1
|
Horn M, Bieliková L, Vostoupalová A, Švéda J, Mareš M. An update on proteases and protease inhibitors from trematodes. ADVANCES IN PARASITOLOGY 2024; 126:97-176. [PMID: 39448195 DOI: 10.1016/bs.apar.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Trematodes, a class of parasitic flatworms, are responsible for a variety of devastating diseases in humans and animals, with schistosomiasis and fascioliasis being prominent examples. Trematode proteolytic systems involved in the host-parasite interaction have emerged as key contributors to the success of trematodes in establishing and maintaining infections. This review concentrates on diverse proteases and protease inhibitors employed by trematodes and provides an update on recent advances in their molecular-level characterization, with a focus on function, structure, and therapeutic target potential.
Collapse
Affiliation(s)
- Martin Horn
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Lucia Bieliková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Andrea Vostoupalová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jakub Švéda
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Michael Mareš
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
2
|
Drescher G, de Vasconcelos TCB, Belo VS, Pinto MMDG, Rosa JDO, Morello LG, Figueiredo FB. Serological diagnosis of fasciolosis ( Fasciola hepatica) in humans, cattle, and sheep: a meta-analysis. Front Vet Sci 2023; 10:1252454. [PMID: 37736397 PMCID: PMC10509555 DOI: 10.3389/fvets.2023.1252454] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/14/2023] [Indexed: 09/23/2023] Open
Abstract
Fasciola hepatica can cause problems in both animals and humans. Fasciolosis can be diagnosed through the indirect ELISA immunodiagnostic test. Serological diagnosis of Fasciola is based on recombinant antigens secreted by this worm. We used PubMed and Google Scholar databases to review the published literature on 'antigens with immunogenic potential' used in serological tests to identify antibodies against F. hepatica in humans, cattle, and sheep. Studies that investigated diagnostic tests with common reference standards were included in the sensitivity and/or specificity bivariate meta-analysis. In the quality and susceptibility to bias analysis of the 33 included studies, 26 fulfilled at least six (75%) of the eight QUADAS criteria and were considered good-quality papers. We found that most of the studies used native excretory-secretory antigens and recombinant cathepsin in ELISA tests for serological diagnosis of fascioliasis in humans, cattle, and sheep. The meta-analysis revealed that all antigens demonstrated good accuracy. The best results in terms of sensitivity [0.931-2.5% confidence interval (CI) and 0.985-97.5% CI] and specificity (0.959-2.5% CI and 0.997-97.5% CI) were found in human FhES. FhrCL-1, FhES, and FhrSAP-2 antigens gave the best results for the serum diagnosis of human and animal fasciolosis.
Collapse
Affiliation(s)
- Guilherme Drescher
- Cellular Biology Laboratory, Carlos Chagas Institute, Oswaldo Cruz Foundation (FIOCRUZ-PR), Curitiba, Brazil
| | | | - Vínicius Silva Belo
- Programa de Pós-Graduação Ciências da Saúde, Universidade Federal de São João Del Rei, Divinópolis, Brazil
| | | | - Jaqueline de Oliveira Rosa
- Trypanosomatid Molecular Biology Laboratory, Carlos Chagas Institute, Oswaldo Cruz Foundation (FIOCRUZ-PR), Curitiba, Brazil
| | - Luis Gustavo Morello
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (FIOCRUZ-PR), Curitiba, Brazil
- Parana Institute of Molecular Biology, Curitiba, Brazil
| | - Fabiano Borges Figueiredo
- Cellular Biology Laboratory, Carlos Chagas Institute, Oswaldo Cruz Foundation (FIOCRUZ-PR), Curitiba, Brazil
| |
Collapse
|
3
|
Serrat J, Torres-Valle M, López-García M, Becerro-Recio D, Siles-Lucas M, González-Miguel J. Molecular Characterization of the Interplay between Fasciola hepatica Juveniles and Laminin as a Mechanism to Adhere to and Break through the Host Intestinal Wall. Int J Mol Sci 2023; 24:8165. [PMID: 37175870 PMCID: PMC10179147 DOI: 10.3390/ijms24098165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Fasciola hepatica is the main causative agent of fasciolosis, a zoonotic parasitic disease of growing public health concern. F. hepatica metacercariae are ingested by the host and excyst in the intestine, thereby releasing the newly excysted juveniles (FhNEJ), which traverse the gut wall and migrate towards the biliary ducts. Since blocking F. hepatica development is challenging after crossing of the intestinal wall, targeting this first step of migration might result in increased therapeutic success. The intestinal extracellular matrix (ECM) is constituted by a network of structural proteins, including laminin (LM) and fibronectin (FN), that provide mechanical support while acting as physical barrier against intestinal pathogens. Here, we employed ELISA and immunofluorescent assays to test for the presence of LM- and FN-binding proteins on a tegument-enriched antigenic fraction of FhNEJ, and further determined their identity by two-dimensional electrophoresis coupled to mass spectrometry. Additionally, we performed enzymatic assays that revealed for the first time the capability of the juvenile-specific cathepsin L3 to degrade LM, and that LM degradation by FhNEJ proteins is further potentiated in the presence of host plasminogen. Finally, a proteomic analysis showed that the interaction with LM triggers protein changes in FhNEJ that may be relevant for parasite growth and adaptation inside the mammalian host. Altogether, our study provides valuable insights into the molecular interplay between FhNEJ and the intestinal ECM, which may lead to the identification of targetable candidates for the development of more effective control strategies against fasciolosis.
Collapse
Affiliation(s)
| | | | | | | | | | - Javier González-Miguel
- Laboratory of Helminth Parasites of Zoonotic Importance (ATENEA), Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), C/Cordel de Merinas 40-52, 37008 Salamanca, Spain; (J.S.); (M.T.-V.); (M.L.-G.); (D.B.-R.); (M.S.-L.)
| |
Collapse
|
4
|
Collett CF, Phillips HC, Fisher M, Smith S, Fenn C, Goodwin P, Morphew RM, Brophy PM. Fasciola hepatica Cathepsin L Zymogens: Immuno-Proteomic Evidence for Highly Immunogenic Zymogen-Specific Conformational Epitopes to Support Diagnostics Development. J Proteome Res 2022; 21:1997-2010. [PMID: 35849550 PMCID: PMC9361350 DOI: 10.1021/acs.jproteome.2c00299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Fasciola hepatica, the common liver fluke and causative agent of zoonotic fasciolosis, impacts on food security with global economic losses of over $3.2 BN per annum through deterioration of animal health, productivity losses, and livestock death and is also re-emerging as a foodborne human disease. Cathepsin proteases present a major vaccine and diagnostic target of the F. hepatica excretory/secretory (ES) proteome, but utilization in diagnostics of the highly antigenic zymogen stage of these proteins is surprisingly yet to be fully exploited. Following an immuno-proteomic investigation of recombinant and native procathepsins ((r)FhpCL1), including mass spectrometric analyses (DOI: 10.6019/PXD030293), and using counterpart polyclonal antibodies to a recombinant mutant procathepsin L (anti-rFhΔpCL1), we have confirmed recombinant and native cathepsin L zymogens contain conserved, highly antigenic epitopes that are conformationally dependent. Furthermore, using diagnostic platforms, including pilot serum and fecal antigen capture enzyme-linked immunosorbent assay (ELISA) tests, the diagnostic capacities of cathepsin L zymogens were assessed and validated, offering promising efficacy as markers of infection and for monitoring treatment efficacy.
