1
|
Zulkefli N, Che Zahari CNM, Sayuti NH, Kamarudin AA, Saad N, Hamezah HS, Bunawan H, Baharum SN, Mediani A, Ahmed QU, Ismail AFH, Sarian MN. Flavonoids as Potential Wound-Healing Molecules: Emphasis on Pathways Perspective. Int J Mol Sci 2023; 24:ijms24054607. [PMID: 36902038 PMCID: PMC10003005 DOI: 10.3390/ijms24054607] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/21/2023] [Accepted: 01/25/2023] [Indexed: 03/02/2023] Open
Abstract
Wounds are considered to be a serious problem that affects the healthcare sector in many countries, primarily due to diabetes and obesity. Wounds become worse because of unhealthy lifestyles and habits. Wound healing is a complicated physiological process that is essential for restoring the epithelial barrier after an injury. Numerous studies have reported that flavonoids possess wound-healing properties due to their well-acclaimed anti-inflammatory, angiogenesis, re-epithelialization, and antioxidant effects. They have been shown to be able to act on the wound-healing process via expression of biomarkers respective to the pathways that mainly include Wnt/β-catenin, Hippo, Transforming Growth Factor-beta (TGF-β), Hedgehog, c-Jun N-Terminal Kinase (JNK), NF-E2-related factor 2/antioxidant responsive element (Nrf2/ARE), Nuclear Factor Kappa B (NF-κB), MAPK/ERK, Ras/Raf/MEK/ERK, phosphatidylinositol 3-kinase (PI3K)/Akt, Nitric oxide (NO) pathways, etc. Hence, we have compiled existing evidence on the manipulation of flavonoids towards achieving skin wound healing, together with current limitations and future perspectives in support of these polyphenolic compounds as safe wound-healing agents, in this review.
Collapse
Affiliation(s)
- Nabilah Zulkefli
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | | | - Nor Hafiza Sayuti
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Ammar Akram Kamarudin
- UKM Molecular Biology Institute (UMBI), UKM Medical Center, Kuala Lumpur 56000, Selangor, Malaysia
| | - Norazalina Saad
- Laboratory of Cancer Research UPM-MAKNA (CANRES), Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Hamizah Shahirah Hamezah
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Hamidun Bunawan
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Syarul Nataqain Baharum
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Ahmed Mediani
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Qamar Uddin Ahmed
- Drug Discovery and Synthetic Chemistry Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Pahang, Malaysia
| | - Ahmad Fahmi Harun Ismail
- Kulliyyah of Allied Health Sciences, International Islamic University Malaysia, Kuantan 25200, Pahang, Malaysia
- Correspondence: (A.F.H.I.); (M.N.S.)
| | - Murni Nazira Sarian
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
- Correspondence: (A.F.H.I.); (M.N.S.)
| |
Collapse
|
2
|
Monteiro CJP, Neves MGPMS, Nativi C, Almeida A, Faustino MAF. Porphyrin Photosensitizers Grafted in Cellulose Supports: A Review. Int J Mol Sci 2023; 24:3475. [PMID: 36834886 PMCID: PMC9967812 DOI: 10.3390/ijms24043475] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
Cellulose is the most abundant natural biopolymer and owing to its compatibility with biological tissues, it is considered a versatile starting material for developing new and sustainable materials from renewable resources. With the advent of drug-resistance among pathogenic microorganisms, recent strategies have focused on the development of novel treatment options and alternative antimicrobial therapies, such as antimicrobial photodynamic therapy (aPDT). This approach encompasses the combination of photoactive dyes and harmless visible light, in the presence of dioxygen, to produce reactive oxygen species that can selectively kill microorganisms. Photosensitizers for aPDT can be adsorbed, entrapped, or linked to cellulose-like supports, providing an increase in the surface area, with improved mechanical strength, barrier, and antimicrobial properties, paving the way to new applications, such as wound disinfection, sterilization of medical materials and surfaces in different contexts (industrial, household and hospital), or prevention of microbial contamination in packaged food. This review will report the development of porphyrinic photosensitizers supported on cellulose/cellulose derivative materials to achieve effective photoinactivation. A brief overview of the efficiency of cellulose based photoactive dyes for cancer, using photodynamic therapy (PDT), will be also discussed. Particular attention will be devoted to the synthetic routes behind the preparation of the photosensitizer-cellulose functional materials.
Collapse
Affiliation(s)
- Carlos J. P. Monteiro
- LAQV-Requimte and Department of Chemistry, University of Aveiro, 3010-193 Aveiro, Portugal
| | | | - Cristina Nativi
- Department of Chemistry “Ugo Schiff”, University of Florence, via della Lastruccia, 3-13, 50019 Sesto Fiorentino, Italy
| | - Adelaide Almeida
- CESAM and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | | |
Collapse
|
3
|
Jorgensen AM, Mahajan N, Atala A, Murphy SV. Advances in Skin Tissue Engineering and Regenerative Medicine. J Burn Care Res 2023; 44:S33-S41. [PMID: 36567474 PMCID: PMC9790899 DOI: 10.1093/jbcr/irac126] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
There are an estimated 500,000 patients treated with full-thickness wounds in the United States every year. Fire-related burn injuries are among the most common and devastating types of wounds that require advanced clinical treatment. Autologous split-thickness skin grafting is the clinical gold standard for the treatment of large burn wounds. However, skin grafting has several limitations, particularly in large burn wounds, where there may be a limited area of non-wounded skin to use for grafting. Non-cellular dermal substitutes have been developed but have their own challenges; they are expensive to produce, may require immunosuppression depending on design and allogenic cell inclusion. There is a need for more advanced treatments for devastating burns and wounds. This manuscript provides a brief overview of some recent advances in wound care, including the use of advanced biomaterials, cell-based therapies for wound healing, biological skin substitutes, biological scaffolds, spray on skin and skin bioprinting. Finally, we provide insight into the future of wound care and technological areas that need to be addressed to support the development and incorporation of these technologies.
Collapse
Affiliation(s)
- Adam M Jorgensen
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston Salem, North Carolina, USA
| | - Naresh Mahajan
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston Salem, North Carolina, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston Salem, North Carolina, USA
| | - Sean V Murphy
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston Salem, North Carolina, USA
| |
Collapse
|
4
|
Zamboni F, Wong CK, Collins MN. Hyaluronic acid association with bacterial, fungal and viral infections: Can hyaluronic acid be used as an antimicrobial polymer for biomedical and pharmaceutical applications? Bioact Mater 2023; 19:458-473. [PMID: 35574061 PMCID: PMC9079116 DOI: 10.1016/j.bioactmat.2022.04.023] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/05/2022] [Accepted: 04/23/2022] [Indexed: 12/21/2022] Open
Abstract
The relationships between hyaluronic acid (HA) and pathological microorganisms incite new understandings on microbial infection, tissue penetration, disease progression and lastly, potential treatments. These understandings are important for the advancement of next generation antimicrobial therapeutical strategies for the control of healthcare-associated infections. Herein, this review will focus on the interplay between HA, bacteria, fungi, and viruses. This review will also comprehensively detail and discuss the antimicrobial activity displayed by various HA molecular weights for a variety of biomedical and pharmaceutical applications, including microbiology, pharmaceutics, and tissue engineering.
Collapse
Affiliation(s)
- Fernanda Zamboni
- Bernal Institute, School of Engineering, University of Limerick, Ireland
- Health Research Institute, University of Limerick, Ireland
| | - Chun Kwok Wong
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Maurice N. Collins
- Bernal Institute, School of Engineering, University of Limerick, Ireland
- Health Research Institute, University of Limerick, Ireland
| |
Collapse
|
5
|
Santra M, Liu YC, Jhanji V, Yam GHF. Human SMILE-Derived Stromal Lenticule Scaffold for Regenerative Therapy: Review and Perspectives. Int J Mol Sci 2022; 23:ijms23147967. [PMID: 35887309 PMCID: PMC9315730 DOI: 10.3390/ijms23147967] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/10/2022] [Accepted: 07/18/2022] [Indexed: 12/13/2022] Open
Abstract
A transparent cornea is paramount for vision. Corneal opacity is one of the leading causes of blindness. Although conventional corneal transplantation has been successful in recovering patients’ vision, the outcomes are challenged by a global lack of donor tissue availability. Bioengineered corneal tissues are gaining momentum as a new source for corneal wound healing and scar management. Extracellular matrix (ECM)-scaffold-based engineering offers a new perspective on corneal regenerative medicine. Ultrathin stromal laminar tissues obtained from lenticule-based refractive correction procedures, such as SMall Incision Lenticule Extraction (SMILE), are an accessible and novel source of collagen-rich ECM scaffolds with high mechanical strength, biocompatibility, and transparency. After customization (including decellularization), these lenticules can serve as an acellular scaffold niche to repopulate cells, including stromal keratocytes and stem cells, with functional phenotypes. The intrastromal transplantation of these cell/tissue composites can regenerate native-like corneal stromal tissue and restore corneal transparency. This review highlights the current status of ECM-scaffold-based engineering with cells, along with the development of drug and growth factor delivery systems, and elucidates the potential uses of stromal lenticule scaffolds in regenerative therapeutics.
Collapse
Affiliation(s)
- Mithun Santra
- Corneal Regeneration Laboratory, Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (M.S.); (V.J.)
| | - Yu-Chi Liu
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore 169856, Singapore;
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Vishal Jhanji
- Corneal Regeneration Laboratory, Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (M.S.); (V.J.)
| | - Gary Hin-Fai Yam
- Corneal Regeneration Laboratory, Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (M.S.); (V.J.)
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore 169856, Singapore;
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Correspondence:
| |
Collapse
|
6
|
NANOCOMPOSITES BASED ON SINGLECOMPONENT AND MULTICOMPONENT POLYMER MATRICES FOR BIOMEDICAL APPLICATIONS. Polym J 2022. [DOI: 10.15407/polymerj.44.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The review is devoted to analysis of the publications in the area of polymers of biomedical applications. Different types of the polymer matrices for drug delivery are analyzed, including polyurethanes, hydroxyacrylates, and multicomponent polymer matrices, which created by method of interpenetrating polymer networks. Particular attention is paid to description of synthesized and investigated nanocomposites based on polyurethane / poly (2-hydroxyethyl methacrylate) polymer matrix and nanooxides modified by biologically active compounds.
