1
|
Sklifasovskaya AP, Blagonravov M, Ryabinina A, Goryachev V, Syatkin S, Chibisov S, Akhmetova K, Prokofiev D, Agostinelli E. The role of heat shock proteins in the pathogenesis of heart failure (Review). Int J Mol Med 2023; 52:106. [PMID: 37772383 PMCID: PMC10558216 DOI: 10.3892/ijmm.2023.5309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/11/2023] [Indexed: 09/30/2023] Open
Abstract
The influence of heat shock proteins (HSPs) on protein quality control systems in cardiomyocytes is currently under investigation. The effect of HSPs on the regulated cell death of cardiomyocytes (CMCs) is of great importance, since they play a major role in the implementation of compensatory and adaptive mechanisms in the event of cardiac damage. HSPs mediate a number of mechanisms that activate the apoptotic cascade, playing both pro‑ and anti‑apoptotic roles depending on their location in the cell. Another type of cell death, autophagy, can in some cases lead to cell death, while in other situations it acts as a cell survival mechanism. The present review considered the characteristics of the expression of HSPs of different molecular weights in CMCs in myocardial damage caused by heart failure, as well as their role in the realization of certain types of regulated cell death.
Collapse
Affiliation(s)
| | | | - Anna Ryabinina
- Institute of Medicine, RUDN University, 117198 Moscow, Russia, Italy
| | | | - Sergey Syatkin
- Institute of Medicine, RUDN University, 117198 Moscow, Russia, Italy
| | - Sergey Chibisov
- Institute of Medicine, RUDN University, 117198 Moscow, Russia, Italy
| | - Karina Akhmetova
- Institute of Medicine, RUDN University, 117198 Moscow, Russia, Italy
| | - Daniil Prokofiev
- Institute of Medicine, RUDN University, 117198 Moscow, Russia, Italy
| | - Enzo Agostinelli
- Department of Sensory Organs, Faculty of Medicine and Dentistry, Sapienza University of Rome, University Hospital Policlinico Umberto I, I-00161 Rome, Italy
- International Polyamines Foundation, ETS-ONLUS, I-00159 Rome, Italy
| |
Collapse
|
2
|
Gu C, Fan X, Yu W. Functional Diversity of Mammalian Small Heat Shock Proteins: A Review. Cells 2023; 12:1947. [PMID: 37566026 PMCID: PMC10417760 DOI: 10.3390/cells12151947] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 08/12/2023] Open
Abstract
The small heat shock proteins (sHSPs), whose molecular weight ranges from 12∼43 kDa, are members of the heat shock protein (HSP) family that are widely found in all organisms. As intracellular stress resistance molecules, sHSPs play an important role in maintaining the homeostasis of the intracellular environment under various stressful conditions. A total of 10 sHSPs have been identified in mammals, sharing conserved α-crystal domains combined with variable N-terminal and C-terminal regions. Unlike large-molecular-weight HSP, sHSPs prevent substrate protein aggregation through an ATP-independent mechanism. In addition to chaperone activity, sHSPs were also shown to suppress apoptosis, ferroptosis, and senescence, promote autophagy, regulate cytoskeletal dynamics, maintain membrane stability, control the direction of cellular differentiation, modulate angiogenesis, and spermatogenesis, as well as attenuate the inflammatory response and reduce oxidative damage. Phosphorylation is the most significant post-translational modification of sHSPs and is usually an indicator of their activation. Furthermore, abnormalities in sHSPs often lead to aggregation of substrate proteins and dysfunction of client proteins, resulting in disease. This paper reviews the various biological functions of sHSPs in mammals, emphasizing the roles of different sHSPs in specific cellular activities. In addition, we discuss the effect of phosphorylation on the function of sHSPs and the association between sHSPs and disease.
Collapse
Affiliation(s)
- Chaoguang Gu
- Institute of Biochemistry, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Xiasha High-Tech Zone No.2 Road, Hangzhou 310018, China;
| | - Xinyi Fan
- Faculty of Arts and Science, University of Toronto, Toronto, ON M5S1A1, Canada;
| | - Wei Yu
- Institute of Biochemistry, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Xiasha High-Tech Zone No.2 Road, Hangzhou 310018, China;
| |
Collapse
|
3
|
Montano M, Oursler KK, Xu K, Sun YV, Marconi VC. Biological ageing with HIV infection: evaluating the geroscience hypothesis. THE LANCET. HEALTHY LONGEVITY 2022; 3:e194-e205. [PMID: 36092375 PMCID: PMC9454292 DOI: 10.1016/s2666-7568(21)00278-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Although people with HIV are living longer, as they age they remain disproportionately burdened with multimorbidity that is exacerbated in resource-poor settings. The geroscience hypothesis postulates that a discrete set of between five and ten hallmarks of biological ageing drive multimorbidity, but these processes have not been systematically examined in the context of people with HIV. We examine four major hallmarks of ageing (macromolecular damage, senescence, inflammation, and stem-cell dysfunction) as gerodrivers in the context of people with HIV. As a counterbalance, we introduce healthy ageing, physiological reserve, intrinsic capacity, and resilience as promoters of geroprotection that counteract gerodrivers. We discuss emerging geroscience-based diagnostic biomarkers and therapeutic strategies, and provide examples based on recent advances in cellular senescence, and other, non-pharmacological approaches. Finally, we present a conceptual model of biological ageing in the general population and in people with HIV that integrates gerodrivers and geroprotectors as modulators of homoeostatic reserves and organ function over the lifecourse.
Collapse
|
4
|
Alpha B-Crystallin in Muscle Disease Prevention: The Role of Physical Activity. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27031147. [PMID: 35164412 PMCID: PMC8840510 DOI: 10.3390/molecules27031147] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/29/2022] [Accepted: 02/01/2022] [Indexed: 12/19/2022]
Abstract
HSPB5 or alpha B-crystallin (CRYAB), originally identified as lens protein, is one of the most widespread and represented of the human small heat shock proteins (sHSPs). It is greatly expressed in tissue with high rates of oxidative metabolism, such as skeletal and cardiac muscles, where HSPB5 dysfunction is associated with a plethora of human diseases. Since HSPB5 has a major role in protecting muscle tissues from the alterations of protein stability (i.e., microfilaments, microtubules, and intermediate filament components), it is not surprising that this sHSP is specifically modulated by exercise. Considering the robust content and the protective function of HSPB5 in striated muscle tissues, as well as its specific response to muscle contraction, it is then realistic to predict a specific role for exercise-induced modulation of HSPB5 in the prevention of muscle diseases caused by protein misfolding. After offering an overview of the current knowledge on HSPB5 structure and function in muscle, this review aims to introduce the reader to the capacity that different exercise modalities have to induce and/or activate HSPB5 to levels sufficient to confer protection, with the potential to prevent or delay skeletal and cardiac muscle disorders.
Collapse
|
5
|
The relationship between small heat shock proteins and redox homeostasis during acute heat stress in chickens. J Therm Biol 2021; 100:103040. [PMID: 34503787 DOI: 10.1016/j.jtherbio.2021.103040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/01/2021] [Accepted: 06/25/2021] [Indexed: 12/25/2022]
Abstract
As heat stress is a major emerging issue in poultry farming, investigations on the molecular mechanisms of the heat-triggered cellular response in chickens are of special importance. In the present study, 32-day-old Ross 308 broiler chickens were subjected to 37 °C environmental temperature combined with 50% relative humidity for 4 or 8 h respectively. Following sampling, redox parameters such as malondialdehyde (MDA), reduced glutathione (GSH), protein carbonyl levels as well as glutathione peroxidase activity were assessed in liver, spleen, and kidney homogenates. The concentrations of small heat shock proteins (sHSP-s) HSP27, αA- and αB-crystallins were also investigated. Among these organs, the liver was found the most susceptible to heat-provoked oxidative stress, indicated by enhanced lipid peroxidation and rapid activation of protective pathways, including the definite increase of glutathione peroxidase activity and the excessive utilization of αA- and αB-crystallin proteins. Heat-associated decline of protein carbonylation and GSH content was observed in the liver in correlation with the increased involvement of αA- and αB-crystallins in cellular defense, resulting supposedly in an overcompensation mechanism. These data highlight the hepatic sensitivity to acute heat shock, potential adaptation mechanisms, and the specific role of sHSP-s in the restoration of physiologic cell function.
Collapse
|
6
|
Makley LN, Johnson OT, Ghanakota P, Rauch JN, Osborn D, Wu TS, Cierpicki T, Carlson HA, Gestwicki JE. Chemical validation of a druggable site on Hsp27/HSPB1 using in silico solvent mapping and biophysical methods. Bioorg Med Chem 2021; 34:115990. [PMID: 33549906 PMCID: PMC7968374 DOI: 10.1016/j.bmc.2020.115990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/24/2020] [Accepted: 12/28/2020] [Indexed: 11/26/2022]
Abstract
Destabilizing mutations in small heat shock proteins (sHsps) are linked to multiple diseases; however, sHsps are conformationally dynamic, lack enzymatic function and have no endogenous chemical ligands. These factors render sHsps as classically "undruggable" targets and make it particularly challenging to identify molecules that might bind and stabilize them. To explore potential solutions, we designed a multi-pronged screening workflow involving a combination of computational and biophysical ligand-discovery platforms. Using the core domain of the sHsp family member Hsp27/HSPB1 (Hsp27c) as a target, we applied mixed solvent molecular dynamics (MixMD) to predict three possible binding sites, which we confirmed using NMR-based solvent mapping. Using this knowledge, we then used NMR spectroscopy to carry out a fragment-based drug discovery (FBDD) screen, ultimately identifying two fragments that bind to one of these sites. A medicinal chemistry effort improved the affinity of one fragment by ~50-fold (16 µM), while maintaining good ligand efficiency (~0.32 kcal/mol/non-hydrogen atom). Finally, we found that binding to this site partially restored the stability of disease-associated Hsp27 variants, in a redox-dependent manner. Together, these experiments suggest a new and unexpected binding site on Hsp27, which might be exploited to build chemical probes.
Collapse
Affiliation(s)
- Leah N Makley
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Disease, University of California at San Francisco, San Francisco, CA 94158, United States; Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48109, United States
| | - Oleta T Johnson
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Disease, University of California at San Francisco, San Francisco, CA 94158, United States
| | - Phani Ghanakota
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48109, United States
| | - Jennifer N Rauch
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Disease, University of California at San Francisco, San Francisco, CA 94158, United States
| | - Delaney Osborn
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Disease, University of California at San Francisco, San Francisco, CA 94158, United States
| | - Taia S Wu
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Disease, University of California at San Francisco, San Francisco, CA 94158, United States
| | - Tomasz Cierpicki
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Heather A Carlson
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48109, United States
| | - Jason E Gestwicki
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Disease, University of California at San Francisco, San Francisco, CA 94158, United States.
| |
Collapse
|
7
|
Pedret A, Catalán Ú, Rubió L, Baiges I, Herrero P, Piñol C, Rodríguez-Calvo R, Canela N, Fernández-Castillejo S, Motilva MJ, Solà R. Phosphoproteomic Analysis and Protein-Protein Interaction of Rat Aorta GJA1 and Rat Heart FKBP1A after Secoiridoid Consumption from Virgin Olive Oil: A Functional Proteomic Approach. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:1536-1554. [PMID: 33502189 DOI: 10.1021/acs.jafc.0c07164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Protein functional interactions could explain the biological response of secoiridoids (SECs), main phenolic compounds in virgin olive oil (VOO). The aim was to assess protein-protein interactions (PPIs) of the aorta gap junction alpha-1 (GJA1) and the heart peptidyl-prolyl cis-trans isomerase (FKBP1A), plus the phosphorylated heart proteome, to describe new molecular pathways in the cardiovascular system in rats using nanoliquid chromatography coupled with mass spectrometry. PPIs modified by SECs and associated with GJA1 in aorta rat tissue were calpain, TUBA1A, and HSPB1. Those associated with FKBP1A in rat heart tissue included SUCLG1, HSPE1, and TNNI3. In the heart, SECs modulated the phosphoproteome through the main canonical pathways PI3K/mTOR signaling (AKT1S1 and GAB2) and gap junction signaling (GAB2 and GJA1). PPIs associated with GJA1 and with FKBP1A, the phosphorylation of GAB2, and the dephosphorylation of GJA1 and AKT1S1 in rat tissues are promising protein targets promoting cardiovascular protection to explain the health benefits of VOO.
