1
|
Wu S, Zhou Z, Li Y, Jiang J. Advancements in diabetic foot ulcer research: Focus on mesenchymal stem cells and their exosomes. Heliyon 2024; 10:e37031. [PMID: 39286219 PMCID: PMC11403009 DOI: 10.1016/j.heliyon.2024.e37031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/11/2024] [Accepted: 08/26/2024] [Indexed: 09/19/2024] Open
Abstract
Diabetes represents a widely acknowledged global public health concern. Diabetic foot ulcer (DFU) stands as one of the most severe complications of diabetes, its occurrence imposing a substantial economic burden on patients, profoundly impacting their quality of life. Despite the deepening comprehension regarding the pathophysiology and cellular as well as molecular responses of DFU, the current therapeutic arsenal falls short of efficacy, failing to offer a comprehensive remedy for deep-seated chronic wounds and microvascular occlusions. Conventional treatments merely afford symptomatic alleviation or retard the disease's advancement, devoid of the capacity to effectuate further restitution of compromised vasculature and nerves. An escalating body of research underscores the prominence of mesenchymal stem cells (MSCs) owing to their paracrine attributes and anti-inflammatory prowess, rendering them a focal point in the realm of chronic wound healing. Presently, MSCs have been validated as a highly promising cellular therapeutic approach for DFU, capable of effectuating cellular repair, epithelialization, granulation tissue formation, and neovascularization by means of targeted differentiation, angiogenesis promotion, immunomodulation, and paracrine activities, thereby fostering wound healing. The secretome of MSCs comprises cytokines, growth factors, chemokines, alongside exosomes harboring mRNA, proteins, and microRNAs, possessing immunomodulatory and regenerative properties. The present study provides a systematic exposition on the etiology of DFU and elucidates the intricate molecular mechanisms and diverse functionalities of MSCs in the context of DFU treatment, thereby furnishing pioneering perspectives aimed at harnessing the therapeutic potential of MSCs for DFU management and advancing wound healing processes.
Collapse
Affiliation(s)
- ShuHui Wu
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - ZhongSheng Zhou
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yang Li
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jinlan Jiang
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
2
|
Xia Y, Wu P, Chen H, Chen Z. Advances in stem cell therapy for diabetic foot. Front Genet 2024; 15:1427205. [PMID: 39290985 PMCID: PMC11405205 DOI: 10.3389/fgene.2024.1427205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/14/2024] [Indexed: 09/19/2024] Open
Abstract
Diabetic Foot Ulcers (DFU) represent a grave complication often encountered in the advanced stages of diabetes mellitus. They frequently lead to recurrent hospitalizations and, in severe cases, can result in life-threatening conditions such as infections, gangrene, and even amputation Diabetic foot ulcers (DFU), as a serious complication in the late stage of diabetes mellitus, are prone to lead to repeated hospitalization, and in severe cases, infection, gangrene, and even amputation. Although there are many methods for treating diabetic foot, there is no clear and effective method to reduce the amputation rate of diabetic foot patients. In recent years, advancements in the understanding of stem cell therapy for the treatment of DFU have shed light on its potential as a novel therapeutic approach. In recent years, as the research on stem cell therapy for diabetic foot is gradually deepening, stem cells are expected to become a new therapeutic method for treating DFU in the future. Their therapeutic effects are through promoting angiogenesis, secreting paracrine factors, controlling inflammation, promoting collagen deposition, and regulating immunity, etc. Despite numerous studies confirming the efficacy of stem cell therapy in treating DFU, there is still a need for the establishment of standardized treatment protocols. Although numerous studies have shown that stem cell therapy for DFU is real and effective, there has not yet been a standardized treatment protocol. This article reviews studies related to stem cell therapy for DFU, looking at the mechanism of action, types of stem cells, and modes of administration.
Collapse
Affiliation(s)
- Yinfeng Xia
- Department of Burn and Plastic Surgery, Fuling Central Hospital, Chongqing University, Chongqing, China
| | - Ping Wu
- Department of Burn and Plastic Surgery, Fuling Central Hospital, Chongqing University, Chongqing, China
| | - Hong Chen
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhiyong Chen
- Department of Burn and Plastic Surgery, Fuling Central Hospital, Chongqing University, Chongqing, China
| |
Collapse
|
3
|
Chiu H, Chau Fang A, Chen YH, Koi RX, Yu KC, Hsieh LH, Shyu YM, Amer TA, Hsueh YJ, Tsao YT, Shen YJ, Wang YM, Chen HC, Lu YJ, Huang CC, Lu TT. Mechanistic and Kinetic Insights into Cellular Uptake of Biomimetic Dinitrosyl Iron Complexes and Intracellular Delivery of NO for Activation of Cytoprotective HO-1. JACS AU 2024; 4:1550-1569. [PMID: 38665642 PMCID: PMC11040670 DOI: 10.1021/jacsau.4c00064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/29/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024]
Abstract
Dinitrosyl iron unit (DNIU), [Fe(NO)2], is a natural metallocofactor for biological storage, delivery, and metabolism of nitric oxide (NO). In the attempt to gain a biomimetic insight into the natural DNIU under biological system, in this study, synthetic dinitrosyl iron complexes (DNICs) [(NO)2Fe(μ-SCH2CH2COOH)2Fe(NO)2] (DNIC-COOH) and [(NO)2Fe(μ-SCH2CH2COOCH3)2Fe(NO)2] (DNIC-COOMe) were employed to investigate the structure-reactivity relationship of mechanism and kinetics for cellular uptake of DNICs, intracellular delivery of NO, and activation of cytoprotective heme oxygenase (HO)-1. After rapid cellular uptake of dinuclear DNIC-COOMe through a thiol-mediated pathway (tmax = 0.5 h), intracellular assembly of mononuclear DNIC [(NO)2Fe(SR)(SCys)]n-/[(NO)2Fe(SR)(SCys-protein)]n- occurred, followed by O2-induced release of free NO (tmax = 1-2 h) or direct transfer of NO to soluble guanylate cyclase, which triggered the downstream HO-1. In contrast, steady kinetics for cellular uptake of DNIC-COOH via endocytosis (tmax = 2-8 h) and for intracellular release of NO (tmax = 4-6 h) reflected on the elevated activation of cytoprotective HO-1 (∼50-150-fold change at t = 3-10 h) and on the improved survival of DNIC-COOH-primed mesenchymal stem cell (MSC)/human corneal endothelial cell (HCEC) under stressed conditions. Consequently, this study unravels the bridging thiolate ligands in dinuclear DNIC-COOH/DNIC-COOMe as a switch to control the mechanism, kinetics, and efficacy for cellular uptake of DNICs, intracellular delivery of NO, and activation of cytoprotective HO-1, which poses an implication on enhanced survival of postengrafted MSC for advancing the MSC-based regenerative medicine.
Collapse
Affiliation(s)
- Han Chiu
- Institute
of Biomedical Engineering, National Tsing
Hua University, Hsinchu 30013 Taiwan
| | - Anyelina Chau Fang
- Institute
of Biomedical Engineering, National Tsing
Hua University, Hsinchu 30013 Taiwan
| | - Yi-Hong Chen
- Institute
of Biomedical Engineering, National Tsing
Hua University, Hsinchu 30013 Taiwan
| | - Ru Xin Koi
- Institute
of Biomedical Engineering, National Tsing
Hua University, Hsinchu 30013 Taiwan
| | - Kai-Ching Yu
- Institute
of Biomedical Engineering, National Tsing
Hua University, Hsinchu 30013 Taiwan
| | - Li-Hung Hsieh
- Institute
of Biomedical Engineering, National Tsing
Hua University, Hsinchu 30013 Taiwan
| | - Yueh-Ming Shyu
- Institute
of Biomedical Engineering, National Tsing
Hua University, Hsinchu 30013 Taiwan
| | - Tarik Abdelkareem
Mostafa Amer
- Department
of Biological Science and Technology, Institute of Molecular Medicine
and Bioengineering, College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Yi-Jen Hsueh
- Department
of Ophthalmology and Center for Tissue Engineering, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Yu-Ting Tsao
- Department
of Ophthalmology and Center for Tissue Engineering, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Yang-Jin Shen
- College
of Medicine, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
- Department
of Neurosurgery, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Yun-Ming Wang
- Department
of Biological Science and Technology, Institute of Molecular Medicine
and Bioengineering, College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Hung-Chi Chen
- Department
of Ophthalmology and Center for Tissue Engineering, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- College
of Medicine, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
| | - Yu-Jen Lu
- College
of Medicine, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
- Department
of Neurosurgery, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Chieh-Cheng Huang
- Institute
of Biomedical Engineering, National Tsing
Hua University, Hsinchu 30013 Taiwan
| | - Tsai-Te Lu
- Institute
of Biomedical Engineering, National Tsing
Hua University, Hsinchu 30013 Taiwan
- Department
of Chemistry, National Tsing Hua University, Hsinchu 30013 Taiwan
- Department
of Chemistry, Chung Yuan Christian University, Taoyuan 32023, Taiwan
| |
Collapse
|
4
|
Ma K, Luo C, Du M, Wei Q, Luo Q, Zheng L, Liao M. Advances in stem cells treatment of diabetic wounds: A bibliometric analysis via CiteSpace. Skin Res Technol 2024; 30:e13665. [PMID: 38558448 PMCID: PMC10982678 DOI: 10.1111/srt.13665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 03/09/2024] [Indexed: 04/04/2024]
Abstract
Diabetes is a chronic medical condition that may induce complications such as poor wound healing. Stem cell therapies have shown promise in treating diabetic wounds with pre-clinical and clinical studies. However, little bibliometric analysis has been carried out on stem cells in the treatment of diabetic wounds. In this study, we retrieved relevant papers published from January 1, 2003, to December 31, 2023, from Chinese and English databases. CiteSpace software was used to analyze the authors, institutions, and keywords by standard bibliometric indicators. Our analysis findings indicated that publications on stem cells in the treatment of diabetic wounds kept increasing. The most prolific author was Qian Cai (n = 7) and Mohammad Bayat (n = 16) in Chinese and English databases, respectively. Institutions distribution analysis showed that Chinese institutions conducted most publications, and the most prolific institution was the Chinese People's Liberation Army General Hospital (n = 9) and Shahid Beheshti University of Medical Sciences (n = 17) in Chinese and English databases, respectively. The highest centrality keyword in Chinese and English databases was "wound healing" (0.54) and "in vitro" (0.13), respectively. There were 8 and 11 efficient and convincing keyword clusters produced by a log-likelihood ratio in the Chinese and English databases, respectively. The strongest burst keyword was "exosome" (strength 3.57) and "endothelial progenitor cells" (strength 7.87) in the Chinese and English databases, respectively. These findings indicated a direction for future therapies and research on stem cells in the treatment of diabetic wounds.
Collapse
Affiliation(s)
- Ke Ma
- Department of Plastic & Cosmetic SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ RegenerationThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
- Pharmaceutical CollegeGuangxi Medical UniversityNanningChina
| | - Chao Luo
- Shanghai Mental Health CenterShanghai Jiao Tong University, School of MedicineShanghaiChina
| | - Mindong Du
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ RegenerationThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
- Department of Orthopaedics Trauma and Hand SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Qiang Wei
- Department of Plastic & Cosmetic SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Qianxuan Luo
- Department of Plastic & Cosmetic SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Li Zheng
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ RegenerationThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
- Pharmaceutical CollegeGuangxi Medical UniversityNanningChina
| | - Mingde Liao
- Department of Plastic & Cosmetic SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| |
Collapse
|
5
|
Hetta HF, Elsaghir A, Sijercic VC, Akhtar MS, Gad SA, Moses A, Zeleke MS, Alanazi FE, Ahmed AK, Ramadan YN. Mesenchymal stem cell therapy in diabetic foot ulcer: An updated comprehensive review. Health Sci Rep 2024; 7:e2036. [PMID: 38650719 PMCID: PMC11033295 DOI: 10.1002/hsr2.2036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/06/2024] [Accepted: 03/19/2024] [Indexed: 04/25/2024] Open
Abstract
Background Diabetes has evolved into a worldwide public health issue. One of the most serious complications of diabetes is diabetic foot ulcer (DFU), which frequently creates a significant financial strain on patients and lowers their quality of life. Up until now, there has been no curative therapy for DFU, only symptomatic relief or an interruption in the disease's progression. Recent studies have focused attention on mesenchymal stem cells (MSCs), which provide innovative and potential treatment candidates for several illnesses as they can differentiate into various cell types. They are mostly extracted from the placenta, adipose tissue, umbilical cord (UC), and bone marrow (BM). Regardless of their origin, they show comparable features and small deviations. Our goal is to investigate MSCs' therapeutic effects, application obstacles, and patient benefit strategies for DFU therapy. Methodology A comprehensive search was conducted using specific keywords relating to DFU, MSCs, and connected topics in the databases of Medline, Scopus, Web of Science, and PubMed. The main focus of the selection criteria was on English-language literature that explored the relationship between DFU, MSCs, and related factors. Results and Discussion Numerous studies are being conducted and have demonstrated that MSCs can induce re-epithelialization and angiogenesis, decrease inflammation, contribute to immunological modulation, and subsequently promote DFU healing, making them a promising approach to treating DFU. This review article provides a general snapshot of DFU (including clinical presentation, risk factors and etiopathogenesis, and conventional treatment) and discusses the clinical progress of MSCs in the management of DFU, taking into consideration the side effects and challenges during the application of MSCs and how to overcome these challenges to achieve maximum benefits. Conclusion The incorporation of MSCs in the management of DFU highlights their potential as a feasible therapeutic strategy. Establishing a comprehensive understanding of the complex relationship between DFU pathophysiology, MSC therapies, and related obstacles is essential for optimizing therapy outcomes and maximizing patient benefits.
