1
|
Foo LLE, Logeshwari MN, Czarny B, Ng KW. Development of keratin-based fibers fabricated by interfacial polyelectrolyte complexation for suture applications. Biomaterials 2025; 314:122878. [PMID: 39393217 DOI: 10.1016/j.biomaterials.2024.122878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/25/2024] [Accepted: 10/03/2024] [Indexed: 10/13/2024]
Abstract
Interfacial Polyelectrolyte Complexation (IPC) is a convenient way to produce composite, micro-scale fibers. In this paper, we report the successful development of novel keratin-based IPC fibers and also demonstrate the feasibility of using these fibers as sutures through a proof-of-concept in vivo study. Two composite fibers were produced: chitosan-keratin (CK) and keratin-keratin (KK). These fibers were evaluated for their physico-chemical, mechanical and biochemical properties. In the dry state, the CK fiber had a greater Young's modulus of about 2 GPa while the KK fiber registered a longer strain-at-break of about 100 % due to the strain-stiffening effect. Notably, the keratins were found to assemble into amyloids within the composite fibers based on Congo red staining and Wide-Angle X-Ray Scattering. Functionally, both fibers were malleable could be weaved, braided and knotted. When used as sutures to close incisional wounds in mice over 21 days, these fibers were found to elicit minimal host tissue response and were partially degraded over the duration. Interestingly, the KK fiber evoked a lower extent of immune cell response and fibrous capsule encapsulation that was comparable to commercial, non-absorbable Dafilon® sutures. This work demonstrated the possibility of producing keratin-based IPC fibers which may find practicality as medical sutures.
Collapse
Affiliation(s)
- Laura Li-En Foo
- Nanyang Environment and Water Research Institute, Interdisciplinary Graduate Programme, Nanyang Technological University, Singapore; School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | | | - Bertrand Czarny
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore; Lee Kong Chain School of Medicine, Nanyang Technological University, 59 Nanyang Drive, 636921, Singapore.
| | - Kee Woei Ng
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore; Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, 637141, Singapore; Skin Research Institute of Singapore, Clinical Sciences Building, 11 Mandalay Road, 308232, Singapore.
| |
Collapse
|
2
|
Wang Z, Xiao N, Guo S, Liu X, Liu C, Ai M. Unlocking the Potential of Keratin: A Comprehensive Exploration from Extraction and Structural Properties to Cross-Disciplinary Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:1014-1037. [PMID: 39681472 DOI: 10.1021/acs.jafc.4c07102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
The rapid expansion of the livestock and poultry industry has led to a considerable increase in slaughter byproducts; however, exploring their potential applications still needs to be improved. These underutilized byproducts, which include nails, hides, skins, and bones, represent a significant loss of valuable biological resources. Among these materials, keratin has garnered considerable attention due to its unique properties as a natural biopolymer. Keratin exhibits outstanding mechanical properties and biocompatibility and has attracted increasing attention for its recovery and conversion into relevant application materials. However, natural keratin typically has a high sulfur content, complex 3D structure, and abundant hydrogen and disulfide bonds, which cause challenges in application. Current extraction for keratin includes physical, chemical, biological, and hybrid approaches. Combining multiple methods synergistically enhances protein extraction efficiency and purity, and facilitates the exploration of structure and functional properties. This review encompasses the structural characteristics, properties, extraction methods, and research progress related to keratin. The preparation and application of keratin composite materials in different forms, such as fibers, films, hydrogels, and scaffolds, are illustrated. Applications in several fields, including biomedicine, flexible electronic components, environmental materials and food packaging are discussed. Hopefully, this paper will provide a comprehensive understanding and guidance for further development and application of keratin materials.
Collapse
Affiliation(s)
- Ziyuan Wang
- The National Center for Precision Machining and Safety of Livestock and Poultry Products Joint Engineering Research Center, College of Food Science, South China Agricultural University, 510642 Guangzhou, China
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, 510642 Guangzhou, China
| | - Nan Xiao
- The National Center for Precision Machining and Safety of Livestock and Poultry Products Joint Engineering Research Center, College of Food Science, South China Agricultural University, 510642 Guangzhou, China
| | - Shanguang Guo
- The National Center for Precision Machining and Safety of Livestock and Poultry Products Joint Engineering Research Center, College of Food Science, South China Agricultural University, 510642 Guangzhou, China
| | - Xuwei Liu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, 510642 Guangzhou, China
| | - Chunhong Liu
- The National Center for Precision Machining and Safety of Livestock and Poultry Products Joint Engineering Research Center, College of Food Science, South China Agricultural University, 510642 Guangzhou, China
| | - Minmin Ai
- The National Center for Precision Machining and Safety of Livestock and Poultry Products Joint Engineering Research Center, College of Food Science, South China Agricultural University, 510642 Guangzhou, China
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, 510642 Guangzhou, China
| |
Collapse
|
3
|
Shirk BD, Heichel DL, Eccles LE, Rodgers LI, Lateef AH, Burke KA, Stoppel WL. Modifying Naturally Occurring, Nonmammalian-Sourced Biopolymers for Biomedical Applications. ACS Biomater Sci Eng 2024; 10:5915-5938. [PMID: 39259773 DOI: 10.1021/acsbiomaterials.4c00689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Natural biopolymers have a rich history, with many uses across the fields of healthcare and medicine, including formulations for wound dressings, surgical implants, tissue culture substrates, and drug delivery vehicles. Yet, synthetic-based materials have been more successful in translation due to precise control and regulation achievable during manufacturing. However, there is a renewed interest in natural biopolymers, which offer a diverse landscape of architecture, sustainable sourcing, functional groups, and properties that synthetic counterparts cannot fully replicate as processing and sourcing of these materials has improved. Proteins and polysaccharides derived from various sources (crustaceans, plants, insects, etc.) are highlighted in this review. We discuss the common types of polysaccharide and protein biopolymers used in healthcare and medicine, highlighting methods and strategies to alter structures and intra- and interchain interactions to engineer specific functions, products, or materials. We focus on biopolymers obtained from natural, nonmammalian sources, including silk fibroins, alginates, chitosans, chitins, mucins, keratins, and resilins, while discussing strategies to improve upon their innate properties and sourcing standardization to expand their clinical uses and relevance. Emphasis will be placed on methods that preserve the structural integrity and native biological functions of the biopolymers and their makers. We will conclude by discussing the untapped potential of new technologies to manipulate native biopolymers while controlling their secondary and tertiary structures, offering a perspective on advancing biopolymer utility in novel applications within biomedical engineering, advanced manufacturing, and tissue engineering.
Collapse
Affiliation(s)
- Bryce D Shirk
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Danielle L Heichel
- Department of Chemical Engineering, University of Connecticut, Storrs, Connecticut 06269-3222, United States
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269-3136, United States
| | - Lauren E Eccles
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Liam I Rodgers
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Ali H Lateef
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Kelly A Burke
- Department of Chemical Engineering, University of Connecticut, Storrs, Connecticut 06269-3222, United States
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269-3136, United States
| | - Whitney L Stoppel
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611, United States
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
4
|
Banasaz S, Ferraro V. Keratin from Animal By-Products: Structure, Characterization, Extraction and Application-A Review. Polymers (Basel) 2024; 16:1999. [PMID: 39065316 PMCID: PMC11280741 DOI: 10.3390/polym16141999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/10/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
Keratin is a structural fibrous protein and the core constituent of animal by-products from livestock such as wool, feathers, hooves, horns, and pig bristles. This natural polymer is also the main component of human hair and is present at an important percentage in human and animal skin. Significant amounts of keratin-rich animal tissues are discarded worldwide each year, ca. 12 M tons, and the share used for keratin extraction and added-value applications is still very low. An important stream of new potential raw materials, represented by animal by-products and human hair, is thus being lost, while a large-scale valorization could contribute to a circular bioeconomy and to the reduction in the environmental fingerprint of those tissues. Fortunately, scientific research has made much important progress in the last 10-15 years in the better understanding of the complex keratin architecture and its variability among different animal tissues, in the development of tailored extraction processes, and in the screening of new potential applications. Hence, this review aims at a discussion of the recent findings in the characterization of keratin and keratin-rich animal by-product structures, as well as in keratin recovery by conventional and emerging techniques and advances in valorization in several fields.
Collapse
|
5
|
Soleymani Eil Bakhtiari S, Karbasi S. Keratin-containing scaffolds for tissue engineering applications: a review. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:916-965. [PMID: 38349200 DOI: 10.1080/09205063.2024.2311450] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/24/2024] [Indexed: 04/13/2024]
Abstract
In tissue engineering and regenerative medicine applications, the utilization of bioactive materials has become a routine tool. The goal of tissue engineering is to create new organs and tissues by combining cell biology, materials science, reactor engineering, and clinical research. As part of the growth pattern for primary cells in an organ, backing material is frequently used as a supporting material. A porous three-dimensional (3D) scaffold can provide cells with optimal conditions for proliferating, migrating, differentiating, and functioning as a framework. Optimizing the scaffolds' structure and altering their surface may improve cell adhesion and proliferation. A keratin-based biomaterials platform has been developed as a result of discoveries made over the past century in the extraction, purification, and characterization of keratin proteins from hair and wool fibers. Biocompatibility, biodegradability, intrinsic biological activity, and cellular binding motifs make keratin an attractive biomaterial for tissue engineering scaffolds. Scaffolds for tissue engineering have been developed from extracted keratin proteins because of their capacity to self-assemble and polymerize into intricate 3D structures. In this review article, applications of keratin-based scaffolds in different tissues including bone, skin, nerve, and vascular are explained based on common methods of fabrication such as electrospinning, freeze-drying process, and sponge replication method.
