1
|
Chen MM, Lin S, Wang ZH, Zhang SX, Chen FY, Chen J, Guo DS, Meng Q. Sulfonated Azocalix[4]arene: A Universal and Effective Taste-Masking Agent. ACS APPLIED MATERIALS & INTERFACES 2024; 16:53591-53598. [PMID: 39316639 DOI: 10.1021/acsami.4c13762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Many active pharmaceutical ingredients have a specific bitter taste. To enhance patient compliance and treatment efficacy, taste-masking agents are crucial in oral drug formulations. Confronting numerous bitter drug molecules with varied structures, the pharmaceutical field strives to explore and develop universal and effective masking approaches. Here, we reported sulfonated azocalix[4]arene (SAC4A), a universal supramolecular masking agent with deep cavity that provides stronger hydrophobic effect and larger interaction area during recognition, allowing high binding affinity to bitter drug molecules. Moreover, bitter drugs could deeply buried in the cavity, with the bitterness effectively masked. As a result, SAC4A can bind to 16 different bitter drugs with high affinities, encompassing alkaloids, flavonoids, terpenoids, and more, while maintaining high biocompatibility. As anticipated, SAC4A effectively masks the unpalatable bitter taste associated with these drugs. Consequently, SAC4A is a promising universal and effective supramolecular masking agent.
Collapse
Affiliation(s)
- Meng-Meng Chen
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| | - Shujie Lin
- State Key Laboratory of National Security Specially Needed Medicines, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Ze-Han Wang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| | - Shu-Xin Zhang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| | - Fang-Yuan Chen
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| | - Junyi Chen
- State Key Laboratory of National Security Specially Needed Medicines, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Dong-Sheng Guo
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
- Xinjiang Key Laboratory of Novel Functional Materials Chemistry, College of Chemistry and Environmental Sciences, Kashi University, Kashi 844000, China
| | - Qingbin Meng
- State Key Laboratory of National Security Specially Needed Medicines, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| |
Collapse
|
2
|
Chen L, Lu D, Wan Y, Zou Y, Zhang R, Zhou T, Long B, Zhu K, Wang W, Tian X. Metabolite Profiling and Identification of Sweet/Bitter Taste Compounds in the Growth of Cyclocarya Paliurus Leaves Using Multiplatform Metabolomics. Foods 2024; 13:3089. [PMID: 39410123 PMCID: PMC11475313 DOI: 10.3390/foods13193089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
Cyclocarya paliurus tea, also known as "sweet tea", an herbal tea with Cyclocarya paliurus leaves as raw material, is famous for its unique nutritional benefits and flavor. However, due to the unique "bittersweet" of Cyclocarya paliurus tea, it is still unable to fully satisfy consumers' high-quality taste experience and satisfaction. Therefore, this study aimed to explore metabolites in Cyclocarya paliurus leaves during their growth period, particularly composition and variation of sweet and bitter taste compounds, by combining multi-platform metabolomics analysis with an electronic tongue system and molecular docking simulation technology. The results indicated that there were significant differences in the contents of total phenols, flavonoids, polysaccharides, and saponins in C. paliurus leaves in different growing months. A total of 575 secondary metabolites were identified as potential active metabolites related to sweet/bitter taste using nontargeted metabolomics based on UHPLC-MS/MS analysis. Moreover, molecular docking technology was utilized to study interactions between the candidate metabolites and the sweet receptors T1R2/T1R3 and the bitter receptors T2R4/T2R14. Six key compounds with high sweetness and low bitterness were successfully identified by using computational simulation analysis, including cis-anethole, gluconic acid, beta-D-Sedoheptulose, asparagine, proline, and citrulline, which may serve as candidates for taste modification in Cyclocarya paliurus leaves. These findings provide a new perspective for understanding the sweet and bitter taste characteristics that contribute to the distinctive sensory quality of Cyclocarya paliurus leaves.
Collapse
Affiliation(s)
- Liang Chen
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Material Medical Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (L.C.); (D.L.); (Y.W.); (Y.Z.); (R.Z.); (T.Z.); (B.L.); (W.W.)
- Department of Food and Drug Engineering, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Dai Lu
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Material Medical Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (L.C.); (D.L.); (Y.W.); (Y.Z.); (R.Z.); (T.Z.); (B.L.); (W.W.)
| | - Yuxi Wan
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Material Medical Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (L.C.); (D.L.); (Y.W.); (Y.Z.); (R.Z.); (T.Z.); (B.L.); (W.W.)
| | - Yaqian Zou
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Material Medical Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (L.C.); (D.L.); (Y.W.); (Y.Z.); (R.Z.); (T.Z.); (B.L.); (W.W.)
- Department of Food and Drug Engineering, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Ruiyi Zhang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Material Medical Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (L.C.); (D.L.); (Y.W.); (Y.Z.); (R.Z.); (T.Z.); (B.L.); (W.W.)
- Department of Food and Drug Engineering, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Tao Zhou
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Material Medical Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (L.C.); (D.L.); (Y.W.); (Y.Z.); (R.Z.); (T.Z.); (B.L.); (W.W.)
| | - Bin Long
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Material Medical Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (L.C.); (D.L.); (Y.W.); (Y.Z.); (R.Z.); (T.Z.); (B.L.); (W.W.)
| | - Kangming Zhu
- School of Informatics, Hunan University of Chinese Medicine, Changsha 410208, China;
| | - Wei Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Material Medical Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (L.C.); (D.L.); (Y.W.); (Y.Z.); (R.Z.); (T.Z.); (B.L.); (W.W.)
| | - Xing Tian
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Material Medical Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (L.C.); (D.L.); (Y.W.); (Y.Z.); (R.Z.); (T.Z.); (B.L.); (W.W.)
- Department of Food and Drug Engineering, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
- Hunan Engineering and Technology Research Center for Health Products and Life Science, Changsha 410208, China
| |
Collapse
|
3
|
Liu S, Shi T, Yu J, Li R, Lin H, Deng K. Research on Bitter Peptides in the Field of Bioinformatics: A Comprehensive Review. Int J Mol Sci 2024; 25:9844. [PMID: 39337334 PMCID: PMC11432553 DOI: 10.3390/ijms25189844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Bitter peptides are small molecular peptides produced by the hydrolysis of proteins under acidic, alkaline, or enzymatic conditions. These peptides can enhance food flavor and offer various health benefits, with attributes such as antihypertensive, antidiabetic, antioxidant, antibacterial, and immune-regulating properties. They show significant potential in the development of functional foods and the prevention and treatment of diseases. This review introduces the diverse sources of bitter peptides and discusses the mechanisms of bitterness generation and their physiological functions in the taste system. Additionally, it emphasizes the application of bioinformatics in bitter peptide research, including the establishment and improvement of bitter peptide databases, the use of quantitative structure-activity relationship (QSAR) models to predict bitterness thresholds, and the latest advancements in classification prediction models built using machine learning and deep learning algorithms for bitter peptide identification. Future research directions include enhancing databases, diversifying models, and applying generative models to advance bitter peptide research towards deepening and discovering more practical applications.
Collapse
Affiliation(s)
| | | | | | | | - Hao Lin
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China; (S.L.); (T.S.); (J.Y.); (R.L.)
| | - Kejun Deng
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China; (S.L.); (T.S.); (J.Y.); (R.L.)
| |
Collapse
|
4
|
Zuluaga G. Potential of Bitter Medicinal Plants: A Review of Flavor Physiology. Pharmaceuticals (Basel) 2024; 17:722. [PMID: 38931389 PMCID: PMC11206615 DOI: 10.3390/ph17060722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
The function of the sense of taste is usually confined to the ability to perceive the flavor of food to assess and use the nutrients necessary for healthy survival and to discard those that may be harmful, toxic, or unpleasant. It is almost unanimously agreed that the perception of bitter taste prevents the consumption of toxins from plants, decaying foods, and drugs. Forty years ago, while practicing medicine in a rural area of the Colombian Amazon, I had an unexpected encounter with the Inga Indians. I faced the challenge of accepting that their traditional medicine was effective and that the medicinal plants they used had a real therapeutic effect. Wanting to follow a process of learning about medicinal plants on their terms, I found that, for them, the taste of plants is a primary and fundamental key to understanding their functioning. One of the most exciting results was discovering the therapeutic value of bitter plants. The present review aims to understand whether there is any scientific support for this hypothesis from the traditional world. Can the taste of plants explain their possible therapeutic benefit? In the last 20 years, we have made novel advances in the knowledge of the physiology of taste. Our purpose will be to explore these scientific advances to determine if the bitter taste of medicinal plants benefits human health.
Collapse
Affiliation(s)
- Germán Zuluaga
- Grupo de Estudios en Sistemas Tradicionales de Salud, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá 111711, Colombia; ; Tel.: +57-311-2179102
- Centro de Estudios Médicos Interculturales, Cota 250010, Colombia
| |
Collapse
|
5
|
Song R, Liu K, He Q, He F, Han W. Exploring Bitter and Sweet: The Application of Large Language Models in Molecular Taste Prediction. J Chem Inf Model 2024; 64:4102-4111. [PMID: 38712852 DOI: 10.1021/acs.jcim.4c00681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
The perception of bitter and sweet tastes is a crucial aspect of human sensory experience. Concerns over the long-term use of aspartame, a widely used sweetener suspected of carcinogenic risks, highlight the importance of developing new taste modifiers. This study utilizes Large Language Models (LLMs) such as GPT-3.5 and GPT-4 for predicting molecular taste characteristics, with a focus on the bitter-sweet dichotomy. Employing random and scaffold data splitting strategies, GPT-4 demonstrated superior performance, achieving an impressive 86% accuracy under scaffold partitioning. Additionally, ChatGPT was employed to extract specific molecular features associated with bitter and sweet tastes. Utilizing these insights, novel molecular compounds with distinct taste profiles were successfully generated. These compounds were validated for their bitter and sweet properties through molecular docking and molecular dynamics simulation, and their practicality was further confirmed by ADMET toxicity testing and DeepSA synthesis feasibility. This research highlights the potential of LLMs in predicting molecular properties and their implications in health and chemical science.
Collapse
Affiliation(s)
- Renxiu Song
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Kaifeng Liu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Qizheng He
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Fei He
- Department of Electrical Engineering and Computer Science, Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211, United States
| | - Weiwei Han
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| |
Collapse
|
6
|
Kouakou YI, Lee RJ. Interkingdom Detection of Bacterial Quorum-Sensing Molecules by Mammalian Taste Receptors. Microorganisms 2023; 11:1295. [PMID: 37317269 PMCID: PMC10221136 DOI: 10.3390/microorganisms11051295] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/11/2023] [Accepted: 05/13/2023] [Indexed: 06/16/2023] Open
Abstract
Bitter and sweet taste G protein-coupled receptors (known as T2Rs and T1Rs, respectively) were originally identified in type II taste cells on the tongue, where they signal perception of bitter and sweet tastes, respectively. Over the past ~15 years, taste receptors have been identified in cells all over the body, demonstrating a more general chemosensory role beyond taste. Bitter and sweet taste receptors regulate gut epithelial function, pancreatic β cell secretion, thyroid hormone secretion, adipocyte function, and many other processes. Emerging data from a variety of tissues suggest that taste receptors are also used by mammalian cells to "eavesdrop" on bacterial communications. These receptors are activated by several quorum-sensing molecules, including acyl-homoserine lactones and quinolones from Gram-negative bacteria such as Pseudomonas aeruginosa, competence stimulating peptides from Streptococcus mutans, and D-amino acids from Staphylococcus aureus. Taste receptors are an arm of immune surveillance similar to Toll-like receptors and other pattern recognition receptors. Because they are activated by quorum-sensing molecules, taste receptors report information about microbial population density based on the chemical composition of the extracellular environment. This review summarizes current knowledge of bacterial activation of taste receptors and identifies important questions remaining in this field.
