1
|
Tucker EJ, Sharp MF, Lokchine A, Bell KM, Palmer CS, Kline BL, Robevska G, van den Bergen J, Dulon J, Stojanovski D, Ayers KL, Touraine P, Crismani W, Jaillard S, Sinclair AH. Biallelic FANCA variants detected in sisters with isolated premature ovarian insufficiency. Clin Genet 2024; 106:321-335. [PMID: 38779778 DOI: 10.1111/cge.14543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024]
Abstract
Premature ovarian insufficiency is a common form of female infertility affecting up to 4% of women and characterised by amenorrhea with elevated gonadotropin before the age of 40. Oocytes require controlled DNA breakage and repair for homologous recombination and the maintenance of oocyte integrity. Biallelic disruption of the DNA damage repair gene, Fanconi anemia complementation group A (FANCA), is a common cause of Fanconi anaemia, a syndrome characterised by bone marrow failure, cancer predisposition, physical anomalies and POI. There is ongoing dispute about the role of heterozygous FANCA variants in POI pathogenesis, with insufficient evidence supporting causation. Here, we have identified biallelic FANCA variants in French sisters presenting with POI, including a novel missense variant of uncertain significance and a likely pathogenic deletion that initially evaded detection. Functional studies indicated no discernible effect on DNA damage sensitivity in patient lymphoblasts. These novel FANCA variants add evidence that heterozygous loss of one allele is insufficient to cause DNA damage sensitivity and POI. We propose that intragenic deletions, that are relatively common in FANCA, may be missed without careful analysis, and could explain the presumed causation of heterozygous variants. Accurate variant curation is critical to optimise patient care and outcomes.
Collapse
Affiliation(s)
- Elena J Tucker
- Reproductive Development, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Michael F Sharp
- DNA Repair and Recombination Laboratory, St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
- The Faculty of Medicine, Dentistry and Health Science, University of Melbourne, Victoria, Australia
| | - Anna Lokchine
- CHU Rennes, INSERM, EHESP, IRSET (Institut de recherche en santé, environnement et travail) - UMR_S1085, Univ Rennes, Rennes, France
- Service de Cytogénétique et Biologie Cellulaire, CHU Rennes, Rennes, France
| | - Katrina M Bell
- Reproductive Development, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Bioinformatics, Murdoch Children's Research Institute, Victoria, Australia
| | - Catherine S Palmer
- Department of Biochemistry and Pharmacology and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - Brianna L Kline
- Reproductive Development, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Gorjana Robevska
- Reproductive Development, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Jocelyn van den Bergen
- Reproductive Development, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Jérôme Dulon
- Department of Endocrinology and Reproductive Medicine, AP-HP, Sorbonne University, Paris, France
| | - Diana Stojanovski
- Department of Biochemistry and Pharmacology and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - Katie L Ayers
- Reproductive Development, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Philippe Touraine
- Department of Endocrinology and Reproductive Medicine, AP-HP, Sorbonne University, Paris, France
| | - Wayne Crismani
- DNA Repair and Recombination Laboratory, St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Sylvie Jaillard
- CHU Rennes, INSERM, EHESP, IRSET (Institut de recherche en santé, environnement et travail) - UMR_S1085, Univ Rennes, Rennes, France
- Service de Cytogénétique et Biologie Cellulaire, CHU Rennes, Rennes, France
| | - Andrew H Sinclair
- Reproductive Development, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
2
|
Feng Z, Chen Y, Guo Y, Lyu J. Deciphering the environmental chemical basis of muscle quality decline by interpretable machine learning models. Am J Clin Nutr 2024; 120:407-418. [PMID: 38825185 DOI: 10.1016/j.ajcnut.2024.05.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 05/07/2024] [Accepted: 05/28/2024] [Indexed: 06/04/2024] Open
Abstract
BACKGROUND Sarcopenia is known as a decline in skeletal muscle quality and function that is associated with age. Sarcopenia is linked to diverse health problems, including endocrine-related diseases. Environmental chemicals (ECs), a broad class of chemicals released from industry, may influence muscle quality decline. OBJECTIVES In this work, we aimed to simultaneously elucidate the associations between muscle quality decline and diverse EC exposures based on the data from the 2011-2012 and 2013-2014 survey cycles in the National Health and Nutrition Examination Survey (NHANES) project using machine learning models. METHODS Six machine learning models were trained based on the EC and non-EC exposures from NHANES to distinguish low from normal muscle quality index status. Different machine learning metrics were evaluated for these models. The Shapley additive explanations (SHAP) approach was used to provide explainability for machine learning models. RESULTS Random forest (RF) performed best on the independent testing data set. Based on the testing data set, ECs can independently predict the binary muscle quality status with good performance by RF (area under the receiver operating characteristic curve = 0.793; area under the precision-recall curve = 0.808). The SHAP ranked the importance of ECs for the RF model. As a result, several metals and chemicals in urine, including 3-phenoxybenzoic acid and cobalt, were more associated with the muscle quality decline. CONCLUSIONS Altogether, our analyses suggest that ECs can independently predict muscle quality decline with a good performance by RF, and the SHAP-identified ECs can be closely related to muscle quality decline and sarcopenia. Our analyses may provide valuable insights into ECs that may be the important basis of sarcopenia and endocrine-related diseases in United States populations.
Collapse
Affiliation(s)
- Zhen Feng
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China; Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, People's Republic of China; College of Information and Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Ying'ao Chen
- Postgraduate Training Base Alliance of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, People's Republic of China
| | - Yuxin Guo
- College of Information and Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Jie Lyu
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China; Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, People's Republic of China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
3
|
Xu J, Fei P, Simon DW, Morowitz MJ, Mehta PA, Du W. Crosstalk between DNA Damage Repair and Metabolic Regulation in Hematopoietic Stem Cells. Cells 2024; 13:733. [PMID: 38727270 PMCID: PMC11083014 DOI: 10.3390/cells13090733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/12/2024] Open
Abstract
Self-renewal and differentiation are two characteristics of hematopoietic stem cells (HSCs). Under steady physiological conditions, most primitive HSCs remain quiescent in the bone marrow (BM). They respond to different stimuli to refresh the blood system. The transition from quiescence to activation is accompanied by major changes in metabolism, a fundamental cellular process in living organisms that produces or consumes energy. Cellular metabolism is now considered to be a key regulator of HSC maintenance. Interestingly, HSCs possess a distinct metabolic profile with a preference for glycolysis rather than oxidative phosphorylation (OXPHOS) for energy production. Byproducts from the cellular metabolism can also damage DNA. To counteract such insults, mammalian cells have evolved a complex and efficient DNA damage repair (DDR) system to eliminate various DNA lesions and guard genomic stability. Given the enormous regenerative potential coupled with the lifetime persistence of HSCs, tight control of HSC genome stability is essential. The intersection of DDR and the HSC metabolism has recently emerged as an area of intense research interest, unraveling the profound connections between genomic stability and cellular energetics. In this brief review, we delve into the interplay between DDR deficiency and the metabolic reprogramming of HSCs, shedding light on the dynamic relationship that governs the fate and functionality of these remarkable stem cells. Understanding the crosstalk between DDR and the cellular metabolism will open a new avenue of research designed to target these interacting pathways for improving HSC function and treating hematologic disorders.
Collapse
Affiliation(s)
- Jian Xu
- Division of Hematology and Oncology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15232, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Peiwen Fei
- Cancer Biology, University of Hawaii Cancer Center, University of Hawaii, Honolulu, HI 96812, USA
| | - Dennis W. Simon
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Michael J. Morowitz
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Parinda A. Mehta
- Division of Blood and Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Wei Du
- Division of Hematology and Oncology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15232, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| |
Collapse
|
4
|
Wit N, Gogola E, West JA, Vornbäumen T, Seear RV, Bailey PS, Burgos-Barragan G, Wang M, Krawczyk P, Huberts DH, Gergely F, Matheson NJ, Kaser A, Nathan JA, Patel KJ. A histone deacetylase 3 and mitochondrial complex I axis regulates toxic formaldehyde production. SCIENCE ADVANCES 2023; 9:eadg2235. [PMID: 37196082 PMCID: PMC10191432 DOI: 10.1126/sciadv.adg2235] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/11/2023] [Indexed: 05/19/2023]
Abstract
Cells produce considerable genotoxic formaldehyde from an unknown source. We carry out a genome-wide CRISPR-Cas9 genetic screen in metabolically engineered HAP1 cells that are auxotrophic for formaldehyde to find this cellular source. We identify histone deacetylase 3 (HDAC3) as a regulator of cellular formaldehyde production. HDAC3 regulation requires deacetylase activity, and a secondary genetic screen identifies several components of mitochondrial complex I as mediators of this regulation. Metabolic profiling indicates that this unexpected mitochondrial requirement for formaldehyde detoxification is separate from energy generation. HDAC3 and complex I therefore control the abundance of a ubiquitous genotoxic metabolite.
Collapse
Affiliation(s)
- Niek Wit
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Department of Medicine, University of Cambridge, Cambridge CB2 0AW, UK
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Ewa Gogola
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - James A. West
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Department of Medicine, University of Cambridge, Cambridge CB2 0AW, UK
| | - Tristan Vornbäumen
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Department of Medicine, University of Cambridge, Cambridge CB2 0AW, UK
| | - Rachel V. Seear
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Department of Medicine, University of Cambridge, Cambridge CB2 0AW, UK
| | - Peter S. J. Bailey
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Department of Medicine, University of Cambridge, Cambridge CB2 0AW, UK
| | - Guillermo Burgos-Barragan
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Meng Wang
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Patrycja Krawczyk
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Daphne H. E. W. Huberts
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | - Fanni Gergely
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Nicholas J. Matheson
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Department of Medicine, University of Cambridge, Cambridge CB2 0AW, UK
- NHS Blood and Transplant, Cambridge, UK
| | - Arthur Kaser
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Department of Medicine, University of Cambridge, Cambridge CB2 0AW, UK
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Cambridge, UK
| | - James A. Nathan
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Department of Medicine, University of Cambridge, Cambridge CB2 0AW, UK
| | - Ketan J. Patel
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| |
Collapse
|
5
|
Bertola N, Regis S, Bruno S, Mazzarello AN, Serra M, Lupia M, Sabatini F, Corsolini F, Ravera S, Cappelli E. Effects of Deacetylase Inhibition on the Activation of the Antioxidant Response and Aerobic Metabolism in Cellular Models of Fanconi Anemia. Antioxidants (Basel) 2023; 12:antiox12051100. [PMID: 37237966 DOI: 10.3390/antiox12051100] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/06/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Fanconi anemia (FA) is a rare genetic disease characterized by a dysfunctional DNA repair and an oxidative stress accumulation due to defective mitochondrial energy metabolism, not counteracted by endogenous antioxidant defenses, which appear down-expressed compared to the control. Since the antioxidant response lack could depend on the hypoacetylation of genes coding for detoxifying enzymes, we treated lymphoblasts and fibroblasts mutated for the FANC-A gene with some histone deacetylase inhibitors (HDACi), namely, valproic acid (VPA), beta-hydroxybutyrate (OHB), and EX527 (a Sirt1 inhibitor), under basal conditions and after hydrogen peroxide addition. The results show that VPA increased catalase and glutathione reductase expression and activity, corrected the metabolic defect, lowered lipid peroxidation, restored the mitochondrial fusion and fission balance, and improved mitomycin survival. In contrast, OHB, despite a slight increase in antioxidant enzyme expressions, exacerbated the metabolic defect, increasing oxidative stress production, probably because it also acts as an oxidative phosphorylation metabolite, while EX527 showed no effect. In conclusion, the data suggest that VPA could be a promising drug to modulate the gene expression in FA cells, confirming that the antioxidant response modulation plays a pivotal in FA pathogenesis as it acts on both oxidative stress levels and the mitochondrial metabolism and dynamics quality.
Collapse
Affiliation(s)
- Nadia Bertola
- Department of Experimental Medicine, University of Genoa, Via De Toni 14, 16132 Genova, Italy
| | - Stefano Regis
- Laboratory of Clinical and Experimental Immunology, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16148 Genova, Italy
| | - Silvia Bruno
- Department of Experimental Medicine, University of Genoa, Via De Toni 14, 16132 Genova, Italy
| | | | - Martina Serra
- Laboratory of Clinical and Experimental Immunology, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16148 Genova, Italy
| | - Michela Lupia
- Haematology Unit, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16148 Genova, Italy
| | - Federica Sabatini
- Stem Cell Laboratory and Cell Therapy Center, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16148 Genova, Italy
| | - Fabio Corsolini
- Centro di Diagnostica Genetica e Biochimica delle Malattie Metaboliche, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16148 Genova, Italy
| | - Silvia Ravera
- Department of Experimental Medicine, University of Genoa, Via De Toni 14, 16132 Genova, Italy
| | - Enrico Cappelli
- Haematology Unit, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16148 Genova, Italy
| |
Collapse
|
6
|
Bertola N, Bruno S, Capanni C, Columbaro M, Mazzarello AN, Corsolini F, Regis S, Degan P, Cappelli E, Ravera S. Altered Mitochondrial Dynamic in Lymphoblasts and Fibroblasts Mutated for FANCA-A Gene: The Central Role of DRP1. Int J Mol Sci 2023; 24:ijms24076557. [PMID: 37047537 PMCID: PMC10094900 DOI: 10.3390/ijms24076557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/02/2023] [Accepted: 03/21/2023] [Indexed: 04/03/2023] Open
Abstract
Fanconi anemia (FA) is a rare genetic disorder characterized by bone marrow failure and aplastic anemia. So far, 23 genes are involved in this pathology, and their mutations lead to a defect in DNA repair. In recent years, it has been observed that FA cells also display mitochondrial metabolism defects, causing an accumulation of intracellular lipids and oxidative damage. However, the molecular mechanisms involved in the metabolic alterations have not yet been elucidated. In this work, by using lymphoblasts and fibroblasts mutated for the FANC-A gene, oxidative phosphorylation (OxPhos) and mitochondria dynamics markers expression was analyzed. Results show that the metabolic defect does not depend on an altered expression of the proteins involved in OxPhos. However, FA cells are characterized by increased uncoupling protein UCP2 expression. FANC-A mutation is also associated with DRP1 overexpression that causes an imbalance in the mitochondrial dynamic toward fission and lower expression of Parkin and Beclin1. Treatment with P110, a specific inhibitor of DRP1, shows a partial mitochondrial function recovery and the decrement of DRP1 and UCP2 expression, suggesting a pivotal role of the mitochondrial dynamics in the etiopathology of Fanconi anemia.
