1
|
Xu Y, Abulipizi G, Wang Y, Fang Y, Yu Z, Zhou J, Li Z. Near-Infrared Persistent Luminescence of CaTiO 3:Cr,Y for Imaging of Bone Implants Using Red-Light Illumination Instead of X-ray. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39368104 DOI: 10.1021/acsami.4c13865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2024]
Abstract
Near-infrared (NIR) persistent luminescence (PersL) materials have unique optical properties with promising applications in bioimaging and anticounterfeiting. However, their development is currently hindered by poor red-light-exciting ability. In this study, CaTiO3:Cr0.001,Y0.02 (CTCY) was synthesized with 650 nm-excited 772 nm NIR PersL. The Y3+ doping in the Ca2+ lattice plays a key role in the PersL property. A charge compensation mechanism was proposed, in which Cr3+ in the Ti4+ lattice was stabilized by Y3+-doping while oxygen vacancies were generated to store the excitation energy at the same time. A thermal ionization mechanism might elucidate the red-light-excited NIR PersL of CTCY, which benefits from the perovskite structure of CaTiO3. CTCY has 120 times more intense red-light-excited PersL than Zn3Ga2Ge2O10:Cr. Its potential applications in luminescence anticounterfeiting and bioimaging were demonstrated using a visible/NIR dual-channel PersL flower painting and a CTCY-labeled bone screw for in situ reactivable PersL imaging using red light illumination instead of X-ray, respectively. This study not only provides a new NIR PersL material but also will add to our understanding in developing other potential red-light- or even NIR-activable PersL materials with perovskite-like structures.
Collapse
Affiliation(s)
- Yicheng Xu
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong 511436, PR China
| | - Gulizhabaier Abulipizi
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong 511436, PR China
| | - Yuxin Wang
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong 511436, PR China
| | - Yanlun Fang
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong 511436, PR China
| | - Zimin Yu
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong 511436, PR China
| | - Juanjuan Zhou
- School of Health, Guangzhou Vocational University of Science and Technology, Guangzhou, Guangdong 510080, PR China
| | - Zhanjun Li
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong 511436, PR China
| |
Collapse
|
2
|
Han Q, He J, Bai L, Huang Y, Chen B, Li Z, Xu M, Liu Q, Wang S, Wen N, Zhang J, Guo B, Yin Z. Injectable Bioadhesive Photocrosslinkable Hydrogels with Sustained Release of Kartogenin to Promote Chondrogenic Differentiation and Partial-Thickness Cartilage Defects Repair. Adv Healthc Mater 2024; 13:e2303255. [PMID: 38253413 DOI: 10.1002/adhm.202303255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/05/2024] [Indexed: 01/24/2024]
Abstract
Partial-thickness cartilage defect (PTCD) is a common and formidable clinical challenge without effective therapeutic approaches. The inherent anti-adhesive characteristics of the extracellular matrix within cartilage pose a significant impediment to the integration of cells or biomaterials with the native cartilage during cartilage repair. Here, an injectable photocrosslinked bioadhesive hydrogel, consisting of gelatin methacryloyl (GM), acryloyl-6-aminocaproic acid-g-N-hydroxysuccinimide (AN), and poly(lactic-co-glycolic acid) microspheres loaded with kartogenin (KGN) (abbreviated as GM/AN/KGN hydrogel), is designed to enhance interfacial integration and repair of PTCD. After injected in situ at the irregular defect, a stable and robust hydrogel network is rapidly formed by ultraviolet irradiation, and it can be quickly and tightly adhered to native cartilage through amide bonds. The hydrogel exhibits good adhesion strength up to 27.25 ± 1.22 kPa by lap shear strength experiments. The GM/AN/KGN hydrogel demonstrates good adhesion, low swelling, resistance to fatigue, biocompatibility, and chondrogenesis properties in vitro. A rat model with PTCD exhibits restoration of a smoother surface, stable seamless integration, and abundant aggrecan and type II collagen production. The injectable stable adhesive hydrogel with long-term chondrogenic differentiation capacity shows great potential to facilitate repair of PTCD.
Collapse
Affiliation(s)
- Qian Han
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, and State Key Laboratory for Mechanical Behavior of Materials and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jiahui He
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, and State Key Laboratory for Mechanical Behavior of Materials and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Lang Bai
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Ying Huang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, and State Key Laboratory for Mechanical Behavior of Materials and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Baojun Chen
- Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, Zhengzhou, 450003, China
| | - Zhenlong Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, and State Key Laboratory for Mechanical Behavior of Materials and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Meiguang Xu
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Qiaonan Liu
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Shuai Wang
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Nuanyang Wen
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jing Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Medicine, Northwest University, Xi'an, 710069, China
| | - Baolin Guo
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, and State Key Laboratory for Mechanical Behavior of Materials and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhanhai Yin
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| |
Collapse
|
3
|
Yadav AK, Tripathi H, Rajput S, Singh P, Dubey AK, Kumar K, Chawla R, Rath C. Drug kinetics and antimicrobial properties of quaternary bioactive glasses 81S(81SiO 2-(16-x)CaO-2P 2O 5-1Na 2O-xMgO); an in-vitro study. BIOMATERIALS ADVANCES 2024; 157:213729. [PMID: 38101068 DOI: 10.1016/j.bioadv.2023.213729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 11/20/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
Bioactive glasses have recently been attracted to meet the challenge in bone tissue regeneration, repair, healing, dental implants, etc. Among the conventional bio-glasses, a novel quaternary mesoporous nano bio-glass with composition 81S(81SiO2-(16-x)CaO-2P2O5-1Na2O-xMgO) (x = 0, 1.6, 2.4, 4 and 8 mol%) employing Stober's method has been explored for examining the above potential application through in-vitro SBF assay, MTT assay, antimicrobial activity and drug loading and release ability. With increasing the MgO concentration up to 4 mol%, from in-vitro SBF assay, we observe that HAp layer develops on the surface of the nBGs confirmed from XRD, FTIR and FESEM. MTT assay using MG-63 cells confirms the biocompatibility of the nBGs having cell viability >225 % for MGO_4 after 72 h which is more than the clinically used 45S5 bio-glass. We have observed cell viability of >125 % even after 168 h. Moreover, MGO_4 is found to restrict the growth of E. coli by 65 % while S. aureus by 75 %, confirming the antimicrobial activity. Despite an increase in the concentration of magnesium, nBGs are found to be non-toxic towards the RBCs up to 4 mol% of MgO while for 8 %, the hemolysis percentage is >6 % which is toxic. Being confirmed MGO_4 nBG as a bioactive material, various concentrations of drug (Dexamethasone (DEX)) loading and release kinetics are examined. We show that 80 % of loading in case of 10 mg-ml-1 and 70 % of cumulative release in 100 h. The mesoporous structure of MGO_4 having an average pore diameter of 5 nm and surface area of 216 m2 g-1 confirmed from BET supports the loading and release kinetics. We conclude that the quaternary MGO_4 nBG may be employed effectively for bone tissue regeneration due to its high biocompatibility, excellent in-vitro cell viability, antimicrobial response and protracted drug release.
Collapse
Affiliation(s)
- Akhilesh Kumar Yadav
- School of Materials Science and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Himanshu Tripathi
- School of Materials Science and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Sanjna Rajput
- School of Materials Science and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Priya Singh
- Department of Ceramic Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Ashutosh Kumar Dubey
- Department of Ceramic Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Krishan Kumar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Ruchi Chawla
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Chandana Rath
- School of Materials Science and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India.
| |
Collapse
|
4
|
Singh P, Dubey AK. Accelerated Osteogenic Response of Electrodynamically Stimulated Mg 1-xCa xSi 1-xZr xO 3 ( x = 0-0.4) Bioelectrets. ACS Biomater Sci Eng 2023; 9:6293-6308. [PMID: 37877692 DOI: 10.1021/acsbiomaterials.3c00955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
MgSiO3-based biodegradable ceramics demonstrated remarkable potential for treating small-scale bone defects and temporary bone replacement. In addition, the dissolution behavior of MgSiO3 bioceramics can be tuned by doping of Ca and Zr elements at Mg and Si sites, respectively. The present study reported the influence of formation of Ca- and Zr-codoped Mg1-xCaxSi1-xZrxO3 (x = 0, 0.1, 0.2, 0.3, and 0.4) bioelectrets and electrodynamic stimulation toward improving their osteogenic response. Mg1-xCaxSi1-xZrxO3 electrets were successfully synthesized by a solid-state route. A detailed X-ray photoelectron spectroscopy (XPS) analyses revealed that the electrets produced oxygen-deficient active sites. The formation of Mg1-xCaxSi1-xZrxO3 electrets significantly increased the surface hydrophilicity. Inductively coupled plasma (ICP) analyses were used to examine the leaching behavior of Ca/Zr-codoped MgSiO3 bioceramics. In vitro cell culture analyses indicated that the osteogenesis of MG-63 cells was remarkably enhanced on the electrodynamic field-treated Mg1-xCaxSi1-xZrxO3 bioelectrets as compared to hydroxyapatite (HA). Moreover, a better osteogenic response was observed for higher concentrations of Ca (0.3 and 0.4) and Zr (0.3 and 0.4) doping in the MgSiO3 bioelectrets. Further, the mechanism of enhanced cellular functionality was revealed by the measurement of intracellular Ca2+.
Collapse
Affiliation(s)
- Priya Singh
- Department of Ceramic Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi 221005, India
| | - Ashutosh Kumar Dubey
- Department of Ceramic Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi 221005, India
| |
Collapse
|
5
|
Stocco TD, Zhang T, Dimitrov E, Ghosh A, da Silva AMH, Melo WCMA, Tsumura WG, Silva ADR, Sousa GF, Viana BC, Terrones M, Lobo AO. Carbon Nanomaterial-Based Hydrogels as Scaffolds in Tissue Engineering: A Comprehensive Review. Int J Nanomedicine 2023; 18:6153-6183. [PMID: 37915750 PMCID: PMC10616695 DOI: 10.2147/ijn.s436867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/12/2023] [Indexed: 11/03/2023] Open
Abstract
Carbon-based nanomaterials (CBNs) are a category of nanomaterials with various systems based on combinations of sp2 and sp3 hybridized carbon bonds, morphologies, and functional groups. CBNs can exhibit distinguished properties such as high mechanical strength, chemical stability, high electrical conductivity, and biocompatibility. These desirable physicochemical properties have triggered their uses in many fields, including biomedical applications. In this review, we specifically focus on applying CBNs as scaffolds in tissue engineering, a therapeutic approach whereby CBNs can act for the regeneration or replacement of damaged tissue. Here, an overview of the structures and properties of different CBNs will first be provided. We will then discuss state-of-the-art advancements of CBNs and hydrogels as scaffolds for regenerating various types of human tissues. Finally, a perspective of future potentials and challenges in this field will be presented. Since this is a very rapidly growing field, we expect that this review will promote interdisciplinary efforts in developing effective tissue regeneration scaffolds for clinical applications.