Collapse
Affiliation(s)
- Sanaz Soleymani Eil Bakhtiari
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Saeed Karbasi
- Biomaterials and Tissue Engineering Department, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
6
|
Zhao Z, Chua HM, Lai HY, Ng KW. A facile method to fabricate versatile keratin cryogels for tissue engineering applications. Biomed Mater 2024; 19:025048. [PMID: 38364277 DOI: 10.1088/1748-605x/ad2a3f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 02/16/2024] [Indexed: 02/18/2024]
Abstract
Human hair keratin (HHK) has been extensively explored as a biomaterial for soft tissue regeneration due to their excellent bioactivity and biocompatibility. The possibility to fabricate HHK into three-dimensional (3D) hydrogels with physical properties resembling soft tissues has been well demonstrated. However, conventional keratin hydrogels often exhibit a dense architecture that could hinder cell filtration. In the present study, HHK-based cryogels were fabricated using a freeze-thaw (FT) method, where oxidized dopamine (ODA) was employed to covalently crosslink thiol/amine rich-keratin molecules at sub-zero temperatures. The obtained HHK-ODA cryogels have micron-sized pores ranging between 100 and 200 μm and mechanical properties that can be tuned by varying the crosslinking density between ODA and HHK. Through optimization of the weight content of ODA and the number of FT cycles, the compressive strengths and stiffnesses of these cryogels achieved 15-fold increments from ∼1.5 kPa to ∼22 kPa and ∼300 Pa to ∼5000 Pa, respectively. The HHK-ODA cryogels competently supported human dermal fibroblast spreading and proliferation. Overall, this study exhibited a facile method to fabricate mechanically superior keratin-based cryogels with cell compatible microarchitecture, circumventing the need for complicated chemical modifications and the use of cytotoxic crosslinkers.
Collapse
Affiliation(s)
- Zhitong Zhao
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Huei Min Chua
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Hui Ying Lai
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Kee Woei Ng
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
- Nanyang Environment and Water Research Institute (NEWRI), Singapore, Singapore
- Skin Research Institute of Singapore (SRIS), Singapore, Singapore
| |
Collapse
|
7
|
Shubha A, Sharmita G, Anita L. Production and characterization of human hair keratin bioplastic films with novel plasticizers. Sci Rep 2024; 14:1186. [PMID: 38216577 PMCID: PMC10786936 DOI: 10.1038/s41598-023-44905-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 10/13/2023] [Indexed: 01/14/2024] Open
Abstract
Since their invention, conventional plastics have contributed in the betterment of the society in numerous ways, nevertheless their deleterious impacts on the natural ecosystems and living creatures is irrefutable. The management of plastic waste generated is a concern worldwide and therefore quest for the plastic alternates or bioplastics is imminent. Here, we explore the suitability of keratin from human hair waste as the candidate for the production of bioplastic films. Keratin extracted from hair was used to form the films or 'kertics' by solution casting and curing. Ethanediol, di-ethylene glycol and tri-ethylene glycol were used as novel plasticizers along with glycerol in the keratin film formation. The film prepared were of the thickness 190-220 µm with the area of about 4.54 ± 0.2 cm2. Water uptake by G100, ED100, DEG100 and TEG100 films was recorded to be 4.8, 6.2, 4.9 and 6.3% respectively. FESEM analysis revealed that the films with 100 µl of 1% glycerol (G100) had continuous surface morphology except few pits of 0.1 µm, also DEG100 and TEG100 films have the most uniform surface morphology with no evident pits, holes or bulges. X-ray diffractogram showed characteristic peak of keratin at 19.5° and the d-spacing value observed was 0.45 nm. The FTIR studies suggested that the films retained keratin in non degraded form, and possessed the characteristic Amide peaks. The films were also found to be biodegradable in studies involving keratinophilic fungal strain of A. oryzae. These films could found potential applications in packaging industry, disposable items manufacturing and biomaterial generation.
Collapse
Affiliation(s)
- Anand Shubha
- Dayalbagh Educational Institute, Dayalbagh, Agra, Uttar Pradesh, 282005, India
| | - Gupta Sharmita
- Dayalbagh Educational Institute, Dayalbagh, Agra, Uttar Pradesh, 282005, India.
| | - Lakhani Anita
- Dayalbagh Educational Institute, Dayalbagh, Agra, Uttar Pradesh, 282005, India
| |
Collapse
|
8
|
Ashna M, Senthilkumar N, Sanpui P. Human Hair Keratin-Based Hydrogels in Regenerative Medicine: Current Status and Future Directions. ACS Biomater Sci Eng 2023; 9:5527-5547. [PMID: 37734053 DOI: 10.1021/acsbiomaterials.3c00883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Regenerative medicine (RM) is a multidisciplinary field that utilizes the inherent regenerative potential of human cells to generate functionally and physiologically acceptable human cells, tissues, and organs in vivo or ex vivo. An appropriate biomaterial scaffold with desired physicochemical properties constitutes an important component of a successful RM approach. Among various forms of biomaterials explored until the present day, hydrogels have emerged as a versatile candidate for tissue engineering and regenerative medicine (TERM) applications such as scaffolds for spatial patterning and delivering therapeutic agents, or substrates to enhance cell growth, differentiation, and migration. Although hydrogels can be prepared from a variety of synthetic polymers as well as biopolymers, the latter are preferred for their inherent biocompatibility. Specifically, keratins are fibrous proteins that have been recently explored for constructing hydrogels useful for RM purposes. The present review discusses the suitability of keratin-based biomaterials in RM, with a particular focus on human hair keratin hydrogels and their use in various RM applications.
Collapse
Affiliation(s)
- Mymuna Ashna
- Department of Biotechnology, BITS Pilani Dubai Campus, Dubai International Academic City, Dubai, United Arab Emirates
| | - Neeharika Senthilkumar
- Department of Biotechnology, BITS Pilani Dubai Campus, Dubai International Academic City, Dubai, United Arab Emirates
| | - Pallab Sanpui
- Department of Biotechnology, BITS Pilani Dubai Campus, Dubai International Academic City, Dubai, United Arab Emirates
| |
Collapse
|
9
|
Ledford BT, Chen M, Van Dyke M, Barron C, Zhang X, Cartaya A, Zheng Y, Ceylan A, Goldstein A, He JQ. Keratose Hydrogel Drives Differentiation of Cardiac Vascular Smooth Muscle Progenitor Cells: Implications in Ischemic Treatment. Stem Cell Rev Rep 2023; 19:2341-2360. [PMID: 37392292 DOI: 10.1007/s12015-023-10574-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2023] [Indexed: 07/03/2023]
Abstract
Peripheral artery disease (PAD) is a common vascular disorder in the extremity of limbs with limited clinical treatments. Stem cells hold great promise for the treatment of PAD, but their therapeutic efficiency is limited due to multiple factors, such as poor engraftment and non-optimal selection of cell type. To date, stem cells from a variety of tissue sources have been tested, but little information is available regarding vascular smooth muscle cells (VSMCs) for PAD therapy. The present study examines the effects of keratose (KOS) hydrogels on c-kit+/CD31- cardiac vascular smooth muscle progenitor cell (cVSMPC) differentiation and the therapeutic potential of the resultant VSMCs in a mouse hindlimb ischemic model of PAD. The results demonstrated that KOS but not collagen hydrogel was able to drive the majority of cVSMPCs into functional VSMCs in a defined Knockout serum replacement (SR) medium in the absence of differentiation inducers. This effect could be inhibited by TGF-β1 antagonists. Further, KOS hydrogel increased expression of TGF-β1-associated proteins and modulated the level of free TGF-β1 during differentiation. Finally, transplantation of KOS-driven VSMCs significantly increased blood flow and vascular densities of ischemic hindlimbs. These findings indicate that TGF-β1 signaling is involved in KOS hydrogel-preferred VSMC differentiation and that enhanced blood flow are likely resulted from angiogenesis and/or arteriogenesis induced by transplanted VSMCs.
Collapse
Affiliation(s)
- Benjamin T Ledford
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Miao Chen
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Mark Van Dyke
- Department of Biomedical Engineering, College of Engineering, University of Arizona, Tucson, AZ, 85721, USA
| | - Catherine Barron
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Xiaonan Zhang
- Beijing Yulong Shengshi Biotechnology, Haidian District, Beijing, 100085, China
| | - Aurora Cartaya
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Youjing Zheng
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Ahmet Ceylan
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Aaron Goldstein
- Department of Chemical Engineering, School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Jia-Qiang He
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, 24061, USA.
| |
Collapse
|
10
|
Jelodari S, Daemi H, Mohammadi P, Verdi J, J Al-Awady M, Ai J, Azami M. Assessment of the Efficacy of an LL-37-Encapsulated Keratin Hydrogel for the Treatment of Full-Thickness Wounds. ACS APPLIED BIO MATERIALS 2023. [PMID: 37224450 DOI: 10.1021/acsabm.2c01068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Wound healing remains a burdensome healthcare problem due to moisture loss and bacterial infection. Advanced hydrogel dressings can help to resolve these issues by assisting and accelerating regenerative processes such as cell migration and angiogenesis because of the similarities between their composition and structure with natural skin. In this study, we aimed to develop a keratin-based hydrogel dressing and investigate the impact of the delivery of LL-37 antimicrobial peptide using this hydrogel in treating full-thickness rat wounds. Therefore, oxidized (keratose) and reduced (kerateine) keratins were utilized to prepare 10% (w/v) hydrogels with different ratios of keratose and kerateine. The mechanical properties of these hydrogels with compressive modulus of 6-32 kPa and tan δ <1 render them suitable for wound healing applications. Also, sustained release of LL-37 from the keratin hydrogel was achieved, which can lead to superior wound healing. In vitro studies confirmed that LL-37 containing 25:75% of keratose/kerateine (L-KO25:KN75) would result in significant fibroblast proliferation (∼85% on day 7), adhesion (∼90 cells/HPF), and migration (73% scratch closure after 12 h and complete closure after 24 h). Also, L-KO25:KN75 is capable of eradicating both Gram-negative and Gram-positive bacteria after 18 h. According to in vivo assessment of L-KO25:KN75, wound closure at day 21 was >98% and microvessel density (>30 vessels/HPF at day 14) was significantly superior in comparison to other treatment groups. The mRNA expression of VEGF and IL-6 was also increased in the L-KO25:KN75-treated group and contributed to proper wound healing. Therefore, the LL-37-containing keratin hydrogel ameliorated wound closure, and also angiogenesis was enhanced as a result of LL-37 delivery. These results suggested that the L-KO25:KN75 hydrogel could be a sustainable substitute for skin tissue regeneration in medical applications.