Collapse
Affiliation(s)
- Helal F. Hetta
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative MedicineFaculty of Pharmacy, University of TabukTabukSaudi Arabia
- Department of Medical Microbiology and ImmunologyFaculty of Medicine, Assiut UniversityAssiutEgypt
| | - Alaa Elsaghir
- Department of Microbiology and ImmunologyFaculty of Pharmacy, Assiut UniversityAssiutEgypt
| | | | | | - Sayed A. Gad
- Faculty of Medicine, Assiut UniversityAssiutEgypt
| | | | - Mahlet S. Zeleke
- Menelik II Medical and Health Science College, Kotebe Metropolitan UniversityAddis AbabaEthiopia
| | - Fawaz E. Alanazi
- Department of Pharmacology and ToxicologyFaculty of Pharmacy, University of TabukTabukSaudi Arabia
| | | | - Yasmin N. Ramadan
- Department of Microbiology and ImmunologyFaculty of Pharmacy, Assiut UniversityAssiutEgypt
| |
Collapse
|
6
|
Zhang HM, Yang ML, Xi JZ, Yang GY, Wu QN. Mesenchymal stem cells-based drug delivery systems for diabetic foot ulcer: A review. World J Diabetes 2023; 14:1585-1602. [DOI: 10.4239/wjd.v14.i11.1585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/16/2023] [Accepted: 09/11/2023] [Indexed: 11/14/2023] Open
Abstract
The complication of diabetes, which is known as diabetic foot ulcer (DFU), is a significant concern due to its association with high rates of disability and mortality. It not only severely affects patients’ quality of life, but also imposes a substantial burden on the healthcare system. In spite of efforts made in clinical practice, treating DFU remains a challenging task. While mesenchymal stem cell (MSC) therapy has been extensively studied in treating DFU, the current efficacy of DFU healing using this method is still inadequate. However, in recent years, several MSCs-based drug delivery systems have emerged, which have shown to increase the efficacy of MSC therapy, especially in treating DFU. This review summarized the application of diverse MSCs-based drug delivery systems in treating DFU and suggested potential prospects for the future research.
Collapse
Affiliation(s)
- Hong-Min Zhang
- Department of Endocrinology, People’s Hospital of Chongqing Liangjiang New Area, Chongqing 400030, China
| | - Meng-Liu Yang
- Department of Endocrinology, The Second Affiliated Hospital of The Chongqing Medical University, Chongqing 400030, China
| | - Jia-Zhuang Xi
- Department of Endocrinology, Dazu Hospital of Chongqing Medical University, The People’s Hospital of Dazu, Chongqing 406230, China
| | - Gang-Yi Yang
- Department of Endocrinology, The Second Affiliated Hospital of The Chongqing Medical University, Chongqing 400030, China
| | - Qi-Nan Wu
- Department of Endocrinology, Dazu Hospital of Chongqing Medical University, The People’s Hospital of Dazu, Chongqing 406230, China
| |
Collapse
|
7
|
Sukmana BI, Margiana R, Almajidi YQ, Almalki SG, Hjazi A, Shahab S, Romero-Parra RM, Alazbjee AAA, Alkhayyat A, John V. Supporting wound healing by mesenchymal stem cells (MSCs) therapy in combination with scaffold, hydrogel, and matrix; State of the art. Pathol Res Pract 2023; 248:154575. [PMID: 37285734 DOI: 10.1016/j.prp.2023.154575] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/09/2023]
Abstract
Non-healing wounds impose a huge annual cost on the survival of different countries and large populations in the world. Wound healing is a complex and multi-step process, the speed and quality of which can be changed by various factors. To promote wound healing, compounds such as platelet-rich plasma, growth factors, platelet lysate, scaffolds, matrix, hydrogel, and cell therapy, in particular, with mesenchymal stem cells (MSCs) are suggested. Nowadays, the use of MSCs has attracted a lot of attention. These cells can induce their effect by direct effect and secretion of exosomes. On the other hand, scaffolds, matrix, and hydrogels provide suitable conditions for wound healing and the growth, proliferation, differentiation, and secretion of cells. In addition to generating suitable conditions for wound healing, the combination of biomaterials and MSCs increases the function of these cells at the site of injury by favoring their survival, proliferation, differentiation, and paracrine activity. In addition, other compounds such as glycol, sodium alginate/collagen hydrogel, chitosan, peptide, timolol, and poly(vinyl) alcohol can be used along with these treatments to increase the effectiveness of treatments in wound healing. In this review article, we take a glimpse into the merging scaffolds, hydrogels, and matrix application with MSCs therapy to favor wound healing.
Collapse
Affiliation(s)
- Bayu Indra Sukmana
- Oral Biology Department, Lambung Mangkurat University, Banjarmasin, Indonesia
| | - Ria Margiana
- Department of Anatomy, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia; Master's Programme Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia; Dr. Soetomo General Academic Hospital, Surabaya, Indonesia.
| | - Yasir Qasim Almajidi
- Department of Pharmacy (Pharmaceutics), Baghdad College of Medical Sciences, Baghdad, Iraq
| | - Sami G Almalki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia
| | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Sana Shahab
- Department of Business Administration, College of Business Administration, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | | | | | - Afa Alkhayyat
- College of Pharmacy, the Islamic University, 54001 Najaf, Iraq
| | - Vivek John
- Uttaranchal Institute of Technology, Uttaranchal University, Dehradun 248007, India
| |
Collapse
|
8
|
Yu X, Liu P, Li Z, Zhang Z. Function and mechanism of mesenchymal stem cells in the healing of diabetic foot wounds. Front Endocrinol (Lausanne) 2023; 14:1099310. [PMID: 37008908 PMCID: PMC10061144 DOI: 10.3389/fendo.2023.1099310] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
Diabetes has become a global public health problem. Diabetic foot is one of the most severe complications of diabetes, which often places a heavy economic burden on patients and seriously affects their quality of life. The current conventional treatment for the diabetic foot can only relieve the symptoms or delay the progression of the disease but cannot repair damaged blood vessels and nerves. An increasing number of studies have shown that mesenchymal stem cells (MSCs) can promote angiogenesis and re-epithelialization, participate in immune regulation, reduce inflammation, and finally repair diabetic foot ulcer (DFU), rendering it an effective means of treating diabetic foot disease. Currently, stem cells used in the treatment of diabetic foot are divided into two categories: autologous and allogeneic. They are mainly derived from the bone marrow, umbilical cord, adipose tissue, and placenta. MSCs from different sources have similar characteristics and subtle differences. Mastering their features to better select and use MSCs is the premise of improving the therapeutic effect of DFU. This article reviews the types and characteristics of MSCs and their molecular mechanisms and functions in treating DFU to provide innovative ideas for using MSCs to treat diabetic foot and promote wound healing.
Collapse
Affiliation(s)
- Xiaoping Yu
- School of Medicine and Nursing, Chengdu University, Chengdu, Sichuan, China
| | - Pan Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zheng Li
- People’s Hospital of Jiulongpo District, Chongqing, China
| | - Zhengdong Zhang
- School of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, China
- Department of Orthopedics, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| |
Collapse
|
9
|
Dama G, Du J, Zhu X, Liu Y, Lin J. Bone marrow-derived mesenchymal stem cells: A promising therapeutic option for the treatment of diabetic foot ulcers. Diabetes Res Clin Pract 2023; 195:110201. [PMID: 36493913 DOI: 10.1016/j.diabres.2022.110201] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 08/31/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Chronic wounds fail to heal through the three normal stages of healing (inflammatory, proliferative, and remodelling), resulting in a chronic tissue injury that is not repaired within the average time limit. Patients suffering from type 1 and type 2 diabetes are prone to develop diabetic foot ulcers (DFUs), which commonly develop into chronic wounds that are non treatable with conventional therapies. DFU develops due to various risk factors, such as peripheral neuropathy, peripheral vascular disease, arterial insufficiency, foot deformities, trauma and impaired resistance to infection. DFUs have gradually become a major problem in the health care system worldwide. In this review, we not only focus on the pathogenesis of DFU but also comprehensively summarize the outcomes of preclinical and clinical studies thus far and the potential therapeutic mechanism of bone marrow-derived mesenchymal stem cells (BMSCs) for the treatment of DFU. Based on the published results, BMSC transplantation can contribute to wound healing through growth factor secretion, anti-inflammation, differentiation into tissue-specific cells, neovascularization, re-epithelialization and angiogenesis in DFUs. Moreover, clinical trials showed that BMSC treatment in patients with diabetic ulcers improved ulcer healing and the ankle-brachial index, ameliorated pain scores, and enhanced claudication walking distances with no reported complications. In conclusion, although BMSC transplantation exhibits promising therapeutic potential in DFU treatment, additional studies should be performed to confirm their efficacy and long-term safety in DFU patients.
Collapse
Affiliation(s)
- Ganesh Dama
- Stem Cell and Biotherapy Engineering Research Center of Henan, Henan Joint International Research Laboratory of Stem Cell Medicine, Xinxiang Medical University, East of JinSui Road #601, 453003 Xinxiang, China; Department of Community Health, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Malaysia
| | - Jiang Du
- Stem Cell and Biotherapy Engineering Research Center of Henan, Henan Joint International Research Laboratory of Stem Cell Medicine, Xinxiang Medical University, East of JinSui Road #601, 453003 Xinxiang, China; College of Medical Engineering, Xinxiang Medical University, East of JinSui Road #601, 453003 Xinxiang, China
| | - Xinxing Zhu
- Stem Cell and Biotherapy Engineering Research Center of Henan, Henan Joint International Research Laboratory of Stem Cell Medicine, Xinxiang Medical University, East of JinSui Road #601, 453003 Xinxiang, China; College of Medical Engineering, Xinxiang Medical University, East of JinSui Road #601, 453003 Xinxiang, China
| | - Yanli Liu
- Stem Cell and Biotherapy Engineering Research Center of Henan, Henan Joint International Research Laboratory of Stem Cell Medicine, Xinxiang Medical University, East of JinSui Road #601, 453003 Xinxiang, China; College of Life Sciences and Technology, Xinxiang Medical University, East of JinSui Road #601, 453003 Xinxiang, China.
| | - Juntang Lin
- Stem Cell and Biotherapy Engineering Research Center of Henan, Henan Joint International Research Laboratory of Stem Cell Medicine, Xinxiang Medical University, East of JinSui Road #601, 453003 Xinxiang, China; College of Medical Engineering, Xinxiang Medical University, East of JinSui Road #601, 453003 Xinxiang, China; College of Life Sciences and Technology, Xinxiang Medical University, East of JinSui Road #601, 453003 Xinxiang, China.
| |
Collapse
|
10
|
Leal EC, Carvalho E. Heme Oxygenase-1 as Therapeutic Target for Diabetic Foot Ulcers. Int J Mol Sci 2022; 23:ijms231912043. [PMID: 36233341 PMCID: PMC9569859 DOI: 10.3390/ijms231912043] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/04/2022] [Accepted: 10/09/2022] [Indexed: 11/22/2022] Open
Abstract
A diabetic foot ulcer (DFU) is one of the major complications of diabetes. Wound healing under diabetic conditions is often impaired. This is in part due to the excessive oxidative stress, prolonged inflammation, immune cell dysfunction, delayed re-epithelialization, and decreased angiogenesis present at the wound site. As a result of these multifactorial impaired healing pathways, it has been difficult to develop effective therapeutic strategies for DFU. Heme oxygenase-1 (HO-1) is the rate-limiting enzyme in heme degradation generating carbon monoxide (CO), biliverdin (BV) which is converted into bilirubin (BR), and iron. HO-1 is a potent antioxidant. It can act as an anti-inflammatory, proliferative, angiogenic and cytoprotective enzyme. Due to its biological functions, HO-1 plays a very important role in wound healing, in part mediated through the biologically active end products generated by its enzymatic activity, particularly CO, BV, and BR. Therapeutic strategies involving the activation of HO-1, or the topical application of its biologically active end products are important in diabetic wound healing. Therefore, HO-1 is an attractive therapeutic target for DFU treatment. This review will provide an overview and discussion of the importance of HO-1 as a therapeutic target for diabetic wound healing.
