1
|
Liu A, Qin Y, Dai J, Song F, Tian Y, Zheng Y, Wen P. Fabrication and performance of Zinc-based biodegradable metals: From conventional processes to laser powder bed fusion. Bioact Mater 2024; 41:312-335. [PMID: 39161793 PMCID: PMC11331728 DOI: 10.1016/j.bioactmat.2024.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/25/2024] [Accepted: 07/15/2024] [Indexed: 08/21/2024] Open
Abstract
Zinc (Zn)-based biodegradable metals (BMs) fabricated through conventional manufacturing methods exhibit adequate mechanical strength, moderate degradation behavior, acceptable biocompatibility, and bioactive functions. Consequently, they are recognized as a new generation of bioactive metals and show promise in several applications. However, conventional manufacturing processes face formidable limitations for the fabrication of customized implants, such as porous scaffolds for tissue engineering, which are future direction towards precise medicine. As a metal additive manufacturing technology, laser powder bed fusion (L-PBF) has the advantages of design freedom and formation precision by using fine powder particles to reliably fabricate metallic implants with customized structures according to patient-specific needs. The combination of Zn-based BMs and L-PBF has become a prominent research focus in the fields of biomaterials as well as biofabrication. Substantial progresses have been made in this interdisciplinary field recently. This work reviewed the current research status of Zn-based BMs manufactured by L-PBF, covering critical issues including powder particles, structure design, processing optimization, chemical compositions, surface modification, microstructure, mechanical properties, degradation behaviors, biocompatibility, and bioactive functions, and meanwhile clarified the influence mechanism of powder particle composition, structure design, and surface modification on the biodegradable performance of L-PBF Zn-based BM implants. Eventually, it was closed with the future perspectives of L-PBF of Zn-based BMs, putting forward based on state-of-the-art development and practical clinical needs.
Collapse
Affiliation(s)
- Aobo Liu
- State Key Laboratory of Clean and Efficient Turbomachinery Power Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yu Qin
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Jiabao Dai
- State Key Laboratory of Clean and Efficient Turbomachinery Power Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Fei Song
- Department of Orthopedics, Beijing Tsinghua Changgung Hospital, Beijing, 102218, China
| | - Yun Tian
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
| | - Yufeng Zheng
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Peng Wen
- State Key Laboratory of Clean and Efficient Turbomachinery Power Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
2
|
Ma L, Li H. Study on the Synergistic Effects of Cu and Sr on Biodegradable Zn Alloys. ACS APPLIED MATERIALS & INTERFACES 2024; 16:52116-52129. [PMID: 39298545 DOI: 10.1021/acsami.4c13841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Bone defect repair and postoperative infections are among the most challenging issues faced by orthopedic surgeons. Thus, the antibacterial agent Cu and the osteogenic promoter Sr have been widely incorporated into biodegradable alloys separately. However, to the best of our knowledge, the synergistic effects of Cu and Sr on zinc alloys have not been investigated. Therefore, we have developed a series of novel Zn-4Cu-xSr (x = 0.05, 0.1, and 0.3 wt %) alloys. Our results showed that the addition of Cu and Sr significantly increased the strength of pure zinc while maintaining a certain level of ductility. Plastic deformation further enhanced the strength and ductility of the alloys. The tensile strength of HR Zn-4Cu-xSr alloys remains between 233.34 ± 1.31 MPa and 235.81 ± 3.0 MPa, with elongation values ranging from 45.7 ± 1.56% to 49.6 ± 6.22%. The HE Zn-4Cu-0.05Sr alloy exhibits a high elongation of 95.05 ± 11.1%. Furthermore, the HE Zn-4Cu-0.1Sr alloy demonstrates the best overall mechanical performance with ultimate tensile strength (σuts), yield strength (σys), and elongation (ε) values of 252.73 ± 0.12 MPa, 181.0 ± 0.79 MPa, and 42.8 ± 1.13%, respectively. The corrosion rate of HE Zn-4Cu-xSr alloys increases with an increase in Sr content. All samples exhibit satisfactory cytocompatibility with the cells displaying a healthy spindle-like morphology. In vitro antibacterial tests show that the HE Zn-4Cu-xSr alloys exhibit significant antibacterial effects against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli), with the antibacterial properties strengthening as the Sr content increases. Therefore, this study demonstrates the tremendous potential application of Zn-4Cu-xSr alloys in biodegradable zinc alloys for bone fracture fixation and repair.
Collapse
Affiliation(s)
- Luqing Ma
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Huafang Li
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
3
|
Cao B, Da X, Wu W, Xie J, Li X, Wang X, Xu H, Gao J, Yang H, Su J. Multifunctional human serum albumin-crosslinked and self-assembling nanoparticles for therapy of periodontitis by anti-oxidation, anti-inflammation and osteogenesis. Mater Today Bio 2024; 28:101163. [PMID: 39183771 PMCID: PMC11341939 DOI: 10.1016/j.mtbio.2024.101163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/02/2024] [Accepted: 07/18/2024] [Indexed: 08/27/2024] Open
Abstract
Periodontitis is a chronic inflammatory disease that can result in the irreversible loss of tooth-supporting tissues and elevate the likelihood and intensity of systemic diseases. The presence of reactive oxygen species (ROS) and associated related oxidative stress is intricately linked to the progression and severity of periodontal inflammation. Targeted removal of local ROS may serve to attenuate inflammation, improve the unfavorable periodontal microenvironment and potentially reverse ensuing pathological cascades. These ROS scavenging nanoparticles, which possess additional characteristics such as anti-inflammation and osteogenic differentiation, are highly sought after for the treatment of periodontitis. In this study, negative charged human serum albumin-crosslinked manganese-doped self-assembling Prussian blue nanoparticles (HSA-MDSPB NPs) were fabricated. These nanoparticles demonstrate the ability to scavenge multiple ROS including superoxide anion, free hydroxyl radicals, singlet oxygen and hydrogen peroxide. Additionally, HSA-MDSPB NPs exhibit the capacity to alleviate inflammation in gingiva and alveolar bone both in vitro and in vivo. Furthermore, HSA-MDSPB NPs have been shown to play a role in promoting the polarization of macrophages from the M1 to M2 phenotype, resulting in reduced production of pro-inflammatory cytokines. More attractively, HSA-MDSPB NPs have been demonstrated to enhance cellular osteogenic differentiation. These properties of HSA-MDSPB NPs contribute to decreased inflammation, extracellular matrix degradation and bone loss in periodontal tissue. In conclusion, the multifunctional nature of HSA-MDSPB NPs provides a promising therapeutic approach for the treatment of periodontitis.
Collapse
Affiliation(s)
- Bangping Cao
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Prosthodontics, Stomatological Hospital and Dental School, Tongji University, Shanghai, China
| | - Xuanbo Da
- Department of General Surgery, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710000, China
| | - Wenjing Wu
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Prosthodontics, Stomatological Hospital and Dental School, Tongji University, Shanghai, China
| | - Jian Xie
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Prosthodontics, Stomatological Hospital and Dental School, Tongji University, Shanghai, China
| | - Xuejing Li
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Prosthodontics, Stomatological Hospital and Dental School, Tongji University, Shanghai, China
| | - Xin Wang
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Prosthodontics, Stomatological Hospital and Dental School, Tongji University, Shanghai, China
| | - Hui Xu
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Prosthodontics, Stomatological Hospital and Dental School, Tongji University, Shanghai, China
| | - Jianfang Gao
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Prosthodontics, Stomatological Hospital and Dental School, Tongji University, Shanghai, China
| | - Hui Yang
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Prosthodontics, Stomatological Hospital and Dental School, Tongji University, Shanghai, China
| | - Jiansheng Su
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Prosthodontics, Stomatological Hospital and Dental School, Tongji University, Shanghai, China
| |
Collapse
|
4
|
Chen X, Sun Z, Peng X, Meng N, Ma L, Fu J, Chen J, Liu Y, Yang Y, Zhou C. Graphene Oxide/Black Phosphorus Functionalized Collagen Scaffolds with Enhanced Near-Infrared Controlled In Situ Biomineralization for Promoting Infectious Bone Defect Repair through PI3K/Akt Pathway. ACS APPLIED MATERIALS & INTERFACES 2024; 16:50369-50388. [PMID: 39264653 PMCID: PMC11441399 DOI: 10.1021/acsami.4c10284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Infectious bone defects resulting from surgery, infection, or trauma are a prevalent clinical issue. Current treatments commonly used include systemic antibiotics and autografts or allografts. Nevertheless, therapies come with various disadvantages, including multidrug-resistant bacteria, complications arising from the donor site, and immune rejection, which makes artificial implants desirable. However, artificial implants can fail due to bacterial infections and inadequate bone fusion after implantation. Thus, the development of multifunctional bone substitutes that are biocompatible, antibacterial, osteoconductive, and osteoinductive would be of great clinical importance. This study designs and prepares 2D graphene oxide (GO) and black phosphorus (BP) reinforced porous collagen (Col) scaffolds as a viable strategy for treating infectious bone defects. The fabricated Col-GO@BP scaffold exhibited an efficient photothermal antibacterial effect under near-infrared (NIR) irradiation. A further benefit of the NIR-controlled degradation of BP was to promote biomineralization by phosphorus-driven and calcium-extracted phosphorus in situ. The abundant functional groups in GO could synergistically capture the ions and enhance the in situ biomineralization. The Col-GO@BP scaffold facilitated osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSC) by leveraging its mild photothermal effect and biomineralization process, which upregulated heat shock proteins (HSPs) and activated PI3K/Akt pathways. Additionally, systematic in vivo experiments demonstrated that the Col-GO@BP scaffold obviously promotes infectious bone repair through admirable photothermal antibacterial performance and enhanced vascularization. As a result of this study, we provide new insights into the photothermal activity of GO@BP nanosheets, their degradation, and a new biological application for them.
Collapse
Affiliation(s)
- Xiangru Chen
- Department of Plastic Surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan 430060, China
| | - Zhiwei Sun
- Department of Plastic Surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan 430060, China
| | - Ximing Peng
- Department of Plastic Surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan 430060, China
| | - Na Meng
- Department of Cardiovascular Medicine, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan 430060, China
| | - Liya Ma
- The Centre of Analysis and Measurement of Wuhan University, Wuhan University, Wuhan 430072, PR China
| | - Jie Fu
- Department of Plastic Surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan 430060, China
| | - Junwei Chen
- Department of Plastic Surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan 430060, China
| | - Yuanhang Liu
- Department of Plastic Surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan 430060, China
| | - Yanqing Yang
- Department of Plastic Surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan 430060, China
| | - Chuchao Zhou
- Department of Plastic Surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan 430060, China
| |
Collapse
|
5
|
Rao J, Gao H, Sun J, Yu R, Zhao D, Ding Y. A Critical Review of Biodegradable Zinc Alloys toward Clinical Applications. ACS Biomater Sci Eng 2024; 10:5454-5473. [PMID: 39082869 DOI: 10.1021/acsbiomaterials.4c00210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
Biodegradable zinc (Zn) alloys stand out as promising contenders for biomedical applications due to their favorable mechanical properties and appropriate degradation rates, offering the potential to mitigate the risks and expenses associated with secondary surgeries. While current research predominantly centers on the in vitro examination of Zn alloys, notable disparities often emerge between in vivo and in vitro findings. Consequently, conducting in vivo investigations on Zn alloys holds paramount significance in advancing their clinical application. Different element compositions and processing methods decide the mechanical properties and biological performance of Zn alloys, thus affecting their suitability for specific medical applications. This paper presents a comprehensive overview of recent strides in the development of biodegradable Zn alloys, with a focus on key aspects such as mechanical properties, toxicity, animal experiments, biological properties, and molecular mechanisms. By summarizing these advancements, the paper aims to broaden the scope of research directions and enhance the understanding of the clinical applications of biodegradable Zn alloys.
Collapse
Affiliation(s)
- Jiahui Rao
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Hairui Gao
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jiwei Sun
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Ran Yu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Danlei Zhao
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Yumei Ding
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| |
Collapse
|
6
|
Xu J, Bao G, Jia B, Wang M, Wen P, Kan T, Zhang S, Liu A, Tang H, Yang H, Yue B, Dai K, Zheng Y, Qu X. An adaptive biodegradable zinc alloy with bidirectional regulation of bone homeostasis for treating fractures and aged bone defects. Bioact Mater 2024; 38:207-224. [PMID: 38756201 PMCID: PMC11096722 DOI: 10.1016/j.bioactmat.2024.04.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/23/2024] [Accepted: 04/23/2024] [Indexed: 05/18/2024] Open
Abstract
Healing of fractures or bone defects is significantly hindered by overactivated osteoclasts and inhibited osteogenesis in patients with abnormal bone metabolism. Current clinical approaches using titanium alloys or stainless steel provide mechanical support but have no biological effects on bone regeneration. Therefore, designing and fabricating degradable metal materials with sufficient mechanical strength and bidirectional regulation of both osteoblasts and osteoclasts is a substantial challenge. Here, this study first reported an adaptive biodegradable Zn-0.8 Mg alloy with bidirectional regulation of bone homeostasis, which promotes osteogenic differentiation by activating the Pi3k/Akt pathway and inhibits osteoclast differentiation by inhibiting the GRB2/ERK pathway. The anti-osteolytic ability of the Zn-0.8 Mg alloy was verified in a mouse calvarial osteolysis model and its suitability for internal fracture fixation with high-strength screws was confirmed in the rabbit femoral condyle fracture model. Furthermore, in an aged postmenopausal rat femoral condyle defect model, 3D printed Zn-0.8 Mg scaffolds promoted excellent bone regeneration through adaptive structures with good mechanical properties and bidirectionally regulated bone metabolism, enabling personalized bone defect repair. These findings demonstrate the substantial potential of the Zn-0.8 Mg alloy for treating fractures or bone defects in patients with aberrant bone metabolism.
