1
|
Xu D, Meng X, Liu S, Poisson J, Vana P, Zhang K. Dehydration regulates structural reorganization of dynamic hydrogels. Nat Commun 2024; 15:6886. [PMID: 39128898 PMCID: PMC11317490 DOI: 10.1038/s41467-024-51219-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 08/01/2024] [Indexed: 08/13/2024] Open
Abstract
The dehydration process is widely recognized as a significant phenomenon in nature. Hydrogels, which are important functional materials with high water content and crosslinked networks, encounter the issue of dehydration in their practical applications. Here, we report the distinctive anisotropic dehydration modality of dynamic hydrogels, which is fundamentally different from the more commonly observed isotropic dehydration of covalent hydrogels. Xerogels derived from dynamic hydrogel dehydration will fully cover a curved substrate surface and exhibit hollow structures with internal knots, in contrast to the bulk xerogels produced by covalent hydrogel dehydration. Depending on the competing cohesion of polymer chains and the adhesion at the hydrogel-substrate interface, the previously overlooked reorganization of polymer networks within dynamic hydrogels, triggered by dehydration-induced stress, has been discovered to regulate such macroscopic structural reconstruction for dynamic hydrogel dehydration. With the attached hydrogel-substrate interface, the surface microstructures of substrates can also be engraved onto xerogels with high resolution and on a large scale. This work will greatly enhance our understanding of the soft matter dehydration process and broaden the applications of dehydration technologies using water-containing materials.
Collapse
Affiliation(s)
- Dan Xu
- Sustainable Materials and Chemistry, Department of Wood Technology and Wood-based Composites, University of Göttingen, Göttingen, Germany
| | - Xintong Meng
- Sustainable Materials and Chemistry, Department of Wood Technology and Wood-based Composites, University of Göttingen, Göttingen, Germany
| | - Siyuan Liu
- Sustainable Materials and Chemistry, Department of Wood Technology and Wood-based Composites, University of Göttingen, Göttingen, Germany
| | - Jade Poisson
- Sustainable Materials and Chemistry, Department of Wood Technology and Wood-based Composites, University of Göttingen, Göttingen, Germany
| | - Philipp Vana
- Institute of Physical Chemistry, University of Göttingen, Göttingen, Germany
| | - Kai Zhang
- Sustainable Materials and Chemistry, Department of Wood Technology and Wood-based Composites, University of Göttingen, Göttingen, Germany.
- Biotechnology Center (Biotechnikum), University of Göttingen, Göttingen, Germany.
| |
Collapse
|
2
|
Zeshan M, Amjed N, Ashraf H, Farooq A, Akram N, Zia KM. A review on the application of chitosan-based polymers in liver tissue engineering. Int J Biol Macromol 2024; 262:129350. [PMID: 38242400 DOI: 10.1016/j.ijbiomac.2024.129350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/29/2023] [Accepted: 01/07/2024] [Indexed: 01/21/2024]
Abstract
Chitosan-based polymers have enormous structural tendencies to build bioactive materials with novel characteristics, functions, and various applications, mainly in liver tissue engineering (LTE). The specific physicochemical, biological, mechanical, and biodegradation properties give the effective ways to blend these biopolymers with synthetic and natural polymers to fabricate scaffolds matrixes, sponges, and complexes. A variety of natural and synthetic biomaterials, including chitosan (CS), alginate (Alg), collagen (CN), gelatin (GL), hyaluronic acid (HA), hydroxyapatite (HAp), polyethylene glycol (PEG), polycaprolactone (PCL), poly(lactic-co-glycolic) acid (PGLA), polylactic acid (PLA), and silk fibroin gained considerable attention due to their structure-properties relationship. The incorporation of CS within the polymer matrix results in increased mechanical strength and also imparts biological behavior to the designed PU formulations. The significant and growing interest in the LTE sector, this review aims to be a detailed exploration of CS-based polymers biomaterials for LTE. A brief explanation of the sources and extraction, properties, structure, and scope of CS is described in the introduction. After that, a full overview of the liver, its anatomy, issues, hepatocyte transplantation, LTE, and CS LTE applications are discussed.
Collapse
Affiliation(s)
- Muhammad Zeshan
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| | - Nyla Amjed
- Department of Chemistry, The University of Lahore, Lahore, Pakistan
| | - Humna Ashraf
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Ariba Farooq
- Department of Chemistry, The University of Lahore, Lahore, Pakistan
| | - Nadia Akram
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Khalid Mahmood Zia
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan.
| |
Collapse
|
3
|
Hu L, Song C, Li H, Gao Y, Zhang J, Gao T, Wei Y, Xu Z, Xue W, Huang S, Wen H, Li Z, Wu J. Oxidized Dextran/Chitosan Hydrogel Engineered with Tetrasulfide-Bridged Silica Nanoparticles for Postsurgical Treatment. Macromol Biosci 2024; 24:e2200565. [PMID: 36871156 DOI: 10.1002/mabi.202200565] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/10/2023] [Indexed: 03/06/2023]
Abstract
Tumor recurrence and wound microbial infection after tumor excision are serious threats to patients. Thus, the strategy to supply a sufficient and sustained release of cancer drugs and simultaneously engineer antibacterial properties and satisfactory mechanical strength is highly desired for tumor postsurgical treatment. Herein, A novel double-sensitive composite hydrogel embedded with tetrasulfide-bridged mesoporous silica (4S-MSNs) is developed. The incorporation of 4S-MSNs into oxidized dextran/chitosan hydrogel network, not only enhances the mechanical properties of hydrogels, but also can increase the specificity of drug with dual pH/redox sensitivity, thereby allowing more efficient and safer therapy. Besides, 4S-MSNs hydrogel preserves the favorable physicochemical properties of polysaccharide hydrogel, such as high hydrophilicity, satisfactory antibacterial activity, and excellent biocompatibility. Thus, the prepared 4S-MSNs hydrogel can be served as an efficient strategy for postsurgical bacterial infection and inhibition of tumor recurrence.
Collapse
Affiliation(s)
- Lele Hu
- Department of Chemical Engineering, Northwest University, Xi'an, 710069, China
| | - Chunli Song
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, 518000, China
| | - Hongyi Li
- Department of Chemical Engineering, Northwest University, Xi'an, 710069, China
| | - Yao Gao
- Department of Chemical Engineering, Northwest University, Xi'an, 710069, China
| | - Jing Zhang
- Department of Chemical Engineering, Northwest University, Xi'an, 710069, China
| | - Ting Gao
- Department of Chemical Engineering, Northwest University, Xi'an, 710069, China
| | - Youhua Wei
- Department of Chemical Engineering, Northwest University, Xi'an, 710069, China
| | - Zhuoran Xu
- Department of Chemical Engineering, Northwest University, Xi'an, 710069, China
| | - Weiming Xue
- Department of Chemical Engineering, Northwest University, Xi'an, 710069, China
| | - Saipeng Huang
- Department of Chemical Engineering, Northwest University, Xi'an, 710069, China
| | - Huiyun Wen
- Department of Chemical Engineering, Northwest University, Xi'an, 710069, China
| | - Zigang Li
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, 518000, China
- Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518000, China
| | - Jun Wu
- Bioscience and Biomedical Engineering Thrust, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou, 511400, China
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, SAR, 999077, China
| |
Collapse
|
4
|
Kumari M, Sharma S, Kanwar N, Naman S, Baldi A. Dextran-based Drug Delivery Approaches for Lung Diseases: A Review. Curr Drug Deliv 2024; 21:1474-1496. [PMID: 38243938 DOI: 10.2174/0115672018267737231116100812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/13/2023] [Accepted: 09/27/2023] [Indexed: 01/22/2024]
Abstract
Respiratory disorders, such as tuberculosis, cystic fibrosis, chronic obstructive pulmonary disease, asthma, lung cancer, and pulmonary inflammation, are among the most prevalent ailments in today's world. Dextran, an exopolysaccharide formed by Leuconostoc mesenteroides (slimeproducing bacteria), and its derivatives are investigated for several therapeutic utilities. Dextranbased drug delivery system can become an innovative strategy in the treatment of several respiratory ailments as it offers numerous advantages, such as mucolytic action, airway hydration, antiinflammatory properties, and radioprotective effect as compared to other polysaccharides. Being biocompatible, flexible hydrophilic nature, biodegradable, tasteless, odourless, non-mutagenic, watersoluble and non-toxic edible polymer, dextran-based drug delivery systems have been explored for a wide range of therapeutic applications, especially in lungs and respiratory diseases. The present article comprehensively discusses various derivatives of dextran with their attributes to be considered for drug delivery and extensive therapeutic benefits, with a special emphasis on the armamentarium of dextran-based formulations for the treatment of respiratory disorders and associated pathological conditions. The information provided will act as a platform for formulation scientists as important considerations in designing therapeutic approaches for lung and respiratory diseases. With an emphasis on lung illnesses, this article will offer an in-depth understanding of dextran-based delivery systems in respiratory illnesses.
Collapse
Affiliation(s)
- Manisha Kumari
- Pharma Innovation Lab, Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda-151001, Punjab, India
| | - Sanyam Sharma
- Pharma Innovation Lab, Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda-151001, Punjab, India
| | - Navjot Kanwar
- Pharma Innovation Lab, Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda-151001, Punjab, India
| | - Subh Naman
- Pharma Innovation Lab, Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda-151001, Punjab, India
| | - Ashish Baldi
- Pharma Innovation Lab, Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda-151001, Punjab, India
| |
Collapse
|
5
|
Princen K, Marien N, Guedens W, Graulus GJ, Adriaensens P. Hydrogels with Reversible Crosslinks for Improved Localised Stem Cell Retention: A Review. Chembiochem 2023; 24:e202300149. [PMID: 37220343 DOI: 10.1002/cbic.202300149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/21/2023] [Accepted: 05/23/2023] [Indexed: 05/25/2023]
Abstract
Successful stem cell applications could have a significant impact on the medical field, where many lives are at stake. However, the translation of stem cells to the clinic could be improved by overcoming challenges in stem cell transplantation and in vivo retention at the site of tissue damage. This review aims to showcase the most recent insights into developing hydrogels that can deliver, retain, and accommodate stem cells for tissue repair. Hydrogels can be used for tissue engineering, as their flexibility and water content makes them excellent substitutes for the native extracellular matrix. Moreover, the mechanical properties of hydrogels are highly tuneable, and recognition moieties to control cell behaviour and fate can quickly be introduced. This review covers the parameters necessary for the physicochemical design of adaptable hydrogels, the variety of (bio)materials that can be used in such hydrogels, their application in stem cell delivery and some recently developed chemistries for reversible crosslinking. Implementing physical and dynamic covalent chemistry has resulted in adaptable hydrogels that can mimic the dynamic nature of the extracellular matrix.