Collapse
Affiliation(s)
- Thiago Domingues Stocco
- Bioengineering Program, Scientific and Technological Institute, Brazil University, São Paulo, SP, Brazil
| | - Tianyi Zhang
- Pennsylvania State University, University Park, PA, USA
| | | | - Anupama Ghosh
- Department of Chemical and Materials Engineering (DEQM), Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Wanessa C M A Melo
- FTMC, State Research institute Center for Physical Sciences and Technology, Department of Functional Materials and Electronics, Vilnius, Lithuanian
| | - Willian Gonçalves Tsumura
- Bioengineering Program, Scientific and Technological Institute, Brazil University, São Paulo, SP, Brazil
| | - André Diniz Rosa Silva
- FATEC, Ribeirão Preto, SP, Brazil
- Interdisciplinary Laboratory for Advanced Materials (LIMAV), BioMatLab Group, Materials Science and Engineering Graduate Program, Federal University of Piauí (UFPI), Teresina, PI, Brazil
| | - Gustavo F Sousa
- Interdisciplinary Laboratory for Advanced Materials (LIMAV), BioMatLab Group, Materials Science and Engineering Graduate Program, Federal University of Piauí (UFPI), Teresina, PI, Brazil
| | - Bartolomeu C Viana
- Interdisciplinary Laboratory for Advanced Materials (LIMAV), BioMatLab Group, Materials Science and Engineering Graduate Program, Federal University of Piauí (UFPI), Teresina, PI, Brazil
| | | | - Anderson Oliveira Lobo
- Interdisciplinary Laboratory for Advanced Materials (LIMAV), BioMatLab Group, Materials Science and Engineering Graduate Program, Federal University of Piauí (UFPI), Teresina, PI, Brazil
| |
Collapse
|
6
|
Park J, Kaliannagounder VK, Jang SR, Yoon D, Rezk AI, Bhattarai DP, Kim CS. Electroconductive Polythiophene Nanocomposite Fibrous Scaffolds for Enhanced Osteogenic Differentiation via Electrical Stimulation. ACS Biomater Sci Eng 2022; 8:1975-1986. [PMID: 35452580 DOI: 10.1021/acsbiomaterials.1c01171] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Biophysical cues are key distinguishing characteristics that influence tissue development and regeneration, and significant efforts have been made to alter the cellular behavior by means of cell-substrate interactions and external stimuli. Electrically conductive nanofibers are capable of treating bone defects since they closely mimic the fibrillar architecture of the bone matrix and deliver the endogenous and exogenous electric fields required to direct cell activities. Nevertheless, previous studies on conductive polymer-based scaffolds have been limited to polypyrrole, polyaniline, and poly(3,4-ethylenedioxythiophene) (PEDOT). In the present study, chemically synthesized polythiophene nanoparticles (PTh NPs) are incorporated into polycaprolactone (PCL) nanofibers, and subsequent changes in physicochemical, mechanical, and electrical properties are observed in a concentration-dependent manner. In murine preosteoblasts (MC3T3-E1), we examine how substrate properties modified by adding PTh NPs contribute to changes in the cellular behavior, including viability, proliferation, differentiation, and mineralization. Additionally, we determine that external electrical stimulation (ES) mediated by PTh NPs positively affects such osteogenic responses. Together, our results provide insights into polythiophene's potential as an electroconductive composite scaffold material.
Collapse
Affiliation(s)
- Jeesoo Park
- Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju 54896, Republic of Korea.,Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Vignesh Krishnamoorthi Kaliannagounder
- Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju 54896, Republic of Korea.,Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Se Rim Jang
- Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju 54896, Republic of Korea.,Division of Mechanical Design Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Deockhee Yoon
- Division of Mechanical Design Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Abdelrahman I Rezk
- Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju 54896, Republic of Korea.,Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Deval Prasad Bhattarai
- Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju 54896, Republic of Korea.,Department of Chemistry, Amrit Campus, Tribhuvan University, Kathmandu 44618, Nepal
| | - Cheol Sang Kim
- Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju 54896, Republic of Korea.,Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju 54896, Republic of Korea.,Division of Mechanical Design Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
7
|
Basu B, Gowtham N, Xiao Y, Kalidindi SR, Leong KW. Biomaterialomics: Data science-driven pathways to develop fourth-generation biomaterials. Acta Biomater 2022; 143:1-25. [PMID: 35202854 DOI: 10.1016/j.actbio.2022.02.027] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 12/12/2022]
Abstract
Conventional approaches to developing biomaterials and implants require intuitive tailoring of manufacturing protocols and biocompatibility assessment. This leads to longer development cycles, and high costs. To meet existing and unmet clinical needs, it is critical to accelerate the production of implantable biomaterials, implants and biomedical devices. Building on the Materials Genome Initiative, we define the concept 'biomaterialomics' as the integration of multi-omics data and high-dimensional analysis with artificial intelligence (AI) tools throughout the entire pipeline of biomaterials development. The Data Science-driven approach is envisioned to bring together on a single platform, the computational tools, databases, experimental methods, machine learning, and advanced manufacturing (e.g., 3D printing) to develop the fourth-generation biomaterials and implants, whose clinical performance will be predicted using 'digital twins'. While analysing the key elements of the concept of 'biomaterialomics', significant emphasis has been put forward to effectively utilize high-throughput biocompatibility data together with multiscale physics-based models, E-platform/online databases of clinical studies, data science approaches, including metadata management, AI/ Machine Learning (ML) algorithms and uncertainty predictions. Such integrated formulation will allow one to adopt cross-disciplinary approaches to establish processing-structure-property (PSP) linkages. A few published studies from the lead author's research group serve as representative examples to illustrate the formulation and relevance of the 'Biomaterialomics' approaches for three emerging research themes, i.e. patient-specific implants, additive manufacturing, and bioelectronic medicine. The increased adaptability of AI/ML tools in biomaterials science along with the training of the next generation researchers in data science are strongly recommended. STATEMENT OF SIGNIFICANCE: This leading opinion review paper emphasizes the need to integrate the concepts and algorithms of the data science with biomaterials science. Also, this paper emphasizes the need to establish a mathematically rigorous cross-disciplinary framework that will allow a systematic quantitative exploration and curation of critical biomaterials knowledge needed to drive objectively the innovation efforts within a suitable uncertainty quantification framework, as embodied in 'biomaterialomics' concept, which integrates multi-omics data and high-dimensional analysis with artificial intelligence (AI) tools, like machine learning. The formulation of this approach has been demonstrated for patient-specific implants, additive manufacturing, and bioelectronic medicine.
Collapse
|
8
|
Silver, Copper, Magnesium and Zinc Contained Electroactive Mesoporous Bioactive S53P4 Glass–Ceramics Nanoparticle for Bone Regeneration: Bioactivity, Biocompatibility and Antibacterial Activity. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02295-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
9
|
Naskar S, Chandan, Baskaran D, Roy Choudhury AN, Chatterjee S, Karunakaran S, Murthy BVS, Basu B. Dosimetry of pulsed magnetic field towards attaining bacteriostatic effect on Enterococcus faecalis: Implications for endodontic therapy. Int Endod J 2021; 54:1878-1891. [PMID: 34046919 DOI: 10.1111/iej.13580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 11/30/2022]
Abstract
AIM To examine in a laboratory setting the efficacy of moderate to high strength magnetic fields, as a potential bacteriostatic stimulus, against Enterococcus faecalis, one of the causative agents for infection during root canal treatments. METHODOLOGY Four different strengths (1, 2, 3 and 4 T) of the pulsed magnetic field (PMF) were applied in thirty repetitions to bacterial suspension. A pickup coil setup was used to measure the electromotive force induced inside the bacterial suspensions. The optical density (OD) was monitored over time (for 16 h 40 min) during the post-treatment period to assess bacterial growth. Along with the change in OD values, live/dead assay, membrane depolarization study, atomic force microscopy (AFM), scanning electron microscopy (SEM) and reactive oxygen species (ROS) assay on selected samples were studied to evaluate the effect of PMFs. All results were analysed using one-way ANOVA followed by post hoc Tukey test and considered significant at p < .05. Regression analysis (at a confidence of 95%, α = 0.05) was performed on the bacterial growth and membrane depolarization studies to determine progressive changes of the outcomes. RESULTS The peak value of the induced electromotive force was recorded as 0.25 V, for the 4 T magnetic field pulse with a pulse width of 16 ms. There was a significant arrest of bacterial cell growth after an exposure to PMFs of 1 T, 3 T and 4 T (ANOVA score: F (4, 495) =395.180 at p = .05). The image-based qualitative results of the live/dead assay using fluorescence microscopy techniques indicated that an exposure to higher PMFs (3 T/ 4 T) induced a bacteriostatic effect in a longer post-exposure timescale. Evidence of altered membrane potential within the 2 h of exposure to 4 T PMF was supported by the incidence of elevated ROS. For the ROS assay, a significant difference occurred for 4 T exposed samples (ANOVA score: calculated F (1, 3) =20.2749 at p = .05). SEM and AFM observations corroborated with the outcomes, by portraying significant membrane damage. CONCLUSION In a laboratory setting, PMFs with higher magnitudes (3 T and 4 T) were capable of inducing bacteriostatic effects on E. faecalis.
Collapse
Affiliation(s)
- Sharmistha Naskar
- Laboratory for Biomaterials, Materials Research Centre, Indian Institute of Science, Bangalore, India.,Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India.,Translational Centre on Biomaterials for Orthopedic and Dental Applications, Bangalore, India
| | - Chandan
- Department of Physics, Indian Institute of Science, Bangalore, India
| | - Divya Baskaran
- Department of Conservative Dentistry & Endodontics, M.S. Ramaiah University of Applied Sciences, Bangalore, India
| | - Aditya N Roy Choudhury
- Translational Centre on Biomaterials for Orthopedic and Dental Applications, Bangalore, India
| | - Subhomoy Chatterjee
- Laboratory for Biomaterials, Materials Research Centre, Indian Institute of Science, Bangalore, India
| | | | - B V Sreenivasa Murthy
- Department of Conservative Dentistry & Endodontics, M.S. Ramaiah University of Applied Sciences, Bangalore, India
| | - Bikramjit Basu
- Laboratory for Biomaterials, Materials Research Centre, Indian Institute of Science, Bangalore, India.,Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India.,Translational Centre on Biomaterials for Orthopedic and Dental Applications, Bangalore, India
| |
Collapse
|
10
|
Singh A, Dubey AK. Improved antibacterial and cellular response of electrets and piezobioceramics. J Biomater Appl 2021; 36:441-459. [PMID: 33599133 DOI: 10.1177/0885328221991965] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The bacterial contamination in implants has been recognized as one of the key issues in orthopedics. In this article, a new technique of electrical polarization of various non-piezoelectric and piezoelectric biocompatible ceramics has been explored to develop antibacterial implants. Optimally processed hydroxyapatite (HA), BaTiO3 (BT), CaTiO3 (CT), Na0.5K0.5NbO3 (NKN) and their composites have been used as model biomaterials to verify the concept. The phase evolution analyses and microstructural characterizations were performed for sintered samples. The samples were polarized at polarizing voltage and temperature of 20 kV and 500°C, respectively, for 30 min. The hydrophilicity of polarized surfaces was examined using deionized water and culture media. The polarization induced in-vitro antibacterial study was performed for both, gram positive and gram negative bacteria. The viability of Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) bacteria reduces significantly on the polarized surfaces. In addition, the influence of polarization on antibacterial response has been explored via various mechanisms such as development of reactive oxygen species (ROS), catalase activity and lipoperoxidation. Furthermore, the cellular response of polarized surfaces was also examined using SaOS2 and MG-63 cells. The viability of SaOS2 and MG-63 cells was observed to increase significantly on negatively polarized surfaces. Overall, the surface treatment enhances the antibacterial response of HA, NKN, BT, CT and their composites surfaces with positive influence on cellular response.