Collapse
Affiliation(s)
- Jialian Xu
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200001, China
| | - Guo Bao
- Laboratory Animal centre, National Research Institute for Family Planning, Beijing, 100081, China
| | - Bo Jia
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200001, China
| | - Minqi Wang
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200001, China
| | - Peng Wen
- Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Tianyou Kan
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200001, China
| | - Shutao Zhang
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200001, China
| | - Aobo Liu
- Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Haozheng Tang
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200001, China
| | - Hongtao Yang
- School of Engineering Medicine, Beihang University, Beijing, 100191, China
| | - Bing Yue
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200001, China
| | - Kerong Dai
- Department of Orthopedics, Shanghai Key Laboratory of Orthopedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yufeng Zheng
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Xinhua Qu
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200001, China
| |
Collapse
|
7
|
Malekmohammadi S, Jamshidi R, Sadowska JM, Meng C, Abeykoon C, Akbari M, Gong RH. Stimuli-Responsive Codelivery System-Embedded Polymeric Nanofibers with Synergistic Effects of Growth Factors and Low-Intensity Pulsed Ultrasound to Enhance Osteogenesis Properties. ACS APPLIED BIO MATERIALS 2024; 7:4293-4306. [PMID: 38917363 PMCID: PMC11253091 DOI: 10.1021/acsabm.4c00111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/21/2024] [Accepted: 06/16/2024] [Indexed: 06/27/2024]
Abstract
The present work aims to develop optimized scaffolds for bone repair by incorporating mesoporous nanoparticles into them, thereby combining bioactive factors for cell growth and preventing rapid release or loss of effectiveness. We synthesized biocompatible and biodegradable scaffolds designed for the controlled codelivery of curcumin (CUR) and recombinant human bone morphogenic protein-2 (rhBMP-2). Active agents in dendritic silica/titania mesoporous nanoparticles (DSTNs) were incorporated at different weight percentages (0, 2, 5, 7, 9, and 10 wt %) into a matrix of polycaprolactone (PCL) and polyethylene glycol (PEG) nanofibers, forming the CUR-BMP-2@DSTNs/PCL-PEG delivery system (S0, S2, S5, S7, S9, and S10, respectively, with the number showing the weight percentage). To enhance the formation process, the system was treated using low-intensity pulsed ultrasound (LIPUS). Different advanced methods were employed to assess the physical, chemical, and mechanical characteristics of the fabricated scaffolds, all confirming that incorporating the nanoparticles improves their mechanical and structural properties. Their hydrophilicity increased by approximately 25%, leading to ca. 53% enhancement in their water absorption capacity. Furthermore, we observed a sustained release of approximately 97% for CUR and 70% for BMP-2 for the S7 (scaffold with 7 wt % DSTNs) over 28 days, which was further enhanced using ultrasound. In vitro studies demonstrated accelerated scaffold biodegradation, with the highest level observed in S7 scaffolds, approximately three times higher than the control group. Moreover, the cell viability and proliferation on DSTNs-containing scaffolds increased when compared to the control group. Overall, our study presents a promising nanocomposite scaffold design with notable improvements in structural, mechanical, and biological properties compared to the control group, along with controlled and sustained drug release capabilities. This makes the scaffold a compelling candidate for advanced bone tissue engineering and regenerative therapies.
Collapse
Affiliation(s)
- Samira Malekmohammadi
- Department
of Materials, Engineering Building A, University
of Manchester, Manchester M13 9PL, U.K.
| | - Rashid Jamshidi
- Department
of Engineering, Manchester Metropolitan
University, Manchester M1 5GD, U.K.
| | - Joanna M. Sadowska
- Advanced
Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin D02 YN77, Ireland
- Tissue
Engineering Research Group, Department of Anatomy & Regenerative
Medicine, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland
| | - Chen Meng
- Department
of Materials, Engineering Building A, University
of Manchester, Manchester M13 9PL, U.K.
| | - Chamil Abeykoon
- Department
of Materials, Engineering Building A, University
of Manchester, Manchester M13 9PL, U.K.
| | - Mohsen Akbari
- Laboratory
for Innovations in Microengineering (LiME), Department of Mechanical
Engineering, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
- Terasaki
Institute for Biomedical Innovations, Los Angeles, California 90024, United States
| | - R. Hugh Gong
- Department
of Materials, Engineering Building A, University
of Manchester, Manchester M13 9PL, U.K.
| |
Collapse
|
8
|
Deng M, Gao F, Liu T, Zhan W, Quan J, Zhao Z, Wu X, Zhong Z, Zheng H, Chu J. T. gondii excretory proteins promote the osteogenic differentiation of human bone mesenchymal stem cells via the BMP/Smad signaling pathway. J Orthop Surg Res 2024; 19:386. [PMID: 38951811 PMCID: PMC11218376 DOI: 10.1186/s13018-024-04839-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 06/05/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND Bone defects, resulting from substantial bone loss that exceeds the natural self-healing capacity, pose significant challenges to current therapeutic approaches due to various limitations. In the quest for alternative therapeutic strategies, bone tissue engineering has emerged as a promising avenue. Notably, excretory proteins from Toxoplasma gondii (TgEP), recognized for their immunogenicity and broad spectrum of biological activities secreted or excreted during the parasite's lifecycle, have been identified as potential facilitators of osteogenic differentiation in human bone marrow mesenchymal stem cells (hBMSCs). Building on our previous findings that TgEP can enhance osteogenic differentiation, this study investigated the molecular mechanisms underlying this effect and assessed its therapeutic potential in vivo. METHODS We determined the optimum concentration of TgEP through cell cytotoxicity and cell proliferation assays. Subsequently, hBMSCs were treated with the appropriate concentration of TgEP. We assessed osteogenic protein markers, including alkaline phosphatase (ALP), Runx2, and Osx, as well as components of the BMP/Smad signaling pathway using quantitative real-time PCR (qRT-PCR), siRNA interference of hBMSCs, Western blot analysis, and other methods. Furthermore, we created a bone defect model in Sprague-Dawley (SD) male rats and filled the defect areas with the GelMa hydrogel, with or without TgEP. Microcomputed tomography (micro-CT) was employed to analyze the bone parameters of defect sites. H&E, Masson and immunohistochemical staining were used to assess the repair conditions of the defect area. RESULTS Our results indicate that TgEP promotes the expression of key osteogenic markers, including ALP, Runx2, and Osx, as well as the activation of Smad1, BMP2, and phosphorylated Smad1/5-crucial elements of the BMP/Smad signaling pathway. Furthermore, in vivo experiments using a bone defect model in rats demonstrated that TgEP markedly promoted bone defect repair. CONCLUSION Our results provide compelling evidence that TgEP facilitates hBMSC osteogenic differentiation through the BMP/Smad signaling pathway, highlighting its potential as a therapeutic approach for bone tissue engineering for bone defect healing.
Collapse
Affiliation(s)
- Mingzhu Deng
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Feifei Gao
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Tianfeng Liu
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Weiqiang Zhan
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Juanhua Quan
- Laboratory of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Ziquan Zhao
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xuyang Wu
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zhuolan Zhong
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Hong Zheng
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
| | - Jiaqi Chu
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
| |
Collapse
|
9
|
Dai S, Liao L, Khan MA, Feng Y, Yao W, Li J. Development and characterization of Zn xCu yTi zMo alloys for biomedical applications: A high-throughput gradient continuous casting approach. Acta Biomater 2024; 182:126-138. [PMID: 38735374 DOI: 10.1016/j.actbio.2024.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/05/2024] [Accepted: 05/07/2024] [Indexed: 05/14/2024]
Abstract
The limited mechanical properties of pure Zn, such as its low strength and ductility, hinder its application as a material for biodegradable implants. Addressing this challenge, the current study focuses on the development of biodegradable Zn-based alloys, employing innovative alloy design and processing strategies. Here, alloys with compositions ranging from 0.02 to 0.10 weight percent (wt%) Cu, 1.22 to 1.80 wt% Ti, and 0.04 to 0.06 wt% Mo were produced utilizing a high-throughput gradient continuous casting process. This study highlights three specific alloys: Zn1.82Cu0.10Ti0.05Mo (HR8), Zn0.08Cu1.86Ti0Mo (HR7), and Zn1.26Cu0.13Ti0.06Mo (HR6), which were extensively evaluated for their microstructure, mechanical properties, electrochemical performance, potential as bioimplants, and cytotoxicity. These alloys were found to exhibit enhanced mechanical strength, optimal degradation rates, and superior biocompatibility, evidenced by in-vivo experiments with SD rats, positioning them as promising candidates for medical implants. This research not only introduces a significant advancement in biodegradable alloy development but also proposes an efficient method for their production, marking a pivotal step forward in biomedical engineering. STATEMENT OF SIGNIFICANCE: The limited mechanical properties of pure Zn have hindered its application in biodegradable implants. Our research primarily focuses on the alloy design and process strategies of biodegradable Zn-based alloys. We explore the ZnCuxTixMox alloys. This study introduces a high-throughput experimental approach for efficient screening of multi-component alloy systems with optimal properties. The ZnCuxTixMox alloys were designed and processed through gradient continuous casting, followed by homogenization and hot rolling. Our findings indicate that the Zn1.82Cu0.10Ti0.05Mo alloy demonstrates superior tensile, mechanical, and corrosion properties post hot rolling. The study suggests that Zn0.13Cu1.26Ti0.06Mo, Zn0.08Cu1.86Ti0Mo, and Zn1.82Cu0.10Ti0.05Mo alloys hold significant potential as biodegradable materials.
Collapse
Affiliation(s)
- Shang Dai
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Luhai Liao
- School of Materials Science and Engineering, Hubei University of Automotive Technology, Shiyan 442002, China
| | - Muhammad Abubaker Khan
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yun Feng
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Weili Yao
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jingyuan Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
10
|
Zhang B, Pei Z, He W, Feng W, Hao T, Sun M, Yang X, Wang X, Kong X, Chang J, Liu G, Bai R, Wang C, Zheng F. 3D-printed porous zinc scaffold combined with bioactive serum exosomes promotes bone defect repair in rabbit radius. Aging (Albany NY) 2024; 16:9625-9648. [PMID: 38829771 PMCID: PMC11210218 DOI: 10.18632/aging.205891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 04/25/2024] [Indexed: 06/05/2024]
Abstract
Currently, the repair of large bone defects still faces numerous challenges, with the most crucial being the lack of large bone grafts with good osteogenic properties. In this study, a novel bone repair implant (degradable porous zinc scaffold/BF Exo composite implant) was developed by utilizing laser melting rapid prototyping 3D printing technology to fabricate a porous zinc scaffold, combining it under vacuum conditions with highly bioactive serum exosomes (BF EXO) and Poloxamer 407 thermosensitive hydrogel. The electron microscope revealed the presence of tea saucer-shaped exosomes with a double-layered membrane structure, ranging in diameter from 30-150 nm, with an average size of 86.3 nm and a concentration of 3.28E+09 particles/mL. In vitro experiments demonstrated that the zinc scaffold displayed no significant cytotoxicity, and loading exosomes enhanced the zinc scaffold's ability to promote osteogenic cell activity while inhibiting osteoclast activity. In vivo experiments on rabbits indicated that the hepatic and renal toxicity of the zinc scaffold decreased over time, and the loading of exosomes alleviated the hepatic and renal toxic effects of the zinc scaffold. Throughout various stages of repairing radial bone defects in rabbits, loading exosomes reinforced the zinc scaffold's capacity to enhance osteogenic cell activity, suppress osteoclast activity, and promote angiogenesis. This effect may be attributed to BF Exo's regulation of p38/STAT1 signaling. This study signifies that the combined treatment of degradable porous zinc scaffolds and BF Exo is an effective and biocompatible strategy for bone defect repair therapy.
Collapse
Affiliation(s)
- Baoxin Zhang
- Department of Orthopedic Surgery, Suzhou Medical College of Soochow University, Suzhou 215000, Jiangsu, China
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China
| | - Zhiwei Pei
- Graduate School of Inner Mongolia Medical University, Hohhot 010050, China
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China
| | - Wanxiong He
- Graduate School of Inner Mongolia Medical University, Hohhot 010050, China
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China
| | - Wei Feng
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China
| | - Ting Hao
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China
| | - Mingqi Sun
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China
| | - Xiaolong Yang
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China
| | - Xing Wang
- Department of Orthopedic Surgery, Bayannur City Hospital, Bayannur 015000, China
| | - Xiangyu Kong
- Graduate School of Inner Mongolia Medical University, Hohhot 010050, China
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China
| | - Jiale Chang
- Graduate School of Inner Mongolia Medical University, Hohhot 010050, China
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China
| | - Guanghui Liu
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China
| | - Rui Bai
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China
| | - Chang Wang
- Department of Biomaterials Research Center, Shaanxi Key Laboratory of Biomedical Metallic Materials, Northwest Institute for Non-ferrous Metal Research, Shaanxi 710016, Xi’an, China
| | - Feng Zheng
- Department of Orthopedic Surgery, Suzhou Medical College of Soochow University, Suzhou 215000, Jiangsu, China
- Department of Orthopedic Surgery, Qinghai Provincial People’s Hospital, Xining 810000, Qinghai, China
| |
Collapse
|
11
|
Mao Z, Bi X, Yu C, Chen L, Shen J, Huang Y, Wu Z, Qi H, Guan J, Shu X, Yu B, Zheng Y. Mechanically robust and personalized silk fibroin-magnesium composite scaffolds with water-responsive shape-memory for irregular bone regeneration. Nat Commun 2024; 15:4160. [PMID: 38755128 PMCID: PMC11099135 DOI: 10.1038/s41467-024-48417-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 04/30/2024] [Indexed: 05/18/2024] Open
Abstract
The regeneration of critical-size bone defects, especially those with irregular shapes, remains a clinical challenge. Various biomaterials have been developed to enhance bone regeneration, but the limitations on the shape-adaptive capacity, the complexity of clinical operation, and the unsatisfied osteogenic bioactivity have greatly restricted their clinical application. In this work, we construct a mechanically robust, tailorable and water-responsive shape-memory silk fibroin/magnesium (SF/MgO) composite scaffold, which is able to quickly match irregular defects by simple trimming, thus leading to good interface integration. We demonstrate that the SF/MgO scaffold exhibits excellent mechanical stability and structure retention during the degradative process with the potential for supporting ability in defective areas. This scaffold further promotes the proliferation, adhesion and migration of osteoblasts and the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) in vitro. With suitable MgO content, the scaffold exhibits good histocompatibility, low foreign-body reactions (FBRs), significant ectopic mineralisation and angiogenesis. Skull defect experiments on male rats demonstrate that the cell-free SF/MgO scaffold markedly enhances bone regeneration of cranial defects. Taken together, the mechanically robust, personalised and bioactive scaffold with water-responsive shape-memory may be a promising biomaterial for clinical-size and irregular bone defect regeneration.
Collapse
Affiliation(s)
- Zhinan Mao
- Department of Spine Surgery,Shenzhen Engineering Laboratory of Orthopaedic Regenerative Technologies, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong province, China
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Xuewei Bi
- Department of Spine Surgery,Shenzhen Engineering Laboratory of Orthopaedic Regenerative Technologies, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong province, China
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Chunhao Yu
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Lei Chen
- Beijing Research Institute of Orthopedics and Traumatology, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China
| | - Jie Shen
- Department of Spine Surgery,Shenzhen Engineering Laboratory of Orthopaedic Regenerative Technologies, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong province, China
| | - Yongcan Huang
- Department of Spine Surgery,Shenzhen Engineering Laboratory of Orthopaedic Regenerative Technologies, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong province, China
| | - Zihong Wu
- Technical University of Munich, TUM School of Life Sciences, Maximus-von-Imhof-Forum 2, D-85354, Freising, Germany
| | - Hui Qi
- Beijing Research Institute of Orthopedics and Traumatology, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China
| | - Juan Guan
- International Research Center for Advanced Structural and Biomaterials, School of Materials Science & Engineering, Beihang University, Beijing, 100191, China
| | - Xiong Shu
- Beijing Research Institute of Orthopedics and Traumatology, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China.
| | - Binsheng Yu
- Department of Spine Surgery,Shenzhen Engineering Laboratory of Orthopaedic Regenerative Technologies, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong province, China.
| | - Yufeng Zheng
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
12
|
Zhou P, Liu T, Liu W, Sun L, Kang H, Liu K, Luo P, Wang Y, Luo L, Dai H. An Antibacterial Bionic Periosteum with Angiogenesis-Neurogenesis Coupling Effect for Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38623938 DOI: 10.1021/acsami.4c01206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
The periosteum, rich in neurovascular networks, bone progenitor cells, and stem cells, is vital for bone repair. Current artificial periosteal materials face challenges in mechanical strength, bacterial infection, and promoting osteogenic differentiation and angiogenesis. To address these issues, we adjusted the electrospinning ratio of poly-ε-caprolactone and chitosan and incorporated Zn doping whitlockite with polydopamine coating into a nanofiber membrane. After a series of characterizations, optimal results were achieved with a poly-ε-caprolactone: chitosan ratio of 8:1 and 5% nanoparticle content. In vitro cell experiments and in vivo calvarial defect models, the sustained release of Mg2+ and Ca2+ promoted vascularization and new bone formation, respectively, while the release of Zn2+ was conducive to antibacterial and cooperated with Mg2+ to promote neurovascularization. Consequently, this antibacterial bionic periosteum with an angiogenesis-neurogenesis coupling effect demonstrates a promising potential for bone repair applications.