Collapse
|
7
|
Yadav LR, Balagangadharan K, Lavanya K, Selvamurugan N. Orsellinic acid-loaded chitosan nanoparticles in gelatin/nanohydroxyapatite scaffolds for bone formation in vitro. Life Sci 2022; 299:120559. [PMID: 35447131 DOI: 10.1016/j.lfs.2022.120559] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 11/29/2022]
Abstract
AIM Orsellinic acid (2,4-Dimethoxy-6-methylbenzoic acid) (OA) is a hydrophobic polyphenolic compound with therapeutic potential, but its impact on actuating osteogenesis remains unknown. The bioavailability of OA is hampered by its hydrophobic nature. This study aimed to fabricate nano-drug delivery system-based scaffolds for OA and test its potential for osteogenesis in vitro. MATERIALS AND METHODS OA was loaded into chitosan nanoparticles (nCS + OA) using the ionic gelation technique at different concentrations. nCS + OA were incorporated onto the scaffolds containing gelatin (Gel) and nanohydroxyapatite (nHAp) by the lyophilization method. Biocomposite scaffolds were examined for their physicochemical and material characteristic properties. The effect of OA in the scaffolds for osteoblast differentiation was determined by alizarin red and von Kossa staining at the cellular level and by reverse transcriptase-qPCR and western blot analysis at the molecular level. KEY FINDINGS The scaffolds showed excellent physiochemical and material characteristics and remained cyto-friendly to mouse mesenchymal stem cells (mMSCs, C3H10T1/2). The release of OA from Gel/nHAp/nCS scaffolds enhanced the differentiation of mMSCs towards osteoblasts, as observed through cellular and molecular studies. Moreover, the osteogenic potential of OA was mediated by the activation of FAK and ERK signaling pathways through integrins. SIGNIFICANCE The inclusion of OA into Gel/nHAp/nCS biocomposite scaffolds at 80 μM concentration promoted osteoblast differentiation via cell adhesion mediated signaling, compared with that shown by Gel/nHAp/nCS alone. Overall, this study identified the potential therapeutic OA containing Gel/nHAp/nCS scaffolds, accelerating its potential for clinical application towards bone regeneration.
Collapse
Affiliation(s)
- L Roshini Yadav
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - K Balagangadharan
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - K Lavanya
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - N Selvamurugan
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
| |
Collapse
|
8
|
Cui C, Sun S, Li X, Chen S, Wu S, Zhou F, Ma J. Optimizing the chitosan-PCL based membranes with random/aligned fiber structure for controlled ciprofloxacin delivery and wound healing. Int J Biol Macromol 2022; 205:500-510. [PMID: 35218801 DOI: 10.1016/j.ijbiomac.2022.02.118] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 12/12/2022]
Abstract
The aim of this study was to optimize the chitosan/polycaprolactone (CS/PCL) electrospun nanofibrous membrane with random/aligned fiber structures to provide a controlled release of ciprofloxacin (Cip) and guide skin fibroblasts arrangement. A series of Cip-encapsulated CS/PCL electrospun membranes were prepared by coaxial-electrospinning. The existence of Cip in core-shell structured fibers was confirmed by using SEM, TEM and FTIR characterizations. The in vitro drug-release profiles suggested that the Cip presented a sustained release for 15 days. Simultaneously, cyto-compatibility of the membranes decreased with the increasing amount of Cip from 2.0% to 5.0%. In particular, aligned CS/PCL membrane loading with 2.0% Cip exhibited a good balanced ability between cell proliferation and antibacterial effect (>99% against Escherichiacoli and Staphylococcus aureus), which significantly accelerated the wound healing process in vivo. These results suggested that the aligned CS/PCL membrane loading with 2.0% Cip exhibited great antibacterial property and biocompatibility, which possess promising applications potential for wound healing.
Collapse
Affiliation(s)
- Congjing Cui
- College of Textiles and Clothing, Qingdao University, Qingdao 266071, Shandong, China
| | - Shibin Sun
- College of Textiles and Clothing, Qingdao University, Qingdao 266071, Shandong, China
| | - Xueyan Li
- College of Textiles and Clothing, Qingdao University, Qingdao 266071, Shandong, China
| | - Shaojuan Chen
- College of Textiles and Clothing, Qingdao University, Qingdao 266071, Shandong, China
| | - Shaohua Wu
- College of Textiles and Clothing, Qingdao University, Qingdao 266071, Shandong, China
| | - Fang Zhou
- College of Textiles and Clothing, Qingdao University, Qingdao 266071, Shandong, China.
| | - Jianwei Ma
- College of Textiles and Clothing, Qingdao University, Qingdao 266071, Shandong, China
| |
Collapse
|
9
|
Monika P, Chandraprabha MN, Rangarajan A, Waiker PV, Chidambara Murthy KN. Challenges in Healing Wound: Role of Complementary and Alternative Medicine. Front Nutr 2022; 8:791899. [PMID: 35127787 PMCID: PMC8811258 DOI: 10.3389/fnut.2021.791899] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 12/08/2021] [Indexed: 12/26/2022] Open
Abstract
Although the word wound sounds like a simple injury to tissue, individual's health status and other inherent factors may make it very complicated. Hence, wound healing has gained major attention in the healthcare. The biology wound healing is precise and highly programmed, through phases of hemostasis, inflammation, proliferation and remodeling. Current options for wound healing which includes, use of anti-microbial agents, healing promoters along with application of herbal and natural products. However, there is no efficient evidence-based therapy available for specific chronic wounds that can result in definitive clinical outcomes. Under co-morbid conditions, chronic would poses numerous challenges. Use of Complementary and Alternative Medicines (CAMs) in health care sector is increasing and its applications in wound management remains like to "separate the diamonds from ore." Attempts have been made to understand the wound at the molecular level, mainly through the analysis of signature genes and the influence of several synthetic and natural molecules on these. We have outlined a review of challenges in chronic wound healing and the role of CAMs in chronic wound management. The main focus is on the applications and limitations of currently available treatment options for a non-healing wound and the best possible alternates to consider. This information generates broader knowledge on challenges in chronic wound healing, which can be further addressed using multidisciplinary approach and combination therapies.
Collapse
Affiliation(s)
- Prakash Monika
- Department of Biotechnology, M.S. Ramaiah Institute of Technology, Bangalore, India
| | | | - Annapoorni Rangarajan
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - P. Veena Waiker
- Department of Plastic Surgery, Ramaiah Medical College and Hospitals, Bangalore, India
| | | |
Collapse
|
10
|
Wang H, Zhu C, Xu Z, Wei X, Shen H, Wang L, Wang B, Chen B, Zhao Y, Yu C, Dai J, Gao X. Clinical application of collagen membrane with umbilical cord-derived mesenchymal stem cells to repair nasal septal perforation. Biomed Mater 2021; 17. [PMID: 34706346 DOI: 10.1088/1748-605x/ac33c0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 10/27/2021] [Indexed: 11/11/2022]
Abstract
Objective. We aimed to investigate the clinical efficacy of collagen membrane with umbilical cord-derived mesenchymal stem cells in the endoscopic repair of nasal septal perforation.Methods.We performed a prospective clinical trial between March 2017 and October 2019. Nasal septal perforations were repaired by the endoscopic sandwich technique with the collagen membrane and umbilical cord-derived mesenchymal stem cells. These patients were followed up postoperatively. Their outcomes were comprehensively evaluated by assessing the healing process of the perforations, the visual analog scale (VAS) for nasal discomfort, and the nasal mucociliary transit time (MTT) for the regenerated nasal mucosa.Results. Our study included a total of eight patients with nasal septal perforation (six males and two females, age 36.6 ± 12.8 years, diameter of perforation 1.0 ± 0.2 cm). Seven patients successfully underwent surgical repair. These patients had significantly improved VAS scores 1 month after the operations (1.1 ± 0.4) compared with the preoperative period (5.9 ± 0.7) (P< 0.05). Although the nasal MTT in the nasal septum and the inferior turbinate surface were within the normal limits before the operation and at 1 month after the operation, the postoperative transit time (11.1 ± 2.0 m) was significantly shorter than the preoperative transit time (12.1 ± 2.4 m) (P< 0.05). There were no recurrences of perforation, scab formations, or epistaxis after the operation.Conclusions. The application of the collagen membrane with umbilical cord-derived mesenchymal stem cells is a simple and feasible endoscopic procedure to repair perforated nasal septa and restore satisfactory functional mucosa.
Collapse
Affiliation(s)
- Handong Wang
- Department of Otorhinolaryngology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline, No.321 Zhongshan Road, Nanjing 210008, People's Republic of China.,Department of Otorhinolaryngology, Drum Tower Clinical Medical College, Nanjing Medical University, No.321 Zhongshan Road, Nanjing 210008, People's Republic of China.,Research Institute of Otorhinolaryngology, Drum Tower Hospital, No.321 Zhongshan Road, Nanjing 210008, People's Republic of China
| | - Chengwen Zhu
- Department of Otorhinolaryngology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline, No.321 Zhongshan Road, Nanjing 210008, People's Republic of China.,Department of Otorhinolaryngology, Drum Tower Clinical Medical College, Nanjing Medical University, No.321 Zhongshan Road, Nanjing 210008, People's Republic of China.,Research Institute of Otorhinolaryngology, Drum Tower Hospital, No.321 Zhongshan Road, Nanjing 210008, People's Republic of China
| | - Zhengrong Xu
- Department of Otorhinolaryngology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline, No.321 Zhongshan Road, Nanjing 210008, People's Republic of China.,Department of Otorhinolaryngology, Drum Tower Clinical Medical College, Nanjing Medical University, No.321 Zhongshan Road, Nanjing 210008, People's Republic of China.,Research Institute of Otorhinolaryngology, Drum Tower Hospital, No.321 Zhongshan Road, Nanjing 210008, People's Republic of China
| | - Xianmei Wei
- Department of Otorhinolaryngology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline, No.321 Zhongshan Road, Nanjing 210008, People's Republic of China.,Department of Otorhinolaryngology, Drum Tower Clinical Medical College, Nanjing Medical University, No.321 Zhongshan Road, Nanjing 210008, People's Republic of China.,Research Institute of Otorhinolaryngology, Drum Tower Hospital, No.321 Zhongshan Road, Nanjing 210008, People's Republic of China
| | - He Shen
- Key Laboratory for Nano-Bio Interface Research Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
| | - Liudi Wang
- Clinical Stem Cell Center, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210000, People's Republic of China
| | - Bin Wang
- Clinical Stem Cell Center, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210000, People's Republic of China
| | - Bing Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 3 Nanyitiao, Zhongguancun, Beijing 100190, People's Republic of China
| | - Yannan Zhao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 3 Nanyitiao, Zhongguancun, Beijing 100190, People's Republic of China
| | - Chenjie Yu
- Department of Otorhinolaryngology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline, No.321 Zhongshan Road, Nanjing 210008, People's Republic of China.,Department of Otorhinolaryngology, Drum Tower Clinical Medical College, Nanjing Medical University, No.321 Zhongshan Road, Nanjing 210008, People's Republic of China.,Research Institute of Otorhinolaryngology, Drum Tower Hospital, No.321 Zhongshan Road, Nanjing 210008, People's Republic of China
| | - Jianwu Dai
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 3 Nanyitiao, Zhongguancun, Beijing 100190, People's Republic of China.,Key Laboratory for Nano-Bio Interface Research Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
| | - Xia Gao
- Department of Otorhinolaryngology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline, No.321 Zhongshan Road, Nanjing 210008, People's Republic of China.,Department of Otorhinolaryngology, Drum Tower Clinical Medical College, Nanjing Medical University, No.321 Zhongshan Road, Nanjing 210008, People's Republic of China.,Research Institute of Otorhinolaryngology, Drum Tower Hospital, No.321 Zhongshan Road, Nanjing 210008, People's Republic of China
| |
Collapse
|
11
|
Abstract
Hyaluronic acid (HA) is a natural polyelectrolyte abundant in mammalian connective tissues, such as cartilage and skin. Both endogenous and exogenous HA produced by fermentation have similar physicochemical, rheological, and biological properties, leading to medical and dermo-cosmetic products. Chemical modifications such as cross-linking or conjugation in target groups of the HA molecule improve its properties and in vivo stability, expanding its applications. Currently, HA-based scaffolds and matrices are of great interest in tissue engineering and regenerative medicine. However, the partial oxidation of the proximal hydroxyl groups in HA to electrophilic aldehydes mediated by periodate is still rarely investigated. The introduced aldehyde groups in the HA backbone allow spontaneous cross-linking with adipic dihydrazide (ADH), thermosensitivity, and noncytotoxicity to the hydrogels, which are advantageous for medical applications. This review provides an overview of the physicochemical properties of HA and its usual chemical modifications to better understand oxi-HA/ADH hydrogels, their functional properties modulated by the oxidation degree and ADH concentration, and the current clinical research. Finally, it discusses the development of biomaterials based on oxi-HA/ADH as a novel approach in tissue engineering and regenerative medicine.
