1
|
Maiese K. Diabetes mellitus and glymphatic dysfunction: Roles for oxidative stress, mitochondria, circadian rhythm, artificial intelligence, and imaging. World J Diabetes 2025; 16:98948. [PMID: 39817214 PMCID: PMC11718455 DOI: 10.4239/wjd.v16.i1.98948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/28/2024] [Accepted: 11/20/2024] [Indexed: 11/29/2024] Open
Abstract
Diabetes mellitus (DM) is a debilitating disorder that impacts all systems of the body and has been increasing in prevalence throughout the globe. DM represents a significant clinical challenge to care for individuals and prevent the onset of chronic disability and ultimately death. Underlying cellular mechanisms for the onset and development of DM are multi-factorial in origin and involve pathways associated with the production of reactive oxygen species and the generation of oxidative stress as well as the dysfunction of mitochondrial cellular organelles, programmed cell death, and circadian rhythm impairments. These pathways can ultimately involve failure in the glymphatic pathway of the brain that is linked to circadian rhythms disorders during the loss of metabolic homeostasis. New studies incorporate a number of promising techniques to examine patients with metabolic disorders that can include machine learning and artificial intelligence pathways to potentially predict the onset of metabolic dysfunction.
Collapse
Affiliation(s)
- Kenneth Maiese
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20810, United States
| |
Collapse
|
2
|
Dropmann A, Alex S, Schorn K, Tong C, Caccamo T, Godoy P, Ilkavets I, Liebe R, Gonzalez D, Hengstler JG, Piiper A, Quagliata L, Matter MS, Waidmann O, Finkelmeier F, Feng T, Weiss TS, Rahbari N, Birgin E, Rasbach E, Roessler S, Breuhahn K, Tóth M, Ebert MP, Dooley S, Hammad S, Meindl-Beinker NM. The TGF-β1 target WISP1 is highly expressed in liver cirrhosis and cirrhotic HCC microenvironment and involved in pro- and anti-tumorigenic effects. Biochem Biophys Res Commun 2024; 732:150409. [PMID: 39033550 DOI: 10.1016/j.bbrc.2024.150409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
INTRODUCTION WNT1-inducible signalling pathway protein 1 (WISP1) promotes progression of several tumor entities often correlating with worse prognosis. Here its expression regulation and role in the progression of chronic liver diseases (CLD) was investigated. METHODS WISP1 expression was analyzed in human HCC datasets, in biopsies and serum samples and an HCC patient tissue microarray (TMA) including correlation to clinicopathological parameters. Spatial distribution of WISP1 expression was determined using RNAscope analysis. Regulation of WISP1 expression was investigated in cytokine-stimulated primary mouse hepatocytes (PMH) by array analysis and qRT-PCR. Outcome of WISP1 stimulation was analyzed by IncuCyte S3-live cell imaging, qRT-PCR, and immunoblotting in murine AML12 cells. RESULTS In a TMA, high WISP1 expression was positively correlated with early HCC stages and male sex. Highest WISP1 expression levels were detected in patients with cirrhosis as compared to healthy individuals, patients with early fibrosis, and non-cirrhotic HCC in liver biopsies, expression datasets and serum samples. WISP1 transcripts were predominantly detected in hepatocytes of cirrhotic rather than tumorous liver tissue. High WISP1 expression was associated with better survival. In PMH, AML12 and HepaRG, WISP1 was identified as a specific TGF-β1 target gene. Accordingly, expression levels of both cytokines positively correlated in human HCC patient samples. WISP1-stimulation induced the expression of Bcl-xL, PCNA and p21 in AML12 cells. CONCLUSIONS WISP1 expression is induced by TGF-β1 in hepatocytes and is associated with cirrhotic liver disease. We propose a crucial role of WISP1 in balancing pro- and anti-tumorigenic effects during premalignant stages of CLD.
Collapse
Affiliation(s)
- Anne Dropmann
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Sophie Alex
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Katharina Schorn
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Chenhao Tong
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Tiziana Caccamo
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Patricio Godoy
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany; IfADo-Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Ardeystr. 67, 44139, Dortmund, Germany
| | - Iryna Ilkavets
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Roman Liebe
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany; Clinic of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke-University, Leipziger Straße 44, 39120, Magdeburg, Germany
| | - Daniela Gonzalez
- IfADo-Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Ardeystr. 67, 44139, Dortmund, Germany
| | - Jan G Hengstler
- IfADo-Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Ardeystr. 67, 44139, Dortmund, Germany
| | - Albrecht Piiper
- Department of Internal Medicine 1, University Hospital Frankfurt, Goethe University, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany
| | - Luca Quagliata
- Institute of Pathology, University Hospital Basel, Schönbeinstrasse 40, 4031, Basel, Switzerland
| | - Matthias S Matter
- Institute of Pathology, University Hospital Basel, Schönbeinstrasse 40, 4031, Basel, Switzerland
| | - Oliver Waidmann
- Department of Internal Medicine 1, University Hospital Frankfurt, Goethe University, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany
| | - Fabian Finkelmeier
- Department of Internal Medicine 1, University Hospital Frankfurt, Goethe University, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany
| | - Teng Feng
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Thomas S Weiss
- Children's University Hospital (KUNO), Center for Liver Cell Research, University Hospital Regensburg, Josef-Engert-Straße 9, 93053, Regensburg, Germany
| | - Nuh Rahbari
- Department of Surgery and European Center of Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany; Department of General and Visceral Surgery, University Hospital Ulm, Albert-Einstein-Allee 23, 89081, Ulm, Germany
| | - Emrullah Birgin
- Department of Surgery and European Center of Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany; Department of General and Visceral Surgery, University Hospital Ulm, Albert-Einstein-Allee 23, 89081, Ulm, Germany
| | - Erik Rasbach
- Department of General and Visceral Surgery, University Hospital Ulm, Albert-Einstein-Allee 23, 89081, Ulm, Germany; Department of Surgery, Medical Faculty Mannheim, Universitätsmedizin Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Stephanie Roessler
- Institute of Pathology, University Hospital Heidelberg, Medical Faculty, Heidelberg University, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - Kai Breuhahn
- Institute of Pathology, University Hospital Heidelberg, Medical Faculty, Heidelberg University, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - Marcell Tóth
- Institute of Pathology, University Hospital Heidelberg, Medical Faculty, Heidelberg University, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - Matthias P Ebert
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany; DKFZ-Hector Cancer Institute at the University Medical Center, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany; Molecular Medicine Partnership Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117, Heidelberg, Germany
| | - Steven Dooley
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Seddik Hammad
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Nadja M Meindl-Beinker
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.
| |
Collapse
|
3
|
Christopoulou ME, Aletras AJ, Papakonstantinou E, Stolz D, Skandalis SS. WISP1 and Macrophage Migration Inhibitory Factor in Respiratory Inflammation: Novel Insights and Therapeutic Potentials for Asthma and COPD. Int J Mol Sci 2024; 25:10049. [PMID: 39337534 PMCID: PMC11432718 DOI: 10.3390/ijms251810049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Recent advancements highlight the intricate interplay between the extracellular matrix (ECM) and immune responses, notably in respiratory diseases such as asthma and Chronic Obstructive Pulmonary Disease (COPD). The ECM, a dynamic structural framework within tissues, orches-trates a plethora of cellular processes, including immune cell behavior and tissue repair mecha-nisms. WNT1-inducible-signaling pathway protein 1 (WISP1), a key ECM regulator, controls immune cell behavior, cytokine production, and tissue repair by modulating integrins, PI3K, Akt, β-catenin, and mTOR signaling pathways. WISP1 also induces macrophage migration inhibitory factor (MIF) expression via Src kinases and epidermal growth factor receptor (EGFR) activation. MIF, through its wide range of activities, enhances inflammation and tissue restructuring. Rec-ognized for its versatile roles in regulating the immune system, MIF interacts with multiple immune components, such as the NLRP3 inflammasome, thereby sustaining inflammatory pro-cesses. The WISP1-MIF axis potentially unveils complex molecular mechanisms governing im-mune responses and inflammation. Understanding the intricate roles of WISP1 and MIF in the pathogenesis of chronic respiratory diseases such as asthma and COPD could lead to the identi-fication of novel targets for therapeutic intervention to alleviate disease severity and enhance patient outcomes.
Collapse
Affiliation(s)
- Maria-Elpida Christopoulou
- Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26504 Patras, Greece
- Clinic of Pneumology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Alexios J Aletras
- Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26504 Patras, Greece
| | - Eleni Papakonstantinou
- Clinic of Pneumology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Daiana Stolz
- Clinic of Pneumology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Spyros S Skandalis
- Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26504 Patras, Greece
| |
Collapse
|
4
|
Singh K, Oladipupo SS. An overview of CCN4 (WISP1) role in human diseases. J Transl Med 2024; 22:601. [PMID: 38937782 PMCID: PMC11212430 DOI: 10.1186/s12967-024-05364-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/01/2024] [Indexed: 06/29/2024] Open
Abstract
CCN4 (cellular communication network factor 4), a highly conserved, secreted cysteine-rich matricellular protein is emerging as a key player in the development and progression of numerous disease pathologies, including cancer, fibrosis, metabolic and inflammatory disorders. Over the past two decades, extensive research on CCN4 and its family members uncovered their diverse cellular mechanisms and biological functions, including but not limited to cell proliferation, migration, invasion, angiogenesis, wound healing, repair, and apoptosis. Recent studies have demonstrated that aberrant CCN4 expression and/or associated downstream signaling is key to a vast array of pathophysiological etiology, suggesting that CCN4 could be utilized not only as a non-invasive diagnostic or prognostic marker, but also as a promising therapeutic target. The cognate receptor of CCN4 remains elusive till date, which limits understanding of the mechanistic insights on CCN4 driven disease pathologies. However, as therapeutic agents directed against CCN4 begin to make their way into the clinic, that may start to change. Also, the pathophysiological significance of CCN4 remains underexplored, hence further research is needed to shed more light on its disease and/or tissue specific functions to better understand its clinical translational benefit. This review highlights the compelling evidence of overlapping and/or diverse functional and mechanisms regulated by CCN4, in addition to addressing the challenges, study limitations and knowledge gaps on CCN4 biology and its therapeutic potential.
Collapse
Affiliation(s)
- Kirti Singh
- Biotherapeutic Enabling Biology, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46225, USA
| | - Sunday S Oladipupo
- Biotherapeutic Enabling Biology, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46225, USA.
| |
Collapse
|
5
|
Wang Y, Liu X, Wang X, Lu J, Tian Y, Liu Q, Xue J. Matricellular proteins: Potential biomarkers in head and neck cancer. J Cell Commun Signal 2024; 18:e12027. [PMID: 38946720 PMCID: PMC11208127 DOI: 10.1002/ccs3.12027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/19/2024] [Accepted: 03/22/2024] [Indexed: 07/02/2024] Open
Abstract
The extracellular matrix (ECM) is a complex network of diverse multidomain macromolecules, including collagen, proteoglycans, and fibronectin, that significantly contribute to the mechanical properties of tissues. Matricellular proteins (MCPs), as a family of non-structural proteins, play a crucial role in regulating various ECM functions. They exert their biological effects by interacting with matrix proteins, cell surface receptors, cytokines, and proteases. These interactions govern essential cellular processes such as differentiation, proliferation, adhesion, migration as well as multiple signal transduction pathways. Consequently, MCPs are pivotal in maintaining tissue homeostasis while orchestrating intricate molecular mechanisms within the ECM framework. The expression level of MCPs in adult steady-state tissues is significantly low; however, under pathological conditions such as inflammation and cancer, there is a substantial increase in their expression. In recent years, an increasing number of studies have focused on elucidating the role and significance of MCPs in the development and progression of head and neck cancer (HNC). During HNC progression, there is a remarkable upregulation in MCP expression. Through their distinctive structure and function, they actively promote tumor growth, invasion, epithelial-mesenchymal transition, and lymphatic metastasis of HNC cells. Moreover, by binding to integrins and modulating various signaling pathways, they effectively execute their biological functions. Furthermore, MCPs also hold potential as prognostic indicators. Although the star proteins of various MCPs have been extensively investigated, there remains a plethora of MCP family members that necessitate further scrutiny. This article comprehensively examines the functionalities of each MCP and highlights the research advancements in the context of HNC, with an aim to identify novel biomarkers for HNC and propose promising avenues for future investigations.
Collapse
Affiliation(s)
- Yunsheng Wang
- Department of Head and Neck SurgeryGansu Provincial Cancer HospitalLanzhouChina
| | - Xudong Liu
- Department of Head and Neck SurgeryGansu Provincial Cancer HospitalLanzhouChina
| | - Xingyue Wang
- Department of Head and Neck SurgeryGansu Provincial Cancer HospitalLanzhouChina
| | - Jiyong Lu
- Department of Head and Neck SurgeryGansu Provincial Cancer HospitalLanzhouChina
| | - Youxin Tian
- Department of Head and Neck SurgeryGansu Provincial Cancer HospitalLanzhouChina
| | - Qinjiang Liu
- Department of Head and Neck SurgeryGansu Provincial Cancer HospitalLanzhouChina
| | - Jincai Xue
- Department of Head and Neck SurgeryGansu Provincial Cancer HospitalLanzhouChina
| |
Collapse
|
6
|
Maiese K. Artificial Intelligence and Disease Signature Pathways: Driving Innovation to Elucidate Underlying Pathogenic Mechanisms. Curr Neurovasc Res 2024; 21:229-233. [PMID: 38910427 DOI: 10.2174/1567202621999240621122700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
|
7
|
Liu J, Lv S, Ma W, Yang D, Zhang X. Effect of WISP1 on paraquat-induced EMT. Toxicol In Vitro 2023; 93:105693. [PMID: 37689312 DOI: 10.1016/j.tiv.2023.105693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
BACKGROUND Paraquat (PQ) can induce pulmonary fibrosis (PF) by modulating epithelial-mesenchymal transition (EMT) of alveolar epithelial cells, but the molecular mechanism is unknown. In this paper, the role of Wnt-inducible signaling protein-1 (WISP1) in PQ-induced EMT was inspected. METHODS The morphology, apoptosis, and mortality of A549 cells were observed through a microscope. The mRNA and protein levels of WISP1, E-cadherin, and Vimentin were confirmed by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and western blot. RESULTS With the increase of PQ concentration, the morphology of A549 cells was apparently changed, cell apoptosis and mortality were enhanced. Besides, the E-cadherin abundance was reduced (p < 0.01), however, WISP1 and Vimentin contents were boosted after PQ treatment (p < 0.01). With the increase of PQ treatment time, the epithelial index of cells first increased and then decreased. The expression of WISP1 gene increased significantly with the increase of PQ treatment time (p < 0.01). Silence of WISP1 abolished the effect of PQ treatment on E-cadherin and Vimentin levels (p < 0.01). Downregulation of WISP1 curbed morphology change and PQ-induced EMT in A549 cells. CONCLUSION Knockdown of WISP1 inhibited PQ-induced EMT in A549 cells. This conclusion might provide a new therapeutic target for PQ poisoning treatment.