Collapse
Affiliation(s)
- Ermelindo Carreira Leal
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- Institute of Interdisciplinary Research, University of Coimbra, 3004-504 Coimbra, Portugal
- Correspondence: (E.C.L.); (E.C.); Tel.: +351-239-820-190 (E.C.L. & E.C.)
| | - Eugenia Carvalho
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- Institute of Interdisciplinary Research, University of Coimbra, 3004-504 Coimbra, Portugal
- Correspondence: (E.C.L.); (E.C.); Tel.: +351-239-820-190 (E.C.L. & E.C.)
| |
Collapse
|
11
|
Zhang Y, Jiang W, Kong L, Fu J, Zhang Q, Liu H. PLGA@IL-8 nanoparticles-loaded acellular dermal matrix as a delivery system for exogenous MSCs in diabetic wound healing. Int J Biol Macromol 2022; 224:688-698. [DOI: 10.1016/j.ijbiomac.2022.10.157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 10/05/2022] [Accepted: 10/18/2022] [Indexed: 11/05/2022]
|
12
|
Tang R, Zhao G, Wang Y, Zhang R. The effect of Klotho protein complexed with nanomaterials on bone mesenchymal stem cell performance in the treatment of diabetic ischaemic ulcer. IET Nanobiotechnol 2022; 16:316-324. [PMID: 36161768 DOI: 10.1049/nbt2.12099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 08/15/2022] [Accepted: 09/15/2022] [Indexed: 11/19/2022] Open
Abstract
A lack of angiogenesis is the key problem in the healing of diabetic foot ulcers. Stem cells have already been proven to have a high potential for angiogenesis. The most important aspects of stem cell therapy are improving the microenvironment, cell homing and continuous factor stimulation. We investigated the effect of Klotho protein to heal wounds by promoting the proliferation and migration of bone mesenchymal stem cells and endothelial cells in vitro. Based on the above study, we produced a compound material by using poly(lactic-co-glycolic acid) (PLGA), chitosan microspheres and gelatin through electro spining technology. The structure of the compound material, just like a sandwich, is that two pieces of PLGA nanofiber films clamped gelatin film which contained chitosan microspheres. In the in vitro release experiment, we could detect the release of Klotho after seven days in the compound material, but the release time was approximately 40 hours for the chitosan microspheres. After seeded bone mesenchymal stem cells (BMSCs) on the surface of the compound material, we observed morphologies of the chitosan microsphere, the PLGA nanofiber and BMSCs by scanning electron microscopy. The nanofiber mesh biological tissue materials could supply an appropriate microenvironment and cell factors for the survival of BMSCs. Compared with the control group, the biological tissue material seeded with BMSCs significantly promoted angiogenesis in the lower limb of diabetic C57BL/6J mice and accelerated diabetic foot wound healing. The compound biomaterial which could continuously stimulate BMSCs through releasing Klotho protein could accelerate wound healing in the diabetic foot and other ischemic ulcers.
Collapse
Affiliation(s)
- Rui Tang
- Department of Orthopedic Trauma, PLA 80th Military Hospital (Original PLA 89th Hospital), Weifang, Shandong, China
| | - Gang Zhao
- Department of Orthopedic Trauma, Weifang People's Hospital, Weifang, Shandong, China
| | - Yuqiao Wang
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ruixue Zhang
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
13
|
Scaffold-based delivery of mesenchymal stromal cells to diabetic wounds. Stem Cell Res Ther 2022; 13:426. [PMID: 35987712 PMCID: PMC9392335 DOI: 10.1186/s13287-022-03115-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 08/04/2022] [Indexed: 02/06/2023] Open
Abstract
AbstractFoot ulceration is a major complication of diabetes mellitus, which results in significant human suffering and a major burden on healthcare systems. The cause of impaired wound healing in diabetic patients is multifactorial with contributions from hyperglycaemia, impaired vascularization and neuropathy. Patients with non-healing diabetic ulcers may require amputation, creating an urgent need for new reparative treatments. Delivery of stem cells may be a promising approach to enhance wound healing because of their paracrine properties, including the secretion of angiogenic, immunomodulatory and anti-inflammatory factors. While a number of different cell types have been studied, the therapeutic use of mesenchymal stromal cells (MSCs) has been widely reported to improve delayed wound healing. However, topical administration of MSCs via direct injection has several disadvantages, including low cell viability and poor cell localization at the wound bed. To this end, various biomaterial conformations have emerged as MSC delivery vehicles to enhance cell viability and persistence at the site of implantation. This paper discusses biomaterial-based MSCs therapies in diabetic wound healing and highlights the low conversion rate to clinical trials and commercially available therapeutic products.
Collapse
|
14
|
Yu Q, Qiao GH, Wang M, Yu L, Sun Y, Shi H, Ma TL. Stem Cell-Based Therapy for Diabetic Foot Ulcers. Front Cell Dev Biol 2022; 10:812262. [PMID: 35178389 PMCID: PMC8844366 DOI: 10.3389/fcell.2022.812262] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/04/2022] [Indexed: 02/06/2023] Open
Abstract
Diabetic foot ulcer has become a worldwide clinical medical challenge as traditional treatments are not effective enough to reduce the amputation rate. Therefore, it is of great social significance to deeply study the pathogenesis and biological characteristics of the diabetic foot, explore new treatment strategies and promote their application. Stem cell-based therapy holds tremendous promise in the field of regenerative medicine, and its mechanisms include promoting angiogenesis, ameliorating neuroischemia and inflammation, and promoting collagen deposition. Studying the specific molecular mechanisms of stem cell therapy for diabetic foot has an important role and practical clinical significance in maximizing the repair properties of stem cells. In addition, effective application modalities are also crucial in order to improve the survival and viability of stem cells at the wound site. In this paper, we reviewed the specific molecular mechanisms of stem cell therapy for diabetic foot and the extended applications of stem cells in recent years, with the aim of contributing to the development of stem cell-based therapy in the repair of diabetic foot ulcers.
Collapse
Affiliation(s)
- Qian Yu
- Department of Hepatology, Songjiang Hospital Affiliated to Nanjing Medical University, Shanghai, China
| | - Guo-Hong Qiao
- Department of Clinical Laboratory, The Affiliated Yixing Hospital of Jiangsu University, Yixing, China
| | - Min Wang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Li Yu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yaoxiang Sun
- Department of Clinical Laboratory, The Affiliated Yixing Hospital of Jiangsu University, Yixing, China
| | - Hui Shi
- Department of Clinical Laboratory, The Affiliated Yixing Hospital of Jiangsu University, Yixing, China.,Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Tie-Liang Ma
- Department of Clinical Laboratory, The Affiliated Yixing Hospital of Jiangsu University, Yixing, China
| |
Collapse
|
15
|
A Beginner's Introduction to Skin Stem Cells and Wound Healing. Int J Mol Sci 2021; 22:ijms222011030. [PMID: 34681688 PMCID: PMC8538579 DOI: 10.3390/ijms222011030] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/06/2021] [Accepted: 10/11/2021] [Indexed: 02/06/2023] Open
Abstract
The primary function of the skin is that of a physical barrier against the environment and diverse pathogens; therefore, its integrity is essential for survival. Skin regeneration depends on multiple stem cell compartments within the epidermis, which, despite their different transcriptional and proliferative capacity, as well as different anatomical location, fall under the general term of skin stem cells (SSCs). Skin wounds can normally heal without problem; however, some diseases or extensive damage may delay or prevent healing. Non-healing wounds represent a serious and life-threatening scenario that may require advanced therapeutic strategies. In this regard, increased focus has been directed at SSCs and their role in wound healing, although emerging therapeutical approaches are considering the use of other stem cells instead, such as mesenchymal stem cells (MSCs). Given its extensive and broad nature, this review supplies newcomers with an introduction to SSCs, wound healing, and therapeutic strategies for skin regeneration, thus familiarizing the reader with the subject in preparation for future in depth reading.
Collapse
|
16
|
Induction of Differentiation of Mesenchymal Stem Cells into Retinal Pigment Epithelial Cells for Retinal Regeneration by Using Ciliary Neurotrophic Factor in Diabetic Rats. Curr Med Sci 2021; 41:145-152. [PMID: 33582919 DOI: 10.1007/s11596-021-2329-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 03/18/2020] [Indexed: 10/22/2022]
Abstract
Diabetic retinopathy (DR) is a common cause of blindness all over the world. Bone marrow mesenchymal stem cells (BMSCs) have been considered as a promising strategy for retinal regeneration in the treatment of DR. However, the poor viability and low levels of BMSCs engraftment limit the therapeutic potential of BMSCs. The present study aimed to examine the direct induction of BMSCs differentiation into the cell types related to retinal regeneration by using soluble cytokine ciliary neurotrophic factor (CNTF). We observed remarkably increased expression of cellular retinaldehyde-binding protein (CRALBP) and retinoid isomerohydrolase (RPE65) in BMSCs treated with CNTF in vitro, indicating the directional differentiation of BMSCs into the retinal pigment epithelium (RPE) cells, which are crucial for retinal healing. In vivo, the diabetic rat model was established by use of streptozotocin (STZ), and animals treated with BMSCs+CNTF exhibited better viability and higher delivery efficiency of the transplanted cells than those treated with BMSCs injection alone. Similar to the in-vitro result, treatment with BMSCs and CNTF combined led to the differentiation of BMSCs into beneficial cells (RPE cells), and accelerated retinal healing characterized by the activation of rod photoreceptor cells and phagocytosis function of RPE cells. In conclusion, CNTF contributes to the differentiation of BMSCs into RPE cells, which may help overcome the current stem cell therapy limitations in the field of retinal regeneration.
Collapse
|
17
|
Zare H, Rezayi M, Aryan E, Meshkat Z, Hatmaluyi B, Neshani A, Ghazvini K, Derakhshan M, Sankian M. Nanotechnology-driven advances in the treatment of diabetic wounds. Biotechnol Appl Biochem 2020; 68:1281-1306. [PMID: 33044005 DOI: 10.1002/bab.2051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/07/2020] [Indexed: 12/14/2022]
Abstract
Diabetic foot ulcers (DFUs) are chronic severe complications of diabetes disease and remain a worldwide clinical challenge with social and economic consequences. Diabetic wounds can cause infection, amputation of lower extremities, and even death. Several factors including impaired angiogenesis, vascular insufficiency, and bacterial infections result in a delayed process of wound healing in diabetic patients. Treatment of wound infections using traditional antibiotics has become a critical status. Thus, finding new therapeutic strategies to manage diabetic wounds is urgently needed. Nanotechnology has emerged as an efficient approach for this purpose. This review aimed to summarize recent advances using nanotechnology for the treatment of diabetic wounds.
Collapse
Affiliation(s)
- Hosna Zare
- Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Rezayi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ehsan Aryan
- Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Meshkat
- Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Behnaz Hatmaluyi
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Neshani
- Department of Laboratory Sciences, School of Paramedical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kiarash Ghazvini
- Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Derakhshan
- Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mojtaba Sankian
- Immunology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
18
|
Zeng X, Lin J, Wu H, Yu J, Tu M, Cheang LH, Zhang J. Effect of Conditioned Medium from Human Umbilical Cord-Derived Mesenchymal Stromal Cells on Rejuvenation of Nucleus Pulposus Derived Stem/Progenitor Cells from Degenerated Intervertebral Disc. Int J Stem Cells 2020; 13:257-267. [PMID: 32587132 PMCID: PMC7378895 DOI: 10.15283/ijsc20027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/08/2020] [Accepted: 04/14/2020] [Indexed: 01/07/2023] Open
Abstract
Background and Objectives Mesenchymal stromal cells (MSCs)-based treatment for degeneration of intervertebral disc (IVD) has been proposed recently. We here addressed whether MSC secreted factors can rejuvenate nucleus pulposus-derived stem/progenitor cells from degenerated disc (D-NPSCs) in vitro. Methods and Results We analyzed the expression of MSCs and NP cell specific surface markers, pluripotency related genes, multilineage potential and cell proliferative capacity of D-NPSCs upon incubation with the conditioned medium which was collected from the umbilical cord derived MSCs (UCMSCs). Our results indicated that the conditioned medium restore the stemness of D-NPSCs by up-regulating the expression level of CD29 and CD105, pluripotency related genes OCT4 and Nanog, and NP progenitor marker Tie2. The increased stemness was accompanied by promoted cell proliferative capacity and improved osteogenic and chondrogenic differentiation potential. Conclusions Our findings suggested that the UCMSCs derived conditioned medium might be used to rejuvenate the degenerated NP stem/progenitor cells.