Collapse
Affiliation(s)
- Peiqian Zhou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Tuozhou Liu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou 511442, China
| | - Wenbin Liu
- Department of Orthopaedics, The Third Xiangya Hospital Central South University, 138 Tongzipo Road, Changsha, Hunan 410008, China
| | - Lingshun Sun
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Haifei Kang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Kun Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Peiyuan Luo
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Youfa Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Ling Luo
- Department of Orthopaedics, The Third Xiangya Hospital Central South University, 138 Tongzipo Road, Changsha, Hunan 410008, China
| | - Honglian Dai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
- National Energy Key Laboratory for New Hydrogen-Ammonia Energy Technologies, Foshan Xianhu Laboratory, Foshan 528200, China
| |
Collapse
|
13
|
Li S, Yang H, Qu X, Qin Y, Liu A, Bao G, Huang H, Sun C, Dai J, Tan J, Shi J, Guan Y, Pan W, Gu X, Jia B, Wen P, Wang X, Zheng Y. Multiscale architecture design of 3D printed biodegradable Zn-based porous scaffolds for immunomodulatory osteogenesis. Nat Commun 2024; 15:3131. [PMID: 38605012 PMCID: PMC11009309 DOI: 10.1038/s41467-024-47189-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/25/2024] [Indexed: 04/13/2024] Open
Abstract
Reconciling the dilemma between rapid degradation and overdose toxicity is challenging in biodegradable materials when shifting from bulk to porous materials. Here, we achieve significant bone ingrowth into Zn-based porous scaffolds with 90% porosity via osteoinmunomodulation. At microscale, an alloy incorporating 0.8 wt% Li is employed to create a eutectoid lamellar structure featuring the LiZn4 and Zn phases. This microstructure optimally balances high strength with immunomodulation effects. At mesoscale, surface pattern with nanoscale roughness facilitates filopodia formation and macrophage spreading. At macroscale, the isotropic minimal surface G unit exhibits a proper degradation rate with more uniform feature compared to the anisotropic BCC unit. In vivo, the G scaffold demonstrates a heightened efficiency in promoting macrophage polarization toward an anti-inflammatory phenotype, subsequently leading to significantly elevated osteogenic markers, increased collagen deposition, and enhanced new bone formation. In vitro, transcriptomic analysis reveals the activation of JAK/STAT pathways in macrophages via up regulating the expression of Il-4, Il-10, subsequently promoting osteogenesis.
Collapse
Affiliation(s)
- Shuang Li
- School of Engineering Medicine, School of Biological Science and Medical Engineering, Beihang University, 100191, Beijing, China
| | - Hongtao Yang
- School of Engineering Medicine, School of Biological Science and Medical Engineering, Beihang University, 100191, Beijing, China.
- School of Materials Science and Engineering, Peking University, 100871, Beijing, China.
| | - Xinhua Qu
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 200001, Shanghai, China
| | - Yu Qin
- School of Materials Science and Engineering, Peking University, 100871, Beijing, China
| | - Aobo Liu
- Department of Mechanical Engineering, Tsinghua University, 100084, Beijing, China
| | - Guo Bao
- Department of Reproduction and Physiology National Research Institute for Family Planning, 100081, Beijing, China
| | - He Huang
- School of Materials Science and Engineering, Zhengzhou University, 450003, Zhengzhou, China
| | - Chaoyang Sun
- School of Engineering Medicine, School of Biological Science and Medical Engineering, Beihang University, 100191, Beijing, China
| | - Jiabao Dai
- Department of Mechanical Engineering, Tsinghua University, 100084, Beijing, China
| | - Junlong Tan
- School of Engineering Medicine, School of Biological Science and Medical Engineering, Beihang University, 100191, Beijing, China
| | - Jiahui Shi
- School of Materials Science and Engineering, Peking University, 100871, Beijing, China
| | - Yan Guan
- College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, China
| | - Wei Pan
- College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, China
| | - Xuenan Gu
- School of Engineering Medicine, School of Biological Science and Medical Engineering, Beihang University, 100191, Beijing, China
| | - Bo Jia
- Department of Mechanical Engineering, Tsinghua University, 100084, Beijing, China
| | - Peng Wen
- Department of Mechanical Engineering, Tsinghua University, 100084, Beijing, China.
| | - Xiaogang Wang
- School of Engineering Medicine, School of Biological Science and Medical Engineering, Beihang University, 100191, Beijing, China.
| | - Yufeng Zheng
- School of Materials Science and Engineering, Peking University, 100871, Beijing, China.
| |
Collapse
|
14
|
Han Y, Tong X, Zhou R, Wang Y, Chen Y, Chen L, Hong X, Wu L, Lin Z, Zhang Y, Zhang X, Hu C, Li B, Ping Y, Cao Z, Ye Z, Song Z, Li Y, Wen C, Zhou Y, Lin J, Huang S. Biodegradable Zn-5Dy Alloy with Enhanced Osteo/Angio-Genic Activity and Osteointegration Effect via Regulation of SIRT4-Dependent Mitochondrial Function. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307812. [PMID: 38243646 PMCID: PMC10987155 DOI: 10.1002/advs.202307812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/30/2023] [Indexed: 01/21/2024]
Abstract
Zinc (Zn)-dysprosium (Dy) binary alloys are promising biodegradable bone fracture fixation implants owing to their attractive biodegradability and mechanical properties. However, their clinical application is a challenge for bone fracture healing, due to the lack of Zn-Dy alloys with tailored proper bio-mechanical and osteointegration properties for bone regeneration. A Zn-5Dy alloy with high strength and ductility and a degradation rate aligned with the bone remodeling cycle is developed. Here, mechanical stability is further confirmed, proving that Zn-5Dy alloy can resist aging in the degradation process, thus meeting the mechanical requirements of fracture fixation. In vitro cellular experiments reveal that the Zn-5Dy alloy enhances osteogenesis and angiogenesis by elevating SIRT4-mediated mitochondrial function. In vivo Micro-CT, SEM-EDS, and immunohistochemistry analyses further indicate good biosafety, suitable biodegradation rate, and great osteointegration of Zn-5Dy alloy during bone healing, which also depends on the upregulation of SIRT4-mediated mitochondrial events. Overall, the study is the first to report a Zn-5Dy alloy that exerts remarkable osteointegration properties and has a strong potential to promote bone healing. Furthermore, the results highlight the importance of mitochondrial modulation and shall guide the future development of mitochondria-targeting materials in enhancing bone fracture healing.
Collapse
Affiliation(s)
- Yue Han
- Institute of StomatologySchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| | - Xian Tong
- Institute of StomatologySchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| | - Runqi Zhou
- Institute of StomatologySchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| | - Yilin Wang
- Institute of StomatologySchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| | - Yuge Chen
- Institute of StomatologySchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
- Department of DentistryFaculty of Medicine and DentistryUniversity of AlbertaEdmontonT6G2R3Canada
| | - Liang Chen
- Institute of StomatologySchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| | - Xinhua Hong
- Institute of StomatologySchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| | - Linmei Wu
- Institute of StomatologySchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| | - Zhiqiang Lin
- Institute of StomatologySchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| | - Yichi Zhang
- Institute of StomatologySchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| | - Xuejia Zhang
- Institute of StomatologySchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| | - Chaoming Hu
- Institute of StomatologySchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| | - Bin Li
- Institute of StomatologySchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| | - Yifan Ping
- Institute of StomatologySchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| | - Zelin Cao
- Institute of StomatologySchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| | - Zhou Ye
- Applied Oral Sciences and Community Dental CareFaculty of DentistryUniversity of Hong KongHong Kong999077China
| | - Zhongchen Song
- Department of PeriodontologyNinth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200125China
| | - Yuncang Li
- School of EngineeringRMIT UniversityMelbourneVIC3001Australia
| | - Cuie Wen
- School of EngineeringRMIT UniversityMelbourneVIC3001Australia
| | - Yongsheng Zhou
- Department of ProsthodonticsNational Center for StomatologyNational Engineering Research Center of Oral Biomaterials and Digital Medical DevicesNational Clinical Research Center for Oral DiseaseBeijing Key Laboratory of Digital StomatologyResearch Center of Engineering and Technology for Computerized Dentistry Ministry of HealthPeking University School and Hospital of StomatologyBeijing100081China
| | - Jixing Lin
- Institute of StomatologySchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| | - Shengbin Huang
- Institute of StomatologySchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| |
Collapse
|
15
|
Li P, Dai J, Li Y, Alexander D, Čapek J, Geis-Gerstorfer J, Wan G, Han J, Yu Z, Li A. Zinc based biodegradable metals for bone repair and regeneration: Bioactivity and molecular mechanisms. Mater Today Bio 2024; 25:100932. [PMID: 38298560 PMCID: PMC10826336 DOI: 10.1016/j.mtbio.2023.100932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/12/2023] [Accepted: 12/25/2023] [Indexed: 02/02/2024] Open
Abstract
Bone fractures and critical-size bone defects are significant public health issues, and clinical treatment outcomes are closely related to the intrinsic properties of the utilized implant materials. Zinc (Zn)-based biodegradable metals (BMs) have emerged as promising bioactive materials because of their exceptional biocompatibility, appropriate mechanical properties, and controllable biodegradation. This review summarizes the state of the art in terms of Zn-based metals for bone repair and regeneration, focusing on bridging the gap between biological mechanism and required bioactivity. The molecular mechanism underlying the release of Zn ions from Zn-based BMs in the improvement of bone repair and regeneration is elucidated. By integrating clinical considerations and the specific bioactivity required for implant materials, this review summarizes the current research status of Zn-based internal fixation materials for promoting fracture healing, Zn-based scaffolds for regenerating critical-size bone defects, and Zn-based barrier membranes for reconstituting alveolar bone defects. Considering the significant progress made in the research on Zn-based BMs for potential clinical applications, the challenges and promising research directions are proposed and discussed.
Collapse
Affiliation(s)
- Ping Li
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, South Jiangnan Road No. 366, Guangzhou 510280, China
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
- Department of Prosthodontics, School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Jingtao Dai
- Department of Orthodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, South Jiangnan Road No. 366, Guangzhou 510280, China
| | - Yageng Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Dorothea Alexander
- Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, Osianderstrasse 2-8, Tübingen 72076, Germany
| | - Jaroslav Čapek
- FZU – the Institute of Physics, Czech Academy of Sciences, Na Slovance 1999/2, Prague 8, 18200, Czech Republic
| | - Jürgen Geis-Gerstorfer
- Section Medical Materials Science and Technology, University Hospital Tübingen, Osianderstrasse 2-8, Tübingen 72076, Germany
| | - Guojiang Wan
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Jianmin Han
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Department of Dental Materials, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Zhentao Yu
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou 510632, China
| | - An Li
- Department of Periodontology, Stomatological Hospital, School of Stomatology, Southern Medical University, South Jiangnan Road 366, Guangzhou 510280, China
| |
Collapse
|
16
|
Zhao Q, Ni Y, Wei H, Duan Y, Chen J, Xiao Q, Gao J, Yu Y, Cui Y, Ouyang S, Miron RJ, Zhang Y, Wu C. Ion incorporation into bone grafting materials. Periodontol 2000 2024; 94:213-230. [PMID: 37823468 DOI: 10.1111/prd.12533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 10/13/2023]
Abstract
The use of biomaterials in regenerative medicine has expanded to treat various disorders caused by trauma or disease in orthopedics and dentistry. However, the treatment of large and complex bone defects presents a challenge, leading to a pressing need for optimized biomaterials for bone repair. Recent advances in chemical sciences have enabled the incorporation of therapeutic ions into bone grafts to enhance their performance. These ions, such as strontium (for bone regeneration/osteoporosis), copper (for angiogenesis), boron (for bone growth), iron (for chemotaxis), cobalt (for B12 synthesis), lithium (for osteogenesis/cementogenesis), silver (for antibacterial resistance), and magnesium (for bone and cartilage regeneration), among others (e.g., zinc, sodium, and silica), have been studied extensively. This review aims to provide a comprehensive overview of current knowledge and recent developments in ion incorporation into biomaterials for bone and periodontal tissue repair. It also discusses recently developed biomaterials from a basic design and clinical application perspective. Additionally, the review highlights the importance of precise ion introduction into biomaterials to address existing limitations and challenges in combination therapies. Future prospects and opportunities for the development and optimization of biomaterials for bone tissue engineering are emphasized.
Collapse
Affiliation(s)
- Qin Zhao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- School of Medicine, Medical Research Institute, Wuhan University, Wuhan, China
| | - Yueqi Ni
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- School of Medicine, Medical Research Institute, Wuhan University, Wuhan, China
| | - Hongjiang Wei
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- School of Medicine, Medical Research Institute, Wuhan University, Wuhan, China
| | - Yiling Duan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- School of Medicine, Medical Research Institute, Wuhan University, Wuhan, China
| | - Jingqiu Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- School of Medicine, Medical Research Institute, Wuhan University, Wuhan, China
| | - Qi Xiao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- School of Medicine, Medical Research Institute, Wuhan University, Wuhan, China
| | - Jie Gao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- School of Medicine, Medical Research Institute, Wuhan University, Wuhan, China
| | - Yiqian Yu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- School of Medicine, Medical Research Institute, Wuhan University, Wuhan, China
| | - Yu Cui
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- School of Medicine, Medical Research Institute, Wuhan University, Wuhan, China
| | - Simin Ouyang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- School of Medicine, Medical Research Institute, Wuhan University, Wuhan, China
| | - Richard J Miron
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Yufeng Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- School of Medicine, Medical Research Institute, Wuhan University, Wuhan, China
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
17
|
Fan L, Chen S, Yang M, Liu Y, Liu J. Metallic Materials for Bone Repair. Adv Healthc Mater 2024; 13:e2302132. [PMID: 37883735 DOI: 10.1002/adhm.202302132] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/16/2023] [Indexed: 10/28/2023]
Abstract
Repair of large bone defects caused by trauma or disease poses significant clinical challenges. Extensive research has focused on metallic materials for bone repair because of their favorable mechanical properties, biocompatibility, and manufacturing processes. Traditional metallic materials, such as stainless steel and titanium alloys, are widely used in clinics. Biodegradable metallic materials, such as iron, magnesium, and zinc alloys, are promising candidates for bone repair because of their ability to degrade over time. Emerging metallic materials, such as porous tantalum and bismuth alloys, have gained attention as bone implants owing to their bone affinity and multifunctionality. However, these metallic materials encounter many practical difficulties that require urgent improvement. This article systematically reviews and analyzes the metallic materials used for bone repair, providing a comprehensive overview of their morphology, mechanical properties, biocompatibility, and in vivo implantation. Furthermore, the strategies and efforts made to address the short-comings of metallic materials are summarized. Finally, the perspectives for the development of metallic materials to guide future research and advancements in clinical practice are identified.