Collapse
Affiliation(s)
- Jingyan Liu
- Department of Emergency, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Longgang District People's Hospital of Shenzhen, Shenzhen, Guangdong 518172, PR China
| | - Shengnan Lv
- Department of Out-patient, Linyi People's Hospital, Linyi 276000, Shandong, China
| | - Wanling Ma
- Department of Radiology, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Longgang District People's Hospital of Shenzhen, Shenzhen, Guangdong 518172, PR China
| | - Dong Yang
- Department of Vascular Surgery, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Longgang District People's Hospital of Shenzhen, Shenzhen, Guangdong 518172, PR China
| | - Xuchang Zhang
- Department of Geriatrics Emergency, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Longgang District People's Hospital of Shenzhen, Shenzhen, Guangdong 518172, PR China.
| |
Collapse
|
8
|
Soccio P, Moriondo G, Scioscia G, Leo V, Tondo P, Salerno L, Palange P, Barbaro MPF, Lacedonia D. Searching for airways biomarkers useful to identify progressive pulmonary fibrosis. BMC Pulm Med 2023; 23:407. [PMID: 37884953 PMCID: PMC10605223 DOI: 10.1186/s12890-023-02714-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 10/15/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive disorder with unknown etiology. To date, the identification of new diagnostic, prognostic and progression biomarkers of IPF turns out to be necessary. MicroRNA (miRNA) are small non-coding RNAs which negatively regulate gene expression at the post-transcriptional level in several biological and pathological processes. An aberrant regulation of gene expression by miRNA is often associated with various diseases, including IPF. As result, miRNAs have emerged as potential biomarkers with relevance to pulmonary fibrosis. Several reports suggested that miRNAs are secreted as microvesicles or exosome, and hance they are stable and can be readily detected in the circulation. In the contest of miRNAs as circulating biomarkers, different studies show their role in various types of interstitial lung diseases and suggest that these small molecules could be used as prognostic markers of the disease. Exosomes are small, lipid-bound vesicles able to carry various elements of the naïve cells such as proteins, lipids, mRNAs and miRNA to facilitate cell communication under normal and diseases condition. Exosomal miRNAs (exo-miRNA) have been studied in relation to many diseases. However, there is little or no knowledge regarding exo-miRNA in bronchoalveolar lavage (BAL) in IPF. Our study's aim is to evaluate the changes in the expression of two exo-miRNAs in BAL, respectively miR-21 and miR-92a, through highlighting the differences between IPF, progressive pulmonary fibrosis (PPF) and not-progressive pulmonary fibrosis (nPPF). METHODS Exosomes were characterized by Western Blot and Multiplex Surface Marker Analysis. Exosomal miRNA expression was performed by qRT-PCR. ANOVA or Kruskal-Wallis test, based on data normality, was used to compare the differential expression between groups. RESULTS MiR-21 expression was significantly higher in the nPPF group than in both IPF and PPF. A result that could point above a possible role of miR-21, as a biomarker in the differential diagnosis between PPF and nPPF. MiR-92a, indeed, was down regulated in PPF compared to IPF and down regulated in PPF compared to nPPF. CONCLUSIONS This study demonstrated the putative role of both miR-21 and miR-92a as possible biomarkers of pulmonary fibrosis progression. Moreover, the role of exo-miRNAs is examined as a possible future direction that could lead to new therapeutic strategies for the treatment of progressive and non-progressive pulmonary fibrosis.
Collapse
Affiliation(s)
- Piera Soccio
- Department of Medical and Surgical Sciences, University of Foggia, Viale Luigi Pinto, 1, Foggia, 71122, Italy.
| | - Giorgia Moriondo
- Department of Medical and Surgical Sciences, University of Foggia, Viale Luigi Pinto, 1, Foggia, 71122, Italy
| | - Giulia Scioscia
- Department of Medical and Surgical Sciences, University of Foggia, Viale Luigi Pinto, 1, Foggia, 71122, Italy
- Institute of Respiratory Diseases, Policlinico of Foggia, Viale Luigi Pinto, 1 , Foggia, 71122, Italy
| | - Valentina Leo
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Viale Università, 37, Rome, 00185, Italy
- Division of Pulmonary Medicine, Policlinico Umberto I Hospital, Viale del Policlinico, 155, Rome, 00161, Italy
| | - Pasquale Tondo
- Department of Medical and Surgical Sciences, University of Foggia, Viale Luigi Pinto, 1, Foggia, 71122, Italy
| | - Luciana Salerno
- Department of Medical and Surgical Sciences, University of Foggia, Viale Luigi Pinto, 1, Foggia, 71122, Italy
| | - Paolo Palange
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Viale Università, 37, Rome, 00185, Italy
- Division of Pulmonary Medicine, Policlinico Umberto I Hospital, Viale del Policlinico, 155, Rome, 00161, Italy
| | - Maria Pia Foschino Barbaro
- Department of Medical and Surgical Sciences, University of Foggia, Viale Luigi Pinto, 1, Foggia, 71122, Italy
- Institute of Respiratory Diseases, Policlinico of Foggia, Viale Luigi Pinto, 1 , Foggia, 71122, Italy
| | - Donato Lacedonia
- Department of Medical and Surgical Sciences, University of Foggia, Viale Luigi Pinto, 1, Foggia, 71122, Italy
- Institute of Respiratory Diseases, Policlinico of Foggia, Viale Luigi Pinto, 1 , Foggia, 71122, Italy
| |
Collapse
|
9
|
Grimm SL, Reddick S, Dong X, Leek C, Wang AX, Gutierrez MC, Hartig SM, Moorthy B, Coarfa C, Lingappan K. Loss of microRNA-30a and sex-specific effects on the neonatal hyperoxic lung injury. Biol Sex Differ 2023; 14:50. [PMID: 37553579 PMCID: PMC10408139 DOI: 10.1186/s13293-023-00535-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 07/24/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND Bronchopulmonary dysplasia (BPD) is characterized by an arrest in lung development and is a leading cause of morbidity in premature neonates. It has been well documented that BPD disproportionally affects males compared to females, but the molecular mechanisms behind this sex-dependent bias remain unclear. Female mice show greater preservation of alveolarization and angiogenesis when exposed to hyperoxia, accompanied by increased miR-30a expression. In this investigation, we tested the hypothesis that loss of miR-30a would result in male and female mice experiencing similar impairments in alveolarization and angiogenesis under hyperoxic conditions. METHODS Wild-type and miR-30a-/- neonatal mice were exposed to hyperoxia [95% FiO2, postnatal day [PND1-5] or room air before being euthanized on PND21. Alveolarization, pulmonary microvascular development, differences in lung transcriptome, and miR-30a expression were assessed in lungs from WT and miR-30a-/- mice of either sex. Blood transcriptomic signatures from preterm newborns (with and without BPD) were correlated with WT and miR-30a-/- male and female lung transcriptome data. RESULTS Significantly, the sex-specific differences observed in WT mice were abrogated in the miR-30a-/- mice upon exposure to hyperoxia. The loss of miR-30a expression eliminated the protective effect in females, suggesting that miR-30a plays an essential role in regulating alveolarization and angiogenesis. Transcriptome analysis by whole lung RNA-Seq revealed a significant response in the miR-30a-/- female hyperoxia-exposed lung, with enrichment of pathways related to cell cycle and neuroactive ligand-receptor interaction. Gene expression signature in the miR-30a-/- female lung associated with human BPD blood transcriptomes. Finally, we showed the spatial localization of miR-30a transcripts in the bronchiolar epithelium. CONCLUSIONS miR-30a could be one of the biological factors mediating the resilience of the female preterm lung to neonatal hyperoxic lung injury. A better understanding of the effects of miR-30a on pulmonary angiogenesis and alveolarization may lead to novel therapeutics for treating BPD.
Collapse
Affiliation(s)
- Sandra L Grimm
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
- Molecular and Cellular Biology Department, Baylor College of Medicine, Houston, TX, USA
| | - Samuel Reddick
- Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Xiaoyu Dong
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Connor Leek
- Department of Pediatrics, Division of Neonatology, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - Amy Xiao Wang
- Department of Pediatrics, Division of Neonatology, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - Manuel Cantu Gutierrez
- Department of Pediatrics, Division of Neonatology, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - Sean M Hartig
- Molecular and Cellular Biology Department, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Division of Endocrinology, Baylor College of Medicine, Houston, TX, USA
| | | | - Cristian Coarfa
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA.
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA.
- Molecular and Cellular Biology Department, Baylor College of Medicine, Houston, TX, USA.
| | - Krithika Lingappan
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.
- Department of Pediatrics, Division of Neonatology, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
10
|
Guiot J, Henket M, Remacle C, Cambier M, Struman I, Winandy M, Moermans C, Louis E, Malaise M, Ribbens C, Louis R, Njock MS. Systematic review of overlapping microRNA patterns in COVID-19 and idiopathic pulmonary fibrosis. Respir Res 2023; 24:112. [PMID: 37061683 PMCID: PMC10105547 DOI: 10.1186/s12931-023-02413-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 04/03/2023] [Indexed: 04/17/2023] Open
Abstract
BACKGROUND Pulmonary fibrosis is an emerging complication of SARS-CoV-2 infection. In this study, we speculate that patients with COVID-19 and idiopathic pulmonary fibrosis (IPF) may share aberrant expressed microRNAs (miRNAs) associated to the progression of lung fibrosis. OBJECTIVE To identify miRNAs presenting similar alteration in COVID-19 and IPF, and describe their impact on fibrogenesis. METHODS A systematic review of the literature published between 2010 and January 2022 (PROSPERO, CRD42022341016) was conducted using the key words (COVID-19 OR SARS-CoV-2) AND (microRNA OR miRNA) or (idiopathic pulmonary fibrosis OR IPF) AND (microRNA OR miRNA) in Title/Abstract. RESULTS Of the 1988 references considered, 70 original articles were appropriate for data extraction: 27 studies focused on miRNAs in COVID-19, and 43 on miRNAs in IPF. 34 miRNAs were overlapping in COVID-19 and IPF, 7 miRNAs presenting an upregulation (miR-19a-3p, miR-200c-3p, miR-21-5p, miR-145-5p, miR-199a-5p, miR-23b and miR-424) and 9 miRNAs a downregulation (miR-17-5p, miR-20a-5p, miR-92a-3p, miR-141-3p, miR-16-5p, miR-142-5p, miR-486-5p, miR-708-3p and miR-150-5p). CONCLUSION Several studies reported elevated levels of profibrotic miRNAs in COVID-19 context. In addition, the balance of antifibrotic miRNAs responsible of the modulation of fibrotic processes is impaired in COVID-19. This evidence suggests that the deregulation of fibrotic-related miRNAs participates in the development of fibrotic lesions in the lung of post-COVID-19 patients.
Collapse
Affiliation(s)
- Julien Guiot
- Laboratory of Pneumology, GIGA Research Center, University of Liège, University Hospital of Liège, Liège, Belgium
- Fibropole Research Group, University Hospital of Liège, Liège, Belgium
| | - Monique Henket
- Laboratory of Pneumology, GIGA Research Center, University of Liège, University Hospital of Liège, Liège, Belgium
| | - Claire Remacle
- Laboratory of Pneumology, GIGA Research Center, University of Liège, University Hospital of Liège, Liège, Belgium
- Laboratory of Molecular Angiogenesis, GIGA Research Center, University of Liège, Liège, Belgium
| | - Maureen Cambier
- Laboratory of Pneumology, GIGA Research Center, University of Liège, University Hospital of Liège, Liège, Belgium
- Laboratory of Molecular Angiogenesis, GIGA Research Center, University of Liège, Liège, Belgium
| | - Ingrid Struman
- Laboratory of Molecular Angiogenesis, GIGA Research Center, University of Liège, Liège, Belgium
| | - Marie Winandy
- Laboratory of Pneumology, GIGA Research Center, University of Liège, University Hospital of Liège, Liège, Belgium
| | - Catherine Moermans
- Laboratory of Pneumology, GIGA Research Center, University of Liège, University Hospital of Liège, Liège, Belgium
| | - Edouard Louis
- Laboratory of Gastroenterology, GIGA Research Center, University of Liège, University Hospital of Liège, Liège, Belgium
- Fibropole Research Group, University Hospital of Liège, Liège, Belgium
| | - Michel Malaise
- Laboratory of Rheumatology, GIGA Research Center, University of Liège, University Hospital of Liège, Liège, Belgium
- Fibropole Research Group, University Hospital of Liège, Liège, Belgium
| | - Clio Ribbens
- Laboratory of Rheumatology, GIGA Research Center, University of Liège, University Hospital of Liège, Liège, Belgium
- Fibropole Research Group, University Hospital of Liège, Liège, Belgium
| | - Renaud Louis
- Laboratory of Pneumology, GIGA Research Center, University of Liège, University Hospital of Liège, Liège, Belgium
- Fibropole Research Group, University Hospital of Liège, Liège, Belgium
| | - Makon-Sébastien Njock
- Laboratory of Pneumology, GIGA Research Center, University of Liège, University Hospital of Liège, Liège, Belgium
- Fibropole Research Group, University Hospital of Liège, Liège, Belgium
| |
Collapse
|
11
|
Sabater L, Gossart JB, Hernandez I, Rico D, Blanchard A, Borthwick LA, Fisher AJ, Majo J, Jiwa K, Collins A, Abbate G, Oakley F, Mann DA, Mann J. miRNA Expression in Fibroblastic Foci within Idiopathic Pulmonary Fibrosis Lungs Reveals Novel Disease-Relevant Pathways. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:417-429. [PMID: 36690076 DOI: 10.1016/j.ajpath.2022.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/19/2022] [Accepted: 12/28/2022] [Indexed: 01/22/2023]
Abstract
miRNAs are a class of noncoding RNAs of approximately 22 nucleotides long that play an important role in regulating gene expression at a post-transcriptional level. Aberrant levels of miRNAs have been associated with profibrotic processes in idiopathic pulmonary fibrosis (IPF). However, most of these studies used whole IPF tissue or in vitro monocultures in which fibrosis has been artificially induced. In this study, we used laser microdissection to collect fibroblastic foci (FF), the key pathologic lesion in IPF, then isolate miRNAs and compare their expression levels with those found in whole IPF lung tissue and/or in vitro cultured fibroblast from IPF or normal lungs. Sequencing libraries were generated, and data generated were bioinformatically analyzed. A total of 18 miRNAs were significantly overexpressed in FF tissue when compared with whole IPF tissue; of these molecules, 15 were unique to FF. Comparison of FF with cultured IPF fibroblasts also revealed differences in miRNA composition that impact on several signaling pathways. The miRNA composition of FF is both overlapping and distinct from that of whole IPF tissue or cultured IPF fibroblasts and highlights the importance of characterizing FF biology as a phenotypically and functionally discrete tissue microenvironment.
