1
|
Shi Y, Mao J, Wang S, Ma S, Luo L, You J. Pharmaceutical strategies for optimized mRNA expression. Biomaterials 2025; 314:122853. [PMID: 39342919 DOI: 10.1016/j.biomaterials.2024.122853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/19/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Messenger RNA (mRNA)-based immunotherapies and protein in situ production therapies hold great promise for addressing theoretically all the diseases characterized by aberrant protein levels. The safe, stable, and precise delivery of mRNA to target cells via appropriate pharmaceutical strategies is a prerequisite for its optimal efficacy. In this review, we summarize the structural characteristics, mode of action, development prospects, and limitations of existing mRNA delivery systems from a pharmaceutical perspective, with an emphasis on the impacts from formulation adjustments and preparation techniques of non-viral vectors on mRNA stability, target site accumulation and transfection efficiency. In addition, we introduce strategies for synergistical combination of mRNA and small molecules to augment the potency or mitigate the adverse effects of mRNA therapeutics. Lastly, we delve into the challenges impeding the development of mRNA drugs while exploring promising avenues for future advancements.
Collapse
Affiliation(s)
- Yingying Shi
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China
| | - Jiapeng Mao
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China
| | - Sijie Wang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China
| | - Siyao Ma
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, 166 Qiutaobei Road, Hangzhou, Zhejiang, 310017, PR China
| | - Lihua Luo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China.
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang, 310006, PR China; The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 QingChun Road, Hangzhou, Zhejiang, 310000, PR China; Jinhua Institute of Zhejiang University, 498 Yiwu Street, Jinhua, Zhejiang, 321299, PR China.
| |
Collapse
|
2
|
Qabrati X, Kim I, Ghosh A, Bundschuh N, Noé F, Palmer AS, Bar-Nur O. Transgene-free direct conversion of murine fibroblasts into functional muscle stem cells. NPJ Regen Med 2023; 8:43. [PMID: 37553383 PMCID: PMC10409758 DOI: 10.1038/s41536-023-00317-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 07/21/2023] [Indexed: 08/10/2023] Open
Abstract
Transcription factor-based cellular reprogramming provides an attractive approach to produce desired cell types for regenerative medicine purposes. Such cellular conversions are widely dependent on viral vectors to efficiently deliver and express defined factors in target cells. However, use of viral vectors is associated with unfavorable genomic integrations that can trigger deleterious molecular consequences, rendering this method a potential impediment to clinical applications. Here, we report on a highly efficient transgene-free approach to directly convert mouse fibroblasts into induced myogenic progenitor cells (iMPCs) by overexpression of synthetic MyoD-mRNA in concert with an enhanced small molecule cocktail. First, we performed a candidate compound screen and identified two molecules that enhance fibroblast reprogramming into iMPCs by suppression of the JNK and JAK/STAT pathways. Simultaneously, we developed an optimal transfection protocol to transiently overexpress synthetic MyoD-mRNA in fibroblasts. Combining these two techniques enabled robust and rapid reprogramming of fibroblasts into Pax7 positive iMPCs in as little as 10 days. Nascent transgene-free iMPCs proliferated extensively in vitro, expressed a suite of myogenic stem cell markers, and could differentiate into highly multinucleated and contractile myotubes. Furthermore, using global and single-cell transcriptome assays, we delineated gene expression changes associated with JNK and JAK/STAT pathway inhibition during reprogramming, and identified in iMPCs a Pax7+ stem cell subpopulation resembling satellite cells. Last, transgene-free iMPCs robustly engrafted skeletal muscles of a Duchenne muscular dystrophy mouse model, restoring dystrophin expression in hundreds of myofibers. In summary, this study reports on an improved and clinically safer approach to convert fibroblasts into myogenic stem cells that can efficiently contribute to muscle regeneration in vivo.
Collapse
Affiliation(s)
- Xhem Qabrati
- Laboratory of Regenerative and Movement Biology, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach, Switzerland
| | - Inseon Kim
- Laboratory of Regenerative and Movement Biology, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach, Switzerland
| | - Adhideb Ghosh
- Laboratory of Regenerative and Movement Biology, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach, Switzerland
- Functional Genomics Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Nicola Bundschuh
- Laboratory of Regenerative and Movement Biology, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach, Switzerland
| | - Falko Noé
- Laboratory of Regenerative and Movement Biology, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach, Switzerland
- Functional Genomics Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Andrew S Palmer
- Laboratory of Regenerative and Movement Biology, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach, Switzerland
- Institute for Health and Sport, Victoria University, Footscray, VIC, Australia
| | - Ori Bar-Nur
- Laboratory of Regenerative and Movement Biology, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach, Switzerland.
| |
Collapse
|
3
|
Transition from Animal-Based to Human Induced Pluripotent Stem Cells (iPSCs)-Based Models of Neurodevelopmental Disorders: Opportunities and Challenges. Cells 2023; 12:cells12040538. [PMID: 36831205 PMCID: PMC9954744 DOI: 10.3390/cells12040538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/25/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Neurodevelopmental disorders (NDDs) arise from the disruption of highly coordinated mechanisms underlying brain development, which results in impaired sensory, motor and/or cognitive functions. Although rodent models have offered very relevant insights to the field, the translation of findings to clinics, particularly regarding therapeutic approaches for these diseases, remains challenging. Part of the explanation for this failure may be the genetic differences-some targets not being conserved between species-and, most importantly, the differences in regulation of gene expression. This prompts the use of human-derived models to study NDDS. The generation of human induced pluripotent stem cells (hIPSCs) added a new suitable alternative to overcome species limitations, allowing for the study of human neuronal development while maintaining the genetic background of the donor patient. Several hIPSC models of NDDs already proved their worth by mimicking several pathological phenotypes found in humans. In this review, we highlight the utility of hIPSCs to pave new paths for NDD research and development of new therapeutic tools, summarize the challenges and advances of hIPSC-culture and neuronal differentiation protocols and discuss the best way to take advantage of these models, illustrating this with examples of success for some NDDs.
Collapse
|
4
|
Potential health risks of mRNA-based vaccine therapy: A hypothesis. Med Hypotheses 2023; 171:111015. [PMID: 36718314 PMCID: PMC9876036 DOI: 10.1016/j.mehy.2023.111015] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 09/08/2022] [Accepted: 01/24/2023] [Indexed: 01/26/2023]
Abstract
Therapeutic applications of synthetic mRNA were proposed more than 30 years ago, and are currently the basis of one of the vaccine platforms used at a massive scale as part of the public health strategy to get COVID-19 under control. To date, there are no published studies on the biodistribution, cellular uptake, endosomal escape, translation rates, functional half-life and inactivation kinetics of synthetic mRNA, rates and duration of vaccine-induced antigen expression in different cell types. Furthermore, despite the assumption that there is no possibility of genomic integration of therapeutic synthetic mRNA, only one recent study has examined interactions between vaccine mRNA and the genome of transfected cells, and reported that an endogenous retrotransposon, LINE-1 is unsilenced following mRNA entry to the cell, leading to reverse transcription of full length vaccine mRNA sequences, and nuclear entry. This finding should be a major safety concern, given the possibility of synthetic mRNA-driven epigenetic and genomic modifications arising. We propose that in susceptible individuals, cytosolic clearance of nucleotide modified synthetic (nms-mRNAs) is impeded. Sustained presence of nms-mRNA in the cytoplasm deregulates and activates endogenous transposable elements (TEs), causing some of the mRNA copies to be reverse transcribed. The cytosolic accumulation of the nms-mRNA and the reverse transcribed cDNA molecules activates RNA and DNA sensory pathways. Their concurrent activation initiates a synchronized innate response against non-self nucleic acids, prompting type-I interferon and pro-inflammatory cytokine production which, if unregulated, leads to autoinflammatory and autoimmune conditions, while activated TEs increase the risk of insertional mutagenesis of the reverse transcribed molecules, which can disrupt coding regions, enhance the risk of mutations in tumour suppressor genes, and lead to sustained DNA damage. Susceptible individuals would then expectedly have an increased risk of DNA damage, chronic autoinflammation, autoimmunity and cancer. In light of the current mass administration of nms-mRNA vaccines, it is essential and urgent to fully understand the intracellular cascades initiated by cellular uptake of synthetic mRNA and the consequences of these molecular events.