Collapse
|
12
|
Physicochemical characteristics of thermo-responsive gelatin membranes containing carboxymethyl chitosan and poly(N-isopropylacrylamide-co-acrylic acid). JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02534-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
13
|
Zhang H, Jin Y, Chi C, Han G, Jiang W, Wang Z, Cheng H, Zhang C, Wang G, Sun C, Chen Y, Xi Y, Liu M, Gao X, Lin X, Lv L, Zhou J, Ding Y. Sponge particulates for biomedical applications: Biofunctionalization, multi-drug shielding, and theranostic applications. Biomaterials 2021; 273:120824. [PMID: 33894401 DOI: 10.1016/j.biomaterials.2021.120824] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 04/04/2021] [Accepted: 04/11/2021] [Indexed: 12/29/2022]
Abstract
Sponge particulates have attracted enormous attention in biomedical applications for superior properties, including large porosity, elastic deformation, capillary action, and three-dimensional (3D) reaction environment. Especially, the tiny porous structures make sponge particulates a promising platform for drug delivery, tissue engineering, anti-infection, and wound healing by providing abundant reservoirs of broad surface and internal network for cargo shielding and shuttling. To control the sponge-like morphology and improve the diversity of drug loading, some optimized preparation techniques of sponge particulates have been developed, contributing to the simplified preparation process and improved production reproducibility. Bio-functionalized strategies, including target modification, cell membrane camouflage, and hydrogel of sponge particulates have been applied to modulate the properties, improve the performance, and extend the applications. In this review, we highlight the unique physical properties and functions, current manufacturing techniques, and an overview of spongy particulates in biomedical applications, especially in inhibition of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infectivity. Moreover, the current challenges and prospects of sponge particulates are discussed rationally, providing an insight into developing vibrant fields of sponge particulates-based biomedicine.
Collapse
Affiliation(s)
- Huaqing Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing 210009, China; State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Yi Jin
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing 210009, China
| | - Cheng Chi
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing 210009, China
| | - Guochen Han
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing 210009, China
| | - Wenxin Jiang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing 210009, China
| | - Zhen Wang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing 210009, China
| | - Hao Cheng
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing 210009, China
| | - Chenshuang Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing 210009, China
| | - Gang Wang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing 210009, China
| | - Chenhua Sun
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing 210009, China
| | - Yun Chen
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing 210009, China
| | - Yilong Xi
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing 210009, China
| | - Mengting Liu
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing 210009, China
| | - Xie Gao
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing 210009, China
| | - Xiujun Lin
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing 210009, China
| | - Lingyu Lv
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing 210009, China
| | - Jianping Zhou
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing 210009, China; State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, Nanjing 210009, China.
| | - Yang Ding
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, Nanjing 210009, China.
| |
Collapse
|
14
|
Ahmadi M, Mehdikhani M, Varshosaz J, Farsaei S, Torabi H. Pharmaceutical evaluation of atorvastatin-loaded nanostructured lipid carriers incorporated into the gelatin/hyaluronic acid/polycaprolactone scaffold for the skin tissue engineering. J Biomater Appl 2020; 35:958-977. [PMID: 33148109 DOI: 10.1177/0885328220970760] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this study, gelatin/hyaluronic acid (HA) scaffolds containing different amounts of atorvastatin-loaded nanostructured lipid carriers (NLCs) coated entirely with polycaprolactone (PCL) film were fabricated for skin regeneration. 12 atorvastatin-loaded NLCs formulations were synthesized, and particle size, zeta potential, drug entrapment efficiency (EE), and drug release of the formulations were determined. The optimum freeze-dried atorvastatin-loaded NLCs were added in 3 different weight percentages to the gelatin and HA membranous scaffolds. Thereafter, the membranes were coated entirely by a thin layer of the PCL. They were characterized, and then mechanical properties, in vitro degradation and in vitro drug release were assessed. Moreover, human dermal fibroblasts (HDF) were cultured on the prepared nanocomposite scaffolds in order to investigate the cytotoxicity by the MTT assay after the first day, third day, and fifth day. Results revealed that the most favorable atorvastatin-loaded NLCs had 99.54 nm average particle size, -24.30 mV zeta potential, 97.98% EE, and 75.24% drug release within 237 hrs. Mechanical tests indicated that all the three scaffolds had approximately a 90 MPa elastic modulus which was more than two-fold of tensile modulus of normal human skin. The in vitro degradation test demonstrated that the membranes were degraded up to 98% after 5 days, and the scaffolds drug release efficiency (DRE) was in a range of 75-79% during those 5 days. The MTT assay results confirmed the cytocompatibility of the scaffolds. The scaffold containing 54.1 wt% NCLs was the optimum sample (S3). Scanning Electron Microscopy (SEM) images of the latter one showed the uniform distribution of the NLCs with an average size of 150 nm, and the images of cultured HDF illustrated the good cell attachment. In conclusion, suitable physicochemical and biological properties of the novel gelatin/HA/PCL nanocomposite scaffold containing 54.1 wt% atorvastatin-loaded NLCs (S3) can be a good candidate for skin regeneration.
Collapse
Affiliation(s)
- Mahsa Ahmadi
- Department of Biomedical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Islamic Republic of Iran
| | - Mehdi Mehdikhani
- Department of Biomedical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Islamic Republic of Iran
| | - Jaleh Varshosaz
- Novel Drug Delivery Systems Research Center, Isfahan University of Medical Sciences, Isfahan, Islamic Republic of Iran
| | - Shadi Farsaei
- Department of Clinical Pharmacy and Pharmacy Practice, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Islamic Republic of Iran
| | - Hadis Torabi
- University of Isfahan, Isfahan, Islamic Republic of Iran
| |
Collapse
|
15
|
Paolillo FR, Rodrigues PGS, Bagnato VS, Alves F, Pires L, Corazza AV. The effect of combined curcumin-mediated photodynamic therapy and artificial skin on Staphylococcus aureus-infected wounds in rats. Lasers Med Sci 2020; 36:1219-1226. [PMID: 33064262 DOI: 10.1007/s10103-020-03160-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 10/12/2020] [Indexed: 10/23/2022]
Abstract
Healing wounds represent a major public health problem, mainly when it is infected. Besides that, the antibiotics misuse and overuse favor the development of bacterial resistance. This study evaluated the effects of antimicrobial photodynamic therapy (aPDT) combined with artificial skin on disinfection of infected skin wound in rats. Twenty-four Wistar rats were randomly distributed into 4 groups (n = 6): (i) control-untreated; (ii) aPDT-treated with curcumin-mediated aPDT (blue light); (iii) artificial skin-treated with artificial skin alcohol-based; and (iv) aPDT plus artificial skin-treated with aPDT associated with artificial skin alcohol-based. For the in vivo model, a full-thickness biopsy with 0.80 cm was performed in order to inoculate the microorganism Staphylococcus aureus (ATCC 25923). The aPDT was performed with a curcumin gel and a blue LED light (450 nm, 80 mW/cm2) at the dose of 60 J/cm2 and the treatment with alcohol-based artificial skin was done with the topical application of 250 μL. Additional animals were submitted to aPDT combined with the artificial skin. After treatments, the number of colony-forming units (CFU) and the damage area were determined. Data were analyzed by two-way repeated measures ANOVA and Tukey tests. The highest reduction of the bacterial viability was observed in the PDT plus artificial skin group (4.14 log10), followed by artificial skin (2.38 log10) and PDT (2.22 log10) groups. In addition, all treated groups showed higher relative area of wound contraction (36.21% for the PDT, 38.41% for artificial skin, and 35.02% for PDT plus artificial) in comparison with the control group. These findings provide evidence for the positive benefits of aPDT with blue light and curcumin associated with artificial skin to decontaminate and accelerate the wound contraction.