Collapse
Affiliation(s)
- Laura Sabater
- Newcastle Fibrosis Research Group, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Jean B Gossart
- Newcastle Fibrosis Research Group, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Inmaculada Hernandez
- Computational Epigenomics Laboratory, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Daniel Rico
- Computational Epigenomics Laboratory, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Andy Blanchard
- GlaxoSmithKline Medicines Research Centre, Stevenage, United Kingdom
| | - Lee A Borthwick
- Newcastle Fibrosis Research Group, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Andrew J Fisher
- Institute of Transplantation, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Joaquim Majo
- Institute of Transplantation, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Kasim Jiwa
- Institute of Transplantation, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Amy Collins
- Newcastle Fibrosis Research Group, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom; FibroFind Ltd, FibroFind Laboratories, Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Giuseppe Abbate
- FibroFind Ltd, FibroFind Laboratories, Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Fiona Oakley
- Newcastle Fibrosis Research Group, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom; FibroFind Ltd, FibroFind Laboratories, Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Derek A Mann
- Newcastle Fibrosis Research Group, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom; FibroFind Ltd, FibroFind Laboratories, Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Jelena Mann
- Newcastle Fibrosis Research Group, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom; FibroFind Ltd, FibroFind Laboratories, Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom.
| |
Collapse
|
12
|
Chang KS, Chen ST, Sung HC, Hsu SY, Lin WY, Hou CP, Lin YH, Feng TH, Tsui KH, Juang HH. WNT1 Inducible Signaling Pathway Protein 1 Is a Stroma-Specific Secreting Protein Inducing a Fibroblast Contraction and Carcinoma Cell Growth in the Human Prostate. Int J Mol Sci 2022; 23:ijms231911437. [PMID: 36232736 PMCID: PMC9570503 DOI: 10.3390/ijms231911437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/18/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
The WNT1 inducible signaling pathway protein 1 (WISP1), a member of the connective tissue growth factor family, plays a crucial role in several important cellular functions in a highly tissue-specific manner. Results of a RT-qPCR indicated that WISP1 expressed only in cells of the human prostate fibroblasts, HPrF and WPMY-1, but not the prostate carcinoma cells in vitro. Two major isoforms (WISP1v1 and WISP1v2) were identified in the HPrF cells determined by RT-PCR and immunoblot assays. The knock-down of a WISP1 blocked cell proliferation and contraction, while treating respectively with the conditioned medium from the ectopic WISP1v1- and WISPv2-overexpressed 293T cells enhanced the migration of HPrF cells. The TNFα induced WISP1 secretion and cell contraction while the knock-down of WISP1 attenuated these effects, although TNFα did not affect the proliferation of the HPrF cells. The ectopic overexpression of WISP1v1 but not WISP1v2 downregulated the N-myc downstream regulated 1 (NDRG1) while upregulating N-cadherin, slug, snail, and vimentin gene expressions which induced not only the cell proliferation and invasion in vitro but also tumor growth of prostate carcinoma cells in vivo. The results confirmed that WISP1 is a stroma-specific secreting protein, enhancing the cell migration and contraction of prostate fibroblasts, as well as the proliferation, invasion, and tumor growth of prostate carcinoma cells.
Collapse
Affiliation(s)
- Kang-Shuo Chang
- Department of Anatomy, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 33302, Taiwan
| | - Syue-Ting Chen
- Department of Anatomy, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 33302, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 33302, Taiwan
- Department of Urology, Chang Gung Memorial Hospital-Linkou, Kwei-Shan, Taoyuan 33302, Taiwan
| | - Hsin-Ching Sung
- Department of Anatomy, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 33302, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 33302, Taiwan
| | - Shu-Yuan Hsu
- Department of Anatomy, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 33302, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 33302, Taiwan
| | - Wei-Yin Lin
- Department of Internal Medicine, Chang Gung Memorial Hospital-Linkou, Kwei-Shan, Taoyuan 33302, Taiwan
| | - Chen-Pang Hou
- Department of Urology, Chang Gung Memorial Hospital-Linkou, Kwei-Shan, Taoyuan 33302, Taiwan
| | - Yu-Hsiang Lin
- Department of Urology, Chang Gung Memorial Hospital-Linkou, Kwei-Shan, Taoyuan 33302, Taiwan
| | - Tsui-Hsia Feng
- School of Nursing, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 33302, Taiwan
| | - Ke-Hung Tsui
- Department of Urology, Shuang Ho Hospital, New Taipei City 235041, Taiwan
- TMU Research Center of Urology and Kidney, Department of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Correspondence: (K.-H.T.); (H.-H.J.); Tel.: +886-3-2118800 (ext. 5071) (H.-H.J.); Fax: +886-3-2118112 (H.-H.J.)
| | - Horng-Heng Juang
- Department of Anatomy, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 33302, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 33302, Taiwan
- Department of Urology, Chang Gung Memorial Hospital-Linkou, Kwei-Shan, Taoyuan 33302, Taiwan
- Correspondence: (K.-H.T.); (H.-H.J.); Tel.: +886-3-2118800 (ext. 5071) (H.-H.J.); Fax: +886-3-2118112 (H.-H.J.)
| |
Collapse
|
13
|
Qian Q, Ma Q, Wang B, Qian Q, Zhao C, Feng F, Dong X. Downregulated miR-129-5p expression inhibits rat pulmonary fibrosis by upregulating STAT1 gene expression in macrophages. Int Immunopharmacol 2022; 109:108880. [PMID: 35689956 DOI: 10.1016/j.intimp.2022.108880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE This study investigated the mechanism by which microRNA-129-5p (miR-129-5p) in macrophages affects pulmonary fibrosis in rats by regulating the expression of the signal transducer and activator of transcription 1 (STAT1) gene. METHODS After the establishment of a pulmonary fibrosis rat model, quantitative real-time polymerase chain reaction (qRT-PCR) was employed to detect the expression of miR-129-5p in the sham group and model group. The binding sites between miR-129-5p and STAT1 were predicted online and verified by using a dual luciferase reporter system. qRT-PCR and Western blot analyses were used to test the effect of miR-129-5p on STAT1 gene expression. M2 macrophages were isolated and induced, and exosomes were extracted. Cell proliferation was detected by EdU. Furthermore, qRT-PCR was performed to detect the expression of STAT1, collagen type I A2 (COL1A2), collagen type III A1 (COL3A1), fibronectin, and α-SMA in cells and tissues followed by the detection of CD9, CD63, CD81, CD31 and STAT1 protein expression using a Western blot analysis. The pulmonary fibrosis area was detected by Masson staining followed by the immunohistochemical detection of α-smooth muscle actin (α-SMA) and type I collagen (COL-I) expression in pulmonary fibroblasts. RESULTS Compared with the sham group, the expression level of miR-129-5p in the model group was significantly increased (P < 0.05). miR-129-5p was observed to negatively regulate the expression of STAT1 (P < 0.05). The in vitro cell transfection experiments showed that after inhibiting the expression of miR-129-5p, the expression of STAT1 was increased, and the proliferation of fibroblasts and pulmonary fibrosis were inhibited (all P < 0.05). Furthermore, compared with the fibroblasts without coculture, the proliferation of the fibroblasts cocultured with M2 macrophage-secreted exosomes was clearly increased, and the expression levels of COL1A2, COL3A1, fibronectin and α-SMA were significantly increased (all P < 0.05). Compared with the mimic NC-exo group, the miR-129-5p-exo group had significantly increased proliferation of fibroblasts, decreased expression of STAT1, and significantly increased expression of COL1A2, COL3A1, fibronectin and α-SMA, and M2 macrophage-secreted exosomes could carry miR-129-5p to fibroblasts. Furthermore, the in vivo experiment confirmed that the exosomes of M2 macrophages could carry miR-129-5p, which could regulate M2 macrophages with pulmonary fibrosis in vivo. CONCLUSION M2 macrophages can carry miR-129-5p to pulmonary interstitial fibroblasts and inhibit STAT1 gene expression, which may lead to the proliferation of fibroblasts and promote pulmonary fibrosis. The downregulation of miR-129-5p can significantly promote STAT1 gene expression in macrophages to inhibit pulmonary fibrosis in rats.
Collapse
Affiliation(s)
- Qingzeng Qian
- School of Public Health, North China University of Science and Technology, Tangshan 063210, Hebei, China
| | - Qinghua Ma
- Department of Preventive Health, The Third People's Hospital Of Xiangcheng District In Suzhou, Suzhou 215134, Jiangsu, China
| | - Bin Wang
- Department of Pediatrics, North China University of Science and Technology Affiliated Hospital, Tangshan 063210, Hebei, China
| | - Qingqiang Qian
- Department of Neurology, Tangshan Gongren Hospital, Tangshan, Hebei, China
| | - Changsong Zhao
- Department of Emergency, Tangshan Hospital of Traditional Chinese Medicine, Tangshan, Hebei, China
| | - Fumin Feng
- School of Public Health, North China University of Science and Technology, Tangshan 063210, Hebei, China
| | - Xiaona Dong
- Department of Respiratory Medicine, Tangshan People's Hospital, Tangshan 063001, Hebei, China.
| |
Collapse
|
14
|
Shi M, Cui H, Shi J, Mei Y. mmu-microRNA-92a-3p attenuates pulmonary fibrosis by modulating Cpeb4-mediated Smad2/3 signaling pathway. Funct Integr Genomics 2022; 22:1297-1306. [PMID: 35909199 DOI: 10.1007/s10142-022-00879-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 04/02/2022] [Accepted: 06/23/2022] [Indexed: 11/26/2022]
Abstract
Pulmonary fibrosis (PF) is a chronic lung disorder, in which the mechanism of mmu-microRNA (miR)-92a-3p is not elucidated clearly. The present work was proposed to disclose mmu-miR-92a-3p-focused mechanism in PF with cytoplasmic polyadenylation element-binding protein 4 (Cpeb4)/Smad2/3 axis. PF was induced in mice by the intratracheal injection of bleomycin (BLM). Then, the BLM-treated mice were injected with mmu-miR-92a-3p- and/or Cpeb4-related adenovirus vectors. mmu-miR-92a-3p, Cpeb4, and Smad2/3 expression in lung tissues were examined. Alveolar cell apoptosis and collagen deposition in lung tissues and inflammatory factors in serum were observed. The interaction between mmu-miR-92a-3p and Cpeb4 was explored. Lowly expressed mmu-miR-92a-3p and highly expressed Cpeb4 and Smad2/3 were manifested in BLM-induced PF mice. BLM-induced PF mice exhibited enhanced inflammation, alveolar cell apoptosis, and collagen deposition, which would be attenuated by upregulating mmu-miR-92a-3p or downregulating Cpeb4. mmu-miR-92a-3p targeted Cpeb4. Upregulating mmu-miR-92a-3p or downregulating Cpeb4 inactivated the Smad2/3 signaling pathway in BLM-induced PF mice. It is elaborated that mmu-miR-92a-3p attenuates the process of PF by modulating Cpeb4-mediated Smad2/3 signaling pathway, renewing the molecular mechanism of PF.
Collapse
Affiliation(s)
- Mengkun Shi
- Department of Cardiothoracic Surgery, Tongji Hospital, School of Medicine, Tongji University, No. 389 Xincun Road, Putuo District, Shanghai, 200092, China
| | - Huixia Cui
- Department of Medical Institution Conducting Clinical Trials for Human Used Drug, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, 046099, Shanxi, China
| | - Jialun Shi
- Department of Cardiothoracic Surgery, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, 046099, Shanxi, China
| | - Yunqing Mei
- Department of Cardiothoracic Surgery, Tongji Hospital, School of Medicine, Tongji University, No. 389 Xincun Road, Putuo District, Shanghai, 200092, China.
| |
Collapse
|
15
|
Identifying miRNAs Associated with the Progression of Keloid through mRNA-miRNA Network Analysis and Validating the Targets of miR-29a-3p in Keloid Fibroblasts. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6487989. [PMID: 35872873 PMCID: PMC9300312 DOI: 10.1155/2022/6487989] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/24/2022] [Accepted: 06/08/2022] [Indexed: 11/18/2022]
Abstract
Background. Keloid has brought great trouble to people and currently has no uniformly successful treatment. It is urgent to find new targets to effectively prevent the progress of keloid. The current research mainly identifies the differentially expressed genes (DEGs) in keloid through high-throughput sequencing technology and bioinformatics analysis technology, to screen new therapeutic targets and potential biomarkers. However, due to the different samples, different control groups, and small sample sizes, the sequencing results obtained from different studies are quite different and lack reliability. It is necessary to analyze the existing datasets in a reasonable way. Methods. Datasets about keloid were filtered in Gene Expression Omnibus (GEO) and ArrayExpress databases according to the inclusion and exclusion criteria. The discovery datasets were used for summarizing significant DEGs, and the validation datasets were to validate the mRNA and miRNA expression levels. The Encyclopedia of RNA Interactomes (ENCORI) online platform was used to predict the interactions between miRNAs and their target mRNAs. Protein-protein interaction network (PPI network) analysis and functional enrichment analysis were conducted. miRNA-mRNA network was established by Cytoscape software and verified in keloid tissue (
) by RT-qPCR. miR-29a-3p mimic and inhibitor were transfected into keloid fibroblasts (KFs) to preliminary verify its targets, the prognostic value of which was estimated by the receiver operating characteristic (ROC) curve. Results. A total of 6 datasets involving 20 patients were included. 15 miRNAs and 12 target mRNAs were identified as potential biomarkers for keloid patients. The RT-qPCR results showed that miR-29a-3p, miR-92a-3p, and miR-143-3p were downregulated, and all their target mRNAs were upregulated in keloid tissue (
). The expression of COL1A1, COL1A2, COL3A1, COL5A1, and COL5A2 decreased when miR-29a-3p was overexpressed but increased when miR-29a-3p was knocked down (
). And these genes had a good performance in the diagnosis of keloid, especially when using keloid nonlesional skin or normal scar tissues as controls. Conclusion. The miRNA-mRNA network, especially miR-29a-3p and its targets, may provide insights into the underlying pathogenesis of keloid and serve as potential biomarkers for keloid treatment.