Collapse
Affiliation(s)
- Sahar Jelodari
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran 1417755469, Iran
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran
| | - Hamed Daemi
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran
| | - Parvaneh Mohammadi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran
| | - Javad Verdi
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran 1417755469, Iran
| | - Mohammed J Al-Awady
- Department of Chemistry, University of Western Ontario, Ontario N6A 3K7, Canada
| | - Jafar Ai
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran 1417755469, Iran
| | - Mahmoud Azami
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran 1417755469, Iran
- Joint Reconstruction Research Center (JRRC), Tehran University of Medical Sciences, Tehran 1417755469, Iran
| |
Collapse
|
11
|
Vargas-Molinero HY, Serrano-Medina A, Palomino-Vizcaino K, López-Maldonado EA, Villarreal-Gómez LJ, Pérez-González GL, Cornejo-Bravo JM. Hybrid Systems of Nanofibers and Polymeric Nanoparticles for Biological Application and Delivery Systems. MICROMACHINES 2023; 14:208. [PMID: 36677269 PMCID: PMC9864385 DOI: 10.3390/mi14010208] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Nanomedicine is a new discipline resulting from the combination of nanotechnology and biomedicine. Nanomedicine has contributed to the development of new and improved treatments, diagnoses, and therapies. In this field, nanoparticles have notable importance due to their unique properties and characteristics, which are useful in different applications, including tissue engineering, biomarkers, and drug delivery systems. Electrospinning is a versatile technique used to produce fibrous mats. The high surface area of the electrospun mats makes them suitable for applications in fields using nanoparticles. Electrospun mats are used for tissue engineering, wound dressing, water-treatment filters, biosensors, nanocomposites, medical implants, protective clothing materials, cosmetics, and drug delivery systems. The combination of nanoparticles with nanofibers creates hybrid systems that acquire properties that differ from their components' characteristics. By utilizing nanoparticles and nanofibers composed of dissimilar polymers, the two synergize to improve the overall performance of electrospinning mats and nanoparticles. This review summarizes the hybrid systems of polymeric nanoparticles and polymeric nanofibers, critically analyzing how the combination improves the properties of the materials and contributes to the reduction of some disadvantages found in nanometric devices and systems.
Collapse
Affiliation(s)
| | - Aracely Serrano-Medina
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Tijuana 22390, Mexico
- Facultad de Medicina y Psicología, Universidad Autónoma de Baja California, Tijuana 22390, Mexico
| | - Kenia Palomino-Vizcaino
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Tijuana 22390, Mexico
| | | | - Luis Jesús Villarreal-Gómez
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Tijuana 22390, Mexico
- Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Tijuana 22427, Mexico
| | | | - José Manuel Cornejo-Bravo
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Tijuana 22390, Mexico
| |
Collapse
|
12
|
Giteru SG, Ramsey DH, Hou Y, Cong L, Mohan A, Bekhit AEDA. Wool keratin as a novel alternative protein: A comprehensive review of extraction, purification, nutrition, safety, and food applications. Compr Rev Food Sci Food Saf 2023; 22:643-687. [PMID: 36527315 DOI: 10.1111/1541-4337.13087] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/04/2022] [Accepted: 11/17/2022] [Indexed: 12/23/2022]
Abstract
The growing global population and lifestyle changes have increased the demand for specialized diets that require protein and other essential nutrients for humans. Recent technological advances have enabled the use of food bioresources treated as waste as additional sources of alternative proteins. Sheep wool is an inexpensive and readily available bioresource containing 95%-98% protein, making it an outstanding potential source of protein for food and biotechnological applications. The strong structure of wool and its indigestibility are the main hurdles to achieving its potential as an edible protein. Although various methods have been investigated for the hydrolysis of wool into keratin, only a few of these, such as sulfitolysis, oxidation, and enzymatic processes, have the potential to generate edible keratin. In vitro and in vivo cytotoxicity studies reported no cytotoxicity effects of extracted keratin, suggesting its potential for use as a high-value protein ingredient that supports normal body functions. Keratin has a high cysteine content that can support healthy epithelia, glutathione synthesis, antioxidant functions, and skeletal muscle functions. With the recent spike in new keratin extraction methods, extensive long-term investigations that examine prolonged exposure of keratin generated from these techniques in animal and human subjects are required to ascertain its safety. Food applications of wool could improve the ecological footprint of sheep farming and unlock the potential of a sustainable protein source that meets demands for ethical production of animal protein.
Collapse
Affiliation(s)
| | | | - Yakun Hou
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Lei Cong
- Department of Agribusiness and Markets, Lincoln University, Lincoln, New Zealand
| | - Anand Mohan
- Alliance Group Limited, Invercargill, New Zealand
| | | |
Collapse
|
13
|
de Guzman RC, Meer AS, Mathews AA, Israel AR, Moses MT, Sams CM, Deegan DB. Reduced fibrous capsule elastic fibers from biologic ECM-enveloped CIEDs in minipigs, supported with a novel compression mechanics model. Biomed Mater Eng 2022:BME221488. [PMID: 36617774 DOI: 10.3233/bme-221488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND Fibrous capsules (Fb) in response to cardiovascular implantable electronic devices (CIEDs), including a pacemaker (P) system, can produce patient discomfort and difficulties in revision surgery due partially to their increased compressive strength, previously linked to elevated tissue fibers. OBJECTIVE A preliminary study to quantify structural proteins, determine if biologic extracellular matrix-enveloped CIEDs (PECM) caused differential Fb properties, and to implement a realistic mechanical model. METHODS Retrieved Fb (-P and -PECM) from minipigs were subjected to biomechanical (shear oscillation and uniaxial compression) and histological (collagen I and elastin) analyses. RESULTS Fb-PECM showed significant decreases compared to Fb-P in: low strain-loss modulus (390 vs. 541 Pa) across angular frequencies, high strain-compressive elastic modulus (1043 vs. 2042 kPa), and elastic fiber content (1.92 vs. 3.15 μg/mg tissue). Decreases in elastin were particularly noted closer to the implant's surface (Fb-PECM = 71% vs. Fb-P = 143% relative to dermal elastin at mid-tangential sections) and verified with a solid mechanics hyperelasticity with direction-dependent fiber viscoelasticity compression simulation (r2 ≥ 98.9%). CONCLUSIONS The biologic envelope composed of decellularized porcine small intestine submucosa ECM for CIEDs promoted fibrous tissues with less elastic fibers. Novel compression modeling analyses directly correlated this singular reduction to more desirable subcutaneous tissue mechanics.
Collapse
Affiliation(s)
- Roche C de Guzman
- Bioengineering Program, Department of Engineering, Hofstra University, Hempstead, NY, USA
| | - Allison S Meer
- Bioengineering Program, Department of Engineering, Hofstra University, Hempstead, NY, USA.,Department of Biology, Hofstra University, Hempstead, NY, USA
| | - Aidan A Mathews
- Bioengineering Program, Department of Engineering, Hofstra University, Hempstead, NY, USA.,Department of Biology, Hofstra University, Hempstead, NY, USA
| | - Atara R Israel
- Bioengineering Program, Department of Engineering, Hofstra University, Hempstead, NY, USA
| | - Michael T Moses
- Bioengineering Program, Department of Engineering, Hofstra University, Hempstead, NY, USA
| | - Clarence M Sams
- Bioengineering Program, Department of Engineering, Hofstra University, Hempstead, NY, USA
| | | |
Collapse
|
14
|
Chen L, Meng R, Qing R, Li W, Wang Z, Hou Y, Deng J, Pu W, Gao Z, Wang B, Hao S. Bioinspired Robust Keratin Hydrogels for Biomedical Applications. NANO LETTERS 2022; 22:8835-8844. [PMID: 36375092 DOI: 10.1021/acs.nanolett.2c02530] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Although keratins are robust in nature, hydrogels producing their extracts exhibit poor mechanical properties due to the complicated composition and ineffective self-assembly. Here we report a bioinspired strategy to fabricate robust keratin hydrogels based on mechanism study through recombinant proteins. Homotypic and heterotypic self-assembly of selected type I and type II keratins in different combinations was conducted to identify crucial domain structures for the process, their kinetics, and relationship with the mechanical strength of hydrogels. Segments with best performance were isolated and used to construct novel assembling units. The new design outperformed combinations of native proteins in mechanical properties and in biomedical applications such as controlled drug release and skin regeneration. Our approach not only elucidated the critical structural domains and underlying mechanisms for keratin self-assembly but also opens an avenue toward the rational design of robust keratin hydrogels for biomedical applications.
Collapse
Affiliation(s)
- Liling Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Run Meng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Rui Qing
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenfeng Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Ziwei Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Yao Hou
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Jia Deng
- College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China
| | - Wei Pu
- School of Aeronautics and Astronautics, Sichuan University, Chengdu 610065, China
| | - Zibin Gao
- State Key Laboratory Breeding Base─Hebei Province Key Laboratory of Molecular Chemistry for Drugs, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Shilei Hao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| |
Collapse
|
15
|
Qin HJ, Li H, Chen JZ, Zhang KR, Zhao XQ, Qin JQ, Yu B, Yang J. Artificial nerve graft constructed by coculture of activated Schwann cells and human hair keratin for repair of peripheral nerve defects. Neural Regen Res 2022; 18:1118-1123. [PMID: 36255001 PMCID: PMC9827759 DOI: 10.4103/1673-5374.355817] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Studies have shown that human hair keratin (HHK) has no antigenicity and excellent mechanical properties. Schwann cells, as unique glial cells in the peripheral nervous system, can be induced by interleukin-1β to secrete nerve growth factor, which promotes neural regeneration. Therefore, HHK with Schwann cells may be a more effective approach to repair nerve defects than HHK without Schwann cells. In this study, we established an artificial nerve graft by loading an HHK skeleton with activated Schwann cells. We found that the longitudinal HHK microfilament structure provided adhesion medium, space and direction for Schwann cells, and promoted Schwann cell growth and nerve fiber regeneration. In addition, interleukin-1β not only activates Schwann cells, but also strengthens their activity and increases the expression of nerve growth factors. Activated Schwann cells activate macrophages, and activated macrophages secrete interleukin-1β, which maintains the activity of Schwann cells. Thus, a beneficial cycle forms and promotes nerve repair. Furthermore, our studies have found that the newly constructed artificial nerve graft promotes the improvements in nerve conduction function and motor function in rats with sciatic nerve injury, and increases the expression of nerve injury repair factors fibroblast growth factor 2 and human transforming growth factor B receptor 2. These findings suggest that this artificial nerve graft effectively repairs peripheral nerve injury.