Collapse
Affiliation(s)
- Xiaoli Zeng
- Department of Biochemistry and Molecular Biology, School of Preclinical Medicine, Jinan University, Guangzhou, China
| | - Jinhua Lin
- Department of Biochemistry and Molecular Biology, School of Preclinical Medicine, Jinan University, Guangzhou, China
| | - Hao Wu
- Department of Orthopedic Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Jiayue Yu
- Department of Biochemistry and Molecular Biology, School of Preclinical Medicine, Jinan University, Guangzhou, China
| | - Mei Tu
- Department of Materials Science and Engineering, Jinan University, Guangzhou, China
| | - Lek Hang Cheang
- Department of Orthopedic Surgery, Centro Hospitalar Conde de Sao Januario, Macao, China
| | - Jiaqing Zhang
- Department of Biochemistry and Molecular Biology, School of Preclinical Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
19
|
Zhang S, Chen L, Zhang G, Zhang B. Umbilical cord-matrix stem cells induce the functional restoration of vascular endothelial cells and enhance skin wound healing in diabetic mice via the polarized macrophages. Stem Cell Res Ther 2020; 11:39. [PMID: 31992364 PMCID: PMC6986138 DOI: 10.1186/s13287-020-1561-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/17/2019] [Accepted: 01/12/2020] [Indexed: 12/24/2022] Open
Abstract
Background Chronic nonhealing wounds represent one of the most common complications of diabetes and require advanced treatment strategies. Increasing evidence supports the important role of mesenchymal stem cells in diabetic wound healing; however, the underlying mechanism remains unclear. Here, we explored the effects of umbilical cord-matrix stem cells (UCMSCs) on diabetic wound healing and the underlying mechanism. Methods UCMSCs or conditioned medium (UCMSC-CM) were injected into the cutaneous wounds of streptozotocin-induced diabetic mice. The effects of this treatment on macrophages and diabetic vascular endothelial cells were investigated in vivo and in vitro. Results Our results reveal that UCMSCs or UCMSC-CM accelerated wound healing by enhancing angiogenesis. The number of host macrophages recruited to the wound tissue by local infusion of UCMSCs was greater than that recruited by fibroblast transplantation or control. The frequency of M2 macrophages was increased by UCMSC transplantation or UCMSC-CM injection, which promoted the expression of cytokines derived from M2 macrophages. Furthermore, when cocultured with UCMSCs or UCMSC-CM, lipopolysaccharide-induced macrophages acquired an anti-inflammatory M2 phenotype characterized by the increased secretion of the cytokines interleukin (IL)-10 and vascular endothelial growth factor and the suppressed production of tumor necrosis factor-α and IL-6. UCMSC-CM-activated macrophages significantly enhanced diabetic vascular endothelial cell functions, including angiogenesis, migration, and chemotaxis. Moreover, the action of UCMSC-CM on macrophages or vascular endothelial cells was abrogated by the administration of neutralizing antibodies against prostaglandin E2 (PGE2) or by the inhibition of PGE2 secretion from UCMSCs. Conclusions Our findings demonstrate that UCMSCs can induce the functional restoration of vascular endothelial cells via the remodeling of macrophage phenotypes, which might contribute to the marked acceleration of wound healing in diabetic mice. Graphical Abstract ![]()
Collapse
Affiliation(s)
- Shichang Zhang
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China. .,Department 4, State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| | - Li Chen
- Department of Obstetrics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Guoying Zhang
- Department of Obstetrics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Bo Zhang
- Department 4, State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| |
Collapse
|
20
|
Wang B, Huang C, Chen L, Xu D, Zheng G, Zhou Y, Wang X, Zhang X. The Emerging Roles of the Gaseous Signaling Molecules NO, H2S, and CO in the Regulation of Stem Cells. ACS Biomater Sci Eng 2019; 6:798-812. [PMID: 33464852 DOI: 10.1021/acsbiomaterials.9b01681] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ben Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang 325027, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Chongan Huang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang 325027, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Lijie Chen
- Department of Surgical Oncology, Taizhou Hospital of Wenzhou Medical University, Taizhou, Zhejiang 317000, China
| | - Daoliang Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang 325027, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Gang Zheng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang 325027, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yifei Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang 325027, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Xiangyang Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang 325027, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Xiaolei Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang 325027, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Chinese Orthopaedic Regenerative Medicine Society, Hangzhou, Zhejiang, China
| |
Collapse
|
21
|
He X, Ding Y, Xie W, Sun R, Hunt NC, Song J, Sun X, Peng C, Zeng Q, Tan Y, Liu Y. Rubidium-Containing Calcium Alginate Hydrogel for Antibacterial and Diabetic Skin Wound Healing Applications. ACS Biomater Sci Eng 2019; 5:4726-4738. [DOI: 10.1021/acsbiomaterials.9b00547] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Yufang Ding
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha 410013, P. R. China
| | | | | | - Nicola Claire Hunt
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne NE1 3BZ, U.K
| | - Jian Song
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, P. R. China
| | - Xinxin Sun
- A. James Clark School of Engineering, University of Maryland, College Park 20742, Maryland, United States
| | - Chen Peng
- Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Qinghai Zeng
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha 410013, P. R. China
| | | | | |
Collapse
|
22
|
Sun D, Song H, Shen Z. [Research progress in mesenchymal stem cells modified by Heme oxygenase 1]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2019; 33:901-906. [PMID: 31298011 PMCID: PMC8337431 DOI: 10.7507/1002-1892.201812079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 05/15/2019] [Indexed: 11/03/2022]
Abstract
OBJECTIVE To review the literature reports on research progress of Heme oxygenase 1 (HO-1) modified mesenchymal stem cells (MSCs). METHODS The significance, effects, and related mechanism of HO-1 modification of MSCs were summarized by consulting the related literatures and reports of HO-1 modification of MSCs. RESULTS HO-1 modification of MSCs has important research value. It can effectively enhance the anti-oxidative stress and anti-apoptotic properties of MSCs in complex internal environment after transplantation into vivo. It can also effectively enhance the immune regulation function of MSCs. It can improve the anti-injury, repair, and immune regulation effect of MSCs in various disease models and research fields. CONCLUSION The basic research of HO-1 modified MSCs has made remarkable progress, which is expected to be applied in clinical trials and provide theoretical basis and reference value for stem cell therapy.
Collapse
Affiliation(s)
- Dong Sun
- The First Central Clinical College, Tianjin Medical University, Tianjin, 300192, P.R.China
| | - Hongli Song
- Department of Organ Transplantation, Tianjin First Central Hospital, Tianjin Key Laboratory of Organ Transplantation, Key Laboratory of Transplantation Medicine, Chinese Academy of Medical Sciences, Tianjin, 300192,
| | - Zhongyang Shen
- Department of Organ Transplantation, Tianjin First Central Hospital, Tianjin Key Laboratory of Organ Transplantation, Key Laboratory of Transplantation Medicine, Chinese Academy of Medical Sciences, Tianjin, 300192, P.R.China
| |
Collapse
|
23
|
Fu J, Zhang Y, Chu J, Wang X, Yan W, Zhang Q, Liu H. Reduced Graphene Oxide Incorporated Acellular Dermal Composite Scaffold Enables Efficient Local Delivery of Mesenchymal Stem Cells for Accelerating Diabetic Wound Healing. ACS Biomater Sci Eng 2019; 5:4054-4066. [PMID: 33448807 DOI: 10.1021/acsbiomaterials.9b00485] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Chronic skin wounds caused by diabetes mellitus (DM) have been acknowledged as one of the most intractable complications. Local transplantation of mesenchymal stem cells (MSCs) is a promising method, but strategies for stabilizing and efficiently delivering active MSCs according to the wound circumstance with high proteolysis remain the main barrier. Hereon, the study demonstrates the feasibility of incorporating reduced graphene oxide (RGO) nanoparticles with an acellular dermal matrix (ADM) to improve physicochemical characteristics of natural scaffold material and fabricate a highly efficient local transplantation system for MSCs in diabetic wound healing. Under the influence of RGO nanoparticles, the ADM-RGO composite scaffolds achieved high stability and strong mechanical behaviors. In vitro, conductive ADM-RGO scaffolds demonstrated an admirable milieu for stem cells adhesion and proliferation. After having been cocultured with MSCs, the ADM-RGO-MSC composite scaffolds were transplanted into the full-thickness wound of a diabetic model that was induced by streptozotocin (STZ) to evaluate its effects. As a result, the ADM-RGO composite scaffold delivered with MSCs supported robust vascularization and collagen deposition as well as rapid re-epithelialization during diabetic wound healing. Overall, the versatile nature of the ADM-RGO composite scaffold makes it an efficient transplanting mediator for pluripotent stem cells in tissue engineering applications. The composite scaffold delivered with MSCs presents a promising approach for nonhealing diabetic wounds.
Collapse
Affiliation(s)
- JinPing Fu
- Department of College of Biophotonics, South China Normal University, No. 55 Zhongshan Avenue West, Tianhe District, Guangzhou, Guangdong 510631, China
| | - Yue Zhang
- Department of College of Biophotonics, South China Normal University, No. 55 Zhongshan Avenue West, Tianhe District, Guangzhou, Guangdong 510631, China
| | - Jing Chu
- Department of College of Biophotonics, South China Normal University, No. 55 Zhongshan Avenue West, Tianhe District, Guangzhou, Guangdong 510631, China
| | - Xiao Wang
- Department of College of Biophotonics, South China Normal University, No. 55 Zhongshan Avenue West, Tianhe District, Guangzhou, Guangdong 510631, China
| | - WenXia Yan
- Department of College of Biophotonics, South China Normal University, No. 55 Zhongshan Avenue West, Tianhe District, Guangzhou, Guangdong 510631, China
| | - Qiong Zhang
- Department of College of Biophotonics, South China Normal University, No. 55 Zhongshan Avenue West, Tianhe District, Guangzhou, Guangdong 510631, China
| | - HanPing Liu
- Department of College of Biophotonics, South China Normal University, No. 55 Zhongshan Avenue West, Tianhe District, Guangzhou, Guangdong 510631, China
| |
Collapse
|
24
|
Schreurs M, Suttorp CM, Mutsaers HAM, Kuijpers-Jagtman AM, Von den Hoff JW, Ongkosuwito EM, Carvajal Monroy PL, Wagener FADTG. Tissue engineering strategies combining molecular targets against inflammation and fibrosis, and umbilical cord blood stem cells to improve hampered muscle and skin regeneration following cleft repair. Med Res Rev 2019; 40:9-26. [PMID: 31104334 PMCID: PMC6972684 DOI: 10.1002/med.21594] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/17/2019] [Accepted: 04/19/2019] [Indexed: 12/18/2022]
Abstract
Cleft lip with or without cleft palate is a congenital deformity that occurs in about 1 of 700 newborns, affecting the dentition, bone, skin, muscles and mucosa in the orofacial region. A cleft can give rise to problems with maxillofacial growth, dental development, speech, and eating, and can also cause hearing impairment. Surgical repair of the lip may lead to impaired regeneration of muscle and skin, fibrosis, and scar formation. This may result in hampered facial growth and dental development affecting oral function and lip and nose esthetics. Therefore, secondary surgery to correct the scar is often indicated. We will discuss the molecular and cellular pathways involved in facial and lip myogenesis, muscle anatomy in the normal and cleft lip, and complications following surgery. The aim of this review is to outline a novel molecular and cellular strategy to improve musculature and skin regeneration and to reduce scar formation following cleft repair. Orofacial clefting can be diagnosed in the fetus through prenatal ultrasound screening and allows planning for the harvesting of umbilical cord blood stem cells upon birth. Tissue engineering techniques using these cord blood stem cells and molecular targeting of inflammation and fibrosis during surgery may promote tissue regeneration. We expect that this novel strategy improves both muscle and skin regeneration, resulting in better function and esthetics after cleft repair.
Collapse
Affiliation(s)
- Michaël Schreurs
- Department of Dentistry, Section of Orthodontics and Craniofacial Biology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - C Maarten Suttorp
- Department of Dentistry, Section of Orthodontics and Craniofacial Biology, Radboud University Medical Centre, Nijmegen, The Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | | | | | - Johannes W Von den Hoff
- Department of Dentistry, Section of Orthodontics and Craniofacial Biology, Radboud University Medical Centre, Nijmegen, The Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Edwin M Ongkosuwito
- Department of Dentistry, Section of Orthodontics and Craniofacial Biology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Paola L Carvajal Monroy
- Department of Oral & Maxillofacial Surgery, Special Dental Care and Orthodontics, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Frank A D T G Wagener
- Department of Dentistry, Section of Orthodontics and Craniofacial Biology, Radboud University Medical Centre, Nijmegen, The Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
25
|
Gao T, Jiang M, Liu X, You G, Wang W, Sun Z, Ma A, Chen J. Patterned Polyvinyl Alcohol Hydrogel Dressings with Stem Cells Seeded for Wound Healing. Polymers (Basel) 2019; 11:E171. [PMID: 30960155 PMCID: PMC6401986 DOI: 10.3390/polym11010171] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 01/15/2019] [Accepted: 01/15/2019] [Indexed: 12/11/2022] Open
Abstract
Polyvinyl alcohol (PVA) hydrogel and stem cell therapy have been widely used in wound healing. However, the lack of bioactivity for PVA and security of stem therapy limited their application. In this study, an adipose-derived stem cells (ADSCs)-seeded PVA dressing (ADSCs/PVA) was prepared for wound healing. One side of the PVA dressing was modified with photo-reactive gelatin (Az-Gel) via ultraviolet (UV) irradiation (Az-Gel@PVA), and thus ADSCs could adhere, proliferate on the PVA dressings and keep the other side of the dressings without adhering to the wound. The structure and mechanics of Az-Gel@PVA were determined by scanning electron microscopy (SEM) and material testing instruments. Then, the adhesion and proliferation of ADSCs were observed via cell counts and live-dead staining. Finally, in vitro and in vivo experiments were utilized to confirm the effect of ADSCs/PVA dressing for wound healing. The results showed that Az-Gel was immobilized on the PVA and showed little effect on the mechanical properties of PVA hydrogels. The surface-modified PVA could facilitate ADSCs adhesion and proliferation. Protein released tests indicated that the bioactive factors secreted from ADSCs could penetrated to the wound. Finally, in vitro and in vivo experiments both suggested the ADSCs/PVA could promote the wound healing via secreting bioactive factors from ADSCs. It was speculated that the ADSCs/PVA dressing could not only promote the wound healing, but also provide a new way for the safe application of stem cells, which would be of great potential for skin tissue engineering.
Collapse
Affiliation(s)
- Tianlin Gao
- The College of Medical, Qingdao University, Qingdao 266021, China.
| | - Menghui Jiang
- The College of Medical, Qingdao University, Qingdao 266021, China.
| | - Xiaoqian Liu
- The College of Medical, Qingdao University, Qingdao 266021, China.
| | - Guoju You
- The College of Medical, Qingdao University, Qingdao 266021, China.
| | - Wenyu Wang
- The College of Medical, Qingdao University, Qingdao 266021, China.
| | - Zhaohui Sun
- The College of Medical, Qingdao University, Qingdao 266021, China.
| | - Aiguo Ma
- The College of Medical, Qingdao University, Qingdao 266021, China.
| | - Jie Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| |
Collapse
|
26
|
|
27
|
Lopes L, Setia O, Aurshina A, Liu S, Hu H, Isaji T, Liu H, Wang T, Ono S, Guo X, Yatsula B, Guo J, Gu Y, Navarro T, Dardik A. Stem cell therapy for diabetic foot ulcers: a review of preclinical and clinical research. Stem Cell Res Ther 2018; 9:188. [PMID: 29996912 PMCID: PMC6042254 DOI: 10.1186/s13287-018-0938-6] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/15/2018] [Accepted: 06/20/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Diabetic foot ulcer (DFU) is a severe complication of diabetes, preceding most diabetes-related amputations. DFUs require over US$9 billion for yearly treatment and are now a global public health issue. DFU occurs in the setting of ischemia, infection, neuropathy, and metabolic disorders that result in poor wound healing and poor treatment options. Recently, stem cell therapy has emerged as a new interventional strategy to treat DFU and appears to be safe and effective in both preclinical and clinical trials. However, variability in the stem cell type and origin, route and protocol for administration, and concomitant use of angioplasty confound easy interpretation and generalization of the results. METHODS The PubMed, Google Scholar, and EMBASE databases were searched and 89 preclinical and clinical studies were selected for analysis. RESULTS There was divergence between preclinical and clinical studies regarding stem cell type, origin, and delivery techniques. There was heterogeneous preclinical and clinical study design and few randomized clinical trials. Granulocyte-colony stimulating factor was employed in some studies but with differing protocols. Concomitant performance of angioplasty with stem cell therapy showed increased efficiency compared to either therapy alone. CONCLUSIONS Stem cell therapy is an effective treatment for diabetic foot ulcers and is currently used as an alternative to amputation for some patients without other options for revascularization. Concordance between preclinical and clinical studies may help design future randomized clinical trials.