Collapse
|
16
|
Avalos PN, Forsthoefel DJ. An Emerging Frontier in Intercellular Communication: Extracellular Vesicles in Regeneration. Front Cell Dev Biol 2022; 10:849905. [PMID: 35646926 PMCID: PMC9130466 DOI: 10.3389/fcell.2022.849905] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/28/2022] [Indexed: 12/12/2022] Open
Abstract
Regeneration requires cellular proliferation, differentiation, and other processes that are regulated by secreted cues originating from cells in the local environment. Recent studies suggest that signaling by extracellular vesicles (EVs), another mode of paracrine communication, may also play a significant role in coordinating cellular behaviors during regeneration. EVs are nanoparticles composed of a lipid bilayer enclosing proteins, nucleic acids, lipids, and other metabolites, and are secreted by most cell types. Upon EV uptake by target cells, EV cargo can influence diverse cellular behaviors during regeneration, including cell survival, immune responses, extracellular matrix remodeling, proliferation, migration, and differentiation. In this review, we briefly introduce the history of EV research and EV biogenesis. Then, we review current understanding of how EVs regulate cellular behaviors during regeneration derived from numerous studies of stem cell-derived EVs in mammalian injury models. Finally, we discuss the potential of other established and emerging research organisms to expand our mechanistic knowledge of basic EV biology, how injury modulates EV biogenesis, cellular sources of EVs in vivo, and the roles of EVs in organisms with greater regenerative capacity.
Collapse
Affiliation(s)
- Priscilla N. Avalos
- Department of Cell Biology, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - David J. Forsthoefel
- Department of Cell Biology, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| |
Collapse
|
17
|
Li L, Lv S, Li X, Liu J. Wnt-induced secreted proteins-1 play an important role in paraquat-induced pulmonary fibrosis. BMC Pharmacol Toxicol 2022; 23:21. [PMID: 35387687 PMCID: PMC8988378 DOI: 10.1186/s40360-022-00560-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 03/08/2022] [Indexed: 11/10/2022] Open
Abstract
Background The objective of this article is to observe the expression of Wnt-induced secreted proteins-1 (WISP1) in paraquat (PQ)-induced pulmonary fibrosis (PF) to explore the role of WISP1. Methods Healthy individuals were included in the control group. Patients who had acute lung injury or PF were included in the PF group. Venous blood samples were collected from the patients on days 1 and 3 following PQ poisoning to detect the expression levels of the WISP1 gene and protein concentration. Any changes in the patients’ blood gas analysis index were reviewed. In addition, chest computed tomography (CT) and x-ray images were observed to evaluate the relationship between WISP1 expression and disease severity. Results The expression of the WISP1 gene and the serum WISP1 protein concentration were higher in patients with PQ poisoning combined with PF than in patients without PF (P < 0.01). Serum PQ concentration was positively correlated with WISP1 gene expression (r = 0.621, P < 0.01), and serum WISP1 protein concentration (r = 0.596, P < 0.01) was considered a risk factor [odds ratio (OR) = 4.356, P < 0.05] for PQ-induced PF. Concurrently, the results of the adjusted and non-adjusted OR value for WISP1 gene expression and WISP1 protein concentration on day 1 was, respectively, as follows: OR = 12.797, 95% confidence interval (CI) (2.478–66.076), P = 0.002, OR’ = 11.353, P = 0.005; and OR = 1.545, 95% CI (1.197–1.995), P = 0.001, OR’ = 1.487, P = 0.003. The CT scan of a 20-year-old male with PQ-induced PF (20 ml) was observed, and it showed a typical hyaline-like lesion in the lungs on day 22 after poisoning; on day 33 after poisoning, the lungs showed localised consolidation combined with air bronchography. Conclusion The expression of WISP1 was higher in the patients with PQ-induced PF compared with the patients without PF. Accordingly, WISP1 plays an important role in PQ-induced PF.
Collapse
Affiliation(s)
- Lanrong Li
- Emergency Department, Linyi People's Hospital, Linyi, China
| | - Shengnan Lv
- Outpatient Department, Linyi People's Hospital, Linyi, China
| | - Xin Li
- Outpatient Department, Linyi People's Hospital, Linyi, China
| | - Jingyan Liu
- Emergency Department, Longgang District People's Hospital of Shenzhen, No. 53 of Aixin Road, Longgang District, Shenzhen, 518115, Guangdong Province, China.
| |
Collapse
|
18
|
Kim HJ, Kim G, Lee J, Lee Y, Kim JH. Secretome of Stem Cells: Roles of Extracellular Vesicles in Diseases, Stemness, Differentiation, and Reprogramming. Tissue Eng Regen Med 2022; 19:19-33. [PMID: 34817808 PMCID: PMC8782975 DOI: 10.1007/s13770-021-00406-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/05/2021] [Accepted: 10/13/2021] [Indexed: 12/16/2022] Open
Abstract
Increasing evidence suggests that stem cells or stem cell-derived cells may contribute to tissue repair, not only by replacing lost tissue but also by delivering complex sets of secretory molecules, called secretomes, into host injured tissues. In recent years, extracellular vesicles (EVs) have gained much attention for their diverse and important roles in a wide range of pathophysiological processes. EVs are released from most types of cells and mediates cell-cell communication by activating receptors on target cells or by being taken up by recipient cells. EVs, including microvesicles and exosomes, encapsulate and carry proteins, nucleic acids, and lipids in the lumen and on the cell surface. Thus, EV-mediated intercellular communication has been extensively studied across various biological processes. While a number of investigations has been conducted in different tissues and body fluids, the field lacks a systematic review on stem cell-derived EVs, especially regarding their roles in stemness and differentiation. Here, we provide an overview of the pathophysiological roles of EVs and summarize recent findings focusing on EVs released from various types of stem cells. We also highlight emerging evidence for the potential implication of EVs in self-renewal, differentiation, and reprograming and discuss the benefits and limitations in translational approaches.
Collapse
Affiliation(s)
- Hyo Jin Kim
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 145, Anam-ro, Seongbuk-gu, West building of Life Sciences, Seoul, 02841, South Korea
| | - Gyeongmin Kim
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 145, Anam-ro, Seongbuk-gu, West building of Life Sciences, Seoul, 02841, South Korea
| | - Jihun Lee
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 145, Anam-ro, Seongbuk-gu, West building of Life Sciences, Seoul, 02841, South Korea
| | - Youngseok Lee
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 145, Anam-ro, Seongbuk-gu, West building of Life Sciences, Seoul, 02841, South Korea
| | - Jong-Hoon Kim
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 145, Anam-ro, Seongbuk-gu, West building of Life Sciences, Seoul, 02841, South Korea.
| |
Collapse
|
19
|
MIR-548ar-3p increases cigarette smoke extractinduced chronic obstructive pulmonary disease (COPD) injury through solute carrier family 17 member 9 (SLC17A9). ARCH BIOL SCI 2022. [DOI: 10.2298/abs220201008z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
This study investigated the effect of microRNA mir-548ar-3p on cigarette
smoke extract (CSE)-induced chronic obstructive pulmonary disease (COPD).
High-throughput sequencing was performed on peripheral blood from smoking
COPD patients and non-smoking individuals with normal pulmonary function,
and mir-548ar-3p RNA, possessing large differential expression was selected.
Experimental groups were divided into control, experimental model (EM),
EM+mimic miRNA, negative control (NC) and EM+miR-548ar-3p groups; an empty
vector or miR-548ar-3p mimic was transfected into human bronchial epithelial
(HBE) cells. A COPD model was established by treating HBE cells with CSE.
Cell viability, apoptosis and solute carrier family 17 member 9 (SLC17A9)
protein expression were examined by cell counting kit-8, flow cytometry and
Western blotting, respectively. Cell viability in the EM+miR-548ar-3p group
decreased significantly, and the apoptosis rate and SLC17A9 protein
expression increased significantly compared with the control (P<0.05, all
groups). In smoking COPD patients, interferon (IFN)-? and interleukin
(IL)-17? expression detected by ELISA was significantly higher than in
normal individuals. miR-548ar-3p expression was significantly lower (P<0.05,
all groups). These findings suggest that miR-548ar-3p was expressed at a
lower level in COPD patients. miR-548ar-3p may increase the extent of
CSE-induced COPD injury through SLC17A9.
Collapse
|
20
|
Kaur D, Behl T, Sehgal A, Singh S, Sharma N, Badavath VN, Ul Hassan SS, Hasan MM, Bhatia S, Al-Harassi A, Khan H, Bungau S. Unravelling the potential neuroprotective facets of erythropoietin for the treatment of Alzheimer's disease. Metab Brain Dis 2022; 37:1-16. [PMID: 34436747 DOI: 10.1007/s11011-021-00820-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/09/2021] [Indexed: 02/06/2023]
Abstract
During the last three decades, recombinant DNA technology has produced a wide range of hematopoietic and neurotrophic growth factors, including erythropoietin (EPO), which has emerged as a promising protein drug in the treatment of several diseases. Cumulative studies have recently indicated the neuroprotective role of EPO in preclinical models of acute and chronic neurodegenerative disorders, including Alzheimer's disease (AD). AD is one of the most prevalent neurodegenerative illnesses in the elderly, characterized by the accumulation of extracellular amyloid-ß (Aß) plaques and intracellular neurofibrillary tangles (NFTs), which serve as the disease's two hallmarks. Unfortunately, AD lacks a successful treatment strategy due to its multifaceted and complex pathology. Various clinical studies, both in vitro and in vivo, have been conducted to identify the various mechanisms by which erythropoietin exerts its neuroprotective effects. The results of clinical trials in patients with AD are also promising. Herein, it is summarized and reviews all such studies demonstrating erythropoietin's potential therapeutic benefits as a pleiotropic neuroprotective agent in the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Dapinder Kaur
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | | | - Syed Shams Ul Hassan
- School of Medicine and Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Mohammad Mehedi Hasan
- Department of Biochemistry and Molecular Biology, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Saurabh Bhatia
- Natural & Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
- Amity Institute of Pharmacy, Amity University, Noida, Haryana, India
| | - Ahmed Al-Harassi
- Natural & Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
21
|
Li JX, Li Y, Xia T, Rong FY. miR-21 Exerts Anti-proliferative and Pro-apoptotic Effects in LPS-induced WI-38 Cells via Directly Targeting TIMP3. Cell Biochem Biophys 2021; 79:781-790. [PMID: 33942238 DOI: 10.1007/s12013-021-00987-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2021] [Indexed: 01/13/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease, which was caused by a complex interplay of inflammatory responses and chronic damage. miR-21 is increased in patients with IPF, but its function in the embryonic lung-derived diploid fibroblasts cells subjected to LPS is elusive. miRNA expression profile was obtained from GEO database and target genes of miRNAs were forecasted by TargetScan. To mimic the LPS-induced injury, different concentrations of LPS were applied to treat WI-38 cells. Functional in vitro experiments were conducted to examine the role of miR-21 and TIMP3. Luciferase report assay was performed to verify the relationship between miR-21 and TIMP3. qRT-PCR, western blotting, and ELISA were conducted to detect the levels of the related miRNAs, proteins, and inflammatory factors. miR-21 presented higher levels in interstitial pneumonia patients and LPS-induced WI-38 cells. Overexpression of miR-21 was negatively correlated with the proliferative capability of LPS-treated WI-38 cells. miR-21 directly targets TIMP3. TIMP3 restored the suppressive impact of miR-21 mimic on the proliferation, while TIMP3 alleviated the promoting impact of miR-21 mimic on the apoptosis of WI-38 cells treated by LPS. miR-21 inhibited Bcl-2 but increased Bax, cleaved caspase-3, and cleaved caspase-9. Besides, miR-21 elevated the levels of IL-6 and IL-β but reduced the IL-10, which were weakened by TIMP3. Totally, miR-21 aggravated the LPS-induced lung injury and modulated inflammatory responses by targeting TIMP3.
Collapse
Affiliation(s)
- Jin-Xiu Li
- Department of ICU, The Second People's Hospital of Liaocheng, Linqing, Shandong, China.
- Department of ICU, Shandong First Medical University Affiliated Liaocheng Second Hospital, Linqing, Shandong, China.
| | - You Li
- Department of ICU, Linqing People's Hospital, Linqing, Shandong, China
| | - Tian Xia
- Department of Pharmacy, The Second People's Hospital of Liaocheng, Linqing, Shandong, China
- Department of Pharmacy, Shandong First Medical University Affiliated Liaocheng Second Hospital, Linqing, Shandong, China
| | - Feng-Yan Rong
- Department of ICU, The Second People's Hospital of Liaocheng, Linqing, Shandong, China
- Department of ICU, Shandong First Medical University Affiliated Liaocheng Second Hospital, Linqing, Shandong, China
| |
Collapse
|
22
|
Soni DK, Biswas R. Role of Non-Coding RNAs in Post-Transcriptional Regulation of Lung Diseases. Front Genet 2021; 12:767348. [PMID: 34819948 PMCID: PMC8606426 DOI: 10.3389/fgene.2021.767348] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/25/2021] [Indexed: 12/16/2022] Open
Abstract
Non-coding RNAs (ncRNAs), notably microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), have recently gained increasing consideration because of their versatile role as key regulators of gene expression. They adopt diverse mechanisms to regulate transcription and translation, and thereby, the function of the protein, which is associated with several major biological processes. For example, proliferation, differentiation, apoptosis, and metabolic pathways demand fine-tuning for the precise development of a specific tissue or organ. The deregulation of ncRNA expression is concomitant with multiple diseases, including lung diseases. This review highlights recent advances in the post-transcriptional regulation of miRNAs and lncRNAs in lung diseases such as asthma, chronic obstructive pulmonary disease, cystic fibrosis, and idiopathic pulmonary fibrosis. Further, we also discuss the emerging role of ncRNAs as biomarkers as well as therapeutic targets for lung diseases. However, more investigations are required to explore miRNAs and lncRNAs interaction, and their function in the regulation of mRNA expression. Understanding these mechanisms might lead to early diagnosis and the development of novel therapeutics for lung diseases.
Collapse
Affiliation(s)
- Dharmendra Kumar Soni
- Department of Anatomy, Physiology and Genetics, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Roopa Biswas
- Department of Anatomy, Physiology and Genetics, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
23
|
IPF-Fibroblast Erk1/2 Activity Is Independent from microRNA Cluster 17-92 but Can Be Inhibited by Treprostinil through DUSP1. Cells 2021; 10:cells10112836. [PMID: 34831059 PMCID: PMC8616195 DOI: 10.3390/cells10112836] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 01/25/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive terminal lung disease, and therapies aim to block fibrosis. Fibroblast proliferation is controlled by C/EBP-β, microRNA cluster 17-92 (miR17-92), and Erk1/2 mitogen-activated protein kinase. This study assessed the role of miR17-92 in IPF-fibroblast proliferation and its modification by treprostinil. Fibroblasts were isolated from eight IPF patients, five interstitial lung fibrosis patients, and seven control lungs. Fibroblasts were stimulated with TGF-β1 over 24 h. The miR17-92 expression was analyzed by RT-qPCR, and protein expression by Western blotting. TGF-β1 upregulated C/EBP-β in all fibroblasts, which was reduced by treprostinil in control-fibroblasts, but not in IPF-fibroblasts. Compared to controls, the guide strands miR-19a-3p, miR-19b-3p, miR-20a-5p, and miR-92a-3p, as well as the passenger strands miR-17-3p, miR-18-3p, miR-19a-1-5p, and miR-92a-5p were significantly increased in IPF-fibroblasts. In controls, TGF-β1 and treprostinil significantly reduced specific miR17-92 members. IPF-fibroblast proliferation was inhibited by treprostinil through increased expression of the Erk1/2 inhibitor DUSP1. These data suggest that proliferation control via miR17-92 and C/EBP-β is disrupted in IPF-fibroblasts. Therefore, the inhibition of early stages of signaling cascades or specific mitogen receptors might be less effective. However, the increased proliferation is sensitive to Erk1/2 inhibition by treprostinil-induced DUSP1.