Collapse
Affiliation(s)
- Han-Jun Qin
- Department of Orthopedics, Nanfang Hospital, Southern Medical University; Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Hang Li
- Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Jun-Ze Chen
- Department of Orthopedics, Baiyun Branch of Southern Hospital, Guangzhou, Guangdong Province, China
| | - Kai-Rui Zhang
- Department of Orthopedics, Nanfang Hospital, Southern Medical University; Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Xing-Qi Zhao
- Department of Orthopedics, Nanfang Hospital, Southern Medical University; Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Jian-Qiang Qin
- Department of Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Bin Yu
- Department of Orthopedics, Nanfang Hospital, Southern Medical University; Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China,Correspondence to: Jun Yang, ; Bin Yu, .
| | - Jun Yang
- Department of Orthopedics, Nanfang Hospital, Southern Medical University; Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China,Department of Orthopedics, The 74th Group Military Hospital of PLA, Guangzhou, Guangdong Province, China,Correspondence to: Jun Yang, ; Bin Yu, .
| |
Collapse
|
16
|
Brodin E, Boehmer M, Prentice A, Neff E, McCoy K, Mueller J, Saul J, Sparks JL. Extrusion 3D printing of keratin protein hydrogels free of exogenous chemical agents. Biomed Mater 2022; 17. [PMID: 35793683 DOI: 10.1088/1748-605x/ac7f15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 07/06/2022] [Indexed: 11/11/2022]
Abstract
Keratins are a class of intermediate filament proteins that can be obtained from numerous sources including human hair. Materials fabricated from keratins offer desirable characteristics as scaffolds for tissue engineering, including intrinsic cell adhesion sequences and tunable degradation kinetics. The capacity to create 3D printed constructs from keratin-based bio-inks generates unique opportunities for spatial control of scaffold physicochemical properties to direct scaffold functions in ways not readily achieved through other means. The aim of this study was to leverage the controllable rheological properties of keratin hydrogels to create a strategy for extrusion 3D printing of keratin bio-inks without the use of exogenous rheological modifiers, crosslinking agents, or photocurable resins. The rheological properties of keratin hydrogels were tuned by varying two parameters: (a) the ratio of keratose (obtained by oxidative extraction of keratin) to kerateine (obtained by reductive extraction of keratin); and (b) the weight percentage of total keratin protein in the gel. A computational model of the dispensing nozzle for a commercially available extrusion 3D printer was developed to calculate the needed pneumatic printing pressures based on the known rheological properties of the gels. Keratin hydrogel constructs, of varying keratose/kerateine ratios and total keratin weight percentages, were 3D printed in cylindrical geometries via extrusion 3D printing. Rheology and degradation studies showed that gels with greater relative kerateine content exhibited greater flow resistance and slower degradation kinetics when submerged in phosphate buffered saline solution at 37 °C, owing to the presence of cysteine residues in kerateine and the capability of forming disulfide bonds. Total keratin weight percentage was found to influence gel yield stress, with possible implications for tuning filament fidelity. Findings from this work support the use of keratose/kerateine ratio and total keratin weight percentage as handles for modulating rheological characteristics of keratin hydrogels to enhance printability and control scaffold properties.
Collapse
Affiliation(s)
- Erik Brodin
- Department of Chemical, Paper and Biomedical Engineering, Miami University, Oxford, OH, United States of America
| | - Melanie Boehmer
- Department of Chemical, Paper and Biomedical Engineering, Miami University, Oxford, OH, United States of America
| | - Alexandra Prentice
- Department of Chemical, Paper and Biomedical Engineering, Miami University, Oxford, OH, United States of America
| | - Emily Neff
- Department of Chemical, Paper and Biomedical Engineering, Miami University, Oxford, OH, United States of America
| | - Kathleen McCoy
- Department of Chemical, Paper and Biomedical Engineering, Miami University, Oxford, OH, United States of America
| | - Jens Mueller
- High Performance Computing Services, Miami University, Oxford, OH, United States of America
| | - Justin Saul
- Department of Chemical, Paper and Biomedical Engineering, Miami University, Oxford, OH, United States of America
| | - Jessica L Sparks
- Department of Chemical, Paper and Biomedical Engineering, Miami University, Oxford, OH, United States of America
| |
Collapse
|
17
|
Characterization of a Human Platelet Lysate-Loaded Keratin Hydrogel for Wound Healing Applications In Vitro. Int J Mol Sci 2022; 23:ijms23084100. [PMID: 35456921 PMCID: PMC9031577 DOI: 10.3390/ijms23084100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 12/22/2022] Open
Abstract
One of the promising approaches to facilitate healing and regenerative capacity includes the application of growth-factor-loaded biomaterials. Human platelet lysate (hPL) derived from platelet-rich plasma through a freeze-thaw process has been used as a growth factor rich therapeutic in many regenerative applications. To provide sustained local delivery of the hPL-derived growth factors such as epidermal growth factor (EGF), the hPL can be loaded into biomaterials that do not degrade rapidly in vivo. Keratin (KSO), a strong filamentous protein found in human hair, when formulated as a hydrogel, is shown to sustain the release of drugs and promote wound healing. In the current study, we created a KSO biomaterial that spontaneously forms a hydrogel when rehydrated with hPL that is capable of controlled and sustained release of pro-regenerative molecules. Our study demonstrates that the release of hPL is controlled by changing the KSO hydrogel and hPL-loading concentrations, with hPL loading concentrations having a greater effect in changing release profiles. In addition, the 15% KSO concentration proved to form a stable hydrogel, and supported cell proliferation over 3 days without cytotoxic effects in vitro. The hPL-loaded keratin hydrogels show promise in potential applications for wound healing with the sustained release of pro-regenerative growth factors with easy tailoring of hydrogel properties.
Collapse
|
18
|
Silva OA, Pellá MG, Popat KC, Kipper MJ, Rubira AF, Martins AF, Follmann HD, Silva R. Rod-shaped keratin nanoparticles extracted from human hair by acid hydrolysis as photothermally triggered berberine delivery system. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2021.11.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
19
|
Zabarsky ZK, Dean GM, Luo TD, Marquez-Lara A, Jinnah AH, Van Dyke M, Smith TL. Keratin Biomaterials Improve Functional Recovery in a Rat Spinal Cord Injury Model. Spine (Phila Pa 1976) 2021; 46:1055-1062. [PMID: 34398133 DOI: 10.1097/brs.0000000000003993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Laboratory study using a rat T9 contusion model of spinal cord injury (SCI). OBJECTIVE The purpose of this study was to evaluate which method of delivery of soluble keratin biomaterials would best support functional restoration through the macrophage polarization paradigm. SUMMARY OF BACKGROUND DATA SCI is a devastating neurologic event with complex pathophysiological mechanisms that currently has no cure. After injury, macrophages and resident microglia are key regulators of inflammation and tissue repair exhibiting phenotypic and functional plasticity. Keratin biomaterials have been demonstrated to influence macrophage polarization and promote the M2 anti-inflammatory phenotype that attenuates inflammatory responses. METHODS Anesthetized female Lewis rats were subjected to moderate T9 contusion SCI and randomly divided into: no therapy (control group), an intrathecally injected keratin group, and a keratin-soaked sponge group (n = 11 in all groups). Functional recovery assessments were obtained at 3- and 6-weeks post-injury (WPI) using gait analysis performed with the DigiGait Imaging System treadmill and at 1, 3, 7, 14, 21, 28, 35, and 42 days post-injury by the Basso, Beattie, Bresnahan (BBB) locomotor rating scale. Histology and immunohistochemistry of serial spinal cord sections were performed to assess injury severity and treatment efficacy. RESULTS Compared to control rats, applying keratin materials after injury improved functional recovery in certain gait parameters and overall trended toward significance in BBB scores; however, no significant differences were observed with tissue analysis between groups at 6 WPI. CONCLUSION Results suggest that keratin biomaterials support some locomotor functional recovery and may alter the acute inflammatory response by inducing macrophage polarization following SCI. This therapy warrants further investigation into treatment of SCI.Level of Evidence: N/A.
Collapse
Affiliation(s)
- Zachary K Zabarsky
- Department of Orthopaedic Surgery, Wake Forest School of Medicine, Winston-Salem, NC
| | - Gabriella M Dean
- Department of Orthopaedic Surgery, Wake Forest School of Medicine, Winston-Salem, NC
| | - Tianyi David Luo
- Department of Orthopaedic Surgery, Wake Forest School of Medicine, Winston-Salem, NC
| | | | - Alexander H Jinnah
- Department of Orthopaedic Surgery, Wake Forest School of Medicine, Winston-Salem, NC
| | - Mark Van Dyke
- School of Biomedical Engineering and Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Thomas L Smith
- Department of Orthopaedic Surgery, Wake Forest School of Medicine, Winston-Salem, NC
| |
Collapse
|
20
|
Wang C, Wang L, Wan X, Jiang X, Yuan J. Biocompatible and photocrosslinkable poly(ethylene glycol)/keratin biocomposite hydrogels. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 32:1998-2008. [PMID: 34228943 DOI: 10.1080/09205063.2021.1952384] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A biocompatible hydrogel is ideal for tissue engineering and regeneration. In this study, methacrylated keratin (KerMA) was synthesized for the first time and then blended with poly(ethylene glycol dimethacrylate) (PEGDMA) to form hydrogel through photocrosslinking. The chemical structure, gelation time, swelling behavior, hydrophilicity, cytotoxicity, and 3D printability of PEGDMA/KerMA hydrogels were characterized and exploited. The PEGDMA/KerMA hydrogels performed good cytocompatibility, providing potential applications for tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Chenshu Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, P. R. China
| | - Lijuan Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, P. R. China
| | - Xiuzhen Wan
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, P. R. China
| | - Xuefeng Jiang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, P. R. China
| | - Jiang Yuan
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, P. R. China
| |
Collapse
|
21
|
Ledford B, Barron C, Van Dyke M, He JQ. Keratose hydrogel for tissue regeneration and drug delivery. Semin Cell Dev Biol 2021; 128:145-153. [PMID: 34219034 DOI: 10.1016/j.semcdb.2021.06.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/16/2021] [Accepted: 06/23/2021] [Indexed: 11/28/2022]
Abstract
Keratin (KRT), a natural fibrous structural protein, can be classified into two categories: "soft" cytosolic KRT that is primarily found in the epithelia tissues (e.g., skin, the inner lining of digestive tract) and "hard" KRT that is mainly found in the protective tissues (e.g., hair, horn). The latter is the predominant form of KRT widely used in biomedical research. The oxidized form of extracted KRT is exclusively denoted as keratose (KOS) while the reduced form of KRT is termed as kerateine (KRTN). KOS can be processed into various forms (e.g., hydrogel, films, fibers, and coatings) for different biomedical applications. KRT/KOS offers numerous advantages over other types of biomaterials, such as bioactivity, biocompatibility, degradability, immune/inflammatory privileges, mechanical resilience, chemical manipulability, and easy accessibility. As a result, KRT/KOS has attracted considerable attention and led to a large number of publications associated with this biomaterial over the past few decades; however, most (if not all) of the published review articles focus on KRT regarding its molecular structure, biochemical/biophysical properties, bioactivity, biocompatibility, drug/cell delivery, and in vivo transplantation, as well as its applications in biotechnical products and medical devices. Current progress that is directly associated with KOS applications in tissue regeneration and drug delivery appears an important topic that merits a commentary. To this end, the present review aims to summarize the current progress of KOS-associated biomedical applications, especially focusing on the in vitro and in vivo effects of KOS hydrogel on cultured cells and tissue regeneration following skin injury, skeletal muscle loss, peripheral nerve injury, and cardiac infarction.