Collapse
Affiliation(s)
- Anna Pedret
- Faculty of Medicine and Health Sciences, Medicine and Surgery Department, Functional Nutrition, Oxidation, and CVD Research Group (NFOC-Salut), Universitat Rovira i Virgili, Reus 43201, Spain
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, Reus 43204, Spain
| | - Úrsula Catalán
- Faculty of Medicine and Health Sciences, Medicine and Surgery Department, Functional Nutrition, Oxidation, and CVD Research Group (NFOC-Salut), Universitat Rovira i Virgili, Reus 43201, Spain
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, Reus 43204, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus 43204, Spain
| | - Laura Rubió
- Faculty of Medicine and Health Sciences, Medicine and Surgery Department, Functional Nutrition, Oxidation, and CVD Research Group (NFOC-Salut), Universitat Rovira i Virgili, Reus 43201, Spain
- Food Technology Department, Universitat de Lleida-AGROTECNIO Center, Lleida 25198, Spain
| | - Isabel Baiges
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences (COS), Joint Unit Universitat Rovira i Virgili-EURECAT, Reus 43204, Spain
| | - Pol Herrero
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences (COS), Joint Unit Universitat Rovira i Virgili-EURECAT, Reus 43204, Spain
| | - Carme Piñol
- Department of Medicine, Universitat de Lleida, Lleida 25008, Catalonia, Spain
- Institut de Recerca Biomèdica de Lleida Fundació Dr. Pifarré-IRBLLeida, Lleida 25198, Spain
| | - Ricardo Rodríguez-Calvo
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus 43204, Spain
- Research Unit on Lipids and Atherosclerosis, Vascular Medicine and Metabolism Unit, Universitat Rovira i Virgili, Reus 43204, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Institute of Health Carlos III, Madrid 28029, Spain
- Hospital Universitari Sant Joan de Reus (HUSJR), Reus 43204, Spain
| | - Núria Canela
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences (COS), Joint Unit Universitat Rovira i Virgili-EURECAT, Reus 43204, Spain
| | - Sara Fernández-Castillejo
- Faculty of Medicine and Health Sciences, Medicine and Surgery Department, Functional Nutrition, Oxidation, and CVD Research Group (NFOC-Salut), Universitat Rovira i Virgili, Reus 43201, Spain
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, Reus 43204, Spain
| | - Maria-Jose Motilva
- Instituto de Ciencias de la Vid y del Vino-ICVV CSIC, Gobierno de La Rioja, Universidad de La Rioja, Logroño 26006, Spain
| | - Rosa Solà
- Faculty of Medicine and Health Sciences, Medicine and Surgery Department, Functional Nutrition, Oxidation, and CVD Research Group (NFOC-Salut), Universitat Rovira i Virgili, Reus 43201, Spain
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, Reus 43204, Spain
- Hospital Universitari Sant Joan de Reus (HUSJR), Reus 43204, Spain
| |
Collapse
|
8
|
Prasch J, Bernhart E, Reicher H, Kollroser M, Rechberger GN, Koyani CN, Trummer C, Rech L, Rainer PP, Hammer A, Malle E, Sattler W. Myeloperoxidase-Derived 2-Chlorohexadecanal Is Generated in Mouse Heart during Endotoxemia and Induces Modification of Distinct Cardiomyocyte Protein Subsets In Vitro. Int J Mol Sci 2020; 21:ijms21239235. [PMID: 33287422 PMCID: PMC7730634 DOI: 10.3390/ijms21239235] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/27/2020] [Accepted: 12/01/2020] [Indexed: 02/07/2023] Open
Abstract
Sepsis is a major cause of mortality in critically ill patients and associated with cardiac dysfunction, a complication linked to immunological and metabolic aberrations. Cardiac neutrophil infiltration and subsequent release of myeloperoxidase (MPO) leads to the formation of the oxidant hypochlorous acid (HOCl) that is able to chemically modify plasmalogens (ether-phospholipids) abundantly present in the heart. This reaction gives rise to the formation of reactive lipid species including aldehydes and chlorinated fatty acids. During the present study, we tested whether endotoxemia increases MPO-dependent lipid oxidation/modification in the mouse heart. In hearts of lipopolysaccharide-injected mice, we observed significantly higher infiltration of MPO-positive cells, increased fatty acid content, and formation of 2-chlorohexadecanal (2-ClHDA), an MPO-derived plasmalogen modification product. Using murine HL-1 cardiomyocytes as in vitro model, we show that exogenously added HOCl attacks the cellular plasmalogen pool and gives rise to the formation of 2-ClHDA. Addition of 2-ClHDA to HL-1 cardiomyocytes resulted in conversion to 2-chlorohexadecanoic acid and 2-chlorohexadecanol, indicating fatty aldehyde dehydrogenase-mediated redox metabolism. However, a recovery of only 40% indicated the formation of non-extractable (protein) adducts. To identify protein targets, we used a clickable alkynyl analog, 2-chlorohexadec-15-yn-1-al (2-ClHDyA). After Huisgen 1,3-dipolar cycloaddition of 5-tetramethylrhodamine azide (N3-TAMRA) and two dimensional-gel electrophoresis (2D-GE), we were able to identify 51 proteins that form adducts with 2-ClHDyA. Gene ontology enrichment analyses revealed an overrepresentation of heat shock and chaperone, energy metabolism, and cytoskeletal proteins as major targets. Our observations in a murine endotoxemia model demonstrate formation of HOCl-modified lipids in the heart, while pathway analysis in vitro revealed that the chlorinated aldehyde targets specific protein subsets, which are central to cardiac function.
Collapse
Affiliation(s)
- Jürgen Prasch
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria; (J.P.); (E.B.); (H.R.); (C.N.K.); (C.T.); (E.M.)
| | - Eva Bernhart
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria; (J.P.); (E.B.); (H.R.); (C.N.K.); (C.T.); (E.M.)
| | - Helga Reicher
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria; (J.P.); (E.B.); (H.R.); (C.N.K.); (C.T.); (E.M.)
| | | | - Gerald N. Rechberger
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria;
- Center for Explorative Lipidomics, BioTechMed Graz, 8010 Graz, Austria
| | - Chintan N. Koyani
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria; (J.P.); (E.B.); (H.R.); (C.N.K.); (C.T.); (E.M.)
- Department of Internal Medicine, Division of Cardiology, Medical University of Graz, 8010 Graz, Austria; (L.R.); (P.P.R.)
| | - Christopher Trummer
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria; (J.P.); (E.B.); (H.R.); (C.N.K.); (C.T.); (E.M.)
| | - Lavinia Rech
- Department of Internal Medicine, Division of Cardiology, Medical University of Graz, 8010 Graz, Austria; (L.R.); (P.P.R.)
| | - Peter P. Rainer
- Department of Internal Medicine, Division of Cardiology, Medical University of Graz, 8010 Graz, Austria; (L.R.); (P.P.R.)
| | - Astrid Hammer
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria;
| | - Ernst Malle
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria; (J.P.); (E.B.); (H.R.); (C.N.K.); (C.T.); (E.M.)
| | - Wolfgang Sattler
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria; (J.P.); (E.B.); (H.R.); (C.N.K.); (C.T.); (E.M.)
- Center for Explorative Lipidomics, BioTechMed Graz, 8010 Graz, Austria
- Correspondence: ; Tel.: +43-316-385-71950
| |
Collapse
|
9
|
Sha E, Nakamura M, Ankai K, Yamamoto YY, Oka T, Yohda M. Functional and structural characterization of HspB1/Hsp27 from Chinese hamster ovary cells. FEBS Open Bio 2019; 9:1826-1834. [PMID: 31441240 PMCID: PMC6768103 DOI: 10.1002/2211-5463.12726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 08/04/2019] [Accepted: 08/20/2019] [Indexed: 11/20/2022] Open
Abstract
Small heat shock proteins (sHsps) endow cells with stress tolerance. Of the various sHsps in mammals, HspB1, also known as Hsp27, is the most ubiquitous. To examine the structure and function of HspB1, we expressed, purified, and characterized HspB1 from Chinese hamster (Cricetulus griseus) ovary cells (CgHspB1). CgHspB1 forms a large oligomeric structure. We observed a monodisperse 16‐mer with an elongated sphere, but this is affected by changes in various conditions, including temperature. Under dilute conditions, CgHspB1 dissociates into small oligomers at elevated temperatures. The dissociated conformers interacted with the gel filtration column through hydrophobic interactions. In contrast, dissociation of the oligomer was not observed by small‐angle X‐ray scattering at 55 °C. The result partially coincides with the results of size exclusion chromatography, showing that dissociation did not occur at high protein concentrations. However, a significant structural change in the oligomeric conformations appears to occur between room and higher temperatures. Reflecting their status as homeotherms, mammalian sHsps are regulated by phosphorylation. A phosphorylation mimic mutant of CgHspB1 with the replacement of Ser15 to Asp exhibited relatively lower oligomer stability and greater protective ability against thermal aggregation than the wild‐type protein. The result clearly shows a correlation between oligomer dissociation and chaperone activity.
Collapse
Affiliation(s)
- Eiryo Sha
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Japan
| | - Manami Nakamura
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Japan
| | - Kazuya Ankai
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Japan
| | - Yohei Y Yamamoto
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Japan
| | - Toshihiko Oka
- Department of Physics, Faculty of Science, Shizuoka University, Japan
| | - Masafumi Yohda
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Japan
| |
Collapse
|
10
|
Zhang J, Liu J, Wu J, Li W, Chen Z, Yang L. Progression of the role of CRYAB in signaling pathways and cancers. Onco Targets Ther 2019; 12:4129-4139. [PMID: 31239701 PMCID: PMC6553995 DOI: 10.2147/ott.s201799] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 04/07/2019] [Indexed: 01/18/2023] Open
Abstract
CRYAB is a member of the small heat shock protein family, first discovered in the lens of the eye, and involved in various diseases, such as eye and heart diseases and even cancers, for example, breast cancer, lung cancer, prostate cancer, and ovarian cancer. In addition, CRYAB proteins are involved in a variety of signaling pathways including apoptosis, inflammation, and oxidative stress. This review summarizes the recent progress concerning the role of CRYAB in signaling pathways and diseases. Therefore, the role of CRYAB in signaling pathways and cancers is urgently needed. This article reviews the regulation of CRYAB in the apoptotic inflammatory signaling pathway and its role in cancers progression and as a key role in anti-cancer therapy targeting CRYAB in an effort to improve outcomes for patients with metastatic disease.
Collapse
Affiliation(s)
- JunFei Zhang
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750000, People's Republic of China
| | - Jia Liu
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750000, People's Republic of China
| | - JiaLi Wu
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750000, People's Republic of China
| | - WenFeng Li
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750000, People's Republic of China
| | - ZhongWei Chen
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750000, People's Republic of China
| | - LiShan Yang
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750000, People's Republic of China
| |
Collapse
|
11
|
Abaspour AR, Taghikhani M, Parizadeh SMR, Seyedi SMR, Ghazizadeh H, Kazemi E, Moohebati M, Ghafoori F, Mardannik M, Avan A, Ferns GA, Ghayour-Mobarhan M. HSP27 expression in the human peripheral blood mononuclear cells as an early prognostic biomarker in coronary artery disease patients. Diabetes Metab Syndr 2019; 13:1791-1795. [PMID: 31235096 DOI: 10.1016/j.dsx.2019.04.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 04/11/2019] [Indexed: 01/19/2023]
Abstract
BACKGROUND Coronary artery disease (CAD), is one of the leading causes of death globally. CAD risk factors, such as smoking, dyslipidemia, and obesity, are mainly associated with increased oxidative stress. Heat Shock Protein-27 (HSP27) has a protective role in conditions of oxidative stress. The aim of the current study was to investigate the relationship between HSP27 mRNA copy numbers in the peripheral blood mononuclear cell (PBMCs) and the degree of CAD progression. METHODS A total of 103 subjects aged 49-71 years were recruited; Patients with CAD were categorized into two groups: patients having <50% stenosis (Angio-) and ≥50% stenosis (Angio+). The mRNA copy numbers of HSP-27 in PBMCs, anthropometric-parameters, fasting blood glucose (FBG), and the fasted serum lipid profile were evaluated. RESULTS Angio+ patients had a significantly higher level of TC and LDL-C values compared with Angio- patients and the control group (p < 0.05). The HSP27 expression in PBMCs was significantly increased in Angio+ and Angio- subjects, compared to the control group. Moreover, there was a significant association between the FBG, TC, LDL-C and TG among the groups (p < 0.05). CONCLUSION It was shown that the increased expression of HSP27 in PBMCs of CAD patients is significantly correlated with CAD severity in Angio+ subjects, which can be used as an early prognostic biomarker, indicating the degree of overall oxidative stress in patients. In order to verify this statement, it is suggested to measure Pro-oxidant- Antioxidant Balance (PAB) test by the same design in subsequent studies.
Collapse
Affiliation(s)
- Ali Reza Abaspour
- Department of Molecular Science, North Khorasan University of Medical Science, Faculty of Medicine, Bojnurd, Iran
| | - Mohammad Taghikhani
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | | | - Hamideh Ghazizadeh
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elham Kazemi
- Fertility and Infertility Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohsen Moohebati
- Cardiovascular Research Center, Avicenna Research Institute, Mashhad University of Medical Science (MUMS), Mashhad, Iran
| | - Fahime Ghafoori
- Department of Molecular Science, North Khorasan University of Medical Science, Faculty of Medicine, Bojnurd, Iran
| | - Maryam Mardannik
- Department of Biochemistry, Payam Nor University, Faculty of Basic Science, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex BN1 9PH, UK
| | - Majid Ghayour-Mobarhan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
12
|
van Mil A, Balk GM, Neef K, Buikema JW, Asselbergs FW, Wu SM, Doevendans PA, Sluijter JPG. Modelling inherited cardiac disease using human induced pluripotent stem cell-derived cardiomyocytes: progress, pitfalls, and potential. Cardiovasc Res 2018; 114:1828-1842. [PMID: 30169602 PMCID: PMC6887927 DOI: 10.1093/cvr/cvy208] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/06/2018] [Accepted: 08/28/2018] [Indexed: 12/17/2022] Open
Abstract
In the past few years, the use of specific cell types derived from induced pluripotent stem cells (iPSCs) has developed into a powerful approach to investigate the cellular pathophysiology of numerous diseases. Despite advances in therapy, heart disease continues to be one of the leading causes of death in the developed world. A major difficulty in unravelling the underlying cellular processes of heart disease is the extremely limited availability of viable human cardiac cells reflecting the pathological phenotype of the disease at various stages. Thus, the development of methods for directed differentiation of iPSCs to cardiomyocytes (iPSC-CMs) has provided an intriguing option for the generation of patient-specific cardiac cells. In this review, a comprehensive overview of the currently published iPSC-CM models for hereditary heart disease is compiled and analysed. Besides the major findings of individual studies, detailed methodological information on iPSC generation, iPSC-CM differentiation, characterization, and maturation is included. Both, current advances in the field and challenges yet to overcome emphasize the potential of using patient-derived cell models to mimic genetic cardiac diseases.
