1
|
Kim J, Thomas SN. Opportunities for Nitric Oxide in Potentiating Cancer Immunotherapy. Pharmacol Rev 2022; 74:1146-1175. [PMID: 36180108 PMCID: PMC9553106 DOI: 10.1124/pharmrev.121.000500] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 05/15/2022] [Accepted: 07/05/2022] [Indexed: 11/22/2022] Open
Abstract
Despite nearly 30 years of development and recent highlights of nitric oxide (NO) donors and NO delivery systems in anticancer therapy, the limited understanding of exogenous NO's effects on the immune system has prevented their advancement into clinical use. In particular, the effects of exogenously delivered NO differing from that of endogenous NO has obscured how the potential and functions of NO in anticancer therapy may be estimated and exploited despite the accumulating evidence of NO's cancer therapy-potentiating effects on the immune system. After introducing their fundamentals and characteristics, this review discusses the current mechanistic understanding of NO donors and delivery systems in modulating the immunogenicity of cancer cells as well as the differentiation and functions of innate and adaptive immune cells. Lastly, the potential for the complex modulatory effects of NO with the immune system to be leveraged for therapeutic applications is discussed in the context of recent advancements in the implementation of NO delivery systems for anticancer immunotherapy applications. SIGNIFICANCE STATEMENT: Despite a 30-year history and recent highlights of nitric oxide (NO) donors and delivery systems as anticancer therapeutics, their clinical translation has been limited. Increasing evidence of the complex interactions between NO and the immune system has revealed both the potential and hurdles in their clinical translation. This review summarizes the effects of exogenous NO on cancer and immune cells in vitro and elaborates these effects in the context of recent reports exploiting NO delivery systems in vivo in cancer therapy applications.
Collapse
Affiliation(s)
- Jihoon Kim
- Parker H. Petit Institute for Bioengineering and Bioscience (J.K., S.N.T.), George W. Woodruff School of Mechanical Engineering (J.K., S.N.T.), and Wallace H. Coulter Department of Biomedical Engineering (S.N.T.), Georgia Institute of Technology, Atlanta, Georgia; Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia (S.N.T.); and Division of Biological Science and Technology, Yonsei University, Wonju, South Korea (J.K.)
| | - Susan N Thomas
- Parker H. Petit Institute for Bioengineering and Bioscience (J.K., S.N.T.), George W. Woodruff School of Mechanical Engineering (J.K., S.N.T.), and Wallace H. Coulter Department of Biomedical Engineering (S.N.T.), Georgia Institute of Technology, Atlanta, Georgia; Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia (S.N.T.); and Division of Biological Science and Technology, Yonsei University, Wonju, South Korea (J.K.)
| |
Collapse
|
2
|
Escobar A, Muzzio N, Moya SE. Antibacterial Layer-by-Layer Coatings for Medical Implants. Pharmaceutics 2020; 13:E16. [PMID: 33374184 PMCID: PMC7824561 DOI: 10.3390/pharmaceutics13010016] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 11/18/2022] Open
Abstract
The widespread occurrence of nosocomial infections and the emergence of new bacterial strands calls for the development of antibacterial coatings with localized antibacterial action that are capable of facing the challenges posed by increasing bacterial resistance to antibiotics. The Layer-by-Layer (LbL) technique, based on the alternating assembly of oppositely charged polyelectrolytes, can be applied for the non-covalent modification of multiple substrates, including medical implants. Polyelectrolyte multilayers fabricated by the LbL technique have been extensively researched for the development of antibacterial coatings as they can be loaded with antibiotics, antibacterial peptides, nanoparticles with bactericide action, in addition to being capable of restricting adhesion of bacteria to surfaces. In this review, the different approaches that apply LbL for antibacterial coatings, emphasizing those that can be applied for implant modification are presented.