Collapse
Affiliation(s)
- Angaraj Singh
- Department of Ceramic Engineering, Indian Institute of Technology (BHU), Varanasi, India
| | - Ashutosh Kumar Dubey
- Department of Ceramic Engineering, Indian Institute of Technology (BHU), Varanasi, India
| |
Collapse
|
11
|
K R, Voigt SP, Kalidindi SR, Basu B. Critical comparison of image analysis workflows for quantitative cell morphological evaluation in assessing cell response to biomaterials. Biomed Mater 2020; 16. [PMID: 33260169 DOI: 10.1088/1748-605x/abcf5e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 12/01/2020] [Indexed: 11/11/2022]
Abstract
Quantitative image analysis is an important tool in understanding cell fate processes through the study of cell morphological changes in terms of size, shape, number, and orientation. In this context, this work explores systematically the main challenges involved in the quantitative analysis of fluorescence microscopy images and also proposes a new protocol while comparing its outcome with the widely used Image J analysis. It is important to mention that fluorescence microscopy is by far most widely used in biocompatibility analysis (observing cell fate changes) of implantable biomaterials. In this study, we employed two different image analyses toolsets: (i) the conventionally employed ImageJ software, and (ii) a recently developed automated digital image analyses framework, called ImageMKS. While ImageJ offers a powerful toolset for image analyses, it requires sophisticated user expertise to design and iteratively refine the analyses workflow. This workflow primarily comprises a sequence of image transformations that typically involve de-noising and labelling of features. On the other hand, ImageMKS automates the image analyses protocol to a large extent, and thereby mitigates the influence of the user bias on the final results. This aspect is addressed using a case study of C2C12 mouse myoblast cells grown on Poly(vinyldiene difluoride) based polymeric substrates in the presence of an external electric field. In particular, we used a number of fluorescence microscopy images of murine myoblasts (muscle precursor cells) grown on Poly (vinylidene difluoride), PVDF based nanobiocomposites under the influence of electric field. It was observed that when compared with the findings obtained from ImageJ, ImageMKS workflows consistently produced more reliable results that correlated better with the prior studies. Furthermore, the MKS workflows required much less user time, because of their automation.
Collapse
Affiliation(s)
- Ravikumar K
- Materials Research Centre, Indian Institute of Science,Bangalore, C V Raman Avenue, Bangalore, Karnataka, 560012, INDIA
| | - Sven P Voigt
- School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Drive Georgia Institute of Technology Atlanta, GA, Atlanta, Georgia, 30332, UNITED STATES
| | - Surya R Kalidindi
- School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Drive, Atlanta, GA 30332-0405, USA, Atlanta, Georgia, 30332, UNITED STATES
| | - Bikramjit Basu
- Materials Research Centre, Indian Institute of Science,Bangalore, C V Raman Avenue, Bangalore, Karnataka, 560012, INDIA
| |
Collapse
|
12
|
Vishwakarma SK, Jaiswal J, Park K, Lakkireddy C, Raju N, Bardia A, Habeeb MA, Paspala SAB, Khan AA, Dhayal M. TiO
2
Nanoflowers on Conducting Substrates Ameliorate Effective Transdifferentiation of Human Hepatic Progenitor Cells for Long‐Term Hyperglycemia Reversal in Diabetic Mice. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.201900205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Sandeep Kumar Vishwakarma
- Clinical Research FacilityCSIR‐Centre for Cellular and Molecular Biology Hyderabad Telangana 500007 India
- Central Laboratory for Stem Cell Research and Translational MedicineCentre for Liver Research and Diagnostics, Deccan College of Medical Sciences Kanchanbagh Hyderabad Telangana 500058 India
- Dr. Habeebullah Life Sciences Limited Attapur Hyderabad Telangana 500048 India
| | - Juhi Jaiswal
- Nano‐Cellular Medicine and Biophysics Laboratory, School of Biomedical EngineeringIndian Institute of Technology (Banaras Hindu University) Varanasi Uttar Pradesh 221005 India
| | - Kyung‐Hee Park
- Department of Dental Materials and Hard‐tissue Biointerface Research Center, School of DentistryChonnam National University Gwangju 61186 Republic of Korea
| | - Chandrakala Lakkireddy
- Central Laboratory for Stem Cell Research and Translational MedicineCentre for Liver Research and Diagnostics, Deccan College of Medical Sciences Kanchanbagh Hyderabad Telangana 500058 India
| | - Nagarapu Raju
- Central Laboratory for Stem Cell Research and Translational MedicineCentre for Liver Research and Diagnostics, Deccan College of Medical Sciences Kanchanbagh Hyderabad Telangana 500058 India
- Dr. Habeebullah Life Sciences Limited Attapur Hyderabad Telangana 500048 India
| | - Avinash Bardia
- Central Laboratory for Stem Cell Research and Translational MedicineCentre for Liver Research and Diagnostics, Deccan College of Medical Sciences Kanchanbagh Hyderabad Telangana 500058 India
- Dr. Habeebullah Life Sciences Limited Attapur Hyderabad Telangana 500048 India
| | - Md. Aejaz Habeeb
- Central Laboratory for Stem Cell Research and Translational MedicineCentre for Liver Research and Diagnostics, Deccan College of Medical Sciences Kanchanbagh Hyderabad Telangana 500058 India
- Dr. Habeebullah Life Sciences Limited Attapur Hyderabad Telangana 500048 India
| | - Syed Ameer Basha Paspala
- Central Laboratory for Stem Cell Research and Translational MedicineCentre for Liver Research and Diagnostics, Deccan College of Medical Sciences Kanchanbagh Hyderabad Telangana 500058 India
- Dr. Habeebullah Life Sciences Limited Attapur Hyderabad Telangana 500048 India
| | - Aleem Ahmed Khan
- Central Laboratory for Stem Cell Research and Translational MedicineCentre for Liver Research and Diagnostics, Deccan College of Medical Sciences Kanchanbagh Hyderabad Telangana 500058 India
- Dr. Habeebullah Life Sciences Limited Attapur Hyderabad Telangana 500048 India
| | - Marshal Dhayal
- Clinical Research FacilityCSIR‐Centre for Cellular and Molecular Biology Hyderabad Telangana 500007 India
- Nano‐Cellular Medicine and Biophysics Laboratory, School of Biomedical EngineeringIndian Institute of Technology (Banaras Hindu University) Varanasi Uttar Pradesh 221005 India
| |
Collapse
|
13
|
Verma AS, Singh A, Kumar D, Dubey AK. Electro-mechanical and Polarization-Induced Antibacterial Response of 45S5 Bioglass-Sodium Potassium Niobate Piezoelectric Ceramic Composites. ACS Biomater Sci Eng 2020; 6:3055-3069. [PMID: 33463258 DOI: 10.1021/acsbiomaterials.0c00091] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Besides the excellent osteoconductivity and biocompatibility of 45S5 bioglass (BG), poor mechanical and electrical properties as well as susceptibility toward bacterial adhesion limit its widespread clinical applications. In this context, the present study investigates the effect of addition of piezoelectric sodium potassium niobate (Na0.5K0.5NbO3; NKN) on mechanical, dielectric, and antibacterial response of BG. BG-xNKN (x = 0, 10, 20, and 30 vol%) composites were synthesized at 800 °C for 30 min. The phase analyses using spectral techniques revealed the formation of the composite without any reaction between BG and piezoelectric ceramic NKN. The dielectric and electrical measurements were performed over a wide range of temperature (30-500 °C) and frequency (1 Hz-1 MHz) which suggests that space charge and dipolar polarizations are the dominant polarization mechanisms. The complex impedance analyses suggest that the average activation energies for grain and grain boundary resistances for BG-xNKN (x = 10, 20, and 30 vol%) composites are 0.59, 0.87, 0.94 and 0.76, 0.93, 1.06 eV, respectively. The issue of bacterial infection has been addressed by electrical polarization of the developed composite samples, at 20 kV for 30 min. Statistical analyses reveal that the viability of Gram-positive (S. aureus) and Gram-negative (E. coli) bacterial cells has been reduced significantly on positively and negatively charged BG-NKN composite samples, respectively. The qualitative analyses using the Kirby-Bauer test supports the above findings. Nitro blue tetrazolium and lipid peroxide assays were performed to understand the mechanism of such antibacterial response, which suggested that the combined effect of NKN addition and polarization significantly enhances the superoxide production, which kills the bacterial cells. Overall, incorporation of NKN in BG enhances the mechanical, electrical, and dielectric properties as well as improves the antibacterial response of polarized BG-xNKN composites.
Collapse
Affiliation(s)
- Alok Singh Verma
- Department of Ceramic Engineering, Indian Institute of Technology (Banaras Hindu University) Varanasi - 221005, India
| | - Angaraj Singh
- Department of Ceramic Engineering, Indian Institute of Technology (Banaras Hindu University) Varanasi - 221005, India
| | - Devendra Kumar
- Department of Ceramic Engineering, Indian Institute of Technology (Banaras Hindu University) Varanasi - 221005, India
| | - Ashutosh Kumar Dubey
- Department of Ceramic Engineering, Indian Institute of Technology (Banaras Hindu University) Varanasi - 221005, India
| |
Collapse
|
14
|
Leppik L, Oliveira KMC, Bhavsar MB, Barker JH. Electrical stimulation in bone tissue engineering treatments. Eur J Trauma Emerg Surg 2020; 46:231-244. [PMID: 32078704 PMCID: PMC7113220 DOI: 10.1007/s00068-020-01324-1] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/04/2020] [Indexed: 12/20/2022]
Abstract
Electrical stimulation (EStim) has been shown to promote bone healing and regeneration both in animal experiments and clinical treatments. Therefore, incorporating EStim into promising new bone tissue engineering (BTE) therapies is a logical next step. The goal of current BTE research is to develop combinations of cells, scaffolds, and chemical and physical stimuli that optimize treatment outcomes. Recent studies demonstrating EStim's positive osteogenic effects at the cellular and molecular level provide intriguing clues to the underlying mechanisms by which it promotes bone healing. In this review, we discuss results of recent in vitro and in vivo research focused on using EStim to promote bone healing and regeneration and consider possible strategies for its application to improve outcomes in BTE treatments. Technical aspects of exposing cells and tissues to EStim in in vitro and in vivo model systems are also discussed.
Collapse
Affiliation(s)
- Liudmila Leppik
- Frankfurt Initiative for Regenerative Medicine, Experimental Orthopedics and Trauma Surgery, J.W. Goethe University, Frankfurt/Main, Germany.
| | - Karla Mychellyne Costa Oliveira
- Frankfurt Initiative for Regenerative Medicine, Experimental Orthopedics and Trauma Surgery, J.W. Goethe University, Frankfurt/Main, Germany
| | - Mit Balvantray Bhavsar
- Frankfurt Initiative for Regenerative Medicine, Experimental Orthopedics and Trauma Surgery, J.W. Goethe University, Frankfurt/Main, Germany
| | - John Howard Barker
- Frankfurt Initiative for Regenerative Medicine, Experimental Orthopedics and Trauma Surgery, J.W. Goethe University, Frankfurt/Main, Germany
| |
Collapse
|
15
|
Singh A, Reshma K, Dubey AK. Combined effect of surface polarization and ZnO addition on antibacterial and cellular response of Hydroxyapatite-ZnO composites. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 107:110363. [DOI: 10.1016/j.msec.2019.110363] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 09/22/2019] [Accepted: 10/22/2019] [Indexed: 12/29/2022]
|
16
|
Naskar S, Panda AK, Jana A, Kanagaraj S, Basu B. UHMWPE-MWCNT-nHA based hybrid trilayer nanobiocomposite: Processing approach, physical properties, stem/bone cell functionality, and blood compatibility. J Biomed Mater Res B Appl Biomater 2020; 108:2320-2343. [PMID: 31994833 DOI: 10.1002/jbm.b.34567] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/06/2019] [Accepted: 11/29/2019] [Indexed: 12/17/2022]
Abstract
The development of polymeric nanocomposites for biomedical applications remains a major challenge in terms of tailored addition of nanoparticles to realize the simultaneous enhancement of fracture resistance and cell/blood compatibility. To address this, the present work has been planned to determine whether small addition of surface functionalized multiwalled-carbon-nanotube, MWCNT (<1.5 wt%) and egg-shell derived nanosized hydroxyapatite, nHA (<10 wt%) to ultrahigh-molecular-weight-polyethylene (UHMWPE) can significantly improve the physical properties as well as biocompatibility. The difference in mouse osteoblast and human mesenchymal stem cell (hMSc) proliferation has been validated using both the monolithic composite and a trilayered composite with two different UHMWPE nanocomposites on either face with pure polymer at the middle. The combination of rheology and micro-CT with fractography reveals the homogeneous dispersion of nanofillers, leading to mechanical property enhancement. The quantitative analysis of cell viability and cell spreading by immunocytochemistry method, using vinculin and vimentin expression, establish significant cytocompatibility with hMSc and osteoblast cells onto the trilayer hybrid nanobiocomposite substrates. The hemocompatibility of the investigated composites under the controlled flow of rabbit blood in a microfluidic device reveals the signature of reduced thrombogenesis with reduction of platelet activation on UHMWPE nanocomposite w.r.t. unreinforced UHMWPE. An attempt has been made to discuss the blood compatibility results in the backdrop of the bovine serum albumin adsorption kinetics. Summarizing, the present study establishes that the twin requirement of mechanical property and cyto/hemo-compatibility can be potentially realized in developing trilayer composites in UHMWPE-nHA-MWCNT system.