Collapse
Affiliation(s)
- Clare F Collett
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3DA, U.K
| | - Helen C Phillips
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3DA, U.K
| | - Maggie Fisher
- Ridgeway Research Ltd., Park Farm Buildings, Park Lane, St. Briavels, Gloucestershire GL15 6QX, U.K
| | - Sian Smith
- Ridgeway Research Ltd., Park Farm Buildings, Park Lane, St. Briavels, Gloucestershire GL15 6QX, U.K
| | - Caroline Fenn
- Ridgeway Research Ltd., Park Farm Buildings, Park Lane, St. Briavels, Gloucestershire GL15 6QX, U.K
| | - Phil Goodwin
- Bio-Check UK, Spectrum House, Llys Edmund Prys, St. Asaph Business Park, St. Asaph, Denbighshire LL17 0LJ, U.K
| | - Russell M Morphew
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3DA, U.K
| | - Peter M Brophy
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3DA, U.K
| |
Collapse
|
5
|
Liu RD, Meng XY, Li CL, Long SR, Cui J, Wang ZQ. Molecular characterization and determination of the biochemical properties of cathepsin L of Trichinella spiralis. Vet Res 2022; 53:48. [PMID: 35739604 PMCID: PMC9229914 DOI: 10.1186/s13567-022-01065-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/03/2022] [Indexed: 11/22/2022] Open
Abstract
Cathepsin L is an important cysteine protease, but its function in T. spiralis remains unclear. The aim of this research was to explore the biological characteristics of T. spiralis cathepsin L (TsCatL) and its role in T. spiralis-host interactions. Bioinformatic analysis revealed the presence of the cysteine protease active site residues Gln, Cys, His and Asn in mature TsCatL, as well as specific motifs of cathepsin L similar to ERFNIN and GYLND in the prepeptide of TsCatL. Molecular docking of mature TsCatL and E64 revealed hydrophobic effects and hydrogen bonding interactions. Two domains of TsCatL (TsCatL2) were cloned and expressed, and recombinant TsCatL2 (rTsCatL2) was autocatalytically cleaved under acidic conditions to form mature TsCatL. TsCatL was transcribed and expressed in larvae and adults and located in the stichosome, gut and embryo. Enzyme kinetic tests showed that rTsCatL2 degraded the substrate Z-Phe-Arg-AMC under acidic conditions, which was inhibited by E64 and PMSF and enhanced by EDTA, L-cysteine and DTT. The kinetic parameters of rTsCatL2 were a Km value of 48.82 μM and Vmax of 374.4 nM/min at pH 4.5, 37 °C and 5 mM DTT. In addition, it was shown that rTsCatL2 degraded haemoglobin, serum albumin, immunoglobulins (mouse IgG, human IgG and IgM) and extracellular matrix components (fibronectin, collagen I and laminin). The proteolytic activity of rTsCatL2 was host specific and significantly inhibited by E64. rTsCatL2 possesses the natural activity of a sulfhydryl-containing cysteine protease, and TsCatL is an important digestive enzyme that seems to be important for the nutrient acquisition, immune evasion and invasion of Trichinella in the host.
Collapse
Affiliation(s)
- Ruo Dan Liu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Xiang Yu Meng
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Chen Le Li
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Shao Rong Long
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Jing Cui
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China.
| | - Zhong Quan Wang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
6
|
Williams M, Hernandez-Jover M, Shamsi S. Parasites of zoonotic interest in selected edible freshwater fish imported to Australia. Food Waterborne Parasitol 2022; 26:e00138. [PMID: 34977391 PMCID: PMC8686024 DOI: 10.1016/j.fawpar.2021.e00138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/23/2021] [Accepted: 11/29/2021] [Indexed: 11/27/2022] Open
Abstract
Australia imports a significant amount of edible freshwater fish. The safety of the imported product is therefore of great importance. Previous research has shown that certain types of edible freshwater fish imported into Australia are not compliant with Australian importation guidelines and additionally are contaminated with many species of parasites, some of which may cause illness in humans if consumed. The present study, to the best of authors knowledge, is the first to publish the occurrence of zoonotic parasites in edible fish imported into Australia. Eustrongylides sp. Jägerskiöld, 1909 (P. 15.5%), family Dioctophymidae; Euclinostomum sp. Travassos, 1928 (P. 4.8%), family Clinostomidae, were recovered from imported edible and consumer ready Channidae fish and Isoparorchis sp. Southwell, 1913 (P. 11%), family Isoparorchiidae, from imported edible Bagridae fish. Euclinostomum sp. and Isoparorchis sp. were identified using morphological method. Molecular identification of Eustrongylides sp. was achieved through sequencing of the 18S ribosomal RNA gene sequence. Eustrongylides sp. and Isoparorchis sp. have been identified as the causative agent in cases of human infection and are a recognised zoonosis. Euclinostomum sp. is considered to have zoonotic potential and for this reason this species has been included in the importation risk assessments for freshwater fish from certain countries. This study confirmed the presence of zoonotic parasite species in edible imported fish. Whilst this fish product was frozen and parasites therefore inactivated, both fish species according to importation commodity codes, at the time this manuscript was written, are permitted entry into Australia chilled. Further study using a greater sample size is required to understand the human health risks.
Collapse
Affiliation(s)
- Michelle Williams
- School of Agricultural, Environmental and Veterinary Sciences & Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2650, Australia
| | - Marta Hernandez-Jover
- School of Agricultural, Environmental and Veterinary Sciences & Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2650, Australia
| | - Shokoofeh Shamsi
- School of Agricultural, Environmental and Veterinary Sciences & Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2650, Australia
| |
Collapse
|
7
|
An atypical and functionally diverse family of Kunitz-type cysteine/serine proteinase inhibitors secreted by the helminth parasite Fasciola hepatica. Sci Rep 2020; 10:20657. [PMID: 33244035 PMCID: PMC7692546 DOI: 10.1038/s41598-020-77687-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 11/13/2020] [Indexed: 01/25/2023] Open
Abstract
Fasciola hepatica is a global parasite of humans and their livestock. Regulation of parasite-secreted cathepsin L-like cysteine proteases associated with virulence is important to fine-tune parasite-host interaction. We uncovered a family of seven Kunitz-type (FhKT) inhibitors dispersed into five phylogenetic groups. The most highly expressed FhKT genes (group FhKT1) are secreted by the newly excysted juveniles (NEJs), the stage responsible for host infection. The FhKT1 inhibitors do not inhibit serine proteases but are potent inhibitors of parasite cathepsins L and host lysosomal cathepsin L, S and K cysteine proteases (inhibition constants < 10 nM). Their unusual inhibitory properties are due to (a) Leu15 in the reactive site loop P1 position that sits at the water-exposed interface of the S1 and S1' subsites of the cathepsin protease, and (b) Arg19 which forms cation-π interactions with Trp291 of the S1' subsite and electrostatic interactions with Asp125 of the S2' subsite. FhKT1.3 is exceptional, however, as it also inhibits the serine protease trypsin due to replacement of the P1 Leu15 in the reactive loop with Arg15. The atypical Kunitz-type inhibitor family likely regulate parasite cathepsin L proteases and/or impairs host immune cell activation by blocking lysosomal cathepsin proteases involved in antigen processing and presentation.
Collapse
|
8
|
Norbury LJ, Basałaj K, Bąska P, Zawistowska-Deniziak A, Kalinowska A, Wilkowski P, Wesołowska A, Wędrychowicz H. Generation of a single-chain variable fragment phage display antibody library from naïve mice panned against Fasciola hepatica antigens. Exp Parasitol 2019; 205:107737. [PMID: 31401060 DOI: 10.1016/j.exppara.2019.107737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 08/06/2019] [Accepted: 08/07/2019] [Indexed: 12/18/2022]
Abstract
Monoclonal antibodies have a wide range of applications in basic and applied research as well as in the medical and pharmaceutical industries. Phage display antibody libraries offer an alternative to hybridoma technology for the generation of monoclonal antibodies and can be applied to high-throughput screening and facilitate the generation of novel antibodies. Despite their utility in several fields of research there has been limited application of antibody libraries in the study of trematode parasites. Fasciola hepatica causes considerable loss to the agriculture sector and is also a human pathogen. The parasite's excretory/secretory material contains numerous molecules that facilitate its invasion and survival within the mammalian host, including cathepsin B and L proteases. F. hepatica cathepsin B2 is expressed during the initial weeks of infection and has suspected roles in immune evasion and as a digestive enzyme in the parasite's gut; it is considered a good target for vaccination or therapeutic inhibitors. In this study, we produced a single-chain variable fragment (scFv) phage display library from naïve mice. The library was used to identify several scFv that can bind to antigens from adult F. hepatica homogenate, and a scFv that can bind to F. hepatica cathepsin B2. The results highlight the potential applicability of such a library to facilitate the study of F. hepatica and other parasites. This is the first report of the application of a naïve phage display antibody library to the study of F. hepatica.