Collapse
Affiliation(s)
- Linlin Fan
- Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China
| | - Sen Chen
- Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Minghui Yang
- Department of Orthopaedics and Traumatology, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China
| | - Yajun Liu
- Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China
- Department of Spine Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China
| | - Jing Liu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
18
|
Chai W, Chen X, Liu J, Zhang L, Liu C, Li L, Honiball JR, Pan H, Cui X, Wang D. Recent progress in functional metal-organic frameworks for bio-medical application. Regen Biomater 2023; 11:rbad115. [PMID: 38313824 PMCID: PMC10838214 DOI: 10.1093/rb/rbad115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/01/2023] [Accepted: 12/17/2023] [Indexed: 02/06/2024] Open
Abstract
Metal-organic frameworks (MOFs) have a high specific surface area, adjustable pores and can be used to obtain functional porous materials with diverse and well-ordered structures through coordination and self-assembly, which has intrigued wide interest in a broad range of disciplines. In the arena of biomedical engineering, the functionalized modification of MOFs has produced drug carriers with excellent dispersion and functionalities such as target delivery and response release, with promising applications in bio-detection, disease therapy, tissue healing, and other areas. This review summarizes the present state of research on the functionalization of MOFs by physical binding or chemical cross-linking of small molecules, polymers, biomacromolecules, and hydrogels and evaluates the role and approach of MOFs functionalization in boosting the reactivity of materials. On this basis, research on the application of functionalized MOFs composites in biomedical engineering fields such as drug delivery, tissue repair, disease treatment, bio-detection and imaging is surveyed, and the development trend and application prospects of functionalized MOFs as an important new class of biomedical materials in the biomedical field are anticipated, which may provide some inspiration and reference for further development of MOF for bio-medical applications.
Collapse
Affiliation(s)
- Wenwen Chai
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Xiaochen Chen
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jing Liu
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Liyan Zhang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Chunyu Liu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Li Li
- Department of Orthopaedics & Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - John Robert Honiball
- Department of Orthopaedics & Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Haobo Pan
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xu Cui
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Deping Wang
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| |
Collapse
|
19
|
Marin E. Forged to heal: The role of metallic cellular solids in bone tissue engineering. Mater Today Bio 2023; 23:100777. [PMID: 37727867 PMCID: PMC10506110 DOI: 10.1016/j.mtbio.2023.100777] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/21/2023] Open
Abstract
Metallic cellular solids, made of biocompatible alloys like titanium, stainless steel, or cobalt-chromium, have gained attention for their mechanical strength, reliability, and biocompatibility. These three-dimensional structures provide support and aid tissue regeneration in orthopedic implants, cardiovascular stents, and other tissue engineering cellular solids. The design and material chemistry of metallic cellular solids play crucial roles in their performance: factors such as porosity, pore size, and surface roughness influence nutrient transport, cell attachment, and mechanical stability, while their microstructure imparts strength, durability and flexibility. Various techniques, including additive manufacturing and conventional fabrication methods, are utilized for producing metallic biomedical cellular solids, each offering distinct advantages and drawbacks that must be considered for optimal design and manufacturing. The combination of mechanical properties and biocompatibility makes metallic cellular solids superior to their ceramic and polymeric counterparts in most load bearing applications, in particular under cyclic fatigue conditions, and more in general in application that require long term reliability. Although challenges remain, such as reducing the production times and the associated costs or increasing the array of available materials, metallic cellular solids showed excellent long-term reliability, with high survival rates even in long term follow-ups.
Collapse
Affiliation(s)
- Elia Marin
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, 606-8585, Kyoto, Japan
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto, 602-8566, Japan
- Department Polytechnic of Engineering and Architecture, University of Udine, 33100, Udine, Italy
- Biomedical Research Center, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto, 606-8585, Japan
| |
Collapse
|
20
|
Luo Y, Liu H, Zhang Y, Liu Y, Liu S, Liu X, Luo E. Metal ions: the unfading stars of bone regeneration-from bone metabolism regulation to biomaterial applications. Biomater Sci 2023; 11:7268-7295. [PMID: 37800407 DOI: 10.1039/d3bm01146a] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
In recent years, bone regeneration has emerged as a remarkable field that offers promising guidance for treating bone-related diseases, such as bone defects, bone infections, and osteosarcoma. Among various bone regeneration approaches, the metal ion-based strategy has surfaced as a prospective candidate approach owing to the extensive regulatory role of metal ions in bone metabolism and the diversity of corresponding delivery strategies. Various metal ions can promote bone regeneration through three primary strategies: balancing the effects of osteoblasts and osteoclasts, regulating the immune microenvironment, and promoting bone angiogenesis. In the meantime, the complex molecular mechanisms behind these strategies are being consistently explored. Moreover, the accelerated development of biomaterials broadens the prospect of metal ions applied to bone regeneration. This review highlights the potential of metal ions for bone regeneration and their underlying mechanisms. We propose that future investigations focus on refining the clinical utilization of metal ions using both mechanistic inquiry and materials engineering to bolster the clinical effectiveness of metal ion-based approaches for bone regeneration.
Collapse
Affiliation(s)
- Yankun Luo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Hanghang Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
- Department of Emergency, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin Nanlu, Chengdu, Sichuan, 610041, People's Republic of China
| | - Yaowen Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yao Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
- Department of Oral Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Shibo Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
- Department of Oral Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xian Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
- Department of Oral Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - En Luo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
- Department of Oral Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| |
Collapse
|
21
|
Shao H, Zhang Q, Sun M, Wu M, Sun X, Wang Q, Tong S. Effects of hydroxyapatite-coated porous titanium scaffolds functionalized by exosomes on the regeneration and repair of irregular bone. Front Bioeng Biotechnol 2023; 11:1283811. [PMID: 38026868 PMCID: PMC10644107 DOI: 10.3389/fbioe.2023.1283811] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
As a traditional bone implant material, titanium (Ti) and its alloys have the disadvantages of lack of biological activity and susceptibility to stress shielding effect. Adipose stem cells (ADSCs) and exosomes were combined with the scaffold material in the current work to effectively create a hydroxyapatite (HA) coated porous titanium alloy scaffold that can load ADSCs and release exosomes over time. The composite made up for the drawbacks of traditional titanium alloy materials with higher mechanical characteristics and a quicker rate of osseointegration. Exosomes (Exos) are capable of promoting the development of ADSCs in porous titanium alloy scaffolds with HA coating, based on experimental findings from in vitro and in vivo research. Additionally, compared to pure Ti implants, the HA scaffolds loaded with adipose stem cell exosomes demonstrated improved bone regeneration capability and bone integration ability. It offers a theoretical foundation for the combined use of stem cell treatment and bone tissue engineering, as well as a design concept for the creation and use of novel clinical bone defect repair materials.
Collapse
Affiliation(s)
- Hanyu Shao
- Department of Plastic Surgery, First Hospital of China Medical University, Shenyang, China
| | - Qiyue Zhang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Mingman Sun
- Department of Plastic Surgery, First Hospital of China Medical University, Shenyang, China
| | - Ming Wu
- Department of Plastic Surgery, First Hospital of China Medical University, Shenyang, China
| | - Xu Sun
- Department of Plastic Surgery, First Hospital of China Medical University, Shenyang, China
| | - Qiang Wang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Shuang Tong
- Department of Plastic Surgery, First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
22
|
Qian J, Wang J, Zhang W, Mao J, Qin H, Ling X, Zeng H, Hou J, Chen Y, Wan G. Corrosion-tailoring, osteogenic, anti-inflammatory, and antibacterial aspirin-loaded organometallic hydrogel composite coating on biodegradable Zn for orthopedic applications. BIOMATERIALS ADVANCES 2023; 153:213536. [PMID: 37418934 DOI: 10.1016/j.bioadv.2023.213536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 06/05/2023] [Accepted: 06/22/2023] [Indexed: 07/09/2023]
Abstract
Zn and its alloys are receiving increasing interest for biodegradable orthopedic implant applications owing to their moderate corrosion rate and the potential functionality of Zn2+. However, their non-uniform corrosion behavior and insufficient osteogenic, anti-inflammatory, and antibacterial properties do not meet the comprehensive requirements of orthopedic implants in clinical use. Herein, an aspirin (an acetylsalicylic acid, ASA, 10, 50, 100, and 500 mg/L)-loaded carboxymethyl chitosan (CMC)/gelatin (Gel)-Zn2+ organometallic hydrogel composite coating (CMC/Gel&Zn2+/ASA) was fabricated on a Zn surface via an alternating dip-coating method, aiming to obtain a material with these comprehensive properties improved. The organometallic hydrogel composite coatings, ca. 12-16 μm in thickness, showed compact, homogeneous, and micro-bulge structured surface morphology. The coatings protected well the Zn substrate from pitting/localized corrosion and contained the release of the bioactive components, Zn2+ and ASA, in a sustained and stable manner in long-term in vitro immersions in Hank's solution. The coated Zn showed greater ability to promote proliferation and osteogenic differentiation for MC3T3-E1 osteoblasts, and better anti-inflammatory capacity when compared with uncoated Zn. Additionally, this coating displayed excellent antibacterial activity against both Escherichia coli (>99 % antibacterial rate) and Staphylococcus aureus (>98 % antibacterial rate). Such appealing properties can be attributed to the compositional nature of the coating, namely the sustained release of Zn2+ and ASA, as well as the surface physiochemical properties because of its unique microstructure. This organometallic hydrogel composite coating can be considered a promising option for the surface modification of biodegradable Zn-based orthopedic implants among others.
Collapse
Affiliation(s)
- Junyu Qian
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China; Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Jiale Wang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Wentai Zhang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Jinlong Mao
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China; Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Haotian Qin
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Xuyu Ling
- Department of Applied Physics, College of Electronic and Information, Southwest Minzu University, Chengdu 610041, China
| | - Hui Zeng
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Jiaming Hou
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China; Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yingqi Chen
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China.
| | - Guojiang Wan
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China; Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| |
Collapse
|
23
|
Zhang M, Wang X, Zhang S, Wang T, Wang X, Liu S, Zhao L, Cui C. Fabrication and Properties of a Biodegradable Zn-Ca Composite. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6432. [PMID: 37834567 PMCID: PMC10573115 DOI: 10.3390/ma16196432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/12/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023]
Abstract
In recent years, Zn and its alloys have become some of the most promising degradable metals as in vivo implants due to their acceptable biocompatibility and more suitable degradation rate compared with Mg-based and Fe-based alloys. However, the degradation rate of Zn-based materials after implantation in the body for orthopedic applications is relatively slow, leading to long-term retention of the implants after fulfilling their missions. Moreover, the excessive release of Zn2+ during the degradation process of Zn-based implants usually leads to high cytotoxicity and delayed osseointegration. To provide a feasible solution to the problem faced by Zn-based implants, a Zn-Ca composite was fabricated by an air pressure infiltration method in this work. The XRD pattern of the composite suggests that the composite is fully composed of Zn-Ca intermetallic compounds. The degradation tests in vitro show that the composite has a much higher degradation rate than pure Zn, and the high Ca content regions in the composite can preferentially degrade as sacrificial anodes. In addition, the composite can efficiently induce Ca-P deposition during immersion tests in Hank's solution. Cytotoxicity tests indicate that L-929 cells exhibit around 82% cell viability (Grade 1) even after being cultured in the 100% extract prepared from the Zn-Ca composite for 1 day and show excellent cell viability.
Collapse
Affiliation(s)
- Mengsi Zhang
- Key Laboratory for New Type of Functional Materials in Hebei Province, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Xinyuan Wang
- Key Laboratory for New Type of Functional Materials in Hebei Province, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Shuo Zhang
- Key Laboratory for New Type of Functional Materials in Hebei Province, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Tiebao Wang
- Key Laboratory for New Type of Functional Materials in Hebei Province, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Xin Wang
- Key Laboratory for New Type of Functional Materials in Hebei Province, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Shuiqing Liu
- School of Mechanical Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Lichen Zhao
- Key Laboratory for New Type of Functional Materials in Hebei Province, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Chunxiang Cui
- Key Laboratory for New Type of Functional Materials in Hebei Province, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| |
Collapse
|
24
|
Zhang Z, Liu A, Fan J, Wang M, Dai J, Jin X, Deng H, Wang X, Liang Y, Li H, Zhao Y, Wen P, Li Y. A drug-loaded composite coating to improve osteogenic and antibacterial properties of Zn-1Mg porous scaffolds as biodegradable bone implants. Bioact Mater 2023; 27:488-504. [PMID: 37180641 PMCID: PMC10173180 DOI: 10.1016/j.bioactmat.2023.04.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/06/2023] [Accepted: 04/17/2023] [Indexed: 05/16/2023] Open
Abstract
Zinc (Zn) alloy porous scaffolds produced by additive manufacturing own customizable structures and biodegradable functions, having a great application potential for repairing bone defect. In this work, a hydroxyapatite (HA)/polydopamine (PDA) composite coating was constructed on the surface of Zn-1Mg porous scaffolds fabricated by laser powder bed fusion, and was loaded with a bioactive factor BMP2 and an antibacterial drug vancomycin. The microstructure, degradation behavior, biocompatibility, antibacterial performance and osteogenic activities were systematically investigated. Compared with as-built Zn-1Mg scaffolds, the rapid increase of Zn2+, which resulted to the deteriorated cell viability and osteogenic differentiation, was inhibited due to the physical barrier of the composite coating. In vitro cellular and bacterial assay indicated that the loaded BMP2 and vancomycin considerably enhanced the cytocompatibility and antibacterial performance. Significantly improved osteogenic and antibacterial functions were also observed according to in vivo implantation in the lateral femoral condyle of rats. The design, influence and mechanism of the composite coating were discussed accordingly. It was concluded that the additively manufactured Zn-1Mg porous scaffolds together with the composite coating could modulate biodegradable performance and contribute to effective promotion of bone recovery and antibacterial function.