Collapse
|
5
|
Minnaert AK, Vanluchene H, Verbeke R, Lentacker I, De Smedt SC, Raemdonck K, Sanders NN, Remaut K. Strategies for controlling the innate immune activity of conventional and self-amplifying mRNA therapeutics: Getting the message across. Adv Drug Deliv Rev 2021; 176:113900. [PMID: 34324884 PMCID: PMC8325057 DOI: 10.1016/j.addr.2021.113900] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 02/07/2023]
Abstract
The recent approval of messenger RNA (mRNA)-based vaccines to combat the SARS-CoV-2 pandemic highlights the potential of both conventional mRNA and self-amplifying mRNA (saRNA) as a flexible immunotherapy platform to treat infectious diseases. Besides the antigen it encodes, mRNA itself has an immune-stimulating activity that can contribute to vaccine efficacy. This self-adjuvant effect, however, will interfere with mRNA translation and may influence the desired therapeutic outcome. To further exploit its potential as a versatile therapeutic platform, it will be crucial to control mRNA's innate immune-stimulating properties. In this regard, we describe the mechanisms behind the innate immune recognition of mRNA and provide an extensive overview of strategies to control its innate immune-stimulating activity. These strategies range from modifications to the mRNA backbone itself, optimization of production and purification processes to the combination with innate immune inhibitors. Furthermore, we discuss the delicate balance of the self-adjuvant effect in mRNA vaccination strategies, which can be both beneficial and detrimental to the therapeutic outcome.
Collapse
Affiliation(s)
- An-Katrien Minnaert
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| | - Helena Vanluchene
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| | - Rein Verbeke
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| | - Ine Lentacker
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| | - Stefaan C De Smedt
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| | - Koen Raemdonck
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| | - Niek N Sanders
- Laboratory of Gene Therapy, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| | - Katrien Remaut
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| |
Collapse
|
6
|
Minnaert AK, Devoldere J, Peynshaert K, Vercruysse L, De Smedt SC, Remaut K. Vaccinia Virus Protein B18R: Influence on mRNA Immunogenicity and Translation upon Non-Viral Delivery in Different Ocular Cell Types. Pharmaceutics 2021; 13:74. [PMID: 33430462 PMCID: PMC7827308 DOI: 10.3390/pharmaceutics13010074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/23/2020] [Accepted: 12/27/2020] [Indexed: 01/05/2023] Open
Abstract
In the last few years, interest has grown in the use of nucleic acids as an ocular therapy for retinal genetic diseases. Recently, our research group has demonstrated that mRNA delivery could result in effective protein expression in ocular cells following subretinal injection. Yet, although mRNA therapy comes with many advantages, its immunogenicity resulting in hampered mRNA translation delays development to the clinic. Therefore, several research groups investigate possible strategies to reduce this innate immunity. In this study, we focus on B18R, an immune inhibitor to suppress the mRNA-induced innate immune responses in two ocular cell types. We made use of retinal pigment epithelial (RPE) cells and Müller cells both as immortalized cell lines and primary bovine cells. When cells were co-incubated with both B18R and mRNA-MessengerMAX lipoplexes we observed an increase in transfection efficiency accompanied by a decrease in interferon-β production, except for the Müller cells. Moreover, uptake efficiency and cell viability were not hampered. Taken together, we showed that the effect of B18R is cell type-dependent but remains a possible strategy to improve mRNA translation in RPE cells.
Collapse
Affiliation(s)
- An-Katrien Minnaert
- Lab of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; (A.-K.M.); (J.D.); (K.P.); (L.V.); (S.C.D.S.)
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Joke Devoldere
- Lab of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; (A.-K.M.); (J.D.); (K.P.); (L.V.); (S.C.D.S.)
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Karen Peynshaert
- Lab of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; (A.-K.M.); (J.D.); (K.P.); (L.V.); (S.C.D.S.)
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Laure Vercruysse
- Lab of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; (A.-K.M.); (J.D.); (K.P.); (L.V.); (S.C.D.S.)
| | - Stefaan C. De Smedt
- Lab of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; (A.-K.M.); (J.D.); (K.P.); (L.V.); (S.C.D.S.)
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Katrien Remaut
- Lab of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; (A.-K.M.); (J.D.); (K.P.); (L.V.); (S.C.D.S.)
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| |
Collapse
|
7
|
Farooq MA, Xinyu H, Jabeen A, Ahsan A, Seidu TA, Kutoka PT, Wang B. Enhanced cellular uptake and cytotoxicity of vorinostat through encapsulation in TPGS-modified liposomes. Colloids Surf B Biointerfaces 2020; 199:111523. [PMID: 33360624 DOI: 10.1016/j.colsurfb.2020.111523] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/04/2020] [Accepted: 12/09/2020] [Indexed: 12/25/2022]
Abstract
Vorinostat (VOR) is known as one of the histone deacetylase inhibitors (HDACi) for cancer treatment, and the FDA approves it for cutaneous T cell lymphoma therapy. Poor solubility, permeability, and less anti-cancer activity are the main challenges for the effective delivery of VOR against various cancers. So, our team assumed that the surface-coated liposomes might improve the physicochemical properties of biopharmaceutics classification system class IV drugs such as VOR. The present study aimed to enhance the cytotoxicity and improve cellular uptake using TPGS-coated liposomes in breast cancer cells. Liposomes were fabricated by the film hydration following the probe ultra-sonication method. OR-LIPO and TPGS-VOR-LIPO showed an average particle size of 211.97 ± 3.42 nm with PDI 0.2168 ± 0.006 and 176.99 ± 2.06 nm with PDI 0.175 ± 0.018, respectively. TPGS-coated liposomes had better stability and revealed more than 80 % encapsulation efficiency than conventional liposomes. Transmission electron microscopy confirmed the TPGS coating around liposomes. Moreover, TPGS-coated liposomes enhanced the solubility and showed sustained release of VOR over 48 h. DSC and PXRD analysis also reveal an amorphous state of VOR within the liposomal formulation. MTT assay result indicates that the superior cytotoxic effect of surface-modified liposomes contrasts with the conventional and free VOR solution, respectively. Fluorescence microscopy and flow cytometry results also presented an enhanced cellular uptake of TPGS-coated liposomes against breast cancer cells, respectively. The current investigation's final results declared that TPGS-coated liposomes are promising drug carriers for the effective delivery of hydrophobic drugs for cancer therapy.
Collapse
Affiliation(s)
- Muhammad Asim Farooq
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, PR China
| | - Huang Xinyu
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, PR China
| | - Amna Jabeen
- Faculty of Pharmacy, Lahore College of Pharmaceutical Sciences, Lahore, Pakistan
| | - Anam Ahsan
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, 030801, PR China
| | - Theodora Amanda Seidu
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, PR China
| | - Perpetua Takunda Kutoka
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, PR China
| | - Bo Wang
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, PR China.
| |
Collapse
|
8
|
Borgohain MP, Haridhasapavalan KK, Dey C, Adhikari P, Thummer RP. An Insight into DNA-free Reprogramming Approaches to Generate Integration-free Induced Pluripotent Stem Cells for Prospective Biomedical Applications. Stem Cell Rev Rep 2020; 15:286-313. [PMID: 30417242 DOI: 10.1007/s12015-018-9861-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
More than a decade ago, a pioneering study reported generation of induced Pluripotent Stem Cells (iPSCs) by ectopic expression of a cocktail of reprogramming factors in fibroblasts. This study has revolutionized stem cell research and has garnered immense interest from the scientific community globally. iPSCs hold tremendous potential for understanding human developmental biology, disease modeling, drug screening and discovery, and personalized cell-based therapeutic applications. The seminal study identified Oct4, Sox2, Klf4 and c-Myc as a potent combination of genes to induce reprogramming. Subsequently, various reprogramming factors were identified by numerous groups. Most of these studies have used integrating viral vectors to overexpress reprogramming factors in somatic cells to derive iPSCs. However, these techniques restrict the clinical applicability of these cells as they may alter the genome due to random viral integration resulting in insertional mutagenesis and tumorigenicity. To circumvent this issue, alternative integration-free reprogramming approaches are continuously developed that eliminate the risk of genomic modifications and improve the prospects of iPSCs from lab to clinic. These methods establish that integration of transgenes into the genome is not essential to induce pluripotency in somatic cells. This review provides a comprehensive overview of the most promising DNA-free reprogramming techniques that have the potential to derive integration-free iPSCs without genomic manipulation, such as sendai virus, recombinant proteins, microRNAs, synthetic messenger RNA and small molecules. The understanding of these approaches shall pave a way for the generation of clinical-grade iPSCs. Subsequently, these iPSCs can be differentiated into desired cell type(s) for various biomedical applications.