Collapse
Affiliation(s)
- Sharmistha Naskar
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, India.,Laboratory for Biomaterials, Materials Research Center, Indian Institute of Science, Bangalore, India.,Centres of Excellence and Innovation in Biotechnology - Translational Center on Biomaterials for Orthopaedic and Dental Applications, Materials Research Center, IISc Bangalore, Bangalore, India
| | - Asish K Panda
- Laboratory for Biomaterials, Materials Research Center, Indian Institute of Science, Bangalore, India.,Centres of Excellence and Innovation in Biotechnology - Translational Center on Biomaterials for Orthopaedic and Dental Applications, Materials Research Center, IISc Bangalore, Bangalore, India
| | - Ashirbad Jana
- Department of Mechanical Engineering, IIT Guwahati, Guwahati, India
| | | | - Bikramjit Basu
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, India.,Laboratory for Biomaterials, Materials Research Center, Indian Institute of Science, Bangalore, India.,Centres of Excellence and Innovation in Biotechnology - Translational Center on Biomaterials for Orthopaedic and Dental Applications, Materials Research Center, IISc Bangalore, Bangalore, India
| |
Collapse
|
17
|
Valente KP, Brolo A, Suleman A. From Dermal Patch to Implants-Applications of Biocomposites in Living Tissues. Molecules 2020; 25:E507. [PMID: 31991641 PMCID: PMC7037691 DOI: 10.3390/molecules25030507] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 01/19/2020] [Accepted: 01/20/2020] [Indexed: 01/21/2023] Open
Abstract
Composites are composed of two or more materials, displaying enhanced performance and superior mechanical properties when compared to their individual components. The use of biocompatible materials has created a new category of biocomposites. Biocomposites can be applied to living tissues due to low toxicity, biodegradability and high biocompatibility. This review summarizes recent applications of biocomposite materials in the field of biomedical engineering, focusing on four areas-bone regeneration, orthopedic/dental implants, wound healing and tissue engineering.
Collapse
Affiliation(s)
| | - Alexandre Brolo
- Department of Chemistry, University of Victoria, Victoria, BC V8P 5C2, Canada;
| | - Afzal Suleman
- Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada;
| |
Collapse
|
18
|
Naskar S, Kumaran V, Markandeya YS, Mehta B, Basu B. Neurogenesis-on-Chip: Electric field modulated transdifferentiation of human mesenchymal stem cell and mouse muscle precursor cell coculture. Biomaterials 2019; 226:119522. [PMID: 31669894 DOI: 10.1016/j.biomaterials.2019.119522] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 09/19/2019] [Accepted: 09/23/2019] [Indexed: 12/21/2022]
Abstract
A number of bioengineering strategies, using biophysical stimulation, are being explored to guide the human mesenchymal stem cells (hMScs) into different lineages. In this context, we have limited understanding on the transdifferentiation of matured cells to another functional-cell type, when grown with stem cells, in a constrained cellular microenvironment under biophysical stimulation. While addressing such aspects, the present work reports the influence of the electric field (EF) stimulation on the phenotypic and functionality modulation of the coculture of murine myoblasts (C2C12) with hMScs [hMSc:C2C12=1:10] in a custom designed polymethylmethacrylate (PMMA) based microfluidic device with in-built metal electrodes. The quantitative and qualitative analysis of the immunofluorescence study confirms that the cocultured cells in the conditioned medium with astrocytic feed, exhibit differentiation towards neural-committed cells under biophysical stimulation in the range of the endogenous physiological electric field strength (8 ± 0.06 mV/mm). The control experiments using similar culture protocols revealed that while C2C12 monoculture exhibited myotube-like fused structures, the hMScs exhibited the neurosphere-like clusters with SOX2, nestin, βIII-tubulin expression. The electrophysiological study indicates the significant role of intercellular calcium signalling among the differentiated cells towards transdifferentiation. Furthermore, the depolarization induced calcium influx strongly supports neural-like behaviour for the electric field stimulated cells in coculture. The intriguing results are explained in terms of the paracrine signalling among the transdifferentiated cells in the electric field stimulated cellular microenvironment. In summary, the present study establishes the potential for neurogenesis on-chip for the coculture of hMSc and C2C12 cells under tailored electric field stimulation, in vitro.
Collapse
Affiliation(s)
- Sharmistha Naskar
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, 560012, India; Department of Chemical Engineering, Indian Institute of Science, Bangalore, 560012, India; Laboratory for Biomaterials, Materials Research Centre, Indian Institute of Science, Bangalore, 560012, India; Centres of Excellence and Innovation in Biotechnology - Translational Centre on Biomaterials for Orthopaedic and Dental Applications, Materials Research Centre, IISc, Bangalore, India
| | - Viswanathan Kumaran
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, 560012, India
| | - Yogananda S Markandeya
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Bangalore, 560029, India
| | - Bhupesh Mehta
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Bangalore, 560029, India
| | - Bikramjit Basu
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, 560012, India; Laboratory for Biomaterials, Materials Research Centre, Indian Institute of Science, Bangalore, 560012, India; Centres of Excellence and Innovation in Biotechnology - Translational Centre on Biomaterials for Orthopaedic and Dental Applications, Materials Research Centre, IISc, Bangalore, India.
| |
Collapse
|
19
|
Park J, Choi JH, Kim S, Jang I, Jeong S, Lee JY. Micropatterned conductive hydrogels as multifunctional muscle-mimicking biomaterials: Graphene-incorporated hydrogels directly patterned with femtosecond laser ablation. Acta Biomater 2019; 97:141-153. [PMID: 31352108 DOI: 10.1016/j.actbio.2019.07.044] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 12/20/2022]
Abstract
Multifunctional biomaterials that can provide physical, electrical, and structural cues to cells and tissues are highly desirable to mimic the important characteristics of native tissues and efficiently modulate cellular behaviors. Especially, electrically conductive biomaterials can efficiently deliver electrical signals to living systems; however, the production of conductive biomaterials presenting multiple cell interactive cues is still a great challenge. In this study, we fabricafed an electrically conductive, mechanically soft, and topographically active hydrogel by micropatterning a graphene oxide (GO)-incorporated polyacrylamide hydrogel (GO/PAAm) with femtosecond laser ablation (FLA) and subsequent chemical reduction. FLA parameters were optimized to efficiently produce distinct line patterns on GO/PAAm hydrogels to induce myoblast alignment and maturation. The line patterns distances (PD) were varied to have different topographies (20-80 μm PD). In vitro studies with C2C12 myoblasts revealed that the micopatterned hydrogels are superior to the unpatterned substrates in inducing myogenesis and myotube alignment. Reduced GO/PAAm with 50 μm PD, i.e., PD50/r(GO/PAAm), showed the best results among the various features for differentiation and myotube alignment. Electrical stimulation of myoblasts on the micropatterned conductive hydrogels further promoted the differentiation of myoblasts. In vivo implantation studies indicated good tissue compatibility of PD50/r(GO/PAAm) samples. Altogether, we successfully demonstrated that the micropatterned r(GO/PAAm) may offer multiple properties capable of positively affecting myoblast responses. This hydrogel may serve as an effective multifunctional biomaterial, which possesses the topography for cell alignment/maturation, mechanical properties of the native skeletal muscle tissue, and desirable electrical conductivity for delivering electrical signals to cells, for various biomedical applications such as muscle tissue scaffolds. STATEMENT OF SIGNIFICANCE: Micropatterned conductive hydrogels were created by polymerization of a graphene oxide-incorporated polyacrylamide hydrogel, micropatterning with femtosecond laser ablation, and chemical reduction, which can mimic important characteristics of native skeletal muscle tissues. The micropatterned conductive hydro-gels promoted myogenesis/alignment, enabled electrical stimulation of myoblasts, and displayed good tissue compatibility, which can therefore serve as a multifunctional biomaterial that is topographically active, mechanically soft, and electrically conductive for delivering multiple cell stimulating signals for potential skeletal muscle tissue engineering applications.
Collapse
|
20
|
Balčiūnas E, Baldock SJ, Dreižė N, Grubliauskaitė M, Coultas S, Rochester DL, Valius M, Hardy JG, Baltriukienė D. 3D printing hybrid organometallic polymer‐based biomaterials via laser two‐photon polymerization. POLYM INT 2019. [DOI: 10.1002/pi.5909] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Evaldas Balčiūnas
- Institute of Biochemistry, Life Sciences CentreVilnius University Vilnius Lithuania
| | - Sara J Baldock
- Department of ChemistryLancaster University Lancaster UK
- Materials Science InstituteLancaster University Lancaster UK
| | - Nadežda Dreižė
- Institute of Biochemistry, Life Sciences CentreVilnius University Vilnius Lithuania
| | | | | | | | - Mindaugas Valius
- Institute of Biochemistry, Life Sciences CentreVilnius University Vilnius Lithuania
| | - John G Hardy
- Department of ChemistryLancaster University Lancaster UK
- Materials Science InstituteLancaster University Lancaster UK
| | - Daiva Baltriukienė
- Institute of Biochemistry, Life Sciences CentreVilnius University Vilnius Lithuania
| |
Collapse
|
21
|
Saberi A, Jabbari F, Zarrintaj P, Saeb MR, Mozafari M. Electrically Conductive Materials: Opportunities and Challenges in Tissue Engineering. Biomolecules 2019; 9:E448. [PMID: 31487913 PMCID: PMC6770812 DOI: 10.3390/biom9090448] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 08/26/2019] [Accepted: 08/28/2019] [Indexed: 01/09/2023] Open
Abstract
Tissue engineering endeavors to regenerate tissues and organs through appropriate cellular and molecular interactions at biological interfaces. To this aim, bio-mimicking scaffolds have been designed and practiced to regenerate and repair dysfunctional tissues by modifying cellular activity. Cellular activity and intracellular signaling are performances given to a tissue as a result of the function of elaborated electrically conductive materials. In some cases, conductive materials have exhibited antibacterial properties; moreover, such materials can be utilized for on-demand drug release. Various types of materials ranging from polymers to ceramics and metals have been utilized as parts of conductive tissue engineering scaffolds, having conductivity assortments from a range of semi-conductive to conductive. The cellular and molecular activity can also be affected by the microstructure; therefore, the fabrication methods should be evaluated along with an appropriate selection of conductive materials. This review aims to address the research progress toward the use of electrically conductive materials for the modulation of cellular response at the material-tissue interface for tissue engineering applications.