Collapse
Affiliation(s)
- Ken Princen
- Biomolecule Design Group, Institute for Materials Research (IMO-IMOMEC), Hasselt University, Agoralaan-Building D, 3590, Diepenbeek, Belgium
| | - Neeve Marien
- Biomolecule Design Group, Institute for Materials Research (IMO-IMOMEC), Hasselt University, Agoralaan-Building D, 3590, Diepenbeek, Belgium
| | - Wanda Guedens
- Biomolecule Design Group, Institute for Materials Research (IMO-IMOMEC), Hasselt University, Agoralaan-Building D, 3590, Diepenbeek, Belgium
| | - Geert-Jan Graulus
- Biomolecule Design Group, Institute for Materials Research (IMO-IMOMEC), Hasselt University, Agoralaan-Building D, 3590, Diepenbeek, Belgium
| | - Peter Adriaensens
- Biomolecule Design Group, Institute for Materials Research (IMO-IMOMEC), Hasselt University, Agoralaan-Building D, 3590, Diepenbeek, Belgium
| |
Collapse
|
6
|
Zhu Z, Zhang K, Xian Y, He G, Pan Z, Wang H, Zhang C, Wu D. A Choline Phosphoryl-Conjugated Chitosan/Oxidized Dextran Injectable Self-Healing Hydrogel for Improved Hemostatic Efficacy. Biomacromolecules 2023; 24:690-703. [PMID: 36534463 DOI: 10.1021/acs.biomac.2c01143] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The development of injectable hydrogels with good biocompatibility, self-healing, and superior hemostatic properties is highly desirable in emergency and clinical applications. Herein, we report an in situ injectable and self-healing hemostatic hydrogel based on choline phosphoryl functionalized chitosan (CS-g-CP) and oxidized dextran (ODex). The CP groups were hypothesized to accelerate hemostasis by facilitating erythrocyte adhesion and aggregation. Our results reveal that the CS-g-CP/ODex hydrogels exhibit enhanced blood clotting and erythrocyte adhesion/aggregation capacities compared to those of the CS/ODex hydrogels. The CS-g-CP50/ODex75 hydrogel presents rapid gelation time, good mechanical strength and tissue adhesiveness, satisfactory bursting pressure, and favorable biocompatibility. The hemostatic ability of the CS-g-CP50/ODex75 hydrogel was significantly improved compared to that of the CS/ODex hydrogel and commercial fibrin sealant in the rat tail amputation and liver/spleen injury models. Our study highlights the positive and synergistic effects of CP groups on hemostasis and strongly supports the CS-g-CP50/ODex75 hydrogel as a promising adhesive for hemorrhage control.
Collapse
Affiliation(s)
- Ziran Zhu
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, No. 2 Zhongguancun North First Street, Haidian District, Beijing100190, China.,Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Avenue, Nanshan District Shenzhen, Guangdong518055, China.,University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing100049, China
| | - Kaiwen Zhang
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Avenue, Nanshan District Shenzhen, Guangdong518055, China
| | - Yiwen Xian
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Avenue, Nanshan District Shenzhen, Guangdong518055, China
| | - Gang He
- Stomatology Center, Shenzhen Hospital, Southern Medical University, No. 1333 New Road, Baoan District Shenzhen, Guangdong518101, China
| | - Zheng Pan
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Avenue, Nanshan District Shenzhen, Guangdong518055, China
| | - Hufei Wang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, No. 2 Zhongguancun North First Street, Haidian District, Beijing100190, China.,University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing100049, China
| | - Chong Zhang
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Avenue, Nanshan District Shenzhen, Guangdong518055, China
| | - Decheng Wu
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Avenue, Nanshan District Shenzhen, Guangdong518055, China
| |
Collapse
|
7
|
Yan Y, Guan S, Wang S, Xu J, Sun C. Synthesis and characterization of protocatechuic acid grafted carboxymethyl chitosan with oxidized sodium alginate hydrogel through the Schiff's base reaction. Int J Biol Macromol 2022; 222:2581-2593. [PMID: 36228813 DOI: 10.1016/j.ijbiomac.2022.10.041] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 09/26/2022] [Accepted: 10/06/2022] [Indexed: 11/05/2022]
Abstract
Excessive accumulation of free radicals is closely related to the occurrence and development of various neurodegenerative diseases. In this study, a novel protocatechuic acid grafted carboxymethyl chitosan with oxidized sodium alginate (PCA-g-CMCS/OSA) hydrogel was developed to maintain the oxidation-antioxidation balance activities. By optimizing the pH-soluble range (pH > 6.4) of CMCS, PCA was grafted onto CMCS skeleton via EDC/NHS, and then conjugated with aldehyde group of OSA to form Schiff's base hydrogel at physiological temperature. The gelation time can be adjusted rapidly within 1-3 min by controlling the content of OSA. The shaped hydrogel exhibited porous network structure with high porosity (>90 %), swelling ratio (2000-3000 %) and rheological property, which is beneficial to cell growth and proliferation. The conjugates preserved excellent DPPH and ABTS radicals scavenging abilities and adequate biodegradability within 5 weeks. Moreover, with the release of PCA monomer due to degradation of the PCA-g-CMCS/OSA, the hydrogel also exhibited excellent biocompatibility and protective effect on H2O2-induced oxidative damage in PC12 cells. These results suggested that the PCA-g-CMCS/OSA hydrogel would appear to be a more attractive candidate for potential biomedical applications such as antioxidant drug release and tissue engineering implant material.
Collapse
|
8
|
Lu Z, Zou L, Zhou X, Huang D, Zhang Y. High strength chitosan hydrogels prepared from NaOH/urea aqueous solutions: The role of thermal gelling. Carbohydr Polym 2022; 297:120054. [DOI: 10.1016/j.carbpol.2022.120054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/22/2022] [Accepted: 08/26/2022] [Indexed: 11/02/2022]
|
9
|
Lei L, Hu Y, Shi H, Bao Z, Wu Y, Jiang J, Li X. Biofunctional peptide-click PEG-based hydrogels as 3D cell scaffolds for corneal epithelial regeneration. J Mater Chem B 2022; 10:5938-5945. [PMID: 35894700 DOI: 10.1039/d2tb00983h] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Poly(ethylene glycol) (PEG)-based hydrogels as highly promising 3D cell scaffolds have been widely implemented in the field of tissue regrowth and regeneration, yet the functionalized PEG hydrogel providing dynamic, cell-instructive microenvironments is inherently difficult to obtain. Here, we have exploited the specificity of click reaction to develop a set of hydrogels based on 4-arm PEG tetraazide (4-arm-PEG-N3) and di-propargylated peptides (GRGDG and GRDGG) with tunable physicochemical properties applicable for 3D cell scaffolds. The azide groups of PEG were reacted with the alkynyl groups of peptides, catalyzed by copper to form triazole rings, thus generating a cross-linked hydrogel. The gelation time and mechanical strength of the hydrogels varied according to the PEG/peptide feed ratio. The resulting hydrogel exhibited a typical porous microstructure and suitable swelling behavior. The in vitro cytotoxicity test indicated that the resulting hydrogels did not cause apparent cytotoxicity against human corneal epithelial cells (HCECs). After co-incubation with HCECs, the density of RGD as well as peptide sequence in the hydrogels remarkably affected the cell attachment, spreadability, and proliferation. Additionally, the proposed hydrogel showed high ocular biocompatibility after being embedded subconjunctivally into rabbit eyes. Overall, these findings highlighted that the biofunctional hydrogels formed by PEG and RGD motifs via a controllable click reaction might be promising 3D cell scaffolds for corneal epithelial regeneration.
Collapse
Affiliation(s)
- Lei Lei
- Institute of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325027, P. R. China.
| | - Yuhan Hu
- Institute of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325027, P. R. China.
| | - Hui Shi
- Institute of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325027, P. R. China.
| | - Zhishu Bao
- Institute of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325027, P. R. China.
| | - Yiping Wu
- Institute of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325027, P. R. China.
| | - Jun Jiang
- Institute of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325027, P. R. China.
| | - Xingyi Li
- Institute of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325027, P. R. China.
| |
Collapse
|
10
|
Hu P, Lei Q, Duan S, Fu Y, Pan H, Chang C, Zheng Z, Wu Y, Zhang Z, Li R, Li YY, Ao N. In-situ formable dextran/chitosan-based hydrogels functionalized with collagen and EGF for diabetic wounds healing. BIOMATERIALS ADVANCES 2022; 136:212773. [PMID: 35929312 DOI: 10.1016/j.bioadv.2022.212773] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/05/2022] [Accepted: 03/20/2022] [Indexed: 06/15/2023]
Abstract
Delayed or non-healing skin wounds causing gangrene or even amputation, greatly threats diabetic patients lives. Herein, a bioactive, in-situ formable hydrogel based wound dressing was designed through simple Schiff base reaction. Oxidized dextran (OD) and carboxyethyl chitosan (CEC) were crosslinked together and applied as the main porous framework of hydrogel. To improve the mechanical strength and biocompatibility, collagen (Col) and EGF (Epidermal Growth Factor) were introduced into OD-CEC precursors: (1) after addition of only Col, the mechanical strength of hydrogels was improved by participating the functional -NH2 group of Col into the crosslinking process. Moreover, swelling ratio was as high as 750% on 3%OD-3%CEC-Col (water retention rate was 65 wt% after 7 days). (2) Once we introduced both Col and EGF into the OD-CEC hydrogel, the proliferation of mouse embryonic fibroblast (NIH 3T3) cells was promoted using 3%OD-3%CEC-Col/EGF, an accelerated wound healing was observed with 86% wound closure after only 14 operative days. Hematoxylin and eosin (H&E) staining and Masson staining indicated the synergy of Col and EGF might promote new tissue's formation, well collagen distributions and thus accelerate skin regeneration, presenting great potentials in wound healing of diabetic patients.
Collapse
Affiliation(s)
- Ping Hu
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, PR China; Henan Yadu Industrial Co. Ltd, Xinxiang 453000, PR China
| | - Qiqi Lei
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, PR China; Henan Yadu Industrial Co. Ltd, Xinxiang 453000, PR China
| | - Shuxia Duan
- Henan Yadu Industrial Co. Ltd, Xinxiang 453000, PR China; Key Laboratory of Medical Protective Equipment, Henan Province, PR China
| | - Yingkun Fu
- Henan Yadu Industrial Co. Ltd, Xinxiang 453000, PR China; Key Laboratory of Medical Protective Equipment, Henan Province, PR China
| | - Hongfu Pan
- Henan Yadu Industrial Co. Ltd, Xinxiang 453000, PR China
| | - Cong Chang
- Henan Yadu Industrial Co. Ltd, Xinxiang 453000, PR China
| | - Ziqi Zheng
- Henan Yadu Industrial Co. Ltd, Xinxiang 453000, PR China
| | - Yue Wu
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, PR China; Henan Yadu Industrial Co. Ltd, Xinxiang 453000, PR China
| | - Zhengnan Zhang
- Henan Yadu Industrial Co. Ltd, Xinxiang 453000, PR China; Key Laboratory of Medical Protective Equipment, Henan Province, PR China
| | - Riwang Li
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, PR China
| | - Yan Yan Li
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, PR China.