Collapse
Affiliation(s)
- Manash P Borgohain
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Krishna Kumar Haridhasapavalan
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Chandrima Dey
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Poulomi Adhikari
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Rajkumar P Thummer
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
| |
Collapse
|
9
|
Reprogramming and transdifferentiation - two key processes for regenerative medicine. Eur J Pharmacol 2020; 882:173202. [PMID: 32562801 DOI: 10.1016/j.ejphar.2020.173202] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 04/22/2020] [Accepted: 05/13/2020] [Indexed: 12/11/2022]
Abstract
Regenerative medicine based on transplants obtained from donors or foetal and new-born mesenchymal stem cells, encounter important obstacles such as limited availability of organs, ethical issues and immune rejection. The growing demand for therapeutic methods for patients being treated after serious accidents, severe organ dysfunction and an increasing number of cancer surgeries, exceeds the possibilities of the therapies that are currently available. Reprogramming and transdifferentiation provide powerful bioengineering tools. Both procedures are based on the somatic differentiated cells, which are easily and unlimitedly available, like for example: fibroblasts. During the reprogramming procedure mature cells are converted into pluripotent cells - which are capable to differentiate into almost any kind of desired cells. Transdifferentiation directly converts differentiated cells of one type into another differentiated cells type. Both procedures allow to obtained patient's dedicated cells for therapeutic purpose in regenerative medicine. In combination with biomaterials, it is possible to obtain even whole anatomical structures. Those patient's dedicated structures may serve for them upon serious accidents with massive tissue damage but also upon cancer surgeries as a replacement of damaged organ. Detailed information about reprogramming and transdifferentiation procedures as well as the current state of the art are presented in our review.
Collapse
|
10
|
Generation of iPSCs by Nonintegrative RNA-Based Reprogramming Techniques: Benefits of Self-Replicating RNA versus Synthetic mRNA. Stem Cells Int 2019; 2019:7641767. [PMID: 31320906 PMCID: PMC6607707 DOI: 10.1155/2019/7641767] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 05/20/2019] [Indexed: 12/19/2022] Open
Abstract
The reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) is gaining in importance in the fields of regenerative medicine, tissue engineering, and disease modeling. Patient-specific iPSCs have as an unlimited cell source a tremendous potential for generating various types of autologous cells. For the future clinical applicability of these iPSC-derived cells, the generation of iPSCs via nongenome integrating methods and the efficient reprogramming of patients' somatic cells are required. In this study, 2 different RNA-based footprint-free methods for the generation of iPSCs were compared: the use of synthetic modified messenger RNAs (mRNAs) or self-replicating RNAs (srRNAs) encoding the reprogramming factors and GFP. Using both RNA-based methods, integration-free iPSCs without genomic alterations were obtained. The pluripotency characteristics identified by specific marker detection and the in vitro and in vivo trilineage differentiation capacity were comparable. Moreover, the incorporation of a GFP encoding sequence into the srRNA enabled a direct and convenient monitoring of the reprogramming procedure and the successful detection of srRNA translation in the transfected cells. Nevertheless, the use of a single srRNA to induce pluripotency was less time consuming, faster, and more efficient than the daily transfection of cells with synthetic mRNAs. Therefore, we believe that the srRNA-based approach might be more appropriate and efficient for the reprogramming of different types of somatic cells for clinical applications.
Collapse
|
11
|
Efficient reduction of synthetic mRNA induced immune activation by simultaneous delivery of B18R encoding mRNA. J Biol Eng 2019; 13:40. [PMID: 31168319 PMCID: PMC6509845 DOI: 10.1186/s13036-019-0172-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/21/2019] [Indexed: 12/24/2022] Open
Abstract
The application of synthetic modified messenger RNA (mRNA) is a promising approach for the treatment of a variety of diseases and vaccination. In the past few years, different modifications of synthetic mRNA were applied to render the mRNA more stable and less immunogenic. However, the repeated application of synthetic mRNA still requires the suppression of immune activation to avoid cell death and to allow a sufficient production of exogenous proteins. Thus, the addition of type I interferon (IFN) inhibiting recombinant protein B18R is often required to avoid IFN response. In this study, the ability of B18R encoding mRNA to prevent the immune response of cells to the delivered synthetic mRNA was analyzed. The co-transfection of enhanced green fluorescent protein (eGFP) mRNA transfected fibroblasts with B18R encoding mRNA over 7-days resulted in comparable cell viability and eGFP protein expression as in the cells transfected with eGFP mRNA and incubated with B18R protein. Using qRT-PCR, significantly reduced expression of interferon-stimulated gene Mx1 was detected in the cells transfected with B18R mRNA and stimulated with IFNβ compared to the cells without B18R mRNA transfection. Thereby, it was demonstrated that the co-transfection of synthetic mRNA transfected cells with B18R encoding mRNA can reduce the IFN response-related cell death and thus, improve the protein expression.
Collapse
|
12
|
Liu Y, Chia ZH, Liew JNMH, Or SM, Phua KKL. Modulation of mRNA Translation and Cell Viability by Influenza A Virus Derived Nonstructural Protein 1. Nucleic Acid Ther 2018; 28:200-208. [PMID: 29634401 DOI: 10.1089/nat.2017.0712] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Translation of in vitro transcribed messenger RNA (mRNA) is known to be compromised by cell's innate immune responses. Herein we show that when mRNA encoding nonstructural protein 1 (NS1), an immune evasion gene derived from influenza A virus, is co-delivered with mRNA encoding green fluorescent protein (GFP), higher GFP expression can be observed in four different interferon competent cell types within 6 h, indicating NS1's wide host range property and rapid counter response to the cells' innate immune response. Enhanced mRNA translation correlates with reduced interferon production in all tested cell types and substituting a small portion of luciferase mRNA with NS1 mRNA enhances luciferase production compared to the same dose composing of only luciferase mRNA although in a cell type specific manner. Toxicity caused by transfection of unmodified mRNA is mitigated with the delivery of NS1 mRNA and is observed only in NS1 without cleavage and polyadenylation specificity factor 30 kda (CPSF30) inhibition function. Conversely, delivery of mRNA encoding NS1 with CPSF30 inhibition function aggravated toxicity. Overall, we demonstrate that NS1 enhanced mRNA transfection through active evasion of innate immune responses and modulated cellular viability during mRNA transfection.
Collapse
Affiliation(s)
- Yi Liu
- Department of Chemical and Biomolecular Engineering, Faculty of Engineering, National University of Singapore , Singapore, Singapore
| | - Zhen Hua Chia
- Department of Chemical and Biomolecular Engineering, Faculty of Engineering, National University of Singapore , Singapore, Singapore
| | - Johannes Nathaniel Min Hui Liew
- Department of Chemical and Biomolecular Engineering, Faculty of Engineering, National University of Singapore , Singapore, Singapore
| | - Shi Min Or
- Department of Chemical and Biomolecular Engineering, Faculty of Engineering, National University of Singapore , Singapore, Singapore
| | - Kyle K L Phua
- Department of Chemical and Biomolecular Engineering, Faculty of Engineering, National University of Singapore , Singapore, Singapore
| |
Collapse
|
13
|
Ulasov AV, Rosenkranz AA, Sobolev AS. Transcription factors: Time to deliver. J Control Release 2017; 269:24-35. [PMID: 29113792 DOI: 10.1016/j.jconrel.2017.11.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 11/02/2017] [Accepted: 11/03/2017] [Indexed: 12/17/2022]
Abstract
Transcription factors (TFs) are at the center of the broad regulatory network orchestrating gene expression programs that elicit different biological responses. For a long time, TFs have been considered as potent drug targets due to their implications in the pathogenesis of a variety of diseases. At the same time, TFs, located at convergence points of cellular regulatory pathways, are powerful tools providing opportunities both for cell type change and for managing the state of cells. This task formulation requires the TF modulation problem to come to the fore. We review several ways to manage TF activity (small molecules, transfection, nanocarriers, protein-based approaches), analyzing their limitations and the possibilities to overcome them. Delivery of TFs could revolutionize the biomedical field. Whether this forecast comes true will depend on the ability to develop convenient technologies for targeted delivery of TFs.