Collapse
Affiliation(s)
- Azadeh Saberi
- Nanotechnology and Advanced Materials Department, Materials and Energy Research Center (MERC), P.O. Box: 31787-316 Tehran, Iran.
| | - Farzaneh Jabbari
- Nanotechnology and Advanced Materials Department, Materials and Energy Research Center (MERC), P.O. Box: 31787-316 Tehran, Iran.
| | - Payam Zarrintaj
- Polymer Engineering Department, Faculty of Engineering, Urmia University, P.O. Box: 5756151818-165 Urmia, Iran.
| | - Mohammad Reza Saeb
- Department of Resin and Additives, Institute for Color Science and Technology, P.O. Box: 16765-654 Tehran, Iran.
| | - Masoud Mozafari
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), P.O Box: 14665-354 Tehran, Iran.
| |
Collapse
|
22
|
Ma C, Jiang L, Wang Y, Gang F, Xu N, Li T, Liu Z, Chi Y, Wang X, Zhao L, Feng Q, Sun X. 3D Printing of Conductive Tissue Engineering Scaffolds Containing Polypyrrole Nanoparticles with Different Morphologies and Concentrations. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E2491. [PMID: 31390733 PMCID: PMC6696326 DOI: 10.3390/ma12152491] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/01/2019] [Accepted: 08/05/2019] [Indexed: 12/23/2022]
Abstract
Inspired by electrically active tissues, conductive materials have been extensively developed for electrically active tissue engineering scaffolds. In addition to excellent conductivity, nanocomposite conductive materials can also provide nanoscale structure similar to the natural extracellular microenvironment. Recently, the combination of three-dimensional (3D) printing and nanotechnology has opened up a new era of conductive tissue engineering scaffolds exhibiting optimized properties and multifunctionality. Furthermore, in the case of two-dimensional (2D) conductive film scaffolds such as periosteum, nerve membrane, skin repair, etc., the traditional preparation process, such as solvent casting, produces 2D films with defects of unequal bubbles and thickness frequently. In this study, poly-l-lactide (PLLA) conductive scaffolds incorporated with polypyrrole (PPy) nanoparticles, which have multiscale structure similar to natural tissue, were prepared by combining extrusion-based low-temperature deposition 3D printing with freeze-drying. Furthermore, we creatively integrated the advantages of 3D printing and solvent casting and successfully developed a 2D conductive film scaffold with no bubbles, uniform thickness, and good structural stability. Subsequently, the effects of concentration and morphology of PPy nanoparticles on electrical properties and mechanical properties of 3D conductive scaffolds and 2D conductive films scaffolds have been studied, which provided a new idea for the design of both 2D and 3D electroactive tissue engineering scaffolds.
Collapse
Affiliation(s)
- Chunyang Ma
- School of Earth Sciences and Resources, China University of Geosciences (Beijing), Beijing 100083, China
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
- Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Le Jiang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
- Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Yingjin Wang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
- Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Fangli Gang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
- Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Nan Xu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
- Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Ting Li
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
- Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Zhongqun Liu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
- Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Yongjie Chi
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
- Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Xiumei Wang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
- Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Lingyun Zhao
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
- Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Qingling Feng
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
- Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Xiaodan Sun
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China.
- Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
23
|
Biophysical implications of Maxwell stress in electric field stimulated cellular microenvironment on biomaterial substrates. Biomaterials 2019; 209:54-66. [DOI: 10.1016/j.biomaterials.2019.04.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 04/05/2019] [Accepted: 04/06/2019] [Indexed: 01/09/2023]
|
24
|
Victor SP, Selvam S, Sharma CP. Recent Advances in Biomaterials Science and Engineering Research in India: A Minireview. ACS Biomater Sci Eng 2019; 5:3-18. [PMID: 33405853 DOI: 10.1021/acsbiomaterials.8b00233] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Biomedical research in health innovation and product development encompasses convergent technologies that primarily integrate biomaterials science and engineering at its core. Particularly, research in this area is instrumental for the implementation of biomedical devices (BMDs) that offer innovative solutions to help maintain and improve quality of life of patients worldwide. Despite achieving extraordinary success, implantable BMDs are still confronted with complex engineering and biological challenges that need to addressed for augmenting device performance and prolonging lifetime in vivo. Biofabrication of tissue constructs, designing novel biomaterials and employing rational biomaterial design approaches, surface engineering of implants, point of care diagnostics and micro/nano-based biosensors, smart drug delivery systems, and noninvasive imaging methodologies are among strategies exploited for improving clinical performance of implantable BMDs. In India, advances in biomedical technologies have dramatically advanced health care over the last few decades and the country is well-positioned to identify opportunities and translate emerging solutions. In this article, we attempt to capture the recent advances in biomedical research and development progressing across the country and highlight the significant research work accomplished in the areas of biomaterials science and engineering.
Collapse
Affiliation(s)
- Sunita P Victor
- Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Satelmond Palace Campus, Poojappura, Trivandrum 695012, India
| | - Shivaram Selvam
- Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Satelmond Palace Campus, Poojappura, Trivandrum 695012, India
| | - Chandra P Sharma
- Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Satelmond Palace Campus, Poojappura, Trivandrum 695012, India
| |
Collapse
|
25
|
Basu S, Ghosh A, Barui A, Basu B. Epithelial cell functionality on electroconductive Fe/Sr co-doped biphasic calcium phosphate. J Biomater Appl 2019; 33:1035-1052. [PMID: 30630385 DOI: 10.1177/0885328218821549] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In the perspective of dental restorative applications, co-doped bioceramics have not been explored much. From the clinical perspective, a successful dental implant is expected to interact with peri-prosthetic bones, gingival tissue, and surrounding connective tissues. The interaction of implant and implant coating materials with bone tissue is well studied. However, their interaction with surrounding epithelial components needs scientific validation. In this context, the present study aims at quantitative evaluation of the electrical properties of Fe/Sr co-doped biphasic calcium phosphate (BCP) samples and assessment of their cytocompatibility with epithelial (vero) cells. Sr/Fe co-doped BCPs were prepared by sol-gel synthesis technique, with different dopant concentration. Impact of co-doping on conductivity was assessed and interestingly an increase in conductivity with dopant amount was recorded in different co-doped BCPs. Cellular study showed the significant ( p = 0.01) increase in both cellular viability and functionality with increasing conductivity of samples. Higher epithelial cell adhesion indicates that (Sr/Fe) co-doped BCP would be favorable for faster epithelial sealing and also would reduce the chances of infection. Real-time PCR and immunofluorescence studies indicated that the expression of the epithelial marker (E-cadherin) significantly ( p = 0.01) increased in 10, 30 and 40 mol% co-doped samples in comparison to undoped BCP. In contrast to E-cadherin, fold change of β-catenin remains unchanged amongst the co-doped ceramics, implying the absence of tumorigenic potential of (Sr/Fe) co-doped BCP. In addition, immune-fluorescence signatures for cellular polarity are established from enhanced expression PARD3 protein, which has major relevance for cellular morphogenesis and cell division. Summarizing, the present study establishes the efficacy of Sr/Fe co-doped BCPs as a dental implant coating material and its ability to modulate vero cell functionality.
Collapse
Affiliation(s)
- Subhadip Basu
- 1 Laboratory for Biomaterials, Materials Research Center, Indian Institute of Science, Bangalore, India
| | - Aritri Ghosh
- 2 Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Howrah, India
| | - Ananya Barui
- 2 Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Howrah, India
| | - Bikramjit Basu
- 1 Laboratory for Biomaterials, Materials Research Center, Indian Institute of Science, Bangalore, India.,3 Center for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, India
| |
Collapse
|
26
|
Tsui JH, Ostrovsky-Snider NA, Yama DMP, Donohue JD, Choi JS, Chavanachat R, Larson JD, Murphy AR, Kim DH. Conductive Silk-Polypyrrole Composite Scaffolds with Bioinspired Nanotopographic Cues for Cardiac Tissue Engineering. J Mater Chem B 2018; 6:7185-7196. [PMID: 31448124 PMCID: PMC6708520 DOI: 10.1039/c8tb01116h] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We report on the development of bioinspired cardiac scaffolds made from electroconductive acid-modified silk fibroin-poly(pyrrole) (AMSF+PPy) substrates patterned with nanoscale ridges and grooves reminiscent of native myocardial extracellular matrix (ECM) topography to enhance the structural and functional properties of cultured human pluripotent stem cells (hPSC)-derived cardiomyocytes. Nanopattern fidelity was maintained throughout the fabrication and functionalization processes, and no loss in conductive behavior occurred due to the presence of the nanotopographical features. AMSF+PPy substrates were biocompatible and stable, maintaining high cell viability over a 21-day culture period while displaying no signs of PPy delamination. The presence of anisotropic topographical cues led to increased cellular organization and sarcomere development, and electroconductive cues promoted a significant improvement in the expression and polarization of connexin 43 (Cx43), a critical regulator of cell-cell electrical coupling. The combination of biomimetic topography and electroconductivity also increased the expression of genes that encode key proteins involved in regulating the contractile and electrophysiological function of mature human cardiac tissue.
Collapse
Affiliation(s)
- Jonathan H. Tsui
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | | | - David M. P. Yama
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Jordan D. Donohue
- Department of Chemistry, Western Washington University, Bellingham, WA, USA
| | - Jong Seob Choi
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | | | - Jesse D. Larson
- Department of Chemistry, Western Washington University, Bellingham, WA, USA
| | - Amanda R. Murphy
- Department of Chemistry, Western Washington University, Bellingham, WA, USA
| | - Deok-Ho Kim
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA, USA
| |
Collapse
|
27
|
Naskar S, Panda AK, Kumaran V, Mehta B, Basu B. Controlled Shear Flow Directs Osteogenesis on UHMWPE-Based Hybrid Nanobiocomposites in a Custom-Designed PMMA Microfluidic Device. ACS APPLIED BIO MATERIALS 2018; 1:414-435. [DOI: 10.1021/acsabm.8b00147] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Sharmistha Naskar
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
- Department of Chemical Engineering, Indian Institute of Science, Bangalore 560012, India
- Laboratory for Biomaterials, Materials Research Centre, Indian Institute of Science, Bangalore 560012, India
| | - Asish Kumar Panda
- Laboratory for Biomaterials, Materials Research Centre, Indian Institute of Science, Bangalore 560012, India
| | - Viswanathan Kumaran
- Department of Chemical Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Bhupesh Mehta
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Bangalore 560029, India
| | - Bikramjit Basu
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
- Laboratory for Biomaterials, Materials Research Centre, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
28
|
Ostrovidov S, Ebrahimi M, Bae H, Nguyen HK, Salehi S, Kim SB, Kumatani A, Matsue T, Shi X, Nakajima K, Hidema S, Osanai M, Khademhosseini A. Gelatin-Polyaniline Composite Nanofibers Enhanced Excitation-Contraction Coupling System Maturation in Myotubes. ACS APPLIED MATERIALS & INTERFACES 2017; 9:42444-42458. [PMID: 29023089 DOI: 10.1021/acsami.7b03979] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
In this study, composite gelatin-polyaniline (PANI) nanofibers doped with camphorsulfonic acid (CSA) were fabricated by electrospinning and used as substrates to culture C2C12 myoblast cells. We observed enhanced myotube formation on composite gelatin-PANI nanofibers compared to gelatin nanofibers, concomitantly with enhanced myotube maturation. Thus, in myotubes, intracellular organization, colocalization of the dihydropyridine receptor (DHPR) and ryanodine receptor (RyR), expression of genes correlated to the excitation-contraction (E-C) coupling apparatus, calcium transients, and myotube contractibility were increased. Such composite material scaffolds combining topographical and electrically conductive cues may be useful to direct skeletal muscle cell organization and to improve cellular maturation, functionality, and tissue formation.