Collapse
Affiliation(s)
- Ane Escobar
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182 C, 20014 Donostia-San Sebastian, Spain;
| | - Nicolas Muzzio
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, San Antonio, TX 78249, USA;
| | - Sergio Enrique Moya
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182 C, 20014 Donostia-San Sebastian, Spain;
| |
Collapse
|
3
|
Fleming G, Aveyard J, Fothergill JL, McBride F, Raval R, D'Sa RA. Nitric Oxide Releasing Polymeric Coatings for the Prevention of Biofilm Formation. Polymers (Basel) 2017; 9:E601. [PMID: 30965904 PMCID: PMC6418929 DOI: 10.3390/polym9110601] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/30/2017] [Accepted: 11/08/2017] [Indexed: 01/14/2023] Open
Abstract
The ability of nitric oxide (NO)-releasing polymer coatings to prevent biofilm formation is described. NO-releasing coatings on (poly(ethylene terephthalate) (PET) and silicone elastomer (SE)) were fabricated using aminosilane precursors. Pristine PET and SE were oxygen plasma treated, followed by immobilisation of two aminosilane molecules: N-(3-(trimethoxysilyl)propyl)diethylenetriamine (DET3) and N-(3-trimethoxysilyl)propyl)aniline (PTMSPA). N-diazeniumdiolate nitric oxide donors were formed at the secondary amine sites on the aminosilane molecules producing NO-releasing polymeric coatings. The NO payload and release were controlled by the aminosilane precursor, as DET3 has two secondary amine sites and PTMSPA only one. The antibacterial efficacy of these coatings was tested using a clinical isolate of Pseudomonas aeruginosa (PA14). All NO-releasing coatings in this study were shown to significantly reduce P. aeruginosa adhesion over 24 h with the efficacy being a function of the aminosilane modification and the underlying substrate. These NO-releasing polymers demonstrate the potential and utility of this facile coating technique for preventing biofilms for indwelling medical devices.
Collapse
Affiliation(s)
- George Fleming
- Department of Mechanical, Materials and Aerospace Engineering, University of Liverpool, Liverpool L69 3GH, UK.
| | - Jenny Aveyard
- Department of Mechanical, Materials and Aerospace Engineering, University of Liverpool, Liverpool L69 3GH, UK.
| | - Joanne L Fothergill
- Institute of Infection and Global Health, University of Liverpool, 8 West Derby Street, Liverpool L69 7B3, UK.
| | - Fiona McBride
- The Open Innovation Hub for Antimicrobial Surfaces, Surface Science Research Centre, Department of Chemistry, University of Liverpool, Liverpool L69 3BX, UK.
| | - Rasmita Raval
- The Open Innovation Hub for Antimicrobial Surfaces, Surface Science Research Centre, Department of Chemistry, University of Liverpool, Liverpool L69 3BX, UK.
| | - Raechelle A D'Sa
- Department of Mechanical, Materials and Aerospace Engineering, University of Liverpool, Liverpool L69 3GH, UK.
| |
Collapse
|
4
|
Abstract
Harnessing the impressive therapeutic potential of nitric oxide (NO) remains an ongoing challenge. This paper describes several of the current strategies both with respect to the underlying chemistry and physics and to the applications where they have shown promise. Included in this overview are molecular systems such as NONOates that release NO through chemical reactions and delivery vehicles such as nanoparticles that can generate, store, transport and deliver NO and related bioactive forms of NO such as nitrosothiols. Although there has been much positive movement, it is clear that we are only at the early stages of knowing how to precisely produce, transport and deliver to targeted sites therapeutic levels of NO and related molecules.
Collapse
Affiliation(s)
- Hongying Liang
- Department of Physiology & Biophysics, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA
| | - Parimala Nacharaju
- Department of Physiology & Biophysics, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA
| | - Adam Friedman
- Department of Dermatology, George Washington School of Medicine & Health Sciences, NW, Washington, DC 20037, USA
| | - Joel M Friedman
- Department of Physiology & Biophysics, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA
| |
Collapse
|
5
|
Yang Y, Qi P, Yang Z, Huang N. Nitric oxide based strategies for applications of biomedical devices. BIOSURFACE AND BIOTRIBOLOGY 2015. [DOI: 10.1016/j.bsbt.2015.08.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
6
|
Storm WL, Johnson JA, Worley BV, Slomberg DL, Schoenfisch MH. Dual action antimicrobial surfaces via combined nitric oxide and silver release. J Biomed Mater Res A 2014; 103:1974-84. [DOI: 10.1002/jbm.a.35331] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 08/13/2014] [Accepted: 09/05/2014] [Indexed: 01/27/2023]
Affiliation(s)
- Wesley L. Storm
- University of North Carolina at Chapel Hill; CB 3290 Chapel Hill North Carolina 27599
| | - Justin A. Johnson
- University of North Carolina at Chapel Hill; CB 3290 Chapel Hill North Carolina 27599
| | - Brittany V. Worley