Collapse
Affiliation(s)
- Alain van Mil
- Division Heart and Lungs, Department of Cardiology, Experimental Cardiology Laboratory, Regenerative Medicine Center, University Medical Center Utrecht, Internal Mail No G03.550, GA Utrecht, the Netherlands
- Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Geerthe Margriet Balk
- Division Heart and Lungs, Department of Cardiology, Experimental Cardiology Laboratory, Regenerative Medicine Center, University Medical Center Utrecht, Internal Mail No G03.550, GA Utrecht, the Netherlands
- Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Klaus Neef
- Division Heart and Lungs, Department of Cardiology, Experimental Cardiology Laboratory, Regenerative Medicine Center, University Medical Center Utrecht, Internal Mail No G03.550, GA Utrecht, the Netherlands
- Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Jan Willem Buikema
- Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Folkert W Asselbergs
- Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Faculty of Population Health Sciences, Institute of Cardiovascular Science, University College London, London, UK
- Durrer Center for Cardiovascular Research, Netherlands Heart Institute, Utrecht, the Netherlands
- Farr Institute of Health Informatics Research and Institute of Health Informatics, University College London, London, UK
| | - Sean M Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Pieter A Doevendans
- Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Joost P G Sluijter
- Division Heart and Lungs, Department of Cardiology, Experimental Cardiology Laboratory, Regenerative Medicine Center, University Medical Center Utrecht, Internal Mail No G03.550, GA Utrecht, the Netherlands
- Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
13
|
Park AM, Tsunoda I, Yoshie O. Heat shock protein 27 promotes cell cycle progression by down-regulating E2F transcription factor 4 and retinoblastoma family protein p130. J Biol Chem 2018; 293:15815-15826. [PMID: 30166342 DOI: 10.1074/jbc.ra118.003310] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 08/23/2018] [Indexed: 02/05/2023] Open
Abstract
Heat shock protein 27 (HSP27) protects cells under stress. Here, we demonstrate that HSP27 also promotes cell cycle progression of MRC-5 human lung fibroblast cells. Serum starvation for 24 h induced G1 arrest in these cells, and upon serum refeeding, the cells initiated cell cycle progression accompanied by an increase in HSP27 protein levels. HSP27 levels peaked at 12 h, and transcriptional up-regulation of six G2/M-related genes (CCNA2, CCNB1, CCNB2, CDC25C, CDCA3, and CDK1) peaked at 24-48 h. siRNA-mediated HSP27 silencing in proliferating MRC-5 cells induced G2 arrest coinciding with down-regulation of these six genes. Of note, the promoters of all of these genes have the cell cycle-dependent element and/or the cell cycle gene-homology region. These promoter regions are known to be bound by the E2F family proteins (E2F-1 to E2F-8) and retinoblastoma (RB) family proteins (RB1, p107, and p130), among which E2F-4 and p130 were strongly up-regulated in HSP27-knockdown cells. E2F-4 or p130 knockdown concomitant with the HSP27 knockdown rescued MRC-5 cells from G2 arrest and up-regulated the six cell cycle genes. Moreover, we observed cellular senescence in MRC-5 cells on day 3 after the HSP27 knockdown, as evidenced by increased senescence-associated β-gal activity and up-regulated inflammatory cytokines. The cellular senescence was also suppressed by the concomitant knockdown of E2F-4/HSP27 or p130/HSP27. Our findings indicate that HSP27 promotes cell cycle progression of MRC-5 cells by suppressing expression of the transcriptional repressors E2F-4 and p130.
Collapse
Affiliation(s)
- Ah-Mee Park
- From the Department of Microbiology, Kindai University Faculty of Medicine, Osakasayama, Osaka 589-8511, Japan and
| | - Ikuo Tsunoda
- From the Department of Microbiology, Kindai University Faculty of Medicine, Osakasayama, Osaka 589-8511, Japan and
| | - Osamu Yoshie
- From the Department of Microbiology, Kindai University Faculty of Medicine, Osakasayama, Osaka 589-8511, Japan and.,the Health and Kampo Institute, 1-11-10 Murasakiyama, Sendai, Miyagi 981-3205, Japan
| |
Collapse
|
14
|
Surya SL, Long MJC, Urul DA, Zhao Y, Mercer EJ, EIsaid IM, Evans T, Aye Y. Cardiovascular Small Heat Shock Protein HSPB7 Is a Kinetically Privileged Reactive Electrophilic Species (RES) Sensor. ACS Chem Biol 2018; 13:1824-1831. [PMID: 29397684 PMCID: PMC6260788 DOI: 10.1021/acschembio.7b00925] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Small heat shock protein (sHSP)-B7 (HSPB7) is a muscle-specific member of the non-ATP-dependent sHSPs. The precise role of HSPB7 is enigmatic. Here, we disclose that zebrafish Hspb7 is a kinetically privileged sensor that is able to react rapidly with native reactive electrophilic species (RES), when only substoichiometric amounts of RES are available in proximity to Hspb7 expressed in living cells. Among the two Hspb7-cysteines, this RES sensing is fulfilled by a single cysteine (C117). Purification and characterizations in vitro reveal that the rate for RES adduction is among the most efficient reported for protein-cysteines with native carbonyl-based RES. Covalent-ligand binding is accompanied by structural changes (increase in β-sheet-content), based on circular dichroism analysis. Among the two cysteines, only C117 is conserved across vertebrates; we show that the human ortholog is also capable of RES sensing in cells. Furthermore, a cancer-relevant missense mutation reduces this RES-sensing property. This evolutionarily conserved cysteine-biosensor may play a redox-regulatory role in cardioprotection.
Collapse
Affiliation(s)
- Sanjna L. Surya
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Marcus J. C. Long
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Daniel A. Urul
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Yi Zhao
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Emily J. Mercer
- Department of Surgery, Weill Cornell Medicine, New York, New York 10065, United States
| | - Islam M. EIsaid
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Todd Evans
- Department of Surgery, Weill Cornell Medicine, New York, New York 10065, United States
| | - Yimon Aye
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
- Department of Biochemistry, Weill Cornell Medicine, New York, New York 10065, United States
| |
Collapse
|
15
|
Penna C, Sorge M, Femminò S, Pagliaro P, Brancaccio M. Redox Aspects of Chaperones in Cardiac Function. Front Physiol 2018; 9:216. [PMID: 29615920 PMCID: PMC5864891 DOI: 10.3389/fphys.2018.00216] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 02/26/2018] [Indexed: 12/14/2022] Open
Abstract
Molecular chaperones are stress proteins that allow the correct folding or unfolding as well as the assembly or disassembly of macromolecular cellular components. Changes in expression and post-translational modifications of chaperones have been linked to a number of age- and stress-related diseases including cancer, neurodegeneration, and cardiovascular diseases. Redox sensible post-translational modifications, such as S-nitrosylation, glutathionylation and phosphorylation of chaperone proteins have been reported. Redox-dependent regulation of chaperones is likely to be a phenomenon involved in metabolic processes and may represent an adaptive response to several stress conditions, especially within mitochondria, where it impacts cellular bioenergetics. These post-translational modifications might underlie the mechanisms leading to cardioprotection by conditioning maneuvers as well as to ischemia/reperfusion injury. In this review, we discuss this topic and focus on two important aspects of redox-regulated chaperones, namely redox regulation of mitochondrial chaperone function and cardiac protection against ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Claudia Penna
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| | - Matteo Sorge
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Saveria Femminò
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| | - Pasquale Pagliaro
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| | - Mara Brancaccio
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| |
Collapse
|
16
|
McLaughlin D, Zhao Y, O'Neill KM, Edgar KS, Dunne PD, Kearney AM, Grieve DJ, McDermott BJ. Signalling mechanisms underlying doxorubicin and Nox2 NADPH oxidase-induced cardiomyopathy: involvement of mitofusin-2. Br J Pharmacol 2017; 174:3677-3695. [PMID: 28261787 PMCID: PMC5647180 DOI: 10.1111/bph.13773] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 02/27/2017] [Accepted: 03/01/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE The anthracycline doxorubicin (DOX), although successful as a first-line cancer treatment, induces cardiotoxicity linked with increased production of myocardial ROS, with Nox2 NADPH oxidase-derived superoxide reported to play a key role. The aim of this study was to identify novel mechanisms underlying development of cardiac remodelling/dysfunction further to DOX-stimulated Nox2 activation. EXPERIMENTAL APPROACH Nox2-/- and wild-type (WT) littermate mice were administered DOX (12 mg·kg-1 over 3 weeks) prior to study at 4 weeks. Detailed mechanisms were investigated in murine HL-1 cardiomyocytes, employing a robust model of oxidative stress, gene silencing and pharmacological tools. KEY RESULTS DOX-induced cardiac dysfunction, cardiomyocyte remodelling, superoxide production and apoptosis in WT mice were attenuated in Nox2-/- mice. Transcriptional analysis of left ventricular tissue identified 152 differentially regulated genes (using adjusted P < 0.1) in DOX-treated Nox2-/- versus WT mice, and network analysis highlighted 'Cell death and survival' as the biological function most significant to the dataset. The mitochondrial membrane protein, mitofusin-2 (Mfn2), appeared as a strong candidate, with increased expression (1.5-fold), confirmed by qPCR (1.3-fold), matching clear published evidence of promotion of cardiomyocyte cell death. In HL-1 cardiomyocytes, targeted siRNA knockdown of Nox2 decreased Mfn2 protein expression, but not vice versa. While inhibition of Nox2 activity along with DOX treatment attenuated its apoptotic and cytotoxic effects, reduced apoptosis after Mfn2 silencing reflected a sustained cytotoxic response and reduced cell viability. CONCLUSIONS AND IMPLICATIONS DOX-induced and Nox2-mediated up-regulation of Mfn2, rather than contributing to cardiomyocyte dysfunction through apoptotic pathways, appears to promote a protective mechanism. LINKED ARTICLES This article is part of a themed section on New Insights into Cardiotoxicity Caused by Chemotherapeutic Agents. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.21/issuetoc.
Collapse
Affiliation(s)
- Declan McLaughlin
- Centre for Experimental Medicine, Wellcome‐Wolfson BuildingQueen's University BelfastBelfastUK
| | - Youyou Zhao
- Centre for Experimental Medicine, Wellcome‐Wolfson BuildingQueen's University BelfastBelfastUK
| | - Karla M O'Neill
- Centre for Experimental Medicine, Wellcome‐Wolfson BuildingQueen's University BelfastBelfastUK
| | - Kevin S Edgar
- Centre for Experimental Medicine, Wellcome‐Wolfson BuildingQueen's University BelfastBelfastUK
| | - Philip D Dunne
- Centre for Cancer Research and Cell BiologyQueen's University BelfastBelfastUK
| | - Anna M Kearney
- Centre for Experimental Medicine, Wellcome‐Wolfson BuildingQueen's University BelfastBelfastUK
| | - David J Grieve
- Centre for Experimental Medicine, Wellcome‐Wolfson BuildingQueen's University BelfastBelfastUK
| | - Barbara J McDermott
- Centre for Experimental Medicine, Wellcome‐Wolfson BuildingQueen's University BelfastBelfastUK
| |
Collapse
|
17
|
Abstract
The incidence and prevalence of cardiac diseases, which are the main cause of death worldwide, are likely to increase because of population ageing. Prevailing theories about the mechanisms of ageing feature the gradual derailment of cellular protein homeostasis (proteostasis) and loss of protein quality control as central factors. In the heart, loss of protein patency, owing to flaws in genetically-determined design or because of environmentally-induced 'wear and tear', can overwhelm protein quality control, thereby triggering derailment of proteostasis and contributing to cardiac ageing. Failure of protein quality control involves impairment of chaperones, ubiquitin-proteosomal systems, autophagy, and loss of sarcomeric and cytoskeletal proteins, all of which relate to induction of cardiomyocyte senescence. Targeting protein quality control to maintain cardiac proteostasis offers a novel therapeutic strategy to promote cardiac health and combat cardiac disease. Currently marketed drugs are available to explore this concept in the clinical setting.
Collapse
Affiliation(s)
- Robert H Henning
- Department of Clinical Pharmacy and Pharmacology, University Medical Centre Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Bianca J J M Brundel
- Department of Physiology, Amsterdam Cardiovascular Sciences, VU University Medical Center, De Boelelaan 1117, 1081 HZ Amsterdam, The Netherlands
| |
Collapse
|
18
|
Brodehl A, Gaertner-Rommel A, Klauke B, Grewe SA, Schirmer I, Peterschröder A, Faber L, Vorgerd M, Gummert J, Anselmetti D, Schulz U, Paluszkiewicz L, Milting H. The novel αB-crystallin (CRYAB) mutation p.D109G causes restrictive cardiomyopathy. Hum Mutat 2017; 38:947-952. [PMID: 28493373 DOI: 10.1002/humu.23248] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/03/2017] [Accepted: 05/03/2017] [Indexed: 11/09/2022]
Abstract
Restrictive cardiomyopathy (RCM) is a rare heart disease characterized by diastolic dysfunction and atrial enlargement. The genetic etiology of RCM is not completely known. We identified by a next-generation sequencing panel the novel CRYAB missense mutation c.326A>G, p.D109G in a small family with RCM in combination with skeletal myopathy with an early onset of the disease. CRYAB encodes αB-crystallin, a member of the small heat shock protein family, which is highly expressed in cardiac and skeletal muscle. In addition to in silico prediction analysis, our structural analysis of explanted myocardial tissue of a mutation carrier as well as in vitro cell transfection experiments revealed abnormal protein aggregation of mutant αB-crystallin and desmin, supporting the deleterious effect of this novel mutation. In conclusion, CRYAB appears to be a novel RCM gene, which might have relevance for the molecular diagnosis and the genetic counseling of further affected families in the future.