Collapse
Affiliation(s)
- Yobouet Ines Kouakou
- Department of Otorhinolaryngology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Robert J. Lee
- Department of Otorhinolaryngology and Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
7
|
Kan R, Yu Z, Zhao W. Identification and molecular action mechanism of novel TAS2R14 blocking peptides from egg white proteins. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
8
|
Costa AR, Duarte AC, Costa-Brito AR, Gonçalves I, Santos CRA. Bitter taste signaling in cancer. Life Sci 2023; 315:121363. [PMID: 36610638 DOI: 10.1016/j.lfs.2022.121363] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/21/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023]
Abstract
Pharmacoresistance of cancer cells to many drugs used in chemotherapy remains a major challenge for the treatment of cancer. Multidrug resistance transporters, especially ATP-binding cassette (ABC) transporters, are a major cause of cancer drug resistance since they translocate a broad range of drug compounds across the cell membrane, extruding them out of the cells. The regulation of ABC transporters by bitter taste receptors (TAS2Rs), which might be activated by specific bitter tasting compounds, was described in several types of cells/organs, becoming a potential target for cancer therapy. TAS2Rs expression has been reported in many organs and several types of cancer, like breast, ovarian, prostate, and colorectal cancers, where their activation was shown to be involved in various biological actions (cell survival, apoptosis, molecular transport, among others). Moreover, many TAS2Rs' ligands, such as flavonoids and alkaloids, with well-recognized beneficial properties, including several anticancer effects, have been reported as potential adjuvants in cancer therapies. In this review, we discuss the potential therapeutic role of TAS2Rs and bitter tasting compounds in different types of cancer as a possible way to circumvent chemoresistance.
Collapse
Affiliation(s)
- Ana R Costa
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal
| | - Ana C Duarte
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal; CPIRN-IPG - Centro de Potencial e Inovação de Recursos Naturais, Instituto Politécnico da Guarda, Guarda, Portugal
| | - Ana R Costa-Brito
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal; Research Unit for Inland Development (UDI), Polytechnic of Guarda, Guarda, Portugal
| | - Isabel Gonçalves
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal
| | - Cecília R A Santos
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal.
| |
Collapse
|
9
|
Welcome MO, Dogo D, Nikos E Mastorakis. Cellular mechanisms and molecular pathways linking bitter taste receptor signalling to cardiac inflammation, oxidative stress, arrhythmia and contractile dysfunction in heart diseases. Inflammopharmacology 2023; 31:89-117. [PMID: 36471190 PMCID: PMC9734786 DOI: 10.1007/s10787-022-01086-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/11/2022] [Indexed: 12/12/2022]
Abstract
Heart diseases and related complications constitute a leading cause of death and socioeconomic threat worldwide. Despite intense efforts and research on the pathogenetic mechanisms of these diseases, the underlying cellular and molecular mechanisms are yet to be completely understood. Several lines of evidence indicate a critical role of inflammatory and oxidative stress responses in the development and progression of heart diseases. Nevertheless, the molecular machinery that drives cardiac inflammation and oxidative stress is not completely known. Recent data suggest an important role of cardiac bitter taste receptors (TAS2Rs) in the pathogenetic mechanism of heart diseases. Independent groups of researchers have demonstrated a central role of TAS2Rs in mediating inflammatory, oxidative stress responses, autophagy, impulse generation/propagation and contractile activities in the heart, suggesting that dysfunctional TAS2R signalling may predispose to cardiac inflammatory and oxidative stress disorders, characterised by contractile dysfunction and arrhythmia. Moreover, cardiac TAS2Rs act as gateway surveillance units that monitor and detect toxigenic or pathogenic molecules, including microbial components, and initiate responses that ultimately culminate in protection of the host against the aggression. Unfortunately, however, the molecular mechanisms that link TAS2R sensing of the cardiac milieu to inflammatory and oxidative stress responses are not clearly known. Therefore, we sought to review the possible role of TAS2R signalling in the pathophysiology of cardiac inflammation, oxidative stress, arrhythmia and contractile dysfunction in heart diseases. Potential therapeutic significance of targeting TAS2R or its downstream signalling molecules in cardiac inflammation, oxidative stress, arrhythmia and contractile dysfunction is also discussed.
Collapse
Affiliation(s)
- Menizibeya O Welcome
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Nile University of Nigeria, Plot 681 Cadastral Zone, C-00 Research and Institution Area, Jabi Airport Road Bypass, FCT, Abuja, Nigeria.
| | - Dilli Dogo
- Department of Surgery, Faculty of Clinical Sciences, College of Health Sciences, Nile University of Nigeria, Abuja, Nigeria
| | - Nikos E Mastorakis
- Technical University of Sofia, Klement Ohridksi 8, Sofia, 1000, Bulgaria
| |
Collapse
|
10
|
de Jesus VC, Mittermuller BA, Hu P, Schroth RJ, Chelikani P. Association between Downstream Taste Signaling Genes, Oral Microbiome, and Severe Early Childhood Caries. Int J Mol Sci 2022; 24:81. [PMID: 36613519 PMCID: PMC9820665 DOI: 10.3390/ijms24010081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Polymorphisms in taste receptor genes have been shown to play a role in early childhood caries (ECC), a multifactorial, biofilm-mediated disease. This study aimed to evaluate associations between severe-ECC (S-ECC), the oral microbiome, and variants in genes that encode components of the G protein-coupled receptor (GPCR) signaling cascade involved in taste sensation. A total of 176 children (88 caries-free; 88 with S-ECC) were recruited. Analyses of 16S and ITS1 rRNA microbial genes and seven (GNAQ, GNAS, GNAT3, GNAI2, RAC1, RALB, and PLCB2) human genes were pursued using next-generation sequencing. Regression analyses were performed to evaluate associations between genetic variants, S-ECC, and the supragingival plaque microbiome. Results suggest that PLCB2 rs2305645 (T), rs1869901 (G), and rs2305649 (G) alleles had a protective effect on S-ECC (rs2305645, odds ratio (OR) = 0.27 (95% confidence interval (CI): 0.14-0.51); rs1869901, OR = 0.34 (95% CI: 0.20-0.58); and rs2305649, OR = 0.43 (95% CI: 0.26-0.71)). Variants in GNAQ, GNAS, GNAT3, PLCB2, RALB, and RAC1 were associated with oral fungal and bacterial community composition. This study revealed that three loci at PLCB2 are significantly associated with S-ECC. Variants in multiple genes were associated with the composition of dental biofilm. These findings contribute to the current knowledge about the role of genetics in S-ECC.
Collapse
Affiliation(s)
- Vivianne Cruz de Jesus
- Manitoba Chemosensory Biology Research Group, Department of Oral Biology, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
- Children’s Hospital Research Institute of Manitoba (CHRIM), Winnipeg, MB R3E 3P4, Canada
| | - Betty-Anne Mittermuller
- Manitoba Chemosensory Biology Research Group, Department of Oral Biology, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
- Children’s Hospital Research Institute of Manitoba (CHRIM), Winnipeg, MB R3E 3P4, Canada
- Department of Preventive Dental Science, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| | - Pingzhao Hu
- Children’s Hospital Research Institute of Manitoba (CHRIM), Winnipeg, MB R3E 3P4, Canada
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB R3E 3N4, Canada
- Department of Biochemistry, Western University, London, ON N6A 5C1, Canada
| | - Robert J. Schroth
- Manitoba Chemosensory Biology Research Group, Department of Oral Biology, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
- Children’s Hospital Research Institute of Manitoba (CHRIM), Winnipeg, MB R3E 3P4, Canada
- Department of Preventive Dental Science, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB R3A 1S1, Canada
| | - Prashen Chelikani
- Manitoba Chemosensory Biology Research Group, Department of Oral Biology, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
- Children’s Hospital Research Institute of Manitoba (CHRIM), Winnipeg, MB R3E 3P4, Canada
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB R3E 3N4, Canada
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
11
|
Talmon M, Pollastro F, Fresu LG. The Complex Journey of the Calcium Regulation Downstream of TAS2R Activation. Cells 2022; 11:cells11223638. [PMID: 36429066 PMCID: PMC9688576 DOI: 10.3390/cells11223638] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/07/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
Bitter taste receptors (TAS2Rs) have recently arisen as a potential drug target for asthma due to their localization in airway cells. These receptors are expressed in all cell types of the respiratory system comprising epithelial, smooth muscle and immune cells; however, the expression pattern of the subtypes is different in each cell type and, accordingly, so is their role, for example, anti-inflammatory or bronchodilator. The most challenging aspect in studying TAS2Rs has been the identification of the downstream signaling cascades. Indeed, TAS2R activation leads to canonical IP3-dependent calcium release from the ER, but, alongside, there are other mechanisms that differ according to the histological localization. In this review, we summarize the current knowledge on the cytosolic calcium modulation downstream of TAS2R activation in the epithelial, smooth muscle and immune cells of the airway system.
Collapse
Affiliation(s)
- Maria Talmon
- Department of Health Sciences, School of Medicine, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
- Correspondence: (M.T.); (L.G.F.); Tel.: +39-0321-660589 (M.T.); +39-0321-660687 (L.G.F.)
| | - Federica Pollastro
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Largo Donegani 2/3, 28100 Novara, Italy
| | - Luigia Grazia Fresu
- Department of Health Sciences, School of Medicine, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
- Correspondence: (M.T.); (L.G.F.); Tel.: +39-0321-660589 (M.T.); +39-0321-660687 (L.G.F.)
| |
Collapse
|
12
|
New wave of flavours – On new ways of developing and processing seaweed flavours. Int J Gastron Food Sci 2022. [DOI: 10.1016/j.ijgfs.2022.100566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
13
|
Yu J, Xie J, Xie H, Hu Q, Wu Z, Cai X, Guo Z, Lin J, Han L, Zhang D. Strategies for Taste Masking of Orodispersible Dosage Forms: Time, Concentration, and Perception. Mol Pharm 2022; 19:3007-3025. [PMID: 35848076 DOI: 10.1021/acs.molpharmaceut.2c00199] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Orodispersible dosage forms, characterized as quick dissolving and swallowing without water, have recently gained great attention from the pharmaceutical industry, as these forms can satisfy the needs of children, the elderly, and patients suffering from mental illnesses. However, poor taste by thorough exposure of the drugs' dissolution in the oral cavity hinders the effectiveness of the orodispersible dosage forms. To bridge this gap, we put forward three taste-masking strategies with respect to the intensity of time, concentration, and perception. We further investigated the raw material processing, the composition of auxiliary material, formulation techniques, and process control in each strategy and drew conclusions about their effects on taste masking.
Collapse
Affiliation(s)
- Ji Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Jin Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Huijuan Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Qi Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Zhenfeng Wu
- Key Laboratory of Modern Preparation of Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, PR China
| | - Xinfu Cai
- Sichuan Guangda Pharmaceutical Co., Ltd., Pengzhou 611930, PR China
| | - Zhiping Guo
- Sichuan Houde Pharmaceutical Technology Co., Ltd., Chengdu 610041, PR China
| | - Junzhi Lin
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, PR China
| | - Li Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Dingkun Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| |
Collapse
|
14
|
Detecting the Bitterness of Milk-Protein-Derived Peptides Using an Electronic Tongue. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10060215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Bitterness is a considerable limiting factor for the application of bioactive peptides in the food industry. The objective of this study was to compare the level of bitterness of milk-protein-derived peptides using an electronic tongue (E-tongue). Liquid milk protein concentrate (LMPC) was prepared from ultra-heat-treated skimmed cow’s milk. It was initially hydrolyzed with different concentrations of trypsin, namely, 0.008 g·L−1, 0.016 g·L−1 and 0.032 g·L−1. In a later exercise, tryptic-hydrolyzed LMPC (LMPC-T) was further hydrolyzed using Lactobacillus bulgaricus and Streptococcus thermophilus. The effect of glucose in microbial hydrolysis was studied. The bitterness of peptides was evaluated with respect to quinine, a standard bittering agent. The level of bitterness of the peptides after microbial hydrolysis of LMPC-T (LMPC-T-F and LMPC-T-FG) was evaluated using a potentiometric E-tongue equipped with a sensor array that had seven chemically modified field-effect transistor sensors. The results of the measurements were evaluated using principal component analysis (PCA), and subsequently, a classification of the models was built using the linear discriminant analysis (LDA) method. The bitterness of peptides in LMPC-T-F and LMPC-T-FG was increased with the increase in the concentration of trypsin. The bitterness of peptides was reduced in LMPC-T-FG compared with LMPC-T-F. The potential application of the E-tongue using a standard model solution with quinine was shown to follow the bitterness of peptides.