Collapse
|
7
|
Nasr W, Filippi MD. Acquired and hereditary bone marrow failure: A mitochondrial perspective. Front Oncol 2022; 12:1048746. [PMID: 36408191 PMCID: PMC9666693 DOI: 10.3389/fonc.2022.1048746] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 10/17/2022] [Indexed: 11/22/2022] Open
Abstract
The disorders known as bone marrow failure syndromes (BMFS) are life-threatening disorders characterized by absence of one or more hematopoietic lineages in the peripheral blood. Myelodysplastic syndromes (MDS) are now considered BMF disorders with associated cellular dysplasia. BMFs and MDS are caused by decreased fitness of hematopoietic stem cells (HSC) and poor hematopoiesis. BMF and MDS can occur de novo or secondary to hematopoietic stress, including following bone marrow transplantation or myeloablative therapy. De novo BMF and MDS are usually associated with specific genetic mutations. Genes that are commonly mutated in BMF/MDS are in DNA repair pathways, epigenetic regulators, heme synthesis. Despite known and common gene mutations, BMF and MDS are very heterogenous in nature and non-genetic factors contribute to disease phenotype. Inflammation is commonly found in BMF and MDS, and contribute to ineffective hematopoiesis. Another common feature of BMF and MDS, albeit less known, is abnormal mitochondrial functions. Mitochondria are the power house of the cells. Beyond energy producing machinery, mitochondrial communicate with the rest of the cells via triggering stress signaling pathways and by releasing numerous metabolite intermediates. As a result, mitochondria play significant roles in chromatin regulation and innate immune signaling pathways. The main goal of this review is to investigate BMF processes, with a focus mitochondria-mediated signaling in acquired and inherited BMF.
Collapse
Affiliation(s)
- Waseem Nasr
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Research Foundation, Cincinnati, OH, United States,University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Marie-Dominique Filippi
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Research Foundation, Cincinnati, OH, United States,University of Cincinnati College of Medicine, Cincinnati, OH, United States,*Correspondence: Marie-Dominique Filippi,
| |
Collapse
|
8
|
Mutated FANCA Gene Role in the Modulation of Energy Metabolism and Mitochondrial Dynamics in Head and Neck Squamous Cell Carcinoma. Cells 2022; 11:cells11152353. [PMID: 35954197 PMCID: PMC9425438 DOI: 10.3390/cells11152353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/26/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022] Open
Abstract
Fanconi Anaemia (FA) is a rare recessive genetic disorder characterized by a defective DNA repair mechanism. Although aplastic anaemia is the principal clinical sign in FA, patients develop a head and neck squamous cell carcinoma (HNSCC) with a frequency 500–700 folds higher than the general population, which appears more aggressive, with survival of under two years. Since FA gene mutations are also associated with a defect in the aerobic metabolism and an increased oxidative stress accumulation, this work aims to evaluate the effect of FANCA mutation on the energy metabolism and the relative mitochondrial quality control pathways in an HNSCC cellular model. Energy metabolism and cellular antioxidant capacities were evaluated by oximetric, luminometric, and spectrophotometric assays. The dynamics of the mitochondrial network, the quality of mitophagy and autophagy, and DNA double-strand damage were analysed by Western blot analysis. Data show that the HNSCC cellular model carrying the FANCA gene mutation displays an altered electron transport between respiratory Complexes I and III that does not depend on the OxPhos protein expression. Moreover, FANCA HNSCC cells show an imbalance between fusion and fission processes and alterations in autophagy and mitophagy pathways. Together, all these alterations associated with the FANCA gene mutation cause cellular energy depletion and a metabolic switch to glycolysis, exacerbating the Warburg effect in HNSCC cells and increasing the growth rate. In addition, the altered DNA repair due to the FANCA mutation causes a higher accumulation of DNA damage in the HNSCC cellular model. In conclusion, changes in energy metabolism and mitochondrial dynamics could explain the strict correlation between HNSCC and FA genes, helping to identify new therapeutic targets.
Collapse
|
9
|
Chihanga T, Vicente-Muñoz S, Ruiz-Torres S, Pal B, Sertorio M, Andreassen PR, Khoury R, Mehta P, Davies SM, Lane AN, Romick-Rosendale LE, Wells SI. Head and Neck Cancer Susceptibility and Metabolism in Fanconi Anemia. Cancers (Basel) 2022; 14:cancers14082040. [PMID: 35454946 PMCID: PMC9025423 DOI: 10.3390/cancers14082040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/05/2022] [Accepted: 04/11/2022] [Indexed: 02/06/2023] Open
Abstract
Fanconi anemia (FA) is a rare inherited, generally autosomal recessive syndrome, but it displays X-linked or dominant negative inheritance for certain genes. FA is characterized by a deficiency in DNA damage repair that results in bone marrow failure, and in an increased risk for various epithelial tumors, most commonly squamous cell carcinomas of the head and neck (HNSCC) and of the esophagus, anogenital tract and skin. Individuals with FA exhibit increased human papilloma virus (HPV) prevalence. Furthermore, a subset of anogenital squamous cell carcinomas (SCCs) in FA harbor HPV sequences and FA-deficient laboratory models reveal molecular crosstalk between HPV and FA proteins. However, a definitive role for HPV in HNSCC development in the FA patient population is unproven. Cellular metabolism plays an integral role in tissue homeostasis, and metabolic deregulation is a known hallmark of cancer progression that supports uncontrolled proliferation, tumor development and metastatic dissemination. The metabolic consequences of FA deficiency in keratinocytes and associated impact on the development of SCC in the FA population is poorly understood. Herein, we review the current literature on the metabolic consequences of FA deficiency and potential effects of resulting metabolic reprogramming on FA cancer phenotypes.
Collapse
Affiliation(s)
- Tafadzwa Chihanga
- Division of Oncology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (T.C.); (S.R.-T.); (B.P.)
| | - Sara Vicente-Muñoz
- Department of Pathology and Laboratory Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (S.V.-M.); (L.E.R.-R.)
| | - Sonya Ruiz-Torres
- Division of Oncology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (T.C.); (S.R.-T.); (B.P.)
| | - Bidisha Pal
- Division of Oncology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (T.C.); (S.R.-T.); (B.P.)
| | - Mathieu Sertorio
- Department of Radiation Oncology, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA;
| | - Paul R. Andreassen
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
| | - Ruby Khoury
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (R.K.); (P.M.); (S.M.D.)
| | - Parinda Mehta
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (R.K.); (P.M.); (S.M.D.)
| | - Stella M. Davies
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (R.K.); (P.M.); (S.M.D.)
| | - Andrew N. Lane
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA;
| | - Lindsey E. Romick-Rosendale
- Department of Pathology and Laboratory Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (S.V.-M.); (L.E.R.-R.)
| | - Susanne I. Wells
- Division of Oncology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (T.C.); (S.R.-T.); (B.P.)
- Correspondence: ; Tel.: +1-513-636-5986
| |
Collapse
|
10
|
Replicative Stress Coincides with Impaired Nuclear DNA Damage Response in COX4-1 Deficiency. Int J Mol Sci 2022; 23:ijms23084149. [PMID: 35456968 PMCID: PMC9029573 DOI: 10.3390/ijms23084149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 11/25/2022] Open
Abstract
Cytochrome c oxidase (COX), a multimeric protein complex, is the final electron acceptor in the mitochondrial electron transfer chain. Primary COX deficiency, caused by mutations in either mitochondrial DNA or nuclear-encoded genes, is a heterogenous group of mitochondrial diseases with a wide range of presentations, ranging from fatal infantile to subtler. We previously reported a patient with primary COX deficiency due to a pathogenic variant in COX4I1 (encoding the common isoform of COX subunit 4, COX4-1), who presented with bone marrow failure, genomic instability, and short stature, mimicking Fanconi anemia (FA). In the present study, we demonstrated that accumulative DNA damage coincided primarily with proliferative cells in the patient’s fibroblasts and in COX4i1 knockdown cells. Expression analysis implicated a reduction in DNA damage response pathways, which was verified by demonstrating impaired recovery from genotoxic insult and decreased DNA repair. The premature senescence of the COX4-1-deficient cells prevented us from undertaking additional studies; nevertheless, taken together, our results indicate replicative stress and impaired nuclear DNA damage response in COX4-1 deficiency. Interestingly, our in vitro findings recapitulated the patient’s presentation and present status.
Collapse
|
11
|
Principi E, Sondo E, Bianchi G, Ravera S, Morini M, Tomati V, Pastorino C, Zara F, Bruno C, Eva A, Pedemonte N, Raffaghello L. Targeting of Ubiquitin E3 Ligase RNF5 as a Novel Therapeutic Strategy in Neuroectodermal Tumors. Cancers (Basel) 2022; 14:cancers14071802. [PMID: 35406574 PMCID: PMC8997491 DOI: 10.3390/cancers14071802] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 01/27/2023] Open
Abstract
RNF5, an endoplasmic reticulum (ER) E3 ubiquitin ligase, participates to the ER-associated protein degradation guaranteeing the protein homeostasis. Depending on tumor model tested, RNF5 exerts pro- or anti-tumor activity. The aim of this study was to elucidate the controversial role of RNF5 in neuroblastoma and melanoma, two neuroectodermal tumors of infancy and adulthood, respectively. RNF5 gene levels are evaluated in publicly available datasets reporting the gene expression profile of melanoma and neuroblastoma primary tumors at diagnosis. The therapeutic effect of Analog-1, an RNF5 pharmacological activator, was investigated on in vitro and in vivo neuroblastoma and melanoma models. In both neuroblastoma and melanoma patients the high expression of RNF5 correlated with a better prognostic outcome. Treatment of neuroblastoma and melanoma cell lines with Analog-1 reduced cell viability by impairing the glutamine availability and energy metabolism through inhibition of F1Fo ATP-synthase activity. This latter event led to a marked increase in oxidative stress, which, in turn, caused cell death. Similarly, neuroblastoma- and melanoma-bearing mice treated with Analog-1 showed a significant delay of tumor growth in comparison to those treated with vehicle only. These findings validate RNF5 as an innovative drug target and support the development of Analog-1 in early phase clinical trials for neuroblastoma and melanoma patients.
Collapse
Affiliation(s)
- Elisa Principi
- Center of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Elvira Sondo
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Giovanna Bianchi
- Stem Cell Laboratory and Cell Therapy Center, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Silvia Ravera
- Experimental Medicine Department, University of Genova, 16132 Genova, Italy
| | - Martina Morini
- Laboratory of Molecular Biology, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Valeria Tomati
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Cristina Pastorino
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DI-NOGMI), University of Genoa, 16132 Genoa, Italy
| | - Federico Zara
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DI-NOGMI), University of Genoa, 16132 Genoa, Italy
| | - Claudio Bruno
- Center of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DI-NOGMI), University of Genoa, 16132 Genoa, Italy
| | - Alessandra Eva
- Laboratory of Molecular Biology, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | | | - Lizzia Raffaghello
- Center of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| |
Collapse
|
12
|
Wikramanayake TC, Chéret J, Sevilla A, Birch-Machin M, Paus R. Targeting mitochondria in dermatological therapy: Beyond oxidative damage and skin aging. Expert Opin Ther Targets 2022; 26:233-259. [PMID: 35249436 DOI: 10.1080/14728222.2022.2049756] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The analysis of the role of the mitochondria in oxidative damage and skin aging is a significant aspect of dermatological research. Mitochondria generate most reactive oxygen species (ROS); however, excessive ROS are cytotoxic and DNA-damaging and promote (photo-)aging. ROS also possesses key physiological and regulatory functions and mitochondrial dysfunction is prominent in several skin diseases including skin cancers. Although many standard dermatotherapeutics modulate mitochondrial function, dermatological therapy rarely targets the mitochondria. Accordingly, there is a rationale for "mitochondrial dermatology"-based approaches to be applied to therapeutic research. AREAS COVERED This paper examines the functions of mitochondria in cutaneous physiology beyond energy (ATP) and ROS production. Keratinocyte differentiation and epidermal barrier maintenance, appendage morphogenesis and homeostasis, photoaging and skin cancer are considered. Based on related PubMed search results, the paper evaluates thyroid hormones, glucocorticoids, Vitamin D3 derivatives, retinoids, cannabinoid receptor agonists, PPARγ agonists, thyrotropin, and thyrotropin-releasing hormone as instructive lead compounds. Moreover, the mitochondrial protein MPZL3 as a promising new drug target for future "mitochondrial dermatology" is highlighted. EXPERT OPINION Future dermatological therapeutic research should have a mitochondrial medicine emphasis. Focusing on selected lead agents, protein targets, in silico drug design, and model diseases will fertilize a mito-centric approach.
Collapse
Affiliation(s)
- Tongyu C Wikramanayake
- Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, U.S.A.,Molecular Cell and Developmental Biology Program, University of Miami Miller School of Medicine, Miami, FL, U.S.A
| | - Jérémy Chéret
- Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, U.S.A
| | - Alec Sevilla
- Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, U.S.A
| | - Mark Birch-Machin
- Dermatological Sciences, Translational and Clinical Research Institute, and The UK National Innovation Centre for Ageing, Newcastle University, Newcastle upon Tyne, UK
| | - Ralf Paus
- Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, U.S.A.,Monasterium Laboratory, Münster, Germany.,Centre for Dermatology Research, University of Manchester, and NIHR Manchester Biomedical Research Centre, Manchester, UK
| |
Collapse
|
13
|
A Multidrug Approach to Modulate the Mitochondrial Metabolism Impairment and Relative Oxidative Stress in Fanconi Anemia Complementation Group A. Metabolites 2021; 12:metabo12010006. [PMID: 35050128 PMCID: PMC8777953 DOI: 10.3390/metabo12010006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 12/18/2021] [Indexed: 12/12/2022] Open
Abstract
Fanconi Anemia (FA) is a rare recessive genetic disorder characterized by aplastic anemia due to a defective DNA repair system. In addition, dysfunctional energy metabolism, lipid droplets accumulation, and unbalanced oxidative stress are involved in FA pathogenesis. Thus, to modulate the altered metabolism, Fanc-A lymphoblast cell lines were treated with quercetin, a flavonoid compound, C75 (4-Methylene-2-octyl-5-oxotetrahydrofuran-3-carboxylic acid), a fatty acid synthesis inhibitor, and rapamycin, an mTOR inhibitor, alone or in combination. As a control, isogenic FA cell lines corrected with the functional Fanc-A gene were used. Results showed that: (i) quercetin recovered the energy metabolism efficiency, reducing oxidative stress; (ii) C75 caused the lipid accumulation decrement and a slight oxidative stress reduction, without improving the energy metabolism; (iii) rapamycin reduced the aerobic metabolism and the oxidative stress, without increasing the energy status. In addition, all molecules reduce the accumulation of DNA double-strand breaks. Two-by-two combinations of the three drugs showed an additive effect compared with the action of the single molecule. Specifically, the quercetin/C75 combination appeared the most efficient in the mitochondrial and lipid metabolism improvement and in oxidative stress production reduction, while the quercetin/rapamycin combination seemed the most efficient in the DNA breaks decrement. Thus, data reported herein suggest that FA is a complex and multifactorial disease, and a multidrug strategy is necessary to correct the metabolic alterations.