Collapse
Affiliation(s)
- Andreas Brodehl
- Department of Thoracic and Cardiovascular Surgery, Heart and Diabetes Centre NRW, University Hospital of the Ruhr-University Bochum, Erich and Hanna Klessmann Institute for Cardiovascular Research & Development (EHKI), Bad Oeynhausen, Germany
| | - Anna Gaertner-Rommel
- Department of Thoracic and Cardiovascular Surgery, Heart and Diabetes Centre NRW, University Hospital of the Ruhr-University Bochum, Erich and Hanna Klessmann Institute for Cardiovascular Research & Development (EHKI), Bad Oeynhausen, Germany
| | - Bärbel Klauke
- Department of Thoracic and Cardiovascular Surgery, Heart and Diabetes Centre NRW, University Hospital of the Ruhr-University Bochum, Erich and Hanna Klessmann Institute for Cardiovascular Research & Development (EHKI), Bad Oeynhausen, Germany
| | - Simon Andre Grewe
- Department of Thoracic and Cardiovascular Surgery, Heart and Diabetes Centre NRW, University Hospital of the Ruhr-University Bochum, Erich and Hanna Klessmann Institute for Cardiovascular Research & Development (EHKI), Bad Oeynhausen, Germany
| | - Ilona Schirmer
- Department of Thoracic and Cardiovascular Surgery, Heart and Diabetes Centre NRW, University Hospital of the Ruhr-University Bochum, Erich and Hanna Klessmann Institute for Cardiovascular Research & Development (EHKI), Bad Oeynhausen, Germany
| | - Andreas Peterschröder
- Department of Thoracic and Cardiovascular Surgery, Heart and Diabetes Centre NRW, University Hospital of the Ruhr-University Bochum, Institute of Radiology, Nuclear Medicine and Molecular Imaging, Bad Oeynhausen, Germany
| | - Lothar Faber
- Department of Thoracic and Cardiovascular Surgery, Heart and Diabetes Centre NRW, University Hospital of the Ruhr-University Bochum, Clinic of Cardiology, Bad Oeynhausen, Germany
| | - Matthias Vorgerd
- Department of Neurology, BG-University Hospital Bergmannsheil, Bochum, Germany
| | - Jan Gummert
- Department of Thoracic and Cardiovascular Surgery, Heart and Diabetes Centre NRW, University Hospital of the Ruhr-University Bochum, Erich and Hanna Klessmann Institute for Cardiovascular Research & Development (EHKI), Bad Oeynhausen, Germany
| | - Dario Anselmetti
- Bielefeld University and Bielefeld Institute for Nanoscience (BINAS), Faculty of Physics, Experimental Biophysics and Applied Nanoscience, Bielefeld, Germany
| | - Uwe Schulz
- Department of Thoracic and Cardiovascular Surgery, Heart and Diabetes Centre NRW, University Hospital of the Ruhr-University Bochum, Erich and Hanna Klessmann Institute for Cardiovascular Research & Development (EHKI), Bad Oeynhausen, Germany
| | - Lech Paluszkiewicz
- Department of Thoracic and Cardiovascular Surgery, Heart and Diabetes Centre NRW, University Hospital of the Ruhr-University Bochum, Erich and Hanna Klessmann Institute for Cardiovascular Research & Development (EHKI), Bad Oeynhausen, Germany
| | - Hendrik Milting
- Department of Thoracic and Cardiovascular Surgery, Heart and Diabetes Centre NRW, University Hospital of the Ruhr-University Bochum, Erich and Hanna Klessmann Institute for Cardiovascular Research & Development (EHKI), Bad Oeynhausen, Germany
| |
Collapse
|
19
|
Ogata M, Van Hung T, Tari H, Arakawa T, Suzuki T. Dietary psyllium fiber increases intestinal heat shock protein 25 expression in mice. Nutr Res 2017; 39:25-33. [DOI: 10.1016/j.nutres.2017.02.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 12/22/2016] [Accepted: 02/01/2017] [Indexed: 12/21/2022]
|
20
|
Zou Y, Hu XM, Zhang T, Wei HK, Zhou YF, Zhou ZX, Peng J. Effects of dietary oregano essential oil and vitamin E supplementation on meat quality, stress response and intestinal morphology in pigs following transport stress. J Vet Med Sci 2016; 79:328-335. [PMID: 27916788 PMCID: PMC5326938 DOI: 10.1292/jvms.16-0576] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
This study investigates the effects of dietary oregano essential oil (OEO) and vitamin E
(Vit E) supplementation on meat quality, stress response and intestinal morphology in pigs
following transport stress. A total of 288 finishing pigs were randomly assigned to three
groups: a basal diet or a basal diet supplemented either with 200 mg/kg Vit E or 25 mg/kg
OEO. After a 28-day feeding trial, total of 132 finishing pigs according diet and
transport stress were assigned to one of four treatment groups: 1) control treatment
without transport stress (Control group), 2) control treatment with 5-hr transport stress
(Negative group), 3) Vit E treatment with 5-hr transport stress and 4) OEO treatment with
5-hr transport stress. Transport stress pigs had lower muscle 45 min pH (pHi) and higher
drip loss than control pigs. Dietary OEO and Vit E supplementation significantly increased
45min pH under transport stress, and the OEO groups produced lower 24-hr drip loss values
(P<0.05) than that of pigs from the negative group. The
OEO-supplemented pigs showed decreased serum levels of creatine kinase (CK) and cortisol
(P<0.05), and decreased Hsp 27 (heat shock protein
27) and Hsp 70 (heat shock protein 70) mRNA expression in the muscle
(P<0.05). Additionally, histological analysis revealed intestinal
epithelial damage in transport stress pigs that was reversed by dietary supplementation
with OEO. In conclusion, supplementation with dietary OEO may be superior to
supplementation with dietary Vit E in alleviating the meat quality, stress response and
intestinal morphology of pigs after challenge due to transportation stress.
Collapse
Affiliation(s)
- Yi Zou
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | | | | | | | | | | | | |
Collapse
|
21
|
Kim HY, Kim YS, Yun HH, Im CN, Ko JH, Lee JH. ERK-mediated phosphorylation of BIS regulates nuclear translocation of HSF1 under oxidative stress. Exp Mol Med 2016; 48:e260. [PMID: 27659916 PMCID: PMC5050300 DOI: 10.1038/emm.2016.84] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 05/10/2016] [Accepted: 05/12/2016] [Indexed: 12/28/2022] Open
Abstract
B-cell lymphoma (BCL)-2-interacting cell death suppressor (BIS) has diverse cellular functions depending on its binding partners. However, little is known about the effects of biochemical modification of BIS on its various activities under oxidative stress conditions. In this study, we showed that H2O2 reduced BIS mobility on SDS–polyacrylamide gels in a time-dependent manner via the activation of extracellular signaling-regulated kinase (ERK). The combined results of mass spectroscopy and computational prediction identified Thr285 and Ser289 in BIS as candidate residues for phosphorylation by ERK under oxidative stress conditions. Deletion of these sites resulted in a partial reduction in the H2O2-induced mobility shift relative to that of the wild-type BIS protein; overexpression of the deletion mutant sensitized A172 cells to H2O2-induced cell death without increasing the level of intracellular reactive oxygen species. Expression of the BIS deletion mutant decreased the level of heat shock protein (HSP) 70 mRNA following H2O2 treatment, which was accompanied by impaired nuclear translocation of heat shock transcription factor (HSF) 1. Co-immunoprecipitation assays revealed that the binding of wild-type BIS to HSF1 was decreased by oxidative stress, while the binding of the BIS deletion mutant to HSF1 was not affected. These results indicate that ERK-dependent phosphorylation of BIS has a role in the regulation of nuclear translocation of HSF1 likely through modulation of its interaction affinity with HSF1, which affects HSP70 expression and sensitivity to oxidative stress.
Collapse
Affiliation(s)
- Hye Yun Kim
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yong-Sam Kim
- Aging Intervention Research Center, Aging Research Institute, KRIBB, Daejeon, Republic of Korea.,Korea University of Science and Technology. Daejeon, Republic of Korea
| | - Hye Hyeon Yun
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Chang-Nim Im
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jeong-Heon Ko
- Aging Intervention Research Center, Aging Research Institute, KRIBB, Daejeon, Republic of Korea.,Korea University of Science and Technology. Daejeon, Republic of Korea
| | - Jeong-Hwa Lee
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
22
|
Sorge M, Brancaccio M. Melusin Promotes a Protective Signal Transduction Cascade in Stressed Hearts. Front Mol Biosci 2016; 3:53. [PMID: 27672636 PMCID: PMC5018970 DOI: 10.3389/fmolb.2016.00053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 08/29/2016] [Indexed: 01/02/2023] Open
Abstract
Melusin is a chaperone protein selectively expressed in heart and skeletal muscles. Melusin expression levels correlate with cardiac function in pre-clinical models and in human patients with aortic stenosis. Indeed, previous studies in several animal models indicated that Melusin plays a broad cardioprotective role in different pathological conditions. Chaperone proteins, besides playing a role in protein folding, are also able to facilitate supramolecular complex formation and conformational changes due to activation/deactivation of signaling molecules. This role sets chaperone proteins as crucial regulators of intracellular signal transduction pathways. In particular Melusin activates AKT and ERK1/2 signaling, protects cardiomyocytes from apoptosis and induces a compensatory hypertrophic response in several pathological conditions. Therefore, selective delivery of the Melusin gene in heart via cardiotropic adenoviral associated virus serotype 9 (AAV9), may represent a new promising gene-therapy approach for different cardiac pathologies.
Collapse
Affiliation(s)
- Matteo Sorge
- Department of Molecular Biotechnology and Health Sciences, University of Torino Torino, Italy
| | - Mara Brancaccio
- Department of Molecular Biotechnology and Health Sciences, University of Torino Torino, Italy
| |
Collapse
|
23
|
Hargrave B, Varghese F, Barabutis N, Catravas J, Zemlin C. Nanosecond pulsed platelet-rich plasma (nsPRP) improves mechanical and electrical cardiac function following myocardial reperfusion injury. Physiol Rep 2016; 4:4/4/e12710. [PMID: 26908713 PMCID: PMC4816896 DOI: 10.14814/phy2.12710] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Ischemia and reperfusion (I/R) of the heart is associated with biochemical and ionic changes that result in cardiac contractile and electrical dysfunction. In rabbits, platelet‐rich plasma activated using nanosecond pulsed electric fields (nsPRP) has been shown to improve left ventricular pumping. Here, we demonstrate that nsPRP causes a similar improvement in mouse left ventricular function. We also show that nsPRP injection recovers electrical activity even before reperfusion begins. To uncover the mechanism of nsPRP action, we studied whether the enhanced left ventricular function in nsPRP rabbit and mouse hearts was associated with increased expression of heat‐shock proteins and altered mitochondrial function under conditions of oxidative stress. Mouse hearts underwent 30 min of global ischemia and 1 h of reperfusion in situ. Rabbit hearts underwent 30 min of ischemia in vivo and were reperfused for 14 days. Hearts treated with nsPRP expressed significantly higher levels of Hsp27 and Hsp70 compared to hearts treated with vehicle. Also, pretreatment of cultured H9c2 cells with nsPRP significantly enhanced the “spare respiratory capacity (SRC)” also referred to as “respiratory reserve capacity” and ATP production in response to the uncoupler FCCP. These results suggest a cardioprotective effect of nsPRP on the ischemic heart during reperfusion.
Collapse
Affiliation(s)
- Barbara Hargrave
- Department of Medical Diagnostics and Translational Science, Old Dominion University, Norfolk, Virginia Frank Reidy Center for Bioelectrics, Old Dominion University, Norfolk, Virginia
| | - Frency Varghese
- Frank Reidy Center for Bioelectrics, Old Dominion University, Norfolk, Virginia Department of Electrical Engineering, Old Dominion University, Norfolk, Virginia
| | - Nektarios Barabutis
- Frank Reidy Center for Bioelectrics, Old Dominion University, Norfolk, Virginia
| | - John Catravas
- Department of Medical Diagnostics and Translational Science, Old Dominion University, Norfolk, Virginia Frank Reidy Center for Bioelectrics, Old Dominion University, Norfolk, Virginia
| | - Christian Zemlin
- Frank Reidy Center for Bioelectrics, Old Dominion University, Norfolk, Virginia Department of Electrical Engineering, Old Dominion University, Norfolk, Virginia
| |
Collapse
|
24
|
Mitzelfelt KA, Limphong P, Choi MJ, Kondrat FDL, Lai S, Kolander KD, Kwok WM, Dai Q, Grzybowski MN, Zhang H, Taylor GM, Lui Q, Thao MT, Hudson JA, Barresi R, Bushby K, Jungbluth H, Wraige E, Geurts AM, Benesch JLP, Riedel M, Christians ES, Minella AC, Benjamin IJ. The Human 343delT HSPB5 Chaperone Associated with Early-onset Skeletal Myopathy Causes Defects in Protein Solubility. J Biol Chem 2016; 291:14939-53. [PMID: 27226619 PMCID: PMC4946913 DOI: 10.1074/jbc.m116.730481] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/14/2016] [Indexed: 12/23/2022] Open
Abstract
Mutations of HSPB5 (also known as CRYAB or αB-crystallin), a bona fide heat shock protein and molecular chaperone encoded by the HSPB5 (crystallin, alpha B) gene, are linked to multisystem disorders featuring variable combinations of cataracts, cardiomyopathy, and skeletal myopathy. This study aimed to investigate the pathological mechanisms involved in an early-onset myofibrillar myopathy manifesting in a child harboring a homozygous recessive mutation in HSPB5, 343delT. To study HSPB5 343delT protein dynamics, we utilize model cell culture systems including induced pluripotent stem cells derived from the 343delT patient (343delT/343delT) along with isogenic, heterozygous, gene-corrected control cells (WT KI/343delT) and BHK21 cells, a cell line lacking endogenous HSPB5 expression. 343delT/343delT and WT KI/343delT-induced pluripotent stem cell-derived skeletal myotubes and cardiomyocytes did not express detectable levels of 343delT protein, contributable to the extreme insolubility of the mutant protein. Overexpression of HSPB5 343delT resulted in insoluble mutant protein aggregates and induction of a cellular stress response. Co-expression of 343delT with WT prevented visible aggregation of 343delT and improved its solubility. Additionally, in vitro refolding of 343delT in the presence of WT rescued its solubility. We demonstrate an interaction between WT and 343delT both in vitro and within cells. These data support a loss-of-function model for the myopathy observed in the patient because the insoluble mutant would be unavailable to perform normal functions of HSPB5, although additional gain-of-function effects of the mutant protein cannot be excluded. Additionally, our data highlight the solubilization of 343delT by WT, concordant with the recessive inheritance of the disease and absence of symptoms in carrier individuals.