Collapse
Affiliation(s)
- Benjamin Ledford
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
| | - Catherine Barron
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
| | - Mark Van Dyke
- Department of Biomedical Engineering, College of Engineering, University of Arizona, 1209 E. 2nd Street, Tucson, AZ 85721, USA
| | - Jia-Qiang He
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|
22
|
Perța-Crișan S, Ursachi CȘ, Gavrilaș S, Oancea F, Munteanu FD. Closing the Loop with Keratin-Rich Fibrous Materials. Polymers (Basel) 2021; 13:1896. [PMID: 34200460 PMCID: PMC8201023 DOI: 10.3390/polym13111896] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/26/2021] [Accepted: 06/03/2021] [Indexed: 02/06/2023] Open
Abstract
One of the agro-industry's side streams that is widely met is the-keratin rich fibrous material that is becoming a waste product without valorization. Its management as a waste is costly, as the incineration of this type of waste constitutes high environmental concern. Considering these facts, the keratin-rich waste can be considered as a treasure for the producers interested in the valorization of such slowly-biodegradable by-products. As keratin is a protein that needs harsh conditions for its degradation, and that in most of the cases its constitutive amino acids are destroyed, we review new extraction methods that are eco-friendly and cost-effective. The chemical and enzymatic extractions of keratin are compared and the optimization of the extraction conditions at the lab scale is considered. In this study, there are also considered the potential applications of the extracted keratin as well as the reuse of the by-products obtained during the extraction processes.
Collapse
Affiliation(s)
- Simona Perța-Crișan
- Faculty of Food Engineering, Tourism and Environmental Protection, “Aurel Vlaicu” University of Arad, 2-4 E. Drăgoi Str., 310330 Arad, Romania; (S.P.-C.); (C.Ș.U.); (S.G.)
| | - Claudiu Ștefan Ursachi
- Faculty of Food Engineering, Tourism and Environmental Protection, “Aurel Vlaicu” University of Arad, 2-4 E. Drăgoi Str., 310330 Arad, Romania; (S.P.-C.); (C.Ș.U.); (S.G.)
| | - Simona Gavrilaș
- Faculty of Food Engineering, Tourism and Environmental Protection, “Aurel Vlaicu” University of Arad, 2-4 E. Drăgoi Str., 310330 Arad, Romania; (S.P.-C.); (C.Ș.U.); (S.G.)
| | - Florin Oancea
- Bioresource Department, National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM Bucharest, 202 Splaiul Independentei, 6th District, 060021 Bucharest, Romania;
| | - Florentina-Daniela Munteanu
- Faculty of Food Engineering, Tourism and Environmental Protection, “Aurel Vlaicu” University of Arad, 2-4 E. Drăgoi Str., 310330 Arad, Romania; (S.P.-C.); (C.Ș.U.); (S.G.)
| |
Collapse
|
23
|
Mu X, Agostinacchio F, Xiang N, Pei Y, Khan Y, Guo C, Cebe P, Motta A, Kaplan DL. Recent Advances in 3D Printing with Protein-Based Inks. Prog Polym Sci 2021; 115:101375. [PMID: 33776158 PMCID: PMC7996313 DOI: 10.1016/j.progpolymsci.2021.101375] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Three-dimensional (3D) printing is a transformative manufacturing strategy, allowing rapid prototyping, customization, and flexible manipulation of structure-property relationships. Proteins are particularly appealing to formulate inks for 3D printing as they serve as essential structural components of living systems, provide a support presence in and around cells and for tissue functions, and also provide the basis for many essential ex vivo secreted structures in nature. Protein-based inks are beneficial in vivo due to their mechanics, chemical and physical match to the specific tissue, and full degradability, while also to promoting implant-host integration and serving as an interface between technology and biology. Exploiting the biological, chemical, and physical features of protein-based inks can provide key opportunities to meet the needs of tissue engineering and regenerative medicine. Despite these benefits, protein-based inks impose nontrivial challenges to 3D printing such as concentration and rheological features and reconstitution of the structural hierarchy observed in nature that is a source of the robust mechanics and functions of these materials. This review introduces photo-crosslinking mechanisms and rheological principles that underpins a variety of 3D printing techniques. The review also highlights recent advances in the design, development, and biomedical utility of monolithic and composite inks from a range of proteins, including collagen, silk, fibrinogen, and others. One particular focus throughout the review is to introduce unique material characteristics of proteins, including amino acid sequences, molecular assembly, and secondary conformations, which are useful for designing printing inks and for controlling the printed structures. Future perspectives of 3D printing with protein-based inks are also provided to support the promising spectrum of biomedical research accessible to these materials.
Collapse
Affiliation(s)
- Xuan Mu
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Francesca Agostinacchio
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
- Department of Industrial Engineering, University of Trento, via Sommarive 9, Trento 38123, Italy
| | - Ning Xiang
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Ying Pei
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Yousef Khan
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Chengchen Guo
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Peggy Cebe
- Department of Physics and Astronomy, Tufts University, Medford, MA 02155, USA
| | - Antonella Motta
- Department of Industrial Engineering, University of Trento, via Sommarive 9, Trento 38123, Italy
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| |
Collapse
|
24
|
Zuniga K, Gadde M, Scheftel J, Senecal K, Cressman E, Van Dyke M, Rylander MN. Collagen/kerateine multi-protein hydrogels as a thermally stable extracellular matrix for 3D in vitro models. Int J Hyperthermia 2021; 38:830-845. [PMID: 34058945 PMCID: PMC10523628 DOI: 10.1080/02656736.2021.1930202] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/16/2021] [Accepted: 05/08/2021] [Indexed: 12/30/2022] Open
Abstract
Objective: To determine whether the addition of kerateine (reduced keratin) in rat tail collagen type I hydrogels increases thermal stability and changes material properties and supports cell growth for use in cellular hyperthermia studies for tumor treatment.Methods: Collagen type I extracted from rat tail tendon was combined with kerateine extracted from human hair fibers. Thermal, mechanical, and biocompatibility properties and cell behavior was assessed and compared to 100% collagen type I hydrogels to demonstrate their utility as a tissue model for 3D in vitro testing.Results: A combination (i.e., containing both collagen 'C/KNT') hydrogel was more thermally stable than pure collagen hydrogels and resisted thermal degradation when incubated at a hyperthermic temperature of 47°C for heating durations up to 60 min with a higher melting temperature measured by DSC. An increase in the storage modulus was only observed with an increased collagen concentration rather than an increased KTN concentration; however, a change in ECM structure was observed with greater fiber alignment and width with an increase in KTN concentration. The C/KTN hydrogels, specifically 50/50 C/KTN hydrogels, also supported the growth and of fibroblasts and MDA-MB-231 breast cancer cells similar to those seeded in 100% collagen hydrogels.Conclusion: This multi-protein C/KTN hydrogel shows promise for future studies involving thermal stress studies without compromising the 3D ECM environment or cell growth.
Collapse
Affiliation(s)
- Kameel Zuniga
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Manasa Gadde
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Jacob Scheftel
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Kris Senecal
- Natick Soldier Center, U.S. Army Soldier and Biological Chemical Command, Natick, MA, USA
| | - Erik Cressman
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mark Van Dyke
- College of Biomedical Engineering, The University of Arizona, Tucson, AZ, USA
| | - Marissa Nichole Rylander
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
- Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
25
|
de Souza FDR, Benvenuti J, Meyer M, Wulf H, Klüver E, Gutterres M. Extraction of keratin from unhairing of bovine hide. CHEM ENG COMMUN 2020. [DOI: 10.1080/00986445.2020.1842740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Franck da Rosa de Souza
- Laboratory for Leather and Environmental Studies (LACOURO), Chemical Engineering Department, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Jaqueline Benvenuti
- Laboratory for Leather and Environmental Studies (LACOURO), Chemical Engineering Department, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Michael Meyer
- Research Institute of Leather and Plastic Sheeting–FILK, Freiberg, Germany
| | - Hauke Wulf
- Research Institute of Leather and Plastic Sheeting–FILK, Freiberg, Germany
| | - Enno Klüver
- Research Institute of Leather and Plastic Sheeting–FILK, Freiberg, Germany
| | - Mariliz Gutterres
- Laboratory for Leather and Environmental Studies (LACOURO), Chemical Engineering Department, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
26
|
Parker RN, Trent A, Roth Stefaniak KL, Van Dyke ME, Grove TZ. A comparative study of materials assembled from recombinant K31 and K81 and extracted human hair keratins. ACTA ACUST UNITED AC 2020; 15:065006. [PMID: 32485704 DOI: 10.1088/1748-605x/ab98e8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Natural biopolymers have found success in tissue engineering and regenerative medicine applications. Their intrinsic biocompatibility and biological activity make them well suited for biomaterials development. Specifically, keratin-based biomaterials have demonstrated utility in regenerative medicine applications including bone regeneration, wound healing, and nerve regeneration. However, studies of structure-function relationships in keratin biomaterials have been hindered by the lack of homogeneous preparations of materials extracted and isolated from natural sources such as wool and hair fibers. Here we present a side-by-side comparison of natural and recombinant human hair keratin proteins K31 and K81. When combined, the recombinant proteins (i.e. rhK31 and rhK81) assemble into characteristic intermediate filament-like fibers. Coatings made from natural and recombinant dimers were compared side-by-side and investigated for coating characteristics and cell adhesion. In comparison to control substrates, the recombinant keratin materials show a higher propensity for inducing involucrin and hence, maturation in terms of potential skin cell differentiation.