- University of North Carolina at Chapel Hill; CB 3290 Chapel Hill North Carolina 27599
| | - Danielle L. Slomberg
- University of North Carolina at Chapel Hill; CB 3290 Chapel Hill North Carolina 27599
| | - Mark H. Schoenfisch
- University of North Carolina at Chapel Hill; CB 3290 Chapel Hill North Carolina 27599
| |
Collapse
|
7
|
Storm WL, Youn J, Reighard KP, Worley BV, Lodaya HM, Shin JH, Schoenfisch MH. Superhydrophobic nitric oxide-releasing xerogels. Acta Biomater 2014; 10:3442-8. [PMID: 24797527 DOI: 10.1016/j.actbio.2014.04.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 03/20/2014] [Accepted: 04/25/2014] [Indexed: 12/13/2022]
Abstract
Superhydrophobic nitric oxide (NO)-releasing xerogels were prepared by spray-coating a fluorinated silane/silica composite onto N-diazeniumdiolate NO donor-modified xerogels. The thickness of the superhydrophobic layer was used to extend NO release durations from 59 to 105h. The resulting xerogels were stable, maintaining superhydrophobicity for up to 1month (the longest duration tested) when immersed in solution, with no leaching of silica or undesirable fragmentation detected. The combination of superhydrophobicity and NO release reduced viable Pseudomonas aeruginosa adhesion by >2-logs. The killing effect of NO was demonstrated at longer bacterial contact times, with superhydrophobic NO-releasing xerogels resulting in 3.8-log reductions in adhered viable bacteria vs. controls. With no observed toxicity to L929 murine fibroblasts, NO-releasing superhydrophobic membranes may be valuable antibacterial coatings for implants as they both reduce adhesion and kill bacteria that do adhere.
Collapse
|
8
|
Kim J, Saravanakumar G, Choi HW, Park D, Kim WJ. A platform for nitric oxide delivery. J Mater Chem B 2014; 2:341-356. [DOI: 10.1039/c3tb21259a] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
9
|
Bhavsar K, Buddhiwant P, Soni SK, Depan D, Sarkar S, Khire JM. Phytase isozymes from Aspergillus niger NCIM 563 under solid state fermentation: Biochemical characterization and their correlation with submerged phytases. Process Biochem 2013. [DOI: 10.1016/j.procbio.2013.08.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
10
|
Nichols SP, Schoenfisch MH. Nitric oxide-flux dependent bacterial adhesion and viability at fibrinogen-coated surfaces. Biomater Sci 2013; 1:10.1039/C3BM60130G. [PMID: 24288588 PMCID: PMC3839865 DOI: 10.1039/c3bm60130g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nitric oxide (NO) is an endogenous antibacterial agent produced by immune cells in response to pathogens. Herein, the NO fluxes necessary to reduce bacterial adhesion of different bacteria (S. aureus, methicillin-resistant S. aureus, S. epidermidis, E. faecalis, E. coli, and P. aeruginosa) were investigated to ascertain the sensitivity of these bacteria to NO. S-nitrosothiol NO donor-modified xerogels were selected as a model NO-release surface due to their extended NO-release kinetics relative to other NO donor systems. The xerogels were coated with poly(vinyl chloride) (PVC) to achieve consistent surface energy between NO-releasing and control substrates. Fibrinogen was pre-adsorbed to these materials to more accurately mimic conditions encountered in blood and promote bacteria adhesion. Nitric oxide fluxes ranging from 20-50 pmol cm-2 s-1 universally inhibited the bacterial adhesion by >80% for each strain studied. Maximum bacteria killing activity (reduced viability by 85-98%) was observed at the greatest NO payload (1700 nmol cm-2).
Collapse
Affiliation(s)
- Scott P. Nichols
- Department of Chemistry, Caudill Laboratories, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Mark H. Schoenfisch
- Department of Chemistry, Caudill Laboratories, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
11
|
Koh A, Carpenter AW, Slomberg DL, Schoenfisch MH. Nitric oxide-releasing silica nanoparticle-doped polyurethane electrospun fibers. ACS APPLIED MATERIALS & INTERFACES 2013; 5:7956-7964. [PMID: 23915047 PMCID: PMC3811043 DOI: 10.1021/am402044s] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Electrospun polyurethane fibers doped with nitric oxide (NO)-releasing silica particles are presented as novel macromolecular scaffolds with prolonged NO-release and high porosity. Fiber diameter (119-614 nm) and mechanical strength (1.7-34.5 MPa of modulus) were varied by altering polyurethane type and concentration, as well as the NO-releasing particle composition, size, and concentration. The resulting NO-releasing electrospun nanofibers exhibited ~83% porosity with flexible plastic or elastomeric behavior. The use of N-diazeniumdiolate- or S-nitrosothiol-modified particles yielded scaffolds exhibiting a wide range of NO release totals and durations (7.5 nmol mg(-1)-0.12 μmol mg(-1) and 7 h to 2 weeks, respectively). The application of NO-releasing porous materials as coatings for subcutaneous implants may improve tissue biocompatibility by mitigating the foreign body response and promoting cell integration.