Collapse
Affiliation(s)
- Zhenbao Zhang
- Department of Stomatology, the Fourth Medical Center of PLA General Hospital, Beijing, 100048, China
| | - Aobo Liu
- State Key Laboratory of Tribology in Advanced Equipment, Beijing, 100084, China
- Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Jiadong Fan
- Department of Stomatology, the Fourth Medical Center of PLA General Hospital, Beijing, 100048, China
| | - Menglin Wang
- Department of Stomatology, the Fourth Medical Center of PLA General Hospital, Beijing, 100048, China
- Medical School of Chinese PLA, Beijing, 100039, China
| | - Jiabao Dai
- State Key Laboratory of Tribology in Advanced Equipment, Beijing, 100084, China
- Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Xiang Jin
- Department of Stomatology, the Fourth Medical Center of PLA General Hospital, Beijing, 100048, China
| | - Huanze Deng
- Department of Stomatology, the Fourth Medical Center of PLA General Hospital, Beijing, 100048, China
- Medical School of Chinese PLA, Beijing, 100039, China
| | - Xuan Wang
- Department of Stomatology, the Fourth Medical Center of PLA General Hospital, Beijing, 100048, China
| | - Yijie Liang
- Department of Stomatology, the Fourth Medical Center of PLA General Hospital, Beijing, 100048, China
| | - Haixia Li
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yantao Zhao
- Department of Stomatology, the Fourth Medical Center of PLA General Hospital, Beijing, 100048, China
- Senior Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing, 100048, China
- Beijing Engineering Research Center of Orthopedics Implants, Beijing, 100048, China
- Corresponding author. Department of Stomatology, the Fourth Medical Center of PLA General Hospital, Beijing, 100048, China.
| | - Peng Wen
- State Key Laboratory of Tribology in Advanced Equipment, Beijing, 100084, China
- Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
- Corresponding author. State Key Laboratory of Tribology in Advanced Equipment, Beijing, 100084, China.
| | - Yanfeng Li
- Department of Stomatology, the Fourth Medical Center of PLA General Hospital, Beijing, 100048, China
- Medical School of Chinese PLA, Beijing, 100039, China
- Corresponding author. Department of Stomatology, the Fourth Medical Center of PLA General Hospital, Beijing, 100048, China.
| |
Collapse
|
25
|
Pinc J, Školáková A, Hybášek V, Msallamová Š, Veřtát P, Ashcheulov P, Vondráček M, Duchoň J, McCarroll I, Hývl M, Banerjee S, Drahokoupil J, Kubásek J, Vojtěch D, Čapek J. A detailed mechanism of degradation behaviour of biodegradable as-ECAPed Zn-0.8Mg-0.2Sr with emphasis on localized corrosion attack. Bioact Mater 2023; 27:447-460. [PMID: 37168023 PMCID: PMC10164781 DOI: 10.1016/j.bioactmat.2023.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 04/11/2023] [Accepted: 04/11/2023] [Indexed: 05/13/2023] Open
Abstract
In this study, advanced techniques such as atom probe tomography, atomic force microscopy, X-ray photoelectron spectroscopy, and electrochemical impedance spectroscopy were used to determine the corrosion mechanism of the as-ECAPed Zn-0.8Mg-0.2Sr alloy. The influence of microstructural and surface features on the corrosion mechanism was investigated. Despite its significance, the surface composition before exposure is often neglected by the scientific community. The analyses revealed the formation of thin ZnO, MgO, and MgCO3 layers on the surface of the material before exposure. These layers participated in the formation of corrosion products, leading to the predominant occurrence of hydrozincite. In addition, the layers possessed different resistance to the environment, resulting in localized corrosion attacks. The segregation of Mg on the Zn grain boundaries with lower potential compared with the Zn-matrix was revealed by atom probe tomography and atomic force microscopy. The degradation process was initiated by the activity of micro-galvanic cells, specifically Zn - Mg2Zn11/SrZn13. This process led to the activity of the crevice corrosion mechanism and subsequent attack to a depth of 250 μm. The corrosion rate of the alloy determined by the weight loss method was 0.36 mm·a-1. Based on this detailed study, the degradation mechanism of the Zn-0.8Mg-0.2Sr alloy is proposed.
Collapse
Affiliation(s)
- Jan Pinc
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 1999/2, Prague 8, 182 21, Czech Republic
- Corresponding author.
| | - Andrea Školáková
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 1999/2, Prague 8, 182 21, Czech Republic
| | - Vojtěch Hybášek
- University of Chemistry and Technology, Faculty of Chemical Technology, Department of Metals and Corrosion Engineering, Technická 5, 166 28, Praha 6 – Dejvice, Czech Republic
| | - Šárka Msallamová
- University of Chemistry and Technology, Faculty of Chemical Technology, Department of Metals and Corrosion Engineering, Technická 5, 166 28, Praha 6 – Dejvice, Czech Republic
| | - Petr Veřtát
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 1999/2, Prague 8, 182 21, Czech Republic
| | - Petr Ashcheulov
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 1999/2, Prague 8, 182 21, Czech Republic
| | - Martin Vondráček
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 1999/2, Prague 8, 182 21, Czech Republic
| | - Jan Duchoň
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 1999/2, Prague 8, 182 21, Czech Republic
| | - Ingrid McCarroll
- Max-Planck-Institut Für Eisenforschung, Max-Planck-Straße 1, 40237, Düsseldorf, Germany
| | - Matěj Hývl
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 1999/2, Prague 8, 182 21, Czech Republic
| | - Swarnendu Banerjee
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 1999/2, Prague 8, 182 21, Czech Republic
| | - Jan Drahokoupil
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 1999/2, Prague 8, 182 21, Czech Republic
| | - Jiří Kubásek
- University of Chemistry and Technology, Faculty of Chemical Technology, Department of Metals and Corrosion Engineering, Technická 5, 166 28, Praha 6 – Dejvice, Czech Republic
| | - Dalibor Vojtěch
- University of Chemistry and Technology, Faculty of Chemical Technology, Department of Metals and Corrosion Engineering, Technická 5, 166 28, Praha 6 – Dejvice, Czech Republic
| | - Jaroslav Čapek
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 1999/2, Prague 8, 182 21, Czech Republic
| |
Collapse
|
26
|
Meng M, Wang J, Huang H, Liu X, Zhang J, Li Z. 3D printing metal implants in orthopedic surgery: Methods, applications and future prospects. J Orthop Translat 2023; 42:94-112. [PMID: 37675040 PMCID: PMC10480061 DOI: 10.1016/j.jot.2023.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/28/2023] [Accepted: 08/02/2023] [Indexed: 09/08/2023] Open
Abstract
Background Currently, metal implants are widely used in orthopedic surgeries, including fracture fixation, spinal fusion, joint replacement, and bone tumor defect repair. However, conventional implants are difficult to be customized according to the recipient's skeletal anatomy and defect characteristics, leading to difficulties in meeting the individual needs of patients. Additive manufacturing (AM) or three-dimensional (3D) printing technology, an advanced digital fabrication technique capable of producing components with complex and precise structures, offers opportunities for personalization. Methods We systematically reviewed the literature on 3D printing orthopedic metal implants over the past 10 years. Relevant animal, cellular, and clinical studies were searched in PubMed and Web of Science. In this paper, we introduce the 3D printing method and the characteristics of biometals and summarize the properties of 3D printing metal implants and their clinical applications in orthopedic surgery. On this basis, we discuss potential possibilities for further generalization and improvement. Results 3D printing technology has facilitated the use of metal implants in different orthopedic procedures. By combining medical images from techniques such as CT and MRI, 3D printing technology allows the precise fabrication of complex metal implants based on the anatomy of the injured tissue. Such patient-specific implants not only reduce excessive mechanical strength and eliminate stress-shielding effects, but also improve biocompatibility and functionality, increase cell and nutrient permeability, and promote angiogenesis and bone growth. In addition, 3D printing technology has the advantages of low cost, fast manufacturing cycles, and high reproducibility, which can shorten patients' surgery and hospitalization time. Many clinical trials have been conducted using customized implants. However, the use of modeling software, the operation of printing equipment, the high demand for metal implant materials, and the lack of guidance from relevant laws and regulations have limited its further application. Conclusions There are advantages of 3D printing metal implants in orthopedic applications such as personalization, promotion of osseointegration, short production cycle, and high material utilization. With the continuous learning of modeling software by surgeons, the improvement of 3D printing technology, the development of metal materials that better meet clinical needs, and the improvement of laws and regulations, 3D printing metal implants can be applied to more orthopedic surgeries. The translational potential of this paper Precision, intelligence, and personalization are the future direction of orthopedics. It is reasonable to believe that 3D printing technology will be more deeply integrated with artificial intelligence, 4D printing, and big data to play a greater role in orthopedic metal implants and eventually become an important part of the digital economy. We aim to summarize the latest developments in 3D printing metal implants for engineers and surgeons to design implants that more closely mimic the morphology and function of native bone.
Collapse
Affiliation(s)
- Meng Meng
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, PR China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, PR China
| | - Jinzuo Wang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, PR China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, PR China
| | - Huagui Huang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, PR China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, PR China
| | - Xin Liu
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, PR China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, PR China
| | - Jing Zhang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, PR China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, PR China
| | - Zhonghai Li
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, PR China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, PR China
| |
Collapse
|
27
|
Wang P, Gong Y, Zhou G, Ren W, Wang X. Biodegradable Implants for Internal Fixation of Fractures and Accelerated Bone Regeneration. ACS OMEGA 2023; 8:27920-27931. [PMID: 37576626 PMCID: PMC10413843 DOI: 10.1021/acsomega.3c02727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/12/2023] [Indexed: 08/15/2023]
Abstract
Bone fractures have always been a burden to patients due to their common occurrence and severe complications. Traditionally, operative treatments have been widely used in the clinic for implanting, despite the fact that they can only achieve bone fixation with limited stability and pose no effect on promoting tissue growth. In addition, the nondegradable implants usually need a secondary surgery for implant removal, otherwise they may block the regeneration of bones resulting in bone nonunion. To overcome the low degradability of implants and avoid multiple surgeries, tissue engineers have investigated various biodegradable materials for bone regeneration, whereas the significance of stability of long-term bone fixation tends to be neglected during this process. Combining the traditional orthopedic implantation surgeries and emerging tissue engineering, we believe that both bone fixation and bone regeneration are indispensable factors for a successful bone repair. Herein, we define such a novel idea as bone regenerative fixation (BRF), which should be the main future development trend of biodegradable materials.
Collapse
Affiliation(s)
- Pei Wang
- Department
of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of
Tissue Engineering, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Yan Gong
- Department
of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of
Tissue Engineering, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Guangdong Zhou
- Department
of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of
Tissue Engineering, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Institute
of Regenerative Medicine and Orthopedics, Institutes of Health Central
Plain, Xinxiang Medical University, Henan 453003, China
| | - Wenjie Ren
- Institute
of Regenerative Medicine and Orthopedics, Institutes of Health Central
Plain, Xinxiang Medical University, Henan 453003, China
| | - Xiansong Wang
- Department
of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of
Tissue Engineering, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Institute
of Regenerative Medicine and Orthopedics, Institutes of Health Central
Plain, Xinxiang Medical University, Henan 453003, China
| |
Collapse
|
28
|
张 天, 刘 宇, 王 韦, 赵 德. [Research status and development of biodegradable zinc alloy as orthopedics implant]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2023; 40:589-594. [PMID: 37380401 PMCID: PMC10307599 DOI: 10.7507/1001-5515.202204077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 03/05/2023] [Indexed: 06/30/2023]
Abstract
Znic (Zn) alloys with good cytocompatibility and suitable degradation rate have been a kind of biodegradable metal with great potential for clinical applications. This paper summarizes the biological role of degradable Zn alloy as bone implant materials, discusses the mechanical properties of different Zn alloys and their advantages and disadvantages as bone implant materials, and analyzes the influence of different processing strategies (such as alloying and additive manufacturing) on the mechanical properties of Zn alloys. This paper provides systematic design approaches for biodegradable Zn alloys as bone implant materials in terms of the material selection, product processing, structural topology optimization, and assesses their application prospects with a view to better serve the clinic.
Collapse
Affiliation(s)
- 天蔚 张
- 大连交通大学 机械工程学院(辽宁大连 116028)College of Mechanical Engineering, Dalian Jiaotong University, Dalian, Liaoning 116028, P. R. China
- 大连大学附属中山医院 骨科(辽宁大连 116001)Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, P. R. China
| | - 宇宸 刘
- 大连交通大学 机械工程学院(辽宁大连 116028)College of Mechanical Engineering, Dalian Jiaotong University, Dalian, Liaoning 116028, P. R. China
| | - 韦丹 王
- 大连交通大学 机械工程学院(辽宁大连 116028)College of Mechanical Engineering, Dalian Jiaotong University, Dalian, Liaoning 116028, P. R. China
| | - 德伟 赵
- 大连交通大学 机械工程学院(辽宁大连 116028)College of Mechanical Engineering, Dalian Jiaotong University, Dalian, Liaoning 116028, P. R. China
- 大连大学附属中山医院 骨科(辽宁大连 116001)Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, P. R. China
| |
Collapse
|
29
|
Tang H, Qi C, Bai Y, Niu X, Gu X, Fan Y. Incorporation of Magnesium and Zinc Metallic Particles in PLGA Bi-layered Membranes with Sequential Ion Release for Guided Bone Regeneration. ACS Biomater Sci Eng 2023. [PMID: 37162308 DOI: 10.1021/acsbiomaterials.3c00179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Guided bone regeneration (GBR) membranes are commonly used for periodontal tissue regeneration. Due to the complications of existing GBR membranes, the design of bioactive membranes is still relevant. GBR membranes with an asymmetric structure can accommodate the functional requirements of different interfacial tissues. Here, poly(lactic acid-glycolic acid) (PLGA) was selected as the matrix for preparing a bi-layered membrane with both dense and porous structure. The dense layer for blocking soft tissues was incorporated with zinc (Zn) particles, while the porous layer for promoting bone regeneration was co-incorporated with magnesium (Mg) and Zn particles. Mg/Zn-embedded PLGA membranes exhibited 166% higher mechanical strength in comparison with pure PLGA membranes and showed suitable degradation properties with a sequential ion release behavior of Mg2+ first and continuously Zn2+. More importantly, the release of Zn2+ from bi-layered PLGA endowed GBR membranes with excellent antibacterial activity (antibacterial rate > 69.3%) as well as good cytocompatibility with MC3T3-E1 (mouse calvaria pre-osteoblastic cells) and HGF-1 (human gingival fibroblast cells). Thus, the asymmetric bi-layered PLGA membranes embedded with Mg and Zn particles provide a simple and effective strategy to not only reinforce the PLGA membrane but also endow membranes with osteogenic and antibacterial activity due to the continuous ion release profile, which serves as a promising candidate for use in GBR therapy.
Collapse
Affiliation(s)
- Hongyan Tang
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Chengkai Qi
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Yanjie Bai
- Stomatology Department, Peking University Third Hospital, Beijing 100191, China
| | - Xufeng Niu
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Xuenan Gu
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Yubo Fan
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| |
Collapse
|
30
|
Ding F, Zhang Y, Zhu X, Guo P, Yang L, Zhang Q, Xu C, Sun W, Song Z. Strengthening Mechanism of Rotary-Forged Deformable Biodegradable Zn-0.45Li Alloys. MATERIALS (BASEL, SWITZERLAND) 2023; 16:3003. [PMID: 37109837 PMCID: PMC10143320 DOI: 10.3390/ma16083003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 03/30/2023] [Accepted: 04/06/2023] [Indexed: 06/19/2023]
Abstract
The use of zinc (Zn) alloys as a biodegradable metal for medical purposes has been a popular research topic. This study investigated the strengthening mechanism of Zn alloys to enhance their mechanical properties. Three Zn-0.45Li (wt.%) alloys with different deformation amounts were prepared by rotary forging deformation. Their mechanical properties and microstructures were tested. A simultaneous increase in strength and ductility was observed in the Zn-0.45Li alloys. Grain refinement occurred when the rotary forging deformation reached 75.7%. The surface average grain size reached 1.19 ± 0.31 μm, and the grain size was uniformly distributed. Meanwhile, the maximum elongation of the deformed Zn-0.45Li was 139.2 ± 18.6%, and the ultimate tensile strength reached 426.1 ± 4.7 MPa. In situ tensile tests showed that the reinforced alloys still broke from the grain boundary. Continuous and discontinuous dynamic recrystallization during severe plastic deformation produced many recrystallized grains. During deformation, the dislocation density of the alloy first increased and then decreased, and the texture strength of the (0001) direction increased with deformation. Analysis of the mechanism of alloy strengthening showed that the strength and plasticity enhancement of Zn-Li alloys after macro deformation was a combination of dislocation strengthening, weave strengthening, and grain refinement rather than only fine-grain strengthening as observed in conventional macro-deformed Zn alloys.