Collapse
Affiliation(s)
- Fernanda Rossi Paolillo
- School of Physical Education, State University of Minas Gerais (UEMG), R. Colorado, 700 - Bairro São Francisco, Passos, MG, CEP 37902-092, Brazil. .,Motricity Science Institute, Rehabilitation Science Program from Federal University of Alfenas (UNIFAL), Av. Jovino Fernandes Sales, 2600 - Santa Clara, Alfenas, MG, CEP: 37133-840, Brazil. .,Optics Group from Physics Institute of São Carlos (IFSC), University of São Paulo (USP), Av. Trabalhador Sãocarlense, 400 - Centro, São Carlos, SP, CEP 13560-970, Brazil.
| | - Phamilla Gracielli Sousa Rodrigues
- Optics Group from Physics Institute of São Carlos (IFSC), University of São Paulo (USP), Av. Trabalhador Sãocarlense, 400 - Centro, São Carlos, SP, CEP 13560-970, Brazil
| | - Vanderlei Salvador Bagnato
- Optics Group from Physics Institute of São Carlos (IFSC), University of São Paulo (USP), Av. Trabalhador Sãocarlense, 400 - Centro, São Carlos, SP, CEP 13560-970, Brazil
| | - Fernanda Alves
- Optics Group from Physics Institute of São Carlos (IFSC), University of São Paulo (USP), Av. Trabalhador Sãocarlense, 400 - Centro, São Carlos, SP, CEP 13560-970, Brazil
| | - Layla Pires
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University Health Network, Toronto, ON, M5G 2C4, Canada
| | - Adalberto Vieira Corazza
- Medical School, Federal University of Mato Grosso do Sul, Cap. Olinto Mancini Avenue, 1662 - Colinos, Três Lagoas, MS, CEP 79600-080, Brazil
| |
Collapse
|
16
|
Evaluation of 1-Ethyl-3-(3-Dimethylaminopropyl) Carbodiimide Cross-Linked Collagen Membranes for Guided Bone Regeneration in Beagle Dogs. MATERIALS 2020; 13:ma13204599. [PMID: 33076566 PMCID: PMC7602868 DOI: 10.3390/ma13204599] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/05/2020] [Accepted: 10/14/2020] [Indexed: 12/19/2022]
Abstract
The purpose of this study was to evaluate the bone regeneration efficacy of an 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC)-cross-linked collagen membrane for guided bone regeneration (GBR). A non-cross-linked collagen membrane (Control group), and an EDC-cross-linked collagen membrane (Test group) were used in this study. In vitro, mechanical, and degradation testing and cell studies were performed. In the animal study, 36 artificial bone defects were formed in the mandibles of six beagles. Implants were inserted at the time of bone grafting, and membranes were assigned randomly. Eight weeks later, animals were sacrificed, micro-computed tomography was performed, and hematoxylin-eosin stained specimens were prepared. Physical properties (tensile strength and enzymatic degradation rate) were better in the Test group than in the Control group. No inflammation or membrane collapse was observed in either group, and bone volumes (%) in defects around implants were similar in the two groups (p > 0.05). The results of new bone areas (%) analysis also showed similar values in the two groups (p > 0.05). Therefore, it can be concluded that cross-linking the collagen membranes with EDC is the method of enhancing the physical properties (tensile strength and enzymatic degradation) of the collagen membranes without risk of toxicity.
Collapse
|
17
|
Electrospun chitosan membranes containing bioactive and therapeutic agents for enhanced wound healing. Int J Biol Macromol 2020; 156:153-170. [DOI: 10.1016/j.ijbiomac.2020.03.207] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/12/2020] [Accepted: 03/24/2020] [Indexed: 12/25/2022]
|
18
|
Bayer IS. Hyaluronic Acid and Controlled Release: A Review. Molecules 2020; 25:molecules25112649. [PMID: 32517278 PMCID: PMC7321085 DOI: 10.3390/molecules25112649] [Citation(s) in RCA: 171] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 12/11/2022] Open
Abstract
Hyaluronic acid (HA) also known as hyaluronan, is a natural polysaccharide—an anionic, non-sulfated glycosaminoglycan—commonly found in our bodies. It occurs in the highest concentrations in the eyes and joints. Today HA is used during certain eye surgeries and in the treatment of dry eye disease. It is a remarkable natural lubricant that can be injected into the knee for patients with knee osteoarthritis. HA has also excellent gelling properties due to its capability to bind water very quickly. As such, it is one the most attractive controlled drug release matrices and as such, it is frequently used in various biomedical applications. Due to its reactivity, HA can be cross-linked or conjugated with assorted bio-macromolecules and it can effectively encapsulate several different types of drugs, even at nanoscale. Moreover, the physiological significance of the interactions between HA and its main membrane receptor, CD44 (a cell-surface glycoprotein that modulates cell–cell interactions, cell adhesion and migration), in pathological processes, e.g., cancer, is well recognized and this has resulted in an extensive amount of studies on cancer drug delivery and tumor targeting. HA acts as a therapeutic but also as a tunable matrix for drug release. Thus, this review focuses on controlled or sustained drug release systems assembled from HA and its derivatives. More specifically, recent advances in controlled release of proteins, antiseptics, antibiotics and cancer targeting drugs from HA and its derivatives were reviewed. It was shown that controlled release from HA has many benefits such as optimum drug concentration maintenance, enhanced therapeutic effects, improved efficiency of treatment with less drug, very low or insignificant toxicity and prolonged in vivo release rates.
Collapse
Affiliation(s)
- Ilker S Bayer
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| |
Collapse
|
19
|
Crystal and Supramolecular Structure of Bacterial Cellulose Hydrolyzed by Cellobiohydrolase from Scytalidium Candidum 3C: A Basis for Development of Biodegradable Wound Dressings. MATERIALS 2020; 13:ma13092087. [PMID: 32369952 PMCID: PMC7254194 DOI: 10.3390/ma13092087] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/20/2020] [Accepted: 04/26/2020] [Indexed: 12/19/2022]
Abstract
The crystal and supramolecular structure of the bacterial cellulose (BC) has been studied at different stages of cellobiohydrolase hydrolysis using various physical and microscopic methods. Enzymatic hydrolysis significantly affected the crystal and supramolecular structure of native BC, in which the 3D polymer network consisted of nanoribbons with a thickness T ≈ 8 nm and a width W ≈ 50 nm, and with a developed specific surface SBET ≈ 260 m2·g−1. Biodegradation for 24 h led to a ten percent decrease in the mean crystal size Dhkl of BC, to two-fold increase in the sizes of nanoribbons, and in the specific surface area SBET up to ≈ 100 m2·g−1. Atomic force and scanning electron microscopy images showed BC microstructure “loosening“after enzymatic treatment, as well as the formation and accumulation of submicron particles in the cells of the 3D polymer network. Experiments in vitro and in vivo did not reveal cytotoxic effect by the enzyme addition to BC dressings and showed a generally positive influence on the treatment of extensive III-degree burns, significantly accelerating wound healing in rats. Thus, in our opinion, the results obtained can serve as a basis for further development of effective biodegradable dressings for wound healing.
Collapse
|
20
|
Tong X, Pan W, Su T, Zhang M, Dong W, Qi X. Recent advances in natural polymer-based drug delivery systems. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104501] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
21
|
Yalcintas EP, Ackerman DS, Korkmaz E, Telmer CA, Jarvik JW, Campbell PG, Bruchez MP, Ozdoganlar OB. Analysis of In Vitro Cytotoxicity of Carbohydrate-Based Materials Used for Dissolvable Microneedle Arrays. Pharm Res 2020; 37:33. [DOI: 10.1007/s11095-019-2748-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 12/05/2019] [Indexed: 11/29/2022]
|
22
|
Li Y, Kohane DS. Microparticles. Biomater Sci 2020. [DOI: 10.1016/b978-0-12-816137-1.00030-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
23
|
Gutmann M, Bechold J, Seibel J, Meinel L, Lühmann T. Metabolic Glycoengineering of Cell-Derived Matrices and Cell Surfaces: A Combination of Key Principles and Step-by-Step Procedures. ACS Biomater Sci Eng 2018; 5:215-233. [DOI: 10.1021/acsbiomaterials.8b00865] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Marcus Gutmann
- Institute of Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, 97074 Wuerzburg, Germany
| | - Julian Bechold
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074 Wuerzburg, Germany
| | - Jürgen Seibel
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074 Wuerzburg, Germany
| | - Lorenz Meinel
- Institute of Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, 97074 Wuerzburg, Germany
| | - Tessa Lühmann
- Institute of Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, 97074 Wuerzburg, Germany
| |
Collapse
|
24
|
Perumal RK, Gopinath A, Thangam R, Perumal S, Masilamani D, Ramadass SK, Madhan B. Collagen-silica bio-composite enriched with Cynodon dactylon extract for tissue repair and regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 92:297-306. [PMID: 30184754 DOI: 10.1016/j.msec.2018.06.050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 05/17/2018] [Accepted: 06/25/2018] [Indexed: 11/29/2022]
Abstract
Development of biomaterials for tissue engineering applications is of great interest to meet the demand of different clinical requirements. The wound heal dressing biomaterials should necessarily contain well-defined therapeutic components and desirable physical, chemical and biological properties to support optimal delivery of therapeutics at the site of the wound. In this study, we developed collagen-silica wound heal scaffold incorporated with the extract of Cynodon dactylon, characterized and evaluated for its wound heal potential in vitro and in vivo against collagen (Col) and Collagen-silica (CS) scaffolds that served as controls. The prepared Collagen-Silica-Cynodon extract (CSCE) scaffold exhibits porous morphology with preferable biophysical, chemical, mechanical and mass transfer properties besides its controlled biodegradation at the wound site. Stability of CSCE was found to be better than that of native collagen due to intermolecular interactions between collagen and constituents of C. dactylon as confirmed by FTIR analysis. Notably, in vitro biocompatibility assay using DAPI and Rhodamine 123 staining demonstrated that the proliferation of NIH3T3 fibroblast cells was better for CSCE when compared to the Col and CS scaffolds. In vivo wound healing experiments with full-thickness excision wounds in wistar rat model demonstrated that the wounds treated with CSCE showed accelerated healing with enhanced collagen deposition when compared to wounds treated with Col and CS scaffolds, and these studies substantiated the efficacy of CSCE scaffold for treating wounds.