Collapse
|
12
|
Costa R, Ribeiro C, Lopes AC, Martins P, Sencadas V, Soares R, Lanceros-Mendez S. Osteoblast, fibroblast and in vivo biological response to poly(vinylidene fluoride) based composite materials. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2013; 24:395-403. [PMID: 23138839 DOI: 10.1007/s10856-012-4808-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 10/30/2012] [Indexed: 06/01/2023]
Abstract
Electroactive materials can be taken to advantage for the development of sensors and actuators as well as for novel tissue engineering strategies. Composites based on poly(vinylidene fluoride), PVDF, have been evaluated with respect to their biological response. Cell viability and proliferation were performed in vitro both with Mesenchymal Stem Cells differentiated to osteoblasts and Human Fibroblast Foreskin 1. In vivo tests were also performed using 6-week-old C57Bl/6 mice. It was concluded that zeolite and clay composites are biocompatible materials promoting cell response and not showing in vivo pro-inflammatory effects which renders both of them attractive for biological applications and tissue engineering, opening interesting perspectives to development of scaffolds from these composites. Ferrite and silver nanoparticle composites decrease osteoblast cell viability and carbon nanotubes decrease fibroblast viability. Further, carbon nanotube composites result in a significant increase in local vascularization accompanied an increase of inflammatory markers after implantation.
Collapse
Affiliation(s)
- R Costa
- Department of Biochemistry (U38-FCT), Faculty of Medicine, University of Porto, 4200-319, Porto, Portugal
| | | | | | | | | | | | | |
Collapse
|
13
|
Schairer DO, Chouake JS, Nosanchuk JD, Friedman AJ. The potential of nitric oxide releasing therapies as antimicrobial agents. Virulence 2012; 3:271-9. [PMID: 22546899 PMCID: PMC3442839 DOI: 10.4161/viru.20328] [Citation(s) in RCA: 364] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Nitric oxide (NO) is a short-lived, diatomic, lipophilic gas that plays an integral role in defending against pathogens. Among its many functions are involvement in immune cell signaling and in the biochemical reactions by which immune cells defend against bacteria, fungi, viruses and parasites. NO signaling directs a broad spectrum of processes, including the differentiation, proliferation, and apoptosis of immune cells. When secreted by activated immune cells, NO diffuses across cellular membranes and exacts nitrosative and oxidative damage on invading pathogens. These observations led to the development of NO delivery systems that can harness the antimicrobial properties of this evanescent gas. The innate microbicidal properties of NO, as well as the antimicrobial activity of the various NO delivery systems, are reviewed.
Collapse
|
14
|
Jen MC, Serrano MC, van Lith R, Ameer GA. Polymer-Based Nitric Oxide Therapies: Recent Insights for Biomedical Applications. ADVANCED FUNCTIONAL MATERIALS 2012; 22:239-260. [PMID: 25067935 PMCID: PMC4111277 DOI: 10.1002/adfm.201101707] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Since the discovery of nitric oxide (NO) in the 1980s, this cellular messenger has been shown to participate in diverse biological processes such as cardiovascular homeostasis, immune response, wound healing, bone metabolism, and neurotransmission. Its beneficial effects have prompted increased research in the past two decades, with a focus on the development of materials that can locally release NO. However, significant limitations arise when applying these materials to biomedical applications. This Feature Article focuses on the development of NO-releasing and NO-generating polymeric materials (2006-2011) with emphasis on recent in vivo applications. Results are compared and discussed in terms of NO dose, release kinetics, and biological effects, in order to provide a foundation to design and evaluate new NO therapies.