Collapse
|
14
|
Lee AY. Skin Pigmentation Abnormalities and Their Possible Relationship with Skin Aging. Int J Mol Sci 2021; 22:ijms22073727. [PMID: 33918445 PMCID: PMC8038212 DOI: 10.3390/ijms22073727] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/24/2021] [Accepted: 04/01/2021] [Indexed: 12/13/2022] Open
Abstract
Skin disorders showing abnormal pigmentation are often difficult to manage because of their uncertain etiology or pathogenesis. Abnormal pigmentation is a common symptom accompanying aging skin. The association between skin aging and skin pigmentation abnormalities can be attributed to certain inherited disorders characterized by premature aging and abnormal pigmentation in the skin and some therapeutic modalities effective for both. Several molecular mechanisms, including oxidative stress, mitochondrial DNA mutations, DNA damage, telomere shortening, hormonal changes, and autophagy impairment, have been identified as involved in skin aging. Although each of these skin aging-related mechanisms are interconnected, this review examined the role of each mechanism in skin hyperpigmentation or hypopigmentation to propose the possible association between skin aging and pigmentation abnormalities.
Collapse
Affiliation(s)
- Ai-Young Lee
- Department of Dermatology, College of Medicine, Dongguk University Ilsan Hospital, 814 Siksa-dong, Ilsandong-gu, Goyang-si 410-773, Gyeonggi-do, Korea
| |
Collapse
|
15
|
Santos D, Mahtab M, Boavida A, Pisani FM. Role of the DDX11 DNA Helicase in Warsaw Breakage Syndrome Etiology. Int J Mol Sci 2021; 22:2308. [PMID: 33669056 PMCID: PMC7956524 DOI: 10.3390/ijms22052308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/13/2021] [Accepted: 02/23/2021] [Indexed: 12/23/2022] Open
Abstract
Warsaw breakage syndrome (WABS) is a genetic disorder characterized by sister chromatid cohesion defects, growth retardation, microcephaly, hearing loss and other variable clinical manifestations. WABS is due to biallelic mutations of the gene coding for the super-family 2 DNA helicase DDX11/ChlR1, orthologous to the yeast chromosome loss protein 1 (Chl1). WABS is classified in the group of "cohesinopathies", rare hereditary diseases that are caused by mutations in genes coding for subunits of the cohesin complex or protein factors having regulatory roles in the sister chromatid cohesion process. In fact, among the cohesion regulators, an important player is DDX11, which is believed to be important for the functional coupling of DNA synthesis and cohesion establishment at the replication forks. Here, we will review what is known about the molecular and cellular functions of human DDX11 and its role in WABS etiopathogenesis, even in light of recent findings on the role of cohesin and its regulator network in promoting chromatin loop formation and regulating chromatin spatial organization.
Collapse
Affiliation(s)
- Diana Santos
- Istituto di Biochimica e Biologia Cellulare, Consiglio Nazionale delle Ricerche, Via P. Castellino 111, 80131 Naples, Italy; (D.S.); (M.M.); (A.B.)
| | - Mohammad Mahtab
- Istituto di Biochimica e Biologia Cellulare, Consiglio Nazionale delle Ricerche, Via P. Castellino 111, 80131 Naples, Italy; (D.S.); (M.M.); (A.B.)
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania Luigi Vanvitelli, Via Vivaldi 43, 81100 Caserta, Italy
| | - Ana Boavida
- Istituto di Biochimica e Biologia Cellulare, Consiglio Nazionale delle Ricerche, Via P. Castellino 111, 80131 Naples, Italy; (D.S.); (M.M.); (A.B.)
| | - Francesca M. Pisani
- Istituto di Biochimica e Biologia Cellulare, Consiglio Nazionale delle Ricerche, Via P. Castellino 111, 80131 Naples, Italy; (D.S.); (M.M.); (A.B.)
| |
Collapse
|
16
|
Bottega R, Ravera S, Napolitano LMR, Chiappetta V, Zini N, Crescenzi B, Arniani S, Faleschini M, Cortone G, Faletra F, Medagli B, Sirchia F, Moretti M, de Lange J, Cappelli E, Mecucci C, Onesti S, Pisani FM, Savoia A. Genomic integrity and mitochondrial metabolism defects in Warsaw syndrome cells: a comparison with Fanconi anemia. J Cell Physiol 2021; 236:5664-5675. [PMID: 33432587 DOI: 10.1002/jcp.30265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 12/25/2022]
Abstract
Warsaw breakage syndrome (WABS), is caused by biallelic mutations of DDX11, a gene coding a DNA helicase. We have recently reported two affected sisters, compound heterozygous for a missense (p.Leu836Pro) and a frameshift (p.Lys303Glufs*22) variant. By investigating the pathogenic mechanism, we demonstrate the inability of the DDX11 p.Leu836Pro mutant to unwind forked DNA substrates, while retaining DNA binding activity. We observed the accumulation of patient-derived cells at the G2/M phase and increased chromosomal fragmentation after mitomycin C treatment. The phenotype partially overlaps with features of the Fanconi anemia cells, which shows not only genomic instability but also defective mitochondria. This prompted us to examine mitochondrial functionality in WABS cells and revealed an altered aerobic metabolism. This opens the door to the further elucidation of the molecular and cellular basis of an impaired mitochondrial phenotype and sheds light on this fundamental process in cell physiology and the pathogenesis of these diseases.
Collapse
Affiliation(s)
- Roberta Bottega
- Institute for Maternal and Child Health-IRCCS Burlo Garofolo, Trieste, Italy
| | - Silvia Ravera
- Department of Experimental Medicine, University of Genova, Genova, Italy
| | | | - Viviana Chiappetta
- Istituto di Biochimica e Biologia Cellulare (IBBC), Consiglio Nazionale delle Ricerche (CNR), Naples, Italy
| | - Nicoletta Zini
- CNR-National Research Council of Italy, Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza"-Unit of Bologna, Bologna, Italy.,IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Barbara Crescenzi
- Sezione di Ematologia ed Immunologia Clinica, Centro Ricerche Emato-Oncologiche, University of Perugia, Perugia, Italy
| | - Silvia Arniani
- Sezione di Ematologia ed Immunologia Clinica, Centro Ricerche Emato-Oncologiche, University of Perugia, Perugia, Italy
| | - Michela Faleschini
- Institute for Maternal and Child Health-IRCCS Burlo Garofolo, Trieste, Italy
| | - Giuseppe Cortone
- Structural Biology Laboratory, Elettra-Sincrotrone Trieste, Trieste, Italy.,International School for Advanced Studies (SISSA), Trieste, Italy
| | - Flavio Faletra
- Institute for Maternal and Child Health-IRCCS Burlo Garofolo, Trieste, Italy
| | - Barbara Medagli
- Structural Biology Laboratory, Elettra-Sincrotrone Trieste, Trieste, Italy.,Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Fabio Sirchia
- Institute for Maternal and Child Health-IRCCS Burlo Garofolo, Trieste, Italy
| | - Martina Moretti
- Sezione di Ematologia ed Immunologia Clinica, Centro Ricerche Emato-Oncologiche, University of Perugia, Perugia, Italy
| | - Job de Lange
- Amsterdam UMC, Clinical Genetics, Section Oncogenetics, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Enrico Cappelli
- UO Ematologia, IRCCS Istituto Giannina Gaslini, Genova, Italy, Genova, Italy
| | - Cristina Mecucci
- Sezione di Ematologia ed Immunologia Clinica, Centro Ricerche Emato-Oncologiche, University of Perugia, Perugia, Italy
| | - Silvia Onesti
- Structural Biology Laboratory, Elettra-Sincrotrone Trieste, Trieste, Italy
| | - Francesca M Pisani
- Istituto di Biochimica e Biologia Cellulare (IBBC), Consiglio Nazionale delle Ricerche (CNR), Naples, Italy
| | - Anna Savoia
- Institute for Maternal and Child Health-IRCCS Burlo Garofolo, Trieste, Italy.,Department of Medical Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
17
|
Pagano G, Tiano L, Pallardó FV, Lyakhovich A, Mukhopadhyay SS, Di Bartolomeo P, Zatterale A, Trifuoggi M. Re-definition and supporting evidence toward Fanconi Anemia as a mitochondrial disease: Prospects for new design in clinical management. Redox Biol 2021; 40:101860. [PMID: 33445068 PMCID: PMC7806517 DOI: 10.1016/j.redox.2021.101860] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/05/2021] [Accepted: 01/05/2021] [Indexed: 12/24/2022] Open
Abstract
Fanconi anemia (FA) has been investigated since early studies based on two definitions, namely defective DNA repair and proinflammatory condition. The former definition has built up the grounds for FA diagnosis as excess sensitivity of patients’ cells to xenobiotics as diepoxybutane and mitomycin C, resulting in typical chromosomal abnormalities. Another line of studies has related FA phenotype to a prooxidant state, as detected by both in vitro and ex vivo studies. The discovery that the FA group G (FANCG) protein is found in mitochondria (Mukhopadhyay et al., 2006) has been followed by an extensive line of studies providing evidence for multiple links between other FA gene products and mitochondrial dysfunction. The fact that FA proteins are encoded by nuclear, not mitochondrial DNA does not prevent these proteins to hamper mitochondrial function, as it is recognized that most mitochondrial proteins are of nuclear origin. This body of evidence supporting a central role of mitochondrial dysfunction, along with redox imbalance in FA, should lead to the re-definition of FA as a mitochondrial disease. A body of literature has demonstrated the beneficial effects of mitochondrial cofactors, such as α-lipoic acid, coenzyme Q10, and carnitine on patients affected by mitochondrial diseases. Altogether, this re-definition of FA as a mitochondrial disease and the prospect use of mitochondrial nutrients may open new gateways toward mitoprotective strategies for FA patients. These strategies are expected to mitigate the mitochondrial dysfunction and prooxidant state in FA patients, and potentially protect transplanted FA patients from post-transplantation malignancies.
Collapse
Affiliation(s)
- Giovanni Pagano
- Department of Chemical Sciences, Federico II Naples University, I-80126, Naples, Italy.
| | - Luca Tiano
- Department of Life and Environmental Sciences, Polytechnical University of Marche, I-60121, Ancona, Italy
| | - Federico V Pallardó
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia-INCLIVA, CIBERER, E-46010, Valencia, Spain
| | - Alex Lyakhovich
- Institute of Molecular Biology and Biophysics of the "Federal Research Center of Fundamental and Translational Medicine", 630117, Novosibirsk, Russia
| | - Sudit S Mukhopadhyay
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, West Bengal, 713209, India
| | | | | | - Marco Trifuoggi
- Department of Chemical Sciences, Federico II Naples University, I-80126, Naples, Italy
| |
Collapse
|
18
|
Abad E, Samino S, Grodzicki RL, Pagano G, Trifuoggi M, Graifer D, Potesil D, Zdrahal Z, Yanes O, Lyakhovich A. Identification of metabolic changes leading to cancer susceptibility in Fanconi anemia cells. Cancer Lett 2020; 503:185-196. [PMID: 33316348 DOI: 10.1016/j.canlet.2020.12.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/19/2020] [Accepted: 12/05/2020] [Indexed: 10/22/2022]
Abstract
Fanconi anemia (FA) is a chromosomal instability disorder of bone marrow associated with aplastic anemia, congenital abnormalities and a high risk of malignancies. The identification of more than two dozen FA genes has revealed a plethora of interacting proteins that are mainly involved in repair of DNA interstrand crosslinks (ICLs). Other important findings associated with FA are inflammation, oxidative stress response, mitochondrial dysfunction and mitophagy. In this work, we performed quantitative proteomic and metabolomic analyses on defective FA cells and identified a number of metabolic abnormalities associated with cancer. In particular, an increased de novo purine biosynthesis, a high concentration of fumarate, and an accumulation of purinosomal clusters were found. This was in parallel with decreased OXPHOS and altered glycolysis. On the whole, our results indicate an association between the need for nitrogenous bases upon impaired DDR in FA cells with a subsequent increase in purine metabolism and a potential role in oncogenesis.
Collapse
Affiliation(s)
- Etna Abad
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | | | | | - Giovanni Pagano
- Department of Chemical Sciences, Federico II Naples University, I-80126 Naples, Italy
| | - Marco Trifuoggi
- Department of Chemical Sciences, Federico II Naples University, I-80126 Naples, Italy
| | | | - David Potesil
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Zbynek Zdrahal
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Oscar Yanes
- Universitat Rovira i Virgili, Department of Electronic Engineering, IISPV, Tarragona 43007, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Alex Lyakhovich
- Institute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, 630117, Russia; Vall D'Hebron Institut de Recerca, 08035, Barcelona, Spain.
| |
Collapse
|
19
|
Wu S, Deng H, He H, Xu R, Wang Y, Zhu X, Zhang J, Zeng Q, Zhao X. The circ_0004463/miR-380-3p/FOXO1 axis modulates mitochondrial respiration and bladder cancer cell apoptosis. Cell Cycle 2020; 19:3563-3580. [PMID: 33283616 DOI: 10.1080/15384101.2020.1852746] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Bladder cancer is one of the most commonly diagnosed and fatal malignancies of the urinary tract. Noncoding RNAs have been reported to be new biomarkers and effective treatment targets for bladder cancer. In the present study, we identified a novel bladder cancer-related circRNA-miRNA-mRNA network, the circ_0004463/miR-380-3p/FOXO1 axis. circ_0004463 is significantly downregulated, whereas miR-380-3p is upregulated in bladder carcinoma tissue samples and cells. circ_0004463 acts as a tumor suppressor by inhibiting bladder cancer cell proliferation. Genes that negatively correlated with miR-380-3p and genes that miR-380-3p might target are enriched in mitochondrial respiration chain-related pathways. miR-380-3p promotes the proliferation of bladder cancer cells and mitochondrial respiration by acting as an oncogenic miRNA. circ_0004463 competes with FOXO1 for miR-380-3p binding to counteract miR-380-3p-mediated repression of FOXO1. Circ_0004463 overexpression inhibits cancer cell proliferation and mitochondrial respiration in bladder cancer cell lines, while miR-380-3p overexpression dramatically reverses the roles of circ_0004463 overexpression. In conclusion, the circ_0004463/miR-380-3p/FOXO1 axis could regulate mitochondrial respiration and bladder cancer cell apoptosis via FOXO1 signaling.