| | - Ningjian Ao
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|
11
|
Matsushige C, Xu X, Miyagi M, Zuo YY, Yamazaki Y. RGD-modified dextran hydrogel promotes follicle growth in three-dimensional ovarian tissue culture in mice. Theriogenology 2022; 183:120-131. [PMID: 35247849 PMCID: PMC9005264 DOI: 10.1016/j.theriogenology.2022.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/06/2022] [Accepted: 02/07/2022] [Indexed: 10/19/2022]
Abstract
In vitro follicle growth is a promising technology to preserve fertility for cancer patients. We previously developed a three-dimensional (3-D) ovarian tissue culture system supported by mouse tumor cell-derived Matrigel. When murine ovarian tissues at 14 days old were cultured in Matrigel drops, antrum formation and oocyte competence were significantly enhanced compared with those cultured without Matrigel. In this study, we tested whether nonanimal-derived dextran hydrogels can support a 3-D ovarian tissue culture. We employed chemically defined dextran hydrogels consisting of dextran polymers crosslinked with polyethylene glycol (PEG)-based cell-degradable crosslinker. To determine the optimal gel elasticity for the 3-D tissue culture, we measured Young's modulus of dextran hydrogels at four concentrations (1.75, 2.25, 2.75, and 3.25 mmol/L), and cultured ovarian tissues in these gels for 7 days. As a result, 2.25 mmol/L dextran hydrogel with Young's modulus of 224 Pa was appropriate to provide physical support as well as to promote follicle expansion in the 3-D system. To mimic the natural extracellular matrix (ECM) environment, we modified the dextran hydrogels with two bioactive factors: ECM-derived Arg-Gly-Asp (RGD) peptides as a cell-adhesive factor, and activin A. The ovarian tissues were cultured in 2.25 mmol/L dextran hydrogels under four different conditions: Activin-/RGD- (A-R-), A + R-, A-R+, and A + R+. On Day 7 of culture, follicle and oocyte sizes were significantly increased in the RGD-modified conditions compared with those without RGD. The RGD-modified hydrogels also promoted mRNA levels of steroidogenic-related genes and estradiol production in the 3-D ovarian tissue culture. In vitro maturation and developmental competence of follicular oocytes were remarkably improved in the presence of RGD. In particular, blastocyst embryos were obtained only from A-R+ or A+R+ conditions after in vitro fertilization. We also determined synergistic effects of the RGD peptides and activin A on follicle growth and oocyte development in the 3-D tissue culture. In conclusion, our results suggest that RGD-modified dextran hydrogels provide an ECM-mimetic bioactive environment to support folliculogenesis in a 3-D ovarian tissue culture system.
Collapse
|
12
|
Yin H, Song P, Chen X, Xiao M, Tang L, Huang H. Smart pH-Sensitive Hydrogel Based on the Pineapple Peel-Oxidized Hydroxyethyl Cellulose and the Hericium erinaceus Residue Carboxymethyl Chitosan for Use in Drug Delivery. Biomacromolecules 2021; 23:253-264. [PMID: 34937335 DOI: 10.1021/acs.biomac.1c01239] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pineapple and hericium erinaceus (HE) produce a lot of residues in the process of food processing. These processed residues are good potential derivative precursors. In this investigation, a simple and non-toxic method was developed to prepare one new composite hydrogel by the Schiff base reaction between the aldehyde group of oxidized hydroxyethyl cellulose (OHEC) from processed pineapple peel residue and the amino group of carboxymethyl chitosan (CMCS) from processed HE residue. Subsequently, a series of experiments toward these new hydrogel polymers including structure characterization and performances were applied. The resultant hydrogel polymers were characterized by Fourier transform infrared spectroscopy and scanning electron microscopy and confirmed with thermogravimetry. It was observed that the modification of cellulose and chitin was adequate, and the synthesis of OHEC/CMCS hydrogel polymers was successful. The gelation time experiments indicated that the shortest gel time was 33 s at a mass ratio of 4:6 (OHEC-70:CMCS). The hydrogel showed good swelling properties. The maximum swelling rate reached 11.58 g/g, and the swelling rate decreased with the increase of the oxidation degree of OHEC. The drug delivery applications of the prepared hydrogel were evaluated with bovine serum albumin (BSA) as a model drug releasing in vitro. It was discovered that the BSA release from the hydrogel was pH sensitive under simulated gastrointestinal conditions. All of these attributes indicate that the novel prepared hydrogel polymers have the potential as good carriers for oral delivery of protein-type drugs.
Collapse
Affiliation(s)
- Huishuang Yin
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, P. R. China
| | - Peiqin Song
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, P. R. China
| | - Xingyu Chen
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, P. R. China
| | - Minxuan Xiao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, P. R. China
| | - Lu Tang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, P. R. China
| | - Huihua Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, P. R. China
| |
Collapse
|
13
|
Li Z, Li B, Li X, Lin Z, Chen L, Chen H, Jin Y, Zhang T, Xia H, Lu Y, Zhang Y. Ultrafast in-situ forming halloysite nanotube-doped chitosan/oxidized dextran hydrogels for hemostasis and wound repair. Carbohydr Polym 2021; 267:118155. [PMID: 34119129 DOI: 10.1016/j.carbpol.2021.118155] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 02/07/2023]
Abstract
A series of halloysite nanotube (HNT)-doped chitosan (CS)/oxidized dextran (ODEX) adhesive hydrogels were developed through a Schiff base reaction. The resultant CS/ODEX/HNT hydrogels could not only form in situ on wounds within only 1 s when injected, but could also adapt to wounds of different shapes and depths after injection. We established four rat and rabbit hemorrhage models and demonstrated that the hydrogels are better than the clinically used gelatin sponge for reducing hemostatic time and blood loss, particularly in arterial and deep noncompressible bleeding wounds. Moreover, the natural antibacterial features of CS and ODEX provided the hydrogels with strong bacteria-killing effects. Consequently, they significantly promoted methicillin-resistant Staphylococcus aureus -infected-wound repair compared to commercial gelatin sponge and silver-alginate antibacterial wound dressing. Hence, our multifunctional hydrogels with facile preparation process and utilization procedure could potentially be used as first-aid biomaterials for rapid hemostasis and infected-wound repair in emergency injury events.
Collapse
Affiliation(s)
- Zhan Li
- Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, China; Guangdong Key Lab of Orthopedic Technology and Implant Materials, General Hospital of Southern Theater Command of PLA, The First School of Clinical Medicine of Southern Medical University, Guangzhou 510010, China
| | - Binglin Li
- Guangdong Key Lab of Orthopedic Technology and Implant Materials, General Hospital of Southern Theater Command of PLA, The First School of Clinical Medicine of Southern Medical University, Guangzhou 510010, China
| | - Xinrong Li
- Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, China
| | - Zefeng Lin
- Guangdong Key Lab of Orthopedic Technology and Implant Materials, General Hospital of Southern Theater Command of PLA, The First School of Clinical Medicine of Southern Medical University, Guangzhou 510010, China
| | - Lingling Chen
- Guangdong Key Lab of Orthopedic Technology and Implant Materials, General Hospital of Southern Theater Command of PLA, The First School of Clinical Medicine of Southern Medical University, Guangzhou 510010, China
| | - Hu Chen
- Guangdong Key Lab of Orthopedic Technology and Implant Materials, General Hospital of Southern Theater Command of PLA, The First School of Clinical Medicine of Southern Medical University, Guangzhou 510010, China
| | - Yan Jin
- Guangdong Key Lab of Orthopedic Technology and Implant Materials, General Hospital of Southern Theater Command of PLA, The First School of Clinical Medicine of Southern Medical University, Guangzhou 510010, China
| | - Tao Zhang
- Guangdong Key Lab of Orthopedic Technology and Implant Materials, General Hospital of Southern Theater Command of PLA, The First School of Clinical Medicine of Southern Medical University, Guangzhou 510010, China
| | - Hong Xia
- Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, China; Guangdong Key Lab of Orthopedic Technology and Implant Materials, General Hospital of Southern Theater Command of PLA, The First School of Clinical Medicine of Southern Medical University, Guangzhou 510010, China
| | - Yao Lu
- Guangdong Key Lab of Orthopedic Technology and Implant Materials, General Hospital of Southern Theater Command of PLA, The First School of Clinical Medicine of Southern Medical University, Guangzhou 510010, China; Department of Joint and Orthopedics, Orthopedic Center, Clinical Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.
| | - Ying Zhang
- Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, China; Guangdong Key Lab of Orthopedic Technology and Implant Materials, General Hospital of Southern Theater Command of PLA, The First School of Clinical Medicine of Southern Medical University, Guangzhou 510010, China.
| |
Collapse
|
14
|
Jin R, Cui Y, Chen H, Zhang Z, Weng T, Xia S, Yu M, Zhang W, Shao J, Yang M, Han C, Wang X. Three-dimensional bioprinting of a full-thickness functional skin model using acellular dermal matrix and gelatin methacrylamide bioink. Acta Biomater 2021; 131:248-261. [PMID: 34265473 DOI: 10.1016/j.actbio.2021.07.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/27/2021] [Accepted: 07/04/2021] [Indexed: 11/29/2022]
Abstract
Treatment of full-thickness skin defects still presents a significant challenge in clinical practice. Three-dimensional (3D) bioprinting technique offers a promising approach for fabricating skin substitutes. However, it is necessary to identify bioinks that have both sufficient mechanical properties and desirable biocompatibilities. In this study, we successfully fabricated acellular dermal matrix (ADM) and gelatin methacrylamide (GelMA) bioinks. The results demonstrated that ADM preserved the main extracellular matrix (ECM) components of the skin and GelMA had tunable mechanical properties. Both bioinks with shear-thinning properties were suitable for 3D bioprinting and GelMA bioink exhibited high printability. Additionally, the results revealed that 20% GelMA with sufficient mechanical properties was suitable to engineer epidermis, 1.5% ADM and 10% GelMA displayed relatively good cytocompatibilities. Here, we proposed a new 3D structure to simulate natural full-thickness skin, which included 20% GelMA with HaCaTs as an epidermal layer, 1.5% ADM with fibroblasts as the dermis, and 10% GelMA mesh with human umbilical vein endothelial cells (HUVECs) as the vascular network and framework. We demonstrated that this 3D bioprinting functional skin model (FSM) could not only promote cell viability and proliferation, but also support epidermis reconstruction in vitro. When transplanted in vivo, the FSM could maintain cell viability for at least 1 week. Furthermore, the FSM promoted wound healing and re-epithelization, stimulated dermal ECM secretion and angiogenesis, and improved wound healing quality. The FSM may provide viable functional skin substitutes for future clinical applications. STATEMENT OF SIGNIFICANCE: We propose a new 3D structure to simulate natural full-thickness skin, which included 20% GelMA with HaCaTs as an epidermal layer, 1.5% ADM with fibroblasts as the dermis, and 10% GelMA mesh with HUVECs as the vascular network. It could not only maintain a moist microenvironment and barrier function, but also recreate the natural skin microenvironment to promote cell viability and proliferation. This may provide viable functional skin substitutes for future clinical applications.