Collapse
Affiliation(s)
- Serge Ostrovidov
- WPI-Advanced Institute for Materials Research, Tohoku University , Sendai 980-8577, Japan
- Department of Medicine, Center for Biomedical Engineering, Brigham and Women's Hospital, Harvard Medical School , Cambridge, Massachusetts 02139, United States
| | - Majid Ebrahimi
- WPI-Advanced Institute for Materials Research, Tohoku University , Sendai 980-8577, Japan
| | - Hojae Bae
- KU Convergence Science and Technology Institute, Department of Stem Cell and Regenerative Biotechnology, Konkuk University , Hwayang-dong, Kwangjin-gu, Seoul 05029, Republic of Korea
| | - Hung Kim Nguyen
- WPI-Advanced Institute for Materials Research, Tohoku University , Sendai 980-8577, Japan
| | - Sahar Salehi
- WPI-Advanced Institute for Materials Research, Tohoku University , Sendai 980-8577, Japan
- Lehrstuhl Biomaterialien, Fakultät für Ingenieurwissenschaften, Universität Bayreuth , Bayreuth 95440, Germany
| | - Sang Bok Kim
- Department of Eco-Machinery system, Korea Institute of Machinery and Materials , Daejeon 305-343, Republic of Korea
| | - Akichika Kumatani
- WPI-Advanced Institute for Materials Research, Tohoku University , Sendai 980-8577, Japan
- Graduate School of Environmental Studies, Tohoku University , Sendai 980-8579, Japan
| | - Tomokazu Matsue
- WPI-Advanced Institute for Materials Research, Tohoku University , Sendai 980-8577, Japan
- Graduate School of Environmental Studies, Tohoku University , Sendai 980-8579, Japan
| | - Xuetao Shi
- National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology , Guangzhou 510006, PR China
| | - Ken Nakajima
- School of Materials and Chemical Technology, Tokyo Institute of Technology , Tokyo 152-8550, Japan
| | - Shizu Hidema
- Graduate School of Agricultural Science, Department of Molecular and Cell Biology, Tohoku University , Sendai 981-8555, Japan
| | - Makoto Osanai
- Department of Radiological Imaging and Informatics, Tohoku University Graduate School of Medicine , Sendai 980-8575, Japan
- Department of Intelligent Biomedical Systems Engineering, Graduate School of Biomedical Engineering, Tohoku University , Sendai 980-8575, Japan
| | - Ali Khademhosseini
- WPI-Advanced Institute for Materials Research, Tohoku University , Sendai 980-8577, Japan
- Department of Medicine, Center for Biomedical Engineering, Brigham and Women's Hospital, Harvard Medical School , Cambridge, Massachusetts 02139, United States
- KU Convergence Science and Technology Institute, Department of Stem Cell and Regenerative Biotechnology, Konkuk University , Hwayang-dong, Kwangjin-gu, Seoul 05029, Republic of Korea
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University , Boston, Massachusetts 02115, United States
- Department of Physics, Faculty of Science, King Abdulaziz University , Jeddah 21569, Saudi Arabia
- California NanoSystems Institute (CNSI), and Center for Minimally Invasive Therapeutics (C-MIT), Department of Bioengineering and Department of Radiology, University of California , Los Angeles, California 90095, United States
| |
Collapse
|
29
|
Unraveling the mechanistic effects of electric field stimulation towards directing stem cell fate and function: A tissue engineering perspective. Biomaterials 2017; 150:60-86. [PMID: 29032331 DOI: 10.1016/j.biomaterials.2017.10.003] [Citation(s) in RCA: 202] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 09/27/2017] [Accepted: 10/02/2017] [Indexed: 02/06/2023]
Abstract
Electric field (EF) stimulation can play a vital role in eliciting appropriate stem cell response. Such an approach is recently being established to guide stem cell differentiation through osteogenesis/neurogenesis/cardiomyogenesis. Despite significant recent efforts, the biophysical mechanisms by which stem cells sense, interpret and transform electrical cues into biochemical and biological signals still remain unclear. The present review critically analyses the variety of EF stimulation approaches that can be employed to evoke appropriate stem cell response and also makes an attempt to summarize the underlying concepts of this notion, placing special emphasis on stem cell based tissue engineering and regenerative medicine. This review also discusses the major signaling pathways and cellular responses that are elicited by electric stimulation, including the participation of reactive oxygen species and heat shock proteins, modulation of intracellular calcium ion concentration, ATP production and numerous other events involving the clustering or reassembling of cell surface receptors, cytoskeletal remodeling and so on. The specific advantages of using external electric stimulation in different modalities to regulate stem cell fate processes are highlighted with explicit examples, in vitro and in vivo.
Collapse
|
30
|
Sarkar D, Mandal S, Reddy B, Bhaskar N, Sundaresh D, Basu B. ZrO2-toughened Al2O3-based near-net shaped femoral head: Unique fabrication approach, 3D microstructure, burst strength and muscle cell response. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 77:1216-1227. [DOI: 10.1016/j.msec.2017.03.123] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 03/14/2017] [Accepted: 03/16/2017] [Indexed: 11/30/2022]
|
31
|
Synergy of substrate conductivity and intermittent electrical stimulation towards osteogenic differentiation of human mesenchymal stem cells. Bioelectrochemistry 2017; 116:52-64. [DOI: 10.1016/j.bioelechem.2017.03.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 03/27/2017] [Accepted: 03/27/2017] [Indexed: 02/01/2023]
|
32
|
Li G, Xiao Q, McNaughton R, Han L, Zhang L, Wang Y, Yang Y. Nanoengineered porous chitosan/CaTiO 3 hybrid scaffolds for accelerating Schwann cells growth in peripheral nerve regeneration. Colloids Surf B Biointerfaces 2017; 158:57-67. [PMID: 28672204 DOI: 10.1016/j.colsurfb.2017.06.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 06/19/2017] [Accepted: 06/20/2017] [Indexed: 01/11/2023]
Abstract
To further improve the property of promoting peripheral nerve regeneration of chitosan materials, CaTiO3 nanoparticles with various concentrations were synthesized in chitosan (CS) solution and formed to porous CS/CaTiO3 hybrid scaffolds. The properties including morphology, wettability, porosity, crystallization intensity and surface charges were characterized, respectively. The influence of the porous CS/CaTiO3 hybrid scaffolds on Schwann cells growth was evaluated. The results showed that the CaTiO3 hybridized CS scaffolds possessed homogeneous nanoparticles distribution with concentration-dependent effect. The hybridization of CaTiO3 nanoparticles could increase the hydrophobicity while reduce the porosity and surface charge density of the porous CS/CaTiO3 hybrid scaffolds The crystal structure of the hybridized scaffolds was mainly the orthorhombic structure of the calcium titanate accompanied by the amorphous phase of chitosan. Culture of Schwann cells indicated that the CS/CaTiO3 hybrid scaffolds with a suitable concentration of CaTiO3 nanoparticles could obviously promote the attachment, proliferation and biological function maintenance of Schwann cells, thus showing potentially great significance towards application in peripheral nerve regeneration.
Collapse
Affiliation(s)
- Guicai Li
- Key laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, 226001, Nantong, PR China; The Neural Regeneration Co-innovation Center of Jiangsu Province, 226001 Nantong, PR China; Department of Mechanical Engineering, Boston University, Boston, MA 02215, USA.
| | - Qinzhi Xiao
- Department of Pediatrics, Affiliated Hospital of Nantong University, 226001, Nantong, PR China
| | - Ryan McNaughton
- Department of Mechanical Engineering, Boston University, Boston, MA 02215, USA
| | - Lei Han
- Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 210096, PR China
| | - Luzhong Zhang
- Key laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, 226001, Nantong, PR China; The Neural Regeneration Co-innovation Center of Jiangsu Province, 226001 Nantong, PR China
| | - Yaling Wang
- School of Chemical Engineering, Nantong University, 226001, Nantong, PR China
| | - Yumin Yang
- Key laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, 226001, Nantong, PR China; The Neural Regeneration Co-innovation Center of Jiangsu Province, 226001 Nantong, PR China.
| |
Collapse
|
33
|
Boda SK, Thrivikraman G, Panigrahy B, Sarma DD, Basu B. Competing Roles of Substrate Composition, Microstructure, and Sustained Strontium Release in Directing Osteogenic Differentiation of hMSCs. ACS APPLIED MATERIALS & INTERFACES 2017; 9:19389-19408. [PMID: 27617589 DOI: 10.1021/acsami.6b08694] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Strontium releasing bioactive ceramics constitute an important class of biomaterials for osteoporosis treatment. In the present study, we evaluated the synthesis, phase assemblage, and magnetic properties of strontium hexaferrite, SrFe12O19, (SrFe) nanoparticles. On the biocompatibility front, the size- and dose-dependent cytotoxicity of SrFe against human mesenchymal stem cells (hMSCs) were investigated. After establishing their non-toxic nature, we used the strontium hexaferrite nanoparticles (SrFeNPs) in varying amount (x = 0, 10, and 20 wt %) to consolidate bioactive composites with hydroxyapatite (HA) by multi-stage spark plasma sintering (SPS). Rietveld refinement of these spark plasma sintered composites revealed a near complete decomposition of SrFe12O19 to magnetite (Fe3O4) along with a marked increase in the unit cell volume of HA, commensurate with strontium-doped HA. The cytocompatibility of SrHA-Fe composites with hMSCs was assessed using qualitative and quantitative morphological analysis along with phenotypic and genotypic expression for stem cell differentiation. A marked decrease in the stemness of hMSCs, indicated by reduced vimentin expression and acquisition of osteogenic phenotype, evinced by alkaline phosphatase (ALP) and collagen deposition was recorded on SrHA-Fe composites in osteoinductive culture. A significant upregulation of osteogenic marker genes (Runx2, ALP and OPN) was detected in case of the SrHA-Fe composites, whereas OCN and Col IA expression were similarly high for baseline HA. However, matrix mineralization was elevated on SrHA-Fe composites in commensurate with the release of Sr2+ and Fe2+. Summarizing, the current work is the first report of strontium hexaferrite as a non-toxic nanobiomaterial. Also, SrHA-based iron oxide composites can potentially better facilitate bone formation, when compared to pristine HA.