Collapse
Affiliation(s)
- Lara Lopes
- Vascular Biology and Therapeutics Program and Department of Surgery , Yale School of Medicine, Yale University, New Haven, CT USA
- Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Ocean Setia
- Vascular Biology and Therapeutics Program and Department of Surgery , Yale School of Medicine, Yale University, New Haven, CT USA
| | - Afsha Aurshina
- Vascular Biology and Therapeutics Program and Department of Surgery , Yale School of Medicine, Yale University, New Haven, CT USA
| | - Shirley Liu
- Vascular Biology and Therapeutics Program and Department of Surgery , Yale School of Medicine, Yale University, New Haven, CT USA
| | - Haidi Hu
- Vascular Biology and Therapeutics Program and Department of Surgery , Yale School of Medicine, Yale University, New Haven, CT USA
| | - Toshihiko Isaji
- Vascular Biology and Therapeutics Program and Department of Surgery , Yale School of Medicine, Yale University, New Haven, CT USA
| | - Haiyang Liu
- Vascular Biology and Therapeutics Program and Department of Surgery , Yale School of Medicine, Yale University, New Haven, CT USA
| | - Tun Wang
- Vascular Biology and Therapeutics Program and Department of Surgery , Yale School of Medicine, Yale University, New Haven, CT USA
| | - Shun Ono
- Vascular Biology and Therapeutics Program and Department of Surgery , Yale School of Medicine, Yale University, New Haven, CT USA
| | - Xiangjiang Guo
- Vascular Biology and Therapeutics Program and Department of Surgery , Yale School of Medicine, Yale University, New Haven, CT USA
| | - Bogdan Yatsula
- Vascular Biology and Therapeutics Program and Department of Surgery , Yale School of Medicine, Yale University, New Haven, CT USA
| | - Jianming Guo
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yongquan Gu
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Tulio Navarro
- Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Alan Dardik
- Vascular Biology and Therapeutics Program and Department of Surgery , Yale School of Medicine, Yale University, New Haven, CT USA
- VA Connecticut Healthcare System, West Haven, CT USA
| |
Collapse
|
28
|
Nowak WN, Taha H, Kachamakova-Trojanowska N, Stępniewski J, Markiewicz JA, Kusienicka A, Szade K, Szade A, Bukowska-Strakova K, Hajduk K, Klóska D, Kopacz A, Grochot-Przęczek A, Barthenheier K, Cauvin C, Dulak J, Józkowicz A. Murine Bone Marrow Mesenchymal Stromal Cells Respond Efficiently to Oxidative Stress Despite the Low Level of Heme Oxygenases 1 and 2. Antioxid Redox Signal 2018; 29:111-127. [PMID: 29065700 PMCID: PMC6003402 DOI: 10.1089/ars.2017.7097] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AIMS Mesenchymal stromal cells (MSCs) are heterogeneous cells from adult tissues that are able to differentiate in vitro into adipocytes, osteoblasts, or chondrocytes. Such cells are widely studied in regenerative medicine. However, the success of cellular therapy depends on the cell survival. Heme oxygenase-1 (HO-1, encoded by the Hmox1 gene), an enzyme converting heme to biliverdin, carbon monoxide, and Fe2+, is cytoprotective and can affect stem cell performance. Therefore, our study aimed at assessing whether Hmox1 is critical for survival and functions of murine bone marrow MSCs. RESULTS Both MSC Hmox1+/+ and Hmox1-/- showed similar phenotype, differentiation capacities, and production of cytokines or growth factors. Hmox1+/+ and Hmox1-/- cells showed similar survival in response to 50 μmol/L hemin even in increased glucose concentration, conditions that were unfavorable for Hmox1-/- bone marrow-derived proangiogenic cells (BDMC). Hmox1+/+ MSCs but not fibroblasts retained low ROS levels even after prolonged incubation with 50 μmol/L hemin, although both cell types have a comparable Hmox1 expression and similarly increase its levels in response to hemin. MSCs Hmox1-/- treated with hemin efficiently induced expression of a vast panel of antioxidant genes, especially enzymes of the glutathione pathway. Innovation and Conclusion: Hmox1 overexpression is a popular strategy to enhance viability and performance of MSCs after the transplantation. However, murine MSCs Hmox1-/- do not differ from wild-type MSCs in phenotype and functions. MSC Hmox1-/- show better resistance to hemin than fibroblasts and BDMCs and rapidly react to the stress by upregulation of quintessential genes in antioxidant response. Antioxid. Redox Signal. 00, 000-000.
Collapse
Affiliation(s)
- Witold Norbert Nowak
- 1 Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University , Kraków, Poland
| | - Hevidar Taha
- 1 Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University , Kraków, Poland .,2 Department of Animal Production, College of Agriculture, University of Duhok , Duhok, Iraq
| | - Neli Kachamakova-Trojanowska
- 1 Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University , Kraków, Poland
| | - Jacek Stępniewski
- 1 Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University , Kraków, Poland
| | - Joanna Agata Markiewicz
- 1 Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University , Kraków, Poland
| | - Anna Kusienicka
- 1 Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University , Kraków, Poland
| | - Krzysztof Szade
- 1 Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University , Kraków, Poland
| | - Agata Szade
- 1 Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University , Kraków, Poland
| | - Karolina Bukowska-Strakova
- 1 Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University , Kraków, Poland .,3 Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College , Kraków, Poland
| | - Karolina Hajduk
- 1 Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University , Kraków, Poland
| | - Damian Klóska
- 1 Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University , Kraków, Poland
| | - Aleksandra Kopacz
- 1 Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University , Kraków, Poland
| | - Anna Grochot-Przęczek
- 1 Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University , Kraków, Poland
| | - Kathrin Barthenheier
- 1 Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University , Kraków, Poland
| | - Camille Cauvin
- 1 Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University , Kraków, Poland
| | - Józef Dulak
- 1 Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University , Kraków, Poland .,4 Kardio-Med Silesia, Zabrze, Poland
| | - Alicja Józkowicz
- 1 Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University , Kraków, Poland
| |
Collapse
|
29
|
Ho J, Walsh C, Yue D, Dardik A, Cheema U. Current Advancements and Strategies in Tissue Engineering for Wound Healing: A Comprehensive Review. Adv Wound Care (New Rochelle) 2017; 6:191-209. [PMID: 28616360 PMCID: PMC5467128 DOI: 10.1089/wound.2016.0723] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 02/09/2017] [Indexed: 12/20/2022] Open
Abstract
Significance: With an aging population leading to an increase in diabetes and associated cutaneous wounds, there is a pressing clinical need to improve wound-healing therapies. Recent Advances: Tissue engineering approaches for wound healing and skin regeneration have been developed over the past few decades. A review of current literature has identified common themes and strategies that are proving successful within the field: The delivery of cells, mainly mesenchymal stem cells, within scaffolds of the native matrix is one such strategy. We overview these approaches and give insights into mechanisms that aid wound healing in different clinical scenarios. Critical Issues: We discuss the importance of the biomimetic niche, and how recapitulating elements of the native microenvironment of cells can help direct cell behavior and fate. Future Directions: It is crucial that during the continued development of tissue engineering in wound repair, there is close collaboration between tissue engineers and clinicians to maintain the translational efficacy of this approach.
Collapse
Affiliation(s)
- Jasmine Ho
- UCL Division of Surgery and Interventional Sciences, UCL Institute for Orthopaedics and Musculoskeletal Sciences, University College London, London, United Kingdom
| | - Claire Walsh
- UCL Division of Surgery and Interventional Sciences, UCL Institute for Orthopaedics and Musculoskeletal Sciences, University College London, London, United Kingdom
| | - Dominic Yue
- Department of Plastic and Reconstructive Surgery, Royal Stoke University Hospital, Stoke-on-Trent, United Kingdom
| | - Alan Dardik
- The Vascular Biology and Therapeutics Program and the Department of Surgery, Yale University School of Medicine, New Haven, Connecticut
| | - Umber Cheema
- UCL Division of Surgery and Interventional Sciences, UCL Institute for Orthopaedics and Musculoskeletal Sciences, University College London, London, United Kingdom
| |
Collapse
|
30
|
Shou K, Huang Y, Qi B, Hu X, Ma Z, Lu A, Jian C, Zhang L, Yu A. Induction of mesenchymal stem cell differentiation in the absence of soluble inducer for cutaneous wound regeneration by a chitin nanofiber-based hydrogel. J Tissue Eng Regen Med 2017; 12:e867-e880. [PMID: 28079980 DOI: 10.1002/term.2400] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 10/05/2016] [Accepted: 01/09/2017] [Indexed: 01/01/2023]
Abstract
Transplantation of bone marrow mesenchymal stem cells (BMSCs) has been considered to be a promising strategy for wound healing. However, poor viability of engrafted BMSCs and limited capabilities of differentiation into the desired cell types in wounds often hinder its application. Few studies report the induction of BMSC differentiation into the skin regeneration-related cell types using natural biopolymer, e.g. chitin and its derivative. Here we utilized a chitin nanofiber (CNF) hydrogel as a directive cue to induce BMSC differentiation for enhancing cutaneous wound regeneration in the absence of cell-differentiating factors. First, a 'green' fabrication of CNF hydrogels encapsulating green fluorescence protein (GFP)-transfected rat BMSCs was performed via in-situ physical gelation without chemical cross-linking. Without soluble differentiation inducers, CNF hydrogels decreased the expression of BMSC transcription factors (Oct4 and Klf4) and concomitantly induced their differentiation into the angiogenic cells and fibroblasts, which are indispensable for wound regeneration. In vivo, rat full-thickness cutaneous wounds treated with BMSC hydrogel exhibited better viability of the cells than did local BMSC injection-treated wounds. Similar to that of the in vitro result, CNF hydrogels induced BMSCs to differentiate into beneficial cell types, resulting in accelerated wound repair characterized by granulation tissue formation. Our data suggest that three-dimensional CNF hydrogel may not only serve as a 'protection' to improve the viability of exogenous BMSCs, but also provide a functional scaffold capable of enhancing BMSC regenerative potential to promote wound healing. This may help to overcome the current limitations to stem cell therapy that are faced in the field of wound regeneration. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Kangquan Shou
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yao Huang
- College of Chemistry and Molecule Sciences of Wuhan University, Wuhan, Hubei, China
| | - Baiwen Qi
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xiang Hu
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhanjun Ma
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Ang Lu
- College of Chemistry and Molecule Sciences of Wuhan University, Wuhan, Hubei, China
| | - Chao Jian
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Lina Zhang
- College of Chemistry and Molecule Sciences of Wuhan University, Wuhan, Hubei, China
| | - Aixi Yu
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
31
|
Shen L, Zhang P, Zhang S, Xie L, Yao L, Lang W, Lian J, Qin W, Zhang M, Ji L. C-X-C motif chemokine ligand 8 promotes endothelial cell homing via the Akt-signal transducer and activator of transcription pathway to accelerate healing of ischemic and hypoxic skin ulcers. Exp Ther Med 2017; 13:3021-3031. [PMID: 28587375 DOI: 10.3892/etm.2017.4305] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 02/07/2017] [Indexed: 12/14/2022] Open
Abstract
C-X-C motif chemokine ligand 8 (CXCL-8) promotes cell homing and angiogenesis. However, under hypoxic conditions, the role of CXCL-8 in the homing of human umbilical vein endothelial cells (HUVECs), and its effect on the healing of skin ulcers caused by ischemia and hypoxia remain unknown. In the current study, assays measuring cell proliferation, in vitro angiogenesis and cell migration were performed to evaluate alterations in the proliferation, angiogenic capacity and chemotaxis of HUVECs treated with CXCL-8 protein and/or an Akt inhibitor (AZD5363 group) under hypoxic conditions. Changes in the levels of Akt, signal transducer and activator of transcription 3 (STAT3), vascular endothelial growth factor (VEGF), malondialdehyde (MDA) and total-superoxide dismutase (total-SOD) were also detected by western blotting and ELISA. In addition, in vivo experiments were performed using a skin ulcer model in mice. Ischemic and hypoxic skin ulcers were created on the thighs of C57BL/6J mice, and the effects of CXCL-8 and HUVEC transplantation on the healing capacity of skin ulcers was determined by injecting mice with HUVECs and/or CXCL-8 recombinant protein (CXCL-8, HUVEC and HUVEC + CXCL-8 groups). Vascular endothelial cell homing, changes in vascular density and the expression of VEGF, SOD, EGF and MDA within the ulcer tissue were subsequently measured. In vitro experiments demonstrated that HUVEC proliferation, migration and tube forming capacity were significantly increased by CXCL-8 under hypoxic conditions. Additionally, levels of VEGF, MDA and SOD were significantly higher in the CXCL-8 group, though were significantly decreased by the Akt and STAT3 inhibitors. In vivo experiments demonstrated that the expression of VEGF, total-SOD and EGF proteins were higher in the skin ulcer tissue of mice treated with CXCL-8 + HUVEC, relative to mice treated with HUVECs alone. Furthermore, vascular endothelial cell homing and vascular density were significantly increased in the CXCL-8 + HUVEC group, indicating that combined use of HUVECs and CXCL-8 may promote the healing of ischemic skin ulcers. The present results demonstrate that CXCL-8 may stimulate vascular endothelial cells to secrete VEGF, SOD and other cytokines via the Akt-STAT3 pathway, which in turn serves a key regulatory role in the recruitment of vascular endothelial cells, reduction of hypoxia-related injury and promotion of tissue repair following hypoxic/ischemic injury.