Collapse
Affiliation(s)
- Katie A Mitzelfelt
- From the Department of Biochemistry, University of Utah, Salt Lake City, Utah 84112-5650
| | | | | | - Frances D L Kondrat
- the Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | | | | | - Wai-Meng Kwok
- Departments of Anesthesiology and Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | | | | | - Huali Zhang
- the Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha City, Hunan 410078, China
| | - Graydon M Taylor
- the Division of Cardiology, Department of Medicine, University of Utah, Salt Lake City, Utah 84132
| | - Qiang Lui
- the Division of Cardiology, Department of Medicine, University of Utah, Salt Lake City, Utah 84132
| | | | - Judith A Hudson
- the Northern Genetics Service, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 3BZ, United Kingdom
| | - Rita Barresi
- the National Health Service England Health Science Services for Rare Neuromuscular Diseases, Muscle Immunoanalysis Unit, Dental Hospital, Richardson Road, Newcastle upon Tyne NE2 4AZ, United Kingdom
| | - Kate Bushby
- Neuromuscular Genetics, Newcastle University John Walton Centre for Muscular Dystrophy Research, Medical Research Council Centre for Neuromuscular Diseases, Institute of Genetic Medicine, International Centre for Life, Newcastle upon Tyne NE1 3BZ, United Kingdom
| | - Heinz Jungbluth
- the Department of Paediatric Neurology, Neuromuscular Service Evelina Children's Hospital, Guy's and St. Thomas' National Health Service Foundation Trust, London SE1 7EH, United Kingdom, the Randall Division of Cell and Molecular Biophysics, Muscle Signalling Section, King's College London, London SE1 1UL, United Kingdom, the Department of Basic and Clinical Neuroscience Institute of Psychiatry, Psychology and Neuroscience, King's College London SE5 9RX, United Kingdom
| | - Elizabeth Wraige
- the Department of Paediatric Neurology, Neuromuscular Service Evelina Children's Hospital, Guy's and St. Thomas' National Health Service Foundation Trust, London SE1 7EH, United Kingdom
| | | | - Justin L P Benesch
- the Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | | | - Elisabeth S Christians
- the Sorbonne Universités, University Pierre and Marie Curie, Univ Paris 06, CNRS, Laboratoire de Biologie du Dévelopment de Villefranche sur mer (LBDV), UMR 7009, 181 Chemin du Lazaret, 06230 Villefranche sur mer, France, and
| | - Alex C Minella
- the Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin 53226
| | - Ivor J Benjamin
- From the Department of Biochemistry, University of Utah, Salt Lake City, Utah 84112-5650, the Cardiovascular Center,
| |
Collapse
|
25
|
Zhang X, Qian Z, Zhu H, Tang S, Wu D, Zhang M, Kemper N, Hartung J, Bao E. HSP90 gene expression induced by aspirin is associated with damage remission in a chicken myocardial cell culture exposed to heat stress. Br Poult Sci 2016; 57:462-73. [PMID: 27088575 DOI: 10.1080/00071668.2016.1174978] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
To understand the potential protection of heat shock protein 90 (HSP90) induced by aspirin against heat stress damage in chicken myocardial cells, enzyme activities related to stress damage, cytopathological changes, the expression and distribution of HSP90, and HSP90 mRNA levels in the myocardial cells exposed to heat stress (42°C) for different durations with or without aspirin administration (1 mg/ml, 2 h prior) in vitro were investigated. Significant increase of enzyme levels in the supernatant of heat-stressed myocardial cells and cellular lesions characterised by acute degeneration, karyopyknosis and karyorrhexis were observed, compared to non-treated cells. However, the lesions of cells treated with aspirin were milder, characterised by earlier recovery of enzyme levels to the control levels and no obvious heat stress-related cellular necrosis. Stronger positive signals in the cytoplasm and longer retention of HSP90 signal in nuclei were observed in aspirin-treated myocardial cells than those of only heat-stressed cells. HSP90 level in the aspirin-treated myocardial cells was 11.1-fold higher than that in non-treated cells, and remained at a high level at the early stage of heat stress, whereas it was just 4.1-fold higher in only heat-stressed cells and returned rapidly to a low level. Overexpression of HSP90 mRNA in aspirin-treated cells was observed throughout the experiment, whereas HSP90 mRNA decreased significantly only in heat-stressed cells. The early higher HSP90 expression induced by aspirin during heat stress was accompanied by decreased heat stress damage, suggesting that aspirin might play an important role in preventing myocardial cells from heat stress damage in vitro.
Collapse
Affiliation(s)
- X Zhang
- a College of Veterinary Medicine , Nanjing Agricultural University , Nanjing , China
| | - Z Qian
- a College of Veterinary Medicine , Nanjing Agricultural University , Nanjing , China
| | - H Zhu
- a College of Veterinary Medicine , Nanjing Agricultural University , Nanjing , China
| | - S Tang
- a College of Veterinary Medicine , Nanjing Agricultural University , Nanjing , China
| | - D Wu
- a College of Veterinary Medicine , Nanjing Agricultural University , Nanjing , China
| | - M Zhang
- b College of Animal Science and Technology , Jinling Institute of Technology , Nanjing , China
| | - N Kemper
- c Institute for Animal Hygiene, Animal Welfare and Farm Animal Behaviour , University of Veterinary Medicine Hannover, Foundation , Hannover , Germany
| | - J Hartung
- c Institute for Animal Hygiene, Animal Welfare and Farm Animal Behaviour , University of Veterinary Medicine Hannover, Foundation , Hannover , Germany
| | - E Bao
- a College of Veterinary Medicine , Nanjing Agricultural University , Nanjing , China
| |
Collapse
|
26
|
Toft DJ, Fuller M, Schipma M, Chen F, Cryns VL, Layden BT. αB-crystallin and HspB2 deficiency is protective from diet-induced glucose intolerance. GENOMICS DATA 2016; 9:10-7. [PMID: 27330996 PMCID: PMC4909821 DOI: 10.1016/j.gdata.2016.03.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 03/15/2016] [Accepted: 03/16/2016] [Indexed: 12/29/2022]
Abstract
Emerging evidence suggests molecular chaperones have a role in the pathogenesis of obesity and diabetes. As αB-crystallin and HspB2 are molecular chaperones and data suggests their expression is elevated in the skeletal muscle of diabetic and obese animals, we sought to determine if αB-crystallin and HspB2 collectively play a functional role in the metabolic phenotype of diet-induced obesity. Using αB-crystallin/HspB2 knockout and littermate wild-type controls, it was observed that mice on the high fat diet gained more weight as compared to the normal chow group and genotype did not impact this weight gain. To test if the genotype and/or diet influenced glucose homeostasis, intraperitoneal glucose challenge was performed. While similar on normal chow diet, wild-type mice on the high fat diet exhibited higher glucose levels during the glucose challenge compared to the αB-crystallin/HspB2 knockout mice. Although wild-type mice had higher glucose levels, insulin levels were similar for both genotypes. Insulin tolerance testing revealed that αB-crystallin/HspB2 knockout mice were more sensitive to insulin, leading to lower glucose levels over time, which is indicative of a difference in insulin sensitivity between the genotypes on a high fat diet. Transcriptome analyses of skeletal muscle in αB-crystallin/HspB2 knockout and wild-type mice on a normal or high fat diet revealed reductions in cytokine pathway genes in αB-crystallin/HspB2 knockout mice, which may contribute to their improved insulin sensitivity. Collectively, these data reveal that αB-crystallin/HspB2 plays a role in development of insulin resistance during a high fat diet challenge.
Collapse
Affiliation(s)
- Daniel J Toft
- Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Miles Fuller
- Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Matthew Schipma
- Next Generation Sequencing Core, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Feng Chen
- Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Vincent L Cryns
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Brian T Layden
- Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States; Jesse Brown Veterans Affairs Medical Center, Chicago, IL, United States
| |
Collapse
|
27
|
Park AM, Kanai K, Itoh T, Sato T, Tsukui T, Inagaki Y, Selman M, Matsushima K, Yoshie O. Heat Shock Protein 27 Plays a Pivotal Role in Myofibroblast Differentiation and in the Development of Bleomycin-Induced Pulmonary Fibrosis. PLoS One 2016; 11:e0148998. [PMID: 26859835 PMCID: PMC4747463 DOI: 10.1371/journal.pone.0148998] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 01/26/2016] [Indexed: 02/06/2023] Open
Abstract
Heat shock protein 27 (HSP27) is a member of the small molecular weight HSP family. Upon treatment with transforming growth factor β1 (TGF-β1), we observed upregulation of HSP27 along with that of α-smooth muscle actin (α-SMA), a marker of myofibroblast differentiation, in cultured human and mouse lung fibroblasts. Furthermore, by using siRNA knockdown, we demonstrated that HSP27 was involved in cell survival and upregulation of fibronectin, osteopontin (OPN) and type 1 collagen, all functional markers of myofibroblast differentiation, in TGF-β1-treated MRC-5 cells. In lung tissues of bleomycin-treated mice, HSP27 was strongly upregulated and substantially co-localized with α-SMA, OPN and type I collagen but not with proSP-C (a marker of type II alveolar epithelial cells), E-cadherin (a marker of epithelial cells) or F4/80 (a marker of macrophages). A similar co-localization of HSP27 and α-SMA was observed in lung tissues of patients with idiopathic pulmonary fibrosis. Furthermore, airway delivery of HSP27 siRNA effectively suppressed bleomycin-induced pulmonary fibrosis in mice. Collectively, our findings indicate that HSP27 is critically involved in myofibroblast differentiation of lung fibroblasts and may be a promising therapeutic target for lung fibrotic diseases.
Collapse
Affiliation(s)
- Ah-Mee Park
- Department of Microbiology and Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Kyosuke Kanai
- Department of Microbiology and Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Tatsuki Itoh
- Department of Pathology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Takao Sato
- Department of Pathology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Tatsuya Tsukui
- Department of Molecular Preventive Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Yutaka Inagaki
- Department of Regenerative Medicine, Tokai University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Moises Selman
- Instituto Nacional de Enfermedades Respiratorias, México DF, Mexico
| | - Kouji Matsushima
- Department of Molecular Preventive Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Osamu Yoshie
- Department of Microbiology and Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
- * E-mail:
| |
Collapse
|
28
|
Grose JH, Langston K, Wang X, Squires S, Mustafi SB, Hayes W, Neubert J, Fischer SK, Fasano M, Saunders GM, Dai Q, Christians E, Lewandowski ED, Ping P, Benjamin IJ. Characterization of the Cardiac Overexpression of HSPB2 Reveals Mitochondrial and Myogenic Roles Supported by a Cardiac HspB2 Interactome. PLoS One 2015; 10:e0133994. [PMID: 26465331 PMCID: PMC4605610 DOI: 10.1371/journal.pone.0133994] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 07/03/2015] [Indexed: 01/26/2023] Open
Abstract
Small Heat Shock Proteins (sHSPs) are molecular chaperones that transiently interact with other proteins, thereby assisting with quality control of proper protein folding and/or degradation. They are also recruited to protect cells from a variety of stresses in response to extreme heat, heavy metals, and oxidative-reductive stress. Although ten human sHSPs have been identified, their likely diverse biological functions remain an enigma in health and disease, and much less is known about non-redundant roles in selective cells and tissues. Herein, we set out to comprehensively characterize the cardiac-restricted Heat Shock Protein B-2 (HspB2), which exhibited ischemic cardioprotection in transgenic overexpressing mice including reduced infarct size and maintenance of ATP levels. Global yeast two-hybrid analysis using HspB2 (bait) and a human cardiac library (prey) coupled with co-immunoprecipitation studies for mitochondrial target validation revealed the first HspB2 “cardiac interactome” to contain many myofibril and mitochondrial-binding partners consistent with the overexpression phenotype. This interactome has been submitted to the Biological General Repository for Interaction Datasets (BioGRID). A related sHSP chaperone HspB5 had only partially overlapping binding partners, supporting specificity of the interactome as well as non-redundant roles reported for these sHSPs. Evidence that the cardiac yeast two-hybrid HspB2 interactome targets resident mitochondrial client proteins is consistent with the role of HspB2 in maintaining ATP levels and suggests new chaperone-dependent functions for metabolic homeostasis. One of the HspB2 targets, glyceraldehyde 3-phosphate dehydrogenase (GAPDH), has reported roles in HspB2 associated phenotypes including cardiac ATP production, mitochondrial function, and apoptosis, and was validated as a potential client protein of HspB2 through chaperone assays. From the clientele and phenotypes identified herein, it is tempting to speculate that small molecule activators of HspB2 might be deployed to mitigate mitochondrial related diseases such as cardiomyopathy and neurodegenerative disease.