Collapse
|
15
|
Peng S, Song H, Chen Y, Li S, Guan X. Oral Delivery of Food-derived Bioactive Peptides: Challenges and Strategies. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2062772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Shiyu Peng
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Hongdong Song
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai, China
| | - Yaqiong Chen
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Sen Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai, China
| | - Xiao Guan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
16
|
Maki P, Itharat A, Thongdeeying P, Tuy-On T, Kuropakornpong P, Pipatrattanaseree W, Mingmalairak C, Davies NM. Ethnopharmacological nexus between the traditional Thai medicine theory and biologically based cancer treatment. JOURNAL OF ETHNOPHARMACOLOGY 2022; 287:114932. [PMID: 34953977 DOI: 10.1016/j.jep.2021.114932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/14/2021] [Accepted: 12/19/2021] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The two major theories utilized for diagnosis and treatment in Traditional Thai Medicine (TTM) are the Four Element Theory and the Herbal Flavor Theory. A TTM "Poh-Pu" Remedy has been effectively utilized in Thailand for cancer therapy for centuries. AIMS OF STUDY To investigate anti-inflammatory activity and liver cancer cytotoxicity of Poh-Pu remedy. To determine relationships between the TTM Herbal Flavor theory and the Four Element theory and total flavonoid content and biological activities of Poh-Pu Remedy plant extracts. MATERIALS AND METHODS Each plant ingredient was macerated with 95% ethanol. The extracts were investigated for cytotoxic activity against liver cancer using a sulforhodamine B assay, and anti-inflammatory activity was evaluated by inhibition of nitric oxide production. The total flavonoid content was determined by an aluminum chloride colorimetric assay. The relationships between the TTM theories, total flavonoid content, and biological activities were evaluated by correlation and cluster analysis. RESULTS Mammea siamensis exerted potent cytotoxicity against hepatocellular carcinoma (HepG2) cell lines with an IC50 of 3.15 ± 0.16 μg/mL and low cytotoxicity to the non-cancerous cells (HaCat) with an IC50 33.39 ± 0.40 μg/mL (Selective index (SI) = 10.6). Tiliacora triandra was selectively cytotoxic to cholangiocarcinama (KKU-M156) cells with an IC50 of 12.65 ± 0.92 μg/mL (SI = 6.4). Curcuma comosa was the most potent anti-inflammatory inhibitor of nitric oxide production with an IC50 of 2.75 ± 0.34 μg/mL. Campomanesia aromatica exhibited the highest total flavonoid content of 259.7 ± 3.21 mg quercetin equivalent/g. Pungent plants were most prevalent in the TTM remedy. CONCLUSION Pungent, fragrant, bitter and nauseating plants utilized in TTM cancer remedy were successfully investigated and identified several lead plants and components with cytotoxic and antiinflammatory activity that require further study. The TTM wind element theory appeared to be aligned with cancer-related activity. Biological activity results of taste from herbs related with The TTM Herbal Flavor theory. The extra-oral locations of flavor receptors are a promising target for biological activity of TTM which require further scrutiny and identified several lead plants and components with cytotoxic and antiinflammatory activities that also require further study.
Collapse
Affiliation(s)
- Ponlawat Maki
- Student of Doctor of Philosophy (Applied Thai Traditional Medicine), Faculty of Medicine, Thammasat University (Rangsit Campus), Pathumthani, 12120, Thailand.
| | - Arunporn Itharat
- Faculty of Medicine, Thammasat University (Rangsit Campus), Department of Applied Thai Traditional Medicine, Pathumthani, 12120, Thailand; Center of Excellence in Applied Thai Traditional Medicine Research, Thammasat University (Rangsit Campus), Pathumthani, 12120, Thailand.
| | - Pakakrong Thongdeeying
- Faculty of Medicine, Thammasat University (Rangsit Campus), Department of Applied Thai Traditional Medicine, Pathumthani, 12120, Thailand; Center of Excellence in Applied Thai Traditional Medicine Research, Thammasat University (Rangsit Campus), Pathumthani, 12120, Thailand.
| | - Thammarat Tuy-On
- Center of Excellence in Applied Thai Traditional Medicine Research, Thammasat University (Rangsit Campus), Pathumthani, 12120, Thailand.
| | - Pranporn Kuropakornpong
- Center of Excellence in Applied Thai Traditional Medicine Research, Thammasat University (Rangsit Campus), Pathumthani, 12120, Thailand.
| | - Weerachai Pipatrattanaseree
- Regional Medical Science Center 12 Songkhla, Department of Medical Sciences, Ministry of Public Health, Songkhla, 90100, Thailand.
| | - Chatchai Mingmalairak
- Faculty of Medicine, Thammasat University (Rangsit Campus), Department of Surgery and Research Group in Thai Herbs and Traditional Remedy for Cancer Patients, Pathumthani, 12120, Thailand.
| | - Neal M Davies
- Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton, Canada.
| |
Collapse
|
17
|
Yu Z, Wang Y, Zhao W, Li J, Shuian D, Liu J. Identification of Oncorhynchus mykiss nebulin-derived peptides as bitter taste receptor TAS2R14 blockers by in silico screening and molecular docking. Food Chem 2022; 368:130839. [PMID: 34419799 DOI: 10.1016/j.foodchem.2021.130839] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 06/24/2021] [Accepted: 08/09/2021] [Indexed: 01/03/2023]
Abstract
Human bitter taste receptor TAS2R14 (T2R14) can widely perceive bitterness, which has always been an issue for people to overcome. This study was aimed at identifying bioactive peptides obtained from Oncorhynchus mykiss nebulin hydrolysates as bitter taste receptor blockers by physicochemical property prediction, molecular docking, and in vitro determination of bitterness intensity using electronic tongue. Exploration of the interaction mechanism of these peptides with T2R14 by molecular docking models indicated that peptides ADM and ADW had high affinities for T2R14 to block the binding of bitter substances into the receptor. Addition of ADM and ADW to quinine caused reduction in bitterness intensity, with IC50 values of 420.32 ± 6.26 μM and 403.29 ± 4.10 μM, respectively. Hydrogen bond interaction and hydrophobic interaction were responsible for manifesting the high affinities of these peptides for the receptor. Residues Thr86, Asp168, and Phe247 may be the key amino acids within the binding site.
Collapse
Affiliation(s)
- Zhipeng Yu
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, PR China
| | - Yingxue Wang
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, PR China
| | - Wenzhu Zhao
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, PR China.
| | - Jianrong Li
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, PR China
| | - David Shuian
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, PR China
| | - Jingbo Liu
- Lab of Nutrition and Functional Food, Jilin University, Changchun 130062, PR China
| |
Collapse
|
18
|
Catarina Duarte A, Raquel Costa A, Gonçalves I, Quintela T, Preissner R, R A Santos C. The druggability of bitter taste receptors for the treatment of neurodegenerative disorders. Biochem Pharmacol 2022; 197:114915. [PMID: 35051386 DOI: 10.1016/j.bcp.2022.114915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 12/14/2022]
Abstract
The delivery of therapeutic drugs to the brain remains a major pharmacology challenge. A complex system of chemical surveillance to protect the brain from endogenous and exogenous toxicants at brain barriers hinders the uptake of many compounds with significant in vitro and ex vivo therapeutic properties. Despite the advances in the field in recent years, the components of this system are not completely understood. Recently, a large group of chemo-sensing receptors, have been identified in the blood-cerebrospinal fluid barrier. Among these chemo-sensing receptors, bitter taste receptors (TAS2R) hold promise as potential drug targets, as many TAS2R bind compounds with recognized neuroprotective activity (quercetin, resveratrol, among others). Whether activation of TAS2R by their ligands contributes to their diverse biological actions described in other cells and tissues is still debatable. In this review, we discuss the potential role of TAS2R gene family as the mediators of the biological activity of their ligands for the treatment of central nervous system disorders and discuss their potential to counteract drug resistance by improving drug delivery to the brain.
Collapse
Affiliation(s)
- Ana Catarina Duarte
- CICS-UBI - Health Sciences Research Center, University of Beira Interior, Covilhã, Portugal; CPIRN-IPG- Centro de Potencial e Inovação de Recursos Naturais- Instituto Politécnico da Guarda, Av. Dr. Francisco de Sá Carneiro, 6300-559, Guarda, Portugal
| | - Ana Raquel Costa
- CICS-UBI - Health Sciences Research Center, University of Beira Interior, Covilhã, Portugal
| | - Isabel Gonçalves
- CICS-UBI - Health Sciences Research Center, University of Beira Interior, Covilhã, Portugal
| | - Telma Quintela
- CICS-UBI - Health Sciences Research Center, University of Beira Interior, Covilhã, Portugal
| | - Robert Preissner
- Institute of Physiology and Science-IT, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Philippstrasse 12, 10115, Berlin, Germany
| | - Cecília R A Santos
- CICS-UBI - Health Sciences Research Center, University of Beira Interior, Covilhã, Portugal.
| |
Collapse
|
19
|
Abstract
Many behavioral studies and histological analyses of the sense of taste have been conducted in chickens, as it plays an important role in the ingestion of feed. In recent years, various taste receptors have been analyzed, and the functions of fatty acids, umami, and bitter taste receptors in chickens have become clear. In this review, the bitter taste sense in chickens, which is the taste quality by which animals reject poisons, is discussed among a variety of taste qualities. Chickens have taste buds in the palate, the base of the oral cavity, and the root of the tongue. Bitter taste receptors, taste receptor type 2 members 1, 2, and 7 (T2R1, T2R2, and T2R7) are expressed in these tissues. According to functional analyses of bitter taste receptors and behavioral studies, T2R1 and T2R7 are thought to be especially involved in the rejection of bitter compounds in chickens. Furthermore, the antagonists of these two functional bitter taste receptors were also identified, and it is expected that such antagonists will be useful in improving the taste quality of feed materials and poultry drugs that have a bitter taste. Bitter taste receptors are also expressed in extra-oral tissues, and it has been suggested that gastrointestinal bitter taste receptors may be involved in the secretion of gastrointestinal hormones and pathogen defense mechanisms. Thus, bitter taste receptors in chickens are suspected to play major roles in taste sensing and other physiological systems.