Collapse
Affiliation(s)
| | - Arun Gopinath
- CSIR - Central Leather Research Institute, Adyar, Chennai 600020, Tamil Nadu, India
| | - Ramar Thangam
- CSIR - Central Leather Research Institute, Adyar, Chennai 600020, Tamil Nadu, India
| | - Sathiamurthi Perumal
- CSIR - Central Leather Research Institute, Adyar, Chennai 600020, Tamil Nadu, India
| | - Dinesh Masilamani
- CSIR - Central Leather Research Institute, Adyar, Chennai 600020, Tamil Nadu, India
| | | | - Balaraman Madhan
- CSIR - Central Leather Research Institute, Adyar, Chennai 600020, Tamil Nadu, India.
| |
Collapse
|
25
|
Liu D, He C, Liu Z, Xu W. Gentamicin coating of nanotubular anodized titanium implant reduces implant-related osteomyelitis and enhances bone biocompatibility in rabbits. Int J Nanomedicine 2017; 12:5461-5471. [PMID: 28814863 PMCID: PMC5546782 DOI: 10.2147/ijn.s137137] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Titanium and titanium alloy are widely used as orthopedic implants for their favorable mechanical properties and satisfactory biocompatibility. The aim of the present study was to investigate the antibacterial effect and bone cell biocompatibility of a novel implant made with nanotubular anodized titanium coated with gentamicin (NTATi-G) through in vivo study in rabbits. The animals were divided into four groups, each receiving different kinds of implants, that is, NTATi-G, titanium coated with gentamicin (Ti-G), nanotubular anodized titanium uncoated with gentamicin (NTATi) and titanium uncoated with gentamicin (Ti). The results showed that NTATi-G implant prevented implant-related osteomyelitis and enhanced bone biocompatibility in vivo. Moreover, the body temperature of rabbits in NTATi-G and Ti-G groups was lower than those in Ti groups, while the weight of rabbits in NTATi-G and Ti-G groups was heavier than those in NTATi and Ti groups, respectively. White blood cell counts in NTATi-G group were lower than NTATi and Ti groups. Features of myelitis were observed by X-ray films in the NTATi and Ti groups, but not in the NTATi-G and Ti-G groups. The radiographic scores, which assessed pathology and histopathology in bone tissues, were significantly lower in the NTATi-G and Ti-G groups than those in the NTATi and Ti groups, respectively (P<0.05). Meanwhile, explants and bone tissue culture demonstrated significantly less bacterial growth in the NTATi-G and Ti-G groups than in the NTATi and Ti groups, respectively (P<0.01). The bone volume in NTATi-G group was greater than Ti-G group, and little bone formation was seen in NTATi and Ti groups.
Collapse
Affiliation(s)
- Denghui Liu
- Department of Orthopedics, the 113 Military Hospital, Ningbo
| | - Chongru He
- Department of Orthopedics, Changhai Hospital Affiliated to the Second Military Medical University, Shanghai, People's Republic of China
| | - Zhongtang Liu
- Department of Orthopedics, Changhai Hospital Affiliated to the Second Military Medical University, Shanghai, People's Republic of China
| | - Weidong Xu
- Department of Orthopedics, Changhai Hospital Affiliated to the Second Military Medical University, Shanghai, People's Republic of China
| |
Collapse
|
26
|
Ran X, Du Y, Wang Z, Wang H, Pu F, Ren J, Qu X. Hyaluronic Acid-Templated Ag Nanoparticles/Graphene Oxide Composites for Synergistic Therapy of Bacteria Infection. ACS APPLIED MATERIALS & INTERFACES 2017; 9:19717-19724. [PMID: 28534395 DOI: 10.1021/acsami.7b05584] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Developing methods of decreasing the harm to cell and increasing the antibacterial efficiency is becoming a potential topic of medical treatments. We demonstrated a hyaluronidase-triggered photothermal platform for killing bacteria based on silver nanoparticles (AgNPs) and graphene oxide (GO). The property of the hyaluronidase (HAase)-triggered release provided excellent antibacterial activity against Staphylococcus aureus. Upon illumination of NIR light, the GO-based nanomaterials locally raised the temperature, resulting in high mortality of bacteria. The HAase-triggered AgNPs releasing approach for antibacterial allows AgNPs to be protected by hyaluronic acid (HA) template without affecting mammalian cells. The nanocomposites provided antibacterial activity against S. aureus while showing low toxicity to mammal cells. In addition, the GO-HA-AgNPs are prepared for in vivo experiments and show excellent antibacterial property in wound disinfection model.
Collapse
Affiliation(s)
- Xiang Ran
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences ,Changchun, Jilin 130022, P.R. China
- University of Chinese Academy of Sciences, Beijing 100039, P.R. China
| | - Ye Du
- Department of Breast Surgery, The First Hospital of Jilin University , Changchun, Jilin 130021, P.R. China
| | - Zhenzhen Wang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences ,Changchun, Jilin 130022, P.R. China
- University of Chinese Academy of Sciences, Beijing 100039, P.R. China
| | - Huan Wang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences ,Changchun, Jilin 130022, P.R. China
- University of Chinese Academy of Sciences, Beijing 100039, P.R. China
| | - Fang Pu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences ,Changchun, Jilin 130022, P.R. China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences ,Changchun, Jilin 130022, P.R. China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences ,Changchun, Jilin 130022, P.R. China
| |
Collapse
|
27
|
Picheth GF, Pirich CL, Sierakowski MR, Woehl MA, Sakakibara CN, de Souza CF, Martin AA, da Silva R, de Freitas RA. Bacterial cellulose in biomedical applications: A review. Int J Biol Macromol 2017; 104:97-106. [PMID: 28587970 DOI: 10.1016/j.ijbiomac.2017.05.171] [Citation(s) in RCA: 296] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 05/16/2017] [Accepted: 05/30/2017] [Indexed: 01/02/2023]
Abstract
Bacterial cellulose (BC) derived materials represents major advances to the current regenerative and diagnostic medicine. BC is a highly pure, biocompatible and versatile material that can be utilized in several applications - individually or in the combination with different components (e.g. biopolymers and nanoparticles) - to provide structural organization and flexible matrixes to distinct finalities. The wide application and importance of BC is described by its common utilization as skin repair treatments in cases of burns, wounds and ulcers. BC membranes accelerate the process of epithelialization and avoid infections. Furthermore, BC biocomposites exhibit the potential to regulate cell adhesion, an important characteristic to scaffolds and grafts; ultra-thin films of BC might be also utilized in the development of diagnostic sensors for its capability in immobilizing several antigens. Therefore, the growing interest in BC derived materials establishes it as a great promise to enhance the quality and functionalities of the current generation of biomedical materials.
Collapse
Affiliation(s)
| | - Cleverton Luiz Pirich
- Biopol, Chemistry Department, Federal University of Paraná, Curitiba, PR 81531-980, Brazil
| | - Maria Rita Sierakowski
- Biopol, Chemistry Department, Federal University of Paraná, Curitiba, PR 81531-980, Brazil
| | - Marco Aurélio Woehl
- Biopol, Chemistry Department, Federal University of Paraná, Curitiba, PR 81531-980, Brazil
| | | | - Clayton Fernandes de Souza
- Chemistry Undergraduate Program, School of Education and Humanities, Pontifícia Universidade Católica do Paraná-PUCPR, Curitiba, PR 80215-901, Brazil
| | - Andressa Amado Martin
- Biopol, Chemistry Department, Federal University of Paraná, Curitiba, PR 81531-980, Brazil
| | - Renata da Silva
- Biopol, Chemistry Department, Federal University of Paraná, Curitiba, PR 81531-980, Brazil
| | | |
Collapse
|
28
|
Kamoun EA, Kenawy ERS, Chen X. A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings. J Adv Res 2017; 8:217-233. [PMID: 28239493 PMCID: PMC5315442 DOI: 10.1016/j.jare.2017.01.005] [Citation(s) in RCA: 845] [Impact Index Per Article: 120.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 12/27/2016] [Accepted: 01/27/2017] [Indexed: 12/18/2022] Open
Abstract
This review presents the past and current efforts with a brief description on the featured properties of hydrogel membranes fabricated from biopolymers and synthetic ones for wound dressing applications. Many endeavors have been exerted during past ten years for developing new artificial polymeric membranes, which fulfill the demanded conditions for the treatment of skin wounds. This review mainly focuses on representing specifications of ideal polymeric wound dressing membranes, such as crosslinked hydrogels compatible with wound dressing purposes. But as the hydrogels with single component have low mechanical strength, recent trends have offered composite or hybrid hydrogel membranes to achieve the typical wound dressing requirements.
Collapse
Affiliation(s)
- Elbadawy A Kamoun
- Polymeric Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg Al-Arab City 21934, Alexandria, Egypt
| | - El-Refaie S Kenawy
- Polymer Research Group, Department of Chemistry, Faculty of Science, University of Tanta, Tanta 31527, Egypt
| | - Xin Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, People's Republic of China
| |
Collapse
|
29
|
Wei W, Li J, Chen S, Chen M, Xie Q, Sun H, Ruan J, Zhou H, Bi X, Zhuang A, You Z, Gu P, Fan X. In vitro osteogenic induction of bone marrow mesenchymal stem cells with a decellularized matrix derived from human adipose stem cells and in vivo implantation for bone regeneration. J Mater Chem B 2017; 5:2468-2482. [PMID: 32264553 DOI: 10.1039/c6tb03150a] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Tissue engineering technology that adopts mesenchymal stem cells combined with scaffolds presents a promising strategy for tissue regeneration.
Collapse
Affiliation(s)
- Wei Wei
- Department of Ophthalmology
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine
- Shanghai
- P. R. China
| | - Jipeng Li
- Department of Ophthalmology
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine
- Shanghai
- P. R. China
| | - Shuo Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- College of Materials Science and Engineering
- Donghua University
- Shanghai
- P. R. China
| | - Mingjiao Chen
- Department of Ophthalmology
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine
- Shanghai
- P. R. China
| | - Qing Xie
- Department of Ophthalmology
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine
- Shanghai
- P. R. China
| | - Hao Sun
- Department of Ophthalmology
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine
- Shanghai
- P. R. China
| | - Jing Ruan
- Department of Ophthalmology
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine
- Shanghai
- P. R. China
| | - Huifang Zhou
- Department of Ophthalmology
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine
- Shanghai
- P. R. China
| | - Xiaoping Bi
- Department of Ophthalmology
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine
- Shanghai
- P. R. China
| | - Ai Zhuang
- Department of Ophthalmology
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine
- Shanghai
- P. R. China
| | - Zhengwei You
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- College of Materials Science and Engineering
- Donghua University
- Shanghai
- P. R. China
| | - Ping Gu
- Department of Ophthalmology
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine
- Shanghai
- P. R. China
| | - Xianqun Fan
- Department of Ophthalmology
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine
- Shanghai
- P. R. China
| |
Collapse
|
30
|
Sun H, Wang J, Deng F, Liu Y, Zhuang X, Xu J, Li L. Co‑delivery and controlled release of stromal cell‑derived factor‑1α chemically conjugated on collagen scaffolds enhances bone morphogenetic protein‑2‑driven osteogenesis in rats. Mol Med Rep 2016; 14:737-45. [PMID: 27220358 PMCID: PMC4918613 DOI: 10.3892/mmr.2016.5339] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 04/12/2016] [Indexed: 01/03/2023] Open
Abstract
There has been considerable focus in investigations on the delivery systems and clinical applications of bone morphogenetic protein-2 (BMP-2) for novel bone formation. However, current delivery systems require high levels of BMP-2 to exert a biological function. There are several concerns in using of high levels of BMP-2, including safety and the high cost of treatment. Therefore, the development of strategies to decrease the levels of BMP-2 required in these delivery systems is required. In our previous studies, a controlled-release system was developed, which used Traut's reagent and the cross-linker, 4-(N-maleimi-domethyl) cyclohexane-1-carboxylic acid 3-sulfo-N-hydroxysuccinimide ester sodium salt (Sulfo-SMCC), to chemically conjugate BMP-2 directly on collagen discs. In the current study, retention efficiency and release kinetics of stromal cell-derived factor-1α (SDF-1α) cross-linked on collagen scaffolds were detected. In addition, the osteogenic activity of SDF-1α and suboptimal doses of BMP-2 cross-linked on collagen discs following subcutaneous implantation in rats were evaluated. Independent two-tailed t-tests and one-way analysis of variance were used for analysis. In the present study, the controlled release of SDF-1α chemically conjugated on collagen scaffolds was demonstrated. By optimizing the concentrations of Traut's reagent and the Sulfo-SMCC cross-linker, a significantly higher level of SDF-1α was covalently retained on the collagen scaffold, compared with that retained using a physical adsorption method. Mesenchymal stem cell homing indicated that the biological function of the SDF-1α cross-linked on the collagen scaffolds remained intact. In rats, co-treatment with SDF-1α and a suboptimal dose of BMP-2 cross-linked on collagen scaffolds using this chemically conjugated method induced higher levels of ectopic bone formation, compared with the physical adsorption method. No ectopic bone formation was observed following treatment with a suboptimal dose of BMP-2 alone. Therefore, the co-delivery of SDF-1α and a suboptimal dose of BMP-2 chemically conjugated on collagen scaffolds for the treatment of bone injuries reduced the level of BMP-2 required, reducing the risks of side effects.