Collapse
Affiliation(s)
- Michele C Jen
- Biomedical Engineering Department, Northwestern University, Evanston IL, 60208, USA
| | - María C Serrano
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas Cantoblanco, Madrid 28049, Spain
| | - Robert van Lith
- Biomedical Engineering Department, Northwestern University, Evanston IL, 60208, USA
| | - Guillermo A Ameer
- Biomedical Engineering Department, Northwestern University, Evanston IL, 60208, USA
| |
Collapse
|
15
|
Abstract
Continuous glucose monitoring devices remain limited in their duration of use due to difficulties presented by the foreign body response (FBR), which impairs sensor functionality immediately following implantation via biofouling and leukocyte infiltration. The FBR persists through the life of the implant, culminating with fibrous encapsulation and isolation from normal tissue. These issues have led researchers to develop strategies to mitigate the FBR and improve tissue integration. Studies have often focused on abating the FBR using various outer coatings, thereby changing the chemical or physical characteristics of the sensor surface. While such strategies have led to some success, they have failed to fully integrate the sensor into surrounding tissue. To further address biocompatibility, researchers have designed coatings capable of actively releasing biological agents (e.g., vascular endothelial growth factor, dexamethasone, and nitric oxide) to direct the FBR to induce tissue integration. Active release approaches have proven promising and, when combined with biocompatible coating materials, may ultimately improve the in vivo lifetime of subcutaneous glucose biosensors. This article focuses on strategies currently under development for mitigating the FBR.
Collapse
Affiliation(s)
- Ahyeon Koh
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | | | |
Collapse
|
16
|
Banerjee I, Pangule RC, Kane RS. Antifouling coatings: recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2011; 23:690-718. [PMID: 20886559 DOI: 10.1002/adma.201001215] [Citation(s) in RCA: 1587] [Impact Index Per Article: 113.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Revised: 06/06/2010] [Indexed: 05/21/2023]
Abstract
The major strategies for designing surfaces that prevent fouling due to proteins, bacteria, and marine organisms are reviewed. Biofouling is of great concern in numerous applications ranging from biosensors to biomedical implants and devices, and from food packaging to industrial and marine equipment. The two major approaches to combat surface fouling are based on either preventing biofoulants from attaching or degrading them. One of the key strategies for imparting adhesion resistance involves the functionalization of surfaces with poly(ethylene glycol) (PEG) or oligo(ethylene glycol). Several alternatives to PEG-based coatings have also been designed over the past decade. While protein-resistant coatings may also resist bacterial attachment and subsequent biofilm formation, in order to overcome the fouling-mediated risk of bacterial infection it is highly desirable to design coatings that are bactericidal. Traditional techniques involve the design of coatings that release biocidal agents, including antibiotics, quaternary ammonium salts (QAS), and silver, into the surrounding aqueous environment. However, the emergence of antibiotic- and silver-resistant pathogenic strains has necessitated the development of alternative strategies. Therefore, other techniques based on the use of polycations, enzymes, nanomaterials, and photoactive agents are being investigated. With regard to marine antifouling coatings, restrictions on the use of biocide-releasing coatings have made the generation of nontoxic antifouling surfaces more important. While considerable progress has been made in the design of antifouling coatings, ongoing research in this area should result in the development of even better antifouling materials in the future.
Collapse
Affiliation(s)
- Indrani Banerjee
- Howard P. Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | | | | |
Collapse
|
17
|
Abstract
The multiple roles nitric oxide (NO) plays as a bioregulatory, anticancer, antimicrobial and antioxidant agent has triggered an explosive interest in recent years in compounds able to deliver this diatomic radical for therapeutic purposes. A major issue associated with NO donors is the precise control of the NO release, which effect is highly concentration and flux dependent. Light represents a convenient non-invasive on/off trigger to deliver NO on demand since it allows the accurate control of site, timing and dosage. The assembling of NO photodonors through different approaches may lead to intriguing light-responsive molecular constructs including nanostructured films, polymers, gels, nanoparticles and molecular conjugates which exhibit promising potential in view of practical applications. This tutorial review illustrates the recent research from our and other laboratories towards the fabrication of these molecular assemblies, highlighting the logical design and the relevance in the biomedical field. Therefore, this review is aimed to be a source of inspiration for a wide range of scientists belonging to the chemical, materials science and biochemical communities, facing the common challenge of fabricating controllable NO dispensers.