Collapse
Affiliation(s)
- Shuiqing Wu
- Department of Urology, The Second Xiangya Hospital, Central South University , Changsha, Hunan Province, People's Republic of China
| | - Huanghao Deng
- Department of Urology, The Second Xiangya Hospital, Central South University , Changsha, Hunan Province, People's Republic of China
| | - Haiqing He
- Department of Urology, The Second Xiangya Hospital, Central South University , Changsha, Hunan Province, People's Republic of China
| | - Ran Xu
- Department of Urology, The Second Xiangya Hospital, Central South University , Changsha, Hunan Province, People's Republic of China
| | - Yinhuai Wang
- Department of Urology, The Second Xiangya Hospital, Central South University , Changsha, Hunan Province, People's Republic of China
| | - Xuan Zhu
- Department of Urology, The Second Xiangya Hospital, Central South University , Changsha, Hunan Province, People's Republic of China
| | - Jinhua Zhang
- Department of Urology, The Second Xiangya Hospital, Central South University , Changsha, Hunan Province, People's Republic of China
| | - Qi Zeng
- Department of Urology, The Second Xiangya Hospital, Central South University , Changsha, Hunan Province, People's Republic of China
| | - Xiaokun Zhao
- Department of Urology, The Second Xiangya Hospital, Central South University , Changsha, Hunan Province, People's Republic of China
| |
Collapse
|
20
|
Canonical and Noncanonical Roles of Fanconi Anemia Proteins: Implications in Cancer Predisposition. Cancers (Basel) 2020; 12:cancers12092684. [PMID: 32962238 PMCID: PMC7565043 DOI: 10.3390/cancers12092684] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/11/2020] [Accepted: 09/17/2020] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Fanconi anemia (FA) is a genetic disorder that is characterized by bone marrow failure (BMF), developmental abnormalities, and predisposition to cancer. In this review, we present an overview of both canonical (regulation of interstrand cross-links repair, ICLs) and noncanonical roles of FA proteins. We divide noncanonical alternative functions in two types: nuclear (outside ICLs such as FA action in replication stress or DSB repair) and cytosolic (such as in mitochondrial quality control or selective autophagy). We further discuss the involvement of FA genes in the predisposition to develop different types of cancers and we examine current DNA damage response-targeted therapies. Finally, we promote an insightful perspective regarding the clinical implication of the cytosolic noncanonical roles of FA proteins in cancer predisposition, suggesting that these alternative roles could be of critical importance for disease progression. Abstract Fanconi anemia (FA) is a clinically and genetically heterogeneous disorder characterized by the variable presence of congenital somatic abnormalities, bone marrow failure (BMF), and a predisposition to develop cancer. Monoallelic germline mutations in at least five genes involved in the FA pathway are associated with the development of sporadic hematological and solid malignancies. The key function of the FA pathway is to orchestrate proteins involved in the repair of interstrand cross-links (ICLs), to prevent genomic instability and replication stress. Recently, many studies have highlighted the importance of FA genes in noncanonical pathways, such as mitochondria homeostasis, inflammation, and virophagy, which act, in some cases, independently of DNA repair processes. Thus, primary defects in DNA repair mechanisms of FA patients are typically exacerbated by an impairment of other cytoprotective pathways that contribute to the multifaceted clinical phenotype of this disease. In this review, we summarize recent advances in the understanding of the pathogenesis of FA, with a focus on the cytosolic noncanonical roles of FA genes, discussing how they may contribute to cancer development, thus suggesting opportunities to envisage novel therapeutic approaches.
Collapse
|
21
|
Marini C, Cossu V, Bonifacino T, Bauckneht M, Torazza C, Bruno S, Castellani P, Ravera S, Milanese M, Venturi C, Carlone S, Piccioli P, Emionite L, Morbelli S, Orengo AM, Donegani MI, Miceli A, Raffa S, Marra S, Signori A, Cortese K, Grillo F, Fiocca R, Bonanno G, Sambuceti G. Mechanisms underlying the predictive power of high skeletal muscle uptake of FDG in amyotrophic lateral sclerosis. EJNMMI Res 2020; 10:76. [PMID: 32638178 PMCID: PMC7340686 DOI: 10.1186/s13550-020-00666-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/25/2020] [Indexed: 02/06/2023] Open
Abstract
Background We recently reported that enhanced [18F]-fluorodeoxyglucose (FDG) uptake in skeletal muscles predicts disease aggressiveness in patients with amyotrophic lateral sclerosis (ALS). The present experimental study aimed to assess whether this predictive potential reflects the link between FDG uptake and redox stress that has been previously reported in different tissues and disease models. Methods The study included 15 SOD1G93A mice (as experimental ALS model) and 15 wildtype mice (around 120 days old). Mice were submitted to micro-PET imaging. Enzymatic pathways and response to oxidative stress were evaluated in harvested quadriceps and hearts by biochemical, immunohistochemical, and immunofluorescence analysis. Colocalization between the endoplasmic reticulum (ER) and the fluorescent FDG analog 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxyglucose (2-NBDG) was performed in fresh skeletal muscle sections. Finally, mitochondrial ultrastructure and bioenergetics were evaluated in harvested quadriceps and hearts. Results FDG retention was significantly higher in hindlimb skeletal muscles of symptomatic SOD1G93A mice with respect to control ones. This difference was not explained by any acceleration in glucose degradation through glycolysis or cytosolic pentose phosphate pathway (PPP). Similarly, it was independent of inflammatory infiltration. Rather, the high FDG retention in SOD1G93A skeletal muscle was associated with an accelerated generation of reactive oxygen species. This redox stress selectively involved the ER and the local PPP triggered by hexose-6P-dehydrogenase. ER involvement was confirmed by the colocalization of the 2-NBDG with a vital ER tracker. The oxidative damage in transgenic skeletal muscle was associated with a severe impairment in the crosstalk between ER and mitochondria combined with alterations in mitochondrial ultrastructure and fusion/fission balance. The expected respiratory damage was confirmed by a deceleration in ATP synthesis and oxygen consumption rate. These same abnormalities were represented to a markedly lower degree in the myocardium, as a sample of non-voluntary striated muscle. Conclusion Skeletal muscle of SOD1G93A mice reproduces the increased FDG uptake observed in ALS patients. This finding reflects the selective activation of the ER-PPP in response to significant redox stress associated with alterations of mitochondrial ultrastructure, networking, and connection with the ER itself. This scenario is less severe in cardiomyocytes suggesting a relevant role for either communication with synaptic plaque or contraction dynamics.
Collapse
Affiliation(s)
- Cecilia Marini
- CNR Institute of Molecular Bioimaging and Physiology (IBFM), Milano, Italy. .,Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, Largo Benzi 10, 16132, Genova, Italy.
| | - Vanessa Cossu
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, Largo Benzi 10, 16132, Genova, Italy.,Department of Health Sciences, University of Genoa, Genova, Italy
| | - Tiziana Bonifacino
- Department of Pharmacy, Section of Pharmacology and Toxicology and Center of Excellence for Biomedical Research, University of Genoa, Genova, Italy
| | - Matteo Bauckneht
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, Largo Benzi 10, 16132, Genova, Italy.,Department of Health Sciences, University of Genoa, Genova, Italy
| | - Carola Torazza
- Department of Pharmacy, Section of Pharmacology and Toxicology and Center of Excellence for Biomedical Research, University of Genoa, Genova, Italy
| | - Silvia Bruno
- Department of Experimental Medicine, Human Anatomy, University of Genoa, Genova, Italy
| | | | - Silvia Ravera
- Department of Experimental Medicine, Human Anatomy, University of Genoa, Genova, Italy
| | - Marco Milanese
- Department of Pharmacy, Section of Pharmacology and Toxicology and Center of Excellence for Biomedical Research, University of Genoa, Genova, Italy
| | - Consuelo Venturi
- Department of Experimental Medicine, Human Anatomy, University of Genoa, Genova, Italy
| | | | | | - Laura Emionite
- Animal Facility, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Silvia Morbelli
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, Largo Benzi 10, 16132, Genova, Italy.,Department of Health Sciences, University of Genoa, Genova, Italy
| | - Anna Maria Orengo
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, Largo Benzi 10, 16132, Genova, Italy
| | | | - Alberto Miceli
- Department of Health Sciences, University of Genoa, Genova, Italy
| | - Stefano Raffa
- Department of Health Sciences, University of Genoa, Genova, Italy
| | - Stefano Marra
- Department of Health Sciences, University of Genoa, Genova, Italy
| | - Alessio Signori
- Department of Health Sciences, University of Genoa, Genova, Italy
| | - Katia Cortese
- Department of Experimental Medicine, Human Anatomy, University of Genoa, Genova, Italy
| | - Federica Grillo
- Department of Surgical Sciences and Integrated Diagnostics, Pathology Unit, University of Genoa, Genova, Italy
| | - Roberto Fiocca
- Department of Surgical Sciences and Integrated Diagnostics, Pathology Unit, University of Genoa, Genova, Italy
| | - Giambattista Bonanno
- Department of Pharmacy, Section of Pharmacology and Toxicology and Center of Excellence for Biomedical Research, University of Genoa, Genova, Italy.,Pharmacology and Toxicology, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Gianmario Sambuceti
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, Largo Benzi 10, 16132, Genova, Italy.,Department of Health Sciences, University of Genoa, Genova, Italy
| |
Collapse
|
22
|
Cappelli E, Degan P, Bruno S, Pierri F, Miano M, Raggi F, Farruggia P, Mecucci C, Crescenzi B, Naim V, Dufour C, Ravera S. The passage from bone marrow niche to bloodstream triggers the metabolic impairment in Fanconi Anemia mononuclear cells. Redox Biol 2020; 36:101618. [PMID: 32863220 PMCID: PMC7327247 DOI: 10.1016/j.redox.2020.101618] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/06/2020] [Accepted: 06/18/2020] [Indexed: 12/12/2022] Open
Abstract
Fanconi Anemia (FA) is a disease characterized by bone marrow (BM) failure and aplastic anemia. In addition to a defective DNA repair system, other mechanisms are involved in its pathogenesis, such as defective mitochondrial metabolism, accumulation of lipids, and increment of oxidative stress production. To better understand the role of these metabolic alterations in the process of HSC maturation in FA, we evaluated several biochemical and cellular parameters on mononuclear cells isolated from the bone marrow of FA patients or healthy donors. To mimic the cellular residence in the BM niche or their exit from the BM niche to the bloodstream, cells have been grown in hypoxic or normoxic conditions, respectively. The data show that, in normoxic conditions, a switch from anaerobic to aerobic metabolism occurs both in healthy and in pathological samples. However, in FA cells this change is associated with altered oxidative phosphorylation, the increment of oxidative stress production, no activation of the endogenous antioxidant defenses and arrest in the G2M phase of the cell cycle. By contrast, FA cells grown in hypoxic conditions do not show cell cycle and metabolic alterations in comparison to the healthy control, maintaining both an anaerobic flux. The data reported herein suggests that the passage from the BM niche to the bloodstream represents a crucial point in the FA pathogenesis associated with mitochondrial dysfunction. MNCs isolated from the bloodstream of FA patients display a metabolic defect. The metabolic defect is not evident in FA-MNCs isolated from the bone marrow niche. The metabolic defect seems to be linked to the oxygen availability. The passage from the BM niche to the bloodstream is crucial in FA pathogenesis.
Collapse
Affiliation(s)
- Enrico Cappelli
- Hematology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Paolo Degan
- Mutagenesis and Preventive Oncology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy.
| | - Silvia Bruno
- Experimental Medicine Department, University of Genova, Genoa, Italy
| | - Filomena Pierri
- Hematology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Maurizio Miano
- Hematology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Federica Raggi
- Laboratory of Molecular Biology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Piero Farruggia
- A.R.N.A.S. Ospedali Civico Di Cristina e Benfratelli, Palermo, Italy
| | - Cristina Mecucci
- Department of Medicine, Section of Hematology and Center for Hemato-Oncology Research CREO, Cytogenetics and Molecular Medicine Laboratory, University of Perugia, Perugia, Italy
| | - Barbara Crescenzi
- Department of Medicine, Section of Hematology and Center for Hemato-Oncology Research CREO, Cytogenetics and Molecular Medicine Laboratory, University of Perugia, Perugia, Italy
| | - Valeria Naim
- CNRS UMR9019, Université Paris Sud, Université Paris Saclay, Gustave Roussy, Vilejuif, France
| | - Carlo Dufour
- Hematology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Silvia Ravera
- Experimental Medicine Department, University of Genova, Genoa, Italy
| |
Collapse
|
23
|
Sreedhar A, Aguilera-Aguirre L, Singh KK. Mitochondria in skin health, aging, and disease. Cell Death Dis 2020; 11:444. [PMID: 32518230 PMCID: PMC7283348 DOI: 10.1038/s41419-020-2649-z] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 02/08/2023]
Abstract
The skin is a high turnover organ, and its constant renewal depends on the rapid proliferation of its progenitor cells. The energy requirement for these metabolically active cells is met by mitochondrial respiration, an ATP generating process driven by a series of protein complexes collectively known as the electron transport chain (ETC) that is located on the inner membrane of the mitochondria. However, reactive oxygen species (ROS) like superoxide, singlet oxygen, peroxides are inevitably produced during respiration and disrupt macromolecular and cellular structures if not quenched by the antioxidant system. The oxidative damage caused by mitochondrial ROS production has been established as the molecular basis of multiple pathophysiological conditions, including aging and cancer. Not surprisingly, the mitochondria are the primary organelle affected during chronological and UV-induced skin aging, the phenotypic manifestations of which are the direct consequence of mitochondrial dysfunction. Also, deletions and other aberrations in the mitochondrial DNA (mtDNA) are frequent in photo-aged skin and skin cancer lesions. Recent studies have revealed a more innate role of the mitochondria in maintaining skin homeostasis and pigmentation, which are affected when the essential mitochondrial functions are impaired. Some common and rare skin disorders have a mitochondrial involvement and include dermal manifestations of primary mitochondrial diseases as well as congenital skin diseases caused by damaged mitochondria. With studies increasingly supporting the close association between mitochondria and skin health, its therapeutic targeting in the skin-either via an ATP production boost or free radical scavenging-has gained attention from clinicians and aestheticians alike. Numerous bioactive compounds have been identified that improve mitochondrial functions and have proved effective against aged and diseased skin. In this review, we discuss the essential role of mitochondria in regulating normal and abnormal skin physiology and the possibility of targeting this organelle in various skin disorders.
Collapse
Affiliation(s)
| | | | - Keshav K Singh
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
- Integartive Center For Aging Research and O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
24
|
Cilloni D, Ravera S, Calabrese C, Gaidano V, Niscola P, Balleari E, Gallo D, Petiti J, Signorino E, Rosso V, Panuzzo C, Sabatini F, Andreani G, Dragani M, Finelli C, Poloni A, Crugnola M, Voso MT, Fenu S, Pelizzari A, Santini V, Saglio G, Podestà M, Frassoni F. Iron overload alters the energy metabolism in patients with myelodysplastic syndromes: results from the multicenter FISM BIOFER study. Sci Rep 2020; 10:9156. [PMID: 32514107 PMCID: PMC7280296 DOI: 10.1038/s41598-020-66162-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 05/11/2020] [Indexed: 11/30/2022] Open
Abstract
Myelodysplastic syndromes (MDS) are hematological malignancies characterized by ineffective hematopoiesis and increased apoptosis in the bone marrow, which cause peripheral cytopenia. Mitochondria are key regulators of apoptosis and a site of iron accumulation that favors reactive oxygen species (ROS) production with detrimental effects on cell survival. Although the energy metabolism could represent an attractive therapeutic target, it was poorly investigated in MDS. The purpose of the study was to analyze how the presence of myelodysplastic hematopoiesis, iron overload and chelation impact on mitochondrial metabolism. We compared energy balance, OxPhos activity and efficiency, lactic dehydrogenase activity and lipid peroxidation in mononuclear cells (MNCs), isolated from 38 MDS patients and 79 healthy controls. Our data show that ATP/AMP ratio is reduced during aging and even more in MDS due to a decreased OxPhos activity associated with an increment of lipid peroxidation. Moreover, the lactate fermentation enhancement was observed in MDS and elderly subjects, probably as an attempt to restore the energy balance. The biochemical alterations of MNCs from MDS patients have been partially restored by the in vitro iron chelation, while only slight effects were observed in the age-matched control samples. By contrast, the addition of iron chelators on MNCs from young healthy subjects determined a decrement in the OxPhos efficiency and an increment of lactate fermentation and lipid peroxidation. In summary, MDS-MNCs display an altered energy metabolism associated with increased oxidative stress, due to iron accumulation. This condition could be partially restored by iron chelation.