Collapse
|
20
|
McMahon DB, Kuek LE, Johnson ME, Johnson PO, Horn RL, Carey RM, Adappa ND, Palmer JN, Lee RJ. The bitter end: T2R bitter receptor agonists elevate nuclear calcium and induce apoptosis in non-ciliated airway epithelial cells. Cell Calcium 2022; 101:102499. [PMID: 34839223 PMCID: PMC8752513 DOI: 10.1016/j.ceca.2021.102499] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/21/2021] [Accepted: 10/31/2021] [Indexed: 01/03/2023]
Abstract
Bitter taste receptors (T2Rs) localize to airway motile cilia and initiate innate immune responses in retaliation to bacterial quorum sensing molecules. Activation of cilia T2Rs leads to calcium-driven NO production that increases cilia beating and directly kills bacteria. Several diseases, including chronic rhinosinusitis, COPD, and cystic fibrosis, are characterized by loss of motile cilia and/or squamous metaplasia. To understand T2R function within the altered landscape of airway disease, we studied T2Rs in non-ciliated airway cell lines and primary cells. Several T2Rs localize to the nucleus in de-differentiated cells that typically localize to cilia in differentiated cells. As cilia and nuclear import utilize shared proteins, some T2Rs may target to the nucleus in the absence of motile cilia. T2R agonists selectively elevated nuclear and mitochondrial calcium through a G-protein-coupled receptor phospholipase C mechanism. Additionally, T2R agonists decreased nuclear cAMP, increased nitric oxide, and increased cGMP, consistent with T2R signaling. Furthermore, exposure to T2R agonists led to nuclear calcium-induced mitochondrial depolarization and caspase activation. T2R agonists induced apoptosis in primary bronchial and nasal cells differentiated at air-liquid interface but then induced to a squamous phenotype by apical submersion. Air-exposed well-differentiated cells did not die. This may be a last-resort defense against bacterial infection. However, it may also increase susceptibility of de-differentiated or remodeled epithelia to damage by bacterial metabolites. Moreover, the T2R-activated apoptosis pathway occurs in airway cancer cells. T2Rs may thus contribute to microbiome-tumor cell crosstalk in airway cancers. Targeting T2Rs may be useful for activating cancer cell apoptosis while sparing surrounding tissue.
Collapse
Affiliation(s)
- Derek B. McMahon
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA,Correspondence: Derek B. McMahon, PhD or Robert J. Lee, PhD, Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA USA, 215-573-9766, (D.B.M.) or (R.J.L)
| | - Li Eon Kuek
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Madeline E. Johnson
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Paige O. Johnson
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Rachel L.J. Horn
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Ryan M. Carey
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Nithin D. Adappa
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - James N. Palmer
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Robert J. Lee
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA,Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA,Correspondence: Derek B. McMahon, PhD or Robert J. Lee, PhD, Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA USA, 215-573-9766, (D.B.M.) or (R.J.L)
| |
Collapse
|
21
|
Zhao W, Li D, Wang Y, Kan R, Ji H, Su L, Yu Z, Li J. Identification and molecular docking of peptides from Mizuhopecten yessoensis myosin as human bitter taste receptor T2R14 blockers. Food Funct 2021; 12:11966-11973. [PMID: 34747964 DOI: 10.1039/d1fo02447g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bitter taste receptor 14(T2R14) is one of the most widely regulated bitter taste receptors (T2Rs) and plays a vital role in the research of T2R blockers. In this study, potential T2R14 blockers were identified from the myosin of Mizuhopecten yessoensis. Myosin was hydrolyzed in silico by gastrointestinal proteases, and the peptides were obtained. The peptides' biological activity, solubility, and toxicity were predicted, and the potential T2R14 blocking peptides were docked with T2R14. Subsequently, the in vitro T2R14 blocking activity of the selected peptide was verified by an electronic tongue. The results showed that QRPR had T2R14 blocking activity with an IC50 value of 256.69 ± 1.91 μM. Molecular docking analysis suggested the key role of the amino residues Asp168, Leu178, Asn157, and Ile262 in blocking T2R14, and revealed that the amino acid residues of T2R14 bound with the peptide QRPR via electrostatic interaction, hydrophobic interaction, conventional hydrogen bond, and hydrogen bond. The novel T2R14 blocking peptide QRPR is a potential candidate for suppressing bitterness.
Collapse
Affiliation(s)
- Wenzhu Zhao
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, P.R. China.
| | - Donghui Li
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, P.R. China.
| | - Yingxue Wang
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, P.R. China.
| | - Ruotong Kan
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, P.R. China.
| | - Huizhuo Ji
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, P.R. China.
| | - Lijun Su
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, P.R. China.
| | - Zhipeng Yu
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, P.R. China.
| | - Jianrong Li
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, P.R. China.
| |
Collapse
|
22
|
Li H, Li LF, Zhang ZJ, Wu CJ, Yu SJ. Sensory evaluation, chemical structures, and threshold concentrations of bitter-tasting compounds in common foodstuffs derived from plants and maillard reaction: A review. Crit Rev Food Sci Nutr 2021; 63:2277-2317. [PMID: 34542344 DOI: 10.1080/10408398.2021.1973956] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The bitterness of foodstuffs is often associated with toxicity, which negatively influences product acceptability. However, bitter compounds have many benefits, and a slight bitter taste is sometimes favored. In this review, we summarize the methods used to isolate and evaluate the taste of bitter compounds in different foods. The chemical structures and threshold concentrations of these compounds are also recapped. Although the structures and thresholds of many bitter compounds have been confirmed, further studies are needed to develop detailed bitter-masking strategies and establish the relation between functional groups (hetero-cyclic substituents and bonding types) and taste quality. Furthermore, a comprehensive bitterness database and chemometric data must be provided in order to quickly assess the bitterness of unfamiliar products.
Collapse
Affiliation(s)
- He Li
- School of Chemical Engineering and Technology, North University of China, Taiyuan, China.,College of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Li-Feng Li
- School of Environment and Safety Engineering, North University of China, Taiyuan, China
| | - Zhi-Jun Zhang
- School of Chemical Engineering and Technology, North University of China, Taiyuan, China
| | - Chun-Jian Wu
- College of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Shu-Juan Yu
- College of Food Science and Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
23
|
Koyama S, Kondo K, Ueha R, Kashiwadani H, Heinbockel T. Possible Use of Phytochemicals for Recovery from COVID-19-Induced Anosmia and Ageusia. Int J Mol Sci 2021; 22:8912. [PMID: 34445619 PMCID: PMC8396277 DOI: 10.3390/ijms22168912] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 12/14/2022] Open
Abstract
The year 2020 became the year of the outbreak of coronavirus, SARS-CoV-2, which escalated into a worldwide pandemic and continued into 2021. One of the unique symptoms of the SARS-CoV-2 disease, COVID-19, is the loss of chemical senses, i.e., smell and taste. Smell training is one of the methods used in facilitating recovery of the olfactory sense, and it uses essential oils of lemon, rose, clove, and eucalyptus. These essential oils were not selected based on their chemical constituents. Although scientific studies have shown that they improve recovery, there may be better combinations for facilitating recovery. Many phytochemicals have bioactive properties with anti-inflammatory and anti-viral effects. In this review, we describe the chemical compounds with anti- inflammatory and anti-viral effects, and we list the plants that contain these chemical compounds. We expand the review from terpenes to the less volatile flavonoids in order to propose a combination of essential oils and diets that can be used to develop a new taste training method, as there has been no taste training so far. Finally, we discuss the possible use of these in clinical settings.
Collapse
Affiliation(s)
- Sachiko Koyama
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | - Kenji Kondo
- Department of Otolaryngology, Faculty of Medicine, The University of Tokyo, Tokyo 113-8655, Japan;
| | - Rumi Ueha
- Department of Otolaryngology, Faculty of Medicine, The University of Tokyo, Tokyo 113-8655, Japan;
- Swallowing Center, The University of Tokyo Hospital, Tokyo 113-8655, Japan
| | - Hideki Kashiwadani
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan;
| | - Thomas Heinbockel
- Department of Anatomy, College of Medicine, Howard University, Washington, DC 20059, USA
| |
Collapse
|
24
|
Fritz F, Preissner R, Banerjee P. VirtualTaste: a web server for the prediction of organoleptic properties of chemical compounds. Nucleic Acids Res 2021; 49:W679-W684. [PMID: 33905509 PMCID: PMC8262722 DOI: 10.1093/nar/gkab292] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 12/30/2022] Open
Abstract
Taste is one of the crucial organoleptic properties involved in the perception of food by humans. Taste of a chemical compound present in food stimulates us to take in food and avoid poisons. Bitter taste of drugs presents compliance problems and early flagging of potential bitterness of a drug candidate may help with its further development. Similarly, the taste of chemicals present in food is important for evaluation of food quality in the industry. In this work, we have implemented machine learning models to predict three different taste endpoints-sweet, bitter and sour. The VirtualTaste models achieved an overall accuracy of 90% and an AUC of 0.98 in 10-fold cross-validation and in an independent test set. The web server takes a two-dimensional chemical structure as input and reports the chemical's taste profile for three tastes-using molecular fingerprints along with confidence scores, including information on similar compounds with known activity from the training set and an overall radar chart. Additionally, insights into 25 bitter receptors are also provided via target prediction for the predicted bitter compounds. VirtualTaste, to the best of our knowledge, is the first freely available web-based platform for the prediction of three different tastes of compounds. It is accessible via http://virtualtaste.charite.de/VirtualTaste/without any login requirements and is free to use.
Collapse
Affiliation(s)
- Franziska Fritz
- Institute of Physiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Philippstrasse 12, 10115, Berlin, Germany
| | - Robert Preissner
- Institute of Physiology and Science-IT, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Philippstrasse 12, 10115, Berlin, Germany
| | - Priyanka Banerjee
- Institute of Physiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Philippstrasse 12, 10115, Berlin, Germany
| |
Collapse
|
25
|
Therapeutic potential of targeting intestinal bitter taste receptors in diabetes associated with dyslipidemia. Pharmacol Res 2021; 170:105693. [PMID: 34048925 DOI: 10.1016/j.phrs.2021.105693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/23/2021] [Accepted: 05/23/2021] [Indexed: 12/19/2022]
Abstract
Intestinal release of incretin hormones after food intake promotes glucose-dependent insulin secretion and regulates glucose homeostasis. The impaired incretin effects observed in the pathophysiologic abnormality of type 2 diabetes have triggered the pharmacological development of incretin-based therapy through the activation of glucagon-like peptide-1 (GLP-1) receptor, including GLP-1 receptor agonists (GLP-1 RAs) and dipeptidyl peptidase 4 (DPP4) inhibitors. In the light of the mechanisms involved in the stimulation of GLP-1 secretion, it is a fundamental question to explore whether glucose and lipid homeostasis can be manipulated by the digestive system in response to nutrient ingestion and taste perception along the gastrointestinal tract. While glucose is a potent stimulant of GLP-1 secretion, emerging evidence highlights the importance of bitter tastants in the enteroendocrine secretion of gut hormones through activation of bitter taste receptors. This review summarizes bitter chemosensation in the intestines for GLP-1 secretion and metabolic regulation based on recent advances in biological research of bitter taste receptors and preclinical and clinical investigation of bitter medicinal plants, including bitter melon, hops strobile, and berberine-containing herbs (e.g. coptis rhizome and barberry root). Multiple mechanisms of action of relevant bitter phytochemicals are discussed with the consideration of pharmacokinetic studies. Current evidence suggests that specific agonists targeting bitter taste receptors, such as human TAS2R1 and TAS2R38, may provide both metabolic benefits and anti-inflammatory effects with the modulation of the enteroendocrine hormone secretion and bile acid turnover in metabolic syndrome individuals or diabetic patients with dyslipidemia-related comorbidities.