Collapse
Affiliation(s)
- Feng Ding
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- School of Mechanical Engineering and Rail Transit, Changzhou University, Changzhou 213164, China
| | - Yi Zhang
- School of Mechanical Engineering and Rail Transit, Changzhou University, Changzhou 213164, China
| | - Xinglong Zhu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Pushan Guo
- School of Mechanical Engineering and Rail Transit, Changzhou University, Changzhou 213164, China
| | - Lijing Yang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Qingke Zhang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Cheng Xu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Wensheng Sun
- Ningbo Power Way Alloy Material Co., Ltd., Ningbo 315145, China
| | - Zhenlun Song
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| |
Collapse
|
31
|
Liu Q, Li A, Liu S, Fu Q, Xu Y, Dai J, Li P, Xu S. Cytotoxicity of Biodegradable Zinc and Its Alloys: A Systematic Review. J Funct Biomater 2023; 14:206. [PMID: 37103296 PMCID: PMC10144193 DOI: 10.3390/jfb14040206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/18/2023] [Accepted: 03/27/2023] [Indexed: 04/28/2023] Open
Abstract
Zinc-based biodegradable metals (BMs) have been developed for biomedical implant materials. However, the cytotoxicity of Zn and its alloys has caused controversy. This work aims to investigate whether Zn and its alloys possess cytotoxic effects and the corresponding influence factors. According to the guidelines of the PRISMA statement, an electronic combined hand search was conducted to retrieve articles published in PubMed, Web of Science, and Scopus (2013.1-2023.2) following the PICOS strategy. Eighty-six eligible articles were included. The quality of the included toxicity studies was assessed utilizing the ToxRTool. Among the included articles, extract tests were performed in 83 studies, and direct contact tests were conducted in 18 studies. According to the results of this review, the cytotoxicity of Zn-based BMs is mainly determined by three factors, namely, Zn-based materials, tested cells, and test system. Notably, Zn and its alloys did not exhibit cytotoxic effects under certain test conditions, but significant heterogeneity existed in the implementation of the cytotoxicity evaluation. Furthermore, there is currently a relatively lower quality of current cytotoxicity evaluation in Zn-based BMs owing to the adoption of nonuniform standards. Establishing a standardized in vitro toxicity assessment system for Zn-based BMs is required for future investigations.
Collapse
Affiliation(s)
- Qian Liu
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - An Li
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Shizhen Liu
- The School of Computing Science, University of Glasgow, Glasgow G12 8RZ, UK
| | - Qingyun Fu
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Yichen Xu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jingtao Dai
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Ping Li
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Shulan Xu
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| |
Collapse
|
32
|
Liu X, Huang H, Zhang J, Sun T, Zhang W, Li Z. Recent Advance of Strontium Functionalized in Biomaterials for Bone Regeneration. Bioengineering (Basel) 2023; 10:bioengineering10040414. [PMID: 37106601 PMCID: PMC10136039 DOI: 10.3390/bioengineering10040414] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/17/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Bone defect disease causes damage to people’s lives and property, and how to effectively promote bone regeneration is still a big clinical challenge. Most of the current repair methods focus on filling the defects, which has a poor effect on bone regeneration. Therefore, how to effectively promote bone regeneration while repairing the defects at the same time has become a challenge for clinicians and researchers. Strontium (Sr) is a trace element required by the human body, which mainly exists in human bones. Due to its unique dual properties of promoting the proliferation and differentiation of osteoblasts and inhibiting osteoclast activity, it has attracted extensive research on bone defect repair in recent years. With the deep development of research, the mechanisms of Sr in the process of bone regeneration in the human body have been clarified, and the effects of Sr on osteoblasts, osteoclasts, mesenchymal stem cells (MSCs), and the inflammatory microenvironment in the process of bone regeneration have been widely recognized. Based on the development of technology such as bioengineering, it is possible that Sr can be better loaded onto biomaterials. Even though the clinical application of Sr is currently limited and relevant clinical research still needs to be developed, Sr-composited bone tissue engineering biomaterials have achieved satisfactory results in vitro and in vivo studies. The Sr compound together with biomaterials to promote bone regeneration will be a development direction in the future. This review will present a brief overview of the relevant mechanisms of Sr in the process of bone regeneration and the related latest studies of Sr combined with biomaterials. The aim of this paper is to highlight the potential prospects of Sr functionalized in biomaterials.
Collapse
|
33
|
Peng F, Xie J, Liu H, Zheng Y, Qian X, Zhou R, Zhong H, Zhang Y, Li M. Shifting focus from bacteria to host neutrophil extracellular traps of biodegradable pure Zn to combat implant centered infection. Bioact Mater 2023; 21:436-449. [PMID: 36185738 PMCID: PMC9483647 DOI: 10.1016/j.bioactmat.2022.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/23/2022] [Accepted: 09/05/2022] [Indexed: 10/28/2022] Open
Abstract
The widespread use of orthopedic implants to support or replace bones is increasingly threatened by the risk of incurable bacterial infections, impenetrable microbial biofilms, and irreversible antibiotic resistance. In the past, the development of anti-infective biomaterials focused solely on direct antibacterial properties while ignoring the host's immune response. Inspired by the clearance of infection by the innate neutrophil response and participation in anti-infectious immunity of Zn ions, we report an innovative neutrophil extracellular traps (NETs) strategy, induced by biodegradable pure Zn, which achieved therapeutic efficacy toward biomaterial-related infections. Our in vitro and in vivo data showed that pure Zn was favorable for NETs formation by promoting the release of DNA fibers and granule proteins in a reactive oxygen species (ROS)-dependent manner, thereby retraining and degrading bacteria with an efficiency of up to 99.5%. Transcriptome analysis revealed that cytoskeletal rearrangement and toll-like receptor (TLR) signaling pathway were also involved in Zn-induced NETs formation. Furthermore, the in vivo results of a Staphylococcus aureus (S. aureus)-infected rat model verified that pure Zn potentiated the bactericidal capability of neutrophils around implants, and promoted osseointegration in S. aureus-infected rat femurs. This antibacterial immunity concept lays a foundation for the development of other antibacterial biomaterials and holds great promise for treating orthopedic infections.
Collapse
Affiliation(s)
- Feng Peng
- Medical Research Center, Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Juning Xie
- Medical Research Center, Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
- School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Haiming Liu
- WeiLun PET Center, Department of Nuclear Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Yufeng Zheng
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Xin Qian
- Medical Research Center, Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Ruixiang Zhou
- Medical Research Center, Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Hua Zhong
- Department of Orthopaedics, The Fifth Affiliated Hospital, Southerm Medical University, Guangzhou, 510009, China
| | - Yu Zhang
- Medical Research Center, Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
- School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Mei Li
- Medical Research Center, Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| |
Collapse
|
34
|
Kabir H, Munir K, Wen C, Li Y. Microstructures, mechanical and corrosion properties of graphene nanoplatelet-reinforced zinc matrix composites for implant applications. Acta Biomater 2023; 157:701-719. [PMID: 36476647 DOI: 10.1016/j.actbio.2022.11.060] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Zinc (Zn)-based alloys and composites are gaining increasing interest as promising biodegradable implant materials due to their appropriate biodegradation rates and biological functionalities. However, the inadequate mechanical strength and ductility of pure Zn have restricted its application. In this study, Zn matrix composites (ZMCs) reinforced with 0.1-0.4 wt.% graphene nanoplatelets (GNP) fabricated via powder metallurgy were investigated as potential biodegradable implant materials. The microstructures, mechanical properties, and corrosion behaviors of the GNP-reinforced ZMCs were characterized using optical microscopy, scanning electron microscopy combined with energy-dispersive X-ray spectroscopy, Raman spectroscopy, compression testing, and electrochemical and immersion testing in Hanks' balanced salt solution (HBSS). The microstructural study revealed that the GNP was uniformly dispersed in the ZMCs after ball milling and sintering at 420°C for 6 h. The microhardness, compressive yield strength, ultimate compressive strength, and compressive strain of the ZMC-0.2GNP were 69 HV, 123 MPa, 247 MPa, and 23 %, respectively, improvements of ∼ 18 %, 50%, ∼ 28%, and ∼ 15% compared to pure Zn. The corrosion rate of the ZMCs were lower than that of the pure Zn in HBSS, and the ZMC-0.2GNP composite exhibited the lowest corrosion rate of 0.09 mm/y as measured by electrochemical testing. Biocompatibility assessment indicated that the diluted extracts of pure Zn and GNP-reinforced ZMCs with concentrations of 12.5% and 6.25% exhibited no cytotoxicity after cell culturing for up to 5 days, and the diluted extracts of ZMC-0.2 GNP composite revealed more than 90% cell viability after cell culturing of 3 days, showing the satisfying cytocompatibility. STATEMENT OF SIGNIFICANCE: Biodegradable Zn is a promising candidate material for orthopedic implant applications. Nonetheless, the inadequate mechanical strength and ductility of pure Zn limited its clinical application. In this study, Zn matrix composites (ZMCs) reinforced with 0.1-0.4 wt.% graphene nanoplatelets (GNP) were developed via powder metallurgy, and the reinforcing efficacy of GNP on their mechanical properties was investigated. The addition of GNP significantly improved the compressive properties of ZMCs, with the Zn-0.2GNP composite exhibiting the best compressive properties, including 123 MPa compressive yield strength, 247 MPa ultimate compressive strength, and 22.9% compressive strain. Further, the 12.5% concentration extract of the ZMCs exhibited no cytotoxicity after cell culturing for 5 d toward SaOS2 cells.
Collapse
Affiliation(s)
- Humayun Kabir
- School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia
| | - Khurram Munir
- School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia
| | - Cuie Wen
- School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia
| | - Yuncang Li
- School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia.
| |
Collapse
|
35
|
Jia F, Bian A, Wu Z, Li M, Yang H, Huang X, Xie L, Qiao H, Lin H, Huang Y. One‐Step Electrodeposition of Multi‐element Doped Hydroxyapatite Nanocoating Leading to Enhanced Cytocompatible and Antibacterial Properties of Titanium Implants. ChemistrySelect 2023. [DOI: 10.1002/slct.202203974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Fenghuan Jia
- College of Lab Medicine Hebei North University Key Laboratory of Biomedical Materials of Zhangjiakou Zhangjiakou 075000 China
| | - Anqi Bian
- College of Lab Medicine Hebei North University Key Laboratory of Biomedical Materials of Zhangjiakou Zhangjiakou 075000 China
| | - Zongze Wu
- Department of Interventional Radiology Shenzhen People's Hospital (The Second Clinical Medical College Jinan University The First Affiliated Hospital Southern University of Science and Technology) Shenzhen 518020 Guangdong China
| | - Meiyu Li
- College of Lab Medicine Hebei North University Key Laboratory of Biomedical Materials of Zhangjiakou Zhangjiakou 075000 China
| | - Hao Yang
- Key Laboratory for Green Chemical Process of Ministry of Education Wuhan Institute of Technology Wu Han Shi Wuhan.430205 China
| | - Xiao Huang
- School of Physical Education Guangxi University of Science and Technology Liuzhou 545006 China
| | - Lei Xie
- School of Medicine University of Electronic Science and Technology of China Chengdu 610054 China
| | - Haixia Qiao
- College of Lab Medicine Hebei North University Key Laboratory of Biomedical Materials of Zhangjiakou Zhangjiakou 075000 China
| | - He Lin
- School of Chemistry and Materials Science Ludong University Yantai 264025 China
| | - Yong Huang
- College of Lab Medicine Hebei North University Key Laboratory of Biomedical Materials of Zhangjiakou Zhangjiakou 075000 China
- School of Medicine University of Electronic Science and Technology of China Chengdu 610054 China
| |
Collapse
|
36
|
Du S, Shen Y, Zheng Y, Cheng Y, Xu X, Chen D, Xia D. Systematic in vitro and in vivo study on biodegradable binary Zn-0.2 at% Rare Earth alloys (Zn-RE: Sc, Y, La-Nd, Sm-Lu). Bioact Mater 2023; 24:507-523. [PMID: 36685807 PMCID: PMC9841038 DOI: 10.1016/j.bioactmat.2023.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/03/2023] [Accepted: 01/03/2023] [Indexed: 01/12/2023] Open
Abstract
Biomedical implants and devices for tissue engineering in clinics, mainly made of polymers and stiff metallic materials, require possibly secondary surgery or life-long medicine. Biodegradable metals for biomedical implants and devices exhibit huge potential to improve the prognosis of patients. In this work, we developed a new type of biodegradable binary zinc (Zn) alloys with 16 rare earth elements (REEs) including Sc, Y, La to Nd, and Sm to Lu, respectively. The effects of REEs on the alloy microstructure, mechanical properties, corrosion behavior and in vitro and in vivo biocompatibility of Zn were systematically investigated using pure Zn as control. All Zn-RE alloys generally exhibited improved mechanical properties, and biocompatibilities compared to pure Zn, especially the tensile strength and ductility of Zn-RE alloys were dramatically enhanced. Among the Zn-RE alloys, different REEs presented enhancement effects at varied extent. Y, Ho and Lu were the three elements displaying greatest improvements in majority of alloys properties, while Eu, Gd and Dy exhibited least improvement. Furthermore, the Zn-RE alloys were comparable with other Zn alloys and also exhibited superior properties to Mg-RE alloys. The in vivo experiment using Zn-La, Zn-Ce, and Zn-Nd alloys as tibia bone implants in rabbit demonstrated the excellent tissue biocompatibility and much more obvious osseointegration than the pure Zn control group. This work presented the significant potential of the developed Zn-RE binary alloys as novel degradable metal for biomedical implants and devices.
Collapse
Affiliation(s)
- Shaokang Du
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Yunong Shen
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Yufeng Zheng
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Yan Cheng
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Xiaoxue Xu
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, NSW, 2007, Australia,Corresponding author.
| | - Dafu Chen
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, 100035, China,Corresponding author.
| | - Dandan Xia
- Department of Dental Materials, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing 100081, China,Corresponding author.
| |
Collapse
|
37
|
Xu L, Xu S, Xiang TY, Chen LW, Zhong WX, Zhu L, Liu H, Wu L, Li WD, Wang YT, Cai BC, Yao JH, Chen R, Xin WF, Cao G, Chen ZP. A novel peptide hydrogel of metal ion clusters for accelerating bone defect regeneration. J Control Release 2023; 353:738-751. [PMID: 36526019 DOI: 10.1016/j.jconrel.2022.12.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/25/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
In the absence of adequate treatment, effective bone regeneration remains a great challenge. Exploring hydrogels with properties of excellent bioactivity, stability, non-immunogenicity, and commercialization is an important step to develop hydrogel-based bone regeneration materials. In this study, we engineered a self-assembled chelating peptide hydrogel loaded with an osteogenic metal ion cluster extracted from the processed pyritum decoction, including Fe2+, Cu2+, Zn2+, Mn2+, Mg2+, and Ca2+ ions, named processed pyritum hydrogel (PPH). We demonstrated that as a reservoir of beneficial metal ion clusters in bone regeneration, PPH has been shown to regulate a variety of genes in the process of bone regeneration. These genes are mainly involved in extracellular matrix synthesis, cell adhesion and migration, cytokine expression, antimicrobial and inflammation. Therefore, PPH accelerated the progress of various bone healing stages, and shortened the bone healing cycle by 4 weeks. Our investigation outcomes showed that the engineered metal ion cluster hydrogel is a novel, simple, and commercializable bone-regenerating hydrogel with potential clinical use.