Collapse
Affiliation(s)
- Rachael N Parker
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24060. Authors contributed equally to this work
| | | | | | | | | |
Collapse
|
27
|
Feroz S, Muhammad N, Ranayake J, Dias G. Keratin - Based materials for biomedical applications. Bioact Mater 2020; 5:496-509. [PMID: 32322760 PMCID: PMC7171262 DOI: 10.1016/j.bioactmat.2020.04.007] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 03/27/2020] [Accepted: 04/06/2020] [Indexed: 12/22/2022] Open
Abstract
Keratin constitutes the major component of the feather, hair, hooves, horns, and wool represents a group of biological material having high cysteine content (7-13%) as compared to other structural proteins. Keratin -based biomaterials have been investigated extensively over the past few decades due to their intrinsic biological properties and excellent biocompatibility. Unlike other natural polymers such as starch, collagen, chitosan, the complex three-dimensional structure of keratin requires the use of harsh chemical conditions for their dissolution and extraction. The most commonly used methods for keratin extraction are oxidation, reduction, steam explosion, microbial method, microwave irradiation and use of ionic liquids. Keratin -based materials have been used extensively for various biomedical applications such as drug delivery, wound healing, tissue engineering. This review covers the structure, properties, history of keratin research, methods of extraction and some recent advancements related to the use of keratin derived biomaterials in the form of a 3-D scaffold, films, fibers, and hydrogels.
Collapse
Affiliation(s)
- Sandleen Feroz
- Department of Anatomy, School of Biomedical Sciences University of Otago, Otago, 9016, New Zealand
| | - Nawshad Muhammad
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, Pakistan
| | - Jithendra Ranayake
- Department of Anatomy, School of Biomedical Sciences University of Otago, Otago, 9016, New Zealand
| | - George Dias
- Department of Anatomy, School of Biomedical Sciences University of Otago, Otago, 9016, New Zealand
| |
Collapse
|
28
|
Vasile C, Pamfil D, Stoleru E, Baican M. New Developments in Medical Applications of Hybrid Hydrogels Containing Natural Polymers. Molecules 2020; 25:E1539. [PMID: 32230990 PMCID: PMC7180755 DOI: 10.3390/molecules25071539] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/21/2020] [Accepted: 03/24/2020] [Indexed: 01/08/2023] Open
Abstract
New trends in biomedical applications of the hybrid polymeric hydrogels, obtained by combining natural polymers with synthetic ones, have been reviewed. Homopolysaccharides, heteropolysaccharides, as well as polypeptides, proteins and nucleic acids, are presented from the point of view of their ability to form hydrogels with synthetic polymers, the preparation procedures for polymeric organic hybrid hydrogels, general physico-chemical properties and main biomedical applications (i.e., tissue engineering, wound dressing, drug delivery, etc.).
Collapse
Affiliation(s)
- Cornelia Vasile
- Physical Chemistry of Polymers Department, “P. Poni” Institute of Macromolecular Chemistry, 41A Gr. Ghica Voda Alley, RO, Iaşi 700484, Romania; (D.P.); (E.S.)
| | - Daniela Pamfil
- Physical Chemistry of Polymers Department, “P. Poni” Institute of Macromolecular Chemistry, 41A Gr. Ghica Voda Alley, RO, Iaşi 700484, Romania; (D.P.); (E.S.)
| | - Elena Stoleru
- Physical Chemistry of Polymers Department, “P. Poni” Institute of Macromolecular Chemistry, 41A Gr. Ghica Voda Alley, RO, Iaşi 700484, Romania; (D.P.); (E.S.)
| | - Mihaela Baican
- Pharmaceutical Physics Department, “Grigore T. Popa” Medicine and Pharmacy University, 16, University Str., Iaşi 700115, Romania
| |
Collapse
|
29
|
Ramya KR, Thangam R, Madhan B. Comparative analysis of the chemical treatments used in keratin extraction from red sheep’s hair and the cell viability evaluations of this keratin for tissue engineering applications. Process Biochem 2020. [DOI: 10.1016/j.procbio.2019.11.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
30
|
Mammana SB, C. Abraham E, Camargo AB, Vázquez Á, Altamirano JC. Enzymatic Digestion Coupled to Surfactant‐Assisted Dispersive Liquid‐Liquid Microextraction: A Mild Approach for Determining Polybrominated Diphenyl Ethers in Human Hair Sample. ChemistrySelect 2020. [DOI: 10.1002/slct.201904795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Sabrina B. Mammana
- Instituto Argentino de NivologíaGlaciología y Ciencias Ambientales (CCT- Mendoza) Av. Ruiz Leal s/n, P.O. Box 131 Mendoza 5500 Argentina
- Facultad de Ciencias Exactas y NaturalesUniversidad Nacional de Cuyo Padre Jorge Contreras 1300 Mendoza 5500 Argentina
| | - Emilia C. Abraham
- Instituto Argentino de NivologíaGlaciología y Ciencias Ambientales (CCT- Mendoza) Av. Ruiz Leal s/n, P.O. Box 131 Mendoza 5500 Argentina
| | - Alejandra B. Camargo
- Facultad de Ciencias AgrariasUniversidad Nacional de Cuyo, Instituto de Biología Agrícola de Mendoza (CCT- Mendoza) Alte. Brown 500 5505, Chacras de Coria Mendoza Argentina
| | - Álvaro Vázquez
- Instituto Argentino de NivologíaGlaciología y Ciencias Ambientales (CCT- Mendoza) Av. Ruiz Leal s/n, P.O. Box 131 Mendoza 5500 Argentina
| | - Jorgelina C. Altamirano
- Instituto Argentino de NivologíaGlaciología y Ciencias Ambientales (CCT- Mendoza) Av. Ruiz Leal s/n, P.O. Box 131 Mendoza 5500 Argentina
- Facultad de Ciencias Exactas y NaturalesUniversidad Nacional de Cuyo Padre Jorge Contreras 1300 Mendoza 5500 Argentina
| |
Collapse
|
31
|
Challenges and Opportunities in Identifying and Characterising Keratinases for Value-Added Peptide Production. Catalysts 2020. [DOI: 10.3390/catal10020184] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Keratins are important structural proteins produced by mammals, birds and reptiles. Keratins usually act as a protective barrier or a mechanical support. Millions of tonnes of keratin wastes and low value co-products are generated every year in the poultry, meat processing, leather and wool industries. Keratinases are proteases able to breakdown keratin providing a unique opportunity of hydrolysing keratin materials like mammalian hair, wool and feathers under mild conditions. These mild conditions ameliorate the problem of unwanted amino acid modification that usually occurs with thermochemical alternatives. Keratinase hydrolysis addresses the waste problem by producing valuable peptide mixes. Identifying keratinases is an inherent problem associated with the search for new enzymes due to the challenge of predicting protease substrate specificity. Here, we present a comprehensive review of twenty sequenced peptidases with keratinolytic activity from the serine protease and metalloprotease families. The review compares their biochemical activities and highlights the difficulties associated with the interpretation of these data. Potential applications of keratinases and keratin hydrolysates generated with these enzymes are also discussed. The review concludes with a critical discussion of the need for standardized assays and increased number of sequenced keratinases, which would allow a meaningful comparison of the biochemical traits, phylogeny and keratinase sequences. This deeper understanding would facilitate the search of the vast peptidase family sequence space for novel keratinases with industrial potential.
Collapse
|
32
|
|
33
|
Navarro J, Clohessy RM, Holder RC, Gabard AR, Herendeen GJ, Christy RJ, Burnett LR, Fisher JP. In Vivo Evaluation of Three-Dimensional Printed, Keratin-Based Hydrogels in a Porcine Thermal Burn Model. Tissue Eng Part A 2020; 26:265-278. [PMID: 31774034 DOI: 10.1089/ten.tea.2019.0181] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Keratin is a natural material that can be derived from the cortex of human hair. Our group had previously presented a method for the printed, sequential production of three-dimensional (3D) keratin scaffolds. Using a riboflavin-sodium persulfate-hydroquinone (initiator-catalyst-inhibitor) photosensitive solution, we produced 3D keratin-based constructs through ultraviolet crosslinking in a lithography-based 3D printer. In this study, we have used this bioink to produce a keratin-based construct that is capable of delivering small molecules, providing an environment conducive to healing of dermal burn wounds in vivo, and maintaining stability in customized packaging. We characterized the effects of manufacturing steps, such as lyophilization and gamma irradiation sterilization on the properties of 3D printed keratin scaffolds prepared for in vivo testing. Keratin hydrogels are viable for the uptake and release of contracture-inhibiting Halofuginone, a collagen synthesis inhibitor that has been shown to decrease collagen synthesis in fibrosis cases. This small-molecule delivery provides a mechanism to reduce scarring of severe burn wounds in vitro. In vivo data show that the Halofuginone-laden printed keratin is noninferior to other similar approaches reported in literature. This is indicative that the use of 3D printed keratin is not inhibiting the healing processes, and the inclusion of Halofuginone induces a more organized dermal healing after a burn; in other words, this treatment is slower but improves healing. These studies are indicative of the potential of Halofuginone-laden keratin dressings in dermal wound healing. We aim to keep increasing the complexity of the 3D printed constructs toward the production of complex scaffolds for the treatment and topographical reconstruction of severe burn wounds to the face.