Collapse
Affiliation(s)
- Lei Shen
- Department of Anatomy, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Peng Zhang
- Department of Anatomy, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Shanqiang Zhang
- Department of Anatomy, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Liping Xie
- Department of Anatomy, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Lijie Yao
- Department of Anatomy, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Weiya Lang
- Department of Anatomy, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Jie Lian
- Department of Anatomy, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Wei Qin
- Department of Anatomy, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Meng Zhang
- Department of Anatomy, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Liang Ji
- Department of Anatomy, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| |
Collapse
|
32
|
Çınar M, Çakar M, Öztürk K, Çetindağlı İ, Yılmaz S, Dinç A. Investigation of joint hypermobility in individuals with hyperbilirubinemia. Eur J Rheumatol 2017; 4:36-39. [PMID: 28293451 DOI: 10.5152/eurjrheum.2016.16051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 10/16/2016] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE Benign joint hypermobility syndrome refers to hypermobile individuals with musculoskeletal symptoms in the absence of any systemic rheumatic disease; its prevalence is approximately 0.5%. In animal studies, bilirubin has been shown to reduce fibrosis induced by bleomycin. It has been suggested that bilirubin leads to hypermobility that affects the structure or function of collagen. In addition, our observation is that hypermobility occurs more often in patients with indirect hyperbilirubinemia. In this study, we aimed to evaluate hypermobility in patients with indirect hyperbilirubinemia. MATERIAL AND METHODS We recruited 120 consecutive patients with indirect hyperbilirubinemia from a tertiary gastroenterology outpatient clinic and examined them for hypermobility. Hypermobility was evaluated using the Beighton criteria, and other relevant clinical findings were recorded. In addition, a group of healthy individuals (n=107) without hyperbilirubinemia were included as controls. RESULTS The mean ages of the patients and controls were 33.4±12.9 and 36.2±11.2 years, respectively (p=0.09). In total, 100 (83%) patients and 78 (73%) controls were male (p=0.075). The mean indirect bilirubin levels were 1.44±0.66 mg/dL in the patient group and 0.37±0.18 mg/dL in the control group. Based on the Beighton score, 23 patients (19.2%) in the patient group and 3 (2.8%) individuals in the control group had joint hypermobility. The difference between the groups was statistically significant (p<0.001). CONCLUSION According to the results of our study, findings of joint hypermobility are more frequent in patients with indirect hyperbilirubinemia than in controls.
Collapse
Affiliation(s)
- Muhammet Çınar
- Department of Rheumatology, Gülhane Training and Research Hospital, Ankara, Turkey
| | - Mustafa Çakar
- Department of Rheumatology, Gülhane Training and Research Hospital, Ankara, Turkey
| | - Kadir Öztürk
- Department of Gastroenterelogy, Gülhane Training and Research Hospital, Ankara, Turkey
| | - İbrahim Çetindağlı
- Department of Rheumatology, Gülhane Training and Research Hospital, Ankara, Turkey
| | - Sedat Yılmaz
- Department of Rheumatology, Gülhane Training and Research Hospital, Ankara, Turkey
| | - Ayhan Dinç
- Patio Clinic, Rheumatology Center, Ankara, Turkey
| |
Collapse
|
33
|
Li M, Zhao Y, Hao H, Dong L, Liu J, Han W, Fu X. Umbilical cord-derived mesenchymal stromal cell-conditioned medium exerts in vitro antiaging effects in human fibroblasts. Cytotherapy 2017; 19:371-383. [PMID: 28081982 DOI: 10.1016/j.jcyt.2016.12.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 11/07/2016] [Accepted: 12/05/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND AIMS Chronic wounds are a common complication of diabetes. Fibroblast-myofibroblast differentiation is important for wound repair, which is commonly impaired in non-healing wounds, and the underlying mechanisms need to be further elucidated. METHODS We used high glucose (HG) to simulated the diabetes microenvironment and explored its effects on the biological features of fibroblasts in vitro. RESULTS The results showed that prolonged HG induced senescence in fibroblasts through activation of p21 and p16 in a reactive oxygen species (ROS)-dependent manner, further delayed the viability and migration in fibroblasts and also depressed fibroblast differentiation through the TGF-β/Smad signaling pathway. However, mesenchymal stromal cell-conditioned medium (MSC-CM) counteracts the effects of HG. Treatment of fibroblasts with MSC-CM decreased HG-induced ROS overproduction, ameliorated HG-induced senescence in fibroblasts and reversed the defects in myofibroblast formation. Our results may provide clues for the pathogenesis of chronic wounds and a theoretical basis to develop MSC-CM as an alternative therapeutic method to treatment of chronic wounds.
Collapse
Affiliation(s)
- Meirong Li
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Science, Chinese PLA General Hospital, Beijing, China; Trauma Treatment Center, Central Laboratory, Hainan Branch, Chinese PLA General Hospital, Sanya, China
| | - Yali Zhao
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Science, Chinese PLA General Hospital, Beijing, China; Trauma Treatment Center, Central Laboratory, Hainan Branch, Chinese PLA General Hospital, Sanya, China
| | - Haojie Hao
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Science, Chinese PLA General Hospital, Beijing, China
| | - Liang Dong
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Science, Chinese PLA General Hospital, Beijing, China
| | - Jiejie Liu
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Science, Chinese PLA General Hospital, Beijing, China
| | - Weidong Han
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Science, Chinese PLA General Hospital, Beijing, China.
| | - Xiaobing Fu
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Science, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
34
|
Cao Y, Gang X, Sun C, Wang G. Mesenchymal Stem Cells Improve Healing of Diabetic Foot Ulcer. J Diabetes Res 2017; 2017:9328347. [PMID: 28386568 PMCID: PMC5366201 DOI: 10.1155/2017/9328347] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 02/28/2017] [Indexed: 12/17/2022] Open
Abstract
Mesenchymal stem cells (MSCs), an ideal cell source for regenerative therapy with no ethical issues, play an important role in diabetic foot ulcer (DFU). Growing evidence has demonstrated that MSCs transplantation can accelerate wound closure, ameliorate clinical parameters, and avoid amputation. In this review, we clarify the mechanism of preclinical studies, as well as safety and efficacy of clinical trials in the treatment of DFU. Bone marrow-derived mesenchymal stem cells (BM-MSCs), compared with MSCs derived from other tissues, may be a suitable cell type that can provide easy, effective, and cost-efficient transplantation to treat DFU and protect patients from amputation.
Collapse
Affiliation(s)
- Yue Cao
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun 130021, China
| | - Xiaokun Gang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun 130021, China
| | - Chenglin Sun
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun 130021, China
| | - Guixia Wang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun 130021, China
- *Guixia Wang:
| |
Collapse
|
35
|
Karri VVSR, Kuppusamy G, Talluri SV, Mannemala SS, Kollipara R, Wadhwani AD, Mulukutla S, Raju KRS, Malayandi R. Curcumin loaded chitosan nanoparticles impregnated into collagen-alginate scaffolds for diabetic wound healing. Int J Biol Macromol 2016; 93:1519-1529. [DOI: 10.1016/j.ijbiomac.2016.05.038] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 05/08/2016] [Accepted: 05/10/2016] [Indexed: 12/20/2022]
|
36
|
Mesenchymal Stem Cells as a Prospective Therapy for the Diabetic Foot. Stem Cells Int 2016; 2016:4612167. [PMID: 27867398 PMCID: PMC5102750 DOI: 10.1155/2016/4612167] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 09/28/2016] [Accepted: 10/10/2016] [Indexed: 12/14/2022] Open
Abstract
The diabetic foot is a serious complication of diabetes. Mesenchymal stem cells are an abundant source of stem cells which occupy a special position in cell therapies, and recent studies have suggested that mesenchymal stem cells can play essential roles in treatments for the diabetic foot. Here, we discuss the advances that have been made in mesenchymal stem cell treatments for this condition. The roles and functional mechanisms of mesenchymal stem cells in the diabetic foot are also summarized, and insights into current and future studies are presented.
Collapse
|
37
|
Raffaele M, Li Volti G, Barbagallo IA, Vanella L. Therapeutic Efficacy of Stem Cells Transplantation in Diabetes: Role of Heme Oxygenase. Front Cell Dev Biol 2016; 4:80. [PMID: 27547752 PMCID: PMC4974271 DOI: 10.3389/fcell.2016.00080] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 07/20/2016] [Indexed: 12/17/2022] Open
Abstract
The growing data obtained from in vivo studies and clinical trials demonstrated the benefit of adult stem cells transplantation in diabetes; although an important limit is represented by their survival after the transplant. To this regard, recent reports suggest that genetic manipulation of stem cells prior to transplantation can lead to enhanced survival and better engraftment. The following review proposes to stimulate interest in the role of heme oxygenase-1 over-expression on transplantation of stem cells in diabetes, focusing on the clinical potential of heme oxygenase protein and activity to restore tissue damage and/or to improve the immunomodulatory properties of transplanted stem cells.
Collapse
Affiliation(s)
- Marco Raffaele
- Department of Drug Science, University of Catania Catania, Italy
| | - Giovanni Li Volti
- Department Biomedical and Biotechnological Science, University of Catania Catania, Italy
| | | | - Luca Vanella
- Department of Drug Science, University of Catania Catania, Italy
| |
Collapse
|
38
|
Xiao Q, Zhou K, Chen C, Jiang M, Zhang Y, Luo H, Zhang D. Hollow and porous hydroxyapatite microspheres prepared with an O/W emulsion by spray freezing method. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 69:1068-74. [PMID: 27612804 DOI: 10.1016/j.msec.2016.07.082] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 07/18/2016] [Accepted: 07/31/2016] [Indexed: 02/06/2023]
Abstract
Microspheres with hollow and/or porous structures have been widely used in various applications. A new method of spraying and freezing emulsions was developed to prepare hollow HA (hydroxyapatite) microspheres with interconnected pores by using PVA (polyvinyl alcohol) as emulsifiers and binders. The relationships between viscosity and shear time or rates were tested and the dispersing stability of oil in water (O/W) emulsions was characterized with comparison to suspensions without the addition of oil phase. The effects of solid loadings of HA and the volume ratio between oil and water on the morphologies of microspheres were investigated. Hollow HA microspheres with particle diameter of ~20μm and pore size of ~0.6μm were successfully obtained by spray freezing method. Besides, drying and sintering processes were crucial to the formation of hollow and porous structures, respectively. The gentamicin loading and releasing of HA porous microspheres with different hollow volumes were tested.
Collapse
Affiliation(s)
- Qiyao Xiao
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083, China
| | - Kechao Zhou
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083, China
| | - Chao Chen
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083, China
| | - Mingxiang Jiang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083, China
| | - Yan Zhang
- Department of Mechanical Engineering, University of Bath, Bath BA2 7AY, UK
| | - Hang Luo
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083, China
| | - Dou Zhang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083, China.
| |
Collapse
|
39
|
Chen QY, Wang GG, Li W, Jiang YX, Lu XH, Zhou PP. Heme Oxygenase-1 Promotes Delayed Wound Healing in Diabetic Rats. J Diabetes Res 2016; 2016:9726503. [PMID: 26798657 PMCID: PMC4699015 DOI: 10.1155/2016/9726503] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 09/07/2015] [Accepted: 09/13/2015] [Indexed: 12/26/2022] Open
Abstract
Diabetic ulcers are one of the most serious and costly chronic complications for diabetic patients. Hyperglycemia-induced oxidative stress may play an important role in diabetes and its complications. The aim of the study was to explore the effect of heme oxygenase-1 on wound closure in diabetic rats. Diabetic wound model was prepared by making an incision with full thickness in STZ-induced diabetic rats. Wounds from diabetic rats were treated with 10% hemin ointment for 21 days. Increase of HO-1 protein expression enhanced anti-inflammation and antioxidant in diabetic rats. Furthermore, HO-1 increased the levels of VEGF and ICAM-1 and expressions of CBS and CSE protein. In summary, HO-1 promoted the wound closure by augmenting anti-inflammation, antioxidant, and angiogenesis in diabetic rats.