Collapse
Affiliation(s)
- Liu Xu
- College of pharmacy, Nanjing University of Chinese Medicine; Nanjing 210023, China
| | - Shan Xu
- College of pharmacy, Nanjing University of Chinese Medicine; Nanjing 210023, China
| | - Tang Yong Xiang
- College of pharmacy, Nanjing University of Chinese Medicine; Nanjing 210023, China
| | - Lin Wei Chen
- College of pharmacy, Nanjing University of Chinese Medicine; Nanjing 210023, China
| | - Wei Xi Zhong
- College of pharmacy, Nanjing University of Chinese Medicine; Nanjing 210023, China
| | - Ling Zhu
- College of pharmacy, Nanjing University of Chinese Medicine; Nanjing 210023, China
| | - Heng Liu
- College of pharmacy, Nanjing University of Chinese Medicine; Nanjing 210023, China
| | - Li Wu
- College of pharmacy, Nanjing University of Chinese Medicine; Nanjing 210023, China
| | - Wei Dong Li
- College of pharmacy, Nanjing University of Chinese Medicine; Nanjing 210023, China
| | - Yu Tong Wang
- College of pharmacy, Nanjing University of Chinese Medicine; Nanjing 210023, China
| | - Bao Chang Cai
- College of pharmacy, Nanjing University of Chinese Medicine; Nanjing 210023, China
| | - Jun Hong Yao
- College of pharmacy, Nanjing University of Chinese Medicine; Nanjing 210023, China
| | - Rui Chen
- College of pharmacy, Nanjing University of Chinese Medicine; Nanjing 210023, China
| | - Wen Feng Xin
- College of Notoginseng Medicine and Pharmacy of Wenshan University; Wenshan 663099, China.
| | - Gang Cao
- School of Pharmacy, Zhejiang Chinese Medical University; Hangzhou 310053, China.
| | - Zhi Peng Chen
- College of pharmacy, Nanjing University of Chinese Medicine; Nanjing 210023, China.
| |
Collapse
|
38
|
Biomedical metallic materials based on nanocrystalline and nanoporous microstructures: Properties and applications. Nanomedicine (Lond) 2023. [DOI: 10.1016/b978-0-12-818627-5.00030-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
|
39
|
Additively manufactured pure zinc porous scaffolds for critical-sized bone defects of rabbit femur. Bioact Mater 2023; 19:12-23. [PMID: 35415313 PMCID: PMC8980439 DOI: 10.1016/j.bioactmat.2022.03.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/05/2022] [Accepted: 03/07/2022] [Indexed: 02/06/2023] Open
Abstract
Additive manufacturing has received attention for the fabrication of medical implants that have customized and complicated structures. Biodegradable Zn metals are revolutionary materials for orthopedic implants. In this study, pure Zn porous scaffolds with diamond structures were fabricated using customized laser powder bed fusion (L-PBF) technology. First, the mechanical properties, corrosion behavior, and biocompatibility of the pure Zn porous scaffolds were characterized in vitro. The scaffolds were then implanted into the rabbit femur critical-size bone defect model for 24 weeks. The results showed that the pure Zn porous scaffolds had compressive strength and rigidity comparable to those of cancellous bone, as well as relatively suitable degradation rates for bone regeneration. A benign host response was observed using hematoxylin and eosin (HE) staining of the heart, liver, spleen, lungs, and kidneys. Moreover, the pure Zn porous scaffold showed good biocompatibility and osteogenic promotion ability in vivo. This study showed that pure Zn porous scaffolds with customized structures fabricated using L-PBF represent a promising biodegradable solution for treating large bone defects. L-PBF used to fabricate pure Zn porous scaffolds for bone implants. Degradation rates and mechanical strength suitable for bone implants. Pure Zn porous scaffolds showed good in vitro cytocompatibility with MC3T3-E1 cells. Pure Zn porous scaffolds have potential for large bone defect applications with osteogenic ability.
Collapse
|
40
|
Karunakaran G, Cho EB, Kumar GS, Kolesnikov E, Govindaraj SK, Mariyappan K, Boobalan S. CTAB enabled microwave-hydrothermal assisted mesoporous Zn-doped hydroxyapatite nanorods synthesis using bio-waste Nodipecten nodosus scallop for biomedical implant applications. ENVIRONMENTAL RESEARCH 2023; 216:114683. [PMID: 36341797 DOI: 10.1016/j.envres.2022.114683] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/25/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
In biomedical exploration, the predominant characteristic is synthesizing and fabricating multifunctional nanostructure with intensified biocompatibility and excellent antibacterial applications to avoid post-surgical implant failure. The objective of the current study is to examine ideal mesoporous zinc-doped hydroxyapatite (HAp) for future use in the field of biomedical research. In the present investigation, we synthesized mesoporous Zn-doped HAp nanorods with varied mole concentrations using a profound microwave hydrothermal method utilizing bio-waste Nodipecten nodosus scallop as a calcium source and CTAB as an organic modifier. Bio-waste Nodipecten nodosus scallop is a widely available cheap calcium precursor which is converted into pure and zinc-doped hydroxyapatite nanorods with the help of the microwave hydrothermal method. Different analytical techniques like spectroscopy and electron microscopy were employed to evaluate and precisely characterize the structural and morphological characteristics in synthesized pure and mesoporous Zn-doped HAp nanorods. CTAB and microwave hydrothermal methods successfully create mesoporous Zn-doped hydroxyapatite nanorods with different sizes and morphology. Mesoporous Zinc-doped HAp nanorods show excellent antibacterial activity against Klebsiella pneumoniae (MTCC 7407) and Bacillus subtilis (MTCC 1133), compared to other nanorods. ZnHAp-3 shows notable excellent results of antibacterial effect towards K. pneumoniae and B. subtilis, by exhibiting 12.36 ± 0.12 and 13.12 ± 0.16 mm zone of inhibition. Furthermore, ZnHAp-1 shows the lower zone of inhibition, while the ZnHAp-3 sample shows the highest zone of inhibition. A foremost study performed was toxicity assays to validate safe attributes of mesoporous zinc-doped HAp intensified with the proliferation function of the zebrafish model. The results reveal the non-toxic behavior of pure and mesoporous zinc-doped HAp samples. Thus, our studies provide evidence for the synthesis technique for the mesoporous zinc-doped HAp nanorods using a novel CTAB-enabled microwave hydrothermal method utilizing bio-waste Nodipecten nodosus scallop as a calcium source will be alternative affordable biocidal antibacterial materials for controlling post-surgical implant failures.
Collapse
Affiliation(s)
- Gopalu Karunakaran
- Institute for Applied Chemistry, Department of Fine Chemistry, Seoul National University of Science and Technology (Seoultech), Gongneung-ro 232, Nowon-gu, Seoul, 01811, Republic of Korea.
| | - Eun-Bum Cho
- Institute for Applied Chemistry, Department of Fine Chemistry, Seoul National University of Science and Technology (Seoultech), Gongneung-ro 232, Nowon-gu, Seoul, 01811, Republic of Korea.
| | - Govindan Suresh Kumar
- Department of Physics, K.S. Rangasamy College of Arts and Science (Autonomous), Tiruchengode, 637 215, Tamil Nadu, India
| | - Evgeny Kolesnikov
- Department of Functional Nanosystems and High-Temperature Materials, National University of Science and Technology "MISiS", Leninskiy Pr. 4, Moscow, 119049, Russia
| | - Sudha Kattakgoundar Govindaraj
- Department of Biotechnology, K.S. Rangasamy College of Arts and Science (Autonomous), Tiruchengode, 637 215, Tamil Nadu, India
| | - Kowsalya Mariyappan
- Department of Biotechnology, K.S. Rangasamy College of Arts and Science (Autonomous), Tiruchengode, 637 215, Tamil Nadu, India
| | - Selvakumar Boobalan
- Department of Biotechnology, K.S. Rangasamy College of Arts and Science (Autonomous), Tiruchengode, 637 215, Tamil Nadu, India
| |
Collapse
|
41
|
Li S, Cui Y, Liu H, Tian Y, Wang G, Fan Y, Wang J, Wu D, Wang Y. Application of bioactive metal ions in the treatment of bone defects. J Mater Chem B 2022; 10:9369-9388. [PMID: 36378123 DOI: 10.1039/d2tb01684b] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The treatment of bone defects is an important problem in clinical practice. The rapid development of bone tissue engineering (BTE) may provide a new method for bone defect treatment. Metal ions have been widely studied in BTE and demonstrated a significant effect in promoting bone tissue growth. Different metal ions can be used to treat bone defects according to specific conditions, including promoting osteogenic activity, inhibiting osteoclast activity, promoting vascular growth, and exerting certain antibacterial effects. Multiple studies have confirmed that metal ions-modified composite scaffolds can effectively promote bone defect healing. By studying current extensive research on metal ions in the treatment of bone defects, this paper reviews the mechanism of metal ions in promoting bone tissue growth, analyzes the loading mode of metal ions, and lists some specific applications of metal ions in different types of bone defects. Finally, this paper summarizes the advantages and disadvantages of metal ions and analyzes the future research trend of metal ions in BTE. This article can provide some new strategies and methods for future research and applications of metal ions in the treatment of bone defects.
Collapse
Affiliation(s)
- Shaorong Li
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China.
| | - Yutao Cui
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China.
| | - He Liu
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China.
| | - Yuhang Tian
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China.
| | - Gan Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China.
| | - Yi Fan
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China.
| | - Jingwei Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China.
| | - Dankai Wu
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China.
| | - Yanbing Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China.
| |
Collapse
|
42
|
Wang L, Li H, Cao Y, Song C, Chen Q, Hao J, Zhang W, Tian K. Four cases report: Treatment of knee joint cartilage defects using autologous chondrocyte patch implantation. Front Surg 2022; 9:1015091. [PMID: 36425890 PMCID: PMC9679023 DOI: 10.3389/fsurg.2022.1015091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/18/2022] [Indexed: 08/30/2023] Open
Abstract
INTRODUCTION Autologous chondrocyte implantation (ACI) is a crucial method for the treatment of defects in articular cartilage. However, the extant methods for the preparation of autologous chondrocyte patch are relatively complicated and money-consuming. Therefore, an efficient, reliable, easy-to-follow, and cost-effective technique is needed to overcome constraints. This case report aims to introduce an autologous chondrocyte patch fabrication technique to repair knee joint cartilage defects and report our typical cases with a 2-year follow-up. CASE PRESENTATION We described four cases in which patients complained of knee joint pain. According to radiological examination, the patients were diagnosed as knee joint cartilage defect. Arthroscopy and autologous chondrocyte patch implantation were performed as well as a 2-year follow up of patients. The autologous chondrocyte patch for knee joint cartilage repair was fabricated using a "sandwich" technique. The preoperative and postoperative knee function was evaluated by four subjective evaluation systems. MRI was performed for all patients to achieve more intuitionistic observation of the postoperative radiological changes of defect sites. The quality of repaired tissue was evaluated by Magnetic Resonance Observation of Cartilage Repair Tissue (MOCART). Postoperative follow-up showed improvement in clinical and MOCART scores for all patients. However, one patient complained of knee joint pain after walking for a long time or recreational activities from 12- to 18-month postoperatively. The location of pain for this patient was not in accordance with the location of cartilage defect. CONCLUSION The patients undergoing autologous chondrocyte patch implantation demonstrated clinical improvement and good quality of repaired tissue postoperatively. The procedure is an efficient and cost-effective treatment for knee joint cartilage defect in this report. In addition, patients with osteoarthritis carry the risk of a poor outcome after the procedure, and whether to have a procedure should be considered carefully.
Collapse
Affiliation(s)
- Le Wang
- Department of Joint and Sports Medicine, First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Han Li
- Department of Joint and Sports Medicine, First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Yiguo Cao
- Department of Joint and Sports Medicine, First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Cheng Song
- Department of Nuclear Medicine, First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Qi Chen
- Department of Joint and Sports Medicine, First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Jun Hao
- Department of Joint and Sports Medicine, First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Weiguo Zhang
- Department of Joint and Sports Medicine, First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Kang Tian
- Department of Joint and Sports Medicine, First Affiliated Hospital, Dalian Medical University, Dalian, China
| |
Collapse
|
43
|
Yang H, Jia B, Qu X, Dai K, Zheng Y. Modified Biodegradation Behavior Induced Beneficial Microenvironments for Bone Regeneration by Low Addition of Gadolinium in Zinc. Adv Healthc Mater 2022; 11:e2201184. [PMID: 35950991 DOI: 10.1002/adhm.202201184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/19/2022] [Indexed: 01/28/2023]
Abstract
Zinc (Zn) shows a great potential as a biodegradable material for bone implants after a decade of systematic research and development. However, uncontrollable biodegradation behavior and biphasic dose-response prevent Zn from fulfilling its essential role in facilitating bone regeneration. In this study, the low addition of gadolinium (Gd) modifies the intrinsic microstructure of Zn in terms of grain size distribution, grain boundary misorientation, and texture. Adding Gd refines grain size distribution and creates a stronger basal plane texture in Zn, consequently, changing the current density distribution and reducing the anode dissolution rate during corrosion. As a result, uniform degradation is more predominant in Zn-0.4Gd alloy implant, in comparison to localized degradation in pure Zn implant in bone environments. The modified biodegradation behavior of the Zn-0.4Gd alloy implant induces significantly better new bone formation and osseointegration compared to the pure Zn implant. Therefore, Gd with trace amounts is able to tune the degradation behavior and improve the performance of Zn-based implants in promoting bone regeneration.
Collapse
Affiliation(s)
- Hongtao Yang
- School of Engineering Medicine, Beihang University, Beijing, 100191, P. R. China.,School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Bo Jia
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, P. R. China
| | - Xinhua Qu
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, P. R. China
| | - Kerong Dai
- Department of Orthopedics, Shanghai Key Laboratory of Orthopedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, P. R. China
| | - Yufeng Zheng
- School of Engineering Medicine, Beihang University, Beijing, 100191, P. R. China
| |
Collapse
|
44
|
Mao M, Zhu S, Zhang L, Liu F, Kong L, Xue Y, Rotello VM, Han Y. An Extracellular Matrix-like Surface for Zn Alloy to Enhance Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2022; 14:43955-43964. [PMID: 36098563 DOI: 10.1021/acsami.2c12513] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Zn-based alloys are promising biodegradable implants for bone defect repair due to their good mechanical performance and degradability. However, local Zn2+ released from Zn-based implants can seriously affect adhering cell behaviors as well as new bone formation on implant surfaces. To address this issue, we have fabricated a bone-mimetic extracellular matrix (ECM)-like surface on Zn-1Ca implants using a hybrid process of anodization, hydrothermal treatment (HT), and fluorous-curing. The ECM-like surface consisted of Zn2SiO4 nanorods layered with collagen I (Col-I). The Zn2SiO4 nanorods were hemicrystallized and transformed by the reaction of Zn(OH)2 and SiO44- during the HT. The Zn2SiO4 nanorods effectively protected the substrate from corrosion; the Col-I layer decreased the degradation of Zn2SiO4 nanorods and further reduced Zn2+ release into the medium. This ECM-like surface generated a microenvironment with appropriate Zn2+ levels, nanorod-like topography, and Col-I. It significantly improved adhesion, proliferation, and differentiation of osteoblasts on implant surfaces and vascularization of endothelial cells in the extract medium. The in vivo results are in good agreement with in vitro tests, with the ECM-like surface significantly enhancing new bone formation and bone-implant contact compared to the bare implant surface. Overall, this bone-mimetic ECM-like material of Col-I layered Zn2SiO4 nanorods is a promising scaffold that promotes the bone regeneration of Zn-based implants.