Collapse
Affiliation(s)
- Julianne H. Grose
- Microbiology and Molecular Biology Department, Brigham Young University, Provo, UT, 84602, United States of America
- * E-mail: (JHG); (IJB)
| | - Kelsey Langston
- Microbiology and Molecular Biology Department, Brigham Young University, Provo, UT, 84602, United States of America
| | - Xiaohui Wang
- Laboratory of Cardiac Disease, Redox Signaling and Cell Regeneration, Division of Cardiology, University of Utah School of Medicine, Salt Lake City, UT, 84132, United States of America
| | - Shayne Squires
- Laboratory of Cardiac Disease, Redox Signaling and Cell Regeneration, Division of Cardiology, University of Utah School of Medicine, Salt Lake City, UT, 84132, United States of America
- Division of Cardiovascular Medicine, Dept. of Medicine, Medical College of Wisconsin, Milwaukee, WI, 53226, United States of America
| | - Soumyajit Banerjee Mustafi
- Laboratory of Cardiac Disease, Redox Signaling and Cell Regeneration, Division of Cardiology, University of Utah School of Medicine, Salt Lake City, UT, 84132, United States of America
| | - Whitney Hayes
- Microbiology and Molecular Biology Department, Brigham Young University, Provo, UT, 84602, United States of America
| | - Jonathan Neubert
- Microbiology and Molecular Biology Department, Brigham Young University, Provo, UT, 84602, United States of America
| | - Susan K. Fischer
- Program in Integrative Cardiac Metabolism, Center for Cardiovascular Research, University of Illinois at Chicago College of Medicine, Chicago, IL, 60612, United States of America
| | - Matthew Fasano
- Program in Integrative Cardiac Metabolism, Center for Cardiovascular Research, University of Illinois at Chicago College of Medicine, Chicago, IL, 60612, United States of America
| | - Gina Moore Saunders
- Laboratory of Cardiac Disease, Redox Signaling and Cell Regeneration, Division of Cardiology, University of Utah School of Medicine, Salt Lake City, UT, 84132, United States of America
| | - Qiang Dai
- Division of Cardiovascular Medicine, Dept. of Medicine, Medical College of Wisconsin, Milwaukee, WI, 53226, United States of America
| | - Elisabeth Christians
- Laboratory of Cardiac Disease, Redox Signaling and Cell Regeneration, Division of Cardiology, University of Utah School of Medicine, Salt Lake City, UT, 84132, United States of America
| | - E. Douglas Lewandowski
- Program in Integrative Cardiac Metabolism, Center for Cardiovascular Research, University of Illinois at Chicago College of Medicine, Chicago, IL, 60612, United States of America
| | - Peipei Ping
- UCLA Departments of Physiology, Medicine, and Cardiology, Los Angeles, CA, 90095, United States of America
| | - Ivor J. Benjamin
- Laboratory of Cardiac Disease, Redox Signaling and Cell Regeneration, Division of Cardiology, University of Utah School of Medicine, Salt Lake City, UT, 84132, United States of America
- Division of Cardiovascular Medicine, Dept. of Medicine, Medical College of Wisconsin, Milwaukee, WI, 53226, United States of America
- * E-mail: (JHG); (IJB)
| |
Collapse
|
29
|
Mymrikov EV, Haslbeck M. Medical implications of understanding the functions of human small heat shock proteins. Expert Rev Proteomics 2015; 12:295-308. [PMID: 25915440 DOI: 10.1586/14789450.2015.1039993] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Small heat shock proteins (sHsps) are ubiquitous molecular chaperones that are implicated in a variety of diseases. Upon stress, they stabilize unfolding proteins and prevent them from aggregating. However, under physiological conditions without severe stress, some sHsps interact with other proteins. In a perspective view, their ability to bind specific client proteins might allow them to fine-tune the availability of the client for other, client-dependent cellular processes. Additionally, some sHsps seem to interact with specific co-chaperones. These co-chaperones are usually part of large protein machineries that are functionally modulated upon sHsps interaction. Finally, secreted human sHsps seem to interact with receptor proteins, potentially as signal molecules transmitting the stress status from one cell to another. This review focuses on the mechanistic description of these different binding modes for human sHsps and how this might help to understand and modulate the function of sHsps in the context of disease.
Collapse
Affiliation(s)
- Evgeny V Mymrikov
- Department Chemie, Technische Universität München, D-85747 Garching, Germany
| | | |
Collapse
|
30
|
Tyrosol prevents ischemia/reperfusion-induced cardiac injury in H9c2 cells: involvement of ROS, Hsp70, JNK and ERK, and apoptosis. Molecules 2015; 20:3758-75. [PMID: 25723850 PMCID: PMC6272375 DOI: 10.3390/molecules20033758] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 01/15/2015] [Accepted: 02/04/2015] [Indexed: 12/20/2022] Open
Abstract
Ischemia-Reperfusion (I/R) injury causes ROS overproduction, creating oxidative stress, and can trigger myocyte death, resulting in heart failure. Tyrosol is an antioxidant abounded in diets and medicine. Our objective was to investigate the protective effect of tyrosol on I/R-caused mortality in H9c2 cardiomyocytes through its influence on ROS, Hsp70, ERK, JNK, Bcl-2, Bax and caspase-8. A simulated I/R model was used, myocytes loss was examined by MTT, and ROS levels were measured using DCFH-DA. Nuclear condensation and caspase-3 activity were assessed by DAPI staining and fluorometric assay. Phosphorylated ERK and JNK were determined by electrochemiluminescent ELISA, and Hsp70, Bcl-2, Bax and caspase-8 were examined by Western blotting. Results show that tyrosol salvaged myocyte loss, inhibited nuclear condensation and caspase-3 activity dose-dependently, indicating its protection against I/R-caused myocyte loss. Furthermore, tyrosol significantly inhibited ROS accumulation and activation of ERK and JNK, augmenting Hsp70 expression. Besides, tyrosol inhibited I/R-induced apoptosis, associated with retained anti-apoptotic Bcl-2 protein, and attenuated pro-apoptotic Bax protein, resulting in a preservation of Bcl-2/Bax ratio. Finally, tyrosol notably decreased cleaved caspase-8 levels. In conclusion, cytoprotection of tyrosol in I/R-caused myocyte mortality was involved with the mitigation of ROS, prohibition of the activation of ERK, JNK and caspase-8, and elevation of Hsp70 and Bcl-2/Bax ratio.
Collapse
|
31
|
|
32
|
Chalova AS, Sudnitsyna MV, Semenyuk PI, Orlov VN, Gusev NB. Effect of disulfide crosslinking on thermal transitions and chaperone-like activity of human small heat shock protein HspB1. Cell Stress Chaperones 2014; 19:963-72. [PMID: 24898092 PMCID: PMC4389837 DOI: 10.1007/s12192-014-0520-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Revised: 05/20/2014] [Accepted: 05/22/2014] [Indexed: 10/25/2022] Open
Abstract
Temperature-induced conformational changes of reduced and oxidized HspB1 crosslinked by disulfide bond between single Cys137 of neighboring monomers were analyzed by means of different techniques. Heating of reduced HspB1 was accompanied by irreversible changes of Trp fluorescence, whereas oxidized HspB1 underwent completely reversible changes of fluorescence. Increase of the temperature in the range of 20-70 °C was accompanied by self-association of both reduced and oxidized protein. Further increase of the temperature led to formation of heterogeneous mixture of large self-associated complexes of reduced HspB1 and to formation of smaller and less heterogeneous complexes of oxidized HspB1. Heat-induced changes of oligomeric state of reduced HspB1 were only partially reversible, whereas the corresponding changes of oligomeric state of oxidized HspB1 were almost completely reversible. Oxidation resulted in decrease of chaperone-like activity of HspB1. It is concluded that oxidative stress, inducing formation of disulfide bond, can affect stability and conformational mobility of human HspB1.
Collapse
Affiliation(s)
- Anna S. Chalova
- />Department of Biochemistry, School of Biology, Moscow State University, Moscow, 119991 Russian Federation
| | - Maria V. Sudnitsyna
- />Department of Biochemistry, School of Biology, Moscow State University, Moscow, 119991 Russian Federation
| | - Pavel I. Semenyuk
- />Division of Physical Methods of Investigation, A.N. Belozersky Institute of Physico-chemical biology, Moscow State University, Moscow, 119991 Russian Federation
| | - Victor N. Orlov
- />Division of Physical Methods of Investigation, A.N. Belozersky Institute of Physico-chemical biology, Moscow State University, Moscow, 119991 Russian Federation
| | - Nikolai B. Gusev
- />Department of Biochemistry, School of Biology, Moscow State University, Moscow, 119991 Russian Federation
| |
Collapse
|
33
|
Jin C, Phillips VL, Williams MJ, van Rij AM, Jones GT. Plasma heat shock protein 27 is associated with coronary artery disease, abdominal aortic aneurysm and peripheral artery disease. SPRINGERPLUS 2014; 3:635. [PMID: 25392804 PMCID: PMC4218927 DOI: 10.1186/2193-1801-3-635] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 10/20/2014] [Indexed: 11/24/2022]
Abstract
Low protein levels of Hsp27 have been reported in atherosclerotic plaques. In addition, human studies have indicated that circulating Hsp27 levels are lower in coronary artery disease patients compared with controls. It remains, however, unclear whether this applies to other forms of atherosclerotic disease. Plasma Hsp27 from 280 subjects was examined by ELISA. The cohort included 80 coronary artery disease (CAD), 40 peripheral artery disease (PAD) and 80 abdominal aortic aneurysm (AAA) patients. Eighty elderly subjects, without any clinical history of vascular diseases, were used as a control group. Receiver operating curve (ROC) and logistic regression model analysis were performed to evaluate the potential value of Hsp27 as a circulating biomarker. Patients with atherosclerotic vascular diseases had significantly lower levels of Hsp27 than control subjects (p < 0.001). Moreover, Hsp27 was significantly lower in CAD patients than other atherosclerotic vascular disease groups (p < 0.001). There was no difference in Hsp27 levels between the AAA and PAD groups. Using the ROC-generated optimal cut-off values for Hsp27, logistic regression modeling indicated that low plasma Hsp27 was independently associated with the presence of multiple forms of atherosclerotic disease. In conclusion, circulating Hsp27 is significantly lower in patients with multiple forms of atherosclerotic arterial disease.
Collapse
Affiliation(s)
- Cao Jin
- Department of Surgery, University of Otago, PO Box 913, Dunedin, New Zealand
| | - Victoria L Phillips
- Department of Surgery, University of Otago, PO Box 913, Dunedin, New Zealand
| | - Michael Ja Williams
- Department of Medicine, University of Otago, PO Box 913, Dunedin, New Zealand
| | - Andre M van Rij
- Department of Surgery, University of Otago, PO Box 913, Dunedin, New Zealand
| | - Gregory T Jones
- Department of Surgery, University of Otago, PO Box 913, Dunedin, New Zealand
| |
Collapse
|
34
|
Zhang Y, Liu Y, Guo X, Li Y, Gao H, Guo X, Xu B. sHsp22.6, an intronless small heat shock protein gene, is involved in stress defence and development in Apis cerana cerana. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2014; 53:1-12. [PMID: 25008786 DOI: 10.1016/j.ibmb.2014.06.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 06/19/2014] [Accepted: 06/21/2014] [Indexed: 05/24/2023]
Abstract
Small heat shock proteins (sHSPs) play an important role in protecting against stress-induced cell damage and fundamental physiological processes. In this study, we identified an intronless sHsp gene from Apis cerana cerana (AccsHsp22.6). The open reading frame of AccsHsp22.6 was 585 bp and encoded a 194 amino acid protein. Furthermore, a 2064 bp 5'-flanking region was isolated, and potential transcription factor binding sites associated with development and stress response were identified. Quantitative PCR and western blot analyses demonstrated that AccsHsp22.6 was detected at higher levels in the midgut than in other tissues tested, and it is highly expressed during the shift to different development stages. Moreover, AccsHsp22.6 was significantly up-regulated by abiotic and biotic stresses, such as 4 °C, 16 °C, 42 °C, cyhalothrin, pyridaben, H2O2, UV, CdCl2, 20-hydroxyecdysone and Ascosphaera apis treatments. However, AccsHsp22.6 was slightly repressed by other stresses, including 25 °C, phoxim, paraquat and HgCl2 treatments. The recombinant AccsHSP22.6 also exhibited significant temperature tolerance, antioxidation and molecular chaperone activity. In addition, we found that knockdown of AccsHsp22.6 by RNA interference remarkably reduced temperature tolerance in A. cerana cerana. Taken together, these results suggest that AccsHsp22.6 plays an essential role in the development stages and defence against cellular stress.
Collapse
Affiliation(s)
- Yuanying Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China; School of Basic Medical Sciences, Taishan Medical University, Taian, Shandong 271000, PR China
| | - Yaling Liu
- School of Basic Medical Sciences, Taishan Medical University, Taian, Shandong 271000, PR China
| | - Xulei Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Yalu Li
- School of Basic Medical Sciences, Taishan Medical University, Taian, Shandong 271000, PR China
| | - Hongru Gao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Xingqi Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China.
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, PR China.
| |
Collapse
|
35
|
Abstract
Atherosclerosis is the leading global cause of mortality, morbidity, and disability. Heat shock proteins (HSPs) are a highly conserved family of proteins with diverse functions expressed by all cells exposed to environmental stress. Studies have reported that several HSPs may be potential risk markers of atherosclerosis and related cardiovascular diseases, or may be directly involved in the atherogenic process itself. HSPs are expressed by cells in atherosclerotic plaque and anti-HSP has been reported to be increased in patients with vascular disease. Autoimmune responses may be generated against antigens present within the atherosclerotic plaque, including HSP and may lead to a cycle of ongoing vascular injury. It has been suggested that by inducing a state of tolerance to these antigens, the atherogenic process may be limited and thus provide a potential therapeutic approach. It has been suggested that anti-HSPs are independent predictors of risk of vascular disease. In this review, we summarize the current understanding of HSP in cardiovascular disease and highlight their potential role as diagnostic agents and therapeutic targets.