Collapse
Affiliation(s)
- Haipeng Sun
- Department of Oral Implantology, Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat‑Sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Jinming Wang
- Department of Oral Implantology, Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat‑Sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Feilong Deng
- Department of Oral Implantology, Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat‑Sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Yun Liu
- Department of Oral Implantology, Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat‑Sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Xiumei Zhuang
- Department of Oral Implantology, Sun Yat‑Sen Memorial Hospital, Sun Yat‑Sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Jiayun Xu
- Department of Oral Implantology, Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat‑Sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Long Li
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat‑Sen University, Guangzhou, Guangdong 510055, P.R. China
| |
Collapse
|
31
|
Hinderer S, Layland SL, Schenke-Layland K. ECM and ECM-like materials - Biomaterials for applications in regenerative medicine and cancer therapy. Adv Drug Deliv Rev 2016; 97:260-9. [PMID: 26658243 DOI: 10.1016/j.addr.2015.11.019] [Citation(s) in RCA: 276] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 11/25/2015] [Accepted: 11/26/2015] [Indexed: 12/20/2022]
Abstract
Regenerative strategies such as stem cell-based therapies and tissue engineering applications are being developed with the aim to replace, remodel, regenerate or support damaged tissues and organs. In addition to careful cell type selection, the design of appropriate three-dimensional (3D) scaffolds is essential for the generation of bio-inspired replacement tissues. Such scaffolds are usually made of degradable or non-degradable biomaterials and can serve as cell or drug carriers. The development of more effective and efficient drug carrier systems is also highly relevant for novel cancer treatment strategies. In this review, we provide a summary of current approaches that employ ECM and ECM-like materials, or ECM-synthetic polymer hybrids, as biomaterials in the field of regenerative medicine. We further discuss the utilization of such materials for cell and drug delivery, and highlight strategies for their use as vehicles for cancer therapy.
Collapse
|
32
|
Uskoković V. When 1+1>2: Nanostructured composites for hard tissue engineering applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 57:434-51. [PMID: 26354283 PMCID: PMC4567690 DOI: 10.1016/j.msec.2015.07.050] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 04/15/2015] [Accepted: 07/23/2015] [Indexed: 12/20/2022]
Abstract
Multicomponent, synergistic and multifunctional nanostructures have taken over the spotlight in the realm of biomedical nanotechnologies. The most prospective materials for bone regeneration today are almost exclusively composites comprising two or more components that compensate for the shortcomings of each one of them alone. This is quite natural in view of the fact that all hard tissues in the human body, except perhaps the tooth enamel, are composite nanostructures. This review article highlights some of the most prospective breakthroughs made in this research direction, with the hard tissues in main focus being those comprising bone, tooth cementum, dentin and enamel. The major obstacles to creating collagen/apatite composites modeled after the structure of bone are mentioned, including the immunogenicity of xenogeneic collagen and continuously failing attempts to replicate the biomineralization process in vitro. Composites comprising a polymeric component and calcium phosphate are discussed in light of their ability to emulate the soft/hard composite structure of bone. Hard tissue engineering composites created using hard material components other than calcium phosphates, including silica, metals and several types of nanotubes, are also discoursed on, alongside additional components deliverable using these materials, such as cells, growth factors, peptides, antibiotics, antiresorptive and anabolic agents, pharmacokinetic conjugates and various cell-specific targeting moieties. It is concluded that a variety of hard tissue structures in the body necessitates a similar variety of biomaterials for their regeneration. The ongoing development of nanocomposites for bone restoration will result in smart, theranostic materials, capable of acting therapeutically in direct feedback with the outcome of in situ disease monitoring at the cellular and subcellular scales. Progress in this research direction is expected to take us to the next generation of biomaterials, designed with the purpose of fulfilling Daedalus' dream - not restoring the tissues, but rather augmenting them.
Collapse
Affiliation(s)
- Vuk Uskoković
- Advanced Materials and Nanobiotechnology Laboratory, Department of Bioengineering, University of Illinois, Chicago, IL, USA.
| |
Collapse
|
33
|
Nowak KM, Szterk A, Szymborski T, Rudnicka K, Fiedor P, Bodek KH. In vitroevaluation of polymeric formulations designed for use in alveolar osteitis. J Appl Polym Sci 2015. [DOI: 10.1002/app.42991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Karolina M. Nowak
- Department of Applied Pharmacy, Faculty of Pharmacy; Medical University of Lodz; Muszynskiego 1 90-151 Lodz Poland
| | - Arkadiusz Szterk
- Department of Food Analysis; Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology; Rakowiecka 36 02-532 Warsaw Poland
| | - Tomasz Szymborski
- Department of Soft Condensed Matter; Institute of Physical Chemistry, Polish Academy of Sciences; Kasprzaka 44/52 01-224 Warsaw Poland
| | - Karolina Rudnicka
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection; University of Lodz; Banacha 12/16 90-237 Lodz Poland
| | - Piotr Fiedor
- Department of General and Transplantation Surgery, Transplantation Institute; Warsaw Medical University; Nowogrodzka 59 02-006 Warsaw Poland
| | - Kazimiera H. Bodek
- Department of Applied Pharmacy, Faculty of Pharmacy; Medical University of Lodz; Muszynskiego 1 90-151 Lodz Poland
| |
Collapse
|
34
|
Park JY, Jung IH, Kim YK, Lim HC, Lee JS, Jung UW, Choi SH. Guided bone regeneration using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC)-cross-linked type-I collagen membrane with biphasic calcium phosphate at rabbit calvarial defects. Biomater Res 2015; 19:15. [PMID: 26331084 PMCID: PMC4552459 DOI: 10.1186/s40824-015-0038-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 06/15/2015] [Indexed: 12/05/2022] Open
Abstract
Background In-vitro and animal studies using EDC cross-linked membranes have shown great resistance to enzymatic digestion as well as low cytotoxicity, and indicated its potential expediency as a barrier membrane for guided bone regeneration (GBR). The purpose of this study was to evaluate the efficacy, biocompatibility and degradation kinetics of a novel 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC)-cross-linked type I collagen membrane for regeneration of rabbit calvarial defects. EDC cross-linked type I collagen membrane and macroporous biphasic calcium phosphate (MBCP) consisting of 60 % hydroxyapatite and 40 % β-tricalcium phosphate were used in this study. Four circular defects (ø = 8 mm) were created in each calvarium of 12 male white rabbits. The experimental groups randomly allocated to the defects were as follows – (1) sham control, (2) EDC-cross-linked collagen membrane (EDC membrane), (3) bone graft (BG), and (4) bone graft with collagen membrane (B-EDC membrane). Specimens were harvested at 2 weeks (n = 6) and 8 weeks (n = 6) postoperatively for observational histology and histometrical analysis. Result The histologic observation showed close adaptation of the EDC membrane to the defect perimeters along with vascularization of the membrane at 2 weeks. Direct apposition of new bone on to the collagen matrix could be observed displaying adequate tissue integration. Collapsing of the central portion of the membrane could be seen in the EDC membrane group, and both BG and B-EDC membrane groups showed greater total augmented area and new bone area than the EDC membrane group. The membrane was largely unresorbed at 2 weeks; and at 8 weeks the overall shape of the membrane was still maintained suggesting sustained barrier function at 8 weeks. Conclusion Within the limits of this study, it may be concluded that EDC-cross-linked collagen membrane is a safe biomaterial with adequate tissue integration and resorption kinetics to support bone regeneration when used in conjunction with bone filler.