Collapse
Affiliation(s)
- Alexey V Ulasov
- Department of Molecular Genetics of Intracellular Transport, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia
| | - Andrey A Rosenkranz
- Department of Molecular Genetics of Intracellular Transport, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; Faculty of Biology, Moscow State University, 1-12 Leninskiye Gory St., 119234 Moscow, Russia
| | - Alexander S Sobolev
- Department of Molecular Genetics of Intracellular Transport, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; Faculty of Biology, Moscow State University, 1-12 Leninskiye Gory St., 119234 Moscow, Russia.
| |
Collapse
|
14
|
Non-linear enhancement of mRNA delivery efficiencies by influenza A derived NS1 protein engendering host gene inhibition property. Biomaterials 2017; 133:29-36. [DOI: 10.1016/j.biomaterials.2017.04.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 04/05/2017] [Accepted: 04/09/2017] [Indexed: 11/21/2022]
|
15
|
Long J, Kim H, Kim D, Lee JB, Kim DH. A biomaterial approach to cell reprogramming and differentiation. J Mater Chem B 2017; 5:2375-2379. [PMID: 28966790 PMCID: PMC5616208 DOI: 10.1039/c6tb03130g] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cell reprogramming of somatic cells into pluripotent states and subsequent differentiation into certain phenotypes has helped progress regenerative medicine research and other medical applications. Recent research has used viral vectors to induce this reprogramming; however, limitations include low efficiency and safety concerns. In this review, we discuss how biomaterial methods offer potential avenues for either increasing viability and downstream applicability of viral methods, or providing a safer alternative. The use of non-viral delivery systems, such as electroporation, micro/nanoparticles, nucleic acids and the modulation of culture substrate topography and stiffness have generated valuable insights regarding cell reprogramming.
Collapse
Affiliation(s)
- Joseph Long
- Department of Bioengineering, University of Washington, Seattle WA, 98195, USA
- Center for Cardiovascular Biology, Institute for Stem Cell and Regenerative Medicine; University of Washington; Seattle, WA, 98109, USA
| | - Hyejin Kim
- Department of Chemical Engineering, University of Seoul, Seoul, 02504, South Korea
| | - Dajeong Kim
- Department of Chemical Engineering, University of Seoul, Seoul, 02504, South Korea
| | - Jong Bum Lee
- Department of Chemical Engineering, University of Seoul, Seoul, 02504, South Korea
| | - Deok-Ho Kim
- Department of Bioengineering, University of Washington, Seattle WA, 98195, USA
- Center for Cardiovascular Biology, Institute for Stem Cell and Regenerative Medicine; University of Washington; Seattle, WA, 98109, USA
| |
Collapse
|
16
|
AKINCI E, YILDIZ M, ÜNAL P, BADAKUL G. In vitro transcription and validation of human pancreatic transcription factors’ mRNAs. Turk J Biol 2017. [DOI: 10.3906/biy-1610-29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
17
|
Li J, Cheng X, Chen Y, He W, Ni L, Xiong P, Wei M. Vitamin E TPGS modified liposomes enhance cellular uptake and targeted delivery of luteolin: An in vivo/in vitro evaluation. Int J Pharm 2016; 512:262-272. [DOI: 10.1016/j.ijpharm.2016.08.037] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 08/01/2016] [Accepted: 08/17/2016] [Indexed: 01/12/2023]
|
18
|
Lee J, Xu L, Gibson TM, Gersbach CA, Sullenger BA. Differential effects of toll-like receptor stimulation on mRNA-driven myogenic conversion of human and mouse fibroblasts. Biochem Biophys Res Commun 2016; 478:1484-90. [PMID: 27586271 DOI: 10.1016/j.bbrc.2016.08.159] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 08/27/2016] [Indexed: 02/06/2023]
Abstract
Transfection with in vitro transcribed mRNAs is a safe and effective tool to convert somatic cells to any cell type of interest. One caveat of mRNA transfection is that mRNAs are recognized by multiple RNA-sensing toll like receptors (TLRs). These TLRs can both promote and inhibit cellular reprogramming. We demonstrated that mRNA transfection stimulated TLR3 and TLR7 and induced cytotoxicity and IFN-β expression in human and mouse fibroblasts. Furthermore, mRNA transfection induced paracrine inhibition of repeated mRNA transfection through type I IFNs. Modified mRNAs (mmRNAs) containing pseudouridine and 5-methycytosine reduced TLR stimulation, cytotoxicity and IFN-β expression in fibroblasts. Repeated liposomal transfection with MyoD mmRNAs significantly enhanced myogenic conversion of human and mouse fibroblasts compared with repeated transfection with MyoD mRNAs. Interestingly, electroporation of mRNAs and mmRNAs completely abrogated cytotoxicity and IFN-β expression and also abolished myogenic conversion of fibroblasts. At a low concentration, TLR7/8 agonist R848 enhanced MyoD mmRNA-driven conversion of human fibroblasts into skeletal muscle cells, whereas high concentrations of R848 inhibited myogenic conversion of fibroblasts. Our study suggests that deliberate control of TLR signaling is a key factor in the success of mRNA-driven cellular reprogramming.
Collapse
Affiliation(s)
- Jaewoo Lee
- Department of Surgery, Duke University, USA; Duke Translational Research Institute, Duke University Medical Center, Durham, NC 27710, USA.
| | - Li Xu
- Department of Surgery, Duke University, USA
| | - Tyler M Gibson
- Department of Biomedical Engineering, Duke University, USA
| | | | - Bruce A Sullenger
- Department of Surgery, Duke University, USA; Duke Translational Research Institute, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
19
|
Duran A, Valero N, Mosquera J, Delgado L, Alvarez-Mon M, Torres M. Role of the myeloid differentiation primary response (MYD88) and TIR-domain-containing adapter-inducing interferon-β (TRIF) pathways in dengue. Life Sci 2016; 162:33-40. [PMID: 27575706 DOI: 10.1016/j.lfs.2016.08.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 08/16/2016] [Accepted: 08/25/2016] [Indexed: 12/29/2022]
Abstract
AIMS Dengue disease courses with high viremia titers and high cytokine production suggesting viral replication and active immune response that could be related to viral evasion. One of the main targets of dengue virus (DENV) is monocyte/macrophage cells; however, little information regarding viral evasive mechanisms and pathway activation in monocytes infected by DENV is available. The aim of this study was to determine the role of myeloid differentiation primary response (MyD88), TIR-domain-containing adapter- inducing interferon-β (TRIF) and NF-kB pathways in viral replication and cytokine production in human monocyte cultures infected by DENV2. MAIN METHODS In this regard Pepinh- TRIF, Pepinh- MYD and pyrrolidine dithiocarbamate (PDTC) were used to inhibit TRIF, MYD88 and NF-kB pathways. Cytokine production was measured by ELISA. KEY FINDINGS Increased DENV replication and IFNα/β, TNF-α, IL-12 and IL-18 in infected cultures at 24h were found. All of these parameters were significantly decreased after TRIF, MYD88 or NF-kB inhibition. Association analysis between viral replication and cytokine production showed high significant positive correlation in TRIF and MYD88 treated cultures. SIGNIFICANCE This study shows that DENV2 induces activation of innate-immune response and transcription factors to drive viral expression and replication in the face of pro-inflammatory antiviral responses in vitro.