Collapse
|
36
|
Banerjee Mustafi S, Grose JH, Zhang H, Pratt GW, Sadoshima J, Christians ES, Benjamin IJ. Aggregate-prone R120GCRYAB triggers multifaceted modifications of the thioredoxin system. Antioxid Redox Signal 2014; 20:2891-906. [PMID: 24180415 PMCID: PMC4039002 DOI: 10.1089/ars.2013.5340] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
AIMS The human mutation R120G in the αB-crystallin (CRYAB) causes a multisystemic disease that is characterized by hypertrophic cardiomyopathy and cytoplasmic protein aggregates. In transgenic mice, human R120GCRYAB (hR120GTg) expression in heart sequentially modifies the REDOX status, in part by the activation of the nuclear factor, erythroid derived 2, like 2 (Nrf2). Thioredoxin system (TS) components are NRF2 target genes, so it could be hypothesized that TS was affected in hR120GTg mice. RESULTS Transgenic hearts overexpressed thioredoxin 1 (Trx1), which was identified by isotope coded affinity tag-mass spectrometry, among hundreds of peptides displaying an increased reduced/oxidized ratio. Coupled to this higher level of reduced cysteines, the activity of thioredoxin reductase 1 (TrxR1) was augmented by 2.5-fold. Combining mutiple experimental approaches, the enzymatic regulation of TrxR1 by a histone deacetylase 3 (HDAC3)-dependent level of acetylation was confirmed. In vitro and in vivo functional tests established that TrxR1 activity is required to mitigate aggregate development, and this could be mediated by Bcl-2-associated athanogene 3 (BAG3) as a potential TS substrate. INNOVATION AND CONCLUSIONS This study uncovers the compartmentalized changes and the involvement of TS in the cardiac stress response elicited by misfolded proteins such as R120GCRYAB. Our work suggests that R120GCRYAB triggers a defensive pathway acting through the newly identified interacting partners HDAC3, TrxR1, and BAG3 to counter aggregate growth. Therefore, those interactors may function as modifier genes contributing to the variable onset and expressivity of such human diseases. Furthermore, our work underscores the potential organismal effects of pharmacological interventions targeting TS and HDAC.
Collapse
Affiliation(s)
- Soumyajit Banerjee Mustafi
- 1 Laboratory of Cardiac Disease, Redox Signaling and Cell Regeneration, Division of Cardiology, University of Utah School of Medicine , Salt Lake City, Utah
| | | | | | | | | | | | | |
Collapse
|
37
|
Sandri M, Robbins J. Proteotoxicity: an underappreciated pathology in cardiac disease. J Mol Cell Cardiol 2014; 71:3-10. [PMID: 24380730 PMCID: PMC4011959 DOI: 10.1016/j.yjmcc.2013.12.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Revised: 12/03/2013] [Accepted: 12/15/2013] [Indexed: 12/21/2022]
Abstract
In general, in most organ systems, intracellular protein homeostasis is the sum of many factors, including chromosomal state, protein synthesis, post-translational processing and transport, folding, assembly and disassembly into macromolecular complexes, protein stability and clearance. In the heart, there has been a focus on the gene programs that are activated during pathogenic processes, but the removal of damaged proteins and organelles has been underappreciated as playing an important role in the pathogenesis of heart disease. Proteotoxicity refers to the adverse effects of damaged or misfolded proteins and even organelles on the cell. At the cellular level, the ultimate outcome of uncontrolled or severe proteotoxicity is cell death; hence, the pathogenic impact of proteotoxicity is maximally manifested in organs with no or very poor regenerative capability such as the brain and the heart. Evidence for increased cardiac proteotoxicity is rapidly mounting for a large subset of congenital and acquired human heart disease. Studies carried out in animal models and in cell culture have begun to establish both sufficiency and, in some cases, the necessity of proteotoxicity as a major pathogenic factor in the heart. This dictates rigorous testing for the efficacy of proteotoxic attenuation as a new strategy to treat heart disease. This review article highlights some recent advances in our understanding of how misfolded proteins can injure and are handled in the cell, examining the emerging evidence for targeting proteotoxicity as a new therapeutic strategy for heart disease. This article is part of a Special Issue entitled "Protein Quality Control, the Ubiquitin Proteasome System, and Autophagy."
Collapse
Affiliation(s)
- Marco Sandri
- Venetian Institute of Molecular Medicine (VIMM), Padova, Italy; Consiglio Nazionale delle Ricerche (CNR) Institute of Neuroscience, Padova, Italy; Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Jeffrey Robbins
- The Heart Institute, Department of Pediatrics, The Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| |
Collapse
|
38
|
Boelens WC. Cell biological roles of αB-crystallin. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2014; 115:3-10. [PMID: 24576798 DOI: 10.1016/j.pbiomolbio.2014.02.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 02/13/2014] [Accepted: 02/14/2014] [Indexed: 10/25/2022]
Abstract
αB-crystallin, also called HspB5, is a molecular chaperone able to interact with unfolding proteins. By interacting, it inhibits further unfolding, thereby preventing protein aggregation and allowing ATP-dependent chaperones to refold the proteins. αB-crystallin belongs to the family of small heat-shock proteins (sHsps), which in humans consists of 10 different members. The protein forms large oligomeric complexes, containing up to 40 or more subunits, which in vivo consist of heterooligomeric complexes formed by a mixture of αB-crystallin and other sHsps. αB-crystallin is highly expressed in the lens and to a lesser extent in several other tissues, among which heart, skeletal muscle and brain. αB-crystallin plays a role in several cellular processes, such as signal transduction, protein degradation, stabilization of cytoskeletal structures and apoptosis. Mutations in the αB-crystallin gene can have detrimental effects, leading to pathologies such as cataract and cardiomyopathy. This review describes the biological roles of αB-crystallin, with a special focus on its function in the eye lens, heart muscle and brain. In addition its therapeutic potential is discussed.
Collapse
Affiliation(s)
- Wilbert C Boelens
- Department of Biomolecular Chemistry, Institute for Molecules and Materials and Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, PO Box 9101, 6500 HB Nijmegen, The Netherlands.
| |
Collapse
|
39
|
Abril N, Ruiz-Laguna J, García-Sevillano MÁ, Mata AM, Gómez-Ariza JL, Pueyo C. Heterologous microarray analysis of transcriptome alterations in Mus spretus mice living in an industrial settlement. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:2183-2192. [PMID: 24460498 DOI: 10.1021/es4053973] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
This work demonstrates the successful application of a commercial oligonucleotide microarray containing Mus musculus whole-genome probes to assess the biological effects of an industrial settlement on inhabitant Mus spretus mice. The transcriptomes of animals in the industrial settlement contrasted with those of specimens collected from a nearby protected ecosystem. Proteins encoded by the differentially expressed genes were broadly categorized into six main functional classes. Immune-associated genes were mostly induced and related to innate and acquired immunity and inflammation. Genes sorted into the stress-response category were mainly related to oxidative-stress tolerance and biotransformation. Metabolism-associated genes were mostly repressed and related to lipid metabolic pathways; these included genes that encoded 11 of the 20 cholesterol biosynthetic pathway enzymes. Crosstalk between members of different functional categories was also revealed, including the repression of serine-protease genes and the induction of protease-inhibitor genes to control the inflammatory response. Absolute quantification of selected transcripts was performed via RT-PCR to verify the microarray results and assess interindividual variability. Microarray data were further validated by immunoblotting and by cholesterol and protein-thiol oxidation level determinations. Reported data provide a broad impression of the biological consequences of residing in an industrial area.
Collapse
Affiliation(s)
- Nieves Abril
- Department of Biochemistry and Molecular Biology, Agrifood Campus of International Excellence (ceiA3), Severo Ochoa Building, University of Córdoba , Rabanales Campus, 14071 Córdoba, Spain
| | | | | | | | | | | |
Collapse
|
40
|
Arrigo AP, Gibert B. HspB1, HspB5 and HspB4 in Human Cancers: Potent Oncogenic Role of Some of Their Client Proteins. Cancers (Basel) 2014; 6:333-65. [PMID: 24514166 PMCID: PMC3980596 DOI: 10.3390/cancers6010333] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 01/03/2014] [Accepted: 01/17/2014] [Indexed: 12/20/2022] Open
Abstract
Human small heat shock proteins are molecular chaperones that regulate fundamental cellular processes in normal unstressed cells as well as in many cancer cells where they are over-expressed. These proteins are characterized by cell physiology dependent changes in their oligomerization and phosphorylation status. These structural changes allow them to interact with many different client proteins that subsequently display modified activity and/or half-life. Nowdays, the protein interactomes of small Hsps are under intense investigations and will represent, when completed, key parameters to elaborate therapeutic strategies aimed at modulating the functions of these chaperones. Here, we have analyzed the potential pro-cancerous roles of several client proteins that have been described so far to interact with HspB1 (Hsp27) and its close members HspB5 (αB-crystallin) and HspB4 (αA-crystallin).
Collapse
Affiliation(s)
- André-Patrick Arrigo
- Apoptosis, Cancer and Development Laboratory, Lyon Cancer Research Center, INSERM U1052-CNRS UMR5286, Claude Bernard University Lyon 1, Lyon 69008, France.
| | - Benjamin Gibert
- Apoptosis, Cancer and Development Laboratory, Lyon Cancer Research Center, INSERM U1052-CNRS UMR5286, Claude Bernard University Lyon 1, Lyon 69008, France.
| |
Collapse
|
41
|
Tang S, Lv Y, Chen H, Adam A, Cheng Y, Hartung J, Bao E. Comparative analysis of αB-crystallin expression in heat-stressed myocardial cells in vivo and in vitro. PLoS One 2014; 9:e86937. [PMID: 24466295 PMCID: PMC3899361 DOI: 10.1371/journal.pone.0086937] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Accepted: 12/17/2013] [Indexed: 01/21/2023] Open
Abstract
Relationships between αB-crystallin expression patterns and pathological changes of myocardial cells after heat stress were examined in vitro and in vivo in this study using the H9C2 cell line and Sprague-Dawley rats, respectively. Histopathological lesions, characterized by acute degeneration, karyopyknosis and loss of a defined nucleus, became more severe in rat hearts over the course of heat stress treatment from 20 min to 100 min. The expression of αB-crystallin in rat hearts showed a significant decrease (P<0.05) throughout the heat stress treatment period, except at the 40 min time point. Likewise, decreased αB-crystallin expression was also observed in the H9C2 cell line exposed to a high temperature in vitro, although its expression recovered to normal levels at later time points (80 and 100 min) and the cellular damage was less severe. The results suggest that αB-crystallin is mobilized early after exposure to a high temperature to interact with damaged proteins but that the myocardial cells cannot produce sufficient αB-crystallin for protection against heat stress. Lower αB-crystallin expression levels were accompanied by obvious cell/tissue damage, suggesting that the abundance of this protein is associated with protective effects in myocardial cells in vitro and in vivo. Thus, αB-crystallin is a potential biomarker of heat stress.
Collapse
Affiliation(s)
- Shu Tang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yingjun Lv
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Hongbo Chen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Abdelnasir Adam
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yanfen Cheng
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jörg Hartung
- Institute for Animal Hygiene, Animal Welfare and Farm Animal Behaviour, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Endong Bao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- * E-mail:
| |
Collapse
|
42
|
Dubińska-Magiera M, Jabłońska J, Saczko J, Kulbacka J, Jagla T, Daczewska M. Contribution of small heat shock proteins to muscle development and function. FEBS Lett 2014; 588:517-30. [PMID: 24440355 DOI: 10.1016/j.febslet.2014.01.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 12/17/2013] [Accepted: 01/02/2014] [Indexed: 12/17/2022]
Abstract
Investigations undertaken over the past years have led scientists to introduce the concept of protein quality control (PQC) systems, which are responsible for polypeptide processing. The PQC system monitors proteostasis and involves activity of different chaperones such as small heat shock proteins (sHSPs). These proteins act during normal conditions as housekeeping proteins regulating cellular processes, and during stress conditions. They also mediate the removal of toxic misfolded polypeptides and thereby prevent development of pathogenic states. It is postulated that sHSPs are involved in muscle development. They could act via modulation of myogenesis or by maintenance of the structural integrity of signaling complexes. Moreover, mutations in genes coding for sHSPs lead to pathological states affecting muscular tissue functioning. This review focuses on the question how sHSPs, still relatively poorly understood proteins, contribute to the development and function of three types of muscle tissue: skeletal, cardiac and smooth.
Collapse
Affiliation(s)
- Magda Dubińska-Magiera
- Department of Animal Developmental Biology, University of Wroclaw, 21 Sienkiewicza Street, 50-335 Wroclaw, Poland
| | - Jadwiga Jabłońska
- Department of Animal Developmental Biology, University of Wroclaw, 21 Sienkiewicza Street, 50-335 Wroclaw, Poland
| | - Jolanta Saczko
- Department of Medical Biochemistry, Medical University, Chalubinskiego 10, 50-368 Wroclaw, Poland
| | - Julita Kulbacka
- Department of Medical Biochemistry, Medical University, Chalubinskiego 10, 50-368 Wroclaw, Poland
| | - Teresa Jagla
- Institut National de la Santé et de la Recherche Médicale U384, Faculté de Medecine, Clermont-Ferrand, France
| | - Małgorzata Daczewska
- Department of Animal Developmental Biology, University of Wroclaw, 21 Sienkiewicza Street, 50-335 Wroclaw, Poland.
| |
Collapse
|
43
|
Bouhy D, Timmerman V. Animal models and therapeutic prospects for Charcot-Marie-Tooth disease. Ann Neurol 2013; 74:391-6. [PMID: 23913540 DOI: 10.1002/ana.23987] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 07/04/2013] [Accepted: 07/29/2013] [Indexed: 12/14/2022]
Abstract
Charcot-Marie-Tooth (CMT) neuropathies are inherited neuromuscular disorders caused by a length-dependent neurodegeneration of peripheral nerves. More than 900 mutations in 60 different genes are causative of the neuropathy. Despite significant progress in therapeutic strategies, the disease remains incurable. The increasing number of genes linked to the disease, and their considerable clinical and genetic heterogeneity render the development of these strategies particularly challenging. In this context, cellular and animals models provide powerful tools. Efficient motor and sensory tests have been developed to assess the behavioral phenotype in transgenic animal models (rodent and fly). When these models reproduce a phenotype comparable to CMT, they allow therapeutic approaches and the discovery of modifiers and biomarkers. In this review, we describe the most convincing transgenic rodent and fly models of CMT and how they can lead to clinical trial. We also discuss the challenges that the research, the clinic, and the pharmaceutical industry will face in developing efficient and accessible treatment for CMT patients.