Collapse
|
24
|
Ibrahim A, Ciullo A, Li C, Akhmerov A, Peck K, Jones-Ungerleider KC, Morris A, Marchevsky A, Marbàn E, Ibrahim AG. Engineered Fibroblast Extracellular Vesicles Attenuate Pulmonary Inflammation and Fibrosis in Bleomycin-Induced Lung Injury. Front Cell Dev Biol 2021; 9:733158. [PMID: 34660588 PMCID: PMC8512699 DOI: 10.3389/fcell.2021.733158] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/23/2021] [Indexed: 11/22/2022] Open
Abstract
Pulmonary fibrosis is a progressive disease for which no curative treatment exists. We have previously engineered dermal fibroblasts to produce extracellular vesicles with tissue reparative properties dubbed activated specialized tissue effector extracellular vesicles (ASTEX). Here, we investigate the therapeutic utility of ASTEX in vitro and in a mouse model of bleomycin-induced lung injury. RNA sequencing demonstrates that ASTEX are enriched in micro-RNAs (miRs) cargo compared with EVs from untransduced dermal fibroblast EVs (DF-EVs). Treating primary macrophages with ASTEX reduced interleukin (IL)6 expression and increased IL10 expression compared with DF-EV-exposed macrophages. Furthermore, exposure of human lung fibroblasts or vascular endothelial cells to ASTEX reduced expression of smooth muscle actin, a hallmark of myofibroblast differentiation (respectively). In vivo, intratracheal administration of ASTEX in naïve healthy mice demonstrated a favorable safety profile with no changes in body weight, lung weight to body weight, fibrotic burden, or histological score 3 weeks postexposure. In an acute phase (short-term) bleomycin model of lung injury, ASTEX reduced lung weight to body weight, IL6 expression, and circulating monocytes. In a long-term setting, ASTEX improved survival and reduced fibrotic content in lung tissue. These results suggest potential immunomodulatory and antifibrotic properties of ASTEX in lung injury.
Collapse
Affiliation(s)
- Abdulrahman Ibrahim
- Faculty of Medicine, University of Queensland/Ochsner Clinical School, New Orleans, LA, United States
| | - Alessandra Ciullo
- Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, CA, United States
| | - Chang Li
- Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, CA, United States
| | - Akbarshakh Akhmerov
- Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, CA, United States
| | - Kiel Peck
- Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, CA, United States
| | | | - Ashley Morris
- Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, CA, United States
| | - Alberto Marchevsky
- Pulmonary Pathology, Cedars Sinai Medical Center, Los Angeles, CA, United States
| | - Eduardo Marbàn
- Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, CA, United States
| | - Ahmed Gamal Ibrahim
- Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
25
|
Murach KA, Peck BD, Policastro RA, Vechetti IJ, Van Pelt DW, Dungan CM, Denes LT, Fu X, Brightwell CR, Zentner GE, Dupont-Versteegden EE, Richards CI, Smith JJ, Fry CS, McCarthy JJ, Peterson CA. Early satellite cell communication creates a permissive environment for long-term muscle growth. iScience 2021; 24:102372. [PMID: 33948557 PMCID: PMC8080523 DOI: 10.1016/j.isci.2021.102372] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/08/2021] [Accepted: 03/25/2021] [Indexed: 12/22/2022] Open
Abstract
Using in vivo muscle stem cell (satellite cell)-specific extracellular vesicle (EV) tracking, satellite cell depletion, in vitro cell culture, and single-cell RNA sequencing, we show satellite cells communicate with other cells in skeletal muscle during mechanical overload. Early satellite cell EV communication primes the muscle milieu for proper long-term extracellular matrix (ECM) deposition and is sufficient to support sustained hypertrophy in adult mice, even in the absence of fusion to muscle fibers. Satellite cells modulate chemokine gene expression across cell types within the first few days of loading, and EV delivery of miR-206 to fibrogenic cells represses Wisp1 expression required for appropriate ECM remodeling. Late-stage communication from myogenic cells during loading is widespread but may be targeted toward endothelial cells. Satellite cells coordinate adaptation by influencing the phenotype of recipient cells, which extends our understanding of their role in muscle adaptation beyond regeneration and myonuclear donation.
Collapse
Affiliation(s)
- Kevin A. Murach
- The Center for Muscle Biology, University of Kentucky, Lexington, KY 40536, USA
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Bailey D. Peck
- The Center for Muscle Biology, University of Kentucky, Lexington, KY 40536, USA
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Robert A. Policastro
- Department of Biology, College of Arts and Sciences, University of Indiana, Bloomington, IN 47405, USA
| | - Ivan J. Vechetti
- The Center for Muscle Biology, University of Kentucky, Lexington, KY 40536, USA
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Department of Nutrition and Health Sciences, College of Education and Human Sciences, University of Nebraska, Lincoln, NE 68588, USA
| | - Douglas W. Van Pelt
- The Center for Muscle Biology, University of Kentucky, Lexington, KY 40536, USA
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Cory M. Dungan
- The Center for Muscle Biology, University of Kentucky, Lexington, KY 40536, USA
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Lance T. Denes
- Department of Molecular Genetics and Microbiology, Center for Neurogenetics, University of Florida, Gainesville, FL 32611, USA
| | - Xu Fu
- Department of Chemistry, College of Arts and Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Camille R. Brightwell
- The Center for Muscle Biology, University of Kentucky, Lexington, KY 40536, USA
- Department of Athletic Training, College of Health Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Gabriel E. Zentner
- Department of Biology, College of Arts and Sciences, University of Indiana, Bloomington, IN 47405, USA
| | - Esther E. Dupont-Versteegden
- The Center for Muscle Biology, University of Kentucky, Lexington, KY 40536, USA
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Christopher I. Richards
- Department of Chemistry, College of Arts and Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Jeramiah J. Smith
- Department of Biology, College of Arts and Sciences, University of Kentucky, Lexington, KY 40506, USA
| | - Christopher S. Fry
- The Center for Muscle Biology, University of Kentucky, Lexington, KY 40536, USA
- Department of Athletic Training, College of Health Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - John J. McCarthy
- The Center for Muscle Biology, University of Kentucky, Lexington, KY 40536, USA
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Charlotte A. Peterson
- The Center for Muscle Biology, University of Kentucky, Lexington, KY 40536, USA
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, KY 40536, USA
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
26
|
Cheng C, Tian J, Zhang F, Deng Z, Tu M, Li L, Yang H, Xiao K, Guo W, Yang R, Gao S, Zhou Z. WISP1 Protects Against Chondrocyte Senescence and Apoptosis by Regulating αvβ3 and PI3K/Akt Pathway in Osteoarthritis. DNA Cell Biol 2021; 40:629-637. [PMID: 33646053 DOI: 10.1089/dna.2020.5926] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Our study aimed at validating the effect of WISP1 on osteoarthritis (OA) and the pathway involved in the WISP1-induced protection against OA. The expression of WISP1 was measured by immunohistochemical analyses. We found that WISP1 expression was shown to be upregulated within human OA cartilage compared with controls. WISP1 expression was related to knee OA severity. rhWISP1 inhibited OA chondrocyte senescence and apoptosis in vitro, which was reversed by the αvβ3 antibody and PI3K/Akt inhibitor LY294002. WISP1 overexpression induced by knee injection of LiCI could also prevent the senescence and apoptosis of rat chondrocytes. Safranin-O staining and Mankin score revealed that WISP1 overexpression can protect rat chondrocytes from degeneration. Nearly opposite results were obtained in the treatment of ICG-001 and siRNA-WISP1 in vivo. These data strongly suggest that WISP1 can protect against the senescence and apoptosis of chondrocytes via modulating the αvβ3 receptor and PI3K/Akt signaling pathway within OA. Therefore, the development of specific activators of WISP1 may present the value of an underlying OA treatment.
Collapse
Affiliation(s)
- Chao Cheng
- Department of Orthopaedics, Yiyang Central Hospital, Yiyang, China.,Clinical Medical Technology Demonstration Base for Minimally Invasive and Digital Orthopaedics in Hunan Province, Yiyang, China
| | - Jian Tian
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Fangjie Zhang
- Department of Emergency, Xiangya Hospital, Central South University, Changsha, China
| | - Zhenhan Deng
- Department of Sports Medicine, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Min Tu
- Department of Orthopedics, Second People's Hospital of Jingmen, Jingmen, China
| | - Liangjun Li
- Department of Orthopedic, Changsha Central Hospital, Changsha, China
| | - Hua Yang
- Department of Orthopaedics, Yiyang Central Hospital, Yiyang, China.,Clinical Medical Technology Demonstration Base for Minimally Invasive and Digital Orthopaedics in Hunan Province, Yiyang, China
| | - Kai Xiao
- Department of Orthopaedics, Yiyang Central Hospital, Yiyang, China.,Clinical Medical Technology Demonstration Base for Minimally Invasive and Digital Orthopaedics in Hunan Province, Yiyang, China
| | - Wei Guo
- Department of Orthopaedics, Yiyang Central Hospital, Yiyang, China.,Clinical Medical Technology Demonstration Base for Minimally Invasive and Digital Orthopaedics in Hunan Province, Yiyang, China
| | - Ruiqi Yang
- Department of Orthopaedics, Yiyang Central Hospital, Yiyang, China.,Clinical Medical Technology Demonstration Base for Minimally Invasive and Digital Orthopaedics in Hunan Province, Yiyang, China
| | - Shuguang Gao
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Zhihong Zhou
- Department of Orthopaedics, Yiyang Central Hospital, Yiyang, China.,Clinical Medical Technology Demonstration Base for Minimally Invasive and Digital Orthopaedics in Hunan Province, Yiyang, China
| |
Collapse
|
27
|
Sun C, Zhang H, Liu X. Emerging role of CCN family proteins in fibrosis. J Cell Physiol 2020; 236:4195-4206. [PMID: 33222181 DOI: 10.1002/jcp.30171] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/30/2020] [Accepted: 11/10/2020] [Indexed: 12/11/2022]
Abstract
Fibrosis is a common pathological change characterized by the excessive accumulation of fibrous connective tissue. Once uncontrolled, this pathological progress can lead to irreversible damage to the structure and function of organs, which is a serious threat to human health and life. Actually, the disability and death of patients caused by many chronic diseases have a closed relationship with fibrosis. The CCN protein family, including six members, is a small group of matrix proteins exhibiting structurally similar features. In the past 20 years, different biological functions of CCN proteins have been identified in various diseases. Of note, it has been recently shown that they are implicated in the key pathological process of fibrosis. In this review, we summarize the current status of knowledge regarding the role of CCN proteins involved in the pathogenesis of fibrosis diseases in detail. Furthermore, we highlight some of the underlying interaction mechanisms of CCN protein acting in fibrosis that helps to develop new drugs and determine appropriate clinical strategies for fibrotic diseases.
Collapse
Affiliation(s)
- Chao Sun
- Department of Spine Surgery, the Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| | - Han Zhang
- Department of Spine Surgery, the Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xinhui Liu
- Department of Spine Surgery, the Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
28
|
Recinella L, Orlando G, Ferrante C, Chiavaroli A, Brunetti L, Leone S. Adipokines: New Potential Therapeutic Target for Obesity and Metabolic, Rheumatic, and Cardiovascular Diseases. Front Physiol 2020; 11:578966. [PMID: 33192583 PMCID: PMC7662468 DOI: 10.3389/fphys.2020.578966] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/14/2020] [Indexed: 12/11/2022] Open
Abstract
Besides its role as an energy storage organ, adipose tissue can be viewed as a dynamic and complex endocrine organ, which produces and secretes several adipokines, including hormones, cytokines, extracellular matrix (ECM) proteins, and growth and vasoactive factors. A wide body of evidence showed that adipokines play a critical role in various biological and physiological functions, among which feeding modulation, inflammatory and immune function, glucose and lipid metabolism, and blood pressure control. The aim of this review is to summarize the effects of several adipokines, including leptin, diponectin, resistin, chemerin, lipocalin-2 (LCN2), vaspin, omentin, follistatin-like 1 (FSTL1), secreted protein acidic and rich in cysteine (SPARC), secreted frizzled-related protein 5 (SFRP5), C1q/TNF-related proteins (CTRPs), family with sequence similarity to 19 member A5 (FAM19A5), wingless-type inducible signaling pathway protein-1 (WISP1), progranulin (PGRN), nesfatin-1 (nesfatin), visfatin/PBEF/NAMPT, apelin, retinol binding protein 4 (RPB4), and plasminogen activator inhibitor-1 (PAI-1) in the regulation of insulin resistance and vascular function, as well as many aspects of inflammation and immunity and their potential role in managing obesity-associated diseases, including metabolic, osteoarticular, and cardiovascular diseases.