Collapse
Affiliation(s)
- Ronghua Jin
- Department of Burns & Wound Care Center, The Second Affiliated Hospital of Zhejiang University College of Medicine, Hangzhou 310009, China
| | - Yuecheng Cui
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Haojiao Chen
- Department of Burns, Shaoxing Second Hospital, Shaoxing, China
| | - Zhenzhen Zhang
- First People's Hospital of Hangzhou Xiaoshan District, Hangzhou, China
| | - Tingting Weng
- Department of Burns & Wound Care Center, The Second Affiliated Hospital of Zhejiang University College of Medicine, Hangzhou 310009, China
| | - Sizhan Xia
- Department of Burns & Wound Care Center, The Second Affiliated Hospital of Zhejiang University College of Medicine, Hangzhou 310009, China
| | - Meirong Yu
- Clinical Research Center, The Second Affiliated Hospital of Zhejiang University College of Medicine, Hangzhou, China
| | - Wei Zhang
- Department of Burns & Wound Care Center, The Second Affiliated Hospital of Zhejiang University College of Medicine, Hangzhou 310009, China
| | - Jiaming Shao
- Department of Burns & Wound Care Center, The Second Affiliated Hospital of Zhejiang University College of Medicine, Hangzhou 310009, China
| | - Min Yang
- Department of Burns & Wound Care Center, The Second Affiliated Hospital of Zhejiang University College of Medicine, Hangzhou 310009, China
| | - Chunmao Han
- Department of Burns & Wound Care Center, The Second Affiliated Hospital of Zhejiang University College of Medicine, Hangzhou 310009, China
| | - Xingang Wang
- Department of Burns & Wound Care Center, The Second Affiliated Hospital of Zhejiang University College of Medicine, Hangzhou 310009, China.
| |
Collapse
|
15
|
Han X, Lai JHC, Huang J, Park SW, Liu Y, Chan KWY. Imaging Self-Healing Hydrogels and Chemotherapeutics Using CEST MRI at 3 T. ACS APPLIED BIO MATERIALS 2021; 4:5605-5616. [PMID: 35006724 DOI: 10.1021/acsabm.1c00411] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Imaging hydrogel-based local drug delivery to the brain after tumor resection has implications for refining treatments, especially for brain tumors with poor prognosis and high recurrence rate. Here, we developed a series of self-healing chitosan-dextran (CD)-based hydrogels for drug delivery to the brain. These hydrogels are injectable, self-healing, mechanically compatible, and detectable by chemical exchange saturation transfer magnetic resonance imaging (CEST MRI). CD hydrogels have an inherent CEST contrast at 1.1 ppm, which decreases as the stiffness increases. We further examined the rheological properties and CEST contrast of various chemotherapeutic-loaded CD hydrogels, including gemcitabine (Gem), doxorubicin, and procarbazine. Among these formulations, Gem presented the best compatibility with the rheological (G': 215.3 ± 4.5 Pa) and CEST properties of CD hydrogels. More importantly, the Gem-loaded CD hydrogel generated another CEST readout at 2.2 ppm (11.6 ± 0.1%) for monitoring Gem. This enabled independent and simultaneous imaging of the drug and hydrogel integrity using a clinically relevant 3 T MRI scanner. In addition, the Gem-loaded CD hydrogel exhibited a longitudinal antitumor efficacy of Gem over a week in vitro. Furthermore, the CD hydrogel could be visualized by CEST after brain injection with a contrast of 7.38 ± 2.31%. These natural labels on both the chemotherapeutics and hydrogels demonstrate unique image-guided local drug delivery for brain applications.
Collapse
Affiliation(s)
- Xiongqi Han
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon 999077, Hong Kong
| | - Joseph Ho Chi Lai
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon 999077, Hong Kong
| | - Jianpan Huang
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon 999077, Hong Kong
| | - Se Weon Park
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon 999077, Hong Kong
| | - Yang Liu
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon 999077, Hong Kong
| | - Kannie Wai Yan Chan
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon 999077, Hong Kong.,Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore MD21205, United States.,Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
16
|
Rahnama H, Nouri Khorasani S, Aminoroaya A, Molavian MR, Allafchian A, Khalili S. Facile preparation of chitosan-dopamine-inulin aldehyde hydrogel for drug delivery application. Int J Biol Macromol 2021; 185:716-724. [PMID: 34217742 DOI: 10.1016/j.ijbiomac.2021.06.199] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/27/2021] [Accepted: 06/29/2021] [Indexed: 12/13/2022]
Abstract
Chitosan-based hydrogels are a suitable and versatile system for the design of localized and controlled drug delivery systems. In the current study, a hydrogel based on chitosan (CS), Dopamine (DA), and Inulin aldehyde (IA) was fabricated without the further use of catalyst or initiators. The effect of the IA contents as a crosslinking agent on the properties of the prepared hydrogel was studied. The crosslinking reaction between CS and IA was verified by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). Various characteristics of the CS/DA/IA hydrogels were further assessed utilizing swelling experiment, in vitro drug release, in vitro cytotoxicity assay. The drug-loaded hydrogels represented the sustained release of Indomethacin according to the in vitro drug release test in acidic (pH = 4), basic (pH = 10) medium as well as physiological condition (pH = 7). Finally, the CS/DA/IA hydrogels exhibited appropriate cytocompatibility against the L-929 fibroblast cell line according to the direct contact MTT assay.
Collapse
Affiliation(s)
- Hadi Rahnama
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Saied Nouri Khorasani
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Alireza Aminoroaya
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Mohammad Reza Molavian
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Alireza Allafchian
- Research Institute for Nanotechnology and Advanced Materials, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Shahla Khalili
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| |
Collapse
|
17
|
Li Y, Zhao E, Li L, Bai L, Zhang W. Facile design of lidocaine-loaded polymeric hydrogel to persuade effects of local anesthesia drug delivery system: complete in vitro and in vivo toxicity analyses. Drug Deliv 2021; 28:1080-1092. [PMID: 34114924 PMCID: PMC8204985 DOI: 10.1080/10717544.2021.1931558] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The principal goal of the present investigation was to enterprise new and effective drug delivery vesicle for the sustained delivery of local anesthetic lidocaine hydrochloride (LDC), using a novel combination of copolymeric hydrogel with tetrahydroxyborate (COP–THB) to improve bioactivity and therapeutic potential. To support this contention, the physical and mechanical properties, rheological characteristics, and component release of candidate formulations were investigated. An optimized formulation of COP–THB containing LDC to an upper maximum concentration of 1.5% w/w was assessed for drug crystallization. The biocompatibility of the prepared COP–THB hydrogel was exhibited strong cell survival (96%) and growth compatibility on L929 fibroblast cell lines, which was confirmed by using methods of MTT assay and microscopic observations. The COP–THB hydrogel release pattern is distinct from that of COP–THB/LDC hydrogels by the slow-release rate and the low percentage of cumulative release. In vivo evaluations were demonstrated the anesthetic effects and toxicity value of treated samples by using mice models. In addition, COP–THB/LDC hydrogels significantly inhibit in vivo tumor growth in mice model and effectively reduced it is in vivo toxicity. The pharmacological evaluation showed that encapsulation of LDC in COP–THB hydrogels prolonged its anesthetic action with favorable in vitro and in vivo compatibility. This novel design may theoretically be used in promising studies involving the controlled release of local anesthetics.Highlights Development a modified sustained release system for the local anesthetic lidocaine. PVP-THB hydrogel to improve the pharmacological properties of the drug and their anesthetic activities. Profiles of PVP-THB/LDC showed that the effective release of associated lidocaine. This new formulation could potentially be used in future local anesthetics.
Collapse
Affiliation(s)
- Yan Li
- Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Erxian Zhao
- Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Li Li
- Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Liying Bai
- Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wei Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
18
|
Liu X, Liu S, Yang R, Wang P, Zhang W, Tan X, Ren Y, Chi B. Gradient chondroitin sulfate/poly (γ-glutamic acid) hydrogels inducing differentiation of stem cells for cartilage tissue engineering. Carbohydr Polym 2021; 270:118330. [PMID: 34364592 DOI: 10.1016/j.carbpol.2021.118330] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 04/20/2021] [Accepted: 05/12/2021] [Indexed: 11/29/2022]
Abstract
Based on the gradient distribution of structure and composition in biological cartilage tissue, we designed a gradient hydrogel scaffold by the moving photomask, using chondroitin sulfate and poly (γ-glutamic acid) as crude materials. The hydrogel scaffold had a gradient distribution of cross-linking density, which can be verified from the results of SEM and swelling behavior. Besides, the hydrogel exhibited great viscoelastic, toughness (70% strain), and strength properties (600 kPa). Additionally, the gradient hydrogel's superior cell compatibility was proved through the MTT, live/dead staining assays, and 3D cell culture experiments. Remarkably, the results of in vitro stem cell differentiation experiments showed that the duration of light directly affected the differentiation extent of stem cells, demonstrating that the gradient hydrogel scaffold can better simulate the function of natural cartilage than the homogeneous one. Due to these outstanding characteristics, this gradient hydrogel is a potential scaffold for cartilage tissue engineering.
Collapse
Affiliation(s)
- Xin Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food, Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Shuai Liu
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Rong Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food, Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Penghui Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food, Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Wenjie Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food, Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Xiaoyan Tan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food, Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Yanhan Ren
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Bo Chi
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food, Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
19
|
Tsai TY, Shen KH, Chang CW, Jovanska L, Wang R, Yeh YC. In situ formation of nanocomposite double-network hydrogels with shear-thinning and self-healing properties. Biomater Sci 2021; 9:985-999. [PMID: 33300914 DOI: 10.1039/d0bm01528h] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Nanocomposite double-network hydrogels (ncDN hydrogels) are recently introduced to address the limitations of traditional DN hydrogels, such as the lack of diversity in the network structure and the restricted functionalities. However, two challenges remain, including the time-consuming preparation and the lack of shear-thinning and self-healing properties. Here, our approach to developing versatile ncDN hydrogels is through the use of multiple interfacial crosslinking chemistries (i.e., noncovalent interactions of electrostatic interaction and hydrogen bonds as well as dynamic covalent interactions of imine bonds and boronate ester bonds) and surface functionalized nanomaterials (i.e. phenylboronic acid modified reduced graphene oxide (PBA-rGO)). PBA-rGO was used as a multivalent gelator to further crosslink the two polymer chains (i.e. triethylene glycol-grafted chitosan (TEG-CS) and polydextran aldehyde (PDA)) in DN hydrogels, forming the TEG-CS/PDA/PBA-rGO ncDN hydrogels in seconds. The microstructures (i.e. pore size) and properties (i.e. rheological, mechanical, and swelling properties) of the ncDN hydrogels can be simply modulated by changing the amount of PBA-rGO. The dynamic bonds in the polymeric network provided the shear-thinning and self-healing properties to the ncDN hydrogels, allowing the hydrogels to be injected and molded into varied shapes as well as self-repair the damaged structure. Besides, the designed TEG-CS/PDA/PBA-rGO ncDN hydrogels were cytocompatible and also exhibited antibacterial activity. Taken together, we hereby provide a nanomaterial approach to fabricate a new class of ncDN hydrogels with tailorable networks and favorite properties for specific applications.
Collapse
Affiliation(s)
- Tsan-Yu Tsai
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan.
| | - Ke-Han Shen
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan.
| | - Chun-Wei Chang
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan.
| | - Lavernchy Jovanska
- Department of Animal Science and Biotechnology, Tunghai University, Taichung, Taiwan
| | - Reuben Wang
- Institute of Food Safety and Health, National Taiwan University, Taipei, Taiwan
| | - Yi-Cheun Yeh
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
20
|
Seidi F, Khodadadi Yazdi M, Jouyandeh M, Dominic M, Naeim H, Nezhad MN, Bagheri B, Habibzadeh S, Zarrintaj P, Saeb MR, Mozafari M. Chitosan-based blends for biomedical applications. Int J Biol Macromol 2021; 183:1818-1850. [PMID: 33971230 DOI: 10.1016/j.ijbiomac.2021.05.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 04/27/2021] [Accepted: 05/02/2021] [Indexed: 10/21/2022]
Abstract
Polysaccharides are the most abundant naturally available carbohydrate polymers; composed of monosaccharide units covalently connected together. Chitosan is the most widely used polysaccharides because of its exceptional biocompatibility, mucoadhesion, and chemical versatility. However, it suffers from a few drawbacks, e.g. poor mechanical properties and antibacterial activity for biomedical applications. Blending chitosan with natural or synthetic polymers may not merely improve its physicochemical and mechanical properties, but may also improve its bioactivity-induced properties. This review paper summarizes progress in chitosan blends with biodegradable polymers and polysaccharides and their biomedical applications. Blends of chitosan with alginate, starch, cellulose, pectin and dextran and their applications were particularly addressed. The critical and challenging aspects as well as the future ahead of the use of chitosan-based blends were eventually enlightened.