Collapse
Affiliation(s)
- Jin-Young Park
- Department of periodontology, Research institute of periodontal regeneration, Yonsei University College of Dentistry, 50 Yonsei-ro Seodaemun-gu, Seoul, 120-752 Republic of Korea
| | - Im-Hee Jung
- Department of Dental hygiene, College of Health Sciences, Eulji University, Seong-nam, Republic of Korea
| | - You-Kyoung Kim
- Department of periodontology, Research institute of periodontal regeneration, Yonsei University College of Dentistry, 50 Yonsei-ro Seodaemun-gu, Seoul, 120-752 Republic of Korea
| | - Hyun-Chang Lim
- Department of periodontology, Research institute of periodontal regeneration, Yonsei University College of Dentistry, 50 Yonsei-ro Seodaemun-gu, Seoul, 120-752 Republic of Korea
| | - Jung-Seok Lee
- Department of periodontology, Research institute of periodontal regeneration, Yonsei University College of Dentistry, 50 Yonsei-ro Seodaemun-gu, Seoul, 120-752 Republic of Korea
| | - Ui-Won Jung
- Department of periodontology, Research institute of periodontal regeneration, Yonsei University College of Dentistry, 50 Yonsei-ro Seodaemun-gu, Seoul, 120-752 Republic of Korea
| | - Seong-Ho Choi
- Department of periodontology, Research institute of periodontal regeneration, Yonsei University College of Dentistry, 50 Yonsei-ro Seodaemun-gu, Seoul, 120-752 Republic of Korea
| |
Collapse
|
35
|
Jin SG, Yousaf AM, Jang SW, Son MW, Kim KS, Kim DW, Li DX, Kim JO, Yong CS, Choi HG. In Vivo Wound-Healing Effects of Novel Benzalkonium Chloride-Loaded Hydrocolloid Wound Dressing. Drug Dev Res 2015; 76:157-65. [DOI: 10.1002/ddr.21253] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 04/21/2015] [Indexed: 11/05/2022]
Affiliation(s)
- Sung Giu Jin
- College of Pharmacy & Institute of Pharmaceutical Science and Technology; Hanyang University; 55 Hanyangdaehak-ro, Sangnok-gu Ansan 426-791 South Korea
| | - Abid Mehmood Yousaf
- College of Pharmacy & Institute of Pharmaceutical Science and Technology; Hanyang University; 55 Hanyangdaehak-ro, Sangnok-gu Ansan 426-791 South Korea
| | - Sun Woo Jang
- Pharmaceutical Product Research Laboratories; Dong-A Pharm. Co. Ltd.; Yongin-Si Kyunggi-Do 449-905 South Korea
| | - Mi-Won Son
- Pharmaceutical Product Research Laboratories; Dong-A Pharm. Co. Ltd.; Yongin-Si Kyunggi-Do 449-905 South Korea
| | - Kyung Soo Kim
- College of Pharmacy & Institute of Pharmaceutical Science and Technology; Hanyang University; 55 Hanyangdaehak-ro, Sangnok-gu Ansan 426-791 South Korea
| | - Dong-Wuk Kim
- College of Pharmacy & Institute of Pharmaceutical Science and Technology; Hanyang University; 55 Hanyangdaehak-ro, Sangnok-gu Ansan 426-791 South Korea
| | - Dong Xun Li
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine; Jiangxi University of Traditional Chinese Medicine; 56 Yangming Road, Nanchang Jiangxi 330006 China
| | - Jong Oh Kim
- College of Pharmacy; Yeungnam University; 214-1, Dae-Dong Gyongsan 712-749 South Korea
| | - Chul Soon Yong
- College of Pharmacy; Yeungnam University; 214-1, Dae-Dong Gyongsan 712-749 South Korea
| | - Han-Gon Choi
- College of Pharmacy & Institute of Pharmaceutical Science and Technology; Hanyang University; 55 Hanyangdaehak-ro, Sangnok-gu Ansan 426-791 South Korea
| |
Collapse
|
36
|
Uskoković V. Nanostructured platforms for the sustained and local delivery of antibiotics in the treatment of osteomyelitis. Crit Rev Ther Drug Carrier Syst 2015; 32:1-59. [PMID: 25746204 PMCID: PMC4406243 DOI: 10.1615/critrevtherdrugcarriersyst.2014010920] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This article provides a critical view of the current state of the development of nanoparticulate and other solid-state carriers for the local delivery of antibiotics in the treatment of osteomyelitis. Mentioned are the downsides of traditional means for treating bone infection, which involve systemic administration of antibiotics and surgical debridement, along with the rather imperfect local delivery options currently available in the clinic. Envisaged are more sophisticated carriers for the local and sustained delivery of antimicrobials, including bioresorbable polymeric, collagenous, liquid crystalline, and bioglass- and nanotube-based carriers, as well as those composed of calcium phosphate, the mineral component of bone and teeth. A special emphasis is placed on composite multifunctional antibiotic carriers of a nanoparticulate nature and on their ability to induce osteogenesis of hard tissues demineralized due to disease. An ideal carrier of this type would prevent the long-term, repetitive, and systemic administration of antibiotics and either minimize or completely eliminate the need for surgical debridement of necrotic tissue. Potential problems faced by even hypothetically "perfect" antibiotic delivery vehicles are mentioned too, including (i) intracellular bacterial colonies involved in recurrent, chronic osteomyelitis; (ii) the need for mechanical and release properties to be adjusted to the area of surgical placement; (iii) different environments in which in vitro and in vivo testings are carried out; (iv) unpredictable synergies between drug delivery system components; and (v) experimental sensitivity issues entailing the increasing subtlety of the design of nanoplatforms for the controlled delivery of therapeutics.
Collapse
Affiliation(s)
- Vuk Uskoković
- Advanced Materials and Nanobiotechnology Laboratory, Richard and Loan Hill Department of Bioengineering, College of Medicine, University of Illinois at Chicago, 851 South Morgan St, #205 Chicago, Illinois, 60607-7052
| |
Collapse
|
37
|
Evaluation of Microcrystalline Chitosan and Fibrin Membranes as Platelet-Derived Growth Factor-BB Carriers with Amoxicillin. INT J POLYM SCI 2015. [DOI: 10.1155/2015/386251] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The aim of this study was to describe the mechanical and sorption features of homogeneous and composite membranes which consist of microcrystalline chitosan (MCCh) and fibrin (Fb) in various proportions as well as thein vitrokinetics of platelet-derived growth factor-BB (PDGF-BB) released from ten types of membranes in the presence or absence of amoxicillin (Am). The films were characterized by Fourier transform infrared (FTIR) spectroscopy, mechanical tests: breaking strength (Bs) and elongation at break (Eb), as well as SEM images, and swelling study. The influence of the form of samples (dry or wet) on Young’s modulus (E) was also examined. The homogeneous MCCh (M1) and composite M3 and M4 (MCCh : Fb = 2 : 1 and 1 : 1) membranes were characterized by good sorption properties and higher mechanical strength, when compared with Fb (M2) membrane. Connecting MCCh with Fb decreases release of PDGF-BB and increases release of Am. The most efficient release of PDGF-BB was observed in the case of M4 (the optimum MCCh : Fb ratio was 1 : 1) membrane. It was found that the degree of PDGF-BB release from the membrane is influenced by the physicochemical and mechanical characteristics of the films and by its affinity to growth factor PDGF-BB.
Collapse
|
38
|
Choi DH, Suhaeri M, Hwang MP, Kim IH, Han DK, Park K. Multi-lineage differentiation of human mesenchymal stromal cells on the biophysical microenvironment of cell-derived matrix. Cell Tissue Res 2014; 357:781-92. [PMID: 24853672 DOI: 10.1007/s00441-014-1898-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Accepted: 04/15/2014] [Indexed: 01/20/2023]
Abstract
We obtained fibroblast- (FDM) and preosteoblast- (PDM) derived matrices in vitro from their respective cells. Our hypothesis was that these naturally occurring cell-derived matrices (CDMs) would provide a better microenvironment for the multi-lineage differentiation of human mesenchymal stromal cells (hMSCs) than those based on traditional single-protein-based platforms. Cells cultured for 5-6 days were decellularized with detergents and enzymes. The resulting matrices showed a fibrillar surface texture. Under osteogenic conditions, human bone-marrow-derived stromal cells (HS-5) exhibited higher amounts of both mineralized nodule formation and alkaline phosphatase (ALP) expression than those cultured on plastic or gelatin. Osteogenic markers (Col I, osteopontin, and cbfa1) and ALP activity from cells cultured on PDM were notably upregulated at 4 weeks. The use of FDM significantly improved the cellular expression of chondrogenic markers (Sox 9 and Col II), while downregulating that of Col I at 4 weeks. Both CDMs were more effective in inducing cellular synthesis of glycosaminoglycan content than control substrates. We also investigated the effect of matrix surface texture on hMSC (PT-2501) differentiation; soluble matrix (S-matrix)-coated substrates exhibited a localized fibronectin (FN) alignment, whereas natural matrix (N-matrix)-coated substrates preserved the naturally formed FN fibrillar alignment. hMSCs cultured for 4 weeks on N-matrices under osteogenic or chondrogenic conditions deposited a greater amount of calcium and proteoglycan than those cultured on S-matrices as assessed by von Kossa and Safranin O staining. In contrast to the expression levels of lineage-specific markers for cells cultured on gelatin, FN, or S-matrices, those cultured on N-matrices yielded highly upregulated levels. This study demonstrates not only the capacity of CDM for being an effective inductive template for the multi-lineage differentiation of hMSCs, but also the critical biophysical role that the matrix fibrillar texture itself plays on the induction of stem cell differentiation.
Collapse
Affiliation(s)
- Dong Hoon Choi
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul, 136-791, Korea
| | | | | | | | | | | |
Collapse
|
39
|
Zaborowska M, Welch K, Brånemark R, Khalilpour P, Engqvist H, Thomsen P, Trobos M. Bacteria-material surface interactions: methodological development for the assessment of implant surface induced antibacterial effects. J Biomed Mater Res B Appl Biomater 2014; 103:179-87. [PMID: 24816674 DOI: 10.1002/jbm.b.33179] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 03/19/2014] [Accepted: 04/12/2014] [Indexed: 01/09/2023]
Abstract
The choice of material for implanted prostheses is of great importance concerning bacterial colonization and biofilm formation. Consequently, methods to investigate bacterial behavior are needed in order to develop new infection resistant surfaces. In this study, different methodological setups were used to evaluate the antimicrobial effect of photocatalytic titanium oxide and silver surfaces. Biofilm formation and eradication under static and dynamic culture conditions were studied with the use of the following analytical techniques: viable colony-forming unit (CFU) counting, imprinting, fluorescence, and bioluminescence. The present study demonstrates that different methods are needed in order to evaluate the prophylactic and treatment effects on planktonic and biofilm bacteria and to assess the antimicrobial effect of different surface treatments/coatings. Choosing the right antibacterial testing model for the specific application is also of great importance. Both in situ approaches and indirect methods provide valuable complementary information.