Collapse
Affiliation(s)
| | | | | | | | - Luigi Brunetti
- Department of Pharmacy, Gabriele d’Annunzio University, Chieti, Italy
| | | |
Collapse
|
29
|
Cui J, Ding H, Yao Y, Liu W. Inhibition Mir-92a Alleviates Oxidative Stress and Apoptosis of Alveolar Epithelial Cells Induced by Lipopolysaccharide Exposure through TLR2/AP-1 Pathway. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9673284. [PMID: 33015189 PMCID: PMC7516709 DOI: 10.1155/2020/9673284] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 08/27/2020] [Accepted: 09/03/2020] [Indexed: 01/12/2023]
Abstract
OBJECTIVE To probe into the role of miR-92a in alleviating oxidative stress and apoptosis of alveolar epithelial cell (AEC) injury induced by lipopolysaccharide (LPS) exposure through the Toll-like receptor (TLR) 2/activator protein-1 (AP-1) pathway. METHODS Acute lung injury (ALI) rat model and ALI alveolar epithelial cell model were constructed to inhibit the expression of miR-92a/TLR2/AP-1 in rat and alveolar epithelial cells (AECs), to detect the changes of oxidative stress, inflammatory response, and cell apoptosis in rat lung tissues and AECs, and to measure the changes of wet-dry weight (W/D) ratio in rat lung tissues. RESULTS Both inhibition of miR-92a expression and knockout of TLR2 and AP-1 gene could reduce LPS-induced rat ALI, alleviate pulmonary edema, inhibit oxidative stress and inflammatory response, and reduce apoptosis of lung tissue cells. In addition, the TLR2 and AP-1 levels in the lung tissues of ALI rats were noticed to be suppressed when inhibiting the expression of miR-92a, and the AP-1 level was also decreased after the knockout of TLR2 gene. Further, we verified this relationship in AECs and found that inhibition of miR-92a/TLR2/AP-1 also alleviated LPS-induced AEC injury, reduced cell apoptosis, and inhibited oxidative stress and inflammatory response. What is more, like that in rat lung tissue, the phenomenon also existed in AECs, that is, when the expression of miR-92a was inhibited, the expression of TLR2 and AP-1 was inhibited, and silencing TLR2 can reduce the expression level of AP-1. CONCLUSION MiR-92a/TLR2/AP-1 is highly expressed in ALI, and its inhibition can improve oxidative stress and inflammatory response and reduce apoptosis of AECs.
Collapse
Affiliation(s)
- Jian Cui
- Department of Intensive Care Unit (ICU), People's Hospital of Rizhao, Shandong Province, China
| | - Huanhuan Ding
- Department of Cardiology, People's Hospital of Rizhao, Shandong Province, China
| | - Yongyuan Yao
- Department of Intensive Care Unit (ICU), People's Hospital of Rizhao, Shandong Province, China
| | - Wei Liu
- Department of Intensive Care Unit (ICU), People's Hospital of Rizhao, Shandong Province, China
| |
Collapse
|
30
|
Rezaei S, Mahjoubin-Tehran M, Aghaee-Bakhtiari SH, Jalili A, Movahedpour A, Khan H, Moghoofei M, Shojaei Z, R Hamblin M, Mirzaei H. Autophagy-related MicroRNAs in chronic lung diseases and lung cancer. Crit Rev Oncol Hematol 2020; 153:103063. [DOI: 10.1016/j.critrevonc.2020.103063] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 06/11/2020] [Accepted: 07/12/2020] [Indexed: 12/24/2022] Open
|
31
|
Branscome H, Paul S, Yin D, El-Hage N, Agbottah ET, Zadeh MA, Liotta LA, Kashanchi F. Use of Stem Cell Extracellular Vesicles as a "Holistic" Approach to CNS Repair. Front Cell Dev Biol 2020; 8:455. [PMID: 32587858 PMCID: PMC7298153 DOI: 10.3389/fcell.2020.00455] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 05/15/2020] [Indexed: 12/20/2022] Open
Abstract
Neurodegeneration is a hallmark of many diseases and disorders of the central nervous system (CNS). High levels of neuroinflammation are often associated with irreparable damage to CNS cells due to the dysregulation of signaling cascades that are unable to restore a homeostatic balance. Due to the inherent complexity of the CNS, development of CNS-related therapeutics has met limited success. While stem cell therapy has been evaluated in the context of CNS repair, the mechanisms responsible for their functional properties have not been clearly defined. In recent years, there has been growing interest in the use of stem cell extracellular vesicles (EVs) for the treatment of various CNS pathologies as these vesicles are believed to mediate many of the functional effects associated with their donor stem cells. The potency of stem cell EVs is believed to be largely driven by their biological cargo which includes various types of RNAs, proteins, and cytokines. In this review, we describe the characteristic properties of stem cell EVs and summarize their reported neuroprotective and immunomodulatory functions. A special emphasis is placed on the identification of specific biological cargo, including proteins and non-coding RNA molecules, that have been found to be associated with stem cell EVs. Collectively, this review highlights the potential of stem cell EVs as an alternative to traditional stem cell therapy for the repair of cellular damage associated with diverse CNS pathologies.
Collapse
Affiliation(s)
- Heather Branscome
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, United States
- American Type Culture Collection (ATCC), Manassas, VA, United States
| | - Siddhartha Paul
- American Type Culture Collection (ATCC) Cell Systems, Gaithersburg, MD, United States
| | - Dezhong Yin
- American Type Culture Collection (ATCC) Cell Systems, Gaithersburg, MD, United States
| | - Nazira El-Hage
- Department of Immunology and Nano-Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Emmanuel T. Agbottah
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, United States
| | - Mohammad Asad Zadeh
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, United States
| | - Lance A. Liotta
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, United States
| | - Fatah Kashanchi
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, United States
| |
Collapse
|
32
|
Metformin attenuates TGF-β1-induced pulmonary fibrosis through inhibition of transglutaminase 2 and subsequent TGF-β pathways. 3 Biotech 2020; 10:287. [PMID: 32550106 DOI: 10.1007/s13205-020-02278-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 05/25/2020] [Indexed: 01/07/2023] Open
Abstract
The purpose of this study was to confirm whether metformin can attenuate TGF-β1-induced pulmonary fibrosis through inhibition of transglutaminase 2 (TG2) and subsequent TGF-β pathways. In vitro, MTT assay and Annexin V-FITC/PI staining assay were performed to determine the effect of metformin on the proliferation and apoptosis of human fetal lung fibroblasts (HFL-1 cell). Protein expression of TG2, Collagen I (Col I) and α-smooth muscle actin (α-SMA) were determined by western blot. To further confirm the relationship between TG2 and the anti-fibrotic effect of metformin, TG2 siRNA and TG2 overexpression plasmid were used to interfere the expression of TG2. A bleomycin-induced pulmonary fibrosis model was employed to determine the in vivo inhibitory effect of metformin. The concentrations of TG2, both in supernatants of cells and serum of rats, were determined by ELISA assay. Our results showed that metformin concentration-dependently inhibited the proliferation and promoted the apoptosis of TGF-β1-stimulated HFL-1 cells. The protein expressions of TG2, Col I and α-SMA stimulated by TGF-β1 were decreased after metformin intervention, which was confirmed in both siRNAs and plasmids treatment conditions. In vivo, metformin attenuated bleomycin-induced pulmonary fibrosis as demonstrated by H&E and Masson staining, as well as the protein expressions of Col I and α-SMA. Besides, phosphorylated SMAD2, phosphorylated SMAD3, phosphorylated Akt and phosphorylated ERK1/2 were all significantly increased after bleomycin treatment and decreased to normal levels after metformin intervention. Taken together, our results demonstrated that metformin can attenuate TGF-β1-induced pulmonary fibrosis, at least partly, through inhibition of TG2 and subsequent TGF-β pathways.
Collapse
|
33
|
Yu DH, Ruan XL, Huang JY, Liu XP, Ma HL, Chen C, Hu WD, Li S. Analysis of the Interaction Network of Hub miRNAs-Hub Genes, Being Involved in Idiopathic Pulmonary Fibers and Its Emerging Role in Non-small Cell Lung Cancer. Front Genet 2020; 11:302. [PMID: 32300359 PMCID: PMC7142269 DOI: 10.3389/fgene.2020.00302] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 03/13/2020] [Indexed: 12/31/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fibrotic interstitial lung disease with lesions confined to the lungs. To identify meaningful microRNA (miRNA) and gene modules related to the IPF progression, GSE32537 (RNA-sequencing data) and GSE32538 (miRNA-sequencing data) were downloaded and processed, and then weighted gene co-expression network analysis (WGCNA) was applied to construct gene co-expression networks and miRNA co-expression networks. GSE10667, GSE70866, and GSE27430 were used to make a reasonable validation for the results and evaluate the clinical significance of the genes and the miRNAs. Six hub genes (COL3A1, COL1A2, OGN, COL15A1, ASPN, and MXRA5) and seven hub miRNAs (hsa-let-7b-5p, hsa-miR-26a-5p, hsa-miR-25-3p, hsa-miR-29c-3p, hsa-let-7c-5p, hsa-miR-29b-3p, and hsa-miR-26b-5p) were clarified and validated. Meanwhile, iteration network of hub miRNAs-hub genes was constructed, and the emerging role of the network being involved in non-small cell lung cancer (NSCLC) was also analyzed by several webtools. The expression levels of hub genes were different between normal lung tissues and NSCLC tissues. Six genes (COL3A1, COL1A2, OGN, COL15A1, ASPN, and MXRA5) and three miRNAs (hsa-miR-29c-3p, hsa-let-7c-5p, and hsa-miR-29b-3p) were related to the survival time of lung adenocarcinoma (LUAD). The interaction network of hub miRNAs-hub genes might provide common mechanisms involving in IPF and NSCLC. More importantly, useful clues were provided for clinical treatment of both diseases based on novel molecular advances.
Collapse
Affiliation(s)
- Dong Hu Yu
- Department of Biological Repositories, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Xiao-Lan Ruan
- Department of Hematology, Renmin Hospital, Wuhan University, Wuhan, China
| | - Jing-Yu Huang
- Department of Thoracic Surgery, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Xiao-Ping Liu
- Department of Biological Repositories, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Hao-Li Ma
- Department of Biological Repositories, Zhongnan Hospital, Wuhan University, Wuhan, China.,Human Genetics Resource Preservation Center, Wuhan University, Wuhan, China
| | - Chen Chen
- Department of Biological Repositories, Zhongnan Hospital, Wuhan University, Wuhan, China.,Human Genetics Resource Preservation Center, Wuhan University, Wuhan, China
| | - Wei-Dong Hu
- Department of Thoracic Surgery, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Sheng Li
- Department of Biological Repositories, Zhongnan Hospital, Wuhan University, Wuhan, China.,Human Genetics Resource Preservation Center, Wuhan University, Wuhan, China
| |
Collapse
|
34
|
Bärnthaler T, Theiler A, Zabini D, Trautmann S, Stacher-Priehse E, Lanz I, Klepetko W, Sinn K, Flick H, Scheidl S, Thomas D, Olschewski H, Kwapiszewska G, Schuligoi R, Heinemann A. Inhibiting eicosanoid degradation exerts antifibrotic effects in a pulmonary fibrosis mouse model and human tissue. J Allergy Clin Immunol 2019; 145:818-833.e11. [PMID: 31812575 DOI: 10.1016/j.jaci.2019.11.032] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 10/26/2019] [Accepted: 11/07/2019] [Indexed: 12/25/2022]
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a disease with high 5-year mortality and few therapeutic options. Prostaglandin (PG) E2 exhibits antifibrotic properties and is reduced in bronchoalveolar lavage from patients with IPF. 15-Prostaglandin dehydrogenase (15-PGDH) is the key enzyme in PGE2 metabolism under the control of TGF-β and microRNA 218. OBJECTIVE We sought to investigate the expression of 15-PGDH in IPF and the therapeutic potential of a specific inhibitor of this enzyme in a mouse model and human tissue. METHODS In vitro studies, including fibrocyte differentiation, regulation of 15-PGDH, RT-PCR, and Western blot, were performed using peripheral blood from healthy donors and patients with IPF and A549 cells. Immunohistochemistry, immunofluorescence, 15-PGDH activity assays, and in situ hybridization as well as ex vivo IPF tissue culture experiments were done using healthy donor and IPF lungs. Therapeutic effects of 15-PGDH inhibition were studied in the bleomycin mouse model of pulmonary fibrosis. RESULTS We demonstrate that 15-PGDH shows areas of increased expression in patients with IPF. Inhibition of this enzyme increases PGE2 levels and reduces collagen production in IPF precision cut lung slices and in the bleomycin model. Inhibitor-treated mice show amelioration of lung function, decreased alveolar epithelial cell apoptosis, and fibroblast proliferation. Pulmonary fibrocyte accumulation is also decreased by inhibitor treatment in mice, similar to PGE2 that inhibits fibrocyte differentiation from blood of healthy donors and patients with IPF. Finally, microRNA 218-5p, which is downregulated in patients with IPF, suppressed 15-PGDH expression in vivo and in vitro. CONCLUSIONS These findings highlight the role of 15-PGDH in IPF and suggest 15-PGDH inhibition as a promising therapeutic approach.
Collapse
Affiliation(s)
- Thomas Bärnthaler
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Anna Theiler
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Diana Zabini
- Division of Physiology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria; Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Sandra Trautmann
- Pharmazentrum Frankfurt/ZAFES, Institute of Clinical Pharmacology, Goethe University Frankfurt, Frankfurt, Germany
| | - Elvira Stacher-Priehse
- Division of Physiology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Ilse Lanz
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Walter Klepetko
- Division of Thoracic Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Katharina Sinn
- Division of Thoracic Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Holger Flick
- Department of Internal Medicine, Division of Pulmonology, Medical University of Graz, Graz, Austria
| | - Stefan Scheidl
- Department of Internal Medicine, Division of Pulmonology, Medical University of Graz, Graz, Austria
| | - Dominique Thomas
- Pharmazentrum Frankfurt/ZAFES, Institute of Clinical Pharmacology, Goethe University Frankfurt, Frankfurt, Germany
| | - Horst Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria; Department of Internal Medicine, Division of Pulmonology, Medical University of Graz, Graz, Austria
| | - Grazyna Kwapiszewska
- Division of Physiology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria; Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Rufina Schuligoi
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Akos Heinemann
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria.
| |
Collapse
|
35
|
Barchetta I, Cimini FA, Ciccarelli G, Baroni MG, Cavallo MG. Sick fat: the good and the bad of old and new circulating markers of adipose tissue inflammation. J Endocrinol Invest 2019; 42:1257-1272. [PMID: 31073969 DOI: 10.1007/s40618-019-01052-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 04/29/2019] [Indexed: 01/08/2023]
Abstract
Adipose tissue (AT) is one of the largest endocrine organs contributing to metabolic homeostasis. The functional pleiotropism of AT depends on its ability to secrete a large number of hormones, cytokines, extracellular matrix proteins and growth factors, all influencing many local and systemic physiological and pathophysiological processes. In condition of chronic positive energy balance, adipocyte expansion, hypoxia, apoptosis and stress all lead to AT inflammation and dysfunction, and it has been demonstrated that this sick fat is a main risk factor for many metabolic disorders, such as type 2 diabetes mellitus, fatty liver, cardiovascular disease and cancer. AT dysfunction is tightly associated with aberrant secretion of bioactive peptides, the adipocytokines, and their blood concentrations often reflect the expression in the AT. Despite the existence of an association between AT dysfunction and systemic pro-inflammatory state, most of the circulating molecules detectable in obese and dysmetabolic individuals do not identify specifically the condition of sick fat. Based on this premise, this review provides a concise overview of "classic" and novel promising adipocytokines associated with AT inflammation and discusses possible critical approaches to their interpretation in clinical practice.