Collapse
|
18
|
Lahiri GK, Kaim W. Electronic structure alternatives in nitrosylruthenium complexes. Dalton Trans 2010; 39:4471-8. [DOI: 10.1039/c002173c] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
19
|
Friedman A, Friedman J. New biomaterials for the sustained release of nitric oxide: past, present and future. Expert Opin Drug Deliv 2009; 6:1113-22. [PMID: 19663720 DOI: 10.1517/17425240903196743] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Nitric oxide (NO), the 1992 'Molecule of the Year', is the focus of immense medical and scientific exploration. Interest in NO has grown exponentially since the initial and relatively recent discovery that NO is the long sought after endothelial relaxing factor. There is intense research that is continuing to expose the extensive physiologic impact of NO in virtually all organ and tissue systems under both normal and pathological conditions. Both the rate of delivery and the amount of site-specific generated NO modulate a balance between cytoregulatory and cytotoxic activities. This balancing act and the very short lifetime of NO under physiological conditions pose an extreme challenge with respect to harnessing the exceptional therapeutic potential of this molecule. Over the past two decades, the race to translate the therapeutic potential of NO to the bedside has been overwhelmingly through the development of numerous NO delivery devices/vehicles. So far no one product has emerged as a clearcut winner. This review: discusses and evaluates NO-donating platforms that are available at present; attempts to enhance delivery and efficacy through encapsulation in silane-based hydrogel matrices; and discusses and evaluates the future direction of these advances.
Collapse
Affiliation(s)
- Adam Friedman
- Department of Medicine, Albert Einstein of Medicine, Bronx, NY 10467, USA.
| | | |
Collapse
|
20
|
Zhao L, Chu PK, Zhang Y, Wu Z. Antibacterial coatings on titanium implants. J Biomed Mater Res B Appl Biomater 2009; 91:470-80. [DOI: 10.1002/jbm.b.31463] [Citation(s) in RCA: 645] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
21
|
Engelsman AF, Krom BP, Busscher HJ, van Dam GM, Ploeg RJ, van der Mei HC. Antimicrobial effects of an NO-releasing poly(ethylene vinylacetate) coating on soft-tissue implants in vitro and in a murine model. Acta Biomater 2009; 5:1905-10. [PMID: 19251498 DOI: 10.1016/j.actbio.2009.01.041] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Revised: 01/16/2009] [Accepted: 01/26/2009] [Indexed: 11/25/2022]
Abstract
Infection of surgical meshes used in abdominal wall reconstructions often leads to removal of the implant and increases patient morbidity due to repetitive operations and hospital administrations. Treatment with antibiotics is ineffective due to the biofilm mode of growth of the infecting bacteria and bears the risk of inducing antibiotic resistance. Hence there is a need for alternative methods to prevent and treat mesh infection. Nitric oxide (NO)-releasing coatings have been demonstrated to possess bactericidal properties in vitro. It is the aim of this study to assess possible benefits of a low concentration NO-releasing carbon-based coating on monofilament polypropylene meshes with respect to infection control in vitro and in vivo. When applied on surgical meshes, NO-releasing coatings showed significant bactericidal effect on in vitro biofilms of Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and CNS. However, using bioluminescent in vivo imaging, no beneficial effects of this NO-releasing coating on subcutaneously implanted surgical meshes in mice could be observed.
Collapse
|
22
|
Jantová S, Letasiová S, Theiszová M, Palou M. Comparison of murine fibroblast cell response to fluor-hydroxyapatite composite, fluorapatite and hydroxyapatite by eluate assay. ACTA BIOLOGICA HUNGARICA 2009; 60:89-107. [PMID: 19378927 DOI: 10.1556/abiol.60.2009.1.9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Fluorapatite (FA) is one of the inorganic constituents of bone or teeth used for hard tissue repairs and replacements. Fluor-hydroxyapatite (FHA) is a new synthetic composite that contains the same molecular concentration of OH(-) groups and F(-) ions. The aim of this experiment was to evaluate the cellular responses of murine fibroblast NIH-3T3 cells in vitro to solid solutions of FHA and FA and to compare them with the effect of hydroxyapatite (HA). We studied 24, 48 and 72 h effects of biomaterials on cell morphology, proliferation and cell cycle of NIH-3T3 cells by eluate assay. Furthermore, we examined the ability of FHA, FA and HA to induce cell death and DNA damage. Our cytotoxic/antiproliferative studies indicated that any of tested biomaterials did not cause the total inhibition of cell division. Biomaterials induced different antiproliferative effects increasing in the order HA < FHA < FA which were time- and concentration-dependent. None of the tested biomaterials induced necrotic/apoptotic death of NIH-3T3 cells. On the other hand, after 72 h we found that FHA and FA induced G0/G1 arrest of NIH-3T3 cells, while HA did not affect any cell cycle phases. Comet assay showed that while HA demonstrated weaker genotoxicity, DNA damage induced by FHA and FA caused G0/G1 arrest of NIH-3T3 cells. Fluoridation of hydroxyapatite and different FHA and FA structure caused different cell response of NIH-3T3 cells to biomaterials.