Collapse
|
26
|
Di Menna L, Busceti CL, Ginerete RP, D'Errico G, Orlando R, Alborghetti M, Bruno V, Battaglia G, Fornai F, Leoni L, Rampioni G, Visca P, Monn JA, Nicoletti F. The bacterial quorum sensing molecule, 2-heptyl-3-hydroxy-4-quinolone (PQS), inhibits signal transduction mechanisms in brain tissue and is behaviorally active in mice. Pharmacol Res 2021; 170:105691. [PMID: 34044128 DOI: 10.1016/j.phrs.2021.105691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/25/2021] [Accepted: 05/20/2021] [Indexed: 12/29/2022]
Abstract
Interkingdom communication between bacteria and host organisms is one of the most interesting research topics in biology. Quorum sensing molecules produced by Gram-negative bacteria, such as acylated homoserine lactones and quinolones, have been shown to interact with host cell receptors, stimulating innate immunity and bacterial clearance. To our knowledge, there is no evidence that these molecules influence CNS function. Here, we have found that low micromolar concentrations of the Pseudomonas aeruginosa quorum sensing autoinducer, 2-heptyl-3-hydroxy-4-quinolone (PQS), inhibited polyphosphoinositide hydrolysis in mouse brain slices, whereas four selected acylated homoserine lactones were inactive. PQS also inhibited forskolin-stimulated cAMP formation in brain slices. We therefore focused on PQS in our study. Biochemical effects of PQS were not mediated by the bitter taste receptors, T2R4 and T2R16. Interestingly, submicromolar concentrations of PQS could be detected in the serum and brain tissue of adult mice under normal conditions. Levels increased in five selected brain regions after single i.p. injection of PQS (10 mg/kg), peaked after 15 min, and returned back to normal between 1 and 4 h. Systemically administered PQS reduced spontaneous locomotor activity, increased the immobility time in the forced swim test, and largely attenuated motor response to the psychostimulant, methamphetamine. These findings offer the first demonstration that a quorum sensing molecule specifically produced by Pseudomonas aeruginosa is centrally active and influences cell signaling and behavior. Quorum sensing autoinducers might represent new interkingdom signaling molecules between ecological communities of commensal, symbiotic, and pathogenic microorganisms and the host CNS.
Collapse
Affiliation(s)
| | | | | | | | - R Orlando
- IRCCS Neuromed, Pozzilli, Italy; Department of Physiology and Phamacology, Sapienza University, Roma, Italy
| | - M Alborghetti
- Department of Neuroscience, Mental Health, and Sensory Organs, Sapienza University, Italy
| | - V Bruno
- IRCCS Neuromed, Pozzilli, Italy; Department of Physiology and Phamacology, Sapienza University, Roma, Italy
| | - G Battaglia
- IRCCS Neuromed, Pozzilli, Italy; Department of Physiology and Phamacology, Sapienza University, Roma, Italy
| | - F Fornai
- IRCCS Neuromed, Pozzilli, Italy; Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy
| | - L Leoni
- Department of Science, Roma Tre University, Roma, Italy
| | - G Rampioni
- Department of Science, Roma Tre University, Roma, Italy; Fondazione Santa Lucia IRCCS, Roma, Italy
| | - P Visca
- Department of Science, Roma Tre University, Roma, Italy; Fondazione Santa Lucia IRCCS, Roma, Italy
| | | | - F Nicoletti
- IRCCS Neuromed, Pozzilli, Italy; Department of Physiology and Phamacology, Sapienza University, Roma, Italy.
| |
Collapse
|
27
|
Jensterle M, Rizzo M, Janez A. Glucagon-Like Peptide 1 and Taste Perception: From Molecular Mechanisms to Potential Clinical Implications. Int J Mol Sci 2021; 22:ijms22020902. [PMID: 33477478 PMCID: PMC7830704 DOI: 10.3390/ijms22020902] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/03/2021] [Accepted: 01/15/2021] [Indexed: 12/14/2022] Open
Abstract
Preclinical studies provided some important insights into the action of glucagon-like peptide 1 (GLP-1) in taste perception. This review examines the literature to uncover some molecular mechanisms and connections between GLP-1 and the gustatory coding. Local GLP-1 production in the taste bud cells, the expression of GLP-1 receptor on the adjacent nerves, a functional continuum in the perception of sweet chemicals from the gut to the tongue and an identification of GLP-1 induced signaling pathways in peripheral and central gustatory coding all strongly suggest that GLP-1 is involved in the taste perception, especially sweet. However, the impact of GLP-1 based therapies on gustatory coding in humans remains largely unaddressed. Based on the molecular background we encourage further exploration of the tongue as a new treatment target for GLP-1 receptor agonists in clinical studies. Given that pharmacological manipulation of gustatory coding may represent a new potential strategy against obesity and diabetes, the topic is of utmost clinical relevance.
Collapse
Affiliation(s)
- Mojca Jensterle
- Diabetes and Metabolic Diseases, Division of Internal Medicine, Department of Endocrinology, University Medical Centre Ljubljana, Zaloška Cesta 7, 1000 Ljubljana, Slovenia;
- Department of Internal Medicine, Faculty of Medicine, University of Ljubljana, Zaloška Cesta 7, 1000 Ljubljana, Slovenia
| | - Manfredi Rizzo
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of South Carolina, Columbia, SC 29208, USA;
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90133 Palermo, Italy
| | - Andrej Janez
- Diabetes and Metabolic Diseases, Division of Internal Medicine, Department of Endocrinology, University Medical Centre Ljubljana, Zaloška Cesta 7, 1000 Ljubljana, Slovenia;
- Department of Internal Medicine, Faculty of Medicine, University of Ljubljana, Zaloška Cesta 7, 1000 Ljubljana, Slovenia
- Correspondence: ; Tel.: +386-1-522-3114; Fax: +386-1-522-9359
| |
Collapse
|
28
|
Medapati MR, Bhagirath AY, Singh N, Chelikani P. Pharmacology of T2R Mediated Host-Microbe Interactions. Handb Exp Pharmacol 2021; 275:177-202. [PMID: 33580389 DOI: 10.1007/164_2021_435] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bitter taste receptors (T2Rs) belong to the G protein-coupled receptor superfamily. Humans express 25 T2Rs that are known to detect several bitter compounds including bacterial quorum sensing molecules (QSM). Primarily found to be key receptors for bitter sensation T2Rs are known to play an important role in mediating innate immune responses in oral and extraoral tissues. Several studies have led to identification of Gram-negative and Gram-positive bacterial QSMs as agonists for T2Rs in airway epithelial cells and immune cells. However, the pharmacological characterization for many of the QSM-T2R interactions remains poorly defined. In this chapter, we discuss the extraoral roles including localization of T2Rs in extracellular vesicles, molecular pharmacology of QSM-T2R interactions, role of T2Rs in mediating innate immune responses, and some of the challenges in understanding T2R pharmacology.
Collapse
Affiliation(s)
- Manoj Reddy Medapati
- Manitoba Chemosensory Biology Research Group, Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, University of Manitoba, Winnipeg, MB, Canada
- Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | - Anjali Y Bhagirath
- Manitoba Chemosensory Biology Research Group, Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, University of Manitoba, Winnipeg, MB, Canada
- Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | - Nisha Singh
- Manitoba Chemosensory Biology Research Group, Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, University of Manitoba, Winnipeg, MB, Canada
- Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | - Prashen Chelikani
- Manitoba Chemosensory Biology Research Group, Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, University of Manitoba, Winnipeg, MB, Canada.
- Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
29
|
Chang CI, Cheng SY, Nurlatifah AO, Sung WW, Tu JH, Lee LL, Cheng HL. Bitter Melon Extract Yields Multiple Effects on Intestinal Epithelial Cells and Likely Contributes to Anti-diabetic Functions. Int J Med Sci 2021; 18:1848-1856. [PMID: 33746602 PMCID: PMC7976585 DOI: 10.7150/ijms.55866] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/04/2021] [Indexed: 12/16/2022] Open
Abstract
The intestines have been recognized as important tissues for metabolic regulation, including glycemic control, but their vital role in promoting the anti-diabetic effects of bitter melon, the fruit of Momordica charantia L, has seldom been characterized, nor acknowledged. Evidence suggests that bitter melon constituents can have substantial interactions with the intestinal epithelial cells before circulating to other tissues. We therefore characterized the effects of bitter melon extract (BME) on intestinal epithelial cells. BME was found to contain substantial amounts of carbohydrates, proteins, and triterpenoids. TNF-α induced insulin resistance in an enterocyte cell line of IEC-18 cells, and BME promoted glucose utilization of the insulin-resistant cells. Further analysis suggested that the increased glucose consumption was a result of the combined effects of insulin sensitizing and insulin substitution functions of BME. The functions of insulin substitution were likely generated due to the activation of AMP-activated protein kinase. Meanwhile, BME acted as a glucagon-like peptide 1 (GLP-1) secretagogue on enteroendocrine cells, which may be mediated by the activation of bitter-taste receptors. Therefore, BME possesses insulin sensitizing, insulin substitution, and GLP-1 secretagogue functions upon intestinal cells. These effects of BME on intestinal cells likely play a significant part in the anti-diabetic action of bitter melon.
Collapse
Affiliation(s)
- Chi-I Chang
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Shi-Yie Cheng
- Department of Life Sciences, National University of Kaohsiung, Kaohsiung 811, Taiwan
| | - Annisa Oktafianti Nurlatifah
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan.,Department of Agroindustrial Biotechnology, Brawijaya University, Jalan, Veteran Malang 65145, Indonesia
| | - Wei-Wen Sung
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Jing-Hong Tu
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Lin-Lee Lee
- Department of English, National Kaohsiung Normal University, Kaohsiung 80201, Taiwan
| | - Hsueh-Ling Cheng
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| |
Collapse
|
30
|
Ahmad R, Dalziel JE. G Protein-Coupled Receptors in Taste Physiology and Pharmacology. Front Pharmacol 2020; 11:587664. [PMID: 33390961 PMCID: PMC7774309 DOI: 10.3389/fphar.2020.587664] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/09/2020] [Indexed: 12/14/2022] Open
Abstract
Heterotrimeric G protein-coupled receptors (GPCRs) comprise the largest receptor family in mammals and are responsible for the regulation of most physiological functions. Besides mediating the sensory modalities of olfaction and vision, GPCRs also transduce signals for three basic taste qualities of sweet, umami (savory taste), and bitter, as well as the flavor sensation kokumi. Taste GPCRs reside in specialised taste receptor cells (TRCs) within taste buds. Type I taste GPCRs (TAS1R) form heterodimeric complexes that function as sweet (TAS1R2/TAS1R3) or umami (TAS1R1/TAS1R3) taste receptors, whereas Type II are monomeric bitter taste receptors or kokumi/calcium-sensing receptors. Sweet, umami and kokumi receptors share structural similarities in containing multiple agonist binding sites with pronounced selectivity while most bitter receptors contain a single binding site that is broadly tuned to a diverse array of bitter ligands in a non-selective manner. Tastant binding to the receptor activates downstream secondary messenger pathways leading to depolarization and increased intracellular calcium in TRCs, that in turn innervate the gustatory cortex in the brain. Despite recent advances in our understanding of the relationship between agonist binding and the conformational changes required for receptor activation, several major challenges and questions remain in taste GPCR biology that are discussed in the present review. In recent years, intensive integrative approaches combining heterologous expression, mutagenesis and homology modeling have together provided insight regarding agonist binding site locations and molecular mechanisms of orthosteric and allosteric modulation. In addition, studies based on transgenic mice, utilizing either global or conditional knock out strategies have provided insights to taste receptor signal transduction mechanisms and their roles in physiology. However, the need for more functional studies in a physiological context is apparent and would be enhanced by a crystallized structure of taste receptors for a more complete picture of their pharmacological mechanisms.