Collapse
Affiliation(s)
- Sunil Kumar Boda
- Laboratory for Biomaterials, Materials Research Centre, §Centre for Nano Science and Engineering, ⊥Solid State and Structural Chemistry Unit, and ∥Centre for Biosystems Science and Engineering, Indian Institute of Science , Bengaluru 560 012, India
| | - Greeshma Thrivikraman
- Laboratory for Biomaterials, Materials Research Centre, §Centre for Nano Science and Engineering, ⊥Solid State and Structural Chemistry Unit, and ∥Centre for Biosystems Science and Engineering, Indian Institute of Science , Bengaluru 560 012, India
| | - Bharati Panigrahy
- Laboratory for Biomaterials, Materials Research Centre, §Centre for Nano Science and Engineering, ⊥Solid State and Structural Chemistry Unit, and ∥Centre for Biosystems Science and Engineering, Indian Institute of Science , Bengaluru 560 012, India
| | - D D Sarma
- Laboratory for Biomaterials, Materials Research Centre, §Centre for Nano Science and Engineering, ⊥Solid State and Structural Chemistry Unit, and ∥Centre for Biosystems Science and Engineering, Indian Institute of Science , Bengaluru 560 012, India
| | - Bikramjit Basu
- Laboratory for Biomaterials, Materials Research Centre, §Centre for Nano Science and Engineering, ⊥Solid State and Structural Chemistry Unit, and ∥Centre for Biosystems Science and Engineering, Indian Institute of Science , Bengaluru 560 012, India
| |
Collapse
|
34
|
Naskar S, Kumaran V, Basu B. On The Origin of Shear Stress Induced Myogenesis Using PMMA Based Lab-on-Chip. ACS Biomater Sci Eng 2017; 3:1154-1171. [PMID: 33429590 DOI: 10.1021/acsbiomaterials.7b00206] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
One of the central themes in cell and tissue engineering is to develop an understanding as to how biophysical cues can influence cell functionality changes. The flow induced shear stress is regarded as one such biophysical cue to influence physiological changes in shear-sensitive tissues, in vivo. The origin of such phenomena is, however, poorly understood. While addressing such an issue, the present work demonstrates the intriguing synergistic effect of shear stress and spatial constraints in inducing aligned growth and differentiation of myoblast cells to myotubes. In a planned set of in vitro experiments, the regulation of laminar flow regime within a narrow window was obtained in a PMMA-based Lab-on-Chip (LOC) device, wherein the murine muscle cells (C2C12), chosen for their phenotypical differentiation stages, were cultured under graded shear conditions. The two factors of shear stress and spatial allowance were decoupled by another two sets of experiments. This aspect has been conclusively established using a PMMA device having a fixed width microchannel with varying shear and an identical amount of shear with different width of channels. On the basis of the extensive analysis of biochemical assays (WST-1, picogreen) together with gene expression using qRT-PCR and cell morphological changes (fluorescence/confocal microscopy), extensive differentiation of the myoblasts into myotubes is found to be dependent on both shear stress and spatial allocation with a maximum at an optimal shear of ca. 16 mPa. Quantitatively, the mRNA expression of myogenic biomarkers, i.e., myogenin, MyoD, and neogenin, exhibited 10- to 50-fold changes at ca. 16 mPa shear flow, compared to that under static conditions. Also, myotube aspect ratio and myotube density are modulated with shear stress and are in commensurate with gene expression changes. The flow cytometry analysis further confirmed that the cell cycle arrest at the G1/G0 phase triggers the onset of myogenesis. Taken together, the present study unambiguously establishes qualitative and quantitative biophysical basis for the origin of myogenesis toward the critical shear stress of murine myoblasts in a microfludic device, in vitro.
Collapse
Affiliation(s)
- Sharmistha Naskar
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore-560012, India
| | - V Kumaran
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore-560012, India.,Department of Chemical Engineering, Indian Institute of Science, Bangalore-560012, India
| | - Bikramjit Basu
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore-560012, India.,Laboratory for Biomaterials, Materials Research Center, Indian Institute of Science, Bangalore-560012, India
| |
Collapse
|
35
|
Liu X, Miller AL, Park S, Waletzki BE, Zhou Z, Terzic A, Lu L. Functionalized Carbon Nanotube and Graphene Oxide Embedded Electrically Conductive Hydrogel Synergistically Stimulates Nerve Cell Differentiation. ACS APPLIED MATERIALS & INTERFACES 2017; 9:14677-14690. [PMID: 28406608 DOI: 10.1021/acsami.7b02072] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Nerve regeneration after injury is a critical medical issue. In previous work, we have developed an oligo(poly(ethylene glycol) fumarate) (OPF) hydrogel incorporated with positive charges as a promising nerve conduit. In this study, we introduced cross-linkable bonds to graphene oxide and carbon nanotube to obtain the functionalized graphene oxide acrylate (GOa) and carbon nanotube poly(ethylene glycol) acrylate (CNTpega). An electrically conductive hydrogel was then fabricated by covalently embedding GOa and CNTpega within OPF hydrogel through chemical cross-linking followed by in situ reduction of GOa in l-ascorbic acid solution. Positive charges were incorporated by 2-(methacryloyloxy)ethyltrimethylammonium chloride (MTAC) to obtain rGOaCNTpega-OPF-MTAC composite hydrogel with both surface charge and electrical conductivity. The distribution of CNTpega and GOa in the hydrogels was substantiated by transmission electron microscopy (TEM), and strengthened electrical conductivities were determined. Excellent biocompatibility was demonstrated for the carbon embedded composite hydrogels. Biological evaluation showed enhanced proliferation and spreading of PC12 cells on the conductive hydrogels. After induced differentiation using nerve growth factor (NGF), cells on the conductive hydrogels were effectively stimulated to have robust neurite development as observed by confocal microscope. A synergistic effect of electrical conductivity and positive charges on nerve cells was also observed in this study. Using a glass mold method, the composite hydrogel was successfully fabricated into conductive nerve conduits with surficial positive charges. These results suggest that rGOa-CNTpega-OPF-MTAC composite hydrogel holds great potential as conduits for neural tissue engineering.
Collapse
Affiliation(s)
- Xifeng Liu
- Department of Physiology and Biomedical Engineering, ‡Department of Orthopedic Surgery, and §Department of Cardiovascular Diseases and Center for Regenerative Medicine, Mayo Clinic , Rochester, Minnesota 55905, United States
| | - A Lee Miller
- Department of Physiology and Biomedical Engineering, ‡Department of Orthopedic Surgery, and §Department of Cardiovascular Diseases and Center for Regenerative Medicine, Mayo Clinic , Rochester, Minnesota 55905, United States
| | - Sungjo Park
- Department of Physiology and Biomedical Engineering, ‡Department of Orthopedic Surgery, and §Department of Cardiovascular Diseases and Center for Regenerative Medicine, Mayo Clinic , Rochester, Minnesota 55905, United States
| | - Brian E Waletzki
- Department of Physiology and Biomedical Engineering, ‡Department of Orthopedic Surgery, and §Department of Cardiovascular Diseases and Center for Regenerative Medicine, Mayo Clinic , Rochester, Minnesota 55905, United States
| | - Zifei Zhou
- Department of Physiology and Biomedical Engineering, ‡Department of Orthopedic Surgery, and §Department of Cardiovascular Diseases and Center for Regenerative Medicine, Mayo Clinic , Rochester, Minnesota 55905, United States
| | - Andre Terzic
- Department of Physiology and Biomedical Engineering, ‡Department of Orthopedic Surgery, and §Department of Cardiovascular Diseases and Center for Regenerative Medicine, Mayo Clinic , Rochester, Minnesota 55905, United States
| | - Lichun Lu
- Department of Physiology and Biomedical Engineering, ‡Department of Orthopedic Surgery, and §Department of Cardiovascular Diseases and Center for Regenerative Medicine, Mayo Clinic , Rochester, Minnesota 55905, United States
| |
Collapse
|
36
|
Jo H, Sim M, Kim S, Yang S, Yoo Y, Park JH, Yoon TH, Kim MG, Lee JY. Electrically conductive graphene/polyacrylamide hydrogels produced by mild chemical reduction for enhanced myoblast growth and differentiation. Acta Biomater 2017; 48:100-109. [PMID: 27989919 DOI: 10.1016/j.actbio.2016.10.035] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 10/18/2016] [Accepted: 10/25/2016] [Indexed: 12/25/2022]
Abstract
Graphene and graphene derivatives, such as graphene oxide (GO) and reduced GO (rGO), have been extensively employed as novel components of biomaterials because of their unique electrical and mechanical properties. These materials have also been used to fabricate electrically conductive biomaterials that can effectively deliver electrical signals to biological systems. Recently, increasing attention has been paid to electrically conductive hydrogels that have both electrical activity and a tissue-like softness. In this study, we synthesized conductive graphene hydrogels by mild chemical reduction of graphene oxide/polyacrylamide (GO/PAAm) composite hydrogels to obtain conductive hydrogels. The reduced hydrogel, r(GO/PAAm), exhibited muscle tissue-like stiffness with a Young's modulus of approximately 50kPa. The electrochemical impedance of r(GO/PAAm) could be decreased by more than ten times compared to that of PAAm and unreduced GO/PAAm. In vitro studies with C2C12 myoblasts revealed that r(GO/PAAm) significantly enhanced proliferation and myogenic differentiation compared with unreduced GO/PAAm and PAAm. Moreover, electrical stimulation of myoblasts growing on r(GO/PAAm) graphene hydrogels for 7days significantly enhanced the myogenic gene expression compared to unstimulated controls. As results, our graphene-based conductive and soft hydrogels will be useful as skeletal muscle tissue scaffolds and can serve as a multifunctional platform that can simultaneously deliver electrical and mechanical cues to biological systems. STATEMENT OF SIGNIFICANCE Graphene-based conductive hydrogels presenting electrical conductance and a soft tissue-like modulus were successfully fabricated via mild reduction of graphene oxide/polyacrylamide composite hydrogels to study their potential to skeletal tissue scaffold applications. Significantly promoted myoblast proliferation and differentiation were obtained on our hydrogels. Additionally, electrical stimulation of myoblasts via the graphene hydrogels could further upregulate myogenic gene expressions. Our graphene-incorporated conductive hydrogels will impact on the development of new materials for skeletal muscle tissue engineering scaffolds and bioelectronics devices, and also serve as novel platforms to study cellular interactions with electrical and mechanical signals.
Collapse
Affiliation(s)
- Hyerim Jo
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Myeongbu Sim
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Semin Kim
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Sumi Yang
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Youngjae Yoo
- Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Jin-Ho Park
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Tae Ho Yoon
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Min-Gon Kim
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Jae Young Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea; Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea.
| |
Collapse
|
37
|
Newman P, Galenano Niño JL, Graney P, Razal JM, Minett AI, Ribas J, Ovalle-Robles R, Biro M, Zreiqat H. Relationship between nanotopographical alignment and stem cell fate with live imaging and shape analysis. Sci Rep 2016; 6:37909. [PMID: 27910868 PMCID: PMC5133629 DOI: 10.1038/srep37909] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 11/02/2016] [Indexed: 12/14/2022] Open
Abstract
The topography of a biomaterial regulates cellular interactions and determine stem cell fate. A complete understanding of how topographical properties affect cell behavior will allow the rational design of material surfaces that elicit specified biological functions once placed in the body. To this end, we fabricate substrates with aligned or randomly organized fibrous nanostructured topographies. Culturing adipose-derived stem cells (ASCs), we explore the dynamic relationship between the alignment of topography, cell shape and cell differentiation to osteogenic and myogenic lineages. We show aligned topographies differentiate cells towards a satellite cell muscle progenitor state - a distinct cell myogenic lineage responsible for postnatal growth and repair of muscle. We analyze cell shape between the different topographies, using fluorescent time-lapse imaging over 21 days. In contrast to previous work, this allows the direct measurement of cell shape at a given time rather than defining the morphology of the underlying topography and neglecting cell shape. We report quantitative metrics of the time-based morphological behaviors of cell shape in response to differing topographies. This analysis offers insights into the relationship between topography, cell shape and cell differentiation. Cells differentiating towards a myogenic fate on aligned topographies adopt a characteristic elongated shape as well as the alignment of cells.