Collapse
Affiliation(s)
- Farzad Seidi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, Nanjing 210037, China
| | | | - Maryam Jouyandeh
- Center of Excellence in Electrochemistry, University of Tehran, Tehran, Iran
| | - Midhun Dominic
- Department of Chemistry, Sacred Heart College (Autonomous), Kochi, Kerala 682013, India
| | - Haleh Naeim
- Faculty of Chemical Engineering, Urmia University of Technology, Urmia, Iran
| | | | - Babak Bagheri
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Sajjad Habibzadeh
- Department of Chemical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Payam Zarrintaj
- School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, OK 74078, USA
| | - Mohammad Reza Saeb
- Center of Excellence in Electrochemistry, University of Tehran, Tehran, Iran.
| | - Masoud Mozafari
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
21
|
Husk of Agarwood Fruit-Based Hydrogel Beads for Adsorption of Cationic and Anionic Dyes in Aqueous Solutions. Molecules 2021; 26:molecules26051437. [PMID: 33800936 PMCID: PMC7961690 DOI: 10.3390/molecules26051437] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/27/2021] [Accepted: 02/28/2021] [Indexed: 11/17/2022] Open
Abstract
Hydrogel beads based on the husk of agarwood fruit (HAF)/sodium alginate (SA), and based on the HAF/chitosan (CS) were developed for the removal of the dyes, crystal violet (CV) and reactive blue 4 (RB4), in aqueous solutions, respectively. The effects of the initial pH (2–10) of the dye solution, the adsorbent dosage (0.5–3.5 g/L), and contact time (0–540 min) were investigated in a batch system. The dynamic adsorption behavior of CV and RB4 can be represented well by the pseudo-second-order model and pseudo-first-order model, respectively. In addition, the adsorption isotherm data can be explained by the Langmuir isotherm model. Both hydrogel beads have acceptable adsorption selectivity and reusability for the study of selective adsorption and regeneration. Based on the effectiveness, selectivity, and reusability of these hydrogel beads, they can be treated as potential adsorbents for the removal of dyes in aqueous solutions.
Collapse
|
22
|
Zhan J, Wu Y, Wang H, Liu J, Ma Q, Xiao K, Li Z, Li J, Luo F, Tan H. An injectable hydrogel with pH-sensitive and self-healing properties based on 4armPEGDA and N-carboxyethyl chitosan for local treatment of hepatocellular carcinoma. Int J Biol Macromol 2020; 163:1208-1222. [PMID: 32645496 DOI: 10.1016/j.ijbiomac.2020.07.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 06/25/2020] [Accepted: 07/02/2020] [Indexed: 02/05/2023]
Abstract
Injectable hydrogels with pH-sensitive and self-healing properties have great application potential in the field of anti-cancer drug carriers. In this work, an injectable hydrogel is prepared using 4armPEG-benzaldehyde (4armPEGDA) and N-carboxyethyl chitosan (CEC) as a new drug carrier. The gelation time, equilibrium swelling rate, degradation time, and dynamic modulus of the injectable hydrogels can be adjusted by merely changing the concentration of 4armPEGDA. The volume of the hydrogel shrinks at pH 5.6 and expands at pH 7.4, which helps to control the release of anti-cancer drug. At pH 5.6, the hydrogels show a fast and substantial Dox release effect, which is five times higher than that at pH 7.4. In vitro cumulative drug release of all the hydrogels reached equilibrium on about the fourth day, and the hydrogel is completely degraded within five days, which contributes to the Dox-loaded hydrogel to further release the remaining Dox. Moreover, the Dox-loaded hydrogel shows a strong inhibitory effect on the growth of human hepatocellular carcinoma cells (HepG2). Finally, the anti-tumor model experiment in vivo demonstrated that the Dox-loaded hydrogel can significantly inhibit tumor growth within five days. Therefore, such injectable hydrogels are excellent carriers for the potential treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Jianghao Zhan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, China
| | - Yujie Wu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, China
| | - Haihuan Wang
- Department of Materials Science and Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Jialing Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Qizhao Ma
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Kecen Xiao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, China
| | - Zhen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, China
| | - Jiehua Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, China
| | - Feng Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, China.
| | - Hong Tan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
23
|
Nicolas J, Magli S, Rabbachin L, Sampaolesi S, Nicotra F, Russo L. 3D Extracellular Matrix Mimics: Fundamental Concepts and Role of Materials Chemistry to Influence Stem Cell Fate. Biomacromolecules 2020; 21:1968-1994. [PMID: 32227919 DOI: 10.1021/acs.biomac.0c00045] [Citation(s) in RCA: 278] [Impact Index Per Article: 69.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Synthetic 3D extracellular matrices (ECMs) find application in cell studies, regenerative medicine, and drug discovery. While cells cultured in a monolayer may exhibit unnatural behavior and develop very different phenotypes and genotypes than in vivo, great efforts in materials chemistry have been devoted to reproducing in vitro behavior in in vivo cell microenvironments. This requires fine-tuning the biochemical and structural actors in synthetic ECMs. This review will present the fundamentals of the ECM, cover the chemical and structural features of the scaffolds used to generate ECM mimics, discuss the nature of the signaling biomolecules required and exploited to generate bioresponsive cell microenvironments able to induce a specific cell fate, and highlight the synthetic strategies involved in creating functional 3D ECM mimics.
Collapse
Affiliation(s)
- Julien Nicolas
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, , 92296 Châtenay-Malabry, France
| | - Sofia Magli
- University of Milano-Bicocca, Department of Biotechnology and Biosciences, Piazza della Scienza 2, 20126 Milan, Italy
| | - Linda Rabbachin
- University of Milano-Bicocca, Department of Biotechnology and Biosciences, Piazza della Scienza 2, 20126 Milan, Italy
| | - Susanna Sampaolesi
- University of Milano-Bicocca, Department of Biotechnology and Biosciences, Piazza della Scienza 2, 20126 Milan, Italy
| | - Francesco Nicotra
- University of Milano-Bicocca, Department of Biotechnology and Biosciences, Piazza della Scienza 2, 20126 Milan, Italy
| | - Laura Russo
- University of Milano-Bicocca, Department of Biotechnology and Biosciences, Piazza della Scienza 2, 20126 Milan, Italy
| |
Collapse
|
24
|
Lin T, Hsu S. Self-Healing Hydrogels and Cryogels from Biodegradable Polyurethane Nanoparticle Crosslinked Chitosan. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1901388. [PMID: 32042553 PMCID: PMC7001655 DOI: 10.1002/advs.201901388] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/27/2019] [Indexed: 05/27/2023]
Abstract
Hydrogels are widely used in tissue engineering owing to their high water retention and soft characteristics. It remains a challenge to develop hydrogels with tunable degradation rates, proper environmental responsiveness, and injectability. In this study, biodegradable difunctional polyurethane (DFPU) nanoparticle dispersions are synthesized from an eco-friendly waterborne process involving the use of glyoxal. Such DFPU is used to crosslink chitosan (CS). Schiff base linkages between DFPU and CS successfully produce self-healing hydrogels at room temperature. Moreover, cryogels are generated after being frozen at -20 °C. These gels are found to be sensitive to low pH and amine-containing molecules owing to the property of Schiff bases. Furthermore, the degradation rates can be adjusted by the type of the component oligodiols in DFPU. Rheological evaluation verifies the excellent self-healing properties (≈100% recovery after damage). Both the self-healing gels and cryogels are injectable (through 26-gauge and 18-gauge needles, respectively) and biocompatible. Rat implantation at 14 d shows the low immune responses of cryogels. The functionalized biodegradable polyurethane nanoparticles represent a new platform of crosslinkers for biomacromolecules such as chitosan through the dynamic Schiff reaction that may give rise to a wide variety of self-healing gels and cryogels for biomedical applications.
Collapse
Affiliation(s)
- Tzu‐Wei Lin
- Institute of Polymer Science and EngineeringNational Taiwan UniversityTaipei10617TaiwanROC
| | - Shan‐hui Hsu
- Institute of Polymer Science and EngineeringNational Taiwan UniversityTaipei10617TaiwanROC
| |
Collapse
|
25
|
Alves A, Miguel SP, Araujo AR, de Jesús Valle MJ, Sánchez Navarro A, Correia IJ, Ribeiro MP, Coutinho P. Xanthan Gum-Konjac Glucomannan Blend Hydrogel for Wound Healing. Polymers (Basel) 2020; 12:E99. [PMID: 31947937 PMCID: PMC7023620 DOI: 10.3390/polym12010099] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/11/2019] [Accepted: 12/21/2019] [Indexed: 02/08/2023] Open
Abstract
Hydrogels are considered to be the most ideal materials for the production of wound dressings since they display a three-dimensional structure that mimics the native extracellular matrix of skin as well as a high-water content, which confers a moist environment at the wound site. Until now, different polymers have been used, alone or blended, for the production of hydrogels aimed for this biomedical application. From the best of our knowledge, the application of a xanthan gum-konjac glucomannan blend has not been used for the production of wound dressings. Herein, a thermo-reversible hydrogel composed of xanthan gum-konjac glucomannan (at different concentrations (1% and 2% w/v) and ratios (50/50 and 60/40)) was produced and characterized. The obtained data emphasize the excellent physicochemical and biological properties of the produced hydrogels, which are suitable for their future application as wound dressings.
Collapse
Affiliation(s)
- Andreia Alves
- CPIRN-IPG- Center of Potential and Innovation of Natural Resources, Polytechnic Institute of Guarda, Av. Dr. Francisco de Sá Carneiro, No. 50, 6300-559 Guarda, Portugal
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Salamanca, 37007 Salamanca, Spain
| | - Sónia P. Miguel
- CICS-UBI- Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - André R.T.S. Araujo
- CPIRN-IPG- Center of Potential and Innovation of Natural Resources, Polytechnic Institute of Guarda, Av. Dr. Francisco de Sá Carneiro, No. 50, 6300-559 Guarda, Portugal
- LAQV, REQUIMTE, Department of Chemical Sciences, Laboratory of Applied Chemistry, Faculty of Pharmacy, Porto University, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - María José de Jesús Valle
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Salamanca, 37007 Salamanca, Spain
- Institute of Biopharmaceutical Sciences of University of Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Amparo Sánchez Navarro
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Salamanca, 37007 Salamanca, Spain
- Institute of Biopharmaceutical Sciences of University of Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Ilídio J. Correia
- CICS-UBI- Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
- CIEPQPF, Department of Chemical Engineering, University of Coimbra, P-3030 790 Coimbra, Portugal
| | - Maximiano P. Ribeiro
- CPIRN-IPG- Center of Potential and Innovation of Natural Resources, Polytechnic Institute of Guarda, Av. Dr. Francisco de Sá Carneiro, No. 50, 6300-559 Guarda, Portugal
- CICS-UBI- Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Paula Coutinho
- CPIRN-IPG- Center of Potential and Innovation of Natural Resources, Polytechnic Institute of Guarda, Av. Dr. Francisco de Sá Carneiro, No. 50, 6300-559 Guarda, Portugal
- CICS-UBI- Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| |
Collapse
|
26
|
Lou C, Tian X, Deng H, Wang Y, Jiang X. Dialdehyde-β-cyclodextrin-crosslinked carboxymethyl chitosan hydrogel for drug release. Carbohydr Polym 2019; 231:115678. [PMID: 31888806 DOI: 10.1016/j.carbpol.2019.115678] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/23/2019] [Accepted: 11/25/2019] [Indexed: 12/16/2022]
Abstract
A simple method was proposed for preparing the dialdehyde-β-cyclodextrin (DA-β-CD) cross-linked carboxymethyl chitosan (CMCS) hydrogels for drug delivery. DA-β-CD was yielded from the sodium periodate oxidation of β-CD. Phenolphthalein (PhP) was adopted as a model drug to study the drug loading and releasing properties of the obtained hydrogels. The results show that the ability of the hydrogel to load drug is affected by the aldehyde content of DA-β-CD. The inclusion constant of DA-β-CD toward PhP is lower than that of the original β-CD and decreased with the rising of the aldehyde content. An increased cross-linking degree between DA-β-CD and CMCS slows the PhP release to some extent. In comparison with glyoxal/CMCS, DA-β-CD/CMCS presents better PhP release properties. Only 19.2 % of PhP loaded in glyoxal/CMCS was released within 24 h. Half of PhP loaded in DA-β-CD/CMCS was released in 2 h and about 90 % was released within 12 h.