Collapse
Affiliation(s)
- I Barchetta
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161, Rome, Italy
| | - F A Cimini
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161, Rome, Italy
| | - G Ciccarelli
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161, Rome, Italy
| | - M G Baroni
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161, Rome, Italy.
| | - M G Cavallo
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161, Rome, Italy.
| |
Collapse
|
36
|
Zhu J, Bai J, Wang S, Dong H. Down-regulation of long non-coding RNA SNHG14 protects against acute lung injury induced by lipopolysaccharide through microRNA-34c-3p-dependent inhibition of WISP1. Respir Res 2019; 20:233. [PMID: 31660971 PMCID: PMC6819549 DOI: 10.1186/s12931-019-1207-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 10/09/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Accumulating evidence has shown the important roles of long non-coding RNAs (lncRNAs) in acute lung injury (ALI). This study aimed to investigate the potential role of lncRNA small nucleolar RNA host gene 14 (SNHG14) in lipopolysaccharides (LPS)-induced ALI. METHODS Expression of SNHG14, microRNA-34c-3p (miR-34c-3p) and Wnt1 inducible signaling pathway protein 1 (WISP1) in LPS-exposed mouse alveolar macrophages (MH-S) and lung tissues from mice with LPS-induced ALI was determined by reverse transcription quantitative polymerase chain reaction. The interactions among SNHG14, miR-34c-3p and WISP1 were analyzed by dual-luciferase reporter and RIP assays. Using gain-of-function or loss-of-function approaches, the contents of proinflammatory proteins were determined and MH-S cell viability was assessed to evaluate the in vitro functions of SNHG14, miR-34c-3p and WISP1, and wet/dry weight ratio and proinflammatory proteins in lung tissues were determined to assess their in vivo effects. RESULTS SNHG14 and WISP1 expression was increased, while miR-34c-3p was decreased in ALI models. SNHG14 bound to miR-34c-3p, resulting in impaired miR-34c-3p-dependent down-regulation of WISP1. Both SNHG14 silencing and miR-34c-3p over-expression reduced the levels of proinflammatory proteins IL-18, IL-1β, TNF-α and IL-6 and inhibited MH-S cell viability. SNHG14 silencing or miR-34c-3p over-expression decreased the wet/dry weight ratio in lung tissues from ALI mice. The reductions induced by SNHG14 silencing or miR-34c-3p over-expression were rescued by WISP1 over-expression. CONCLUSION This study demonstrated that lncRNA SNHG14 silencing alleviated inflammation in LPS-induced ALI through miR-34c-3p-mediated inhibition of WISP1. Our findings suggest that lncRNA SNHG14 may serve as a therapeutic target for ALI.
Collapse
Affiliation(s)
- Jinyuan Zhu
- Department of Critical Care Medicine, General Hospital of Ningxia Medical University, Yinchuan, 750004, People's Republic of China
| | - Jijia Bai
- Department of Critical Care Medicine, General Hospital of Ningxia Medical University, Yinchuan, 750004, People's Republic of China
| | - Shaojin Wang
- Department of Respiratory and Critical Care Medicine, General Hospital of Ningxia Medical University, Yinchuan, 750004, People's Republic of China
| | - Hui Dong
- Center of Research Equipment Management, General Hospital of Ningxia Medical University, No. 804, Shengli South Street, Xingqing District, Yinchuan, 750004, Ningxia Hui Autonomous Region, People's Republic of China.
| |
Collapse
|
37
|
Cosin-Roger J, Ortiz-Masià MD, Barrachina MD. Macrophages as an Emerging Source of Wnt Ligands: Relevance in Mucosal Integrity. Front Immunol 2019; 10:2297. [PMID: 31608072 PMCID: PMC6769121 DOI: 10.3389/fimmu.2019.02297] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 09/11/2019] [Indexed: 02/06/2023] Open
Abstract
The Wnt signaling pathway is a conserved pathway involved in important cellular processes such as the control of embryonic development, cellular polarity, cellular migration, and cell proliferation. In addition to playing a central role during embryogenesis, this pathway is also an essential part of adult homeostasis. Indeed, it controls the proliferation of epithelial cells in different organs such as intestine, lung, and kidney, and guarantees the maintenance of the mucosa in physiological conditions. The origin of this molecular pathway is the binding between Wnt ligands (belonging to a family of 19 different homologous secreted glycoproteins) and their specific membrane receptors, from the Frizzled receptor family. This specific interaction triggers the activation of the signaling cascade, which in turn activates or suppresses the expression of different genes in order to change the behavior of the cell. On the other hand, alterations of this pathway have been described in pathological conditions such as inflammation, fibrosis, and cancer. In recent years, macrophages-among other cell types-have emerged as a potential source of Wnt ligands. Due to their high plasticity, macrophages, which are central to the innate immune response, are capable of adopting different phenotypes depending on their microenvironment. In the past, two different phenotypes were described: a proinflammatory phenotype-M1 macrophages-and an anti-inflammatory phenotype-M2 macrophages-and a selective expression of Wnt ligands has been associated with said phenotypes. However, nowadays it is assumed that macrophages in vivo move through a continual spectrum of functional phenotypes. In both physiological and pathological (inflammation, fibrosis and cancer) conditions, the accumulation and polarization of macrophages conditions the future of the tissue, facilitating various scenarios, such as resolution of inflammation, activation of fibrosis, and cancer development due to the modulation of the Wnt signaling pathway, in autocrine and paracrine manner. In this work, we provide an overview of studies that have explored the role of macrophages and how they act as a source of Wnt ligands and as mediators of mucosal integrity.
Collapse
Affiliation(s)
| | - Mª Dolores Ortiz-Masià
- Departamento de Medicina, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | - Mª Dolores Barrachina
- Departamento de Farmacología and CIBER, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| |
Collapse
|
38
|
Wang L, Sun J, Gao P, Su K, Wu H, Li J, Lou W. Wnt1-inducible signaling protein 1 regulates laryngeal squamous cell carcinoma glycolysis and chemoresistance via the YAP1/TEAD1/GLUT1 pathway. J Cell Physiol 2019; 234:15941-15950. [PMID: 30805937 DOI: 10.1002/jcp.28253] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 12/27/2018] [Accepted: 01/10/2019] [Indexed: 01/24/2023]
Abstract
Wnt1-inducible signaling protein 1 (WISP1) is a matricellular protein and downstream target of Wnt/β-catenin signaling. This study sought to determine the role of WISP1 in glucose metabolism and chemoresistance in laryngeal squamous cell carcinoma. WISP1 expression was silenced or upregulated in Hep-2 cells by the transfection of WISP1 siRNA or AdWISP1 vector. Ectopic WISP1 expression regulated glucose uptake and lactate production in Hep-2 cells. Subsequently, the expression of glucose transporter 1 (GLUT1) was significantly modulated by WISP1. Furthermore, WISP1 increased cell survival rates, diminished cell death rates, and suppressed ataxia-telangiectasia-mutated (ATM)-mediated DNA damage response pathway in cancer cells treated with cisplatin through GLUT1. WISP1 also promoted cancer cell tumorigenicity and growth in mice implanted with Hep-2 cells. Additionally, WISP1 activated the YAP1/TEAD1 pathway that consequently contributed to the regulation of GLUT1 expression. In summary, WISP1 regulated glucose metabolism and cisplatin resistance in laryngeal cancer by regulating GLUT1 expression. WISP1 may be used as a potential therapeutic target for laryngeal cancer.
Collapse
Affiliation(s)
- Liang Wang
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jin Sun
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Pei Gao
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ke Su
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huanhuan Wu
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Junli Li
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Weihua Lou
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
39
|
He Y, Liu H, Wang S, Chen Y. In Silico Detection and Characterization of microRNAs and Their Target Genes in microRNA Microarray Datasets from Patients with Systemic Sclerosis-Interstitial Lung Disease. DNA Cell Biol 2019; 38:933-944. [PMID: 31361540 DOI: 10.1089/dna.2019.4780] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Interstitial lung disease (ILD) is the main reason of death in patients with systemic sclerosis (SSc). The potential microRNA (miRNA)-messenger RNA (mRNA) interaction networks of SSc-ILD from a systematic biological perspective are unclear. To characterize differentially expressed miRNAs (DE-miRNAs) and differentially expressed genes (DEGs) likely related to SSc-ILD, we downloaded the miRNA microarray dataset (GSE81923) and mRNA datasets (GSE76808 and GSE81292) from the Gene Expression Omnibus database. Comprehensive bioinformatic analyses were conducted to predict target genes for DE-miRNAs and generate an miRNA-hub gene network with SSc-ILD. In total, 26 DE-miRNAs were detected in SSc-ILD, among which 2 were upregulated and 24 were downregulated. Additionally, 178 common DEGs (55 upregulated and 123 downregulated) were identified. miRNAs were primarily enriched in pathways involving inflammation and regulation of fibroblasts. The hub genes identified were MMP7, IER2, HBEGF, CCL4, NFKBIA, JUNB, LIF, SERPINE1, FOSL1, and NAMPT. We discovered the miRNA-mediated regulatory network in SSc-ILD using an integrated bioinformatic analysis. The findings provide novel insight and expand our comprehension of the molecular mechanisms participating in the pathogenesis of SSc-ILD, along with identification of new potential diagnostic biomarkers.
Collapse
Affiliation(s)
- Yanqi He
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Han Liu
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, China
| | - Shuai Wang
- Department of Vascular Surgery, The First Hospital of Jilin University, Changchun, China
| | - Yu Chen
- Department of Cardiology, Hospital of the University of Electronic Science and Technology of China, and Sichuan Provincial People's Hospital, Chengdu, China
| |
Collapse
|
40
|
Povero D, Pinatel EM, Leszczynska A, Goyal NP, Nishio T, Kim J, Kneiber D, de Araujo Horcel L, Eguchi A, Ordonez PM, Kisseleva T, Feldstein AE. Human induced pluripotent stem cell-derived extracellular vesicles reduce hepatic stellate cell activation and liver fibrosis. JCI Insight 2019; 5:125652. [PMID: 31184999 PMCID: PMC6675559 DOI: 10.1172/jci.insight.125652] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 06/06/2019] [Indexed: 01/08/2023] Open
Abstract
Progression of fibrosis and the development of cirrhosis are responsible for the liver related morbidity and mortality associated with chronic liver diseases. There is currently a great unmet need for effective anti-fibrotic strategies. Stem cells play a central role in wound healing responses to restore liver homeostasis following injury. Here we tested the hypothesis that extracellular vesicles (EVs) isolated from induced pluripotent stem cells (iPSC) modulate hepatic stellate cell (HSCs) activation and may have anti-fibrotic effects. Human iPSCs were generated by reprogramming primary skin fibroblasts. EVs were isolated by differential centrifugation, quantified by flow cytometry (FACS) and characterized by dynamic light scattering (DLS) and electron microscopy (TEM). Primary human HSCs were activated with TGFβ (10 ng/mL) and exposed to iPSC-EVs. Efficacy of iPSC-EVs was tested on HSC in vitro and in two murine models of liver injury (CCl4 and bile duct ligation). Characterization of iPSC-derived EVs by flow cytometry identified a large population of EVs released by iPSC, primarily with a diameter of 300 nm and that could be visualized by TEM as round, cup-shaped objects. Fluorescent tracing assays detected iPSC-EVs in HSC cytosol after a short incubation and EV uptake by HSCs resulted in both decrease of pro-fibrogenic markers αSMA, CollagenIα1, Fibronectin and TIMP-1 and HSC pro-fibrogenic responses such as chemotaxis and proliferation. Genomics analyses of iPSC-EV miRNA cargo revealed 22 highly expressed miRNAs, among which miR-92a-3p resulted the most abundant. Transcriptome analysis identified 60 genes down-modulated and 235 up-regulated in TGF-β-primed HSC in presence or absence of iPSC-EVs. Intravenous injection of iPSC-EVs in CCl4 and bile duct ligation-induced liver fibrosis resulted in anti-fibrotic effects at protein and gene levels. Results of this study identify iPSC-EVs as a novel anti-fibrotic approach that may reduce or reverse liver fibrosis in patients with chronic liver disease.
Collapse
Affiliation(s)
- Davide Povero
- Department of Pediatrics, UCSD, La Jolla, California, USA
| | - Eva M. Pinatel
- Institute of Biomedical Technologies, National Research Council, Segrate Milan, Italy
| | | | - Nidhi P. Goyal
- Department of Pediatrics, UCSD, La Jolla, California, USA
| | | | - Jihoon Kim
- Department of Biomedical Informatics, School of Medicine, UCSD, La Jolla, California, USA
| | - David Kneiber
- Department of Pediatrics, UCSD, La Jolla, California, USA
| | - Lucas de Araujo Horcel
- Department of Pediatrics, UCSD, La Jolla, California, USA
- University Center Lusiada, Santos, Brazil
| | - Akiko Eguchi
- Department of Pediatrics, UCSD, La Jolla, California, USA
| | | | | | | |
Collapse
|
41
|
Evolving Genomics of Pulmonary Fibrosis. Respir Med 2019. [DOI: 10.1007/978-3-319-99975-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
42
|
Zhang S, Yuan Y, Zhang Z, Guo J, Li J, Zhao K, Qin Y, Qiu C. LncRNA FOXC2-AS1 protects cardiomyocytes from doxorubicin-induced cardiotoxicity through activation of WNT1-inducible signaling pathway protein-1. Biosci Biotechnol Biochem 2018; 83:653-658. [PMID: 30558506 DOI: 10.1080/09168451.2018.1553606] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Doxorubicin (Dox) is an anthracycline antibiotic that has been used to treat different cancers. Dox-induced cardiotoxicity is common in clinical practice, while its mechanism is unknown. It has been proved that lncRNA FOXC2-AS1 may promote doxorubicin resistance and WNT1-inducible signaling pathway protein-1 (WISP1) blocks doxorubicin-induced cardiomyocyte death. Our study aimed to investigate the involvement of lncRNA FOXC2-AS1 and WISP1 in doxorubicin-induced cardiotoxicity and to explore their interactions. In our study we observed that FOXC2-AS1 and WISP1 mRNA were downregulated in heart tissues of mice with Dox-induced cardiotoxicity. FOXC2-AS1 and WISP1 mRNA expression were positively correlated in mice with Dox-induced cardiotoxicity but not in healthy mice. Overexpression of FOXC2-AS1 promoted to viability of mice cardiomyocytes under Dox treatment and also increased the expression level of WISP1. In contrast, WISP1 overexpression showed no significant effect on FOXC2-AS1. We therefore conclude that lncRNA FOXC2-AS1 may upregulate WISP1 to protect cardiomyocytes from doxorubicin-induced cardiotoxicity.