Collapse
Affiliation(s)
- Anyelo Duran
- Instituto de Investigaciones Clínicas "Dr. Américo Negrette", Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela; Cátedra de Bioquímica General, Escuela de Bioanálisis, Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela; Sociedad Venezolana de Microbiología
| | - Nereida Valero
- Instituto de Investigaciones Clínicas "Dr. Américo Negrette", Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela; Sociedad Venezolana de Microbiología.
| | - Jesus Mosquera
- Instituto de Investigaciones Clínicas "Dr. Américo Negrette", Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela
| | - Lineth Delgado
- Instituto de Investigaciones Clínicas "Dr. Américo Negrette", Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela
| | - Melchor Alvarez-Mon
- Servicio de Enfermedades del Sistema Inmune y Oncología, Hospital Universitario "Príncipe de Asturias", Universidad de Alcalá, Madrid, Spain
| | - Mariana Torres
- Instituto de Investigaciones Clínicas "Dr. Américo Negrette", Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela
| |
Collapse
|
20
|
Corritore E, Lee YS, Pasquale V, Liberati D, Hsu MJ, Lombard CA, Van Der Smissen P, Vetere A, Bonner-Weir S, Piemonti L, Sokal E, Lysy PA. V-Maf Musculoaponeurotic Fibrosarcoma Oncogene Homolog A Synthetic Modified mRNA Drives Reprogramming of Human Pancreatic Duct-Derived Cells Into Insulin-Secreting Cells. Stem Cells Transl Med 2016; 5:1525-1537. [PMID: 27405779 DOI: 10.5966/sctm.2015-0318] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 05/12/2016] [Indexed: 12/17/2022] Open
Abstract
: β-Cell replacement therapy represents the most promising approach to restore β-cell mass and glucose homeostasis in patients with type 1 diabetes. Safety and ethical issues associated with pluripotent stem cells stimulated the search for adult progenitor cells with endocrine differentiation capacities. We have already described a model for expansion and differentiation of human pancreatic duct-derived cells (HDDCs) into insulin-producing cells. Here we show an innovative and robust in vitro system for large-scale production of β-like cells from HDDCs using a nonintegrative RNA-based reprogramming technique. Synthetic modified RNAs for pancreatic transcription factors (pancreatic duodenal homeobox 1, neurogenin3, and V-Maf musculoaponeurotic fibrosarcoma oncogene homolog A [MAFA]) were manufactured and daily transfected in HDDCs without strongly affecting immune response and cell viability. MAFA overexpression was efficient and sufficient to induce β-cell differentiation of HDDCs, which acquired a broad repertoire of mature β-cell markers while downregulating characteristic epithelial-mesenchymal transition markers. Within 7 days, MAFA-reprogrammed HDDC populations contained 37% insulin-positive cells and a proportion of endocrine cells expressing somatostatin and pancreatic polypeptide. Ultrastructure analysis of differentiated HDDCs showed both immature and mature insulin granules with light-backscattering properties. Furthermore, in vitro HDDC-derived β cells (called β-HDDCs) secreted human insulin and C-peptide in response to glucose, KCl, 3-isobutyl-1-methylxanthine, and tolbutamide stimulation. Transplantation of β-HDDCs into diabetic SCID-beige mice confirmed their functional glucose-responsive insulin secretion and their capacity to mitigate hyperglycemia. Our data describe a new, reliable, and fast procedure in adult human pancreatic cells to generate clinically relevant amounts of new β cells with potential to reverse diabetes. SIGNIFICANCE β-Cell replacement therapy represents the most promising approach to restore glucose homeostasis in patients with type 1 diabetes. This study shows an innovative and robust in vitro system for large-scale production of β-like cells from human pancreatic duct-derived cells (HDDCs) using a nonintegrative RNA-based reprogramming technique. V-Maf musculoaponeurotic fibrosarcoma oncogene homolog A overexpression was efficient and sufficient to induce β-cell differentiation and insulin secretion from HDDCs in response to glucose stimulation, allowing the cells to mitigate hyperglycemia in diabetic SCID-beige mice. The data describe a new, reliable, and fast procedure in adult human pancreatic cells to generate clinically relevant amounts of new β cells with the potential to reverse diabetes.
Collapse
Affiliation(s)
- Elisa Corritore
- Pediatric Research Laboratory, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Yong-Syu Lee
- Pediatric Research Laboratory, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Valentina Pasquale
- Diabetes Research Institute, Istituti di Ricovero e Cura a Carattere Scientifico, San Raffaele Scientific Institute, Milan, Italy
| | - Daniela Liberati
- Diabetes Research Institute, Istituti di Ricovero e Cura a Carattere Scientifico, San Raffaele Scientific Institute, Milan, Italy
| | - Mei-Ju Hsu
- Pediatric Research Laboratory, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Catherine Anne Lombard
- Pediatric Research Laboratory, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | | | - Amedeo Vetere
- Chemical Biology Program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Susan Bonner-Weir
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Lorenzo Piemonti
- Diabetes Research Institute, Istituti di Ricovero e Cura a Carattere Scientifico, San Raffaele Scientific Institute, Milan, Italy
| | - Etienne Sokal
- Pediatric Research Laboratory, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Philippe A Lysy
- Pediatric Research Laboratory, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
- Pediatric Endocrinology Unit, Cliniques Universitaires Saint Luc, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
21
|
Steinle H, Behring A, Schlensak C, Wendel HP, Avci-Adali M. Concise Review: Application of In Vitro Transcribed Messenger RNA for Cellular Engineering and Reprogramming: Progress and Challenges. Stem Cells 2016; 35:68-79. [DOI: 10.1002/stem.2402] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 04/25/2016] [Accepted: 04/29/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Heidrun Steinle
- Department of Thoracic and Cardiovascular Surgery; University Hospital Tuebingen; Calwerstraße 7/1 Tuebingen 72076 Germany
| | - Andreas Behring
- Department of Thoracic and Cardiovascular Surgery; University Hospital Tuebingen; Calwerstraße 7/1 Tuebingen 72076 Germany
| | - Christian Schlensak
- Department of Thoracic and Cardiovascular Surgery; University Hospital Tuebingen; Calwerstraße 7/1 Tuebingen 72076 Germany
| | - Hans Peter Wendel
- Department of Thoracic and Cardiovascular Surgery; University Hospital Tuebingen; Calwerstraße 7/1 Tuebingen 72076 Germany
| | - Meltem Avci-Adali
- Department of Thoracic and Cardiovascular Surgery; University Hospital Tuebingen; Calwerstraße 7/1 Tuebingen 72076 Germany
| |
Collapse
|
22
|
Rohani L, Fabian C, Holland H, Naaldijk Y, Dressel R, Löffler-Wirth H, Binder H, Arnold A, Stolzing A. Generation of human induced pluripotent stem cells using non-synthetic mRNA. Stem Cell Res 2016; 16:662-72. [DOI: 10.1016/j.scr.2016.03.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 02/28/2016] [Accepted: 03/17/2016] [Indexed: 11/24/2022] Open
|
23
|
Poleganov MA, Eminli S, Beissert T, Herz S, Moon JI, Goldmann J, Beyer A, Heck R, Burkhart I, Barea Roldan D, Türeci Ö, Yi K, Hamilton B, Sahin U. Efficient Reprogramming of Human Fibroblasts and Blood-Derived Endothelial Progenitor Cells Using Nonmodified RNA for Reprogramming and Immune Evasion. Hum Gene Ther 2015; 26:751-66. [DOI: 10.1089/hum.2015.045] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Marco Alexander Poleganov
- TRON—Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- BioNTech RNA Pharmaceuticals GmbH, Mainz, Germany
| | | | - Tim Beissert
- TRON—Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Stephanie Herz
- TRON—Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- III. Department for Internal Medicine, Johannes Gutenberg University, Mainz, Germany
| | | | - Johanna Goldmann
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts
| | - Arianne Beyer
- TRON—Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- BioNTech RNA Pharmaceuticals GmbH, Mainz, Germany
| | - Rosario Heck
- TRON—Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- III. Department for Internal Medicine, Johannes Gutenberg University, Mainz, Germany
| | - Isabell Burkhart
- TRON—Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Diana Barea Roldan
- TRON—Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- III. Department for Internal Medicine, Johannes Gutenberg University, Mainz, Germany
| | - Özlem Türeci
- TRON—Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Kevin Yi
- Stemgent, Cambridge, Massachusetts
| | | | - Ugur Sahin
- TRON—Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- BioNTech RNA Pharmaceuticals GmbH, Mainz, Germany
- III. Department for Internal Medicine, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
24
|
Pratico ED, Feger BJ, Watson MJ, Sullenger BA, Bowles DE, Milano CA, Nair SK. RNA-Mediated Reprogramming of Primary Adult Human Dermal Fibroblasts into c-kit(+) Cardiac Progenitor Cells. Stem Cells Dev 2015; 24:2622-33. [PMID: 26176491 DOI: 10.1089/scd.2015.0073] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cardiovascular disease is the leading cause of death in the United States. Heart failure is a common, costly, and potentially fatal condition that is inadequately managed by pharmaceuticals. Cardiac repair therapies are promising alternative options. A potential cardiac repair therapy involves reprogramming human fibroblasts toward an induced cardiac progenitor-like state. We developed a clinically useful and safer reprogramming method by nonintegrative delivery of a cocktail of cardiac transcription factor-encoding mRNAs into autologous human dermal fibroblasts obtained from skin biopsies. Using this method, adult and neonatal dermal fibroblasts were reprogrammed into cardiac progenitor cells (CPCs) that expressed c-kit, Isl-1, and Nkx2.5. Furthermore, these reprogrammed CPCs differentiated into cardiomyocytes (CMs) in vitro as judged by increased expression of cardiac troponin T, α-sarcomeric actinin, RyR2, and SERCA2 and displayed enhanced caffeine-sensitive calcium release. The ability to reprogram patient-derived dermal fibroblasts into c-kit(+) CPCs and differentiate them into functional CMs provides clinicians with a potential new source of CPCs for cardiac repair from a renewable source and an alternative therapy in the treatment of heart failure.