Collapse
Affiliation(s)
- Sona Jantová
- Institute of Biochemistry, Nutrition and Health Protection, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, SK-81237 Bratislava, Slovak Republic
| | | | | | | |
Collapse
|
23
|
Guerrero G, Amalric J, Mutin PH, Sotto A, Lavigne JP. Inhibition de l’adhésion bactérienne et prévention de la formation d’un biofilm : utilisation de monocouches autoassemblées organiques sur des surfaces inorganiques. ACTA ACUST UNITED AC 2009; 57:36-43. [DOI: 10.1016/j.patbio.2008.07.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Accepted: 07/04/2008] [Indexed: 11/15/2022]
|
24
|
Koehler JJ, Zhao J, Jedlicka SS, Porterfield DM, Rickus JL. Compartmentalized Nanocomposite for Dynamic Nitric Oxide Release. J Phys Chem B 2008; 112:15086-93. [DOI: 10.1021/jp803276u] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- John J. Koehler
- Department of Agricultural and Biological Engineering, Department of Horticulture and Landscape Architecture, Weldon School of Biomedical Engineering, Physiological Sensing Facility at the Bindley Bioscience Center, Purdue University, West Lafayette, IN
| | - Jianxiu Zhao
- Department of Agricultural and Biological Engineering, Department of Horticulture and Landscape Architecture, Weldon School of Biomedical Engineering, Physiological Sensing Facility at the Bindley Bioscience Center, Purdue University, West Lafayette, IN
| | - Sabrina S. Jedlicka
- Department of Agricultural and Biological Engineering, Department of Horticulture and Landscape Architecture, Weldon School of Biomedical Engineering, Physiological Sensing Facility at the Bindley Bioscience Center, Purdue University, West Lafayette, IN
| | - D. Marshall Porterfield
- Department of Agricultural and Biological Engineering, Department of Horticulture and Landscape Architecture, Weldon School of Biomedical Engineering, Physiological Sensing Facility at the Bindley Bioscience Center, Purdue University, West Lafayette, IN
| | - Jenna L. Rickus
- Department of Agricultural and Biological Engineering, Department of Horticulture and Landscape Architecture, Weldon School of Biomedical Engineering, Physiological Sensing Facility at the Bindley Bioscience Center, Purdue University, West Lafayette, IN
| |
Collapse
|
25
|
Gupta R, Kumar A. Bioactive materials for biomedical applications using sol–gel technology. Biomed Mater 2008; 3:034005. [DOI: 10.1088/1748-6041/3/3/034005] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
26
|
|
27
|
|
28
|
Comparative study of a new composite biomaterial fluor-hydroxyapatite on fibroblast cell line NIH-3T3 by direct test. Biologia (Bratisl) 2008. [DOI: 10.2478/s11756-008-0043-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
29
|
Hetrick EM, Shin JH, Stasko NA, Johnson CB, Wespe DA, Holmuhamedov E, Schoenfisch MH. Bactericidal efficacy of nitric oxide-releasing silica nanoparticles. ACS NANO 2008; 2:235-46. [PMID: 19206623 PMCID: PMC3571086 DOI: 10.1021/nn700191f] [Citation(s) in RCA: 235] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The utility of nitric oxide (NO)-releasing silica nanoparticles as novel antibacterial agents is demonstrated against Pseudomonas aeruginosa. Nitric oxide-releasing nanoparticles were prepared via co-condensation of tetraalkoxysilane with aminoalkoxysilane modified with diazeniumdiolate NO donors, allowing for the storage of large NO payloads. Comparison of the bactericidal efficacy of the NO-releasing nanoparticles to 1-[2-(carboxylato)pyrrolidin-1-yl]diazen-1-ium-1,2-diolate (PROLI/NO), a small molecule NO donor, demonstrated enhanced bactericidal efficacy of nanoparticle-derived NO and reduced cytotoxicity to healthy cells (mammalian fibroblasts). Confocal microscopy revealed that fluorescently labeled NO-releasing nanoparticles associated with the bacterial cells, providing rationale for the enhanced bactericidal efficacy of the nanoparticles. Intracellular NO concentrations were measurable when the NO was delivered from nanoparticles as opposed to PROLI/NO. Collectively, these results demonstrate the advantage of delivering NO via nanoparticles for antimicrobial applications.