Collapse
Affiliation(s)
- Luke J Norbury
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Twarda 51/55, 00-818, Warsaw, Poland.
| | - Katarzyna Basałaj
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Twarda 51/55, 00-818, Warsaw, Poland
| | - Piotr Bąska
- Division of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Ciszewskiego 8, 02-786, Warsaw, Poland
| | - Anna Zawistowska-Deniziak
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Twarda 51/55, 00-818, Warsaw, Poland
| | - Alicja Kalinowska
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Twarda 51/55, 00-818, Warsaw, Poland
| | - Przemysław Wilkowski
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Twarda 51/55, 00-818, Warsaw, Poland
| | - Agnieszka Wesołowska
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Twarda 51/55, 00-818, Warsaw, Poland
| | - Halina Wędrychowicz
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Twarda 51/55, 00-818, Warsaw, Poland
| |
Collapse
|
9
|
Chen D, Tian AL, Hou JL, Li JX, Tian X, Yuan XD, Li X, Elsheikha HM, Zhu XQ. The Multitasking Fasciola gigantica Cathepsin B Interferes With Various Functions of Goat Peripheral Blood Mononuclear Cells in vitro. Front Immunol 2019; 10:1707. [PMID: 31396222 PMCID: PMC6664072 DOI: 10.3389/fimmu.2019.01707] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 07/08/2019] [Indexed: 01/14/2023] Open
Abstract
Cathepsin B, a lysosomal cysteine protease, is thought to be involved in the pathogenesis of Fasciola gigantica infection, but its exact role remains unclear. In the present study, a recombinant F. gigantica cathepsin B (rFgCatB) protein was expressed in the methylotrophic yeast Pichia pastoris. Western blot analysis confirmed the reactivity of the purified rFgCatB protein to serum from F. gigantica-infected goats. The effects of serial concentrations (10, 20, 40, 80, and 160 μg/ml) of rFgCatB on various functions of goat peripheral blood mononuclear cells (PBMCs) were examined. We demonstrated that rFgCatB protein can specifically bind to the surface of PBMCs. In addition, rFgCatB increased the expression of cytokines (IL-2, IL-4, IL-10, IL-17, TGF-β, and IFN-γ), and increased nitric oxide production and cell apoptosis, but reduced cell viability. These data show that rFgCatB can influence cellular and immunological functions of goat PBMCs. Further characterization of the posttranslational modification and assessment of rFgCatB in immunogenicity studies is warranted.
Collapse
Affiliation(s)
- Dan Chen
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Ai-Ling Tian
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jun-Ling Hou
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jie-Xi Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - XiaoWei Tian
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xiao-Dan Yuan
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiangrui Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Loughborough, United Kingdom
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
10
|
Fasciola Hepatica Isolates Induce Different Immune Responses in Unmaturated Bovine Macrophages. J Vet Res 2019; 63:63-70. [PMID: 30989136 PMCID: PMC6458565 DOI: 10.2478/jvetres-2019-0011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 02/25/2019] [Indexed: 01/06/2023] Open
Abstract
Introduction Fasciola hepatica (liver fluke) is a parasite of great socioeconomic importance. A number of fluke isolates have been identified; however, to date the differences between the immunomodulatory properties of different parasite isolates have not been sufficiently investigated. The aim of this study was to explore differences between the immunomodulatory properties of two F. hepatica isolates using unmaturated bovine macrophages. Material and Methods A cell line of bovine macrophages was stimulated with excretory/secretory products released by adult flukes from either a laboratory (Fh-WeyES) or wild (Fh-WildES) strain and subsequently subjected to microarray and ELISA analyses. Results: Both Fh-WeyES and Fh-WildES dampened the release of interleukin-10 by bovine macrophages, but only Fh-WildES dampened the release of proinflammatory tumour necrosis factor-α. Microarray analysis revealed that Fh-WildES down- and upregulated 90 and 18 genes, respectively, when compared to Fh-WeyES. Conclusion The results indicated different impacts of the isolates on macrophages. A number of researchers use flukes obtained from local slaughterhouses for experiments. Our findings may explain some discrepancies between published results arising from parasite strain choice. The findings indicate that consideration should be given to the use of different strains, and open new and currently unexplored avenues in parasitology for controlling the parasite.
Collapse
|
11
|
Construction of a novel phage display antibody library against Fasciola hepatica, and generation of a single-chain variable fragment specific for F. hepatica cathepsin L1. Exp Parasitol 2019; 198:87-94. [DOI: 10.1016/j.exppara.2019.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 12/02/2018] [Accepted: 02/10/2019] [Indexed: 12/30/2022]
|
12
|
Orbegozo-Medina RA, Martínez-Sernández V, Perteguer MJ, Hernández-González A, Mezo M, González-Warleta M, Romarís F, Paniagua E, Gárate T, Ubeira FM. In-plate recapturing of a dual-tagged recombinant Fasciola antigen (FhLAP) by a monoclonal antibody (US9) prevents non-specific binding in ELISA. PLoS One 2019; 14:e0211035. [PMID: 30707711 PMCID: PMC6358068 DOI: 10.1371/journal.pone.0211035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 01/07/2019] [Indexed: 11/18/2022] Open
Abstract
Recombinant proteins expressed in E. coli are frequently purified by immobilized metal affinity chromatography (IMAC). By means of this technique, tagged proteins containing a polyhistidine sequence can be obtained up to 95% pure in a single step, but some host proteins also bind with great affinity to metal ions and contaminate the sample. A way to overcome this problem is to include a second tag that is recognized by a preexistent monoclonal antibody (mAb) in the gene encoding the target protein, allowing further purification. With this strategy, the recombinant protein can be directly used as target in capture ELISA using plates sensitized with the corresponding mAb. As a proof of concept, in this study we engineered a Trichinella-derived tag (MTFSVPIS, recognized by mAb US9) into a His-tagged recombinant Fasciola antigen (rFhLAP) to make a new chimeric recombinant protein (rUS9-FhLAP), and tested its specificity in capture and indirect ELISAs with sera from sheep and cattle. FhLAP was selected since it was previously reported to be immunogenic in ruminants and is expressed in soluble form in E. coli, which anticipates a higher contamination by host proteins than proteins expressed in inclusion bodies. Our results showed that a large number of sera from non-infected ruminants (mainly cattle) reacted in indirect ELISA with rUS9-FhLAP after single-step purification by IMAC, but that this reactivity disappeared testing the same antigen in capture ELISA with mAb US9. These results demonstrate that the 6XHis and US9 tags can be combined when double purification of recombinant proteins is required.
