
- Janiele Mayara Ferreira de Almeida
- Laboratório de Química Analítica e Meio Ambiente, Instituto de Química, Universidade Federal do Rio Grande do Norte, Campus Universitário Lagoa Nova, Natal-RN, Brasil
| | - Elmar Damasceno Júnior
- Laboratório de Química Analítica e Meio Ambiente, Instituto de Química, Universidade Federal do Rio Grande do Norte, Campus Universitário Lagoa Nova, Natal-RN, Brasil
| | - Elania Maria Fernandes Silva
- Laboratório de Química Analítica e Meio Ambiente, Instituto de Química, Universidade Federal do Rio Grande do Norte, Campus Universitário Lagoa Nova, Natal-RN, Brasil
| | - Lourena Mafra Veríssimo
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal do Rio Grande do Norte, Natal-RN, Brasil
| | - Nedja Suely Fernandes
- Laboratório de Química Analítica e Meio Ambiente, Instituto de Química, Universidade Federal do Rio Grande do Norte, Campus Universitário Lagoa Nova, Natal-RN, Brasil
| |
Collapse
|
43
|
Cardoso Dos Santos M, Silva de Farias B, da Costa Cabrera D, Roberto Sant'Anna Cadaval Junior T, Antonio de Almeida Pinto L, Gonçalves Dal-Bó A, de Lima VR. Physico-chemical interactions of a new rod-coil-rod polymer with liposomal system: Approaches to applications in tryptophan-related therapies. Chem Phys Lipids 2020; 235:105027. [PMID: 33309553 DOI: 10.1016/j.chemphyslip.2020.105027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/30/2020] [Accepted: 12/07/2020] [Indexed: 10/22/2022]
Abstract
This work describes the synthesis of the new supramolecular rod-coil-rod polymer, designated as cholesterol-PEO1000-tryptophan (Chl-PEO-Trp), as well as its effects on the physico-chemical properties of phosphatidylcholine (PC)-based liposomes. The molecular interactions between the Chl-PEO-Trp and PC were characterized by HATR-FTIR, DSC, NMR, DLS and zeta (ζ) potential techniques. The Chl-PEO-Trp polymer yield was 75 %. FTIR and DSC data showed that the motion of almost all PC groups was restricted by the polymer, and it promoted a decrease of the trans-gauche isomerization of the PC methylene, restricting the mobility of the hydrophobic region of the liposomes. NMR analyses indicated a Chl-PEO-Trp-induced restriction in the rotation of the PC phosphorus and a discreet increase of the hydrogen mobility of the choline. Despite this increase in the rotation of the choline, DLS and ζ-potential analyses suggested a reorientation of the choline group toward the system surface, which contributed, along with the other physico-chemical effects, to a globally packed membrane arrangement and reduced liposome size. Data described in this work were correlated to possible applications of the Chl-PEO-Trp in its free or PC liposome-loaded forms in the diagnosis and therapy of cancer, SARS caused by coronaviruses, and central nervous system-related diseases.
Collapse
Affiliation(s)
- Marinalva Cardoso Dos Santos
- Programa de Pós-Graduação em Química Tecnológica e Ambiental, Escola de Química e Alimentos, Universidade Federal do Rio Grande-FURG, Av. Itália km 8 Campus Carreiros, CEP 96201-900, Rio Grande, RS, Brazil
| | - Bruna Silva de Farias
- Programa de Pós-Graduação em Química Tecnológica e Ambiental, Escola de Química e Alimentos, Universidade Federal do Rio Grande-FURG, Av. Itália km 8 Campus Carreiros, CEP 96201-900, Rio Grande, RS, Brazil
| | - Diego da Costa Cabrera
- Programa de Pós-Graduação em Química Tecnológica e Ambiental, Escola de Química e Alimentos, Universidade Federal do Rio Grande-FURG, Av. Itália km 8 Campus Carreiros, CEP 96201-900, Rio Grande, RS, Brazil
| | - Tito Roberto Sant'Anna Cadaval Junior
- Programa de Pós-Graduação em Química Tecnológica e Ambiental, Escola de Química e Alimentos, Universidade Federal do Rio Grande-FURG, Av. Itália km 8 Campus Carreiros, CEP 96201-900, Rio Grande, RS, Brazil
| | - Luiz Antonio de Almeida Pinto
- Programa de Pós-Graduação em Química Tecnológica e Ambiental, Escola de Química e Alimentos, Universidade Federal do Rio Grande-FURG, Av. Itália km 8 Campus Carreiros, CEP 96201-900, Rio Grande, RS, Brazil
| | - Alexandre Gonçalves Dal-Bó
- Universidade do Extremo Sul Catarinense - UNESC, Av. Universitária 1105, CEP 88806-000, Criciúma, SC, Brazil
| | - Vânia Rodrigues de Lima
- Programa de Pós-Graduação em Química Tecnológica e Ambiental, Escola de Química e Alimentos, Universidade Federal do Rio Grande-FURG, Av. Itália km 8 Campus Carreiros, CEP 96201-900, Rio Grande, RS, Brazil.