Collapse
Affiliation(s)
- Chaoqian Lou
- Key Laboratory of Eco-textiles of Ministry of Education, School of Textile and Clothing, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiuzhi Tian
- Key Laboratory of Eco-textiles of Ministry of Education, School of Textile and Clothing, Jiangnan University, Wuxi, Jiangsu 214122, China; State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Haibo Deng
- Key Laboratory of Eco-textiles of Ministry of Education, School of Textile and Clothing, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yingxia Wang
- Key Laboratory of Eco-textiles of Ministry of Education, School of Textile and Clothing, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xue Jiang
- Key Laboratory of Eco-textiles of Ministry of Education, School of Textile and Clothing, Jiangnan University, Wuxi, Jiangsu 214122, China; State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China.
| |
Collapse
|
27
|
Wu N, Schultz KM. Microrheological characterization of covalent adaptable hydrogels for applications in oral delivery. SOFT MATTER 2019; 15:5921-5932. [PMID: 31282533 PMCID: PMC6677256 DOI: 10.1039/c9sm00714h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The feasibility of a covalent adaptable hydrogel (CAH) as an oral delivery platform is explored using μ2rheology, microrheology in a microfluidic device. CAH degradation is initiated by physiologically relevant pHs, including incubation at a single pH and consecutively at different pHs. At a single pH, we determine CAH degradation can be tuned by changing the pH, which can be exploited for controlled release. We calculate the critical relaxation exponent, which defines the gel-sol transition and is independent of the degradation pH. We mimic the changing pH environment through part of the gastrointestinal tract (pH 4.3 to 7.4 or pH 7.4 to 4.3) in our microfluidic device. We determine that dynamic material property evolution is consistent with degradation at a single pH. However, the time scale of degradation is reduced by the history of degradation. These investigations inform the design of this material as a new vehicle for targeted delivery.
Collapse
Affiliation(s)
- Nan Wu
- Department of Chemical and Biomolecular Engineering, Lehigh University, 111 Research Dr, Iacocca Hall, Bethlehem, PA 18015, USA.
| | | |
Collapse
|
28
|
Biocompatible polymeric nanoparticles with exceptional gastrointestinal stability as oral delivery vehicles for lipophilic bioactives. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.10.057] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
29
|
Garcia Garcia C, Kiick KL. Methods for producing microstructured hydrogels for targeted applications in biology. Acta Biomater 2019; 84:34-48. [PMID: 30465923 PMCID: PMC6326863 DOI: 10.1016/j.actbio.2018.11.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 11/12/2018] [Accepted: 11/19/2018] [Indexed: 12/29/2022]
Abstract
Hydrogels have been broadly studied for applications in clinically motivated fields such as tissue regeneration, drug delivery, and wound healing, as well as in a wide variety of consumer and industry uses. While the control of mechanical properties and network structures are important in all of these applications, for regenerative medicine applications in particular, matching the chemical, topographical and mechanical properties for the target use/tissue is critical. There have been multiple alternatives developed for fabricating materials with microstructures with goals of controlling the spatial location, phenotypic evolution, and signaling of cells. The commonly employed polymers such as poly(ethylene glycol) (PEG), polypeptides, and polysaccharides (as well as others) can be processed by various methods in order to control material heterogeneity and microscale structures. We review here the more commonly used polymers, chemistries, and methods for generating microstructures in biomaterials, highlighting the range of possible morphologies that can be produced, and the limitations of each method. With a focus in liquid-liquid phase separation, methods and chemistries well suited for stabilizing the interface and arresting the phase separation are covered. As the microstructures can affect cell behavior, examples of such effects are reviewed as well. STATEMENT OF SIGNIFICANCE: Heterogeneous hydrogels with enhanced matrix complexity have been studied for a variety of biomimetic materials. A range of materials based on poly(ethylene glycol), polypeptides, proteins, and/or polysaccharides, have been employed in the studies of materials that by virtue of their microstructure, can control the behaviors of cells. Methods including microfluidics, photolithography, gelation in the presence of porogens, and liquid-liquid phase separation, are presented as possible strategies for producing materials, and their relative advantages and disadvantages are discussed. We also describe in more detail the various processes involved in LLPS, and how they can be manipulated to alter the kinetics of phase separation and to yield different microstructured materials.
Collapse
Affiliation(s)
- Cristobal Garcia Garcia
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | - Kristi L Kiick
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA; Biomedical Engineering, University of Delaware, Newark, DE 19176, USA; Delaware Biotechnology Institute, Newark, DE 19716, USA
| |
Collapse
|
30
|
Jiang F, Tang Z, Zhang Y, Ju Y, Gao H, Sun N, Liu F, Gu P, Zhang W. Enhanced proliferation and differentiation of retinal progenitor cells through a self-healing injectable hydrogel. Biomater Sci 2019; 7:2335-2347. [PMID: 30907911 DOI: 10.1039/c8bm01579a] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Fabrication of self-healing injectable CS-Odex hydrogels via a dynamic Schiff-base linkage for RPC delivery.
Collapse
Affiliation(s)
- Fang Jiang
- Shanghai Key Laboratory of Functional Materials Chemistry
- East China University of Science and Technology
- Shanghai
- P. R. China
| | - Zhimin Tang
- Department of Ophthalmology
- Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai
- P.R. China
| | - Yuanhao Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry
- East China University of Science and Technology
- Shanghai
- P. R. China
| | - Yahan Ju
- Department of Ophthalmology
- Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai
- P.R. China
| | - Huiqin Gao
- Department of Ophthalmology
- Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai
- P.R. China
| | - Na Sun
- Department of Ophthalmology
- Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai
- P.R. China
| | - Feng Liu
- Shanghai Key Laboratory of Functional Materials Chemistry
- East China University of Science and Technology
- Shanghai
- P. R. China
| | - Ping Gu
- Department of Ophthalmology
- Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai
- P.R. China
| | - Weian Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry
- East China University of Science and Technology
- Shanghai
- P. R. China
| |
Collapse
|
31
|
Wei Z, Gerecht S. A self-healing hydrogel as an injectable instructive carrier for cellular morphogenesis. Biomaterials 2018; 185:86-96. [PMID: 30236839 PMCID: PMC6432635 DOI: 10.1016/j.biomaterials.2018.09.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 08/06/2018] [Accepted: 09/02/2018] [Indexed: 12/24/2022]
Abstract
Transplantation of progenitor cells can accelerate tissue healing and regenerative processes. Nonetheless, direct cell delivery fails to support survival of transplanted cells or long-term treatment of vascular related diseases due to compromised vasculature and tissue conditions. Using injectable hydrogels that cross-link in situ, could protect cells in vivo, but their sol-gel transition is time-dependent and difficult to precisely control. Hydrogels with self-healing properties are proposed to address these limitations, yet current self-healing hydrogels lack bio-functionality, hindering the morphogenesis of delivered cells into a tissue structure. Here we establish a gelatin (Gtn)-based self-healing hydrogel cross-linked by oxidized dextran (Odex) as an injectable carrier for delivery of endothelial progenitors. The dynamic imine cross-links between Gtn and Odex confer the self-healing ability to the Gtn-l-Odex hydrogels following syringe injection. The self-healing Gtn-l-Odex not only protects the progenitors from injected shear force but it also allows controllable spatial/temporal placement of the cells. Moreover, owing to the cell-adhesive and proteolytic sites of Gtn, the Gtn-l-Odex hydrogels support complex vascular network formation from the endothelial progenitors, both in vitro and in vivo. This is the first report of injectable, self-healing hydrogels with biological properties promoting vascular morphogenesis, which holds great promise for accelerating the success of regenerative therapies.
Collapse
Affiliation(s)
- Zhao Wei
- Department of Chemical and Biomolecular Engineering, The Institute for NanoBioTechnology Physical-Sciences Oncology Center, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Sharon Gerecht
- Department of Chemical and Biomolecular Engineering, The Institute for NanoBioTechnology Physical-Sciences Oncology Center, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
32
|
Jang Y, Cha C, Jung J, Oh J. Interfacial Compression-Dependent Merging of Two Miscible Microdroplets in an Asymmetric Cross-Junction for In Situ Microgel Formation. Macromol Res 2018. [DOI: 10.1007/s13233-019-7013-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
33
|
Almeida JF, Ferreira P, Alves P, Lopes A, Gil MH. Thermal-responsive hydrogels for sublingual administration of Ondansetron™. INT J POLYM MATER PO 2018. [DOI: 10.1080/00914037.2017.1376202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- José Filipe Almeida
- Department of Chemical Engineering, Chemical Process Engineering and Forest Products Research Centre (CIEPQPF), University of Coimbra, Coimbra, Portugal
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Paula Ferreira
- Department of Chemical Engineering, Chemical Process Engineering and Forest Products Research Centre (CIEPQPF), University of Coimbra, Coimbra, Portugal
| | - Patricia Alves
- Department of Chemical Engineering, Chemical Process Engineering and Forest Products Research Centre (CIEPQPF), University of Coimbra, Coimbra, Portugal
| | - António Lopes
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Maria H. Gil
- Department of Chemical Engineering, Chemical Process Engineering and Forest Products Research Centre (CIEPQPF), University of Coimbra, Coimbra, Portugal
| |
Collapse
|
34
|
Ali A, Ahmed S. Recent Advances in Edible Polymer Based Hydrogels as a Sustainable Alternative to Conventional Polymers. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:6940-6967. [PMID: 29878765 DOI: 10.1021/acs.jafc.8b01052] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The over increasing demand of eco-friendly materials to counter various problems, such as environmental issues, economics, sustainability, biodegradability, and biocompatibility, open up new fields of research highly focusing on nature-based products. Edible polymer based materials mainly consisting of polysaccharides, proteins, and lipids could be a prospective contender to handle such problems. Hydrogels based on edible polymer offer many valuable properties compared to their synthetic counterparts. Edible polymers can contribute to the reduction of environmental contamination, advance recyclability, provide sustainability, and thereby increase its applicability along with providing environmentally benign products. This review is highly emphasizing on toward the development of hydrogels from edible polymer, their classification, properties, chemical modification, and their potential applications. The application of edible polymer hydrogels covers many areas including the food industry, agricultural applications, drug delivery to tissue engineering in the biomedical field and provide more safe and attractive products in the pharmaceutical, agricultural, and environmental fields, etc.