Collapse
Affiliation(s)
| | | | - María J. Perteguer
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Ana Hernández-González
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Mercedes Mezo
- Laboratorio de Parasitología, Centro de Investigaciones Agrarias de Mabegondo, INGACAL, Abegondo, A Coruña, Spain
| | - Marta González-Warleta
- Laboratorio de Parasitología, Centro de Investigaciones Agrarias de Mabegondo, INGACAL, Abegondo, A Coruña, Spain
| | - Fernanda Romarís
- Laboratorio de Parasitología, Facultad de Farmacia, Santiago de Compostela, Spain
| | - Esperanza Paniagua
- Laboratorio de Parasitología, Facultad de Farmacia, Santiago de Compostela, Spain
| | - Teresa Gárate
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Florencio M. Ubeira
- Laboratorio de Parasitología, Facultad de Farmacia, Santiago de Compostela, Spain
- * E-mail:
| |
Collapse
|
13
|
Caffrey CR, Goupil L, Rebello KM, Dalton JP, Smith D. Cysteine proteases as digestive enzymes in parasitic helminths. PLoS Negl Trop Dis 2018; 12:e0005840. [PMID: 30138310 PMCID: PMC6107103 DOI: 10.1371/journal.pntd.0005840] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
We briefly review cysteine proteases (orthologs of mammalian cathepsins B, L, F, and C) that are expressed in flatworm and nematode parasites. Emphasis is placed on enzyme activities that have been functionally characterized, are associated with the parasite gut, and putatively contribute to degrading host proteins to absorbable nutrients [1–4]. Often, gut proteases are expressed as multigene families, as is the case with Fasciola [5] and Haemonchus [6], presumably expanding the range of substrates that can be degraded, not least during parasite migration through host tissues [5]. The application of the free-living planarian and Caenorhabditis elegans as investigative models for parasite cysteine proteases is discussed. Finally, because of their central nutritive contribution, targeting the component gut proteases with small-molecule chemical inhibitors and understanding their utility as vaccine candidates are active areas of research [7].
Collapse
Affiliation(s)
- Conor R. Caffrey
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| | - Louise Goupil
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
- Department of Biology, University of San Francisco, San Francisco, California, United States of America
| | - Karina M. Rebello
- Laboratório de Toxinologia and Laboratório de Estudos Integrados em Protozoologia, Instituto Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - John P. Dalton
- School of Biological Sciences, Medical Biology Centre, Queen´s University Belfast, Belfast, United Kingdom
| | - David Smith
- School of Biological Sciences, Medical Biology Centre, Queen´s University Belfast, Belfast, United Kingdom
| |
Collapse
|
14
|
Norbury LJ, Basałaj K, Zawistowska-Deniziak A, Sielicka A, Wilkowski P, Wesołowska A, Smooker PM, Wędrychowicz H. Intranasal delivery of a formulation containing stage-specific recombinant proteins of Fasciola hepatica cathepsin L5 and cathepsin B2 triggers an anti-fecundity effect and an adjuvant-mediated reduction in fluke burden in sheep. Vet Parasitol 2018; 258:14-23. [PMID: 30105973 DOI: 10.1016/j.vetpar.2018.05.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/09/2018] [Accepted: 05/12/2018] [Indexed: 12/16/2022]
Abstract
Fasciola hepatica infection continues to be a major problem in the agriculture sector, particularly in sheep and cattle. Cathepsin L and B proteases are major components of the excretory/secretory material of the parasite, and their roles in several important aspects of parasite invasion and survival has led to their use as targets in rational vaccine design. Previous studies in rats demonstrated that the use of stage-specific antigens, cathepsin B2 and cathepsin L5, as part of a multivalent vaccine, was able to confer significant protection against challenge. In the present study, recombinant versions of cathepsin L5 and cathepsin B2 produced in yeast were used in combination to vaccinate sheep. Intramuscular and intranasal forms of administration were applied, and sheep were subsequently challenged with 150 F. hepatica metacercariae. Intramuscular vaccination was able to induce a strong systemic antibody response against both antigens, but failed to confer significant protection. Conversely, no elevated antibody response was detected against the vaccine antigens following nasal vaccination; however, a reduction in parasite egg viability (>92%) and a statistically significant (p = 0.006), predominantly adjuvant-mediated reduction in worm burdens was observed.
Collapse
Affiliation(s)
- Luke J Norbury
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Twarda 51/55, 00-818 Warsaw, Poland; School of Science, Royal Melbourne Institute of Technology University, Bundoora, Victoria 3083, Australia.
| | - Katarzyna Basałaj
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Twarda 51/55, 00-818 Warsaw, Poland
| | - Anna Zawistowska-Deniziak
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Twarda 51/55, 00-818 Warsaw, Poland
| | - Alicja Sielicka
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Twarda 51/55, 00-818 Warsaw, Poland
| | - Przemysław Wilkowski
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Twarda 51/55, 00-818 Warsaw, Poland
| | - Agnieszka Wesołowska
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Twarda 51/55, 00-818 Warsaw, Poland
| | - Peter M Smooker
- School of Science, Royal Melbourne Institute of Technology University, Bundoora, Victoria 3083, Australia
| | - Halina Wędrychowicz
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Twarda 51/55, 00-818 Warsaw, Poland
| |
Collapse
|
15
|
Azizi H, Mirzaeei H, Nasiri AA, Bazi A, Mirzapour A, Khatami M, Nahavandi KH, Azimi A, Yaghoobi H. Naltrexone; as an efficient adjuvant in induction of Th1 immunity and protection against Fasciola hepatica infection. Exp Parasitol 2018; 189:66-71. [PMID: 29729492 DOI: 10.1016/j.exppara.2018.04.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 04/08/2018] [Accepted: 04/15/2018] [Indexed: 12/31/2022]
Abstract
Toxic effects of available therapeutics are major drawbacks for conventional management approaches in parasitic infections. Vaccines have provided a promising opportunity to obviate such unwanted complications. In present study, we examined immune augmenting capacities of an emerging adjuvant, Naltrexone, against Fasciola hepatica infection in BALB/c mice. Seventy BALB/c mice were divided into five experimental groups (14 mice per group) including 1- control (received PBS), 2- vaccine (immunized with F. hepatica E/S antigens), 3- Alum-vaccine (immunized with Alum adjuvant and E/S antigens), 4- NLT-vaccine (immunized with NLT adjuvant and E/S antigens), and 5- Alum-NLT-vaccine (immunized with mixed Alum-NLT adjuvant and E/S antigens). Lymphocyte stimulation index was assessed by MTT assay. Production of IFN-γ, IL-4, IgG2a and IgG1 was assessed by ELISA method. Results showed that NLT, either alone or in combination with alum, can induce immune response toward production of IFN-γ and IgG2a as representatives of Th1 immune response. Also, using this adjuvant in immunization experiment was associated with significantly high proliferative response of splenocytes/lymphocytes. Utilization of mixed Alum-NLT adjuvant revealed the highest protection rate (73.8%) in challenge test of mice infected with F. hepatica. These findings suggest the potential role of NLT as an effective adjuvant in induction of protective cellular and Th1 immune responses against fasciolosis.
Collapse
Affiliation(s)
- Hakim Azizi
- Department of Medical Parasitology, School of Medicine, Zabol University of Medical Sciences, Zabol, Iran
| | - Hadi Mirzaeei
- Department of Medical Genetics, School of Medicine, Zabol University of Medical Sciences, Zabol, Iran
| | - Ali Akbar Nasiri
- Department of Anesthesiology, Zabol University of Medical Sciences, Zabol, Iran
| | - Ali Bazi
- Clinical Research Development Unit, Zabol University of Medical Sciences, Zabol, Iran
| | - Aliyar Mirzapour
- Department of Medical Parasitology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrdad Khatami
- School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Kareem Hatam Nahavandi
- Infectious Diseases and Tropical Medicine Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Ako Azimi
- Maragheh University of Medical Sciences, Department of Basic Sciences, Maragheh, Iran
| | - Hajar Yaghoobi
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
16
|
Meshgi B, Jalousian F, Fathi S, Jahani Z. Design and synthesis of a new peptide derived from Fasciola gigantica cathepsin L1 with potential application in serodiagnosis of fascioliasis. Exp Parasitol 2018; 189:76-86. [PMID: 29679594 DOI: 10.1016/j.exppara.2018.04.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 03/06/2018] [Accepted: 04/13/2018] [Indexed: 01/18/2023]
Abstract
Fascioliasis is a global parasitic disease that affects domestic animals and causes considerable economic losses in the process of domestic animal breeding in endemic regions. The cause of the disease involves a liver trematode of the genus Fasciola, which secretes materials into a host's body (mainly proteins) in order to protect it from the host's immune system. These materials can be involved in the migration, growth, and nutrition of the parasite. Among the expressive proteins of Fasciola, proteases have been introduced as the appropriate targets for diagnosis, treatment, and vaccination against parasites. Cathepsin L (CL) is a member of cysteine proteases; it is widely expressed in the Fasciola species. The aim of this study was to evaluate two synthetic peptides from F. gigantica CL1 for improving serological diagnosis of the Fasciola infection. Therefore, the potential diagnostic value of the surface epitopes of CL1 was assessed using ELISA. In the current study, bioinformatics tools were applied to select two appropriate epitopes of Fasciola Cathepsin L1 as synthetic antigens. Their diagnostic values were evaluated by two methods of indirect ELISA and dot blot analysis. The findings revealed that the first peptide at a dilution ratio of 1:400 and the second peptide at a dilution ratio of 1:100 had the best results and the best concentration of antigens was introduced at 4 μg/ml. Moreover, 191 sera samples were analyzed by both peptides by using the ELISA method, including fascioliasis sera, other parasitic sera and negative sera. The sensitivity of the peptides 1-ELISA and peptide 2-ELISA for the diagnosis of the various cases was 100%. The specificity of the first peptide was 87.3% and its efficacy was determined to be 93.65%. The specificity and the efficacy of the second peptide were 79% and 89.5%, respectively. The positive predictive values of the first and second peptides were obtained to be 86.27% and 79.27% respectively, and the negative predictive values of both peptides was calculated as 100%. In conclusion, the results of this study indicated that the peptide 1 from CL1 may be used as an appropriate antigen for the diagnosis of fascioliasis if the findings are backed up by using other serodiagnostic methods for checking serological cross-reactivity linked to other parasites.