Collapse
MESH Headings
- Administration, Cutaneous
- Angiogenesis Inducing Agents/administration & dosage
- Angiogenic Proteins/metabolism
- Animals
- Anti-Inflammatory Agents/administration & dosage
- Antioxidants/administration & dosage
- Cytokines/metabolism
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/enzymology
- Diabetes Mellitus, Experimental/pathology
- Enzyme Induction
- Heme Oxygenase (Decyclizing)/biosynthesis
- Hemin/administration & dosage
- Inflammation Mediators/metabolism
- Male
- Neovascularization, Physiologic/drug effects
- Ointments
- Oxidative Stress/drug effects
- Rats, Sprague-Dawley
- Skin/blood supply
- Skin/drug effects
- Skin/enzymology
- Skin/injuries
- Skin/pathology
- Time Factors
- Wound Healing/drug effects
- Wounds, Penetrating/complications
- Wounds, Penetrating/drug therapy
- Wounds, Penetrating/enzymology
- Wounds, Penetrating/pathology
Collapse
Affiliation(s)
- Qing-Ying Chen
- Medical Department, General Hospital of Jinan Military Command, 25 Shifan Road, Jinan, Shandong 250031, China
- *Qing-Ying Chen: and
| | - Guo-Guang Wang
- Department of Pathophysiology, Wannan Medical College, Wuhu 241002, China
- *Guo-Guang Wang:
| | - Wei Li
- Department of Pathophysiology, Wannan Medical College, Wuhu 241002, China
| | - Yu-Xin Jiang
- Department of Physiology, Wannan Medical College, Wuhu 241002, China
| | - Xiao-Hua Lu
- Department of Pathophysiology, Wannan Medical College, Wuhu 241002, China
| | - Ping-Ping Zhou
- Department of Physiology, Wannan Medical College, Wuhu 241002, China
| |
Collapse
|
40
|
In Vitro Evaluation of Scaffolds for the Delivery of Mesenchymal Stem Cells to Wounds. BIOMED RESEARCH INTERNATIONAL 2015; 2015:108571. [PMID: 26504774 PMCID: PMC4609332 DOI: 10.1155/2015/108571] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 04/02/2015] [Accepted: 04/09/2015] [Indexed: 12/31/2022]
Abstract
Mesenchymal stem cells (MSCs) have been shown to improve tissue regeneration in several preclinical and clinical trials. These cells have been used in combination with three-dimensional scaffolds as a promising approach in the field of regenerative medicine. We compare the behavior of human adipose-derived MSCs (AdMSCs) on four different biomaterials that are awaiting or have already received FDA approval to determine a suitable regenerative scaffold for delivering these cells to dermal wounds and increasing healing potential. AdMSCs were isolated, characterized, and seeded onto scaffolds based on chitosan, fibrin, bovine collagen, and decellularized porcine dermis. In vitro results demonstrated that the scaffolds strongly influence key parameters, such as seeding efficiency, cellular distribution, attachment, survival, metabolic activity, and paracrine release. Chick chorioallantoic membrane assays revealed that the scaffold composition similarly influences the angiogenic potential of AdMSCs in vivo. The wound healing potential of scaffolds increases by means of a synergistic relationship between AdMSCs and biomaterial resulting in the release of proangiogenic and cytokine factors, which is currently lacking when a scaffold alone is utilized. Furthermore, the methods used herein can be utilized to test other scaffold materials to increase their wound healing potential with AdMSCs.
Collapse
|
41
|
Chen W, Wu Y, Li L, Yang M, Shen L, Liu G, Tan J, Zeng W, Zhu C. Adenosine accelerates the healing of diabetic ischemic ulcers by improving autophagy of endothelial progenitor cells grown on a biomaterial. Sci Rep 2015; 5:11594. [PMID: 26108983 PMCID: PMC4479873 DOI: 10.1038/srep11594] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 04/23/2015] [Indexed: 12/14/2022] Open
Abstract
Endothelial progenitor cells (EPCs) seeded on biomaterials can effectively promote diabetic ischemic wound healing. However, the function of transplanted EPCs is negatively affected by a high-glucose and ischemic microenvironment. Our experiments showed that EPC autophagy was inhibited and mitochondrial membrane potential (MMP) was increased in diabetic patients, while adenosine treatment decreased the energy requirements and increased the autophagy levels of EPCs. In animal experiments, we transplanted a biomaterial seeded with EPCs onto the surface of diabetic wounds and found that adenosine-stimulated EPCs effectively promoted wound healing. Increased microvascular genesis and survival of the transplanted cells were also observed in the adenosine-stimulated groups. Interestingly, our study showed that adenosine increased the autophagy of the transplanted EPCs seeded onto the biomaterial and maintained EPC survival at 48 and 96 hours. Moreover, we observed that adenosine induced EPC differentiation through increasing the level of autophagy. In conclusion, our study indicated that adenosine-stimulated EPCs seeded onto a biomaterial significantly improved wound healing in diabetic mice; mechanistically, adenosine might maintain EPC survival and differentiation by increasing high glucose-inhibited EPC autophagy and maintaining cellular energy metabolism.
Collapse
Affiliation(s)
- Wen Chen
- Department of Anatomy, National&Regional Engineering Laboratory of Tissue Engineering, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing 400038, China
| | - Yangxiao Wu
- Department of Anatomy, National&Regional Engineering Laboratory of Tissue Engineering, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing 400038, China
| | - Li Li
- Department of Anatomy, National&Regional Engineering Laboratory of Tissue Engineering, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing 400038, China
| | - Mingcan Yang
- Department of Anatomy, National&Regional Engineering Laboratory of Tissue Engineering, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing 400038, China
| | - Lei Shen
- Department of Anatomy, Qiqihar Medical University, Qiqihar, China
| | - Ge Liu
- Department of Anatomy, National&Regional Engineering Laboratory of Tissue Engineering, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing 400038, China
| | - Ju Tan
- Department of Anatomy, National&Regional Engineering Laboratory of Tissue Engineering, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing 400038, China
| | - Wen Zeng
- Department of Anatomy, National&Regional Engineering Laboratory of Tissue Engineering, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing 400038, China
| | - Chuhong Zhu
- Department of Anatomy, National&Regional Engineering Laboratory of Tissue Engineering, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing 400038, China
| |
Collapse
|
42
|
Isakson M, de Blacam C, Whelan D, McArdle A, Clover AJP. Mesenchymal Stem Cells and Cutaneous Wound Healing: Current Evidence and Future Potential. Stem Cells Int 2015; 2015:831095. [PMID: 26106431 PMCID: PMC4461792 DOI: 10.1155/2015/831095] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 05/07/2015] [Indexed: 01/09/2023] Open
Abstract
Human skin is a remarkable organ that sustains insult and injury throughout life. The ability of skin to expeditiously repair wounds is paramount to survival. With an aging global population, coupled with a rise in the prevalence of conditions such as diabetes, chronic wounds represent a significant biomedical burden. Mesenchymal stem cells (MSC), a progenitor cell population of the mesoderm lineage, have been shown to be significant mediators in inflammatory environments. Preclinical studies of MSC in various animal wound healing models point towards a putative therapy. This review examines the body of evidence suggesting that MSC accelerate wound healing in both clinical and preclinical studies and also the possible mechanisms controlling its efficacy. The delivery of a cellular therapy to the masses presents many challenges from a safety, ethical, and regulatory point of view. Some of the issues surrounding the introduction of MSC as a medicinal product are also delineated in this review.
Collapse
Affiliation(s)
- M. Isakson
- Department of Plastic and Reconstructive Surgery, Cork University Hospital, Cork, Ireland
| | - C. de Blacam
- Department of Plastic and Reconstructive Surgery, Cork University Hospital, Cork, Ireland
| | - D. Whelan
- Centre for Research in Vascular Biology, University College Cork, Cork, Ireland
| | - A. McArdle
- Department of Plastic and Reconstructive Surgery, Cork University Hospital, Cork, Ireland
| | - A. J. P. Clover
- Department of Plastic and Reconstructive Surgery, Cork University Hospital, Cork, Ireland
- Centre for Research in Vascular Biology, University College Cork, Cork, Ireland
| |
Collapse
|
43
|
Zhao G, Liu F, Lan S, Li P, Wang L, Kou J, Qi X, Fan R, Hao D, Wu C, Bai T, Li Y, Liu JY. Large-scale expansion of Wharton's jelly-derived mesenchymal stem cells on gelatin microbeads, with retention of self-renewal and multipotency characteristics and the capacity for enhancing skin wound healing. Stem Cell Res Ther 2015; 6:38. [PMID: 25889402 PMCID: PMC4413550 DOI: 10.1186/s13287-015-0031-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 03/02/2015] [Accepted: 03/02/2015] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION Successful stem cell therapy relies on large-scale generation of stem cells and their maintenance in a proliferative multipotent state. This study aimed to establish a three-dimension culture system for large-scale generation of hWJ-MSC and investigated the self-renewal activity, genomic stability and multi-lineage differentiation potential of such hWJ-MSC in enhancing skin wound healing. METHODS hWJ-MSC were seeded on gelatin microbeads and cultured in spinning bottles (3D). Cell proliferation, karyotype analysis, surface marker expression, multipotent differentiation (adipogenic, chondrogenic, and osteogenic potentials), and expression of core transcription factors (OCT4, SOX2, NANOG, and C-MYC), as well as their efficacy in accelerating skin wound healing, were investigated and compared with those of hWJ-MSC derived from plate cultres (2D), using in vivo and in vitro experiments. RESULTS hWJ-MSC attached to and proliferated on gelatin microbeads in 3D cultures reaching a maximum of 1.1-1.30×10(7) cells on 0.5 g of microbeads by days 8-14; in contrast, hWJ-MSC derived from 2D cultures reached a maximum of 6.5 -11.5×10(5) cells per well in a 24-well plate by days 6-10. hWJ-MSC derived by 3D culture incorporated significantly more EdU (P<0.05) and had a significantly higher proliferation index (P<0.05) than those derived from 2D culture. Immunofluorescence staining, real-time PCR, flow cytometry analysis, and multipotency assays showed that hWJ-MSC derived from 3D culture retained MSC surface markers and multipotency potential similar to 2D culture-derived cells. 3D culture-derived hWJ-MSC also retained the expression of core transcription factors at levels comparable to their 2D culture counterparts. Direct injection of hWJ-MSC derived from 3D or 2D cultures into animals exhibited similar efficacy in enhancing skin wound healing. CONCLUSIONS Thus, hWJ-MSC can be expanded markedly in gelatin microbeads, while retaining MSC surface marker expression, multipotent differential potential, and expression of core transcription factors. These cells also efficiently enhanced skin wound healing in vivo, in a manner comparable to that of hWJ-MSC obtained from 2D culture.
Collapse
Affiliation(s)
- Guifang Zhao
- Department of Pathobiology, Key Laboratory of Ministry of Education, College of Basic Medicine, Jilin University, Changchun, 130021, P.R. China. .,Department of Toxicology, School of Public Health, Jilin University, Changchun, 130021, P.R. China.
| | - Feilin Liu
- Department of Pathobiology, Key Laboratory of Ministry of Education, College of Basic Medicine, Jilin University, Changchun, 130021, P.R. China.
| | - Shaowei Lan
- Department of Pathobiology, Key Laboratory of Ministry of Education, College of Basic Medicine, Jilin University, Changchun, 130021, P.R. China.
| | - Pengdong Li
- Department of Pathobiology, Key Laboratory of Ministry of Education, College of Basic Medicine, Jilin University, Changchun, 130021, P.R. China.
| | - Li Wang
- Department of Pathobiology, Key Laboratory of Ministry of Education, College of Basic Medicine, Jilin University, Changchun, 130021, P.R. China.
| | - Junna Kou
- Department of Pathobiology, Key Laboratory of Ministry of Education, College of Basic Medicine, Jilin University, Changchun, 130021, P.R. China.
| | - Xiaojuan Qi
- Department of Pathobiology, Key Laboratory of Ministry of Education, College of Basic Medicine, Jilin University, Changchun, 130021, P.R. China.
| | - Ruirui Fan
- Department of Pathobiology, Key Laboratory of Ministry of Education, College of Basic Medicine, Jilin University, Changchun, 130021, P.R. China.
| | - Deshun Hao
- Department of Pathobiology, Key Laboratory of Ministry of Education, College of Basic Medicine, Jilin University, Changchun, 130021, P.R. China.
| | - Chunling Wu
- Department of Pathobiology, Key Laboratory of Ministry of Education, College of Basic Medicine, Jilin University, Changchun, 130021, P.R. China. .,Harbin Veterinary Research Institute, CAAS - Michigan State University Joint Laboratory of Innate Immunity, State Key Laboratory of Veterinary Biotechnology, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, 150001, P R China.
| | - Tingting Bai
- Department of Pathobiology, Key Laboratory of Ministry of Education, College of Basic Medicine, Jilin University, Changchun, 130021, P.R. China.
| | - Yulin Li
- Department of Pathobiology, Key Laboratory of Ministry of Education, College of Basic Medicine, Jilin University, Changchun, 130021, P.R. China.
| | - Jin Yu Liu
- Department of Pathobiology, Key Laboratory of Ministry of Education, College of Basic Medicine, Jilin University, Changchun, 130021, P.R. China. .,Department of Toxicology, School of Public Health, Jilin University, Changchun, 130021, P.R. China.
| |
Collapse
|
44
|
Pre-activation of mesenchymal stem cells with TNF-α, IL-1β and nitric oxide enhances its paracrine effects on radiation-induced intestinal injury. Sci Rep 2015; 5:8718. [PMID: 25732721 PMCID: PMC4346809 DOI: 10.1038/srep08718] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 01/27/2015] [Indexed: 02/05/2023] Open
Abstract
Conditioned medium from mesenchymal stem cells (MSC-CM) may represent a promising alternative to MSCs transplantation, however, the low concentrations of growth factors in non-activated MSC-CM hamper its clinical application. Recent data indicated that the paracrine potential of MSCs could be enhanced by inflammatory factors. Herein, we pre-activated bone-marrow-derived MSCs under radiation-induced inflammatory condition (MSCIEC-6(IR)) and investigated the evidence and mechanism for the differential effects of MSC-CMIEC-6(IR) and non-activated MSC-CM on radiation-induced intestinal injury (RIII). Systemic infusion of MSC-CMIEC-6(IR), but not non-activated MSC-CM, dramatically improved intestinal damage and survival of irradiated rats. Such benefits may involve the modulation of epithelial regeneration and inflammation, as indicated by the regeneration of intestinal epithelial/stem cells, the regulation of the pro-/anti-inflammatory cytokine balance. The mechanism for the superior paracrine efficacy of MSCIEC-6(IR) is related to a higher secretion of regenerative, immunomodulatory and trafficking molecules, including the pivotal factor IGF-1, induced by TNF-α, IL-1β and nitric oxide partially via a heme oxygenase-1 dependent mechanism. Together, our findings suggest that pre-activation of MSCs with TNF-α, IL-1β and nitric oxide enhances its paracine effects on RIII via a heme oxygenase-1 dependent mechanism, which may help us to maximize the paracrine potential of MSCs.