Collapse
Affiliation(s)
- Akbar Ali
- Department of Chemistry , Jamia Millia Islamia , New Delhi , 110025 , India
| | - Shakeel Ahmed
- Department of Chemistry , Government Degree College Mendhar , Jammu , Jammu and Kashmir , 185211 , India
- Higher Education Department , Government of Jammu and Kashmir , Jammu , 180001 , India
| |
Collapse
|
35
|
Qu J, Zhao X, Ma PX, Guo B. Injectable antibacterial conductive hydrogels with dual response to an electric field and pH for localized "smart" drug release. Acta Biomater 2018; 72:55-69. [PMID: 29555459 DOI: 10.1016/j.actbio.2018.03.018] [Citation(s) in RCA: 239] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 02/25/2018] [Accepted: 03/07/2018] [Indexed: 12/28/2022]
Abstract
Injectable hydrogels with multistimuli responsiveness to electrical field and pH as a drug delivery system have been rarely reported. Herein, we developed a series of injectable conductive hydrogels as "smart" drug carrier with the properties of electro-responsiveness, pH-sensitivity, and inherent antibacterial activity. The hydrogels were prepared by mixing chitosan-graft-polyaniline (CP) copolymer and oxidized dextran (OD) as a cross-linker. The chemical structures, morphologies, electrochemical property, swelling ratio, conductivity, rheological property, in vitro and in vivo biodegradation, and gelation time of hydrogels were characterized. The pH-responsive behavior was verified by drug release from hydrogels in PBS solutions with different pH values (pH = 7.4 or 5.5) in an in vitro model. As drug carriers with electric-driven release, the release rate of the model drugs amoxicillin and ibuprofen loaded within CP/OD hydrogels dramatically increased when an increase in voltage was applied. Both chitosan and polyaniline with inherent antibacterial properties endowed the hydrogels with excellent antibacterial properties. Furthermore, cytotoxicity tests of the hydrogels using L929 cells confirmed their good cytocompatibility. The in vivo biocompatibility of the hydrogels was verified by H&E staining. Together, all these results suggest that these injectable pH-sensitive conductive hydrogels with antibacterial activity could be ideal candidates as smart drug delivery vehicles for precise doses of medicine to meet practical demand. STATEMENT OF SIGNIFICANCE Stimuli-responsive or "smart" hydrogels have attracted great attention in the field of biotechnology and biomedicine, especially on designing novel drug delivery systems. Compared with traditional implantable electronic delivery devices, the injectable hydrogels with electrical stimuli not only are easy to generate and control electrical field but also could avoid frequent invasive surgeries that offer a new avenue for chronic diseases. In addition, designing a drug carrier with pH-sensitive property could release drug efficiently in targeted acid environment, and it could reinforce the precise doses of medicine. Furthermore, caused by opportunistic microorganisms and rapid spread of antibiotic-resistant microbes, infection is still a serious threat for many clinical utilities. To overcome these barriers, we designed a series of injectable antibacterial conductive hydrogels based on chitosan-graft-polyaniline (CP) copolymer and oxidized dextran (OD), and we demonstrated their potential as "smart" delivery vehicles with electro-responsiveness and pH-responsive properties for triggered and localized release of drugs.
Collapse
|
36
|
|
37
|
Martínez-Martínez M, Rodríguez-Berna G, Gonzalez-Alvarez I, Hernández MJ, Corma A, Bermejo M, Merino V, Gonzalez-Alvarez M. Ionic Hydrogel Based on Chitosan Cross-Linked with 6-Phosphogluconic Trisodium Salt as a Drug Delivery System. Biomacromolecules 2018. [DOI: 10.1021/acs.biomac.8b00108] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Mayte Martínez-Martínez
- Dpto. de Ingeniería. Área Farmacia y Tecnología Farmacéutica, Universidad Miguel Hernández, Carretera Alicante-Valencia km. 87, 03550 San Juan, Alicante, Spain
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica
de València, Universitat de València, Dpto. de Farmacia y Tecnología Farmacéutica y Parasotología, Vicente Andrés Estelles s/n, 46010 Burjassot, Valencia, Spain
| | - Guillermo Rodríguez-Berna
- Instituto Mixto de Tecnología Química, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Avd. de los Naranjos s/n, 46006 Valencia, Spain
| | - Isabel Gonzalez-Alvarez
- Dpto. de Ingeniería. Área Farmacia y Tecnología Farmacéutica, Universidad Miguel Hernández, Carretera Alicante-Valencia km. 87, 03550 San Juan, Alicante, Spain
| | - M Jesús Hernández
- Departament de Fisica de la Terra i Termodinàmica, Universitat de València, Vicente Andrés Estelles s/n, 46010 Burjassot, Valencia, Spain
| | - Avelino Corma
- Instituto Mixto de Tecnología Química, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Avd. de los Naranjos s/n, 46006 Valencia, Spain
| | - Marival Bermejo
- Dpto. de Ingeniería. Área Farmacia y Tecnología Farmacéutica, Universidad Miguel Hernández, Carretera Alicante-Valencia km. 87, 03550 San Juan, Alicante, Spain
| | - Virginia Merino
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica
de València, Universitat de València, Dpto. de Farmacia y Tecnología Farmacéutica y Parasotología, Vicente Andrés Estelles s/n, 46010 Burjassot, Valencia, Spain
| | - Marta Gonzalez-Alvarez
- Dpto. de Ingeniería. Área Farmacia y Tecnología Farmacéutica, Universidad Miguel Hernández, Carretera Alicante-Valencia km. 87, 03550 San Juan, Alicante, Spain
| |
Collapse
|
38
|
Huang J, Jiang X. Injectable and Degradable pH-Responsive Hydrogels via Spontaneous Amino-Yne Click Reaction. ACS APPLIED MATERIALS & INTERFACES 2018; 10:361-370. [PMID: 29235844 DOI: 10.1021/acsami.7b18141] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Injectable hydrogels have attracted increasing attention in tissue regeneration and local drug delivery applications. Current click reactions for preparing injectable hydrogels often require a photoinitiator or catalyst, which may be toxic and may involve complex synthesis of precursors. Here, we report a facile and inexpensive method to prepare injectable and degradable hydrogels via spontaneous amino-yne click reaction without using any initiator or catalyst under physiological conditions based on telechelic electron-deficient dipropiolate ester of polyethylene glycol and water-soluble commercially available carboxymethyl chitosan (CMC). The gelation time, mechanical property, and degradation rate of the hydrogels could be adjusted by varying CMC concentrations and stoichiometric ratios. The reversible pH-induced sol-gel transitions of the hydrogel are presented and the pH-controlled drug release behaviors are demonstrated, of which the mechanism is discussed. In vitro cytotoxicity assays and in vivo in situ injection study of the CMC-based hydrogels showed favorable gel formation, nontoxicity, and good tissue biocompatibility. Therefore, these biodegradable and injectable hydrogels prepared by spontaneous amino-yne click reaction hold potential for tissue engineering and other biomedical applications.
Collapse
Affiliation(s)
- Jiachang Huang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University , Luojia Hill, Wuhan 430072, P. R. China
| | - Xulin Jiang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University , Luojia Hill, Wuhan 430072, P. R. China
| |
Collapse
|
39
|
Huber D, Grzelak A, Baumann M, Borth N, Schleining G, Nyanhongo GS, Guebitz GM. Anti-inflammatory and anti-oxidant properties of laccase-synthesized phenolic-O-carboxymethyl chitosan hydrogels. N Biotechnol 2018; 40:236-244. [DOI: 10.1016/j.nbt.2017.09.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 09/12/2017] [Accepted: 09/15/2017] [Indexed: 10/18/2022]
|
40
|
Meena LK, Raval P, Kedaria D, Vasita R. Study of locust bean gum reinforced cyst-chitosan and oxidized dextran based semi-IPN cryogel dressing for hemostatic application. Bioact Mater 2017; 3:370-384. [PMID: 29992195 PMCID: PMC6035369 DOI: 10.1016/j.bioactmat.2017.11.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/15/2017] [Accepted: 11/21/2017] [Indexed: 10/31/2022] Open
Abstract
Severe blood loss due to traumatic injuries remains one of the leading causes of death in emergency settings. Chitosan continues to be the candidate material for hemostatic applications due to its inherent hemostatic properties. However, available chitosan-based dressings have been reported to have an acidic odor at the wound site due to the incorporation of acid based solvents for their fabrication and deformation under compression owing to low mechanical strength limiting its usability. In the present study semi-IPN cryogel was fabricated via Schiff's base cross-linking between the polyaldehyde groups of oxidized dextran and thiolated chitosan in presence of locust bean gum (LBG) known for its hydrophilicity. Polymerization at -12 °C yielded macroporous semi-IPN cryogels with an average pore size of 124.57 ± 20.31 μm and 85.46% porosity. The hydrophobicity index of LBG reinforced semi-IPN cryogel was reduced 2.42 times whereas the swelling ratio was increased by 156.08% compare to control cryogel. The increased hydrophilicity and swelling ratio inflated the compressive modulus from 28.1 kPa to 33.85 for LBG reinforced semi-IPN cryogel. The structural stability and constant degradation medium pH were also recorded over a period of 12 weeks. The cryogels demonstrated lower adsorption affinity towards BSA. The cytotoxicity assays (direct, indirect) with 3T3-L1 fibroblast cells confirmed the cytocompatibility of the cryogels. The hemolysis assay showed <5% hemolysis confirming blood compatibility of the fabricated cryogel, while whole blood clotting and platelet adhesion assays confirmed the hemostatic potential of semi-IPN cryogel.