Collapse
Affiliation(s)
- Behnam Meshgi
- Department of Parasitology, Faculty of Veterinary Medicine, University of Tehran (Center of Excellent of Ecosystem and Ultrastructural Changes of Helminthes), Tehran, Iran.
| | - Fatemeh Jalousian
- Department of Parasitology, Faculty of Veterinary Medicine, University of Tehran (Center of Excellent of Ecosystem and Ultrastructural Changes of Helminthes), Tehran, Iran
| | - Saeid Fathi
- Department of Parasitology, Faculty of Veterinary Medicine, University of Tehran (Center of Excellent of Ecosystem and Ultrastructural Changes of Helminthes), Tehran, Iran
| | - Zahra Jahani
- Department of Parasitology, Faculty of Veterinary Medicine, University of Tehran (Center of Excellent of Ecosystem and Ultrastructural Changes of Helminthes), Tehran, Iran
| |
Collapse
|
17
|
Yoonuan T, Nuamtanong S, Dekumyoy P, Phuphisut O, Adisakwattana P. Molecular and immunological characterization of cathepsin L-like cysteine protease of Paragonimus pseudoheterotremus. Parasitol Res 2016; 115:4457-4470. [PMID: 27562899 DOI: 10.1007/s00436-016-5232-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 08/12/2016] [Indexed: 11/29/2022]
Abstract
Cathepsin L is a cysteine protease belonging to the papain family. In parasitic trematodes, cathepsin L plays essential roles in parasite survival and host-parasite interactions. In this study, cathepsin L of the lung fluke Paragonimus pseudoheterotremus (PpsCatL) was identified and its molecular biological and immunological features characterized. A sequence analysis of PpsCatL showed that the gene encodes a 325-amino-acid protein that is most similar to P. westermani cathepsin L. The in silico three-dimensional structure suggests that PpsCatL is a pro-enzyme that becomes active when the propeptide is cleaved. A recombinant pro-PpsCatL lacking the signal peptide (rPpsCatL), with a molecular weight of 35 kDa, was expressed in E. coli and reacted with P. pseudoheterotremus-infected rat sera. The native protein was detected in crude worm antigens and excretory-secretory products and was localized in the cecum and in the lamellae along the intestinal tract of the adult parasite. Enzymatic activity of rPpsCatL showed that the protein could cleave the fluorogenic substrate Z-Phe-Arg-AMC after autocatalysis but was inhibited with E64. The immunodiagnostic potential of the recombinant protein was evaluated with an enzyme-linked immunosorbent assay (ELISA) and suggested that rPpsCatL can detect paragonimiasis with high sensitivity and specificity (100 and 95.6 %, respectively). This supports the further development of an rPpsCatL-ELISA as an immunodiagnostic tool.
Collapse
Affiliation(s)
- Tippayarat Yoonuan
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Ratchathewi, Bangkok, 10400, Thailand
| | - Supaporn Nuamtanong
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Ratchathewi, Bangkok, 10400, Thailand
| | - Paron Dekumyoy
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Ratchathewi, Bangkok, 10400, Thailand
| | - Orawan Phuphisut
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Ratchathewi, Bangkok, 10400, Thailand
| | - Poom Adisakwattana
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Ratchathewi, Bangkok, 10400, Thailand.
| |
Collapse
|
18
|
Changklungmoa N, Phoinok N, Yencham C, Sobhon P, Kueakhai P. Vaccine potential of recombinant cathepsinL1G against Fasciola gigantica in mice. Vet Parasitol 2016; 226:124-31. [PMID: 27514897 DOI: 10.1016/j.vetpar.2016.07.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/29/2016] [Accepted: 07/08/2016] [Indexed: 11/18/2022]
Abstract
In this study, we characterized and investigated the vaccine potential of FgCatL1G against Fasciola gigantica infection in mice. Recombinant mature FgCatL1G (rmFgCatL1G) was expressed in Escherichia coli BL21. The vaccination was performed in Imprinting Control Region (ICR) mice (n=10) by subcutaneous injection with 50μg of rmFgCatL1G combined with Freund's adjuvant. Two weeks after the second boost, mice were infected with 15 metacercariae by the oral route. The percents of protection of rmFgCatL1G vaccine were estimated to be 56.5% and 58.3% when compared with non vaccinated-infected and adjuvant-infected controls, respectively. Antibodies in the immune sera of vaccinated mice were shown by immunoblot to react with the native FgCatL1s in the extract of all stages of parasites and rmFgCatL1H, recombinant pro - FgCatL1 (rpFgCatL1). By immunohistochemistry, the immune sera also reacted with FgCatL1s in the caecal epithelial cells of the parasites. The levels of IgG1 and IgG2a in the immune sera, which are indicative of Th2 and Th1 immune responses, were also increased with IgG1 predominating. The levels of serum glutamic oxaloacetic transaminase (SGOT) and serum glutamic pyruvic transaminase (SGPT) in rmFgCatL1G-immunized group showed no significant difference from the control groups, but pathological lesions of livers in rmFgCatL1G-immunized group showed significant decrease when compared to the control groups. This study indicates that rmFgCatL1G has a vaccine potential against F. gigantica in mice, and this potential will be tested in larger livestock animals.
Collapse
Affiliation(s)
- Narin Changklungmoa
- Faculty of Allied Health Sciences, Burapha University, Long-Hard Bangsaen Road, Mueang District, Chonburi 20131, Thailand
| | - Natthacha Phoinok
- Faculty of Allied Health Sciences, Burapha University, Long-Hard Bangsaen Road, Mueang District, Chonburi 20131, Thailand
| | - Chonthicha Yencham
- Faculty of Allied Health Sciences, Burapha University, Long-Hard Bangsaen Road, Mueang District, Chonburi 20131, Thailand
| | - Prasert Sobhon
- Faculty of Allied Health Sciences, Burapha University, Long-Hard Bangsaen Road, Mueang District, Chonburi 20131, Thailand; Department of Anatomy, Faculty of Science, Mahidol University, Rama 6 Road, Ratchathewi, Bangkok 10400, Thailand
| | - Pornanan Kueakhai
- Faculty of Allied Health Sciences, Burapha University, Long-Hard Bangsaen Road, Mueang District, Chonburi 20131, Thailand.
| |
Collapse
|
19
|
Abstract
A multitude of experimental vaccines have been developed against liver flukes in the past. However, there has yet to be the development of a commercial livestock vaccine. Reasons for this may be multiple, and include the lack of identification of the best antigen(s), or the immune response induced by those antigens not being appropriate in either magnitude or polarity (and therefore not protective). Cathepsin proteases are the major component of the excretory/secretory (ES) material of liver flukes in all stages of their life cycle in the definitive host and are the primary antigens of interest for the vaccine development in many studies. Hence, this chapter presents the methodologies of using cathepsin proteases as targeted antigens in recombinant protein and DNA vaccine development to engender protective immune responses against fasciolosis.First, the experimental vaccines developed in the past and the criteria of an effective vaccine for fasciolosis are briefly reviewed. Then flowcharts for recombinant protein vaccine and DNA vaccine development are presented, followed by the detailed materials and methodologies.