| |
Collapse
|
44
|
Drug-Loaded Lipid-Core Micelles in Mucoadhesive Films as a Novel Dosage Form for Buccal Administration of Poorly Water-Soluble and Biological Drugs. Pharmaceutics 2020; 12:pharmaceutics12121168. [PMID: 33266132 PMCID: PMC7761273 DOI: 10.3390/pharmaceutics12121168] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/19/2020] [Accepted: 11/24/2020] [Indexed: 11/17/2022] Open
Abstract
The aim of the study was to develop a novel buccal dosage form to transport rhodamine 123 and human insulin as models for poorly water-soluble and biological drugs, using lipid-core micelles (LCMs)-loaded mucoadhesive films. LCMs were synthesized by a low-energy hot emulsification process, yielding spherically shaped, small-sized, monodispersed and negatively charged carriers with high entrapment efficiency. In vitro release studies demonstrated a higher release of insulin rather than rhodamine from LCMs in simulated physiological conditions, due to an initial burst release effect; however, both release profiles are mainly explained by a diffusion mechanism. Furthermore, LCMs-loaded mucoadhesive films were manufactured and preserved with similar mechanical properties and optimal mucoadhesive behavior compared to nonloaded films. Ex vivo permeation experiments using excised porcine buccal epithelium reveal that both rhodamine and insulin-loaded LCM films elicited a significantly enhanced permeation effect compared to LCMs in suspension and free drugs in solution as controls. Hence, LCMs-loaded mucoadhesive films are suitable as buccal dosage form for the transport and delivery of rhodamine 123 and insulin, as models for poorly water-soluble and biological drugs, respectively.
Collapse
|
45
|
Salahuddin N, Gaber M, Mousa M, Abdelwahab MA. Poly(3-hydroxybutyrate)/poly(amine)-coated nickel oxide nanoparticles for norfloxacin delivery: antibacterial and cytotoxicity efficiency. RSC Adv 2020; 10:34046-34058. [PMID: 35519075 PMCID: PMC9056780 DOI: 10.1039/d0ra04784h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 08/24/2020] [Indexed: 12/15/2022] Open
Abstract
Sustained release dosage forms enable prolonged and continuous release of a drug in the gastrointestinal tract for medication characterized by a short half lifetime. In this study, the effect of blending polyamine on poly(3-hydroxybutyrate) (PHB) as a carrier for norfloxacin (NF) was studied. The prepared blend was mixed with different amounts of NiO nanoparticles and characterized using FTIR analysis, X-ray diffraction analysis, thermogravimetric analysis, dynamic light scattering, transmission electron microscopy and scanning electron microscopy. It was found that the drug released from the nanocomposite has a slow rate in comparison with NiO, PHB, and PHB/polyamine blend. The highest ratio of NiO content to the matrix (highest NF loading), leads to a slower rate of drug release. The release from the nanocomposites showed a faster rate at pH = 2 than that at pH = 7.4. The mechanisms of NF adsorption and release were studied on PHB/polyamine-3% NiO nanocomposite. In addition, the antimicrobial efficacy of nanocomposites loaded with the drug was determined and compared with the free drug. Inclusion of NiO into PHB/polyamine showed a higher efficacy against Streptococcus pyogenes and Pseudomonas aeruginosa than the free NF. Moreover, the cytotoxicity of PHB/polyamine-3% NiO against HePG-2 cells was investigated and compared with PHB and PHB/polyamine loaded with the drug. The most efficient IC50 was found for NF@PHB/polyamine-3% NiO (29.67 μg mL-1). No effect on cell proliferation against the normal human cell line (WISH) was observed and IC50 was detected to be 44.95 and 70 μg mL-1 for NiO nanoparticles and the PHB/polyamine-3% NiO nanocomposite, respectively indicating a selectivity of action towards tumor cells coupled with a lack of cytotoxicity towards normal cells.