Collapse
Affiliation(s)
- Mengting Mao
- State-Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Shengbo Zhu
- State-Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Lan Zhang
- State-Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Fuwei Liu
- Fourth Military Medical University, Xi'an, 710038, China
| | - Liang Kong
- Fourth Military Medical University, Xi'an, 710038, China
| | - Yang Xue
- State-Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Yong Han
- State-Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
45
|
Liu Y, Du T, Qiao A, Mu Y, Yang H. Zinc-Based Biodegradable Materials for Orthopaedic Internal Fixation. J Funct Biomater 2022; 13:jfb13040164. [PMID: 36278633 PMCID: PMC9589944 DOI: 10.3390/jfb13040164] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/15/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Traditional inert materials used in internal fixation have caused many complications and generally require removal with secondary surgeries. Biodegradable materials, such as magnesium (Mg)-, iron (Fe)- and zinc (Zn)-based alloys, open up a new pathway to address those issues. During the last decades, Mg-based alloys have attracted much attention by researchers. However, the issues with an over-fast degradation rate and release of hydrogen still need to be overcome. Zn alloys have comparable mechanical properties with traditional metal materials, e.g., titanium (Ti), and have a moderate degradation rate, potentially serving as a good candidate for internal fixation materials, especially at load-bearing sites of the skeleton. Emerging Zn-based alloys and composites have been developed in recent years and in vitro and in vivo studies have been performed to explore their biodegradability, mechanical property, and biocompatibility in order to move towards the ultimate goal of clinical application in fracture fixation. This article seeks to offer a review of related research progress on Zn-based biodegradable materials, which may provide a useful reference for future studies on Zn-based biodegradable materials targeting applications in orthopedic internal fixation.
Collapse
Affiliation(s)
- Yang Liu
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Tianming Du
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Aike Qiao
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Yongliang Mu
- School of Metallurgy, Northeastern University, Shenyang 110819, China
| | - Haisheng Yang
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
- Correspondence: ; Tel.: +86-(010)-6739-6657
| |
Collapse
|
46
|
Zheng Z, He Y, Long L, Gan S, Chen S, Zhang M, Xu J, Fu R, Liao Y, Zhu Z, Wang H, Chen W. Involvement of PI3K/Akt signaling pathway in promoting osteogenesis on titanium implant surfaces modified with novel non-thermal atmospheric plasma. Front Bioeng Biotechnol 2022; 10:975840. [PMID: 36185461 PMCID: PMC9523010 DOI: 10.3389/fbioe.2022.975840] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
Non-thermal atmospheric plasma (NTAP) modification to induce a hydrophilic titanium (Ti) surface with less carbon contamination, has been demonstrated to boost the osteogenic responses. In this study, we investigated the underlying bone formation mechanism of NTAP-Ti, and the involvement of PI3K/Akt signaling pathway in regulating osteogenic activities on NTAP-Ti surfaces. NTAP was employed for Ti activation, and PI3K inhibitor, LY294002, was applied to the suppression of PI3K/Akt pathway. We systematically and quantitatively detected the cell morphology, attachment, proliferation, osteogenic differentiation and mineralization of MC3T3-E1 mouse preosteoblasts, and molecular expressions involved in osteogenesis and PI3K/Akt signaling pathway in vivo and in vitro. A descent in osteoblast proliferation on Ti surfaces in relation to LY294002. Alkaline phosphatase (ALP) activity, as well as matrix mineralization, was mitigated by PI3K inhibitor in NTAP-Ti. Likewise, the expression levels of osteogenesis-related genes [ALP, osteocalcin (Ocn), osteopontin (Opn) and runt-related transcription factor 2 (Runx2)] on NTAP-Ti were notably attenuated by LY294002, as confirmed by the results of osteogenesis-related proteins (ALP, and Runx2) expression analysis. In addition, the expression of PI3K/Akt signal pathway proteins further verified the inhibition of LY294002 on Ti surfaces modified by NTAP. Collectively, the PI3K/Akt signal pathway was involved in the amelioration of osteogenesis induced by NTAP modification. NTAP treatment for Ti activation is promising in augmented osteogenic potential through the activation of PI3K/Akt signal pathway.
Collapse
Affiliation(s)
- Zheng Zheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yanjin He
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Li Long
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Shuaiqi Gan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Shujiang Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Min Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jia Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Ruijie Fu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yihan Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Zhimin Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Hang Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- *Correspondence: Hang Wang, ; Wenchuan Chen,
| | - Wenchuan Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- *Correspondence: Hang Wang, ; Wenchuan Chen,
| |
Collapse
|
47
|
Tan G, Chen R, Tu X, Guo L, Guo L, Xu J, Zhang C, Zou T, Sun S, Jiang Q. Research on the osteogenesis and biosafety of ECM–Loaded 3D–Printed Gel/SA/58sBG scaffolds. Front Bioeng Biotechnol 2022; 10:973886. [PMID: 36061449 PMCID: PMC9438739 DOI: 10.3389/fbioe.2022.973886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
Employing scaffolds containing cell–derived extracellular matrix (ECM) as an alternative strategy for the regeneration of bone defects has shown prominent advantages. Here, gelatin (Gel), sodium alginate (SA) and 58s bioactive glass (58sBG) were incorporated into deionized water to form ink, which was further fabricated into composite scaffolds by the 3D printing technique. Then, rat aortic endothelial cells (RAOECs) or rat bone mesenchymal stem cells (RBMSCs) were seeded on the scaffolds. After decellularization, two kinds of ECM–loaded scaffolds (RAOECs–ECM scaffold and RBMSCs–ECM scaffold) were obtained. The morphological characteristics of the scaffolds were assessed meticulously by scanning electron microscopy (SEM). In addition, the effects of scaffolds on the proliferation, adhesion, and osteogenic and angiogenic differentiation of RBMSCs were evaluated by Calcein AM staining and reverse transcription polymerase chain reaction (RT–PCR). In vivo, full–thickness bone defects with a diameter of 5 mm were made in the mandibles of Sprague–Dawley (SD) rats to assess the bone regeneration ability and biosafety of the scaffolds at 4, 8 and 16 weeks. The osteogenic and angiogenic potential of the scaffolds were investigated by microcomputed tomography (Micro–CT) and histological analysis. The biosafety of the scaffolds was evaluated by blood biochemical indices and histological staining of the liver, kidney and cerebrum. The results showed that the ECM–loaded scaffolds were successfully prepared, exhibiting interconnected pores and a gel–like ECM distributed on their surfaces. Consistently, in vitro experiments demonstrated that the scaffolds displayed favourable cytocompatibility. In vitro osteogenic differentiation studies showed that scaffolds coated with ECM could significantly increase the expression of osteogenic and angiogenic genes. In addition, the results from mandibular defect repair in vivo revealed that the ECM–loaded scaffolds effectively promoted the healing of bone defects when compared to the pure scaffold. Overall, these findings demonstrate that both RAOECs–ECM scaffold and RBMSCs–ECM scaffold can greatly enhance bone formation with good biocompatibility and thus have potential for clinical application in bone regeneration.
Collapse
Affiliation(s)
- Guozhong Tan
- Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Rongfeng Chen
- Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Xinran Tu
- Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Liyang Guo
- Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Lvhua Guo
- Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Jingyi Xu
- Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Chengfei Zhang
- Endodontology, Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Ting Zou
- Endodontology, Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Shuyu Sun
- Department of Endodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Shuyu Sun, ; Qianzhou Jiang,
| | - Qianzhou Jiang
- Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
- *Correspondence: Shuyu Sun, ; Qianzhou Jiang,
| |
Collapse
|
48
|
Zheng Z, Xu W, Xu Y, Xue Q. Mapping knowledge structure and themes trends of biodegradable Mg-based alloy for orthopedic application: A comprehensive bibliometric analysis. Front Bioeng Biotechnol 2022; 10:940700. [PMID: 36017343 PMCID: PMC9395602 DOI: 10.3389/fbioe.2022.940700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/12/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Since Lambotte and Payr first studied Mg-based alloys for orthopedics in 1900, the research of this field has finally ushered in vigorous development in the 21st century. From the perspective of quantitative analysis, this paper clearly demonstrated the global research trend from 2005 to 2021 by using bibliometrics and scientometric analysis. Methods: We obtained the publications from the Web of Science Core Collection (WoSCC) database. The bibliometric and scientometric analysis was conducted by using R software, CiteSpace software, VOSviewer software, Pajek software and Microsoft Excel program. Results: In total, 1921 publications were retrieved. It can be found that the number of publications is gradually increasing year by year. We can find that the most prolific countrie, institution and researcher are China, Chinese Academy of Sciences and Zheng Yufeng, respectively. The most influential journals in this field are Acta Biomaterialia and Biomaterials, with 16,511 and 12,314 total citations, respectively. By conducting the co-cited documents-based clustering analysis, 16 research hotspots and their representative studies have been identified. Besides, by conducting analysis of keywords, we divided the keyword citation bursts representing the development of the field into three stages. Conclusion: The number of researches on the biodegradable Mg-based alloys increased sharply all over the world in the 21st century. China has made significant progress in biodegradable Mg-based alloy research. More focus will be placed on osteogenic differentiation, fabrication, graphene oxide, antibacterial property, bioactive glass and nanocomposite, which may be the next popular topics in the field.
Collapse
Affiliation(s)
- Zitian Zheng
- Department of Orthopedics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Fifth School of Clinical Medicine, Peking University, Beijing, China
| | - Wennan Xu
- Department of Orthopedics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Yanan Xu
- Department of Orthopedics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Qingyun Xue
- Department of Orthopedics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Fifth School of Clinical Medicine, Peking University, Beijing, China
- *Correspondence: Qingyun Xue,
| |
Collapse
|
49
|
Jia B, Zhang Z, Zhuang Y, Yang H, Han Y, Wu Q, Jia X, Yin Y, Qu X, Zheng Y, Dai K. High-strength biodegradable zinc alloy implants with antibacterial and osteogenic properties for the treatment of MRSA-induced rat osteomyelitis. Biomaterials 2022; 287:121663. [PMID: 35810539 DOI: 10.1016/j.biomaterials.2022.121663] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 06/25/2022] [Accepted: 06/28/2022] [Indexed: 11/02/2022]
Abstract
Implant-related infections caused by drug-resistant bacteria remain a major challenge faced by orthopedic surgeons. Furthermore, ideal prevention and treatment methods are lacking in clinical practice. Here, based on the antibacterial and osteogenic properties of Zn alloys, Ag and Li were selected as alloying elements to prepare biodegradable Zn-Li-Ag ternary alloys. Li and Ag addition improved the mechanical properties of Zn-Li-Ag alloys. The Zn-0.8Li-0.5Ag alloy exhibited the highest ultimate tensile strength (>530 MPa). Zn-Li-Ag alloys showed strong bactericidal effects on methicillin-resistant Staphylococcus aureus (MRSA) in vitro. RNA sequencing revealed two MRSA-killing mechanisms exhibited by the Zn-0.8Li-0.5Ag alloy: cellular metabolism disturbance and induction of reactive oxygen species production. To verify that the therapeutic potential of the Zn-0.8Li-0.5Ag alloy is greater than that of Ti intramedullary nails, X-ray, micro-computed tomography, microbiological, and histological analyses were conducted in a rat femoral model of MRSA-induced osteomyelitis. Treatment with Zn-0.8Li-0.5Ag alloy implants resulted in remarkable infection control and favorable bone retention. The in vivo safety of this ternary alloy was confirmed by evaluating vital organ functions and pathological morphologies. We suggest that, with its good antibacterial and osteogenic properties, Zn-0.8Li-0.5Ag alloy can serve as an orthopedic implant material to prevent and treat orthopedic implant-related infections.
Collapse
Affiliation(s)
- Bo Jia
- Department of Orthopaedic Surgery, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 200011, China; Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Zechuan Zhang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Yifu Zhuang
- Trauma Center, Department of Orthopaedics and Traumatology, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, 201620, China
| | - Hongtao Yang
- School of Engineering Medicine, Beihang University, Beijing, 100191, China
| | - Yu Han
- Department of Orthopaedic Surgery, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 200011, China
| | - Qiang Wu
- Department of Orthopaedic Surgery, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 200011, China
| | - Xiufeng Jia
- Department of Orthopaedic Surgery, Wudi People's Hospital, Binzhou, 251900, China
| | - Yanhui Yin
- School of Economics and Trade, Shandong Management University, Jinan, 250357, China
| | - Xinhua Qu
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yufeng Zheng
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China.
| | - Kerong Dai
- Department of Orthopaedic Surgery, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 200011, China.
| |
Collapse
|
50
|
The Effect of Mn on the Mechanical Properties and In Vitro Behavior of Biodegradable Zn-2%Fe Alloy. METALS 2022. [DOI: 10.3390/met12081291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The attractiveness of Zn-based alloys as structural materials for biodegradable implants mainly relates to their excellent biocompatibility, critical physiological roles in the human body and excellent antibacterial properties. Furthermore, in in vivo conditions, they do not tend to produce hydrogen gas (as occurs in the case of Mg-based alloys) or voluminous oxide (as occurs in Fe-based alloys). However, the main disadvantages of Zn-based alloys are their reduced mechanical properties and their tendency to provoke undesirable fibrous encapsulation due to their relatively high standard reduction potential. The issue of fibrous encapsulation was previously addressed by the authors via the development of the Zn-2%Fe alloy that was selected as the base alloy for this study. This development assumed that the addition of Fe to pure Zn can create a microgalvanic effect between the Delta phase (Zn11Fe) and the Zn-matrix that significantly increases the biodegradation rate of the alloy. The aim of the present study is to examine the effect of up to 0.8% Mn on the mechanical properties of biodegradable Zn-2%Fe alloy and to evaluate the corrosion behavior and cytotoxicity performance in in vitro conditions. The selection of Mn as an alloying element is related to its vital role in the synthesis of proteins and the activation of enzyme systems, as well as the fact that Mn is not considered to be a toxic element. Microstructure characterization was carried out by optical microscopy and scanning electron microscopy (SEM), while phase analysis was obtained by X-ray diffraction (XRD). Mechanical properties were examined in terms of hardness and tensile strength, while corrosion performance and electrochemical behavior were assessed by immersion tests, open circuit potential examination, potentiodynamic polarization analysis and impedance spectroscopy. All the in vitro corrosion testing was performed in a simulated physiological environment in the form of a phosphate-buffered saline (PBS) solution. The cytotoxicity performance was evaluated by indirect cell viability analysis, carried out according to the ISO 10993-5/12 standard using Mus musculus 4T1 cells. The obtained results clearly demonstrate the strengthening effect of the biodegradable Zn-2%Fe alloy due to Mn addition. The effect of Mn on in vitro corrosion degradation was insignificant, while in parallel Mn had a favorable effect on indirect cell viability.
Collapse
|