Collapse
Affiliation(s)
- Elizabeth D Pratico
- Department of Surgery, Duke University Medical Center , Durham, North Carolina
| | - Bryan J Feger
- Department of Surgery, Duke University Medical Center , Durham, North Carolina
| | - Michael J Watson
- Department of Surgery, Duke University Medical Center , Durham, North Carolina
| | - Bruce A Sullenger
- Department of Surgery, Duke University Medical Center , Durham, North Carolina
| | - Dawn E Bowles
- Department of Surgery, Duke University Medical Center , Durham, North Carolina
| | - Carmelo A Milano
- Department of Surgery, Duke University Medical Center , Durham, North Carolina
| | - Smita K Nair
- Department of Surgery, Duke University Medical Center , Durham, North Carolina
| |
Collapse
|
25
|
Devoldere J, Dewitte H, De Smedt SC, Remaut K. Evading innate immunity in nonviral mRNA delivery: don't shoot the messenger. Drug Discov Today 2015. [PMID: 26210957 DOI: 10.1016/j.drudis.2015.07.009] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In the field of nonviral gene therapy, in vitro transcribed (IVT) mRNA has emerged as a promising tool for the delivery of genetic information. Over the past few years it has become widely known that the introduction of IVT mRNA into mammalian cells elicits an innate immune response that has favored mRNA use toward immunotherapeutic vaccination strategies. However, for non-immunotherapy-related applications this intrinsic immune-stimulatory activity directly interferes with the aimed therapeutic outcome, because it can seriously compromise the expression of the desired protein. This review presents an overview of the immune-related obstacles that limit mRNA advance for non-immunotherapy-related applications.
Collapse
Affiliation(s)
- Joke Devoldere
- Laboratory for General Biochemistry and Physical Pharmacy, Department of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Heleen Dewitte
- Laboratory for General Biochemistry and Physical Pharmacy, Department of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Stefaan C De Smedt
- Laboratory for General Biochemistry and Physical Pharmacy, Department of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Katrien Remaut
- Laboratory for General Biochemistry and Physical Pharmacy, Department of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium.
| |
Collapse
|
26
|
Michel T, Kankura A, Salinas Medina ML, Kurz J, Behring A, Avci-Adali M, Nolte A, Schlensak C, Wendel HP, Krajewski S. In Vitro Evaluation of a Novel mRNA-Based Therapeutic Strategy for the Treatment of Patients Suffering from Alpha-1-Antitrypsin Deficiency. Nucleic Acid Ther 2015; 25:235-44. [PMID: 26125662 DOI: 10.1089/nat.2015.0537] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In single-gene disorders, like alpha-1-antitrypsin deficiency (AATD), a gene mutation causes missing or dysfunctional protein synthesis. This, in turn, can lead to serious complications for the patient affected. Furthermore, single-gene disorders are associated with severe early-onset conditions and necessitate expensive lifelong care. Until nowadays, therapeutic treatment options are still limited, cost-intensive, or lack effectiveness. For these reasons, we aim to develop a novel mRNA-based therapeutic strategy for the treatment of single-gene disorders, such as AATD, which is based on the induction of de novo synthesis of the functional proteins. Therefore, an alpha-1-antitrypsin (AAT) encoding mRNA was generated by in vitro transcription. After in vitro delivery of the mRNA to different cells, protein expression and functionality, as well as adverse effects and mRNA serum stability, were analyzed. Our results show that the AAT mRNA-transfected cells express the AAT protein in high amounts within the first 24 h. Moreover, the expressed AAT protein is highly functional, since the activity of elastase is significantly inhibited. Our data also show that mRNA concentrations up to 1 μg per 150,000 cells have no adverse effects on cell viability and immune activation. Furthermore, the encapsulated AAT encoding mRNA is stable and functional in human serum for up to 30 min. Overall, the proposed project provides an innovative, highly promising, and safe therapeutic approach and, thus, promises a novel progress in the treatment of single-gene disorders, whereby affected patients could greatly benefit.
Collapse
Affiliation(s)
- Tatjana Michel
- Clinical Research Laboratory, Department of Thoracic and Cardiovascular Surgery, University Hospital Tuebingen, Tuebingen University , Tuebingen, Germany
| | - Anna Kankura
- Clinical Research Laboratory, Department of Thoracic and Cardiovascular Surgery, University Hospital Tuebingen, Tuebingen University , Tuebingen, Germany
| | - Martha L Salinas Medina
- Clinical Research Laboratory, Department of Thoracic and Cardiovascular Surgery, University Hospital Tuebingen, Tuebingen University , Tuebingen, Germany
| | - Julia Kurz
- Clinical Research Laboratory, Department of Thoracic and Cardiovascular Surgery, University Hospital Tuebingen, Tuebingen University , Tuebingen, Germany
| | - Andreas Behring
- Clinical Research Laboratory, Department of Thoracic and Cardiovascular Surgery, University Hospital Tuebingen, Tuebingen University , Tuebingen, Germany
| | - Meltem Avci-Adali
- Clinical Research Laboratory, Department of Thoracic and Cardiovascular Surgery, University Hospital Tuebingen, Tuebingen University , Tuebingen, Germany
| | - Andrea Nolte
- Clinical Research Laboratory, Department of Thoracic and Cardiovascular Surgery, University Hospital Tuebingen, Tuebingen University , Tuebingen, Germany
| | - Christian Schlensak
- Clinical Research Laboratory, Department of Thoracic and Cardiovascular Surgery, University Hospital Tuebingen, Tuebingen University , Tuebingen, Germany
| | - Hans Peter Wendel
- Clinical Research Laboratory, Department of Thoracic and Cardiovascular Surgery, University Hospital Tuebingen, Tuebingen University , Tuebingen, Germany
| | - Stefanie Krajewski
- Clinical Research Laboratory, Department of Thoracic and Cardiovascular Surgery, University Hospital Tuebingen, Tuebingen University , Tuebingen, Germany
| |
Collapse
|
27
|
Clayton ZE, Sadeghipour S, Patel S. Generating induced pluripotent stem cell derived endothelial cells and induced endothelial cells for cardiovascular disease modelling and therapeutic angiogenesis. Int J Cardiol 2015; 197:116-22. [PMID: 26123569 DOI: 10.1016/j.ijcard.2015.06.038] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 05/23/2015] [Accepted: 06/17/2015] [Indexed: 12/13/2022]
Abstract
Standard therapy for atherosclerotic coronary and peripheral arterial disease is insufficient in a significant number of patients because extensive disease often precludes effective revascularization. Stem cell therapy holds promise as a supplementary treatment for these patients, as pre-clinical and clinical research has shown transplanted cells can promote angiogenesis via direct and paracrine mechanisms. Induced pluripotent stem cells (iPSCs) are a novel cell type obtained by reprogramming somatic cells using exogenous transcription factor cocktails, which have been introduced to somatic cells via viral or plasmid constructs, modified mRNA or small molecules. IPSCs are now being used in disease modelling and drug testing and are undergoing their first clinical trial, but despite recent advances, the inefficiency of the reprogramming process remains a major limitation, as does the lack of consensus regarding the optimum transcription factor combination and delivery method and the uncertainty surrounding the genetic and epigenetic stability of iPSCs. IPSCs have been successfully differentiated into vascular endothelial cells (iPSC-ECs) and, more recently, induced endothelial cells (iECs) have also been generated by direct differentiation, which bypasses the pluripotent intermediate. IPSC-ECs and iECs demonstrate endothelial functionality in vitro and have been shown to promote neovessel growth and enhance blood flow recovery in animal models of myocardial infarction and peripheral arterial disease. Challenges remain in optimising the efficiency, safety and fidelity of the reprogramming and endothelial differentiation processes and establishing protocols for large-scale production of clinical-grade, patient-derived cells.