Collapse
|
45
|
He S, Shen L, Wu Y, Li L, Chen W, Hou C, Yang M, Zeng W, Zhu C. Effect of brain-derived neurotrophic factor on mesenchymal stem cell-seeded electrospinning biomaterial for treating ischemic diabetic ulcers via milieu-dependent differentiation mechanism. Tissue Eng Part A 2014; 21:928-38. [PMID: 25316594 DOI: 10.1089/ten.tea.2014.0113] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Great challenges in transplantation of mesenchymal stem cells (MSCs) for treating ischemic diabetic ulcers (IDUs) are to find a suitable carrier and create a beneficial microenvironment. Brain-derived neurotrophic factor (BDNF), a member of neurotrophin family, is considered angiogenic and neuroprotective. Given that IDUs are caused by vascular disease and peripheral neuropathy, we used BDNF as a stimulant, and intended to explore the role of new biomaterials complex with MSCs in wound healing. BDNF promoted the proliferation and migration of MSCs using MTT, transwell, and cell scratch assays. The activity of human umbilical vein endothelial cells (HUVECs) was also enhanced by the MSC-conditioned medium in the presence of BDNF, via a vascular endothelial growth factor-independent pathway. Since proliferated HUVECs in the BDNF group made the microenvironment more conducive to endothelial differentiation of MSCs, by establishing co-culture systems with the two cell types, endothelial cells derived from MSCs increased significantly. A new biomaterial made of polylactic acid, silk and collagen was used as the carrier dressing. After transplantation of the BDNF-stimulated MSC/biomaterial complex, the ulcers in hindlimb ischemic mice healed prominently. More blood vessel formation was observed in the wound tissue, and more MSCs were co-stained with some endothelial-specific markers such as cluster of differentiation (CD)31 and von Willebrand Factor (vWF) in the treatment group than in the control group. These results demonstrated that BDNF could improve microenvironment in the new biomaterial, and induce MSCs to differentiate into endothelial cells indirectly, thus accelerating ischemic ulcer healing.
Collapse
Affiliation(s)
- Siyi He
- 1 Department of Anatomy, National and Regional Engineering Laboratory of Tissue Engineering, Key Lab for Biomechanics of Chongqing, Third Military Medical University , Chongqing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Cremers NAJ, Lundvig DMS, van Dalen SCM, Schelbergen RF, van Lent PLEM, Szarek WA, Regan RF, Carels CE, Wagener FADTG. Curcumin-induced heme oxygenase-1 expression prevents H2O2-induced cell death in wild type and heme oxygenase-2 knockout adipose-derived mesenchymal stem cells. Int J Mol Sci 2014; 15:17974-99. [PMID: 25299695 PMCID: PMC4227200 DOI: 10.3390/ijms151017974] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 09/11/2014] [Accepted: 09/23/2014] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stem cell (MSC) administration is a promising adjuvant therapy to treat tissue injury. However, MSC survival after administration is often hampered by oxidative stress at the site of injury. Heme oxygenase (HO) generates the cytoprotective effector molecules biliverdin/bilirubin, carbon monoxide (CO) and iron/ferritin by breaking down heme. Since HO-activity mediates anti-apoptotic, anti-inflammatory, and anti-oxidative effects, we hypothesized that modulation of the HO-system affects MSC survival. Adipose-derived MSCs (ASCs) from wild type (WT) and HO-2 knockout (KO) mice were isolated and characterized with respect to ASC marker expression. In order to analyze potential modulatory effects of the HO-system on ASC survival, WT and HO-2 KO ASCs were pre-treated with HO-activity modulators, or downstream effector molecules biliverdin, bilirubin, and CO before co-exposure of ASCs to a toxic dose of H2O2. Surprisingly, sensitivity to H2O2-mediated cell death was similar in WT and HO-2 KO ASCs. However, pre-induction of HO-1 expression using curcumin increased ASC survival after H2O2 exposure in both WT and HO-2 KO ASCs. Simultaneous inhibition of HO-activity resulted in loss of curcumin-mediated protection. Co-treatment with glutathione precursor N-Acetylcysteine promoted ASC survival. However, co-incubation with HO-effector molecules bilirubin and biliverdin did not rescue from H2O2-mediated cell death, whereas co-exposure to CO-releasing molecules-2 (CORM-2) significantly increased cell survival, independently from HO-2 expression. Summarizing, our results show that curcumin protects via an HO-1 dependent mechanism against H2O2-mediated apoptosis, and likely through the generation of CO. HO-1 pre-induction or administration of CORMs may thus form an attractive strategy to improve MSC therapy.
Collapse
Affiliation(s)
- Niels A J Cremers
- Department of Orthodontics and Craniofacial Biology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, PO Box 9101, 6500 HB Nijmegen, The Netherlands.
| | - Ditte M S Lundvig
- Department of Orthodontics and Craniofacial Biology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, PO Box 9101, 6500 HB Nijmegen, The Netherlands.
| | - Stephanie C M van Dalen
- Department of Rheumatology, Experimental Rheumatology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, PO Box 9101, 6500 HB Nijmegen, The Netherlands.
| | - Rik F Schelbergen
- Department of Rheumatology, Experimental Rheumatology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, PO Box 9101, 6500 HB Nijmegen, The Netherlands.
| | - Peter L E M van Lent
- Department of Rheumatology, Experimental Rheumatology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, PO Box 9101, 6500 HB Nijmegen, The Netherlands.
| | - Walter A Szarek
- Department of Chemistry, Queen's University, Kingston, ON K7L 3N6, Canada.
| | - Raymond F Regan
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | - Carine E Carels
- Department of Orthodontics and Craniofacial Biology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, PO Box 9101, 6500 HB Nijmegen, The Netherlands.
| | - Frank A D T G Wagener
- Department of Orthodontics and Craniofacial Biology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, PO Box 9101, 6500 HB Nijmegen, The Netherlands.
| |
Collapse
|
47
|
Brogliato AR, Moor AN, Kesl SL, Guilherme RF, Georgii JL, Peters-Golden M, Canetti C, Gould LJ, Benjamim CF. Critical role of 5-lipoxygenase and heme oxygenase-1 in wound healing. J Invest Dermatol 2013; 134:1436-1445. [PMID: 24226420 DOI: 10.1038/jid.2013.493] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 08/23/2013] [Accepted: 09/16/2013] [Indexed: 02/07/2023]
Abstract
Lipid mediators derived from 5-lipoxygenase (5-LO) metabolism can activate both pro- and anti-inflammatory pathways, but their role in wound healing remains largely unexplored. In this study we show that 5-LO knockout (5-LO(-/-)) mice exhibited faster wound healing than wild-type (WT) animals, and exhibited upregulation of heme oxygenase-1 (HO-1). Furthermore, HO-1 inhibition in 5-LO(-/-) mice abolished the beneficial effect observed. Despite the fact that 5-LO(-/-) mice exhibited faster healing, in in vitro assays both migration and proliferation of human dermal fibroblasts (HDFs) were inhibited by the 5-LO pharmacologic inhibitor AA861. No changes were observed in the expression of fibronectin, transforming growth factor (I and III), and α-smooth muscle actin (α-SMA). Interestingly, AA861 treatment significantly decreased ROS formation by stimulated fibroblasts. Similar to 5-LO(-/-) mice, induction of HO-1, but not superoxide dismutase-2 (SOD-2), was also observed in response to 5-LO (AA861) or 5-LO activating protein (MK886) inhibitors. HO-1 induction was independent of nuclear factor (erythroid derived-2) like2 (Nrf-2), cyclooxygenase 2 (COX-2) products, or lipoxin action. Taken together, our results show that 5-LO disruption improves wound healing and alters fibroblast function by an antioxidant mechanism based on HO-1 induction. Overexpression of HO-1 in wounds may facilitate early wound resolution.
Collapse
Affiliation(s)
- Ariane R Brogliato
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Andrea N Moor
- Plastic Surgery, James A. Haley Veterans Hospital, University of South Florida, Tampa, Florida, USA; Department of Surgery, University of South Florida, Tampa, Florida, USA
| | - Shannon L Kesl
- Plastic Surgery, James A. Haley Veterans Hospital, University of South Florida, Tampa, Florida, USA
| | - Rafael F Guilherme
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Janaína L Georgii
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marc Peters-Golden
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Claudio Canetti
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lisa J Gould
- Plastic Surgery, James A. Haley Veterans Hospital, University of South Florida, Tampa, Florida, USA; Department of Surgery, University of South Florida, Tampa, Florida, USA
| | - Claudia F Benjamim
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
48
|
Zhang W, Zhang X, Lu H, Matsukura M, Zhao J, Shinohara M. Silencing heme oxygenase-1 gene expression in retinal pigment epithelial cells inhibits proliferation, migration and tube formation of cocultured endothelial cells. Biochem Biophys Res Commun 2013; 434:492-7. [PMID: 23583371 DOI: 10.1016/j.bbrc.2013.03.101] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 03/24/2013] [Indexed: 10/26/2022]
Abstract
Heme oxygenase-1 (HO-1) plays an important role in the vasculature and in the angiogenesis of tumors, wounds and other environments. Retinal pigment epithelial (RPE) cells and choroidal endothelial cells (CECs) are the main cells involved in choroidal neovascularization (CNV), a process in which hypoxia plays an important role. Our aim was to evaluate the role of human RPE-cell HO-1 in the angiogenic activities of cocultured endothelial cells under hypoxia. Small interfering RNA (siRNA) for HO-1 was transfected into human RPE cell line ARPE-19, and zinc protoporphyrin (ZnPP) was used to inhibit HO-1 activity. Knockdown of HO-1 expression and inhibition of HO-1 activity resulted in potent reduction of the expression of vascular endothelial growth factor (VEGF) under hypoxia. Furthermore, knockdown of HO-1 suppressed the proliferation, migration and tube formation of cocultured endothelial cells. These findings indicated that HO-1 might have an angiogenic effect in CNV through modulation of VEGF expression and might be a potential target for treating CNV.
Collapse
Affiliation(s)
- Wenjie Zhang
- Ophthalmology Hospital, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Harbin 150001, China
| | | | | | | | | | | |
Collapse
|
49
|
Wan J, Xia L, Liang W, Liu Y, Cai Q. Transplantation of bone marrow-derived mesenchymal stem cells promotes delayed wound healing in diabetic rats. J Diabetes Res 2013; 2013:647107. [PMID: 23671884 PMCID: PMC3647567 DOI: 10.1155/2013/647107] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 03/14/2013] [Accepted: 03/14/2013] [Indexed: 12/21/2022] Open
Abstract
In this paper, we established a delayed wound healing model on diabetic rat to mimic the pathophysiology of clinical patients who suffered from diabetic foot ulcers. We also evaluated if transplantation of allogeneic bone marrow-derived mesenchymal stem cells could promote the delayed wound healing and investigated the possible underlying biological mechanisms and stem cell behavior involved in this process. The results showed that bone marrow-derived mesenchymal stem cells had a positive effect on delayed wound healing in diabetic rats. Intramuscular transplantation demonstrated the best efficacy. This effect is associated with granulation tissue formation, angiogenesis, cellular proliferation, and high vascular endothelial growth factor expression in wound tissues. In addition, bone marrow-derived mesenchymal stem cells have been shown to mobilize and find home for ischemic and wounded tissues to participate in the process of wound healing. Intramuscular transplantation of exogenous isogeneic stem cells may be suitable for clinical application in the treatment of diabetic foot ulcers although the safety of this therapy should be considered.
Collapse
Affiliation(s)
- Jiangbo Wan
- Department of Burns and Plastic Surgery, Lanzhou General Hospital of Lanzhou Command, 333 Binhe Road, Lanzhou, Gansu 730050, China
| | - Liulu Xia
- Department of Emergency, Baoji Central Hospital, Shaanxi 721008, China
| | - Wenjia Liang
- Department of Burns and Plastic Surgery, Lanzhou General Hospital of Lanzhou Command, 333 Binhe Road, Lanzhou, Gansu 730050, China
| | - Yi Liu
- Department of Burns and Plastic Surgery, Lanzhou General Hospital of Lanzhou Command, 333 Binhe Road, Lanzhou, Gansu 730050, China
| | - Qian Cai
- Department of Burns and Plastic Surgery, Lanzhou General Hospital of Lanzhou Command, 333 Binhe Road, Lanzhou, Gansu 730050, China
- *Qian Cai:
| |
Collapse
|