Collapse
Affiliation(s)
- Nehal Salahuddin
- Chemistry Department, Faculty of Science, Tanta University Tanta 31527 Egypt
| | - Mohamed Gaber
- Chemistry Department, Faculty of Science, Tanta University Tanta 31527 Egypt
| | - Maie Mousa
- Chemistry Department, Faculty of Science, Tanta University Tanta 31527 Egypt
| | | |
Collapse
|
46
|
Ferreira Soares DC, Domingues SC, Viana DB, Tebaldi ML. Polymer-hybrid nanoparticles: Current advances in biomedical applications. Biomed Pharmacother 2020; 131:110695. [PMID: 32920512 DOI: 10.1016/j.biopha.2020.110695] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/05/2020] [Accepted: 08/26/2020] [Indexed: 12/29/2022] Open
Abstract
The unique properties of polymer-hybrid nanosystems enable them to play an important role in different fields such as biomedical applications. Hybrid materials, which are formed by polymer and inorganic- or organic-base systems, have been the focus of many recently published studies whose results have shown outstanding improvements in drug targeting. The development of hybrid polymer materials can avoid the synthesis of new molecules, which is an overall expensive process that can take several years to get to the proper elaboration and approval. Thus, the combination of properties in a single hybrid system can have several advantages over non-hybrid platforms, such as improvements in circulation time, structural disintegration, high stability, premature release, low encapsulation rate and unspecific release kinetics. Thus, the aim of the present review is to outline a rapid and well-oriented scenario concerning the knowledge about polymer-hybrid nanoparticles use in biomedical platforms. Furthermore, the ultimate methodologies adopted in synthesis processes, as well as in applications in vitro/in vivo, are the focus of this review.
Collapse
Affiliation(s)
- Daniel Crístian Ferreira Soares
- Universidade Federal de Itajubá, campus Itabira, Laboratório de Bioengenharia, Rua Irmã Ivone Drumond, 200, Itabira, Minas Gerais, Brazil.
| | - Stephanie Calazans Domingues
- Universidade Federal de Itajubá, campus Itabira, Laboratório de Bioengenharia, Rua Irmã Ivone Drumond, 200, Itabira, Minas Gerais, Brazil
| | - Daniel Bragança Viana
- Universidade Federal de Itajubá, campus Itabira, Laboratório de Bioengenharia, Rua Irmã Ivone Drumond, 200, Itabira, Minas Gerais, Brazil
| | - Marli Luiza Tebaldi
- Universidade Federal de Itajubá, campus Itabira, Laboratório de Bioengenharia, Rua Irmã Ivone Drumond, 200, Itabira, Minas Gerais, Brazil
| |
Collapse
|
47
|
Optimization and characterization of functional cookies with addition of Tinospora cordifolia as a source of bioactive phenolic antioxidants. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109639] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
48
|
Development of Gel-in-Oil Emulsions for Khellin Topical Delivery. Pharmaceutics 2020; 12:pharmaceutics12050398. [PMID: 32357441 PMCID: PMC7284555 DOI: 10.3390/pharmaceutics12050398] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 11/17/2022] Open
Abstract
Hypopigmentation is a progressive dermatological condition caused by a reduction in the skin pigment, melanin. Its treatment is considered a challenge due to the lack of a highly efficient single therapy. Currently, the main treatments include photochemotherapy, application of corticosteroids and immunosuppressants, and laser. Khellin-based gel-in-oil emulsions appear as a promising alternative since they ensure a concentration of the drug, a natural furanochromone, at the desired location, skin surface. Khellin promotes repigmentation as it forms a dark colored complex after solar irradiation. The aim of this study was the development and characterization (e.g., rheological behaviour, droplet size, tackiness, adhesion and spreadability) of three topical gel-in-oil emulsions prepared with different emollients, formulated through a cold emulsification process, and suitable for the incorporation of khellin. In vitro studies were performed to evaluate the drug release and permeation profiles across artificial membranes and excised human skin, respectively, using Franz-type vertical diffusion cells. The W/O emulsions developed showed macroscopic appearance, shear-thinning behavior with a mean droplet size from 3.28 to 4.28 μm, suitable for topical application. In vitro studies revealed permeation values of about 1% of khellin across the stratum corneum, making these gel-in-oil emulsions promising for preclinical and clinical studies. The cold process, being an easy and low energy production method, represents an innovative strategy to produce khellin-based gel-in-oil emulsions to treat patients with hypopigmentation.