Collapse
Affiliation(s)
- Z E Clayton
- Heart Research Institute, 7 Eliza Street, Newtown, NSW 2042, Australia; Sydney Medical School, The University of Sydney, Australia.
| | - S Sadeghipour
- Heart Research Institute, 7 Eliza Street, Newtown, NSW 2042, Australia
| | - S Patel
- Heart Research Institute, 7 Eliza Street, Newtown, NSW 2042, Australia; Sydney Medical School, The University of Sydney, Australia; Department of Cardiology, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
| |
Collapse
|
28
|
Vallazza B, Petri S, Poleganov MA, Eberle F, Kuhn AN, Sahin U. Recombinant messenger RNA technology and its application in cancer immunotherapy, transcript replacement therapies, pluripotent stem cell induction, and beyond. WILEY INTERDISCIPLINARY REVIEWS-RNA 2015; 6:471-99. [DOI: 10.1002/wrna.1288] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 04/23/2015] [Accepted: 04/28/2015] [Indexed: 12/24/2022]
Affiliation(s)
| | | | | | | | | | - Ugur Sahin
- BioNTech RNA Pharmaceuticals GmbH; Mainz Germany
- TRON gGmbH; Mainz Germany
| |
Collapse
|
29
|
Lee K, Yu P, Lingampalli N, Kim HJ, Tang R, Murthy N. Peptide-enhanced mRNA transfection in cultured mouse cardiac fibroblasts and direct reprogramming towards cardiomyocyte-like cells. Int J Nanomedicine 2015; 10:1841-54. [PMID: 25834424 PMCID: PMC4358644 DOI: 10.2147/ijn.s75124] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The treatment of myocardial infarction is a major challenge in medicine due to the inability of heart tissue to regenerate. Direct reprogramming of endogenous cardiac fibroblasts into functional cardiomyocytes via the delivery of transcription factor mRNAs has the potential to regenerate cardiac tissue and to treat heart failure. Even though mRNA delivery to cardiac fibroblasts has the therapeutic potential, mRNA transfection in cardiac fibroblasts has been challenging. Herein, we develop an efficient mRNA transfection in cultured mouse cardiac fibroblasts via a polyarginine-fused heart-targeting peptide and lipofectamine complex, termed C-Lipo and demonstrate the partial direct reprogramming of cardiac fibroblasts towards cardiomyocyte cells. C-Lipo enabled the mRNA-induced direct cardiac reprogramming due to its efficient transfection with low toxicity, which allowed for multiple transfections of Gata4, Mef2c, and Tbx5 (GMT) mRNAs for a period of 2 weeks. The induced cardiomyocyte-like cells had α-MHC promoter-driven GFP expression and striated cardiac muscle structure from α-actinin immunohistochemistry. GMT mRNA transfection of cultured mouse cardiac fibroblasts via C-Lipo significantly increased expression of the cardiomyocyte marker genes, Actc1, Actn2, Gja1, Hand2, and Tnnt2, after 2 weeks of transfection. Moreover, this study provides the first direct evidence that the stoichiometry of the GMT reprogramming factors influence the expression of cardiomyocyte marker genes. Our results demonstrate that mRNA delivery is a potential approach for cardiomyocyte generation.
Collapse
Affiliation(s)
- Kunwoo Lee
- Department of Bioengineering, University of California, Berkeley, CA, USA ; UC Berkeley and UCSF Joint Graduate Program in Bioengineering, Berkeley/San Francisco, CA, USA
| | - Pengzhi Yu
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA, USA
| | - Nithya Lingampalli
- Department of Bioengineering, University of California, Berkeley, CA, USA
| | - Hyun Jin Kim
- Department of Bioengineering, University of California, Berkeley, CA, USA
| | - Richard Tang
- Department of Bioengineering, University of California, Berkeley, CA, USA
| | - Niren Murthy
- Department of Bioengineering, University of California, Berkeley, CA, USA ; UC Berkeley and UCSF Joint Graduate Program in Bioengineering, Berkeley/San Francisco, CA, USA
| |
Collapse
|
30
|
Abstract
Growing knowledge concerning transcriptional control of cellular pluripotency has led to the discovery that the fate of differentiated cells can be reversed, which has resulted in the generation, by means of genetic manipulation, of induced pluripotent stem cells. Overexpression of just four pluripotency-related transcription factors, namely Oct3/4, Sox2, Klf4, and c-Myc (Yamanaka factors, OKSM), in fibroblasts appears sufficient to produce this new cell type. Currently, we know that these factors induce several changes in genetic program of differentiated cells that can be divided in two general phases: the initial one is stochastic, and the subsequent one is highly hierarchical and organised. This review briefly discusses the molecular events leading to induction of pluripotency in response to forced presence of OKSM factors in somatic cells. We also discuss other reprogramming strategies used thus far as well as the advantages and disadvantages of laboratory approaches towards pluripotency induction in different cell types.
Collapse
|
31
|
Pluripotent state induction in mouse embryonic fibroblast using mRNAs of reprogramming factors. Int J Mol Sci 2014; 15:21840-64. [PMID: 25437916 PMCID: PMC4284681 DOI: 10.3390/ijms151221840] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Revised: 10/31/2014] [Accepted: 11/05/2014] [Indexed: 12/12/2022] Open
Abstract
Reprogramming of somatic cells has great potential to provide therapeutic treatments for a number of diseases as well as provide insight into mechanisms underlying early embryonic development. Improvement of induced Pluripotent Stem Cells (iPSCs) generation through mRNA-based methods is currently an area of intense research. This approach provides a number of advantages over previously used methods such as DNA integration and insertional mutagenesis. Using transfection of specifically synthesized mRNAs of various pluripotency factors, we generated iPSCs from mouse embryonic fibroblast (MEF) cells. The genetic, epigenetic and functional properties of the iPSCs were evaluated at different times during the reprogramming process. We successfully introduced synthesized mRNAs, which localized correctly inside the cells and exhibited efficient and stable translation into proteins. Our work demonstrated a robust up-regulation and a gradual promoter de-methylation of the pluripotency markers, including non-transfected factors such as Nanog, SSEA-1 (stage-specific embryonic antigen 1) and Rex-1 (ZFP-42, zinc finger protein 42). Using embryonic stem cells (ESCs) conditions to culture the iPS cells resulted in formation of ES-like colonies after approximately 12 days with only five daily repeated transfections. The colonies were positive for alkaline phosphatase and pluripotency-specific markers associated with ESCs. This study revealed the ability of pluripotency induction and generation of mouse mRNA induced pluripotent stem cells (mRNA iPSCs) using transfection of specifically synthesized mRNAs of various pluripotency factors into mouse embryonic fibroblast (MEF) cells. These generated iPSCs exhibited molecular and functional properties similar to ESCs, which indicate that this method is an efficient and viable alternative to ESCs and can be used for further biological, developmental and therapeutic investigations.