Collapse
Affiliation(s)
- Shenwei Zhang
- a Department of cardiology , the first affiliated hospital of Zhengzhou university , Zhengzhou City , Henan Province , PR. China
| | - Yiqiang Yuan
- b Department of cardiology , The seventh people'S hospital of Zhengzhou , Zhengzhou City , Henan Province , PR. China
| | - Zheng Zhang
- c Department of cardiology , The General Hospital of the PLA Rocket Force , Beijing City , PR. China
| | - Jing Guo
- b Department of cardiology , The seventh people'S hospital of Zhengzhou , Zhengzhou City , Henan Province , PR. China
| | - Jing Li
- b Department of cardiology , The seventh people'S hospital of Zhengzhou , Zhengzhou City , Henan Province , PR. China
| | - Kui Zhao
- b Department of cardiology , The seventh people'S hospital of Zhengzhou , Zhengzhou City , Henan Province , PR. China
| | - Yanping Qin
- b Department of cardiology , The seventh people'S hospital of Zhengzhou , Zhengzhou City , Henan Province , PR. China
| | - Chunguang Qiu
- a Department of cardiology , the first affiliated hospital of Zhengzhou university , Zhengzhou City , Henan Province , PR. China
| |
Collapse
|
43
|
miR-30 Family: A Promising Regulator in Development and Disease. BIOMED RESEARCH INTERNATIONAL 2018; 2018:9623412. [PMID: 30003109 PMCID: PMC5996469 DOI: 10.1155/2018/9623412] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 04/18/2018] [Indexed: 01/10/2023]
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that negatively regulate posttranscriptional expression of target genes. Accumulating evidences have demonstrated that the miR-30 family, as a member of microRNAs, played a crucial regulating role in the development of tissues and organs and the pathogenesis of clinical diseases, which indicated that it may be a promising regulator in development and disease. This review aims to clarify the current progress on the regulating role of miR-30 family in tissues and organs development and related disease and highlight their research prospective in the future.
Collapse
|
44
|
Huang R, Yu T, Li Y, Hu J. Upregulated has-miR-4516 as a potential biomarker for early diagnosis of dust-induced pulmonary fibrosis in patients with pneumoconiosis. Toxicol Res (Camb) 2018; 7:415-422. [PMID: 30090591 PMCID: PMC6060724 DOI: 10.1039/c8tx00031j] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 02/08/2018] [Indexed: 01/12/2023] Open
Abstract
Background: Pulmonary fibrosis (PF) is a representative pathological change in patients with pneumoconiosis; however, due to the absence of reliable and early biomarkers, microRNAs have recently emerged as potential candidates for identification. Objectives: The aim of our study was to discover the potential of PF-specific circulating microRNAs as early biomarkers among patients with pneumoconiosis. Methods: Four dust-exposed patients with PF and four matched healthy individuals (not exposed to dust) were recruited for the study. microRNA profiling was identified by micro-array and bioinformatics methods. Gene Ontology (GO) analysis was used to identify the potential biological or molecular processes modulated by these miRNAs. Kyoto Encyclopedia of Genes and Genomes pathway (KEGG) analysis was used to identify the potentially involved signaling pathways. miRNA-mRNA-binding network analysis was employed to identify genes potentially targeted by the miRNAs. Results: 1079 miRNAs were discovered, of which 406 were up-regulated and 117 were down-regulated in PF patients. 32 miRNAs were up-regulated by >4-fold and 17 miRNAs were down-regulated by >0.5 fold. GO analysis identified the biological processes affected by anatomical structure development, hemophilic cell adhesion and cell-cell adhesion via plasma membrane proteins. Target prediction software showed that serum has-miR-4516 targeted genes encoding basonuclin2, inhibitors of growth family member 4, the potassium voltage-gated channel, and "sha-1-related subfamily member 1" proteins. qRT-PCR revealed that has-miR-4516 was a potential biomarker of PF progression in patients with pneumoconiosis. Conclusions: Our findings suggest that the level of serum miR-4516 may be a potential biomarker for early diagnosis of PF in patients with pneumoconiosis. This is a pilot work that paves the way for a further functional study of the underlying regulatory mechanisms.
Collapse
Affiliation(s)
- Ruixue Huang
- Department of occupational and environmental health , Xiangya school of public health , Central South University , 410078 , Changsha , Hunan Province , China . ; ;
| | - Ting Yu
- Department of occupational and environmental health , Xiangya school of public health , Central South University , 410078 , Changsha , Hunan Province , China . ; ;
| | - Ying Li
- Hunan Prevention and Treatment Center For Occupational Diseases , Changsha , China .
| | - Jianan Hu
- Department of occupational and environmental health , Xiangya school of public health , Central South University , 410078 , Changsha , Hunan Province , China . ; ;
| |
Collapse
|
45
|
Miao C, Xiong Y, Zhang G, Chang J. MicroRNAs in idiopathic pulmonary fibrosis, new research progress and their pathophysiological implication. Exp Lung Res 2018; 44:178-190. [DOI: 10.1080/01902148.2018.1455927] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Chenggui Miao
- Department of Pharmacy, School of Life and Health Science, Anhui Science and Technology University, Fengyang, China
| | - Youyi Xiong
- Department of Pharmacy, School of Life and Health Science, Anhui Science and Technology University, Fengyang, China
| | - Guoxue Zhang
- School of Science and Technology of Tea and Food, Anhui Agricultural University, Hefei, China
| | - Jun Chang
- Fourth Affiliated Hospital, Anhui Medical University, Hefei, China
| |
Collapse
|
46
|
Wright LH, Herr DJ, Brown SS, Kasiganesan H, Menick DR. Angiokine Wisp-1 is increased in myocardial infarction and regulates cardiac endothelial signaling. JCI Insight 2018; 3:95824. [PMID: 29467324 DOI: 10.1172/jci.insight.95824] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 01/10/2018] [Indexed: 12/17/2022] Open
Abstract
Myocardial infarctions (MIs) cause the loss of myocytes due to lack of sufficient oxygenation and latent revascularization. Although the administration of histone deacetylase (HDAC) inhibitors reduces the size of infarctions and improves cardiac physiology in small-animal models of MI injury, the cellular targets of the HDACs, which the drugs inhibit, are largely unspecified. Here, we show that WNT-inducible secreted protein-1 (Wisp-1), a matricellular protein that promotes angiogenesis in cancers as well as cell survival in isolated cardiac myocytes and neurons, is a target of HDACs. Further, Wisp-1 transcription is regulated by HDACs and can be modified by the HDAC inhibitor, suberanilohydroxamic acid (SAHA/vorinostat), after MI injury. We observe that, at 7 days after MI, Wisp-1 is elevated 3-fold greater in the border zone of infarction in mice that experience an MI injury and are injected daily with SAHA, relative to MI alone. Additionally, human coronary artery endothelial cells (HCAECs) produce WISP-1 and are responsive to autocrine WISP-1-mediated signaling, which functionally promotes their proangiogenic behavior. Altering endogenous expression of WISP-1 in HCAECs directly impacts their network density in vitro. Therapeutic interventions after a heart attack define the extent of infarct injury, cell survival, and overall prognosis. Our studies shown here identify a potentially novel cardiac angiokine, Wisp-1, that may contribute to beneficial post-MI treatment modalities.
Collapse
Affiliation(s)
| | | | - Symone S Brown
- College of Graduate Studies, Summer Undergraduate Research Program, Medical University of South Carolina, Charleston, South Carolina, USA
| | | | - Donald R Menick
- Division of Cardiology, and.,Ralph H. Johnson VA Medical Center, Charleston, South Carolina, USA
| |
Collapse
|
47
|
CCN4/WISP1 controls cutaneous wound healing by modulating proliferation, migration and ECM expression in dermal fibroblasts via α5β1 and TNFα. Matrix Biol 2018; 68-69:533-546. [PMID: 29330021 DOI: 10.1016/j.matbio.2018.01.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 12/21/2017] [Accepted: 01/05/2018] [Indexed: 02/01/2023]
Abstract
Understanding the mechanisms that control cutaneous wound healing is crucial to successfully manage repair of damaged skin. The goal of the current study was to uncover novel extracellular matrix (ECM) components that control the wound healing process. Full thickness skin defects were created in mice and used to show CCN4 up-regulation during wound-healing as early as 1 day after surgery, suggesting a role in inflammation and subsequent dermal migration and proliferation. To determine how CCN4 could regulate wound healing we used Ccn4-KO mice and showed they had delayed wound closure accompanied by reduced expression of Col1a1 and Fn mRNA. Boyden chamber assays using Ccn4-deficient dermal fibroblasts showed they have reduced migration and proliferation compared to WT counterparts. To confirm CCN4 has a role in proliferation and migration of dermal cells, siRNA knockdown and transduction of CCN4 adenoviral transduction were used and resulted in reduced or enhanced migration of human adult dermal fibroblast (hADF) cells respectively. The induced migration of the dermal fibroblasts by CCN4 appears to work via α5β1 integrin receptors that further stimulates down-stream ERK/JNK signaling. The regulation of CCN4 by TNF-α prompted us look further at their potential relationship. Treatment of hADFs with CCN4 and TNF-α alone or together showed CCN4 counteracted the inhibition of TNF-α on COL1A1 and FN mRNA expression and the stimulation of TNF-α on MMP-1 and MMP3 mRNA expression. CCN4 appeared to counterbalance the effects of TNF-α by inhibiting downstream NF-κB/p-65 signaling. Taken together we show CCN4 stimulates dermal fibroblast cell migration, proliferation and inhibits TNF-α stimulation, all of which could regulate wound healing.
Collapse
|
48
|
Aslani S, Sobhani S, Gharibdoost F, Jamshidi A, Mahmoudi M. Epigenetics and pathogenesis of systemic sclerosis; the ins and outs. Hum Immunol 2018; 79:178-187. [PMID: 29330110 DOI: 10.1016/j.humimm.2018.01.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 12/25/2017] [Accepted: 01/08/2018] [Indexed: 12/22/2022]
Abstract
The pathogenesis of many diseases is influenced by environmental factors which can affect human genome and be inherited from generation to generation. Adverse environmental stimuli are recognized through the epigenetic regulatory complex, leading to gene expression alteration, which in turn culminates in disease outcomes. Three epigenetic regulatory mechanisms modulate the manifestation of a gene, namely DNA methylation, histone changes, and microRNAs. Both epigenetics and genetics have been implicated in the pathogenesis of systemic sclerosis (SSc) disease. Genetic inheritance rate of SSc is low and the concordance rate in both monozygotic (MZ) and dizygotic (DZ) twins is little, implying other possible pathways in SSc pathogenesis scenario. Here, we provide an extensive overview of the studies regarding different epigenetic events which may offer insights into the pathology of SSc. Furthermore, epigenetic-based interventions to treat SSc patients were discussed.
Collapse
Affiliation(s)
- Saeed Aslani
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Soheila Sobhani
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Farhad Gharibdoost
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmadreza Jamshidi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Mahmoudi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
49
|
Bagnato G, Roberts WN, Roman J, Gangemi S. A systematic review of overlapping microRNA patterns in systemic sclerosis and idiopathic pulmonary fibrosis. Eur Respir Rev 2017; 26:26/144/160125. [PMID: 28515040 PMCID: PMC9488120 DOI: 10.1183/16000617.0125-2016] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 02/25/2017] [Indexed: 12/03/2022] Open
Abstract
Lung fibrosis can be observed in systemic sclerosis and in idiopathic pulmonary fibrosis, two disorders where lung involvement carries a poor prognosis. Although much has been learned about the pathogenesis of these conditions, interventions capable of reversing or, at the very least, halting disease progression are not available. Recent studies point to the potential role of micro messenger RNAs (microRNAs) in cancer and tissue fibrogenesis. MicroRNAs are short non-coding RNA sequences (20–23 nucleotides) that are endogenous, evolutionarily conserved and encoded in the genome. By acting on several genes, microRNAs control protein expression. Considering the above, we engaged in a systematic review of the literature in search of overlapping observations implicating microRNAs in the pathogenesis of both idiopathic pulmonary fibrosis (IPF) and systemic sclerosis (SSc). Our objective was to uncover top microRNA candidates for further investigation based on their mechanisms of action and their potential for serving as targets for intervention against lung fibrosis. Our review points to microRNAs of the -29 family, -21-5p and -92a-3p, -26a-5p and let-7d-5p as having distinct and counter-balancing actions related to lung fibrosis. Based on this, we speculate that readjusting the disrupted balance between these microRNAs in lung fibrosis related to SSc and IPF may have therapeutic potential. miR-21-5p and the miR-29 family group cluster in systemic sclerosis and idiopathic pulmonary fibrosishttp://ow.ly/D6B030bg2vn
Collapse
Affiliation(s)
- Gianluca Bagnato
- Division of Rheumatology, Dept of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - William Neal Roberts
- Division of Rheumatology, Dept of Medicine, University of Louisville School of Medicine and Robley Rex Veterans Affairs Medical Center, Louisville, KY, USA
| | - Jesse Roman
- Division of Pulmonary, Critical Care, and Sleep Medicine, Dept of Medicine, University of Louisville School of Medicine and Robley Rex Veterans Affairs Medical Center, Louisville, KY, USA
| | - Sebastiano Gangemi
- Division of Allergy and Clinical Immunology, Dept of Clinical and Experimental Medicine, University of Messina, Messina, Italy.,Institute of Applied Sciences and Intelligent Systems (ISASI), Pozzuoli Unit, Italy
| |
Collapse
|
50
|
Analysis of Microarray-Identified Genes and MicroRNAs Associated with Idiopathic Pulmonary Fibrosis. Mediators Inflamm 2017; 2017:1804240. [PMID: 28588348 PMCID: PMC5446886 DOI: 10.1155/2017/1804240] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 03/13/2017] [Accepted: 03/23/2017] [Indexed: 12/12/2022] Open
Abstract
The aim of this study was to identify potential microRNAs and genes associated with idiopathic pulmonary fibrosis (IPF) through web-available microarrays. The microRNA microarray dataset GSE32538 and the mRNA datasets GSE32537, GSE53845, and GSE10667 were downloaded from the Gene Expression Omnibus (GEO) database. Differentially expressed miRNAs (DE-miRNAs)/genes (DEGs) were screened with GEO2R, and their associations with IPF were analyzed by comprehensive bioinformatic analyses. A total of 45 DE-microRNAs were identified between IPF and control tissues, whereas 67 common DEGs were determined to exhibit the same expression trends in all three microarrays. Furthermore, functional analysis indicated that microRNAs in cancer and ECM-receptor interaction were the most significant pathways and were enriched by the 45 DE-miRNAs and 67 common DEGs. Finally, we predicted potential microRNA-target interactions between 17 DE-miRNAs and 17 DEGs by using at least three online programs. A microRNA-mediated regulatory network among the DE-miRNAs and DEGs was constructed that might shed new light on potential biomarkers for the prediction of IPF progression.
Collapse
|