Collapse
Affiliation(s)
- Daniela Cilloni
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy.
| | - Silvia Ravera
- Stem Cell and Cellular Therapy Laboratory, Institute G. Gaslini, Genova, Italy.,Department of Experimental Medicine, University of Genova, Genova, Italy
| | - Chiara Calabrese
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Valentina Gaidano
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | | | - Enrico Balleari
- Department of Haematology and Oncology, IRCCS AOU San Martino - IST, Genova, Italy
| | - Daniela Gallo
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Jessica Petiti
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Elisabetta Signorino
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Valentina Rosso
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Cristina Panuzzo
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Federica Sabatini
- Stem Cell and Cellular Therapy Laboratory, Institute G. Gaslini, Genova, Italy
| | - Giacomo Andreani
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Matteo Dragani
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Carlo Finelli
- Department of Haematology, S. Orsola-Malpighi Hospital, Bologna, Italy
| | | | - Monica Crugnola
- Division of Hematology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Maria Teresa Voso
- Department of Biomedicine and Prevention, Universita' Tor Vergata, Rome, Italy
| | - Susanna Fenu
- Haematology Department, San Giovanni-Addolorata Hospital, Rome, Italy
| | | | - Valeria Santini
- Department of Experimental and Clinical Medicine, Università degli Studi di Firenze, Florence, Italy
| | - Giuseppe Saglio
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Marina Podestà
- Stem Cell and Cellular Therapy Laboratory, Institute G. Gaslini, Genova, Italy
| | - Francesco Frassoni
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy.
| |
Collapse
|
25
|
Park KT, Han JK, Kim SJ, Lim YH. Gamma-Aminobutyric Acid Increases Erythropoietin by Activation of Citrate Cycle and Stimulation of Hypoxia-Inducible Factors Expression in Rats. Biomolecules 2020; 10:E595. [PMID: 32290638 PMCID: PMC7226430 DOI: 10.3390/biom10040595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/04/2020] [Accepted: 04/09/2020] [Indexed: 02/07/2023] Open
Abstract
Erythropoietin (EPO) is the primary regulator of erythropoiesis in the mammalian fetus and adult. Deficiency of EPO induces anemia. In this study, we investigated the effect of gamma-aminobutyric acid (GABA) on serum EPO levels and erythropoiesis in rats. Expression levels of Epo-related genes were measured by quantitative real-time PCR (qPCR) and expression of Epo and Epo receptor (Epor) proteins were measured by immunohistochemistry. The gene and protein expression profiles of kidney tissue in GABA-treated rats were evaluated by ribonucleic acid (RNA) sequencing and two-dimensional electrophoresis (2-DE), respectively. GABA significantly increased serum EPO levels and expression levels of Epo and Epor. GABA increased expression levels of hypoxia-inducible factor (Hif)-1 and Hif-2. Seven proteins with expression levels showing >2-fold change were identified by 2-DE followed by MALDI-TOF MS in GABA-treated rat kidney. The top KEGG pathway from the identified proteins was the tricarboxylic acid cycle, and nicotinamide adenine dinucleotide (NADH) dehydrogenase, succinate dehydrogenase, and isocitrate dehydrogenase were identified as key proteins. GABA treatment significantly increased ATP levels and NADH dehydrogenase activity in a dose-dependent manner. In conclusion, GABA shows a new physiological role in EPO production, and it can thus can contribute to the prevention of anemia when used alone or in combination with other anemia treating drugs.
Collapse
Affiliation(s)
- Keun-Tae Park
- Research and Development Center, Milae Bioresources Co., Ltd., Seoul 05836, Korea; (K.-T.P.); (J.-K.H.); (S.J.K.)
- Department of Integrated Biomedical and Life Sciences, College of Health Science, Korea University, Seoul 02841, Korea
| | - Jong-Kwon Han
- Research and Development Center, Milae Bioresources Co., Ltd., Seoul 05836, Korea; (K.-T.P.); (J.-K.H.); (S.J.K.)
| | - Seong Jin Kim
- Research and Development Center, Milae Bioresources Co., Ltd., Seoul 05836, Korea; (K.-T.P.); (J.-K.H.); (S.J.K.)
| | - Young-Hee Lim
- Department of Integrated Biomedical and Life Sciences, College of Health Science, Korea University, Seoul 02841, Korea
- Department of Public Health Science (BK21 PLUS Program), Graduate School, Korea University, Seoul 02841, Korea
- Department of Laboratory Medicine, Korea University Guro Hospital, Seoul 08308, Korea
| |
Collapse
|
26
|
Solanki A, Rajendran A, Mohan S, Raj R, Vundinti BR. Mitochondrial DNA variations and mitochondrial dysfunction in Fanconi anemia. PLoS One 2020; 15:e0227603. [PMID: 31940411 PMCID: PMC6961948 DOI: 10.1371/journal.pone.0227603] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 12/23/2019] [Indexed: 11/18/2022] Open
Abstract
In-vitro studies with different Fanconi anemia (FA) cell lines and FANC gene silenced cell lines indicating involvement of mitochondria function in pathogenesis of FA have been reported. However, in-vivo studies have not been studied so far to understand the role of mitochondrial markers in pathogenesis of FA. We have carried out a systematic set of biomarker studies for elucidating involvement of mitochondrial dysfunction in disease pathogenesis for Indian FA patients. We report changes in the mtDNA number in 59% of FA patients studied, a high frequency of mtDNA variations (37.5% of non-synonymous variations and 62.5% synonymous variations) and downregulation of mtDNA complex-I and complex-III encoding genes of OXPHOS (p<0.05) as strong biomarkers for impairment of mitochondrial functions in FA. Deregulation of expression of mitophagy genes (ATG; p>0.05, Beclin-1; p>0.05, and MAP1-LC3, p<0.05) has also been observed, suggesting inability of FA cells to clear off impaired mitochondria. We hypothesize that accumulation of such impaired mitochondria in FA cells therefore may be the principal cause for bone marrow failure (BMF) and a plausible effect of inefficient clearance of impaired mitochondria in FA.
Collapse
Affiliation(s)
- Avani Solanki
- Department of Cytogenetics, National Institute of Immunohaematology, K.E.M. Hospital Campus, Parel, Mumbai, Maharashtra, India
| | - Aruna Rajendran
- Department of Hematology, Institute of Child Health and Hospital for Children, Egmore, Chennai, Tamil Nadu, India
| | - Sheila Mohan
- Pediatric Haematology Department, Apollo Children’s Hospital, Chennai, Tamil Nadu, India
| | - Revathy Raj
- Pediatric Haematology Department, Apollo Children’s Hospital, Chennai, Tamil Nadu, India
| | - Babu Rao Vundinti
- Department of Cytogenetics, National Institute of Immunohaematology, K.E.M. Hospital Campus, Parel, Mumbai, Maharashtra, India
- * E-mail:
| |
Collapse
|
27
|
Chatla S, Du W, Wilson AF, Meetei AR, Pang Q. Fancd2-deficient hematopoietic stem and progenitor cells depend on augmented mitochondrial translation for survival and proliferation. Stem Cell Res 2019; 40:101550. [PMID: 31472450 PMCID: PMC6907690 DOI: 10.1016/j.scr.2019.101550] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 08/15/2019] [Accepted: 08/22/2019] [Indexed: 01/08/2023] Open
Abstract
Members of the Fanconi anemia (FA) protein family are involved in multiple cellular processes including response to DNA damage and oxidative stress. Here we show that a major FA protein, Fancd2, plays a role in mitochondrial biosynthesis through regulation of mitochondrial translation. Fancd2 interacts with Atad3 and Tufm, which are among the most frequently identified components of the mitochondrial nucleoid complex essential for mitochondrion biosynthesis. Deletion of Fancd2 in mouse hematopoietic stem and progenitor cells (HSPCs) leads to increase in mitochondrial number, and enzyme activity of mitochondrion-encoded respiratory complexes. Fancd2 deficiency increases mitochondrial protein synthesis and induces mitonuclear protein imbalance. Furthermore, Fancd2-deficient HSPCs show increased mitochondrial respiration and mitochondrial reactive oxygen species. By using a cell-free assay with mitochondria isolated from WT and Fancd2-KO HSPCs, we demonstrate that the increased mitochondrial protein synthesis observed in Fancd2-KO HSPCs was directly linked to augmented mitochondrial translation. Finally, Fancd2-deficient HSPCs are selectively sensitive to mitochondrial translation inhibition and depend on augmented mitochondrial translation for survival and proliferation. Collectively, these results suggest that Fancd2 restricts mitochondrial activity through regulation of mitochondrial translation, and that augmented mitochondrial translation and mitochondrial respiration may contribute to HSC defect and bone marrow failure in FA.
Collapse
Affiliation(s)
- Srinivas Chatla
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States of America.
| | - Wei Du
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV 26506, United States of America.
| | - Andrew F Wilson
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States of America.
| | - Amom Ruhikanta Meetei
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States of America; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, United States of America.
| | - Qishen Pang
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States of America; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, United States of America.
| |
Collapse
|
28
|
Calzia D, Ottaggio L, Cora A, Chiappori G, Cuccarolo P, Cappelli E, Izzotti A, Tavella S, Degan P. Characterization of C2C12 cells in simulated microgravity: Possible use for myoblast regeneration. J Cell Physiol 2019; 235:3508-3518. [PMID: 31549411 DOI: 10.1002/jcp.29239] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 09/03/2019] [Indexed: 12/31/2022]
Abstract
Muscle loss is a major problem for many in lifetime. Muscle and bone degeneration has also been observed in individuals exposed to microgravity and in unloading conditions. C2C12 myoblst cells are able to form myotubes, and myofibers and these cells have been employed for muscle regeneration purposes and in myogenic regeneration and transplantation studies. We exposed C2C12 cells in an random position machine to simulate microgravity and study the energy and the biochemical challenges associated with this treatment. Simulated microgravity exposed C2C12 cells maintain positive proliferation indices and delay the differentiation process for several days. On the other hand this treatment significantly alters many of the biochemical and the metabolic characteristics of the cell cultures including calcium homeostasis. Recent data have shown that these perturbations are due to the inhibition of the ryanodine receptors on the membranes of intracellular calcium stores. We were able to reverse this perturbations treating cells with thapsigargin which prevents the segregation of intracellular calcium ions in the mitochondria and in the sarco/endoplasmic reticula. Calcium homeostasis appear a key target of microgravity exposure. In conclusion, in this study we reported some of the effects induced by the exposure of C2C12 cell cultures to simulated microgravity. The promising information obtained is of fundamental importance in the hope to employ this protocol in the field of regenerative medicine.
Collapse
Affiliation(s)
- Daniela Calzia
- Department of Pharmacy (DIFAR), Biochemistry Laboratory, Univiversity of Genoa, Genoa, Italy
| | - Laura Ottaggio
- Mutagenesis and Preventive Oncology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Alessandro Cora
- Mutagenesis and Preventive Oncology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Giorgia Chiappori
- Mutagenesis and Preventive Oncology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Paola Cuccarolo
- Mutagenesis and Preventive Oncology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy.,Department of Rare Diseases, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Enrico Cappelli
- Department of Integrated Pediatric and Hemato-oncological Sciences, Haematology Unit, IRCCS Giannina Gaslini, Genoa, Italy
| | - Alberto Izzotti
- Mutagenesis and Preventive Oncology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy.,Department of Health Sciences, University of Genoa, Genoa, Italy
| | - Sara Tavella
- Department of Integrated Oncological Therapies, IRCCS Ospedale Policlinico San Martino, Genoa, Italy.,Department of Experimental Medicine (DIMES), Univiversity of Genoa, Genoa, Italy
| | - Paolo Degan
- Mutagenesis and Preventive Oncology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
29
|
Photobiomodulation with 808-nm diode laser light promotes wound healing of human endothelial cells through increased reactive oxygen species production stimulating mitochondrial oxidative phosphorylation. Lasers Med Sci 2018; 34:495-504. [DOI: 10.1007/s10103-018-2623-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 08/16/2018] [Indexed: 12/21/2022]
|
30
|
Thongon N, Zucal C, D'Agostino VG, Tebaldi T, Ravera S, Zamporlini F, Piacente F, Moschoi R, Raffaelli N, Quattrone A, Nencioni A, Peyron JF, Provenzani A. Cancer cell metabolic plasticity allows resistance to NAMPT inhibition but invariably induces dependence on LDHA. Cancer Metab 2018. [PMID: 29541451 PMCID: PMC5844108 DOI: 10.1186/s40170-018-0174-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background Inhibitors of nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme in NAD+ biosynthesis from nicotinamide, exhibit anticancer effects in preclinical models. However, continuous exposure to NAMPT inhibitors, such as FK866, can induce acquired resistance. Methods We developed FK866-resistant CCRF-CEM (T cell acute lymphoblastic leukemia) and MDA MB231 (breast cancer) models, and by exploiting an integrated approach based on genetic, biochemical, and genome wide analyses, we annotated the drug resistance mechanisms. Results Acquired resistance to FK866 was independent of NAMPT mutations but rather was based on a shift towards a glycolytic metabolism and on lactate dehydrogenase A (LDHA) activity. In addition, resistant CCRF-CEM cells, which exhibit high quinolinate phosphoribosyltransferase (QPRT) activity, also exploited amino acid catabolism as an alternative source for NAD+ production, becoming addicted to tryptophan and glutamine and sensitive to treatment with the amino acid transport inhibitor JPH203 and with l-asparaginase, which affects glutamine exploitation. Vice versa, in line with their low QPRT expression, FK866-resistant MDA MB231 did not rely on amino acids for their resistance phenotype. Conclusions Our study identifies novel mechanisms of resistance to NAMPT inhibition, which may be useful to design more rational strategies for targeting cancer metabolism.