Collapse
Affiliation(s)
- Evan M. Hetrick
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Jae Ho Shin
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Nathan A. Stasko
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - C. Bryce Johnson
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Department of Cell and Developmental Biology, University of North Carolina at Chapel Hill Chapel Hill, NC 27599
| | - Daniel A. Wespe
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Ekhson Holmuhamedov
- Department of Cell and Developmental Biology, University of North Carolina at Chapel Hill Chapel Hill, NC 27599
| | - Mark H. Schoenfisch
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
30
|
Quan R, Yang D, Wu X, Wang H, Miao X, Li W. In vitro and in vivo biocompatibility of graded hydroxyapatite-zirconia composite bioceramic. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2008; 19:183-7. [PMID: 17597371 DOI: 10.1007/s10856-006-0025-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2006] [Accepted: 10/19/2006] [Indexed: 05/16/2023]
Abstract
To obtain bioceramics with good osteoinductive ability and mechanical strength, graded hydroxyapatite-zirconia (HA-ZrO(2)) composite bioceramics were prepared in this work. The biocompatibility of the bioceramics was investigated in vitro based on acute toxicity and cytotoxicity tests and hemolysis assay. Results showed the studied graded HA-ZrO(2) had little toxicity to mouse and L929 mouse fibroblasts. Also, hemolysis assay indicated a good blood compatibility of the bioceramics. Based on the results of in vitro tests, animal experiments were performed on white New Zealand rabbits by implantation into hip muscles and femur. It was found that the graded HA-ZrO(2) composite bioceramics exhibited superior osteoinductive ability, which may be a promising bioceramics implant.
Collapse
Affiliation(s)
- Renfu Quan
- Department of Orthopaedics, Second Affiliated Hospital, Zhejiang University, Jiefang Road 88#, Hangzhou 310009, China.
| | | | | | | | | | | |
Collapse
|
31
|
de Lima RG, Sauaia MG, Ferezin C, Pepe IM, José NM, Bendhack LM, da Rocha ZN, da Silva RS. Photochemical and pharmacological aspects of nitric oxide release from some nitrosyl ruthenium complexes entrapped in sol–gel and silicone matrices. Polyhedron 2007. [DOI: 10.1016/j.poly.2007.03.042] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
32
|
Konter J, Abuo-Rahma GEDAA, El-Emam A, Lehmann J. Synthesis of Diazen-1-ium-1,2-diolates Monitored by the “NOtizer” Apparatus: Relationship between Formation Rates, Molecular Structure and the Release of Nitric Oxide. European J Org Chem 2007. [DOI: 10.1002/ejoc.200600662] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
33
|
Werner C, Maitz MF, Sperling C. Current strategies towards hemocompatible coatings. ACTA ACUST UNITED AC 2007. [DOI: 10.1039/b703416b] [Citation(s) in RCA: 217] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
34
|
Shin JH, Schoenfisch MH. Improving the biocompatibility of in vivo sensors via nitric oxide release. Analyst 2006; 131:609-15. [PMID: 16795923 DOI: 10.1039/b600129g] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The continuous, real-time monitoring of clinically important analytes (e.g., PO2, PCO2, pH, K+, Na+, glucose, and lactate) is of great importance to human health care. Despite considerable efforts spanning several decades, the use of in vivo sensors clinically remains limited due to inadequate biocompatibility. The discovery of nitric oxide (NO) as an effective inhibitor of platelet and bacterial adhesion has opened a new direction of research related to designing the next generation of in vivo sensors. In this Highlight article, recent progress in designing more biocompatible in vivo sensors is described, with a particular focus on preparing interfaces that resist biofouling via controlled NO release.
Collapse
Affiliation(s)
- Jae Ho Shin
- Department of Chemistry, University of North Carolina at Chapel Hill, NC 27599-3290, USA
| | | |
Collapse
|
35
|
Jedlicka SS, McKenzie JL, Leavesley SJ, Little KM, Webster TJ, Robinson JP, Nivens DE, Rickus JL. Sol-gel derived materials as substrates for neuronal differentiation: effects of surface features and protein conformation. ACTA ACUST UNITED AC 2006. [DOI: 10.1039/b602008a] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|