Collapse
Affiliation(s)
- Javier Navarro
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland.,Center for Engineering Complex Tissue, University of Maryland, College Park, Maryland
| | | | | | | | | | - Robert J Christy
- U.S. Army Institute of Surgical Research, Combat Trauma and Burn Injury Research, San Antonio, Texas
| | | | - John P Fisher
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland.,Center for Engineering Complex Tissue, University of Maryland, College Park, Maryland
| |
Collapse
|
34
|
Zakeri Siavashani A, Mohammadi J, Maniura-Weber K, Senturk B, Nourmohammadi J, Sadeghi B, Huber L, Rottmar M. Silk based scaffolds with immunomodulatory capacity: anti-inflammatory effects of nicotinic acid. Biomater Sci 2020; 8:148-162. [DOI: 10.1039/c9bm00814d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Here we show that 3D silk scaffolds loaded with nicotinic acid have great potential for tissue engineering due to their excellent cytocompatibility and ability to decrease the expression of proinflammatory markers in a concentration dependent manner.
Collapse
Affiliation(s)
| | - Javad Mohammadi
- Faculty of New Sciences and Technologies
- University of Tehran
- Tehran
- Iran
| | - Katharina Maniura-Weber
- Empa
- Swiss Federal Laboratories for Materials Science and Technology
- Biointerfaces
- St.Gallen
- Switzerland
| | - Berna Senturk
- Empa
- Swiss Federal Laboratories for Materials Science and Technology
- Biointerfaces
- St.Gallen
- Switzerland
| | | | - Behnam Sadeghi
- Translational Cell therapy Research (TCR)
- Department of CLINTEC
- Karolinska Institutet
- Stockholm
- Sweden
| | - Lukas Huber
- Empa
- Swiss Federal Laboratories for Materials Science and Technology
- Laboratory for Building Energy Materials and Components
- Dübendorf
- Switzerland
| | - Markus Rottmar
- Empa
- Swiss Federal Laboratories for Materials Science and Technology
- Biointerfaces
- St.Gallen
- Switzerland
| |
Collapse
|
35
|
Chen IC, Yu J. Human Hair: Scaffold Materials for Regenerative Medicine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1249:223-229. [PMID: 32602100 DOI: 10.1007/978-981-15-3258-0_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This chapter reviews the studies of keratin-based biomaterials in the past and discusses the advancement of it in recent years. Keratin, as a protein-based biopolymer, possesses excellent biocompatibility and biodegradability. In addition, keratin has abundant disulfide bonds, which result in its unique and tough structure. However, the property also results in dissolubility, which causes difficult process ability. Over the past years, much research utilizes different methodologies to extract keratins. Different kinds of extraction methods affect the characteristics of keratins and give a wide variety of application forms. The features of different methods are discussed and summarized in the following.
Collapse
Affiliation(s)
- I-Chun Chen
- Department of Chemical Engineering, National Taiwan University, Taipei City, Taiwan
| | - Jiashing Yu
- Department of Chemical Engineering, National Taiwan University, Taipei City, Taiwan.
| |
Collapse
|
36
|
Trent A, Van Dyke ME. Development and characterization of a biomimetic coating for percutaneous devices. Colloids Surf B Biointerfaces 2019; 182:110351. [DOI: 10.1016/j.colsurfb.2019.110351] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 06/19/2019] [Accepted: 07/06/2019] [Indexed: 02/05/2023]
|
37
|
Galaburri G, Peralta Ramos ML, Lázaro-Martínez JM, Fernández de Luis R, Arriortua MI, Villanueva ME, Copello GJ. pH and ion-selective swelling behaviour of keratin and keratose 3D hydrogels. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.05.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
38
|
Rajabinejad H, Zoccola M, Patrucco A, Montarsolo A, Chen Y, Ferri A, Muresan A, Tonin C. Fabrication and properties of keratoses/polyvinyl alcohol blend films. Polym Bull (Berl) 2019. [DOI: 10.1007/s00289-019-02889-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
39
|
Thermo-sensitive keratin hydrogel against iron-induced brain injury after experimental intracerebral hemorrhage. Int J Pharm 2019; 566:342-351. [DOI: 10.1016/j.ijpharm.2019.05.076] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/25/2019] [Accepted: 05/30/2019] [Indexed: 12/15/2022]
|
40
|
Comparative study of keratin extraction from human hair. Int J Biol Macromol 2019; 133:382-390. [DOI: 10.1016/j.ijbiomac.2019.04.098] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 04/01/2019] [Accepted: 04/12/2019] [Indexed: 01/19/2023]
|
41
|
Pakkaner E, Yalçın D, Uysal B, Top A. Self-assembly behavior of the keratose proteins extracted from oxidized Ovis aries wool fibers. Int J Biol Macromol 2019; 125:1008-1015. [PMID: 30572050 DOI: 10.1016/j.ijbiomac.2018.12.129] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 12/02/2018] [Accepted: 12/16/2018] [Indexed: 10/27/2022]
Abstract
Water soluble keratose proteins were obtained from an Ovis Aries wool using peracetic acid oxidation. The wool samples and the extracted keratose proteins were characterized by using FTIR, XRD, SEM and TGA techniques. Fractions of α-keratose (MW = 43-53 kDa) along with protein species with molecular weights between 23 kDa and 33 kDa were identified in the SDS-PAGE analysis result of the extracted protein mixture. DLS and AFM experiments indicated that self-assembled globular nanoparticles with diameters between 15 nm and 100 nm formed at 5 mg/ml keratose concentration. On the other hand, upon incubation of 10 w % keratose solutions at 37 °C and 50 °C, interconnected keratose hydrogels with respective storage modulus (G') values of 0.17 ± 0.03 kPa and 3.7 ± 0.5 kPa were obtained. It was shown that the keratose hydrogel prepared at 37 °C supported L929 mouse fibroblast cell proliferation which suggested that these keratose hydrogels could be promising candidates in soft tissue engineering applications.
Collapse
Affiliation(s)
- Efecan Pakkaner
- Department of Chemical Engineering, İzmir Institute of Technology, Urla, İzmir, Turkey
| | - Damla Yalçın
- Department of Chemical Engineering, İzmir Institute of Technology, Urla, İzmir, Turkey
| | - Berk Uysal
- Department of Chemical Engineering, İzmir Institute of Technology, Urla, İzmir, Turkey
| | - Ayben Top
- Department of Chemical Engineering, İzmir Institute of Technology, Urla, İzmir, Turkey.
| |
Collapse
|
42
|
Smart release of antimicrobial ZnO nanoplates from a pH-responsive keratin hydrogel. J Colloid Interface Sci 2019; 536:372-380. [DOI: 10.1016/j.jcis.2018.10.067] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/19/2018] [Accepted: 10/22/2018] [Indexed: 12/11/2022]
|
43
|
Vineis C, Varesano A, Varchi G, Aluigi A. Extraction and Characterization of Keratin from Different Biomasses. KERATIN AS A PROTEIN BIOPOLYMER 2019. [DOI: 10.1007/978-3-030-02901-2_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
44
|
Cohen DJ, Hyzy SL, Haque S, Olson LC, Boyan BD, Saul JM, Schwartz Z. Effects of Tunable Keratin Hydrogel Erosion on Recombinant Human Bone Morphogenetic Protein 2 Release, Bioactivity, and Bone Induction. Tissue Eng Part A 2018; 24:1616-1630. [PMID: 29905087 DOI: 10.1089/ten.tea.2017.0471] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
IMPACT STATEMENT Recombinant human bone morphogenetic protein 2 (rhBMP-2) delivery from collagen sponges for bone formation is an important clinical example of growth factors in tissue engineering. Side effects from rhBMP-2 burst release and rapid collagen resorption have led to investigation of alternative carriers. Here, keratin carriers with tunable erosion rates were formulated by varying disulfide crosslinking via ratios of oxidatively (keratose) to reductively (kerateine) extracted keratin. In vitro rhBMP-2 bioactivity increased with kerateine content, reaching levels greater than with collagen. Heterotopic bone formation in a mouse model depended on the keratin formulation, highlighting the importance of the growth factor carrier.