Collapse
Affiliation(s)
- Natthakan Thongon
- 1Center For Integrative Biology (CIBIO), University of Trento, via Sommarive 9, Trento, Italy
| | - Chiara Zucal
- 1Center For Integrative Biology (CIBIO), University of Trento, via Sommarive 9, Trento, Italy
| | | | - Toma Tebaldi
- 1Center For Integrative Biology (CIBIO), University of Trento, via Sommarive 9, Trento, Italy
| | - Silvia Ravera
- 2Department of Pharmacy, Biochemistry Laboratory, University of Genova, Genova, Italy
| | - Federica Zamporlini
- 3Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | | | - Ruxanda Moschoi
- 5Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), INSERM U1065, Nice, France
| | - Nadia Raffaelli
- 3Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Alessandro Quattrone
- 1Center For Integrative Biology (CIBIO), University of Trento, via Sommarive 9, Trento, Italy
| | - Alessio Nencioni
- 4Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Jean-Francois Peyron
- 5Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), INSERM U1065, Nice, France
| | - Alessandro Provenzani
- 1Center For Integrative Biology (CIBIO), University of Trento, via Sommarive 9, Trento, Italy
| |
Collapse
|
31
|
Ravera S, Podestà M, Sabatini F, Fresia C, Columbaro M, Bruno S, Fulcheri E, Ramenghi LA, Frassoni F. Mesenchymal stem cells from preterm to term newborns undergo a significant switch from anaerobic glycolysis to the oxidative phosphorylation. Cell Mol Life Sci 2018; 75:889-903. [PMID: 28975370 PMCID: PMC11105169 DOI: 10.1007/s00018-017-2665-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 09/04/2017] [Accepted: 09/25/2017] [Indexed: 02/07/2023]
Abstract
We evaluated the energy metabolism of human mesenchymal stem cells (MSC) isolated from umbilical cord (UC) of preterm (< 37 weeks of gestational age) and term (≥ 37 weeks of gestational age) newborns, using MSC from adult bone marrow as control. A metabolic switch has been observed around the 34th week of gestational age from a prevalently anaerobic glycolysis to the oxidative phosphorylation. This metabolic change is associated with the organization of mitochondria reticulum: preterm MSCs presented a scarcely organized mitochondrial reticulum and low expression of proteins involved in the mitochondrial fission/fusion, compared to term MSCs. These changes seem governed by the expression of CLUH, a cytosolic messenger RNA-binding protein involved in the mitochondria biogenesis and distribution inside the cell; in fact, CLUH silencing in term MSC determined a metabolic fingerprint similar to that of preterm MSC. Our study discloses novel information on the production of energy and mitochondrial organization and function, during the passage from fetal to adult life, providing useful information for the management of preterm birth.
Collapse
Affiliation(s)
- Silvia Ravera
- Stem Cell Laboratory and Cell Therapy Center, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy.
| | - Marina Podestà
- Stem Cell Laboratory and Cell Therapy Center, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy
| | - Federica Sabatini
- Stem Cell Laboratory and Cell Therapy Center, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy
| | - Chiara Fresia
- Section of Biochemistry, Department of Experimental Medicine, University of Genoa, 16132, Genoa, Italy
| | - Marta Columbaro
- SC Laboratory of Musculoskeletal Cell Biology, IRCCS Rizzoli Orthopedic Institute, 40136, Bologna, Italy
| | - Silvia Bruno
- Section of Human Anatomy, Department of Experimental Medicine, University of Genoa, 16132, Genoa, Italy
| | - Ezio Fulcheri
- Laboratory Medicine and Diagnostic Services, Division of Perinatal Pathology, Department of Translational Research, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy
| | | | - Francesco Frassoni
- Stem Cell Laboratory and Cell Therapy Center, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy
| |
Collapse
|
32
|
Chun MJ, Kim S, Hwang SK, Kim BS, Kim HG, Choi HI, Kim JH, Goh SH, Lee CH. AMP-activated protein kinase is involved in the activation of the Fanconi anemia/BRCA pathway in response to DNA interstrand crosslinks. Oncotarget 2018; 7:53642-53653. [PMID: 27449087 PMCID: PMC5288211 DOI: 10.18632/oncotarget.10686] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 07/07/2016] [Indexed: 12/27/2022] Open
Abstract
Fanconi anemia complementation group (FANC) proteins constitute the Fanconi Anemia (FA)/BRCA pathway that is activated in response to DNA interstrand crosslinks (ICLs). We previously performed yeast two-hybrid screening to identify novel FANC-interacting proteins and discovered that the alpha subunit of AMP-activated protein kinase (AMPKα1) was a candidate binding partner of the FANCG protein, which is a component of the FA nuclear core complex. We confirmed the interaction between AMPKα and both FANCG using co-immunoprecipitation experiments. Additionally, we showed that AMPKα interacted with FANCA, another component of the FA nuclear core complex. AMPKα knockdown in U2OS cells decreased FANCD2 monoubiquitination and nuclear foci formation upon mitomycin C-induced ICLs. Furthermore, AMPKα knockdown enhanced cellular sensitivity to MMC. MMC treatment resulted in an increase in AMPKα phosphorylation/activation, indicating AMPK is involved in the cellular response to ICLs. FANCA was phosphorylated by AMPK at S347 and phosphorylation increased with MMC treatment. MMC-induced FANCD2 monoubiquitination and nuclear foci formation were compromised in a U2OS cell line that stably overexpressed the S347A mutant form of FANCA compared to wild-type FANCA-overexpressing cells, indicating a requirement for FANCA phosphorylation at S347 for proper activation of the FA/BRCA pathway. Our data suggest AMPK is involved in the activation of the FA/BRCA pathway.
Collapse
Affiliation(s)
- Min Jeong Chun
- Cancer Cell and Molecular Biology Branch, Research Institute, National Cancer Center, Ilsandong-gu, Goyang, Gyeonggi, 10408, Korea
| | - Sunshin Kim
- Precision Medicine Branch, Research Institute, National Cancer Center, Ilsandong-gu, Goyang, Gyeonggi, 10408, Korea
| | - Soo Kyung Hwang
- Cancer Cell and Molecular Biology Branch, Research Institute, National Cancer Center, Ilsandong-gu, Goyang, Gyeonggi, 10408, Korea
| | - Bong Sub Kim
- Cancer Cell and Molecular Biology Branch, Research Institute, National Cancer Center, Ilsandong-gu, Goyang, Gyeonggi, 10408, Korea
| | - Hyoun Geun Kim
- Cancer Cell and Molecular Biology Branch, Research Institute, National Cancer Center, Ilsandong-gu, Goyang, Gyeonggi, 10408, Korea
| | - Hae In Choi
- Cancer Cell and Molecular Biology Branch, Research Institute, National Cancer Center, Ilsandong-gu, Goyang, Gyeonggi, 10408, Korea
| | - Jong Heon Kim
- Cancer Cell and Molecular Biology Branch, Research Institute, National Cancer Center, Ilsandong-gu, Goyang, Gyeonggi, 10408, Korea
| | - Sung Ho Goh
- Precision Medicine Branch, Research Institute, National Cancer Center, Ilsandong-gu, Goyang, Gyeonggi, 10408, Korea
| | - Chang-Hun Lee
- Cancer Cell and Molecular Biology Branch, Research Institute, National Cancer Center, Ilsandong-gu, Goyang, Gyeonggi, 10408, Korea
| |
Collapse
|
33
|
Bottega R, Nicchia E, Cappelli E, Ravera S, De Rocco D, Faleschini M, Corsolini F, Pierri F, Calvillo M, Russo G, Casazza G, Ramenghi U, Farruggia P, Dufour C, Savoia A. Hypomorphic FANCA mutations correlate with mild mitochondrial and clinical phenotype in Fanconi anemia. Haematologica 2017; 103:417-426. [PMID: 29269525 PMCID: PMC5830397 DOI: 10.3324/haematol.2017.176131] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 12/14/2017] [Indexed: 11/16/2022] Open
Abstract
Fanconi anemia is a rare disease characterized by congenital malformations, aplastic anemia, and predisposition to cancer. Despite the consolidated role of the Fanconi anemia proteins in DNA repair, their involvement in mitochondrial function is emerging. The purpose of this work was to assess whether the mitochondrial phenotype, independent of genomic integrity, could correlate with patient phenotype. We evaluated mitochondrial and clinical features of 11 affected individuals homozygous or compound heterozygous for p.His913Pro and p.Arg951Gln/Trp, the two residues of FANCA that are more frequently affected in our cohort of patients. Although p.His913Pro and p.Arg951Gln proteins are stably expressed in cytoplasm, they are unable to migrate in the nucleus, preventing cells from repairing DNA. In these cells, the electron transfer between respiring complex I–III is reduced and the ATP/AMP ratio is impaired with defective ATP production and AMP accumulation. These activities are intermediate between those observed in wild-type and FANCA−/− cells, suggesting that the variants at residues His913 and Arg951 are hypomorphic mutations. Consistent with these findings, the clinical phenotype of most of the patients carrying these mutations is mild. These data further support the recent finding that the Fanconi anemia proteins play a role in mitochondria, and open up possibilities for genotype/phenotype studies based on novel mitochondrial criteria.
Collapse
Affiliation(s)
- Roberta Bottega
- Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, Italy
| | - Elena Nicchia
- Department of Medical Sciences, University of Trieste, Genoa, Italy
| | - Enrico Cappelli
- Clinical and Experimental Hematology Unit, "G. Gaslini" Children's Hospital, Genoa, Italy
| | - Silvia Ravera
- Department of Pharmacy (DIFAR), Biochemistry Lab, University of Genoa, Genoa, Italy
| | - Daniela De Rocco
- Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, Italy
| | - Michela Faleschini
- Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, Italy
| | - Fabio Corsolini
- U.O.S.D. Centro di Diagnostica Genetica e Biochimica delle Malattie Metaboliche, "G. Gaslini" Children's Hospital, Genoa, Italy
| | - Filomena Pierri
- Clinical and Experimental Hematology Unit, "G. Gaslini" Children's Hospital, Genoa, Italy
| | - Michaela Calvillo
- Clinical and Experimental Hematology Unit, "G. Gaslini" Children's Hospital, Genoa, Italy
| | - Giovanna Russo
- Oncology Hematology Pediatric Unit, "Policlinico - Vittorio Emanuele", University of Catania, Pisa, Italy
| | - Gabriella Casazza
- Pediatric Onco-Hematology, Azienda Ospedaliera/Universitaria Pisana, Pisa, Italy
| | - Ugo Ramenghi
- Department of Pediatric and Public Health Sciences, University of Torino, Palermo, Italy
| | - Piero Farruggia
- Pediatric Onco-Hematology, ARNAS Civico Hospital, Palermo, Italy
| | - Carlo Dufour
- Clinical and Experimental Hematology Unit, "G. Gaslini" Children's Hospital, Genoa, Italy
| | - Anna Savoia
- Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, Italy .,Department of Medical Sciences, University of Trieste, Genoa, Italy
| |
Collapse
|
34
|
Ravera S, Cossu V, Tappino B, Nicchia E, Dufour C, Cavani S, Sciutto A, Bolognesi C, Columbaro M, Degan P, Cappelli E. Concentration-dependent metabolic effects of metformin in healthy and Fanconi anemia lymphoblast cells. J Cell Physiol 2017; 233:1736-1751. [PMID: 28681917 DOI: 10.1002/jcp.26085] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 07/05/2017] [Indexed: 12/25/2022]
Abstract
Metformin (MET) is the drug of choice for patients with type 2 diabetes and has been proposed for use in cancer therapy and for treating other metabolic diseases. More than 14,000 studies have been published addressing the cellular mechanisms affected by MET. However, several in vitro studies have used concentrations of the drug 10-100-fold higher than the plasmatic concentration measured in patients. Here, we evaluated the biochemical, metabolic, and morphologic effects of various concentrations of MET. Moreover, we tested the effect of MET on Fanconi Anemia (FA) cells, a DNA repair genetic disease with defects in energetic and glucose metabolism, as well as on human promyelocytic leukemia (HL60) cell lines. We found that the response of wild-type cells to MET is concentration dependent. Low concentrations (15 and 150 µM) increase both oxidative phosphorylation and the oxidative stress response, acting on the AMPK/Sirt1 pathway, while the high concentration (1.5 mM) inhibits the respiratory chain, alters cell morphology, becoming toxic to the cells. In FA cells, MET was unable to correct the energetic/respiratory defect and did not improve the response to oxidative stress and DNA damage. By contrast, HL60 cells appear sensitive also at 150 μM. Our findings underline the importance of the MET concentration in evaluating the effect of this drug on cell metabolism and demonstrate that data obtained from in vitro experiments, that have used high concentrations of MET, cannot be readily translated into improving our understanding of the cellular effects of metformin when used in the clinical setting.
Collapse
Affiliation(s)
- Silvia Ravera
- Department of Pharmacy, Biochemistry Laboratory, University of Genova, Genova, Italy
| | - Vanessa Cossu
- Department of Pharmacy, Biochemistry Laboratory, University of Genova, Genova, Italy
| | - Barbara Tappino
- Centro di Diagnostica Genetica e Biochimica Delle Malattie Metaboliche, Istituto Giannina Gaslini, Genova, Italy
| | - Elena Nicchia
- Department of Medical Sciences University of Trieste, Trieste, Italy
| | - Carlo Dufour
- Hematology Unit, Istituto Giannina Gaslini, Genova, Italy
| | - Simona Cavani
- Laboratorio di Genetica Umana, E.O. Ospedali Galliera, Genova, Italy
| | - Andrea Sciutto
- Environmental Carcinogenesis Unit, Ospedale Policlinico San Martino, Genova, Italy
| | - Claudia Bolognesi
- Environmental Carcinogenesis Unit, Ospedale Policlinico San Martino, Genova, Italy
| | - Marta Columbaro
- SC Laboratory of Musculoskeletal Cell Biology, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Paolo Degan
- U.O. Mutagenesi e Prevenzione Oncologica, IRCCS AOU San Martino-IST (Istituto Nazionale per la Ricerca sul Cancro), Genova, Italy
| | | |
Collapse
|
35
|
Abu-Libdeh B, Douiev L, Amro S, Shahrour M, Ta-Shma A, Miller C, Elpeleg O, Saada A. Mutation in the COX4I1 gene is associated with short stature, poor weight gain and increased chromosomal breaks, simulating Fanconi anemia. Eur J Hum Genet 2017; 25:1142-1146. [PMID: 28766551 DOI: 10.1038/ejhg.2017.112] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 06/15/2017] [Accepted: 06/20/2017] [Indexed: 11/09/2022] Open
Abstract
We describe a novel autosomal recessive form of mitochondrial disease in a child with short stature, poor weight gain, and mild dysmorphic features with highly suspected Fanconi anemia due to a mutation in COX4I1 gene. Whole Exome Sequencing was performed then followed by Sanger confirmation, identified a K101N mutation in COX4I1, segregating with the disease. This nuclear gene encodes the common isoform of cytochrome c oxidase (COX) subunit 4 (COX 4-1), an integral regulatory part of COX (respiratory chain complex IV) the terminal electron acceptor of the mitochondrial respiratory chain. The patient's fibroblasts disclosed decreased COX activity, impaired ATP production, elevated ROS production, decreased expression of COX4I1 mRNA and undetectable (COX4) protein. COX activity and ATP production were restored by lentiviral transfection with the wild-type gene. Our results demonstrate the first human mutation in the COX4I1 gene linked to diseases and confirm its role in the pathogenesis. Thus COX4I1 mutations should be considered in any patient with features suggestive of this diagnosis.