Collapse
Affiliation(s)
- Raise Ahmad
- Food Nutrition and Health Team, Food and Bio-based Products Group, AgResearch, Palmerston North, New Zealand
| | - Julie E Dalziel
- Food Nutrition and Health Team, Food and Bio-based Products Group, AgResearch, Palmerston North, New Zealand
| |
Collapse
|
31
|
Potentially serious consequences for the use of Bitrex as a deterrent for the intentional inhalation of computer duster sprays. Forensic Toxicol 2020. [DOI: 10.1007/s11419-020-00559-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
32
|
A formulation for suppressing bitter taste in the human oral cavity. Physiol Behav 2020; 226:113129. [DOI: 10.1016/j.physbeh.2020.113129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 08/07/2020] [Accepted: 08/08/2020] [Indexed: 12/11/2022]
|
33
|
Dunkel A, Hofmann T, Di Pizio A. In Silico Investigation of Bitter Hop-Derived Compounds and Their Cognate Bitter Taste Receptors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:10414-10423. [PMID: 32027492 DOI: 10.1021/acs.jafc.9b07863] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The typical bitter taste of beer is caused by adding hops (Humulus lupulus L.) during the wort boiling process. The bitter taste of hop-derived compounds was found to be mediated by three bitter taste receptors: TAS2R1, TAS2R14, and TAS2R40. In this work, structural bioinformatics analyses were used to characterize the binding modes of trans-isocohumulone, trans-isohumulone, trans-isoadhumulone, cis-isocohumulone, cis-isohumulone, cis-isoadhumulone, cohumulone, humulone, adhumulone, and 8-prenylnaringenin into the orthosteric binding site of their cognate receptors. A conserved asparagine in transmembrane 3 was found to be essential for the recognition of hop-derived compounds, whereas the surrounding residues in the binding site of the three receptors encode the ligand specificity. Hop-derived compounds are renowned bioactive molecules and are considered as potential hit molecules for drug discovery to treat metabolic diseases. A chemoinformatics analysis revealed that hop-derived compounds cluster in a different region of the chemical space compared to known bitter food-derived compounds, pinpointing hop-derived compounds as a very peculiar class of bitter compounds.
Collapse
Affiliation(s)
- Andreas Dunkel
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner Straße 34, D-85354 Freising, Germany
| | - Thomas Hofmann
- Chair of Food Chemistry and Molecular Sensory Science, Technical University of Munich, Lise-Meitner-Straße 34, D-85354 Freising, Germany
| | - Antonella Di Pizio
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner Straße 34, D-85354 Freising, Germany
| |
Collapse
|
34
|
Dagan-Wiener A, Di Pizio A, Nissim I, Bahia MS, Dubovski N, Margulis E, Niv MY. BitterDB: taste ligands and receptors database in 2019. Nucleic Acids Res 2020; 47:D1179-D1185. [PMID: 30357384 PMCID: PMC6323989 DOI: 10.1093/nar/gky974] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 10/09/2018] [Indexed: 01/22/2023] Open
Abstract
BitterDB (http://bitterdb.agri.huji.ac.il) was introduced in 2012 as a central resource for information on bitter-tasting molecules and their receptors. The information in BitterDB is frequently used for choosing suitable ligands for experimental studies, for developing bitterness predictors, for analysis of receptors promiscuity and more. Here, we describe a major upgrade of the database, including significant increase in content as well as new features. BitterDB now holds over 1000 bitter molecules, up from the initial 550. When available, quantitative sensory data on bitterness intensity as well as toxicity information were added. For 270 molecules, at least one associated bitter taste receptor (T2R) is reported. The overall number of ligand-T2R associations is now close to 800. BitterDB was extended to several species: in addition to human, it now holds information on mouse, cat and chicken T2Rs, and the compounds that activate them. BitterDB now provides a unique platform for structure-based studies with high-quality homology models, known ligands, and for the human receptors also data from mutagenesis experiments, information on frequently occurring single nucleotide polymorphisms and links to expression levels in different tissues.
Collapse
Affiliation(s)
- Ayana Dagan-Wiener
- The Institute of Biochemistry, Food and Nutrition, The Robert H Smith Faculty of Agriculture, Food and Environment, The Hebrew University, 76100 Rehovot, Israel.,The Fritz Haber Center for Molecular Dynamics, The Hebrew University, Jerusalem 91904, Israel
| | - Antonella Di Pizio
- The Institute of Biochemistry, Food and Nutrition, The Robert H Smith Faculty of Agriculture, Food and Environment, The Hebrew University, 76100 Rehovot, Israel.,The Fritz Haber Center for Molecular Dynamics, The Hebrew University, Jerusalem 91904, Israel
| | - Ido Nissim
- The Institute of Biochemistry, Food and Nutrition, The Robert H Smith Faculty of Agriculture, Food and Environment, The Hebrew University, 76100 Rehovot, Israel.,The Fritz Haber Center for Molecular Dynamics, The Hebrew University, Jerusalem 91904, Israel
| | - Malkeet S Bahia
- The Institute of Biochemistry, Food and Nutrition, The Robert H Smith Faculty of Agriculture, Food and Environment, The Hebrew University, 76100 Rehovot, Israel.,The Fritz Haber Center for Molecular Dynamics, The Hebrew University, Jerusalem 91904, Israel
| | - Nitzan Dubovski
- The Institute of Biochemistry, Food and Nutrition, The Robert H Smith Faculty of Agriculture, Food and Environment, The Hebrew University, 76100 Rehovot, Israel.,The Fritz Haber Center for Molecular Dynamics, The Hebrew University, Jerusalem 91904, Israel
| | - Eitan Margulis
- The Institute of Biochemistry, Food and Nutrition, The Robert H Smith Faculty of Agriculture, Food and Environment, The Hebrew University, 76100 Rehovot, Israel.,The Fritz Haber Center for Molecular Dynamics, The Hebrew University, Jerusalem 91904, Israel
| | - Masha Y Niv
- The Institute of Biochemistry, Food and Nutrition, The Robert H Smith Faculty of Agriculture, Food and Environment, The Hebrew University, 76100 Rehovot, Israel.,The Fritz Haber Center for Molecular Dynamics, The Hebrew University, Jerusalem 91904, Israel
| |
Collapse
|
35
|
Bloxham CJ, Foster SR, Thomas WG. A Bitter Taste in Your Heart. Front Physiol 2020; 11:431. [PMID: 32457649 PMCID: PMC7225360 DOI: 10.3389/fphys.2020.00431] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/08/2020] [Indexed: 12/11/2022] Open
Abstract
The human genome contains ∼29 bitter taste receptors (T2Rs), which are responsible for detecting thousands of bitter ligands, including toxic and aversive compounds. This sentinel function varies between individuals and is underpinned by naturally occurring T2R polymorphisms, which have also been associated with disease. Recent studies have reported the expression of T2Rs and their downstream signaling components within non-gustatory tissues, including the heart. Though the precise role of T2Rs in the heart remains unclear, evidence points toward a role in cardiac contractility and overall vascular tone. In this review, we summarize the extra-oral expression of T2Rs, focusing on evidence for expression in heart; we speculate on the range of potential ligands that may activate them; we define the possible signaling pathways they activate; and we argue that their discovery in heart predicts an, as yet, unappreciated cardiac physiology.
Collapse
Affiliation(s)
- Conor J Bloxham
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD, Australia
| | - Simon R Foster
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Walter G Thomas
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
36
|
Patel BS, Ravix J, Pabelick C, Prakash YS. Class C GPCRs in the airway. Curr Opin Pharmacol 2020; 51:19-28. [PMID: 32375079 DOI: 10.1016/j.coph.2020.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/17/2020] [Accepted: 04/02/2020] [Indexed: 02/07/2023]
Abstract
Understanding and targeting of GPCRs remain a critical aspect of airway pharmacology and therapeutics for diseases such as asthma or COPD. Most attention has been on the large Class A GPCRs towards improved bronchodilation and blunting of remodeling. Better known in the central or peripheral nervous system, there is increasing evidence that Class C GPCRs which include metabotropic glutamate and GABA receptors, the calcium sensing receptor, sweet/umami taste receptors and a number of orphan receptors, can contribute to airway structure and function. In this review, we will summarize current state of knowledge regarding the pharmacology of Class C GPCRs, their expression and potential functions in the airways, and the application of pharmacological agents targeting this group in the context of airway diseases.
Collapse
Affiliation(s)
- Brijeshkumar S Patel
- Department of Anesthesiologyand Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
| | - Jovanka Ravix
- Department of Anesthesiologyand Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
| | - Christina Pabelick
- Department of Anesthesiologyand Perioperative Medicine, Mayo Clinic, Rochester, MN, United States; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| | - Y S Prakash
- Department of Anesthesiologyand Perioperative Medicine, Mayo Clinic, Rochester, MN, United States; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States.
| |
Collapse
|
37
|
Fotsing JR, Darmohusodo V, Patron AP, Ching BW, Brady T, Arellano M, Chen Q, Davis TJ, Liu H, Servant G, Zhang L, Williams M, Saganich M, Ditschun T, Tachdjian C, Karanewsky DS. Discovery and Development of S6821 and S7958 as Potent TAS2R8 Antagonists. J Med Chem 2020; 63:4957-4977. [PMID: 32330040 DOI: 10.1021/acs.jmedchem.0c00388] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In humans, bitter taste is mediated by 25 TAS2Rs. Many compounds, including certain active pharmaceutical ingredients, excipients, and nutraceuticals, impart their bitter taste (or in part) through TAS2R8 activation. However, effective TAS2R8 blockers that can either suppress or reduce the bitterness of these compounds have not been described. We are hereby reporting a series of novel 3-(pyrazol-4-yl) imidazolidine-2,4-diones as potent and selective TAS2R8 antagonists. In human sensory tests, S6821 and S7958, two of the most potent analogues from the series, demonstrated efficacy in blocking TAS2R8-mediated bitterness and were selected for development. Following data evaluation by expert panels of a number of national and multinational regulatory bodies, including the US, the EU, and Japan, S6821 and S7958 were approved as safe under conditions of intended use as bitter taste blockers.
Collapse
Affiliation(s)
- Joseph R Fotsing
- Firmenich SA, R&D North America, San Diego site, 4767 Nexus Centre Drive, San Diego, California 92121, United States
| | - Vincent Darmohusodo
- Firmenich SA, R&D North America, San Diego site, 4767 Nexus Centre Drive, San Diego, California 92121, United States
| | - Andrew P Patron
- Firmenich SA, R&D North America, San Diego site, 4767 Nexus Centre Drive, San Diego, California 92121, United States
| | - Brett W Ching
- Firmenich SA, R&D North America, San Diego site, 4767 Nexus Centre Drive, San Diego, California 92121, United States
| | - Thomas Brady
- Firmenich SA, R&D North America, San Diego site, 4767 Nexus Centre Drive, San Diego, California 92121, United States
| | - Melissa Arellano
- Firmenich SA, R&D North America, San Diego site, 4767 Nexus Centre Drive, San Diego, California 92121, United States
| | - Qing Chen
- Firmenich SA, R&D North America, San Diego site, 4767 Nexus Centre Drive, San Diego, California 92121, United States
| | - Timothy J Davis
- Firmenich SA, R&D North America, San Diego site, 4767 Nexus Centre Drive, San Diego, California 92121, United States
| | - Hanghui Liu
- Firmenich SA, R&D North America, San Diego site, 4767 Nexus Centre Drive, San Diego, California 92121, United States
| | - Guy Servant
- Firmenich SA, R&D North America, San Diego site, 4767 Nexus Centre Drive, San Diego, California 92121, United States
| | - Lan Zhang
- Firmenich SA, R&D North America, San Diego site, 4767 Nexus Centre Drive, San Diego, California 92121, United States
| | - Mark Williams
- Firmenich SA, R&D North America, San Diego site, 4767 Nexus Centre Drive, San Diego, California 92121, United States
| | - Michael Saganich
- Firmenich SA, R&D North America, San Diego site, 4767 Nexus Centre Drive, San Diego, California 92121, United States
| | - Tanya Ditschun
- Firmenich SA, R&D North America, San Diego site, 4767 Nexus Centre Drive, San Diego, California 92121, United States
| | - Catherine Tachdjian
- Firmenich SA, R&D North America, San Diego site, 4767 Nexus Centre Drive, San Diego, California 92121, United States
| | - Donald S Karanewsky
- Firmenich SA, R&D North America, San Diego site, 4767 Nexus Centre Drive, San Diego, California 92121, United States
| |
Collapse
|
38
|
Duarte AC, Rosado T, Costa AR, Santos J, Gallardo E, Quintela T, Ishikawa H, Schwerk C, Schroten H, Gonçalves I, Santos CRA. The bitter taste receptor TAS2R14 regulates resveratrol transport across the human blood-cerebrospinal fluid barrier. Biochem Pharmacol 2020; 177:113953. [PMID: 32272108 DOI: 10.1016/j.bcp.2020.113953] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/31/2020] [Indexed: 02/06/2023]
Abstract
The regulation of transport mechanisms at brain barriers must be thoroughly understood, so that novel strategies for improving drug delivery to the brain can be designed. The blood-cerebrospinal fluid barrier (BCSFB) established by the choroid plexus (CP) epithelial cells has been poorly studied in this regard despite its relevance for the protection of the central nervous system (CNS). This study assessed the role of bitter taste receptors (TAS2Rs), TAS2R14 and TAS2R39, in the transport of resveratrol across CP epithelial cells using an in vitro model of the human BCSFB. Both receptors are expressed in human CP cells and known to bind resveratrol. First, Ca2+ imaging assays demonstrated that resveratrol specifically activates the TAS2R14 receptor, but not TAS2R39, in these human CP epithelial cells. Then, we proceeded with permeation studies that showed resveratrol can cross the human BCSFB, from the blood to the CSF side and that TAS2R14 knockdown decreased the transport of resveratrol across these cells. Conversely, inhibition of efflux transporters ABCC1, ABCC4 or ABCG2 also restrained the transport of resveratrol across these cells. Interestingly, resveratrol upregulated the expression of ABCG2 located at the apical membrane of the cells via TAS2R14, whereas ABCC1 and ABCC4 at the basolateral membrane of the cells were not affected. Altogether, our study demonstrates that the BCSFB is a gateway for resveratrol entrance into the CNS and that the receptor TAS2R14 regulates its transport by regulating the action of efflux transporters at CP epithelial cells.