Collapse
Affiliation(s)
- David Joshua Cohen
- 1 Department of Biomedical Engineering, Virginia Commonwealth University , Richmond, Virginia
| | - Sharon L Hyzy
- 1 Department of Biomedical Engineering, Virginia Commonwealth University , Richmond, Virginia
| | - Salma Haque
- 2 Department of Chemical, Paper and Biomedical Engineering, College of Engineering and Computing, Miami University , Oxford, Ohio
| | - Lucas C Olson
- 1 Department of Biomedical Engineering, Virginia Commonwealth University , Richmond, Virginia
| | - Barbara D Boyan
- 1 Department of Biomedical Engineering, Virginia Commonwealth University , Richmond, Virginia
- 3 Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University , Atlanta, Georgia
| | - Justin M Saul
- 2 Department of Chemical, Paper and Biomedical Engineering, College of Engineering and Computing, Miami University , Oxford, Ohio
| | - Zvi Schwartz
- 1 Department of Biomedical Engineering, Virginia Commonwealth University , Richmond, Virginia
- 4 Department of Periodontics, University of Texas Health Science Center at San Antonio , San Antonio, Texas
| |
Collapse
|
45
|
Prediction of Creep Strain Relaxations in Biomaterials Using Differential Transformation Method. JOURNAL OF BIOMIMETICS BIOMATERIALS AND BIOMEDICAL ENGINEERING 2018. [DOI: 10.4028/www.scientific.net/jbbbe.38.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The outcome of most implant failures is tragic. There is an increasing need to reduce the rate of implant failure. While there has been a lot of progress regarding this problem, a lot still needs to be done. The behaviour of biomaterials had been represented using linear models. Linear models failed to capture some certain behaviours in materials due to the nonlinear nature of biomaterials. More work has been done in an attempt to represent the deformation of these biomaterials using non-linear models, which realised success to a degree. However, providing accurate solutions to these models became a problem. Here, An efficient approximate analytical method, differential transformation method (DTM) is provided for prediction of biomaterial deformation. The results of the solutions are found to be in excellent agreements with the results of the numerical methods. It was observed that at high viscosity, the material exhibit very high resistance to deformation and as it decreases, the material allows more deformation, for longer periods of time.Keywords:Biomaterials; Viscoelasticity;deformation;DifferentialTransformation Method;
Collapse
|
46
|
Turner E, Erwin M, Atigh M, Christians U, Saul JM, Yazdani SK. In vitro and in vivo Assessment of Keratose as a Novel Excipient of Paclitaxel Coated Balloons. Front Pharmacol 2018; 9:808. [PMID: 30104972 PMCID: PMC6078047 DOI: 10.3389/fphar.2018.00808] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 07/04/2018] [Indexed: 12/28/2022] Open
Abstract
Purpose: Drug coated balloons (DCB) are continually improving due to advances in coating techniques and more effective excipients. Paclitaxel, the current drug choice of DCB, is a microtubule-stabilizing chemotherapeutic agent that inhibits smooth muscle cell proliferation. Excipients work to promote coating stability and facilitate paclitaxel transfer and retention at the target lesion, although current excipients lack sustained, long-term paclitaxel retention. Keratose, a naturally derived protein, has exhibited unique properties allowing for tuned release of various therapeutic agents. However, little is known regarding its ability to support delivery of anti-proliferative agents such as paclitaxel. The goal of this project was to thus demonstrate the feasibility of keratose as a DCB-coating excipient to promote the release and delivery of paclitaxel. Methods: Keratose was combined with paclitaxel in vitro and the release kinetics of paclitaxel and keratose were evaluated through high performance liquid chromatograph-mass spectroscopy (HPLC-MS) and spectrophotometry, respectively. A custom coating method was developed to deposit keratose and paclitaxel on commercially available angioplasty balloons via an air spraying method. Coatings were then visualized under scanning electron microscopy and drug load quantified by HPLC-MS. Acute arterial transfer of paclitaxel at 1 h was assessed using a novel ex vivo model and further evaluated in vivo in a porcine ilio-femoral injury model. Results: Keratose demonstrated tunable release of paclitaxel as a function of keratose concentration in vitro. DCB coated via air spraying yielded consistent drug loading of 4.0 ± 0.70 μg/mm2. Under scanning electron microscopy, the keratose-paclitaxel DCB showed uniform coverage with a consistent, textured appearance. The acute drug transfer of the keratose-paclitaxel DCB was 43.60 ± 14.8 ng/mg at 1 h ex vivo. These measurements were further confirmed in vivo as the acute 1 h arterial paclitaxel levels were 56.60 ± 66.4 ng/mg. Conclusion: The keratose-paclitaxel coated DCB exhibited paclitaxel uptake and achieved acute therapeutic arterial tissue levels, confirming the feasibility of keratose as a novel excipient for DCB.
Collapse
Affiliation(s)
- Emily Turner
- Department of Mechanical Engineering, University of South Alabama, Mobile, AL, United States
| | - Megan Erwin
- Department of Mechanical Engineering, University of South Alabama, Mobile, AL, United States
| | - Marzieh Atigh
- Department of Mechanical Engineering, University of South Alabama, Mobile, AL, United States
| | - Uwe Christians
- Department of Anesthesiology, iC42 Clinical Research and Development, University of Colorado, Aurora, CO, United States
| | - Justin M. Saul
- Department of Chemical, Paper and Biomedical Engineering, Miami University, Oxford, OH, United States
| | - Saami K. Yazdani
- Department of Mechanical Engineering, University of South Alabama, Mobile, AL, United States
| |
Collapse
|
47
|
Transparent biocompatible wool keratin film prepared by mechanical compression of porous keratin hydrogel. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 91:19-25. [PMID: 30033245 DOI: 10.1016/j.msec.2018.05.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 04/12/2018] [Accepted: 05/05/2018] [Indexed: 12/12/2022]
Abstract
We could prepare a transparent wool keratin film by mechanical compression of the keratin hydrogel, which was prepared by our method previously reported. Optical transmittance of the keratin film was approximately 70% at 400 nm and 80% at 550 nm. The keratin film had higher mechanical strength than the keratin hydrogel estimated from the tensile test. Young's modulus of the keratin film and that of keratin hydrogel were 0.582 ± 0.294 MPa and 0.041 ± 0.008 MPa, respectively. We evaluated degradability of keratin film by tryptic digestion in vitro and that also by implantation test in vivo. The keratin film showed slower degradation rate in the presence of trypsin in vitro, and also that as a subcutaneous implant in mouse in vivo. Biocompatibility is also a key factor for application of keratin as biomaterials. Within several days after subcutaneous implantation of the sample in mouse, an apparent symptom of acute inflammation of tissues, such as swelling of the reddish skin, was not observed. Keratin film remained in the original morphology of sheet-like structure while keratin hydrogel was degraded with many cracks and gaps after implantation for several weeks. We concluded from those results that keratin film was mostly biocompatible without provoking inflammation nor encapsulation, mechanically stronger than the keratin hydrogel, and was more resistant to degradation than the keratin hydrogel.
Collapse
|
48
|
Esparza Y, Bandara N, Ullah A, Wu J. Hydrogels from feather keratin show higher viscoelastic properties and cell proliferation than those from hair and wool keratins. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 90:446-453. [PMID: 29853111 DOI: 10.1016/j.msec.2018.04.067] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 03/25/2018] [Accepted: 04/22/2018] [Indexed: 10/17/2022]
Abstract
Hydrogel prepared from keratin shows potential applications in tissue engineering. However, the importance of the keratin sources has not been considered. The objectives of this study were to characterize and compare the rheological (storage modulus), physical (porosity, pore size, swelling capacity, and water contact angle) and in vitro cell compatibility of hydrogel scaffolds prepared from various keratin sources. Keratins were characterized by means of their molecular weight, amino acid composition, thermal and conformational properties. Hydrogels from chicken feather keratins demonstrated substantially higher storage modulus (G') than hair and wool keratin hydrogels. However, higher swelling capacity (>3000%) was determined in hair and wool over feather keratin (1500%) hydrogels. Our results suggest that small molecular weight and β-sheet conformation of feather keratin (~10 kDa) facilitated the self-assembly of rigid hydrogels through disulfide bond re-oxidation. Whereas, high molecular weight (10-75 kDa) stretchable α-helix conformation in hair and wool keratins resulted in weaker hydrogels. The cell cultures using fibroblasts showed the highest proliferation rate on chicken feather keratin hydrogel scaffolds. After 15 days of culture, partial breakdown of keratin fibers was observed. Results indicate that stiffer avian keratins can be used to fabricate more mechanically robust biomaterials than mammalian keratins.
Collapse
Affiliation(s)
- Yussef Esparza
- Department of Agricultural, Food and Nutritional Science, 4-10 Ag/For Building, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Nandika Bandara
- Department of Agricultural, Food and Nutritional Science, 4-10 Ag/For Building, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Aman Ullah
- Department of Agricultural, Food and Nutritional Science, 4-10 Ag/For Building, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Jianping Wu
- Department of Agricultural, Food and Nutritional Science, 4-10 Ag/For Building, University of Alberta, Edmonton, Alberta T6G 2P5, Canada.
| |
Collapse
|
49
|
Kiani MT, Higgins CA, Almquist BD. The Hair Follicle: An Underutilized Source of Cells and Materials for Regenerative Medicine. ACS Biomater Sci Eng 2018; 4:1193-1207. [PMID: 29682604 PMCID: PMC5905671 DOI: 10.1021/acsbiomaterials.7b00072] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The hair follicle is one of only two structures within the adult body that selectively degenerates and regenerates, making it an intriguing organ to study and use for regenerative medicine. Hair follicles have been shown to influence wound healing, angiogenesis, neurogenesis, and harbor distinct populations of stem cells; this has led to cells from the follicle being used in clinical trials for tendinosis and chronic ulcers. In addition, keratin produced by the follicle in the form of a hair fiber provides an abundant source of biomaterials for regenerative medicine. In this review, we provide an overview of the structure of a hair follicle, explain the role of the follicle in regulating the microenvironment of skin and the impact on wound healing, explore individual cell types of interest for regenerative medicine, and cover several applications of keratin-based biomaterials.
Collapse
Affiliation(s)
- Mehrdad T Kiani
- Department of Bioengineering, Royal School of Mines, Imperial College London, London SW7 2AZ UK
- Department of Materials Science, 496 Lomita Mall, Stanford University, Stanford CA 94305 USA
| | - Claire A Higgins
- Department of Bioengineering, Royal School of Mines, Imperial College London, London SW7 2AZ UK
| | - Benjamin D Almquist
- Department of Bioengineering, Royal School of Mines, Imperial College London, London SW7 2AZ UK
| |
Collapse
|
50
|
Shavandi A, Silva TH, Bekhit AA, Bekhit AEDA. Keratin: dissolution, extraction and biomedical application. Biomater Sci 2018; 5:1699-1735. [PMID: 28686242 DOI: 10.1039/c7bm00411g] [Citation(s) in RCA: 175] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Keratinous materials such as wool, feathers and hooves are tough unique biological co-products that usually have high sulfur and protein contents. A high cystine content (7-13%) differentiates keratins from other structural proteins, such as collagen and elastin. Dissolution and extraction of keratin is a difficult process compared to other natural polymers, such as chitosan, starch, collagen, and a large-scale use of keratin depends on employing a relatively fast, cost-effective and time efficient extraction method. Keratin has some inherent ability to facilitate cell adhesion, proliferation, and regeneration of the tissue, therefore keratin biomaterials can provide a biocompatible matrix for regrowth and regeneration of the defective tissue. Additionally, due to its amino acid constituents, keratin can be tailored and finely tuned to meet the exact requirement of degradation, drug release or incorporation of different hydrophobic or hydrophilic tails. This review discusses the various methods available for the dissolution and extraction of keratin with emphasis on their advantages and limitations. The impacts of various methods and chemicals used on the structure and the properties of keratin are discussed with the aim of highlighting options available toward commercial keratin production. This review also reports the properties of various keratin-based biomaterials and critically examines how these materials are influenced by the keratin extraction procedure, discussing the features that make them effective as biomedical applications, as well as some of the mechanisms of action and physiological roles of keratin. Particular attention is given to the practical application of keratin biomaterials, namely addressing the advantages and limitations on the use of keratin films, 3D composite scaffolds and keratin hydrogels for tissue engineering, wound healing, hemostatic and controlled drug release.
Collapse
Affiliation(s)
- Amin Shavandi
- Center for Materials Science and Technology, University of Otago, Dunedin, New Zealand.
| | | | | | | |
Collapse
|