Collapse
Affiliation(s)
- Delphine Bouhy
- Peripheral Neuropathy Group, Department of Molecular Genetics, Flanders Interuniversity Institute for Biotechnology, Institute Born Bunge, University of Antwerp, Antwerp, Belgium
| | | |
Collapse
|
44
|
Rani N, Bharti S, Manchanda M, Nag TC, Ray R, Chauhan SS, Kumari S, Arya DS. Regulation of heat shock proteins 27 and 70, p-Akt/p-eNOS and MAPKs by Naringin Dampens myocardial injury and dysfunction in vivo after ischemia/reperfusion. PLoS One 2013; 8:e82577. [PMID: 24324809 PMCID: PMC3855773 DOI: 10.1371/journal.pone.0082577] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Accepted: 10/24/2013] [Indexed: 11/18/2022] Open
Abstract
Naringin has antioxidant properties that could improve redox-sensitive myocardial ischemia reperfusion (IR) injury. This study was designed to investigate whether naringin restores the myocardial damage and dysfunction in vivo after IR and the mechanisms underlying its cardioprotective effects. Naringin (20–80 mg/kg/day, p.o.) or saline were administered to rats for 14 days and the myocardial IR injury was induced on 15th day by occluding the left anterior descending coronary artery for 45 min and subsequent reperfusion for 60 min. Post-IR rats exhibited pronounced cardiac dysfunction as evidenced by significantly decreased mean arterial pressure, heart rate, +LVdP/dtmax (inotropic state), -LVdP/dtmax (lusitropic state) and increased left ventricular end diastolic pressure as compared to sham group, which was improved by naringin. Further, on histopathological and ultrastructural assessments myocardium and myocytes appeared more normal in structure and the infarct size was reduced significantly in naringin 40 and 80 mg/kg/day group. This amelioration of post-IR-associated cardiac injury by naringin was accompanied by increased nitric oxide (NO) bioavailability, decreased NO inactivation to nitrotyrosine, amplified protein expressions of Hsp27, Hsp70, β-catenin and increased p-eNOS/eNOS, p-Akt/Akt, and p-ERK/ERK ratio. In addition, IR-induced TNF-α/IKK-β/NF-κB upregulation and JNK phosphorylation were significantly attenuated by naringin. Moreover, western blotting and immunohistochemistry analysis of apoptotic signaling pathway further established naringin cardioprotective potential as it upregulated Bcl-2 expression and downregulated Bax and Caspase-3 expression with reduced TUNEL positivity. Naringin also normalized the cardiac injury markers (lactate dehydrogenase and creatine kinase-MB), endogenous antioxidant activities (superoxide dismutase, reduced glutathione and glutathione peroxidase) and lipid peroxidation levels. Thus, naringin restored IR injury by preserving myocardial structural integrity and regulating Hsp27, Hsp70, p-eNOS/p-Akt/p-ERK signaling and inflammatory response.
Collapse
Affiliation(s)
- Neha Rani
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India
| | - Saurabh Bharti
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India
| | - Mansi Manchanda
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - T. C. Nag
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Ruma Ray
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - S. S. Chauhan
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Santosh Kumari
- Department of Plant Physiology, Indian Agricultural Research Institute, Pusa, New Delhi, India
| | - Dharamvir Singh Arya
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India
- * E-mail:
| |
Collapse
|
45
|
Bouhy D, Timmerman V. Modèles animaux dans la maladie de Charcot-Marie-Tooth et applications de la compréhension de la maladie chez l’homme. Rev Neurol (Paris) 2013; 169:971-7. [DOI: 10.1016/j.neurol.2013.07.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 07/25/2013] [Accepted: 07/26/2013] [Indexed: 11/26/2022]
|
46
|
Prasad V, Lorenz JN, Miller ML, Vairamani K, Nieman ML, Wang Y, Shull GE. Loss of NHE1 activity leads to reduced oxidative stress in heart and mitigates high-fat diet-induced myocardial stress. J Mol Cell Cardiol 2013; 65:33-42. [PMID: 24080184 PMCID: PMC3883452 DOI: 10.1016/j.yjmcc.2013.09.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 09/16/2013] [Accepted: 09/21/2013] [Indexed: 12/23/2022]
Abstract
Acute inhibition of the NHE1 Na(+)/H(+) exchanger protects against ischemia-reperfusion injury and chronic inhibition attenuates development of cardiac hypertrophy and failure. To determine the cardiac effects of chronic inhibition of NHE1 under non-pathological conditions we used NHE1-null mice as a model of long-term NHE1 inhibition. Cardiovascular performance was relatively normal in Nhe1(-/-) mice although cardiac contractility and relaxation were slightly improved in mutant mice of the FVB/N background. GSH levels and GSH:GSSG ratios were elevated in Nhe1(-/-) hearts indicating an enhanced redox potential. Consistent with a reduced need for antioxidant protection, expression of heat shock proteins Hsp60 and Hsp25 was lower in Nhe1(-/-) hearts. Similarly, expression of mitochondrial superoxide dismutase 2 was reduced, with no increase in expression of other ROS scavenging enzymes. GLUT1 levels were increased in Nhe1(-/-) hearts, the number of lipid droplets in myocytes was reduced, and PDK4 expression was refractory to high-fat diet-induced upregulation observed in wild-type hearts. High-fat diet-induced stress was attenuated in Nhe1(-/-) hearts, as indicated by smaller increases in phosphorylation of Hsp25 and α-B crystallin, and there was better preservation of insulin sensitivity, as evidenced by PKB/Akt phosphorylation. Plasma glucose and insulin levels were lower and high-fat diet-induced hepatic lipid accumulation was reduced in Nhe1(-/-) mice, demonstrating extracardiac effects of NHE1 ablation. These data indicate that long-term ablation of NHE1 activity increases the redox potential, mitigates high-fat diet-induced myocardial stress and fatty liver disease, leads to better preservation of insulin sensitivity, and may alter both cardiac and systemic metabolic substrate handling in mice.
Collapse
Affiliation(s)
- Vikram Prasad
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267-0524
| | - John N. Lorenz
- Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267-0524
| | - Marian L. Miller
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, 45267-0524
| | - Kanimozhi Vairamani
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267-0524
| | - Michelle L. Nieman
- Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267-0524
| | - Yigang Wang
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45267-0524
| | - Gary E. Shull
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267-0524
| |
Collapse
|
47
|
Jørgensen A, Foster PP, Brubakk AO, Eftedal I. Effects of hyperbaric oxygen preconditioning on cardiac stress markers after simulated diving. Physiol Rep 2013; 1:e00169. [PMID: 24400168 PMCID: PMC3871481 DOI: 10.1002/phy2.169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 10/29/2013] [Accepted: 11/02/2013] [Indexed: 11/28/2022] Open
Abstract
Hyperbaric oxygen preconditioning (HBO-PC) can protect the heart from injury during subsequent ischemia. The presence of high loads of venous gas emboli (VGE) induced by a rapid ambient pressure reduction on ascent from diving may cause ischemia and acute heart failure. The aim of this study was to investigate the effect of diving-induced VGE formation on cardiac stress marker levels and the cardioprotective effect of HBO-PC. To induce high loads of VGE, 63 female Sprague-Dawley rats were subjected to a rapid ambient pressure reduction from a simulated saturation dive (50 min at 709 kPa) in a pressure chamber. VGE loads were measured for 60 min in anesthetized animals by the use of ultrasonography. The animals were divided into five groups. Three groups were exposed to either diving or to HBO-PC (100% oxygen, 38 min at 303 kPa) with a 45 or 180 min interval between HBO-PC and diving. Two additional groups were used as baseline controls for the measurements; one group was exposed to equal handling except for HBO-PC and diving, and the other group was completely unexposed. Diving caused high loads of VGE, as well as elevated levels of the cardiac stress markers, cardiac troponin T (cTnT), natriuretic peptide precursor B (Nppb), and αB-crystallin, in blood and cardiac tissue. There were strong positive correlations between VGE loads and stress marker levels after diving, and HBO-PC appeared to have a cardioprotective effect, as indicated by the lower levels of stress marker expression after diving-induced VGE formation.
Collapse
Affiliation(s)
- Arve Jørgensen
- Department of Circulation and Medical Imaging, Norwegian University of Science and TechnologyTrondheim, Norway
- Department of Diagnostic Imaging, St. Olavs University HospitalTrondheim, Norway
| | - Philip P Foster
- Division of Pulmonary, Sleep Medicine, and Critical Care, Departments of Internal Medicine and NanoMedicine and Biomedical Engineering, The University of Texas Health Science Center at HoustonTexas
| | - Alf O Brubakk
- Department of Circulation and Medical Imaging, Norwegian University of Science and TechnologyTrondheim, Norway
| | - Ingrid Eftedal
- Department of Circulation and Medical Imaging, Norwegian University of Science and TechnologyTrondheim, Norway
| |
Collapse
|
48
|
Small heat shock proteins are necessary for heart migration and laterality determination in zebrafish. Dev Biol 2013; 384:166-80. [PMID: 24140541 DOI: 10.1016/j.ydbio.2013.10.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 10/04/2013] [Accepted: 10/07/2013] [Indexed: 12/27/2022]
Abstract
Small heat shock proteins (sHsps) regulate cellular functions not only under stress, but also during normal development, when they are expressed in organ-specific patterns. Here we demonstrate that two small heat shock proteins expressed in embryonic zebrafish heart, hspb7 and hspb12, have roles in the development of left-right asymmetry. In zebrafish, laterality is determined by the motility of cilia in Kupffer's vesicle (KV), where hspb7 is expressed; knockdown of hspb7 causes laterality defects by disrupting the motility of these cilia. In embryos with reduced hspb7, the axonemes of KV cilia have a 9+0 structure, while control embyros have a predominately 9+2 structure. Reduction of either hspb7 or hspb12 alters the expression pattern of genes that propagate the signals that establish left-right asymmetry: the nodal-related gene southpaw (spaw) in the lateral plate mesoderm, and its downstream targets pitx2, lefty1 and lefty2. Partial depletion of hspb7 causes concordant heart, brain and visceral laterality defects, indicating that loss of KV cilia motility leads to coordinated but randomized laterality. Reducing hspb12 leads to similar alterations in the expression of downstream laterality genes, but at a lower penetrance. Simultaneous reduction of hspb7 and hspb12 randomizes heart, brain and visceral laterality, suggesting that these two genes have partially redundant functions in the establishment of left-right asymmetry. In addition, both hspb7 and hspb12 are expressed in the precardiac mesoderm and in the yolk syncytial layer, which supports the migration and fusion of mesodermal cardiac precursors. In embryos in which the reduction of hspb7 or hspb12 was limited to the yolk, migration defects predominated, suggesting that the yolk expression of these genes rather than heart expression is responsible for the migration defects.
Collapse
|
49
|
Nefedova VV, Sudnitsyna MV, Strelkov SV, Gusev NB. Structure and properties of G84R and L99M mutants of human small heat shock protein HspB1 correlating with motor neuropathy. Arch Biochem Biophys 2013; 538:16-24. [PMID: 23948568 DOI: 10.1016/j.abb.2013.07.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Revised: 07/26/2013] [Accepted: 07/31/2013] [Indexed: 11/26/2022]
Abstract
Some properties of G84R and L99M mutants of HspB1 associated with peripheral distal neuropathies were investigated. Homooligomers formed by these mutants are larger than those of the wild type HspB1. Large oligomers of G84R and L99M mutants have compromised stability and tend to dissociate at low protein concentration. G84R and L99M mutations promote phosphorylation-dependent dissociation of HspB1 oligomers without affecting kinetics of HspB1 phosphorylation by MAPKAP2 kinase. Both mutants weakly interact with HspB6 forming small heterooligomers and being unable to form large heterooligomers characteristic for the wild type HspB1. G84R and L99M mutants possess lower chaperone-like activity than the wild type HspB1 with several model substrates. We suggest that G84R mutation affects mobility and accessibility of the N-terminal domain thus modifying interdimer contacts in HspB1 oligomers. The L99M mutation is located within the hydrophobic core of the α-crystallin domain close to the key R140 residue, and could affect the dimer stability.
Collapse
Affiliation(s)
- Victoria V Nefedova
- Department of Biochemistry, School of Biology, Moscow State University, Moscow 119991, Russian Federation
| | | | | | | |
Collapse
|
50
|
Tang S, Buriro R, Liu Z, Zhang M, Ali I, Adam A, Hartung J, Bao E. Localization and expression of Hsp27 and αB-crystallin in rat primary myocardial cells during heat stress in vitro. PLoS One 2013; 8:e69066. [PMID: 23894407 PMCID: PMC3716771 DOI: 10.1371/journal.pone.0069066] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 06/04/2013] [Indexed: 11/19/2022] Open
Abstract
Neonatal rat primary myocardial cells were subjected to heat stress in vitro, as a model for investigating the distribution and expression of Hsp27 and αB-crystallin. After exposure to heat stress at 42°C for different durations, the activities of enzymes expressed during cell damage increased in the supernatant of the heat-stressed myocardial cells from 10 min, and the pathological lesions were characterized by karyopyknosis and acute degeneration. Thus, cell damage was induced at the onset of heat stress. Immunofluorescence analysis showed stronger positive signals for both Hsp27 and αB-crystallin from 10 min to 240 min of exposure compared to the control cells. According to the Western blotting results, during the 480 min of heat stress, no significant variation was found in Hsp27 and αB-crystallin expression; however, significant differences were found in the induction of their corresponding mRNAs. The expression of these small heat shock proteins (sHsps) was probably delayed or overtaxed due to the rapid consumption of sHsps in myocardial cells at the onset of heat stress. Our findings indicate that Hsp27 and αB-crystallin do play a role in the response of cardiac cells to heat stress, but the details of their function remain to be investigated.
Collapse
Affiliation(s)
- Shu Tang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Rehana Buriro
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Zhijun Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Miao Zhang
- College of Animal Science and Technology, Jinling Institute of Technology, Nanjing, China
| | - Islam Ali
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Abdelnasir Adam
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jörg Hartung
- Institute for Animal Hygiene, Animal Welfare and Farm Animal Behaviour, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Endong Bao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- * E-mail:
| |
Collapse
|