Collapse
Affiliation(s)
- Lalit Kumar Meena
- School of Life Sciences, Central University of Gujarat, Sector-30, Gandhinagar 382030, India
| | - Pavani Raval
- Government Engineering College, Sector-28, Gandhinagar 382028, India
| | - Dhaval Kedaria
- School of Life Sciences, Central University of Gujarat, Sector-30, Gandhinagar 382030, India
| | - Rajesh Vasita
- School of Life Sciences, Central University of Gujarat, Sector-30, Gandhinagar 382030, India
| |
Collapse
|
41
|
Ren Y, Zhao X, Liang X, Ma PX, Guo B. Injectable hydrogel based on quaternized chitosan, gelatin and dopamine as localized drug delivery system to treat Parkinson’s disease. Int J Biol Macromol 2017; 105:1079-1087. [DOI: 10.1016/j.ijbiomac.2017.07.130] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/05/2017] [Accepted: 07/19/2017] [Indexed: 12/11/2022]
|
42
|
Wang L, Li X, Sun T, Tsou Y, Chen H, Xu X. Dual‐Functional Dextran‐PEG Hydrogel as an Antimicrobial Biomedical Material. Macromol Biosci 2017; 18. [DOI: 10.1002/mabi.201700325] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Lei Wang
- Country State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials College of Chemistry Chemical Engineering and Materials Science Soochow University 199 Ren'ai Road Suzhou 215123 P. R. China
- Otto H. York Department of Chemical Biological and Pharmaceutical Engineering New Jersey Institute and Technology University Heights Newark NJ 07102 USA
| | - Xin Li
- Otto H. York Department of Chemical Biological and Pharmaceutical Engineering New Jersey Institute and Technology University Heights Newark NJ 07102 USA
| | - Tianyu Sun
- Otto H. York Department of Chemical Biological and Pharmaceutical Engineering New Jersey Institute and Technology University Heights Newark NJ 07102 USA
| | - Yung‐Hao Tsou
- Otto H. York Department of Chemical Biological and Pharmaceutical Engineering New Jersey Institute and Technology University Heights Newark NJ 07102 USA
| | - Hong Chen
- Country State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials College of Chemistry Chemical Engineering and Materials Science Soochow University 199 Ren'ai Road Suzhou 215123 P. R. China
| | - Xiaoyang Xu
- Otto H. York Department of Chemical Biological and Pharmaceutical Engineering New Jersey Institute and Technology University Heights Newark NJ 07102 USA
| |
Collapse
|
43
|
Cho IS, Ooya T. An injectable and self-healing hydrogel for spatiotemporal protein release via fragmentation after passing through needles. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2017; 29:145-159. [DOI: 10.1080/09205063.2017.1405573] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Ik Sung Cho
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Japan
| | - Tooru Ooya
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Japan
| |
Collapse
|
44
|
Escobar F, Anseth KS, Schultz KM. Dynamic Changes in Material Properties and Degradation of Poly(ethylene glycol)–Hydrazone Gels as a Function of pH. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b01246] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Francisco Escobar
- Department
of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Kristi S. Anseth
- Department
of Chemical and Biological Engineering, the Biofrontiers Institute
and Howard Hughes Medical Institute, University of Colorado at Boulder, Boulder, Colorado 80303, United States
| | - Kelly M. Schultz
- Department
of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
45
|
Miguel SP, Ribeiro MP, Coutinho P, Correia IJ. Electrospun Polycaprolactone/Aloe Vera_Chitosan Nanofibrous Asymmetric Membranes Aimed for Wound Healing Applications. Polymers (Basel) 2017; 9:E183. [PMID: 30970863 PMCID: PMC6432098 DOI: 10.3390/polym9050183] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 05/06/2017] [Accepted: 05/19/2017] [Indexed: 12/30/2022] Open
Abstract
Today, none of the wound dressings available on the market is fully capable of reproducing all the features of native skin. Herein, an asymmetric electrospun membrane was produced to mimic both layers of skin. It comprises a top dense layer (manufactured with polycaprolactone) that was designed to provide mechanical support to the wound and a bottom porous layer (composed of chitosan and Aloe Vera) aimed to improve the bactericidal activity of the membrane and ultimately the healing process. The results obtained revealed that the produced asymmetric membranes displayed a porosity, wettability, as well as mechanical properties similar to those presented by the native skin. Fibroblast cells were able to adhere, spread, and proliferate on the surface of the membranes and the intrinsic structure of the two layers of the membrane is capable of avoiding the invasion of microorganisms while conferring bioactive properties. Such data reveals the potential of these asymmetric membranes, in the near future, to be applied as wound dressings.
Collapse
Affiliation(s)
- Sónia P Miguel
- CICS-UBI-Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal.
| | - Maximiano P Ribeiro
- CICS-UBI-Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal.
- UDI-IPG-Unidade de Investigação para o Desenvolvimento do Interior, Instituto Politécnico da Guarda, 6300-559 Guarda, Portugal.
| | - Paula Coutinho
- CICS-UBI-Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal.
- UDI-IPG-Unidade de Investigação para o Desenvolvimento do Interior, Instituto Politécnico da Guarda, 6300-559 Guarda, Portugal.
| | - Ilídio J Correia
- CICS-UBI-Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal.
| |
Collapse
|
46
|
Fang L, Liang B, Yang G, Hu Y, Zhu Q, Ye X. A needle-type glucose biosensor based on PANI nanofibers and PU/E-PU membrane for long-term invasive continuous monitoring. Biosens Bioelectron 2017; 97:196-202. [PMID: 28599179 DOI: 10.1016/j.bios.2017.04.043] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 04/20/2017] [Accepted: 04/27/2017] [Indexed: 10/19/2022]
Abstract
A minimally invasive glucose biosensor capable of continuous monitoring of subcutaneous glucose has been developed in this study. This sensor was prepared using electropolymerized conductive polymer polyaniline (PANI) nanofibers as an enzyme immobilization material and polyurethane (PU)/epoxy-enhanced polyurethane (E-PU) bilayer coating as a protective membrane. The sensor showed almost the same sensitivity (63nA/mM) and linearity (0-20mM with the correlation coefficient r2 of 0.9997) in both PBS and bovine serum tests. When stored in 37°C bovine serum, the sensor's sensitivity gradually increased about 30% of the initial value within the first 13 days and then remained stable for the rest of the study period of 53 days. In vivo implantation experiments using mice models showed real-time response to the variation of blood glucose with an average signal delay of about 8min. Continuous monitoring showed that the sensor response increased for the first 12 days and then entered a stable period for 14 days. The sensor's baseline (530±10nA) and the total response to 1ml 50% dextrose injection were almost the same (267±15nA) in the stable period. The in vivo stable performances indicated that the sensor could be used as an implantable device for long-term invasive monitoring of blood glucose.
Collapse
Affiliation(s)
- Lu Fang
- College of Life Information Science and Instrument Engineering, Hangzhou Dianzi University, Hangzhou, China
| | - Bo Liang
- Biosensor National Special Laboratory, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Guang Yang
- Biosensor National Special Laboratory, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Yichuan Hu
- Biosensor National Special Laboratory, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Qin Zhu
- Biosensor National Special Laboratory, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Xuesong Ye
- Biosensor National Special Laboratory, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China; State Key Laboratory of CAD & CG, Zhejiang University, Hangzhou, China.
| |
Collapse
|
47
|
Balakrishnan B, Soman D, Payanam U, Laurent A, Labarre D, Jayakrishnan A. A novel injectable tissue adhesive based on oxidized dextran and chitosan. Acta Biomater 2017; 53:343-354. [PMID: 28131944 DOI: 10.1016/j.actbio.2017.01.065] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 01/06/2017] [Accepted: 01/23/2017] [Indexed: 02/02/2023]
Abstract
A surgical adhesive that can be used in different surgical situations with or without sutures is a surgeons' dream and yet none has been able to fulfill many such demanding requirements. It was therefore a major challenge to develop an adhesive biomaterial that stops bleeding and bond tissues well, which at the same time is non-toxic, biocompatible and yet biodegradable, economically viable and appealing to the surgeon in terms of the simplicity of application in complex surgical situations. With this aim, we developed an in situ setting adhesive based on biopolymers such as chitosan and dextran. Dextran was oxidized using periodate to generate aldehyde functions on the biopolymer and then reacted with chitosan hydrochloride. Gelation occurred instantaneously upon mixing these components and the resulting gel showed good tissue adhesive properties with negligible cytotoxicity and minimal swelling in phosphate buffered saline (PBS). Rheology analysis confirmed the gelation process by demonstrating storage modulus having value higher than loss modulus. Adhesive strength was in the range 200-400gf/cm2 which is about 4-5 times more than that of fibrin glue at comparable setting times. The adhesive showed burst strength in the range of 400-410mm of Hg which should make the same suitable as a sealant for controlling bleeding in many surgical situations even at high blood pressure. Efficacy of the adhesive as a hemostat was demonstrated in a rabbit liver injury model. Histological features after two weeks were comparable to that of commercially available BioGlue®. The adhesive also demonstrated its efficacy as a drug delivery vehicle. The present adhesive could function without the many toxicity and biocompatibility issues associated with such products. STATEMENT OF SIGNIFICANCE Though there are many tissue adhesives available in market, none are free of shortcomings. The newly developed surgical adhesive is a 2-component adhesive system based on time-tested, naturally occurring polysaccharides such as chitosan and dextran which are both biocompatible and biodegradable. Simple polymer modification has been carried out on both polysaccharides so that when aqueous solutions of both are mixed, the solutions gel in less than 10s and forms an adhesive that seals a variety of incisions. The strength of the adhesive is over 5-times the strength of commercially available Fibrin glue and is more tissue compliant than BioGlue®. This adhesive biomaterial showed excellent tissue bonding, was hemostatic, biocompatible and biodegradable. The significance of this work lies on the features of the developed tissue adhesive that it stops bleeding, bond the tissues well, can act as a drug delivery vehicle and would appeal to the surgeon in terms of the simplicity of application in complex surgical situations. There is no need for special delivery systems for application of this adhesive. The two-component adhesive can be applied one over the other using syringes. There is also no need for light curing with UV or visible light and the gelation between the two components spontaneously takes place on application leading to excellent tissue bonding.
Collapse
|
48
|
Racine L, Texier I, Auzély-Velty R. Chitosan-based hydrogels: recent design concepts to tailor properties and functions. POLYM INT 2017. [DOI: 10.1002/pi.5331] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Lisa Racine
- Grenoble Alpes University and CEA LETI MlNATEC Campus; France
- Grenoble Alpes University, CERMAV-CNRS; France
| | - Isabelle Texier
- Grenoble Alpes University and CEA LETI MlNATEC Campus; France
| | | |
Collapse
|
49
|
Chang B, Ahuja N, Ma C, Liu X. Injectable scaffolds: Preparation and application in dental and craniofacial regeneration. MATERIALS SCIENCE & ENGINEERING. R, REPORTS : A REVIEW JOURNAL 2017; 111:1-26. [PMID: 28649171 PMCID: PMC5478172 DOI: 10.1016/j.mser.2016.11.001] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Injectable scaffolds are appealing for tissue regeneration because they offer many advantages over pre-formed scaffolds. This article provides a comprehensive review of the injectable scaffolds currently being investigated for dental and craniofacial tissue regeneration. First, we provide an overview of injectable scaffolding materials, including natural, synthetic, and composite biomaterials. Next, we discuss a variety of characteristic parameters and gelation mechanisms of the injectable scaffolds. The advanced injectable scaffolding systems developed in recent years are then illustrated. Furthermore, we summarize the applications of the injectable scaffolds for the regeneration of dental and craniofacial tissues that include pulp, dentin, periodontal ligament, temporomandibular joint, and alveolar bone. Finally, our perspectives on the injectable scaffolds for dental and craniofacial tissue regeneration are offered as signposts for the future advancement of this field.
Collapse
Affiliation(s)
- Bei Chang
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX 75246, USA
| | - Neelam Ahuja
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX 75246, USA
| | - Chi Ma
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX 75246, USA
| | - Xiaohua Liu
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX 75246, USA
| |
Collapse
|
50
|
Li Z, He C, Yuan B, Dong X, Chen X. Injectable Polysaccharide Hydrogels as Biocompatible Platforms for Localized and Sustained Delivery of Antibiotics for Preventing Local Infections. Macromol Biosci 2016; 17. [DOI: 10.1002/mabi.201600347] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 10/03/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Ziyi Li
- Key Laboratory of Polymer Ecomaterials; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 P. R. China
- School of Materials Science and Engineering; Sun Yat-Sen University; Guangzhou 510275 P. R. China
| | - Chaoliang He
- Key Laboratory of Polymer Ecomaterials; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 P. R. China
| | - Baoming Yuan
- Department of Orthopaedics; The Second Hospital of Jilin University; Changchun 130041 P. R. China
| | - Xiaoming Dong
- Department of Orthopaedics; The Second Hospital of Jilin University; Changchun 130041 P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 P. R. China
| |
Collapse
|