Collapse
Affiliation(s)
- Ana C Duarte
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal
| | - Tiago Rosado
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal; Laboratório de Fármaco-Toxicologia, UBIMedical, Universidade da Beira Interior, Estrada Municipal 506, 6200-284 Covilhã, Portugal
| | - Ana R Costa
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal
| | - José Santos
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal
| | - Eugénia Gallardo
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal; Laboratório de Fármaco-Toxicologia, UBIMedical, Universidade da Beira Interior, Estrada Municipal 506, 6200-284 Covilhã, Portugal
| | - Telma Quintela
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal
| | - Hiroshi Ishikawa
- Laboratory of Clinical Regenerative Medicine, Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Christian Schwerk
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Horst Schroten
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Isabel Gonçalves
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal
| | - Cecília R A Santos
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal.
| |
Collapse
|
39
|
Stoeger V, Holik AK, Hölz K, Dingjan T, Hans J, Ley JP, Krammer GE, Niv MY, Somoza MM, Somoza V. Bitter-Tasting Amino Acids l-Arginine and l-Isoleucine Differentially Regulate Proton Secretion via T2R1 Signaling in Human Parietal Cells in Culture. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:3434-3444. [PMID: 31891507 DOI: 10.1021/acs.jafc.9b06285] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This study aimed at identifying whether the bitter-tasting amino acids l-arginine (l-ARG) and l-isoleucine (l-ILE) differentially regulate mechanisms of gastric acid secretion in human parietal cells (HGT-1 cells) via activation of bitter taste sensing receptors (T2Rs). In a first set of experiments, involvement of T2Rs in l-ARG and l-ILE-modulated proton secretion was demonstrated by co-treatment of HGT-1 cells with T2R antagonists. Subsequent whole genome screenings by means of cDNA arrays revealed T2R1 as a prominent target for both amino acids. Next, the functional role of T2R1 was verified by means of a T2R1 CRISPR-Cas9 knock-out approach. Here, the effect of l-ARG on proton secretion decreased by 65.7 ± 21.9% and the effect of l-ILE increased by 93.2 ± 24.1% in HGT-1 T2R1 ko versus HGT-1 wt cells (p < 0.05). Overall, our results indicate differential effects of l-ARG and l-ILE on proton secretion in HGT-1 cells and our molecular docking studies predict distinct binding for these amino acids in the binding site of T2R1. Further studies will elucidate whether the mechanism of differential effects involves structure-specific ligand-biased signaling of T2R1 or additional cellular targets.
Collapse
Affiliation(s)
| | | | | | - Tamir Dingjan
- Institute of Biochemistry, Food Science and Nutrition, The Robert H Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 7610001, Israel
| | - Joachim Hans
- Symrise AG Global Innovation Cosmetic Ingredient Research, Research & Technology Flavors Division, P.O. Box 1253, Holzminden 37603, Germany
| | - Jakob P Ley
- Symrise AG Global Innovation Cosmetic Ingredient Research, Research & Technology Flavors Division, P.O. Box 1253, Holzminden 37603, Germany
| | - Gerhard E Krammer
- Symrise AG Global Innovation Cosmetic Ingredient Research, Research & Technology Flavors Division, P.O. Box 1253, Holzminden 37603, Germany
| | - Masha Y Niv
- Institute of Biochemistry, Food Science and Nutrition, The Robert H Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 7610001, Israel
| | | | | |
Collapse
|
40
|
Luo Y, Kong L, Xue R, Wang W, Xia X. Bitterness in alcoholic beverages: The profiles of perception, constituents, and contributors. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2019.12.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
41
|
Di Pizio A, Waterloo LAW, Brox R, Löber S, Weikert D, Behrens M, Gmeiner P, Niv MY. Rational design of agonists for bitter taste receptor TAS2R14: from modeling to bench and back. Cell Mol Life Sci 2020; 77:531-542. [PMID: 31236627 PMCID: PMC11104859 DOI: 10.1007/s00018-019-03194-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 06/11/2019] [Accepted: 06/14/2019] [Indexed: 12/15/2022]
Abstract
Human bitter taste receptors (TAS2Rs) are a subfamily of 25 G protein-coupled receptors that mediate bitter taste perception. TAS2R14 is the most broadly tuned bitter taste receptor, recognizing a range of chemically diverse agonists with micromolar-range potency. The receptor is expressed in several extra-oral tissues and is suggested to have physiological roles related to innate immune responses, male fertility, and cancer. Higher potency ligands are needed to investigate TAS2R14 function and to modulate it for future clinical applications. Here, a structure-based modeling approach is described for the design of TAS2R14 agonists beginning from flufenamic acid, an approved non-steroidal anti-inflammatory analgesic that activates TAS2R14 at sub-micromolar concentrations. Structure-based molecular modeling was integrated with experimental data to design new TAS2R14 agonists. Subsequent chemical synthesis and in vitro profiling resulted in new TAS2R14 agonists with improved potency compared to the lead. The integrated approach provides a validated and refined structural model of ligand-TAS2R14 interactions and a general framework for structure-based discovery in the absence of closely related experimental structures.
Collapse
Affiliation(s)
- Antonella Di Pizio
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Biochemistry, Food Science and Nutrition, The Hebrew University, Rehovot, Israel
- Section In Silico Biology & Machine Learning, Leibniz-Institute for Food Systems Biology at the Technical University of Munich, 85354, Freising, Germany
| | - Lukas A W Waterloo
- Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Regine Brox
- Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
- Department of Transfusion Medicine and Haemostaseology, University Hospital, Erlangen, Germany
| | - Stefan Löber
- Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Dorothee Weikert
- Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Maik Behrens
- Section Chemoreception and Biosignals, Leibniz-Institute for Food Systems Biology at the Technical University of Munich, 85354, Freising, Germany.
| | - Peter Gmeiner
- Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany.
| | - Masha Y Niv
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Biochemistry, Food Science and Nutrition, The Hebrew University, Rehovot, Israel.
| |
Collapse
|
42
|
The function and allosteric control of the human sweet taste receptor. FROM STRUCTURE TO CLINICAL DEVELOPMENT: ALLOSTERIC MODULATION OF G PROTEIN-COUPLED RECEPTORS 2020; 88:59-82. [DOI: 10.1016/bs.apha.2020.01.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
43
|
Metabolism and Functions of Amino Acids in Sense Organs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1265:201-217. [PMID: 32761578 DOI: 10.1007/978-3-030-45328-2_12] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sense organs (eyes, ears, nose, tongue, and skin) provide senses of sight, hearing, smell, taste, and touch, respectively, to aid the survival, development, learning, and adaptation of humans and other animals (including fish). Amino acids (AAs) play an important role in the growth, development, and functions of the sense organs. Recent work has identified receptor-mediated mechanisms responsible for the chemosensory transduction of five basic taste qualities (sweet, sour, bitter, umami and salty tastes). Abnormal metabolism of AAs result in a structural deformity of tissues and their dysfunction. To date, there is a large database for AA metabolism in the eye and skin under normal (e.g., developmental changes and physiological responses) and pathological (e.g., nutritional and metabolic diseases, nutrient deficiency, infections, and cancer) conditions. Important metabolites of AAs include nitric oxide and polyamines (from arginine), melanin and dopamine (from phenylalanine and tyrosine), and serotonin and melatonin (from tryptophan) in both the eye and the skin; γ-aminobutyrate (from glutamate) in the retina; and urocanic acid and histamine (from histidine) in the skin. At present, relatively little is known about the synthesis or catabolism of AAs in the ears, nose, and tongue. Future research should be directed to: (1) address this issue with regard to healthy ageing, nasal and sinus cancer, the regulation of food intake, and oral cavity health; and (2) understand how prenatal and postnatal nutrition and environmental pollution affect the growth, development and health of the sense organs, as well as their expression of genes (including epigenetics) and proteins in humans and other animals.
Collapse
|
44
|
Xu L, Gong Y, Gern JE, Lucey JA. Influence of whey protein hydrolysis in combination with dextran glycation on immunoglobulin E binding capacity with blood sera obtained from patients with a cow milk protein allergy. J Dairy Sci 2019; 103:1141-1150. [PMID: 31785876 DOI: 10.3168/jds.2019-17187] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/04/2019] [Indexed: 11/19/2022]
Abstract
Food protein allergies are a major global concern. Hydrolysis of food proteins reduces their allergenicity, but another novel approach is the covalent attachment of polysaccharides to proteins via the Maillard reaction (i.e., glycation), which blocks some IgE binding epitopes on the protein allergen. We wanted to examine whether enzymatic hydrolysis, combined with glycation, could further reduce IgE binding for people with a cow milk protein allergy. Whey protein isolate (WPI) was hydrolyzed by immobilized trypsin and chymotrypsin to degree of hydrolysis (DH) values of 17 to 27%. Immobilized enzymes were used to avoid heat-treating the hydrolysate (to inactivate the enzymes, because heating could also affect the IgE binding ability of the protein). The resultant whey protein isolate hydrolysates (WPIH) were then glycated with 10-kDa dextran (DX) in aqueous solutions held at 62°C for 24 h. We analyzed the molar mass (MW) of WPIH samples and their corresponding glycates (WPIH-DX) using size-exclusion chromatography with multi-angle laser light scattering. We obtained blood sera from 8 patients who had been diagnosed with a cow milk protein allergy, and we used a composite serum for IgE binding analysis. The average MW values of samples WPIH-1 to WPIH-3 decreased from 11.15, 9.46, and 7.57 kDa with increasing DH values of 18.7, 22.5, and 27.1%. Glycation significantly reduced the high bitterness of the WPIH samples, as assessed by a trained sensory panel. The WPIH-DX glycates had significantly reduced WPI-specific IgE binding capacity compared to WPI or unglycated WPIH; we found an almost 99% reduction in IgE binding for the WPIH-DX glycate made from WPIH with a DH value of 27.1%. Hydrolysis of WPI followed by glycation with DX via the Maillard reaction significantly decreased the allergenicity of whey proteins.