Collapse
Affiliation(s)
- Bassam Abu-Libdeh
- Department of Pediatrics, Makassed Hospital and Al-Quds University, Jerusalem, Palestinian Authority
| | - Liza Douiev
- Monique and Jacques Roboh Department of Genetic Research, Hadassah, Hebrew University Medical Center, Jerusalem, Israel.,Department of Genetic and Metabolic Diseases, Hadassah, Hebrew University Medical Center, Jerusalem, Israel
| | - Sarah Amro
- Department of Pediatrics, Makassed Hospital and Al-Quds University, Jerusalem, Palestinian Authority
| | - Maher Shahrour
- Department of Pediatrics, Makassed Hospital and Al-Quds University, Jerusalem, Palestinian Authority
| | - Asaf Ta-Shma
- Monique and Jacques Roboh Department of Genetic Research, Hadassah, Hebrew University Medical Center, Jerusalem, Israel
| | - Chaya Miller
- Monique and Jacques Roboh Department of Genetic Research, Hadassah, Hebrew University Medical Center, Jerusalem, Israel.,Department of Genetic and Metabolic Diseases, Hadassah, Hebrew University Medical Center, Jerusalem, Israel
| | - Orly Elpeleg
- Monique and Jacques Roboh Department of Genetic Research, Hadassah, Hebrew University Medical Center, Jerusalem, Israel
| | - Ann Saada
- Monique and Jacques Roboh Department of Genetic Research, Hadassah, Hebrew University Medical Center, Jerusalem, Israel.,Department of Genetic and Metabolic Diseases, Hadassah, Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
36
|
Fancd2 in vivo interaction network reveals a non-canonical role in mitochondrial function. Sci Rep 2017; 7:45626. [PMID: 28378742 PMCID: PMC5381226 DOI: 10.1038/srep45626] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 03/01/2017] [Indexed: 11/09/2022] Open
Abstract
Fancd2 is a component of the Fanconi anemia (FA) DNA repair pathway, which is frequently found defective in human cancers. The full repertoire of Fancd2 functions in normal development and tumorigenesis remains to be determined. Here we developed a Flag- and hemagglutinin-tagged Fancd2 knock-in mouse strain that allowed a high throughput mass spectrometry approach to search for Fancd2-binding proteins in different mouse organs. In addition to DNA repair partners, we observed that many Fancd2-interacting proteins are mitochondrion-specific. Fancd2 localizes in the mitochondrion and associates with the nucleoid complex components Atad3 and Tufm. The Atad3-Tufm complex is disrupted in Fancd2-/- mice and those deficient for the FA core component Fanca. Fancd2 mitochondrial localization requires Atad3. Collectively, these findings provide evidence for Fancd2 as a crucial regulator of mitochondrion biosynthesis, and of a molecular link between FA and mitochondrial homeostasis.
Collapse
|
37
|
Defects in mitochondrial energetic function compels Fanconi Anaemia cells to glycolytic metabolism. Biochim Biophys Acta Mol Basis Dis 2017; 1863:1214-1221. [PMID: 28315453 DOI: 10.1016/j.bbadis.2017.03.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 03/09/2017] [Accepted: 03/13/2017] [Indexed: 11/20/2022]
Abstract
Energetic metabolism plays an essential role in the differentiation of haematopoietic stem cells (HSC). In Fanconi Anaemia (FA), DNA damage is accumulated during HSC differentiation, an event that is likely associated with bone marrow failure (BMF). One of the sources of the DNA damage is altered mitochondrial metabolism and an associated increment of oxidative stress. Recently, altered mitochondrial morphology and a deficit in the energetic activity in FA cells have been reported. Considering that mitochondria are the principal site of aerobic ATP production, we investigated FA metabolism in order to understand what pathways are able to compensate for this energy deficiency. In this work, we report that the impairment in mitochondrial oxidative phosphorylation (OXPHOS) in FA cells is countered by an increase in glycolytic flux. By contrast, glutaminolysis appears lower with respect to controls. Therefore, it is possible to conclude that in FA cells glycolysis represents the main pathway for producing energy, balancing the NADH/NAD+ ratio by the conversion of pyruvate to lactate. Finally, we show that a forced switch from glycolytic to OXPHOS metabolism increases FA cell oxidative stress. This could be the cause of the impoverishment in bone marrow HSC during exit from the homeostatic quiescent state. This is the first work that systematically explores FA energy metabolism, highlighting its flaws, and discusses the possible relationships between these defects and BMF.
Collapse
|
38
|
Degan P, Ravera S, Cappelli E. Why is an energy metabolic defect the common outcome in BMFS? Cell Cycle 2016; 15:2571-2575. [PMID: 27579499 PMCID: PMC5053575 DOI: 10.1080/15384101.2016.1218103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 07/21/2016] [Accepted: 07/25/2016] [Indexed: 12/31/2022] Open
Abstract
Inherited bone marrow failure syndromes (BMFS) are rare, distressing, inherited blood disorders of children. Although the genetic origin of these pathologies involves genes with different functions, all are associated with progressive haematopoietic impairment and an excessive risk of malignancies. Defects in energy metabolism induce oxidative stress, impaired energy production and an unbalanced ratio between ATP and AMP. This assumes an important role in self-renewal and differentiation in haematopoietic stem cells (HSC) and can play an important role in bone marrow failure. Defects in energetic/respiratory metabolism, in particular in FA and SDS cells, have been described recently and seem to be a pertinent argument in the discussion of the haematopoietic defect in BMFS, as an alternative to the hypotheses already established on this subject, which may shed new light on the evolution of these diseases.
Collapse
Affiliation(s)
- Paolo Degan
- S. C. Mutagenesis, IRCCS AOU San Martino – IST (Istituto Nazionale per la Ricerca sul Cancro), CBA Torre A2, Genova, Italy
| | - Silvia Ravera
- DIFAR-Biochemistry Lab., Department of Pharmacy, University of Genova, Genova, Italy
| | | |
Collapse
|
39
|
Impairment of extramitochondrial oxidative phosphorylation in mouse rod outer segments by blue light irradiation. Biochimie 2016; 125:171-8. [DOI: 10.1016/j.biochi.2016.03.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 03/30/2016] [Indexed: 01/30/2023]
|
40
|
Ravera S, Dufour C, Cesaro S, Bottega R, Faleschini M, Cuccarolo P, Corsolini F, Usai C, Columbaro M, Cipolli M, Savoia A, Degan P, Cappelli E. Evaluation of energy metabolism and calcium homeostasis in cells affected by Shwachman-Diamond syndrome. Sci Rep 2016; 6:25441. [PMID: 27146429 PMCID: PMC4857091 DOI: 10.1038/srep25441] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 04/12/2016] [Indexed: 02/07/2023] Open
Abstract
Isomorphic mutation of the SBDS gene causes Shwachman-Diamond syndrome (SDS). SDS is a rare genetic bone marrow failure and cancer predisposition syndrome. SDS cells have ribosome biogenesis and their protein synthesis altered, which are two high-energy consuming cellular processes. The reported changes in reactive oxygen species production, endoplasmic reticulum stress response and reduced mitochondrial functionality suggest an energy production defect in SDS cells. In our work, we have demonstrated that SDS cells display a Complex IV activity impairment, which causes an oxidative phosphorylation metabolism defect, with a consequent decrease in ATP production. These data were confirmed by an increased glycolytic rate, which compensated for the energetic stress. Moreover, the signalling pathways involved in glycolysis activation also appeared more activated; i.e. we reported AMP-activated protein kinase hyper-phosphorylation. Notably, we also observed an increase in a mammalian target of rapamycin phosphorylation and high intracellular calcium concentration levels ([Ca(2+)]i), which probably represent new biochemical equilibrium modulation in SDS cells. Finally, the SDS cell response to leucine (Leu) was investigated, suggesting its possible use as a therapeutic adjuvant to be tested in clinical trials.
Collapse
Affiliation(s)
- Silvia Ravera
- DIFAR-Biochemistry Lab., Department of Pharmacy, University of Genova, 16132 Genova, Italy
| | - Carlo Dufour
- Haematology Unit, Istituto Giannina Gaslini, 16148 Genova, Italy
| | - Simone Cesaro
- Oncoematologia Pediatrica, Azienda Ospedaleira universitaria Integrata, Verona, Italy
| | - Roberta Bottega
- Department of Medical Sciences, University of Trieste, Trieste, Italy
| | - Michela Faleschini
- Institute for Maternal and Child Health – IRCCS Burlo Garofolo, Trieste, Italy
| | - Paola Cuccarolo
- S. C. Mutagenesis, IRCCS AOU San Martino – IST (Istituto Nazionale per la Ricerca sul Cancro), CBA Torre A2, 16123 Genova, Italy
| | - Fabio Corsolini
- Centro Diagnostica Genetica e Biochimica Malattie Metaboliche, Istituto Giannina Gaslini, 16148 Genova, Italy
| | - Cesare Usai
- Institute of Biophysics, National Research Council, 16149 Genova, Italy
| | - Marta Columbaro
- SC Laboratory of Musculoskeletal Cell Biology, IOR, Bologna, Italy
| | - Marco Cipolli
- Cystic Fibrosis Centre, Azienda Ospedaliera Universitaria, Piazzale Stefani, 1-37126 Verona, Italy
| | - Anna Savoia
- Institute for Maternal and Child Health – IRCCS Burlo Garofolo, Trieste, Italy
- Department of Medical Sciences, University of Trieste, Trieste, Italy
| | - Paolo Degan
- S. C. Mutagenesis, IRCCS AOU San Martino – IST (Istituto Nazionale per la Ricerca sul Cancro), CBA Torre A2, 16123 Genova, Italy
| | - Enrico Cappelli
- Haematology Unit, Istituto Giannina Gaslini, 16148 Genova, Italy
| |
Collapse
|
41
|
Marini C, Ravera S, Buschiazzo A, Bianchi G, Orengo AM, Bruno S, Bottoni G, Emionite L, Pastorino F, Monteverde E, Garaboldi L, Martella R, Salani B, Maggi D, Ponzoni M, Fais F, Raffaghello L, Sambuceti G. Discovery of a novel glucose metabolism in cancer: The role of endoplasmic reticulum beyond glycolysis and pentose phosphate shunt. Sci Rep 2016; 6:25092. [PMID: 27121192 PMCID: PMC4848551 DOI: 10.1038/srep25092] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 04/07/2016] [Indexed: 12/25/2022] Open
Abstract
Cancer metabolism is characterized by an accelerated glycolytic rate facing reduced activity of oxidative phosphorylation. This “Warburg effect” represents a standard to diagnose and monitor tumor aggressiveness with 18F-fluorodeoxyglucose whose uptake is currently regarded as an accurate index of total glucose consumption. Studying cancer metabolic response to respiratory chain inhibition by metformin, we repeatedly observed a reduction of tracer uptake facing a marked increase in glucose consumption. This puzzling discordance brought us to discover that 18F-fluorodeoxyglucose preferentially accumulates within endoplasmic reticulum by exploiting the catalytic function of hexose-6-phosphate-dehydrogenase. Silencing enzyme expression and activity decreased both tracer uptake and glucose consumption, caused severe energy depletion and decreased NADPH content without altering mitochondrial function. These data document the existence of an unknown glucose metabolism triggered by hexose-6-phosphate-dehydrogenase within endoplasmic reticulum of cancer cells. Besides its basic relevance, this finding can improve clinical cancer diagnosis and might represent potential target for therapy.
Collapse
Affiliation(s)
- Cecilia Marini
- CNR Institute of Molecular Bioimaging and Physiology (IBFM), Milan, Section of Genoa, Genoa, Italy.,Nuclear Medicine Unit, Department of Health Sciences, University of Genoa and IRCCS AOU San Martino-IST, Genoa, Italy
| | | | - Ambra Buschiazzo
- Nuclear Medicine Unit, Department of Health Sciences, University of Genoa and IRCCS AOU San Martino-IST, Genoa, Italy
| | | | - Anna Maria Orengo
- Nuclear Medicine Unit, Department of Health Sciences, University of Genoa and IRCCS AOU San Martino-IST, Genoa, Italy
| | - Silvia Bruno
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Gianluca Bottoni
- Nuclear Medicine Unit, Department of Health Sciences, University of Genoa and IRCCS AOU San Martino-IST, Genoa, Italy
| | - Laura Emionite
- Animal facility, IRCCS AOU San Martino-IST, Genoa, Italy
| | | | - Elena Monteverde
- Nuclear Medicine Unit, Department of Health Sciences, University of Genoa and IRCCS AOU San Martino-IST, Genoa, Italy
| | - Lucia Garaboldi
- Nuclear Medicine Unit, Department of Health Sciences, University of Genoa and IRCCS AOU San Martino-IST, Genoa, Italy
| | | | - Barbara Salani
- Department of Internal Medicine, University of Genoa and IRCCS AOU San Martino-IST, Genoa, Italy
| | - Davide Maggi
- Department of Internal Medicine, University of Genoa and IRCCS AOU San Martino-IST, Genoa, Italy
| | - Mirco Ponzoni
- Laboratorio di Oncologia, IRCCS G. Gaslini, Genoa, Italy
| | - Franco Fais
- Department of Experimental Medicine, University of Genoa, Genoa, Italy.,Molecular Pathology, IRCCS AOU San Martino-IST, Genoa, Italy
| | | | - Gianmario Sambuceti
- Nuclear Medicine Unit, Department of Health Sciences, University of Genoa and IRCCS AOU San Martino-IST, Genoa, Italy
| |
Collapse
|
42
|
Bianchi G, Martella R, Ravera S, Marini C, Capitanio S, Orengo A, Emionite L, Lavarello C, Amaro A, Petretto A, Pfeffer U, Sambuceti G, Pistoia V, Raffaghello L, Longo VD. Fasting induces anti-Warburg effect that increases respiration but reduces ATP-synthesis to promote apoptosis in colon cancer models. Oncotarget 2016; 6:11806-19. [PMID: 25909219 PMCID: PMC4494906 DOI: 10.18632/oncotarget.3688] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 03/11/2015] [Indexed: 12/25/2022] Open
Abstract
Tumor chemoresistance is associated with high aerobic glycolysis rates and reduced oxidative phosphorylation, a phenomenon called "Warburg effect" whose reversal could impair the ability of a wide range of cancer cells to survive in the presence or absence of chemotherapy. In previous studies, Short-term-starvation (STS) was shown to protect normal cells and organs but to sensitize different cancer cell types to chemotherapy but the mechanisms responsible for these effects are poorly understood. We tested the cytotoxicity of Oxaliplatin (OXP) combined with a 48hour STS on the progression of CT26 colorectal tumors. STS potentiated the effects of OXP on the suppression of colon carcinoma growth and glucose uptake in both in vitro and in vivo models. In CT26 cells, STS down-regulated aerobic glycolysis, and glutaminolysis, while increasing oxidative phosphorylation. The STS-dependent increase in both Complex I and Complex II-dependent O(2) consumption was associated with increased oxidative stress and reduced ATP synthesis. Chemotherapy caused additional toxicity, which was associated with increased succinate/Complex II-dependent O(2) consumption, elevated oxidative stress and apoptosis .These findings indicate that the glucose and amino acid deficiency conditions imposed by STS promote an anti-Warburg effect characterized by increased oxygen consumption but failure to generate ATP, resulting in oxidative damage and apoptosis.