Collapse
|
49
|
Yeh YC, Huang TH, Yang SC, Chen CC, Fang JY. Nano-Based Drug Delivery or Targeting to Eradicate Bacteria for Infection Mitigation: A Review of Recent Advances. Front Chem 2020; 8:286. [PMID: 32391321 PMCID: PMC7193053 DOI: 10.3389/fchem.2020.00286] [Citation(s) in RCA: 191] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/23/2020] [Indexed: 12/14/2022] Open
Abstract
Pathogenic bacteria infection is a major public health problem due to the high morbidity and mortality rates, as well as the increased expenditure on patient management. Although there are several options for antimicrobial therapy, their efficacy is limited because of the occurrence of drug-resistant bacteria. Many conventional antibiotics have failed to show significant amelioration in overall survival of infectious patients. Nanomedicine for delivering antibiotics provides an opportunity to improve the efficiency of the antibacterial regimen. Nanosystems used for antibiotic delivery and targeting to infection sites render some benefits over conventional formulations, including increased solubility, enhanced stability, improved epithelium permeability and bioavailability, prolonged antibiotic half-life, tissue targeting, and minimal adverse effects. The nanocarriers' sophisticated material engineering tailors the controllable physicochemical properties of the nanoparticles for bacterial targeting through passive or active targeting. In this review, we highlight the recent progress on the development of antibacterial nanoparticles loaded with antibiotics. We systematically introduce the concepts and amelioration mechanisms of the nanomedical techniques for bacterial eradication. Passive targeting by modulating the nanoparticle structure and the physicochemical properties is an option for efficient drug delivery to the bacteria. In addition, active targeting, such as magnetic hyperthermia induced by iron oxide nanoparticles, is another efficient way to deliver the drugs to the targeted site. The nanoparticles are also designed to respond to the change in environment pH or enzymes to trigger the release of the antibiotics. This article offers an overview of the benefits of antibacterial nanosystems for treating infectious diseases.
Collapse
Affiliation(s)
- Yuan-Chieh Yeh
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Keelung City, Taiwan
- Program in Molecular Medicine, School of Life Sciences, National Yang Ming University, Taipei, Taiwan
| | - Tse-Hung Huang
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Keelung City, Taiwan
- School of Traditional Chinese Medicine, Chang Gung University, Taoyuan City, Taiwan
- Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan City, Taiwan
- School of Nursing, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| | - Shih-Chun Yang
- Department of Cosmetic Science, Providence University, Taichung City, Taiwan
| | - Chin-Chang Chen
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Keelung City, Taiwan
- Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan City, Taiwan
| | - Jia-You Fang
- Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan City, Taiwan
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Taoyuan City, Taiwan
- Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan City, Taiwan
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| |
Collapse
|
50
|
Jin A, Wang Y, Lin K, Jiang L. Nanoparticles modified by polydopamine: Working as "drug" carriers. Bioact Mater 2020; 5:522-541. [PMID: 32322763 PMCID: PMC7170807 DOI: 10.1016/j.bioactmat.2020.04.003] [Citation(s) in RCA: 178] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/18/2020] [Accepted: 04/03/2020] [Indexed: 12/17/2022] Open
Abstract
Inspired by the mechanism of mussel adhesion, polydopamine (PDA), a versatile polymer for surface modification has been discovered. Owing to its unique properties like extraordinary adhesiveness, excellent biocompatibility, mild synthesis requirements, as well as distinctive drug loading approach, strong photothermal conversion capacity and reactive oxygen species (ROS) scavenging facility, various PDA-modified nanoparticles have been desired as drug carriers. These nanoparticles with diverse nanostructures are exploited in multifunctions, consisting of targeting, imaging, chemical treatment (CT), photodynamic therapy (PDT), photothermal therapy (PTT), tissue regeneration ability, therefore have attracted great attentions in plenty biomedical applications. Herein, recent progress of PDA-modified nanoparticle drug carriers in cancer therapy, antibiosis, prevention of inflammation, theranostics, vaccine delivery and adjuvant, tissue repair and implant materials are reviewed, including preparation of PDA-modified nanoparticle drug carriers with various nanostructures and their drug loading strategies, basic roles of PDA surface modification, etc. The advantages of PDA modification in overcoming the existing limitations of cancer therapy, antibiosis, tissue repair and the developing trends in the future of PDA-modified nanoparticle drug carriers are also discussed. Multifunctional PDA-modified drug systems are introduced in terms of classification, synthesis and drug loading strategies. Basic roles of PDA surface modification in the drug systems are discussed. Biomedical applications and unique advantages of the PDA-modified nanoparticle working as drug carriers are illustrated. Challenges and perspectives for future development are proposed.
Collapse
Affiliation(s)
- Anting Jin
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, PR China
| | - Yitong Wang
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, PR China
| | - Kaili Lin
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, PR China
| | - Lingyong Jiang
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, PR China
| |
Collapse
|