Collapse
Affiliation(s)
- Huan Yong Yap
- School of Applied Sciences, RMIT University, Plenty Road, Bundoora, VIC, 3083, Australia
| | - Peter M Smooker
- School of Applied Sciences, RMIT University, Plenty Road, Bundoora, VIC, 3083, Australia.
| |
Collapse
|
20
|
Vaccine potential of recombinant pro- and mature cathepsinL1 against fasciolosis gigantica in mice. Acta Trop 2015; 150:71-8. [PMID: 26116785 DOI: 10.1016/j.actatropica.2015.06.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 06/18/2015] [Accepted: 06/20/2015] [Indexed: 11/21/2022]
Abstract
In Fasciola gigantica cathepsin L1 (CatL1) is a family of predominant proteases that is expressed in caecal epithelial cells and secreted into the excretory-secretory products (ES). CatL1 isotypes are expressed in both early and late stages of the life cycle and the parasites use them for migration and digestion. Therefore, CatL1 is a plausible target for vaccination against this parasite. Recombinant pro-F.gigantica CatL1 (rproFgCatL1) and recombinant mature F.gigantica CatL1 (rmatFgCatL1) were expressed in Escherichia coli BL21. The vaccination was performed in Imprinting Control Region (ICR) mice (n=10) by subcutaneous injection with 50μg of rproFgCatL1 and rmatFgCatL1 combined with Freund's adjuvant. Two weeks after the second boost, mice were infected with 15 metacercariae by the oral route. The level of protection of rproFgCatL1 and rmatFgCatL1 vaccines was estimated to be 39.1, 41.7% and 44.9, 47.2% when compared with non vaccinated-infected and adjuvant-infected controls, respectively. Antibodies in the immune sera of vaccinated mice were shown by immuno-blotting to react with the native FgCatL1 in the extract of newly excysted juveniles (NEJ), 4-week-old juveniles and the ES products of 4 week-old juveniles. By determining the levels of IgG1 and IgG2a in the immune sera, which are indicative of Th2 and Th1 immune response, respectively, it was found that both Th1 and Th2 responses were significantly increased in rproFgCatL1- and rmatFgCatL1-immunized groups compared with the control groups, with higher levels of Th2 (IgG1) than Th1 (IgG2a). The levels of serum aspartate aminotransferase (AST) and alanine transaminase (ALT) in rmatFgCatL1-immunized group showed a significant decrease when compared to rproFgCatL1-immunized group, indicating that rmatFgCatL1-vaccinated mice had reduced liver parenchyma damage. The pathological lesions of liver in vaccinated groups were significantly decreased when compared with control groups. This study indicates that rFgCatL1 has a potential as a vaccine candidate against F. gigantica in mice, and this potential will be tested in ruminants.
Collapse
|
21
|
Meemon K, Sobhon P. Juvenile-specific cathepsin proteases in Fasciola spp.: their characteristics and vaccine efficacies. Parasitol Res 2015; 114:2807-13. [PMID: 26099239 DOI: 10.1007/s00436-015-4589-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 06/16/2015] [Indexed: 10/23/2022]
Abstract
Fasciolosis, caused by Fasciola hepatica and Fasciola gigantica, is one of the most neglected tropical zoonotic diseases. One sustainable control strategy against these infections is the employment of vaccines that target proteins essential for parasites' invasion and nutrition acquiring processes. Cathepsin proteases are the most abundantly expressed proteins in Fasciola spp. that have been tested successfully as vaccines against fasciolosis in experimental as well as large animals because of their important roles in digestion of nutrients, invasion, and migration. Specifically, juvenile-specific cathepsin proteases are the more effective vaccines because they could block the invasion and migration of juvenile parasites whose immune evasion mechanism has not yet been fully developed. Moreover, because of high sequence similarity and identity of cathepsins from juveniles with those of adults, the vaccines can attack both the juvenile and adult stages. In this article, the characteristics and vaccine potentials of juvenile-specific cathepsins, i.e., cathepsins L and B, of Fasciola spp. were reviewed.
Collapse
Affiliation(s)
- Krai Meemon
- Department of Anatomy, Faculty of Science, Mahidol University, Rama VI Rd., Bangkok, 10400, Thailand,
| | | |
Collapse
|
22
|
Hernández Alvarez L, Naranjo Feliciano D, Hernández González JE, de Oliveira Soares R, Barreto Gomes DE, Pascutti PG. Insights into the Interactions of Fasciola hepatica Cathepsin L3 with a Substrate and Potential Novel Inhibitors through In Silico Approaches. PLoS Negl Trop Dis 2015; 9:e0003759. [PMID: 25978322 PMCID: PMC4433193 DOI: 10.1371/journal.pntd.0003759] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 04/14/2015] [Indexed: 11/19/2022] Open
Abstract
Background Fasciola hepatica is the causative agent of fascioliasis, a disease affecting grazing animals, causing economic losses in global agriculture and currently being an important human zoonosis. Overuse of chemotherapeutics against fascioliasis has increased the populations of drug resistant parasites. F. hepatica cathepsin L3 is a protease that plays important roles during the life cycle of fluke. Due to its particular collagenolytic activity it is considered an attractive target against the infective phase of F. hepatica. Methodology/Principal Findings Starting with a three dimensional model of FhCL3 we performed a structure-based design of novel inhibitors through a computational study that combined virtual screening, molecular dynamics simulations, and binding free energy (ΔGbind) calculations. Virtual screening was carried out by docking inhibitors obtained from the MYBRIDGE-HitFinder database inside FhCL3 and human cathepsin L substrate-binding sites. On the basis of dock-scores, five compounds were predicted as selective inhibitors of FhCL3. Molecular dynamic simulations were performed and, subsequently, an end-point method was employed to predict ΔGbind values. Two compounds with the best ΔGbind values (-10.68 kcal/mol and -7.16 kcal/mol), comparable to that of the positive control (-10.55 kcal/mol), were identified. A similar approach was followed to structurally and energetically characterize the interface of FhCL3 in complex with a peptidic substrate. Finally, through pair-wise and per-residue free energy decomposition we identified residues that are critical for the substrate/ligand binding and for the enzyme specificity. Conclusions/Significance The present study is the first computer-aided drug design approach against F. hepatica cathepsins. Here we predict the principal determinants of binding of FhCL3 in complex with a natural substrate by detailed energetic characterization of protease interaction surface. We also propose novel compounds as FhCL3 inhibitors. Overall, these results will foster the future rational design of new inhibitors against FhCL3, as well as other F. hepatica cathepsins. Fascioliosis is considered an emerging disease in humans, causing important losses in global agriculture through the infection of livestock animals. The outcome of resistant parasites has increased the search for new drugs which may contribute to disease control. In recent decades, Fasciola cathepsins (FhCs) have been defined as the principal virulence factors of this parasite. Despite being in the same protein family, they have different specificities and, thus, distinct roles throughout the fluke life cycle. Differences in specificity have been attributed to a few variations in the sequence of key FhCs subsites. Currently, the structure-based drug design of inhibitors against Fasciola cathepsin Ls (FhCLs) with unknown structures is possible due to the availability of the three-dimensional structure of FhCL1. Our detailed structural analysis of the major infective juvenile enzyme (FhCL3) identifies the molecular determinants for protein binding. Also, novel potential inhibitors against FhCL3 are proposed, which might reduce host invasion and penetration processes. These compounds are predicted to interact with the binding site of the enzyme, therefore they could prevent substrate processing by competitive inhibition. The structure-based drug design strategy described here will be useful for the development of new potent and selective inhibitors against other FhCs.