Collapse
Affiliation(s)
| | | | - Silvia Ravera
- Department of Pharmacy, University of Genoa, Genova, Italy
| | - Cecilia Marini
- CNR Institute of Bioimages and Molecular Physiology, Milan, Section of Genoa, Genoa, Italy
| | - Selene Capitanio
- Nuclear Medicine Unit, Department of Health Sciences, University of Genoa and IRCCS AOU San Martino - IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Annamaria Orengo
- Nuclear Medicine Unit, Department of Health Sciences, University of Genoa and IRCCS AOU San Martino - IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Laura Emionite
- Animal facility, IRCCS AOU San Martino - IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | | | - Adriana Amaro
- Functional Genomics, IRCCS AOU San Martino - IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | | | - Ulrich Pfeffer
- Functional Genomics, IRCCS AOU San Martino - IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Gianmario Sambuceti
- Nuclear Medicine Unit, Department of Health Sciences, University of Genoa and IRCCS AOU San Martino - IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Vito Pistoia
- Laboratorio di Oncologia Istituto G. Gaslini, Genoa, Italy
| | | | - Valter D Longo
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA.,Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,IFOM, FIRC Institute of Molecular Oncology, Milan, Italy
| |
Collapse
|
43
|
Dong H, Nebert DW, Bruford EA, Thompson DC, Joenje H, Vasiliou V. Update of the human and mouse Fanconi anemia genes. Hum Genomics 2015; 9:32. [PMID: 26596371 PMCID: PMC4657327 DOI: 10.1186/s40246-015-0054-y] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Accepted: 11/10/2015] [Indexed: 12/24/2022] Open
Abstract
Fanconi anemia (FA) is a recessively inherited disease manifesting developmental abnormalities, bone marrow failure, and increased risk of malignancies. Whereas FA has been studied for nearly 90 years, only in the last 20 years have increasing numbers of genes been implicated in the pathogenesis associated with this genetic disease. To date, 19 genes have been identified that encode Fanconi anemia complementation group proteins, all of which are named or aliased, using the root symbol “FANC.” Fanconi anemia subtype (FANC) proteins function in a common DNA repair pathway called “the FA pathway,” which is essential for maintaining genomic integrity. The various FANC mutant proteins contribute to distinct steps associated with FA pathogenesis. Herein, we provide a review update of the 19 human FANC and their mouse orthologs, an evolutionary perspective on the FANC genes, and the functional significance of the FA DNA repair pathway in association with clinical disorders. This is an example of a set of genes––known to exist in vertebrates, invertebrates, plants, and yeast––that are grouped together on the basis of shared biochemical and physiological functions, rather than evolutionary phylogeny, and have been named on this basis by the HUGO Gene Nomenclature Committee (HGNC).
Collapse
Affiliation(s)
- Hongbin Dong
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College St, New Haven, CT, 06250, USA
| | - Daniel W Nebert
- Department of Environmental Health and Center for Environmental Genetics, University Cincinnati Medical Center, Cincinnati, OH, 45267-0056, USA
| | - Elspeth A Bruford
- HUGO Gene Nomenclature Committee (HGNC), European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Hinxton, CB10 1SD, UK
| | - David C Thompson
- Department of Clinical Practice, University of Colorado Denver, Aurora, CO, 80045, USA
| | - Hans Joenje
- Department of Clinical Genetics and the Cancer Center Amsterdam/VUmc Institute for Cancer and Immunology, VU University Medical Center, NL-1081 BT, Amsterdam, The Netherlands
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College St, New Haven, CT, 06250, USA.
| |
Collapse
|
44
|
Pagano G, d'Ischia M, Pallardó FV. Fanconi anemia (FA) and crosslinker sensitivity: Re-appraising the origins of FA definition. Pediatr Blood Cancer 2015; 62:1137-43. [PMID: 25732180 DOI: 10.1002/pbc.25452] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 01/12/2015] [Indexed: 11/06/2022]
Abstract
The commonly accepted definition of Fanconi anemia (FA) relying on DNA repair deficiency is submitted to a critical review starting from the early reports pointing to mitomycin C bioactivation and to the toxicity mechanisms of diepoxybutane and a group of nitrogen mustards causing DNA crosslinks in FA cells. A critical analysis of the literature prompts revisiting the FA phenotype and crosslinker sensitivity in terms of an oxidative stress (OS) background, redox-related anomalies of FA (FANC) proteins, and mitochondrial dysfunction. This re-appraisal of FA basic defect might lead to innovative approaches both in elucidating FA phenotypes and in clinical management.
Collapse
Affiliation(s)
- Giovanni Pagano
- Istituto Nazionale Tumori Fondazione G. Pascale-Cancer Research Center at Mercogliano (CROM), Mercogliano (AV), Italy
| | - Marco d'Ischia
- Department of Chemical Sciences, University of Naples "Federico II,", Naples, Italy
| | - Federico V Pallardó
- University of Valencia-INCLIVA, CIBERER (Centro de Investigación Biomédica en Red de Enfermedades Raras), Valencia, Spain
| |
Collapse
|
45
|
Ravera S, Capanni C, Tognotti D, Bottega R, Columbaro M, Dufour C, Cappelli E, Degan P. Inhibition of metalloproteinase activity in FANCA is linked to altered oxygen metabolism. J Cell Physiol 2015; 230:603-9. [PMID: 25161103 DOI: 10.1002/jcp.24778] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 08/18/2014] [Indexed: 01/03/2023]
Abstract
Bone marrow (BM) failure, increased risk of myelodysplastic syndrome, acute leukaemia and solid tumors, endocrinopathies and congenital abnormalities are the major clinical problems in Fanconi anemia patients (FA). Chromosome instability and DNA repair defects are the cellular characteristics used for the clinical diagnosis. However, these biological defects are not sufficient to explain all the clinical phenotype of FA patients. The known defects are structural alteration in cell cytoskeleton, altered structural organization for intermediate filaments, nuclear lamina, and mitochondria. These are associated with different expression and/or maturation of the structural proteins vimentin, mitofilin, and lamin A/C suggesting the involvement of metalloproteinases (MPs). Matrix metalloproteinases (MMP) are involved in normal physiological processes such as human skeletal tissue development, maturation, and hematopoietic reconstitution after bone marrow suppression. Current observations upon the eventual role of MPs in FA cells are largely inconclusive. We evaluated the overall MPs activity in FA complementation group A (FANCA) cells by exposing them to the antioxidants N-acetyl cysteine (NAC) and resveratrol (RV). This work supports the hypothesis that treatment of Fanconi patients with antioxidants may be important in FA therapy.
Collapse
Affiliation(s)
- Silvia Ravera
- DIFAR-Biochemistry Lab., Department of Pharmacology, University of Genova, Genova, Italy
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Dysregulated Ca2+ homeostasis in Fanconi anemia cells. Sci Rep 2015; 5:8088. [PMID: 25627108 PMCID: PMC4308711 DOI: 10.1038/srep08088] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 12/15/2014] [Indexed: 01/03/2023] Open
Abstract
Fanconi Anemia (FA) is a rare and complex inherited blood disorder associated with bone marrow failure and malignancies. Many alterations in FA physiology appear linked to red-ox unbalance including alterations in the morphology and structure of nuclei, intermediate filaments and mitochondria, defective respiration, reduced ATP production and altered ATP/AMP ratio. These defects are consistently associated with impaired oxygen metabolism indeed treatment with antioxidants N-acetylcysteine (NAC) and resveratrol (RV) does rescue FA physiology. Due to the importance of the intracellular calcium signaling and its key function in the control of intracellular functions we were interested to study calcium homeostasis in FA. We found that FANCA cells display a dramatically low intracellular calcium concentration ([Ca2+]i) in resting conditions. This condition affects cellular responses to stress. The flux of Ca2+ mobilized by H2O2 from internal stores is significantly lower in FANCA cells in comparison to controls. The low basal [Ca2+]i in FANCA appears to be an actively maintained process controlled by a finely tuned interplay between different intracellular Ca2+ stores. The defects associated with the altered Ca2+ homeostasis appear consistently overlapping those related to the unbalanced oxidative metabolism in FA cells underlining a contiguity between oxidative stress and calcium homeostasis.
Collapse
|
47
|
Feichtinger RG, Sperl W, Bauer JW, Kofler B. Mitochondrial dysfunction: a neglected component of skin diseases. Exp Dermatol 2014; 23:607-14. [PMID: 24980550 DOI: 10.1111/exd.12484] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2014] [Indexed: 12/20/2022]
Abstract
Aberrant mitochondrial structure and function influence tissue homeostasis and thereby contribute to multiple human disorders and ageing. Ten per cent of patients with primary mitochondrial disorders present skin manifestations that can be categorized into hair abnormalities, rashes, pigmentation abnormalities and acrocyanosis. Less attention has been paid to the fact that several disorders of the skin are linked to alterations of mitochondrial energy metabolism. This review article summarizes the contribution of mitochondrial pathology to both common and rare skin diseases. We explore the intriguing observation that a wide array of skin disorders presents with primary or secondary mitochondrial pathology and that a variety of molecular defects can cause dysfunctional mitochondria. Among them are mutations in mitochondrial- and nuclear DNA-encoded subunits and assembly factors of oxidative phosphorylation (OXPHOS) complexes; mutations in intermediate filament proteins involved in linking, moving and shaping of mitochondria; and disorders of mitochondrial DNA metabolism, fatty acid metabolism and heme synthesis. Thus, we assume that mitochondrial involvement is the rule rather than the exception in skin diseases. We conclude the article by discussing how improving mitochondrial function can be beneficial for aged skin and can be used as an adjunct therapy for certain skin disorders. Consideration of mitochondrial energy metabolism in the skin creates a new perspective for both dermatologists and experts in metabolic disease.
Collapse
Affiliation(s)
- René G Feichtinger
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | | | | | | |
Collapse
|
48
|
Treatment of FANCA cells with resveratrol and N-acetylcysteine: a comparative study. PLoS One 2014; 9:e104857. [PMID: 25126945 PMCID: PMC4134242 DOI: 10.1371/journal.pone.0104857] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 07/17/2014] [Indexed: 01/26/2023] Open
Abstract
Fanconi anemia (FA) is a genetic disorder characterised by chromosome instability, cytokine ipersensibility, bone marrow failure and abnormal haematopoiesis associated with acute myelogenous leukemia. Recent reports are contributing to characterize the peculiar FA metabolism. Central to these considerations appears that cells from complementation group A (FANCA) display an altered red-ox metabolism. Consequently the possibility to improve FA phenotypical conditions with antioxidants is considered. We have characterized from the structural and biochemical point of view the response of FANCA lymphocytes to N-acetyl-cysteine (NAC) and resveratrol (RV). Surprisingly both NAC and RV failed to revert all the characteristic of FA phenotype and moreover their effects are not super imposable. Our data suggest that we must be aware of the biological effects coming from antioxidant treatment.
Collapse
|
49
|
High-risk human papillomavirus E6 protein promotes reprogramming of Fanconi anemia patient cells through repression of p53 but does not allow for sustained growth of induced pluripotent stem cells. J Virol 2014; 88:11315-26. [PMID: 25031356 DOI: 10.1128/jvi.01533-14] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
UNLABELLED DNA repair plays a crucial role in embryonic and somatic stem cell biology and cell reprogramming. The Fanconi anemia (FA) pathway, which promotes error-free repair of DNA double-strand breaks, is required for somatic cell reprogramming to induced pluripotent stem cells (iPSC). Thus, cells from Fanconi anemia patients, which lack this critical pathway, fail to be reprogrammed to iPSC under standard conditions unless the defective FA gene is complemented. In this study, we utilized the oncogenes of high-risk human papillomavirus 16 (HPV16) to overcome the resistance of FA patient cells to reprogramming. We found that E6, but not E7, recovers FA iPSC colony formation and, furthermore, that p53 inhibition is necessary and sufficient for this activity. The iPSC colonies resulting from each of these approaches stained positive for alkaline phosphatase, NANOG, and Tra-1-60, indicating that they were fully reprogrammed into pluripotent cells. However, FA iPSC were incapable of outgrowth into stable iPSC lines regardless of p53 suppression, whereas their FA-complemented counterparts grew efficiently. Thus, we conclude that the FA pathway is required for the growth of iPSC beyond reprogramming and that p53-independent mechanisms are involved. IMPORTANCE A novel approach is described whereby HPV oncogenes are used as tools to uncover DNA repair-related molecular mechanisms affecting somatic cell reprogramming. The findings indicate that p53-dependent mechanisms block FA cells from reprogramming but also uncover a previously unrecognized defect in FA iPSC proliferation independent of p53.
Collapse
|
50
|
Pagano G, Aiello Talamanca A, Castello G, Cordero MD, d'Ischia M, Gadaleta MN, Pallardó FV, Petrović S, Tiano L, Zatterale A. Oxidative stress and mitochondrial dysfunction across broad-ranging pathologies: toward mitochondria-targeted clinical strategies. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:541230. [PMID: 24876913 PMCID: PMC4024404 DOI: 10.1155/2014/541230] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 02/24/2014] [Indexed: 02/07/2023]
Abstract
Beyond the disorders recognized as mitochondrial diseases, abnormalities in function and/or ultrastructure of mitochondria have been reported in several unrelated pathologies. These encompass ageing, malformations, and a number of genetic or acquired diseases, as diabetes and cardiologic, haematologic, organ-specific (e.g., eye or liver), neurologic and psychiatric, autoimmune, and dermatologic disorders. The mechanistic grounds for mitochondrial dysfunction (MDF) along with the occurrence of oxidative stress (OS) have been investigated within the pathogenesis of individual disorders or in groups of interrelated disorders. We attempt to review broad-ranging pathologies that involve mitochondrial-specific deficiencies or rely on cytosol-derived prooxidant states or on autoimmune-induced mitochondrial damage. The established knowledge in these subjects warrants studies aimed at elucidating several open questions that are highlighted in the present review. The relevance of OS and MDF in different pathologies may establish the grounds for chemoprevention trials aimed at compensating OS/MDF by means of antioxidants and mitochondrial nutrients.
Collapse
Affiliation(s)
- Giovanni Pagano
- Cancer Research Centre at Mercogliano (CROM), Istituto Nazionale Tumori Fondazione G. Pascale-IRCCS, 80131 Naples, Italy
| | - Annarita Aiello Talamanca
- Cancer Research Centre at Mercogliano (CROM), Istituto Nazionale Tumori Fondazione G. Pascale-IRCCS, 80131 Naples, Italy
| | - Giuseppe Castello
- Cancer Research Centre at Mercogliano (CROM), Istituto Nazionale Tumori Fondazione G. Pascale-IRCCS, 80131 Naples, Italy
| | - Mario D. Cordero
- Research Laboratory, Dental School, Sevilla University, 41009 Sevilla, Spain
| | - Marco d'Ischia
- Department of Chemical Sciences, Federico II University, 80126 Naples, Italy
| | - Maria Nicola Gadaleta
- National Research Council, Institute of Biomembranes and Bioenergetics, 70126 Bari, Italy
| | | | - Sandra Petrović
- “Vinca” Institute of Nuclear Sciences, University of Belgrade, 11070 Belgrade, Serbia
| | - Luca Tiano
- Department of Clinical and Dental Sciences, Polytechnical University of Marche, 60100 Ancona, Italy
| | | |
Collapse
|