Collapse
Affiliation(s)
- Lei Xu
- Department of Food Science, University of Wisconsin-Madison, 53706
| | - Yuansheng Gong
- Department of Food Science, University of Wisconsin-Madison, 53706
| | - James E Gern
- School of Medicine and Public Health, University of Wisconsin-Madison, 53706
| | - John A Lucey
- Center for Dairy Research, University of Wisconsin-Madison, 53706.
| |
Collapse
|
45
|
Paniagua M, Crespo J, Arís A, Devant M. Citrus aurantium flavonoid extract improves concentrate efficiency, animal behavior, and reduces rumen inflammation of Holstein bulls fed high-concentrate diets. Anim Feed Sci Technol 2019. [DOI: 10.1016/j.anifeedsci.2019.114304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
46
|
Canivenc-Lavier MC, Neiers F, Briand L. Plant polyphenols, chemoreception, taste receptors and taste management. Curr Opin Clin Nutr Metab Care 2019; 22:472-478. [PMID: 31490201 DOI: 10.1097/mco.0000000000000595] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
PURPOSE OF REVIEW Polyphenols display beneficial health effects through chemopreventive actions on numerous chronic diseases including cancers, metabolic disorders, reproductive disorders and eating behaviour disorders. According to the principle of chemoreception, polyphenols bind cellular targets capable of accepting their stereochemistry, namely metabolizing enzymes and protein receptors, including taste receptors. The extraoral expression of taste receptors and their pharmacological interest in terms of novel drug therapies open up new perspectives on the potential use of these compounds and their interactions with other chemicals in cells. These new perspectives suggest the need to examine these phytochemicals further. However, most polyphenols have a bitterness property that may disrupt the acceptability of healthy foods or dietary supplements. RECENT FINDINGS Polyphenols bind to oral and extraoral bitter type 2 taste receptors, which modulate the signalling pathways involved in anti-inflammatory processes and metabolic and dietary regulations. Depending on their chemical nature, polyphenols may act as activators or inhibitors of taste receptors, and combinations of polyphenols (or herbal mixtures) may be used to modulate the acceptability of bitterness. SUMMARY The current review summarizes recent findings on polyphenol chemoreception and highlights the evidence of healthy effects through type 2 taste receptor mediation in signalling pathways, such as new targets, with promising perspectives.
Collapse
Affiliation(s)
- Marie-Chantal Canivenc-Lavier
- Centre des Sciences du GoÛt et de l'Alimentation (CSGA), INRA, Université de Bourgogne Franche-Comté, AgroSup, CNRS, Dijon, France
| | | | | |
Collapse
|
47
|
Zhang C, Alashi AM, Singh N, Chelikani P, Aluko RE. Glycated Beef Protein Hydrolysates as Sources of Bitter Taste Modifiers. Nutrients 2019; 11:nu11092166. [PMID: 31509959 PMCID: PMC6770518 DOI: 10.3390/nu11092166] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 08/30/2019] [Accepted: 09/05/2019] [Indexed: 12/24/2022] Open
Abstract
Being averse to bitter taste is a common phenomenon for humans and other animals, which requires the pharmaceutical and food industries to source compounds that can block bitterness intensity and increase consumer acceptability. In this work, beef protein alcalase hydrolysates (BPAH) and chymotrypsin hydrolysates (BPCH) were reacted with glucose to initiate Maillard reactions that led to the formation of glycated or advanced glycation end products (AGEs), BPAH-AGEs and BPCH-AGEs, respectively. The degree of glycation was higher for the BPAH-AGEs (47-55%) than the BPCH-AGEs (30-38%). Analysis by an electronic tongue instrument showed that BPAH-AGEs and BPCH-AGEs had bitterness scores that were significantly (p < 0.05) less than quinine. The addition of BPAH-AGEs or BPCH-AGEs to quinine led to significant (p < 0.05) reductions (up to 38%) in bitterness intensity of quinine. The use of 3% hydrolysate to react with glucose yielded glycated peptides with a stronger ability to reduce quinine bitterness than when 1% was used. Calcium release from HEK293T cells stably expressing the T2R4 human bitter taste receptor was significantly (p < 0.05) attenuated by BPAH-AGEs (up to 96%) and BPCH-AGEs (up to 92%) when compared to the BPAH (62%) and BPCH (3%) or quinine (0%). We concluded that BPAH-AGEs and BPCH-AGEs may be used as bitter taste blockers to formulate better tasting foods.
Collapse
Affiliation(s)
- Chunlei Zhang
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Adeola M Alashi
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Nisha Singh
- Manitoba Chemosensory Biology Research Group, Department of Oral Biology, University of Manitoba, Children's Hospital Research Institute of Manitoba (CHRIM), Winnipeg, MB R3E 0W4, Canada
| | - Prashen Chelikani
- Manitoba Chemosensory Biology Research Group, Department of Oral Biology, University of Manitoba, Children's Hospital Research Institute of Manitoba (CHRIM), Winnipeg, MB R3E 0W4, Canada
| | - Rotimi E Aluko
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| |
Collapse
|
48
|
Shaik FA, Jaggupilli A, Chelikani P. Highly conserved intracellular H208 residue influences agonist selectivity in bitter taste receptor T2R14. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:183057. [PMID: 31493373 DOI: 10.1016/j.bbamem.2019.183057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/23/2019] [Accepted: 08/26/2019] [Indexed: 11/19/2022]
Abstract
Bitter taste receptors (T2Rs) are a specialized class of cell membrane receptors of the G protein-coupled receptor family and perform a crucial role in chemosensation. The 25 T2Rs in humans are activated by structurally diverse ligands of plant, animal and microbial origin. The mechanisms of activation of these receptors are poorly understood. Therefore, identification of structural determinants of T2Rs that regulate its efficacy could be beneficial in understanding the molecular mechanisms of T2R activation. In this work, we characterized a highly conserved histidine (H208), present at TM5-ICL3 region of T2R14 and its role in agonist-induced T2R14 signaling. Surprisingly, mutation of the conserved H208 (H208A) did not result in increased basal activity of T2R14, in contrast to similar H206A mutation in T2R4 that showed constitutive or basal activity. However, H208A mutation in T2R14 resulted in an increase in agonist-induced efficacy for Flufenamic acid (FFA). Interestingly, H208A did not affect the potency of another T2R14 agonist Diphenhydramine (DPH). The H208R compensatory mutation showed FFA response similar to wild-type T2R14. Molecular modeling suggests a FFA-induced shift in TM3 and TM5 helices of H208A, which changes the network of interactions connecting TM5-ICL3-TM6. This report identifies a crucial residue on the intracellular surface of T2Rs that is involved in bitter ligand selectivity. It also highlights the varied roles carried out by some conserved residues in different T2Rs.
Collapse
Affiliation(s)
- Feroz Ahmed Shaik
- Manitoba Chemosensory Biology Research Group, Department of Oral Biology, University of Manitoba, Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | - Appalaraju Jaggupilli
- Manitoba Chemosensory Biology Research Group, Department of Oral Biology, University of Manitoba, Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | - Prashen Chelikani
- Manitoba Chemosensory Biology Research Group, Department of Oral Biology, University of Manitoba, Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
49
|
Luo M, Ni K, Jin Y, Yu Z, Deng L. Toward the Identification of Extra-Oral TAS2R Agonists as Drug Agents for Muscle Relaxation Therapies via Bioinformatics-Aided Screening of Bitter Compounds in Traditional Chinese Medicine. Front Physiol 2019; 10:861. [PMID: 31379593 PMCID: PMC6647893 DOI: 10.3389/fphys.2019.00861] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/20/2019] [Indexed: 12/29/2022] Open
Abstract
Significant advances have been made in the past decade in mapping the distributions and the physiological functions of extra-oral bitter taste receptors (TAS2Rs) in non-gustatory tissues. In particular, it has been found that TAS2Rs are expressed in various muscle tissues and activation of TAS2Rs can lead to muscle cell relaxation, which suggests that TAS2Rs may be important new targets in muscle relaxation therapy for various muscle-related diseases. So far, however, there is a lack of potent extra-oral TAS2R agonists that can be used as novel drug agents in muscle relaxation therapies. Interestingly, traditional Chinese medicine (TCM) often characterizes a drug’s property in terms of five distinct flavors (bitter, sweet, sour, salty, and pungent) according to its taste and function, and commonly regards “bitterness” as an intrinsic property of “good medicine.” In addition, many bitter flavored TCM are known in practice to cause muscle relaxation after long term use, and in lab experiments the compounds identified from some bitter flavored TCM do activate TAS2Rs and thus relax muscle cells. Therefore, it is highly possible to discover very useful extra-oral TAS2R agonists for muscle relaxation therapies among the abundant bitter compounds used in bitter flavored TCM. With this perspective, we reviewed in literature the distribution of TAS2Rs in different muscle systems with a focus on the map of bitter flavored TCM which can regulate muscle contractility and related functional chemical components. We also reviewed the recently established databases of TCM chemical components and the bioinformatics software which can be used for high-throughput screening and data mining of the chemical components associated with bitter flavored TCM. All together, we aim to present a knowledge-based approach and technological platform for identification or discovery of extra-oral TAS2R agonists that can be used as novel drug agents for muscle relaxation therapies through screening and evaluation of chemical compounds used in bitter flavored TCM.
Collapse
Affiliation(s)
- Mingzhi Luo
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, China
| | - Kai Ni
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, China
| | - Yang Jin
- Bioengineering College, Chongqing University, Chongqing, China
| | - Zifan Yu
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, China
| | - Linhong Deng
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, China
| |
Collapse
|
50
|
Jaggupilli A, Howard R, Aluko RE, Chelikani P. Advanced Glycation End-Products Can Activate or Block Bitter Taste Receptors. Nutrients 2019; 11:nu11061317. [PMID: 31212814 PMCID: PMC6628017 DOI: 10.3390/nu11061317] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/07/2019] [Accepted: 06/10/2019] [Indexed: 12/14/2022] Open
Abstract
Bitter taste receptors (T2Rs) are expressed in several tissues of the body and are involved in a variety of roles apart from bitter taste perception. Advanced glycation end-products (AGEs) are produced by glycation of amino acids in proteins. There are varying sources of AGEs, including dietary food products, as well as endogenous reactions within our body. Whether these AGEs are T2R ligands remains to be characterized. In this study, we selected two AGEs, namely, glyoxal-derived lysine dimer (GOLD) and carboxymethyllysine (CML), based on their predicted interaction with the well-studied T2R4, and its physiochemical properties. Results showed predicted binding affinities (Kd) for GOLD and CML towards T2R4 in the nM and μM range, respectively. Calcium mobilization assays showed that GOLD inhibited quinine activation of T2R4 with IC50 10.52 ± 4.7 μM, whilst CML was less effective with IC50 32.62 ± 9.5 μM. To characterize whether this antagonism was specific to quinine activated T2R4 or applicable to other T2Rs, we selected T2R14 and T2R20, which are expressed at significant levels in different human tissues. A similar effect of GOLD was observed with T2R14; and in contrast, GOLD and CML activated T2R20 with an EC50 of 79.35 ± 29.16 μM and 65.31 ± 17.79 μM, respectively. In this study, we identified AGEs as novel T2R ligands that caused either activation or inhibition of different T2Rs.
Collapse
Affiliation(s)
- Appalaraju Jaggupilli
- Manitoba Chemosensory Biology Research Group, Department of Oral Biology, University of Manitoba, Children's Hospital Research Institute of Manitoba (CHRIM), Winnipeg, MB R3E 0W4, Canada.
| | - Ryan Howard
- Manitoba Chemosensory Biology Research Group, Department of Oral Biology, University of Manitoba, Children's Hospital Research Institute of Manitoba (CHRIM), Winnipeg, MB R3E 0W4, Canada.
| | - Rotimi E Aluko
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| | - Prashen Chelikani
- Manitoba Chemosensory Biology Research Group, Department of Oral Biology, University of Manitoba, Children's Hospital Research Institute of Manitoba (CHRIM), Winnipeg, MB R3E 0W4, Canada.
| |
Collapse
|