Collapse
|
32
|
Heng BC, Fussenegger M. Integration-free reprogramming of human somatic cells to induced pluripotent stem cells (iPSCs) without viral vectors, recombinant DNA, and genetic modification. Methods Mol Biol 2014; 1151:75-94. [PMID: 24838880 DOI: 10.1007/978-1-4939-0554-6_6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Stem cells are envisaged to be integral components of multicellular systems engineered for therapeutic applications. The reprogramming of somatic cells to induced pluripotent stem cells (iPSCs) via recombinant expression of a limited number of transcription factors, which was first achieved by Yamanaka and colleagues in 2007, heralded a major breakthrough in the stem cell field. Since then, there has been rapid progress in the field of iPSC generation, including the identification of various small molecules that can enhance reprogramming efficiency and reduce the number of different transcription factors required for reprogramming. Nevertheless, the major obstacles facing clinical applications of iPSCs are safety concerns associated with the use of viral vectors and recombinant DNA for expressing the appropriate transcription factors during reprogramming. In particular, permanent genetic modifications to newly reprogrammed iPSCs have to be avoided in order to meet stringent safety requirements for clinical therapy. These safety challenges can be overcome by new technology platforms that enable cellular reprogramming to iPSCs without the need to utilize either recombinant DNA or viral vectors. The use of recombinant cell-penetrating peptides and direct transfection of synthetic mRNA encoding appropriate transcription factors have both been shown to successfully reprogram somatic cells to iPSCs. It has also been shown more recently that the direct transfection of certain miRNA species can reprogram somatic cells to pluripotency without the need for any of the transcription factors commonly utilized for iPSC generation. This chapter describes protocols for iPSC generation with these new techniques, which would obviate the use of recombinant DNA and viral vectors in cellular reprogramming, thus avoiding permanent genetic modification to the reprogrammed cells.
Collapse
Affiliation(s)
- Boon Chin Heng
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, Basel, CH-4058, Switzerland
| | | |
Collapse
|
33
|
Tavernier G, Mlody B, Demeester J, Adjaye J, De Smedt SC. Current methods for inducing pluripotency in somatic cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2013; 25:2765-2771. [PMID: 23529911 DOI: 10.1002/adma.201204874] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Indexed: 06/02/2023]
Abstract
The groundbreaking discovery of reprogramming fibroblasts towards pluripotency merely by introducing four transcription factors (OCT4, SOX2, KLF4 and c-MYC) by means of retroviral transduction has created a promising revolution in the field of regenerative medicine. These so-called induced pluripotent stem cells (iPSCs) can provide a cell source for disease-modelling, drug-screening platforms, and transplantation strategies to treat incurable degenerative diseases, while circumventing the ethical issues and immune rejections associated with the use of non-autologous embryonic stem cells. The risk of insertional mutagenesis, caused both by the viral and transgene nature of the technique has proven to be the major limitation for iPSCs to be used in a clinical setting. In view of this, a variety of alternative techniques have been developed to induce pluripotency in somatic cells. This review provides an overview on current reprogramming protocols, discusses their pros and cons and future challenges to provide safe and transgene-free iPSCs.
Collapse
Affiliation(s)
- Geertrui Tavernier
- Ghent University, Laboratory of General Biochemistry and Physical Pharmacy, Ghent Research Group on Nanomedicines, Harelbekestraat 72, Ghent, Belgium
| | | | | | | | | |
Collapse
|
34
|
Heng BC, Heinimann K, Miny P, Iezzi G, Glatz K, Scherberich A, Zulewski H, Fussenegger M. mRNA transfection-based, feeder-free, induced pluripotent stem cells derived from adipose tissue of a 50-year-old patient. Metab Eng 2013; 18:9-24. [PMID: 23542141 DOI: 10.1016/j.ymben.2013.02.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2012] [Revised: 02/02/2013] [Accepted: 02/20/2013] [Indexed: 01/22/2023]
Abstract
Induced pluripotent stem cells (iPSC) have successfully been derived from somatic fibroblasts through transfection of synthetic modified mRNA encoding transcription factors. This technique obviates the use of recombinant DNA and viral vectors in cellular reprogramming. The present study derived iPSC from adipose-derived mesenchymal stem cells (of a 50-year-old female patient) by utilizing a similar technique, but with defined culture medium without feeder cells, during both reprogramming and propagation. Clonal selection was performed to yield 12 putative iPSC lines from individual colonies of nascent reprogrammed cells, starting from 150,000 cells. However, only seven lines maintained their undifferentiated state after 10 continuous serial passages. These seven lines were then subjected to a rigorous battery of analyses to confirm their identity as iPSC. These tests included immunostaining, flow cytometry, qRT-PCR, in vitro differentiation assay, and teratoma formation assay within SCID mice. Positive results were consistently observed in all analyses, thus verifying the cells as fully reprogrammed iPSC. While all 7 iPSC lines displayed normal karyogram up to passage 13, chromosomal anomalies occurred in 4 of 7 lines with extended in vitro culture beyond 24 serial passages. Only three lines retained normal karyotype of 46,XX. The remaining four lines displayed mosaicism of normal and abnormal karyotypes. Hence, this study successfully derived iPSC from abundant and easily accessible adipose tissues of a middle-aged patient; utilizing a mRNA-based integration-free technique under feeder-free conditions. This is a step forward in translating iPSC into personalized regenerative medicine within the clinic.
Collapse
Affiliation(s)
- Boon Chin Heng
- Department of Biosystems Science and Engineering-D-BSSE, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Awe JP, Crespo AV, Li Y, Kiledjian M, Byrne JA. BAY11 enhances OCT4 synthetic mRNA expression in adult human skin cells. Stem Cell Res Ther 2013; 4:15. [PMID: 23388106 PMCID: PMC3706837 DOI: 10.1186/scrt163] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2012] [Accepted: 01/30/2013] [Indexed: 12/15/2022] Open
Abstract
Introduction The OCT4 transcription factor is involved in many cellular processes, including development, reprogramming, maintaining pluripotency and differentiation. Synthetic OCT4 mRNA was recently used (in conjunction with other reprogramming factors) to generate human induced pluripotent stem cells. Here, we discovered that BAY 11-7082 (BAY11), at least partially through an NF-κB-inhibition based mechanism, could significantly increase the expression of OCT4 following transfection of synthetic mRNA (synRNA) into adult human skin cells. Methods We tested various chemical and molecular small molecules on their ability to suppress the innate immune response seen upon synthetic mRNA transfection. Three molecules - B18R, BX795, and BAY11 - were used in immunocytochemical and proliferation-based assays. We also utilized global transcriptional meta-analysis coupled with quantitative PCR to identify relative gene expression downstream of OCT4. Results We found that human skin cells cultured in the presence of BAY11 resulted in reproducible increased expression of OCT4 that did not inhibit normal cell proliferation. The increased levels of OCT4 resulted in significantly increased expression of genes downstream of OCT4, including the previously identified SPP1, DUSP4 and GADD45G, suggesting the expressed OCT4 was functional. We also discovered a novel OCT4 putative downstream target gene SLC16A9 which demonstrated significantly increased expression following elevation of OCT4 levels. Conclusions For the first time we have shown that small molecule-based stabilization of synthetic mRNA expression can be achieved with use of BAY11. This small molecule-based inhibition of innate immune responses and subsequent robust expression of transfected synthetic mRNAs may have multiple applications for future cell-based research and therapeutics.
Collapse
|
36
|
Drews K, Jozefczuk J, Prigione A, Adjaye J. Human induced pluripotent stem cells—from mechanisms to clinical applications. J Mol Med (Berl) 2012; 90:735-45. [PMID: 22643868 DOI: 10.1007/s00109-012-0913-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 05/03/2012] [Accepted: 05/06/2012] [Indexed: 01/30/2023]
Affiliation(s)
- Katharina Drews
- Molecular Embryology and Aging Group, Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Ihnestr. 63-73 14195, Berlin, Germany
| | | | | | | |
Collapse
|