Collapse
Affiliation(s)
- Magdalena Zaborowska
- Department of Biomaterials, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden; BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, Gothenburg, Sweden
| | | | | | | | | | | | | |
Collapse
|
40
|
Yeh HY, Lin TY, Lin CH, Yen BL, Tsai CL, Hsu SH. Neocartilage formation from mesenchymal stem cells grown in type II collagen-hyaluronan composite scaffolds. Differentiation 2014; 86:171-83. [PMID: 24462469 DOI: 10.1016/j.diff.2013.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 11/06/2013] [Accepted: 11/07/2013] [Indexed: 12/11/2022]
Abstract
Three-dimensional (3D) collagen type II-hyaluronan (HA) composite scaffolds (CII-HA) which mimics the extracellular environment of natural cartilage were fabricated in this study. Rheological measurements demonstrated that the incorporation of HA increased the compression modulus of the scaffolds. An initial in vitro evaluation showed that scaffolds seeded with porcine chondrocytes formed cartilaginous-like tissue after 8 weeks, and HA functioned to promote the growth of chondrocytes into scaffolds. Placenta-derived multipotent cells (PDMC) and gingival fibroblasts (GF) were seeded on tissue culture polystyrene (TCPS), CII-HA films, and small intestinal submucosa (SIS) sheets for comparing their chondrogenesis differentiation potentials with those of adipose-derived adult stem cells (ADAS) and bone marrow-derived mesenchymal stem cells (BMSC). Among different cells, PDMC showed the greatest chondrogenic differentiation potential on both CII-HA films and SIS sheets upon TGF-β3 induction, followed by GF. This was evidenced by the up-regulation of chondrogenic genes (Sox9, aggrecan, and collagen type II), which was not observed for cells grown on TCPS. This finding suggested the essential role of substrate materials in the chondrogenic differentiation of PDMC and GF. Neocartilage formation was more obvious in both PDMC and GF cells plated on CII-HA composite scaffolds vs. 8-layer SIS at 28 days in vitro. Finally, implantation of PDMC/CII-HA constructs into NOD-SCID mice confirmed the formation of tissue-engineered cartilage in vivo.
Collapse
Affiliation(s)
- Hsi-Yi Yeh
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan
| | - Ting-Yu Lin
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan
| | - Chen-Huan Lin
- Center for Neuropsychiatry, China Medical University Hospital, Taichung, Taiwan
| | - B Linju Yen
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Ching-Lin Tsai
- Department of Orthopaedics, National Taiwan University Hospital, Taipei, Taiwan
| | - Shan-Hui Hsu
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan; Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan; Institute of Biomedical Engineering, National Chung Hsing University, Taichung, Taiwan.
| |
Collapse
|
41
|
Drug Delivery to Wounds, Burns, and Diabetes-Related Ulcers. ADVANCES IN DELIVERY SCIENCE AND TECHNOLOGY 2014. [DOI: 10.1007/978-1-4614-9434-8_26] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
42
|
Woehl MA, Ono L, Riegel Vidotti IC, Wypych F, Schreiner WH, Sierakowski MR. Bioactive nanocomposites of bacterial cellulose and natural hydrocolloids. J Mater Chem B 2014; 2:7034-7044. [DOI: 10.1039/c4tb00706a] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Bacterial cellulose–natural hydrocolloid bionanocomposites were developed as cell growth substrates. The surface free energy of the composites is related to fibroblast viability. Surface properties of the bionanocomposites can be adjusted purely by changing the component proportions.
Collapse
Affiliation(s)
| | - Lucy Ono
- Departamento de Patologia Básica
- Curitiba 81531-980, Brazil
| | | | | | - Wido Herwig Schreiner
- Departamento de Física
- Universidade Federal do Paraná (UFPR)
- Curitiba 81531-980, Brazil
| | | |
Collapse
|
43
|
Constantin Barbaresso R, Rău I, Gabriela Zgârian R, Meghea A, Violeta Ghica M. Niflumic acid-collagen delivery systems used as anti-inflammatory drugs and analgesics in dentistry. CR CHIM 2014. [DOI: 10.1016/j.crci.2013.07.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
44
|
Popescu LM, Piticescu RM, Antonelli A, Rusti CF, Carboni E, Sfara C, Magnani M, Badilita V, Vasile E, Trusca R, Buruiana T. Recent advances in synthesis, characterization of hydroxyapatite/polyurethane composites and study of their biocompatible properties. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2013; 24:2491-2503. [PMID: 23877879 DOI: 10.1007/s10856-013-5005-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Accepted: 07/09/2013] [Indexed: 06/02/2023]
Abstract
The development of engineered biomaterials that mimic bone tissues is a promising research area that benefits from a growing interest. Polymers and polymer-ceramic composites are the principle materials investigated for the development of synthetic bone scaffolds thanks to their proven biocompatibility and biostability. Several polymers have been combined with calcium phosphates (mainly hydroxyapatite) to prepare nanocomposites with improved biocompatible and mechanical properties. Here, we report the hydrothermal synthesis in high pressure conditions of nanostructured composites based on hydroxyapatite and polyurethane functionalized with carboxyl and thiol groups. Cell-material interactions were investigated for potential applications of these new types of composites as coating for orthopedic implants. Physical-chemical and morphological characteristics of hydroxyapatite/polyurethane composites were evaluated for different compositions, showing their dependence on synthesis parameters (pressure, temperature). In vitro experiments, performed to verify if these composites are biocompatible cell culture substrates, showed that they are not toxic and do not affect cell viability.
Collapse
Affiliation(s)
- L M Popescu
- "Petru Poni" Institute of Macromolecular Chemistry, Iasi, Romania,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Pinho E, Grootveld M, Soares G, Henriques M. Cyclodextrin-based hydrogels toward improved wound dressings. Crit Rev Biotechnol 2013; 34:328-37. [DOI: 10.3109/07388551.2013.794413] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
46
|
Hoffmann A, Hoing JL, Newman M, Simman R. Role of Hyaluronic Acid Treatment in the Prevention of Keloid Scarring. J Am Coll Clin Wound Spec 2013; 4:23-31. [PMID: 24936445 DOI: 10.1016/j.jccw.2013.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 06/16/2013] [Accepted: 06/16/2013] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Keloids are benign dermal scars characterized by enhanced growth factor signaling, hyperproliferation activity and reduced extracellular matrix (ECM) deposition of hyaluronic acid. Our hypothesis is that high molecular weight HA can be used to replenish HA deposition in keloids thereby normalizing the keloid fibroblast phenotype. METHODS One normal (NF1) fibroblast culture and five keloid (KF1, KF2, KF3, KF4, KF5) fibroblast cultures were analyzed for changes in hyperproliferation, growth factor production and extracellular matrix deposition following 72 hour treatment with or without 10 μg/ml HA. RESULTS Proliferation activity decreased significantly in KF3 following HA treatment. Pro-collagen I expression in KF2 was decreased following HA treatment in association with changes in fiber arrangement to more parallel collagen bundles. In addition, HA demonstrated a downregulation on TGF-b1 growth factor expression in KF3 and KF4 and a decrease in active TGF-b1 release in KF2 and KF5 using ELISA. CONCLUSION Our data demonstrates that HA has the potential to normalize keloid fibroblast characteristic features such as hyperproliferation, growth factor production and ECM deposition depending on the specific genotype of the keloid fibroblast cell line. This study suggests that high molecular weight HA can be used to replenish HA deposition in keloid fibroblasts thereby decreasing fibrosis and ultimately decreasing keloid manifestation.
Collapse
Affiliation(s)
- Andrea Hoffmann
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA ; Department of Surgery, Division of Plastic Surgery, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| | - Jessica Lynn Hoing
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| | - Mackenzie Newman
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| | - Richard Simman
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA ; Department of Surgery, Division of Plastic Surgery, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| |
Collapse
|
47
|
Property evaluations of dry-cast reconstituted bacterial cellulose/tamarind xyloglucan biocomposites. Carbohydr Polym 2013; 93:144-53. [DOI: 10.1016/j.carbpol.2012.04.062] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Revised: 03/30/2012] [Accepted: 04/24/2012] [Indexed: 11/20/2022]
|
48
|
WU XIAOCHENG, HUANG BO, WANG JIAN, LI CHANGQING, ZHOU YUE. Collagen-targeting parathyroid hormone-related peptide promotes collagen binding and in vitro chondrogenesis in bone marrow-derived MSCs. Int J Mol Med 2012; 31:430-6. [DOI: 10.3892/ijmm.2012.1219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 12/06/2012] [Indexed: 11/05/2022] Open
|
49
|
Minaberry Y, Chiappetta DA, Sosnik A, Jobbágy M. Micro/Nanostructured Hyaluronic Acid Matrices with Tuned Swelling and Drug Release Properties. Biomacromolecules 2012; 14:1-9. [DOI: 10.1021/bm300814h] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
| | | | | | - Matías Jobbágy
- National Science Research Council (CONICET)
- Centro Interdisciplinario de Nanociencia y Nanotecnología
| |
Collapse
|
50
|
Bae SE, Bhang SH, Kim BS, Park K. Self-assembled extracellular macromolecular matrices and their different osteogenic potential with preosteoblasts and rat bone marrow mesenchymal stromal cells. Biomacromolecules 2012; 13:2811-20. [PMID: 22813212 DOI: 10.1021/bm300791h] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Extracellular environment is a physical support that is critical to cell adhesion, migration, and differentiation. In this work, cell-derived matrices (CDMs) were obtained by separately culturing fibroblasts, preosteoblasts, and chondrocytes. The cells were grown on a coverslip and subjected to decellularization using detergents and enzymes. The resulting matrices were named fibroblast-derived matrix (FDM), preosteoblast-derived matrix (PDM), and chondrocyte-derived matrix (CHDM). We hypothesize that the unique compositional and structural feature of each CDM provides cells with a distinct microenvironment capable of functioning as a different signaling cue in the regulation of preosteoblast and rat bone marrow mesenchymal stromal cell (BMSC) osteogenic differentiation. SEM images show that each cell type creates its unique surface texture in a fibrillar structure. Three major macromolecules, fibronectin, type I collagen, and laminin, were clearly identified using both immunofluorescence and Western blot, in which FDM exhibited a much stronger signal of each ECM component than that of PDM or CHDM. For early cell morphology, BMSCs on the CDMs were highly elongated in a spindle-like shape. Both preosteoblasts and BMSCs proliferated well on CDMs comparable to the control. Once preosteoblasts were cultured for 2 weeks, their osteogenic activity was significantly different depending on the type of CDM. Using Alizarin red and von Kossa staining, we found that the cells on the FDM were much more osteogenic than the other groups. Furthermore, FDM was the most effective in upregulating the osteogenic markers, such as alkaline phosphatase (ALP), osteopontin, osteocalcin, and type I collagen. In particular, we observed a 2.5-fold increase in ALP activity with FDM compared to that of control and CHDM. In stark contrast, CHDM was very poor in stimulating osteogenic differentiation of preosteoblasts. Interestingly, these results were reproducible with the use of BMSCs, which are much more heterogeneous in cell populations than preosteoblasts. CHDM was still very weak in triggering the osteogenesis of BMSCs, whereas both FDM and PDM were equally competitive. This study demonstrates that a combination of factors (surface texture and composition) shape a unique cellular microenvironment, which serves as a physical cue toward the osteogenic differentiation of preosteoblasts and BMSCs.
Collapse
Affiliation(s)
- Soon Eon Bae
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul 136-791, Republic of Korea
| | | | | | | |
Collapse
|