Collapse
Affiliation(s)
- Lilian Hernández Alvarez
- Departamento de Biología Molecular, Centro Nacional de Sanidad Agropecuaria de Cuba (CENSA), San José de las Lajas, Mayabeque, Cuba
| | - Dany Naranjo Feliciano
- Departamento de Biología Molecular, Centro Nacional de Sanidad Agropecuaria de Cuba (CENSA), San José de las Lajas, Mayabeque, Cuba
| | | | - Rosemberg de Oliveira Soares
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Diretoria de Metrologia Aplicada às Ciências da Vida (DIMAV), Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMETRO), Rio de Janeiro, Brazil
| | - Diego Enry Barreto Gomes
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Diretoria de Metrologia Aplicada às Ciências da Vida (DIMAV), Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMETRO), Rio de Janeiro, Brazil
| | - Pedro Geraldo Pascutti
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
23
|
Alvarez Rojas CA, Ansell BRE, Hall RS, Gasser RB, Young ND, Jex AR, Scheerlinck JPY. Transcriptional analysis identifies key genes involved in metabolism, fibrosis/tissue repair and the immune response against Fasciola hepatica in sheep liver. Parasit Vectors 2015; 8:124. [PMID: 25885344 PMCID: PMC4382932 DOI: 10.1186/s13071-015-0715-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 02/04/2015] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Although fascioliasis has been relatively well studied, little is known about the molecular basis of this disease. This is particularly relevant, considering the very different response that sheep have to Fasciola hepatica relative to cattle. The acute phase of this disease is severe in sheep, whereas chronic fascioliasis is more common in cattle. METHODS To begin to explore the host-response to Fasciola in sheep and improve the understanding of the host-pathogen interactions during the parasite's migration through liver parenchyma to the bile duct, we used RNA sequencing (RNA-seq) to investigate livers from sheep infected for eight weeks compared with those from uninfected controls. RESULTS This study identified 572 and 42 genes that were up- and down-regulated, respectively, in infected livers relative to uninfected controls. Our molecular findings provide significant new insights into the mechanisms linked to metabolism, fibrosis and tissue-repair in sheep, and highlight the relative importance of specific components of immune response pathways, which appear to be driven toward a suppression of inflammation. CONCLUSIONS This study is, to our knowledge, the first detailed investigation of the transcriptomic responses in the liver tissue of any host to F. hepatica infection. It defines the involvement of specific genes associated with the host's metabolism, immune response and tissue repair/regeneration, and highlights an apparent overlapping function of many genes involved in these processes.
Collapse
Affiliation(s)
- Cristian A Alvarez Rojas
- Centre for Animal Biotechnology, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| | - Brendan R E Ansell
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| | - Ross S Hall
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| | - Robin B Gasser
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| | - Neil D Young
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| | - Aaron R Jex
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| | - Jean-Pierre Y Scheerlinck
- Centre for Animal Biotechnology, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| |
Collapse
|
24
|
Hernández HM, Marcet R, Sarracent J. Biological roles of cysteine proteinases in the pathogenesis of Trichomonas vaginalis. ACTA ACUST UNITED AC 2014; 21:54. [PMID: 25348828 PMCID: PMC4209856 DOI: 10.1051/parasite/2014054] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 10/09/2014] [Indexed: 12/14/2022]
Abstract
Human trichomonosis, infection with Trichomonas vaginalis, is the most common non-viral sexually transmitted disease in the world. The host-parasite interaction and pathophysiological processes of trichomonosis remain incompletely understood. This review focuses on the advancements reached in the area of the pathogenesis of T. vaginalis, especially in the role of the cysteine proteinases. It highlights various approaches made in this field and lists a group of trichomonad cysteine proteinases involved in diverse processes such as invasion of the mucous layer, cytoadherence, cytotoxicity, cytoskeleton disruption of red blood cells, hemolysis, and evasion of the host immune response. A better understanding of the biological roles of cysteine proteinases in the pathogenesis of this parasite could be used in the identification of new chemotherapeutic targets. An additional advantage could be the development of a vaccine in order to reduce transmission of T. vaginalis.
Collapse
Affiliation(s)
- Hilda M Hernández
- Parasitology Department, "Pedro Kourí" Tropical Medicine Institute, Havana 10400, Cuba
| | - Ricardo Marcet
- Parasitology Department, "Pedro Kourí" Tropical Medicine Institute, Havana 10400, Cuba
| | - Jorge Sarracent
- Parasitology Department, "Pedro Kourí" Tropical Medicine Institute, Havana 10400, Cuba
| |
Collapse
|
25
|
Cysteine protease is a major component in the excretory/secretory products of Euclinostomum heterostomum (Digenea: Clinostomidae). Parasitol Res 2013; 113:65-71. [PMID: 24135870 DOI: 10.1007/s00436-013-3627-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 09/26/2013] [Indexed: 01/13/2023]
Abstract
Cysteine proteases of parasite organisms play numerous indispensable roles in tissue penetration, feeding, immunoevasion, virulence, egg hatching and metacercarial excystment. They are critical key enzymes in the biology of parasites and have been exploited as serodiagnostic markers, therapeutic and vaccine targets. In the present study, the cysteine proteases in the in vitro released excretory/secretory (E/S) products of the digenetic trematode parasite, Euclinostomum heterostomum have been analysed. The encysted progenetic metacercariae of E. heterostomum collected from the infected liver and kidney of Channa punctatus were excysted in vitro and incubated in phosphate buffer at 37 ± 1 °C, and the E/S products released were analysed. The spectrophotometric analysis of the proteases revealed active hydrolysis of chromogenic substrate, azocoll, in a time-, temperature- and pH-dependent manner. Optimum activity was observed at pH 7.0 at 37 ± 1 °C, and with 1 mM each of various protease inhibitors (Mini Protease Inhibitor Cocktail, ethylene diaminetetraacetic acid, phenyl methyl sulphonyl fluoride, iodoacetamide and 1,10-phenanthroline) used, significant inhibition was observed by iodoacetamide and 85% of inhibition at a concentration of 2 mM, suggesting that cysteine protease is a major component in the E/S of this parasite. Four discrete protease bands of Mr 36, 39, 43 and 47 kDa were identified by gelatin-substrate zymography. Maximum gelatinolytic activity was observed at pH 7.0, and among various inhibitors used, almost complete disappearance of protease bands was observed by 2 mM iodoacetamide. The proteolytic cleavage of bovine serum albumin, bovine haemoglobin and human haemoglobin in vitro were also studied.
Collapse
|
26
|
Molecular cloning, characterization and functional analysis of a novel juvenile-specific cathepsin L of Fasciola gigantica. Acta Trop 2013; 128:76-84. [PMID: 23820262 DOI: 10.1016/j.actatropica.2013.06.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 06/16/2013] [Accepted: 06/21/2013] [Indexed: 11/23/2022]
Abstract
Cathepsin L proteases are a major class of endopeptidases expressed at a high level in Fasciola parasites. Several isoforms of cathepsin L were detected and they may perform different functions during the parasite development. In this study, a complete cDNA encoding a cathepsin L protease was cloned from a newly excysted juvenile (NEJ) cDNA library of Fasciola gigantica and named FgCatL1H. It encoded a 326 amino acid preproenzyme which shared 62.8-83.1% and 39.5-42.9% identity to Fasciola spp. and mammalian cathepsins L, respectively. All functionally important residues previously described for cathepsin L were conserved in FgCatL1H. Phylogenetic analysis demonstrated that FgCatL1H belonged to a distinct group, clade 4, with respect to adult and other juvenile Fasciola cathepsin L genes. FgCatL1H expression was detected by RT-PCR, using gene specific primers, in metacercariae and NEJ, and the expression gradually decreased in advanced developmental stages. A recombinant proFgCatL1H (rproFgCatL1H) was expressed in the yeast Pichia pastoris, affinity purified, and found to migrate in SDS-PAGE at approximately 47.6 and 38.3kDa in glycosylated and deglycosylated forms, respectively. The molecular mass of the activated mature rFgCatL1H in glycosylated form was approximately 40.7kDa. Immunoblotting and immunohistochemistry using rabbit antibodies against rproFgCatL1H showed that FgCatL1H was predominantly expressed in epithelial cells of the digestive tract of metacercariae, NEJs and juveniles of F. gigantica. FgCatL1H could cleave the synthetic fluorogenic substrate Z-Phe-Arg-MCA preferentially over Z-Gly-Pro-Arg-MCA at an optimum pH of 6.5. It also showed hydrolytic activity against native substrates, including type I collagen, laminin, and immunoglobulin G (IgG) in vitro, suggesting possible roles in host tissue migration and immune evasion. Therefore, the FgCatL1H is a possible target for vaccine and chemotherapy for controlling F. gigantica infection.
Collapse
|
27
|
Characterization and differential expression of cathepsin L3 alleles from Fasciola hepatica. Mol Biochem Parasitol 2013; 190:27-37. [PMID: 23770026 DOI: 10.1016/j.molbiopara.2013.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Revised: 05/29/2013] [Accepted: 06/04/2013] [Indexed: 11/23/2022]
Abstract
Fasciola hepatica infections cause significant global problems in veterinary and human medicine, including causing huge losses in cattle and sheep production. F. hepatica host infection is a multistage process and flukes express papain-like cysteine proteases, termed cathepsins, which play pivotal roles in virulence through host entry, tissue migration and immune evasion. Expression of these proteases is developmentally regulated. Recent studies indicate that excystment of infective larvae is dependent on cysteine proteases and together FhCL3 and FhCB account for over 80% of total protease activity detectable in newly excysted juvenile (NEJ) fluke. This paper focuses on members of the cathepsin L gene family, specifically those belonging to the CL3 clade. The cDNA of two novel cathepsin L3 proteases--FhCL3-1 and FhCL3-2 were cloned. The mRNA transcript expression levels for these enzymes were significantly different at various time points in life development stages obtained in vitro, from dormant metacercariae to NEJ 24h after excystment. Maximum expression levels were observed in NEJ immediately after excystment. In all stages examined by Real Time PCR, FhCL3-2 was expressed at a higher level compared to FhCL3-1 which was expressed only at very low levels. Western blot and immunohistochemical analysis also indicated higher expression of the FhCL3-2 allele and its secretory nature. The ability of antibody responses from rats and sheep challenged with F. hepatica to recognize recombinant FhCL3-1 and FhCL3-2 was shown to differ. Differences were also confirmed through the use of anti-rFhCL3-1 and anti-rFhCL3-2 sera in Western blot analysis of juvenile excretory/secretory (ES) material separated by 2D electrophoresis. These results indicate analysis of relative expression of parasite virulence factors from different populations is required, as this will likely impact the effectiveness of vaccines based on these antigens.
Collapse
|
28
|
Siricoon S, Grams SV, Grams R. Efficient inhibition of cathepsin B by a secreted type 1 cystatin of Fasciola gigantica. Mol Biochem Parasitol 2012; 186:126-33. [DOI: 10.1016/j.molbiopara.2012.10.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 10/09/2012] [Accepted: 10/10/2012] [Indexed: 12/14/2022]
|
29
|
Molecular changes in Opisthorchis viverrini (Southeast Asian liver fluke) during the transition from the juvenile to the adult stage. PLoS Negl Trop Dis 2012; 6:e1916. [PMID: 23209858 PMCID: PMC3510066 DOI: 10.1371/journal.pntd.0001916] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 10/04/2012] [Indexed: 01/23/2023] Open
Abstract
Background The Southeast Asian liver fluke (Opisthorchis viverrini) chronically infects and affects tens of millions of people in regions of Asia, leading to chronic illness and, importantly, inducing malignant cancer ( = cholangiocarcinoma). In spite of this, little is known, at the molecular level, about the parasite itself, its interplay with its hosts or the mechanisms of disease and/or carcinogenesis. Methodology/Principal Findings Here, we generated extensive RNA-Seq data (Illumina) representing adult and juvenile stages of O. viverrini, and combined these sequences with previously published transcriptomic data (454 technology) for this species, yielding a combined assembly of significantly increased quality and allowing quantitative assessment of transcription in the juvenile and adult stage. Conclusions This enhanced assembly reveals that, despite the substantial biological similarities between the human liver flukes, O. viverinni and Clonorchis sinensis, there are previously unrecognized differences in major aspects of their molecular biology. Most notable are differences among the C13 and cathepsin L-like cysteine peptidases, which play key roles in tissue migration, immune evasion and feeding, and, thus, represent potential drug and/or vaccine targets. Furthermore, these data indicate that major lineages of cysteine peptidases of socioeconomically important trematodes have evolved through a process of gene loss rather than independent radiation, contrasting previous proposals. Opistorchis viverrini is an important and neglected parasite affecting ∼9 million people in South-east Asia. The parasite has a complex life-cycle which involves an intermediate phase in cyprinoid fishes. Consumption of raw or under-cooked fish infected with the metacercarial (larval) stage of O. viverreni results in infection, with adult worms living primarily in the intra-hepatic bile duct. In addition to the affects of the infection itself, O. viverrini is directly carcinogenic, with up to 70% of infected individuals in endemic regions developing malignant cholangiocarcinomas. Control of the parasite relies exclusively on the use of praziquantel and little is known about the mechanisms through which O. viverrini stimulates carcinogenesis. An improved understanding of the molecular biology of O. viverrini is urgently needed. In our study, we employed RNAseq technology to assess changes in gene transcription during the development of O. viverrini within the definitive host, and significantly improved the characterization of the transcriptome of this parasite. In so doing, we shed new light on the evolution of a major group proteins (i.e., the cysteine peptidases) which, given their important function roles as excreted/secreted molecules, have been proposed as attractive drug/vaccine targets for a wide-range of neglected flukes, including species of Opistorchis, Clonorchis, Schistosoma and Fasciola.
Collapse
|
30
|
Analysis of Fasciola cathepsin L5 by S2 subsite substitutions and determination of the P1-P4 specificity reveals an unusual preference. Biochimie 2012; 94:1119-27. [PMID: 22285967 DOI: 10.1016/j.biochi.2012.01.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 01/12/2012] [Indexed: 11/22/2022]
Abstract
Fasciola parasites (liver flukes) express numerous cathepsin L proteases that are believed to be involved in important functions related to host invasion and parasite survival. These proteases are evolutionarily divided into clades that are proposed to reflect their substrate specificity, most noticeably through the S(2) subsite. Single amino acid substitutions to residues lining this site, including amino acid residue 69 (aa69; mature cathepsin L5 numbering) can have profound influences on subsite architecture and influence enzyme specificity. Variations at aa69 among known Fasciola cathepsin L proteases include leucine, tyrosine, tryptophan, phenylalanine and glycine. Other amino acids (cysteine, serine) might have been expected at this site due to codon usage as cathepsin L isoenzymes evolved, but C69 and S69 have not been observed. The introduction of L69C and L69S substitutions into FhCatL5 resulted in low overall activity indicating their expression provides no functional advantage, thus explaining the absence of such variants in Fasciola. An FhCatL5 L69F variant showed an increase in the ability to cleave substrates with P(2) proline, indicating F69 variants expressed by the fluke would likely have this ability. An FhCatL2 Y69L variant showed a decreased acceptance of P(2) proline, further highlighting the importance of Y69 for FhCatL2 P(2) proline acceptance. Finally, the P(1)-P(4) specificity of Fasciola cathepsin L5 was determined and, unexpectedly, aspartic acid was shown to be well accepted at P(2,) which is unique amongst Fasciola cathepsins examined to date.
Collapse
|