Collapse
Affiliation(s)
- Peter Newman
- Biomaterials and Tissue Engineering Research Unit, School of Aeronautical Mechanical and Mechatronics Engineering, University of Sydney, Sydney, NSW, 2006, Australia
| | - Jorge Luis Galenano Niño
- EMBL Australia node in Single Molecule Science, School of Medical Sciences, The University of New South Wales, Sydney, Australia
| | - Pamela Graney
- Department of Biomedical Engineering, School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, USA
| | - Joselito M Razal
- Institute for Frontier Materials, Deakin University, Geelong, Victoria, 3216, Australia
| | - Andrew I Minett
- Laboratory for Sustainable Technology, Department of Chemical and Biomolecular Engineering, University of Sydney, NSW, 2006, Australia.,Australian Institute for Nanoscale Science and Technology, University of Sydney, NSW, 2006, Australia
| | - João Ribas
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, USA
| | - Raquel Ovalle-Robles
- Nano-Science &Technology Center, LINTEC of America Inc., Richardson, Texas 75081, USA
| | - Maté Biro
- EMBL Australia node in Single Molecule Science, School of Medical Sciences, The University of New South Wales, Sydney, Australia.,Sydney Medical School, The University of Sydney, NSW, 2006, Australia
| | - Hala Zreiqat
- Biomaterials and Tissue Engineering Research Unit, School of Aeronautical Mechanical and Mechatronics Engineering, University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
38
|
Bhaskar N, Padmavathy N, Jain S, Bose S, Basu B. Modulated in Vitro Biocompatibility of a Unique Cross-Linked Salicylic Acid-Poly(ε-caprolactone)-Based Biodegradable Polymer. ACS APPLIED MATERIALS & INTERFACES 2016; 8:29721-29733. [PMID: 27726328 DOI: 10.1021/acsami.6b10711] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Herein, we report the development of a unique architecture by chemically cross-linking salicylic acid (SA)-based poly(anhydride ester) onto a biodegradable amine-functionalized poly(caprolactone) (PCL), using lactic acid as a spacer. The ester and amide linkages in the SA-PCL polymer, synthesized through melt condensation, were confirmed by NMR and FT-IR spectroscopic techniques. The enzymatic and nonenzymatic hydrolytic degradation profile exhibited linear degradation kinetics over an extended time period (>5 weeks). The compatibility and growth of C2C12 myoblast cells were found to be significantly improved on the fast-degrading SA-PCL substrates compared to those over neat PCL and amine-functionalized PCL. Further, the decreased red blood cell damage, illustrated by 0.39% hemolysis activity and a minimal number of platelet adhesion on a SA-PCL polymeric surface confirmed good hemocompatibility of the as-synthesized polymer. Together with a moderate bactericidal property, the spectrum of properties of this novel polymer can be attributed to the synergistic effect of the presence of chemical moieties of SA and amine groups in PCL. In summary, it is considered that a SA-PCL-based cross-linked composite can be utilized as a new biodegradable polymer.
Collapse
Affiliation(s)
- Nitu Bhaskar
- Laboratory for Biomaterials, Materials Research Centre, ‡Department of Materials Engineering, and ⊥Center for Biosystems Science and Engineering, Indian Institute of Science , Bangalore 560012, India
| | - Nagarajan Padmavathy
- Laboratory for Biomaterials, Materials Research Centre, ‡Department of Materials Engineering, and ⊥Center for Biosystems Science and Engineering, Indian Institute of Science , Bangalore 560012, India
| | - Shubham Jain
- Laboratory for Biomaterials, Materials Research Centre, ‡Department of Materials Engineering, and ⊥Center for Biosystems Science and Engineering, Indian Institute of Science , Bangalore 560012, India
| | - Suryasarathi Bose
- Laboratory for Biomaterials, Materials Research Centre, ‡Department of Materials Engineering, and ⊥Center for Biosystems Science and Engineering, Indian Institute of Science , Bangalore 560012, India
| | - Bikramjit Basu
- Laboratory for Biomaterials, Materials Research Centre, ‡Department of Materials Engineering, and ⊥Center for Biosystems Science and Engineering, Indian Institute of Science , Bangalore 560012, India
| |
Collapse
|
39
|
Manchineella S, Thrivikraman G, Khanum KK, Ramamurthy PC, Basu B, Govindaraju T. Pigmented Silk Nanofibrous Composite for Skeletal Muscle Tissue Engineering. Adv Healthc Mater 2016; 5:1222-32. [PMID: 27226037 DOI: 10.1002/adhm.201501066] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 02/08/2016] [Indexed: 01/24/2023]
Abstract
Skeletal muscle tissue engineering (SMTE) employs designed biomaterial scaffolds for promoting myogenic differentiation of myoblasts to functional myotubes. Oxidative stress plays a significant role in the biocompatibility of biomaterials as well as in the fate of myoblasts during myogenesis and is also associated with pathological conditions such as myotonic dystrophy. The inherent electrical excitability of muscle cells inspired the use of electroactive scaffolds for SMTE. Conducting polymers attracted the attention of researchers for their use in muscle tissue engineering. However, poor biocompatibility, biodegradability and development of oxidative stress associated immunogenic response limits the extensive use of synthetic conducting polymers for SMTE. In order to address the limitations of synthetic polymers, intrinsically electroactive and antioxidant silk fibroin/melanin composite films and electrospun fiber mats were fabricated and evaluated as scaffolds for promoting myogenesis in vitro. Melanin incorporation modulated the thermal stability, electrical conductivity of scaffolds, fiber alignment in electrospun mats and imparted good antioxidant properties to the scaffolds. The composite electrospun scaffolds promoted myoblast assembly and differentiation into uniformly aligned high aspect ratio myotubes. The results highlight the significance of scaffold topography along with conductivity in promoting myogenesis and the potential application of silk nanofibrous composite as electoractive platform for SMTE.
Collapse
Affiliation(s)
- Shivaprasad Manchineella
- Bioorganic Chemistry Laboratory; New Chemistry Unit; Jawaharlal Nehru Centre for Advanced Scientific Research; Jakkur Bengaluru 560064 Karnataka India
| | - Greeshma Thrivikraman
- Laboratory for Biomaterials; Materials Research Centre; Indian Institute of Science; Bengaluru 560012 Karnataka India
| | - Khadija K. Khanum
- Organic Nano Electronic Laboratory; Department of Materials Engineering; Indian Institute of Science; Bengaluru 560012 Karnataka India
| | - Praveen C. Ramamurthy
- Organic Nano Electronic Laboratory; Department of Materials Engineering; Indian Institute of Science; Bengaluru 560012 Karnataka India
| | - Bikramjit Basu
- Laboratory for Biomaterials; Materials Research Centre; Indian Institute of Science; Bengaluru 560012 Karnataka India
| | - T. Govindaraju
- Bioorganic Chemistry Laboratory; New Chemistry Unit; Jawaharlal Nehru Centre for Advanced Scientific Research; Jakkur Bengaluru 560064 Karnataka India
| |
Collapse
|
40
|
Kumar A, Nune KC, Basu B, Misra RDK. Mechanistic contribution of electroconductive hydroxyapatite–titanium disilicide composite on the alignment and proliferation of cells. J Biomater Appl 2016; 30:1505-16. [DOI: 10.1177/0885328216631670] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We elucidate here the mechanistic contribution of a novel electroconductive hydroxyapatite-20 wt.% titanium disilicide (HA–TiSi2) composite system in favorably modulating osteoblast functions in relation to the monolithic HA. The higher electrical conductivity of HA–TiSi2 (σDC ∼ 67.117 ± 3.57 S/m) in comparison to glass sample effectively guided the electroactive myoblast, leading to their significant alignment and proliferation. This favorable behavior is attributed to the formation of small electrochemical cells between HA and TiSi2 phase, which produce a small electric field, directing the electroactive myoblast to migrate and grow in a particular direction. In contrast, no impact of TiSi2 on osteoblast function was observed because of their inability to respond to small electric field. However, the in vitro bioactivity in simulated body fluid indicated the nucleation and growth of apatite crystals. Moreover, in the context of load-bearing capability, the presence of 20 wt.% TiSi2 in HA led to increase in the fracture toughness by ∼100%. This study underscores the effectiveness of HA–TiSi2 in favorably modulating the cellular activity, myoblast in particular.
Collapse
Affiliation(s)
- A Kumar
- Department of Metallurgical, Materials, and Biomedical Engineering, University of Texas at El Paso, El Paso, TX, USA
| | - KC Nune
- Department of Metallurgical, Materials, and Biomedical Engineering, University of Texas at El Paso, El Paso, TX, USA
| | - B Basu
- Materials Research Centre, Indian Institute of Science, Bangalore, Karnataka, India
| | - RDK Misra
- Department of Metallurgical, Materials, and Biomedical Engineering, University of Texas at El Paso, El Paso, TX, USA
| |
Collapse
|
41
|
Yang HS, Lee B, Tsui JH, Macadangdang J, Jang SY, Im SG, Kim DH. Electroconductive Nanopatterned Substrates for Enhanced Myogenic Differentiation and Maturation. Adv Healthc Mater 2016; 5:137-45. [PMID: 25988569 PMCID: PMC5003176 DOI: 10.1002/adhm.201500003] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 04/14/2015] [Indexed: 11/09/2022]
Abstract
Electrically conductive materials provide a suitable platform for the in vitro study of excitable cells, such as skeletal muscle cells, due to their inherent conductivity and electroactivity. Here it is demonstrated that bioinspired electroconductive nanopatterned substrates enhance myogenic differentiation and maturation. The topographical cues from the highly aligned collagen bundles that form the extracellular matrix of skeletal muscle tissue are mimicked using nanopatterns created with capillary force lithography. Electron beam deposition is then utilized to conformally coat nanopatterned substrates with a thin layer of either gold or titanium to create electroconductive substrates with well-defined, large-area nanotopographical features. C2C12 cells, a myoblast cell line, are cultured for 7 d on substrates and the effects of topography and electrical conductivity on cellular morphology and myogenic differentiation are assessed. It is found that biomimetic nanotopography enhances the formation of aligned myotubes and the addition of an electroconductive coating promotes myogenic differentiation and maturation, as indicated by the upregulation of myogenic regulatory factors Myf5, MyoD, and myogenin (MyoG). These results suggest the suitability of electroconductive nanopatterned substrates as a biomimetic platform for the in vitro engineering of skeletal muscle tissue.
Collapse
Affiliation(s)
- Hee Seok Yang
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center, Dankook University, Cheonan, 330-714, Republic of Korea
| | - Bora Lee
- Department of Chemical and Biomolecular Engineering and KAIST Institute for the NanoCentury, Korea Advanced Institute Science and Technology, Daejeon, 305-701, Republic of Korea
| | - Jonathan H Tsui
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Jesse Macadangdang
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Seok-Young Jang
- Department of Chemical and Biomolecular Engineering and KAIST Institute for the NanoCentury, Korea Advanced Institute Science and Technology, Daejeon, 305-701, Republic of Korea
| | - Sung Gap Im
- Department of Chemical and Biomolecular Engineering and KAIST Institute for the NanoCentury, Korea Advanced Institute Science and Technology, Daejeon, 305-701, Republic of Korea
| | - Deok-Ho Kim
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA
| |
Collapse
|
42
|
K R, Kar GP, Bose S, Basu B. Synergistic effect of polymorphism, substrate conductivity and electric field stimulation towards enhancing muscle cell growth in vitro. RSC Adv 2016. [DOI: 10.1039/c5ra26104j] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Poly(vinylidene difluoride), a well-known candidate for artificial muscle patch applications is a semi-crystalline polymer with a host of attributes such as piezo- and pyroelectricity, polymorphism along with low dielectric constant and stiffness.
Collapse
Affiliation(s)
- Ravikumar K
- Materials Research Centre
- Indian Institute of Science
- Bangalore
- India
| | - Goutam Prasanna Kar
- Department of Materials Engineering
- Indian Institute of Science
- Bangalore
- India
| | - Suryasarathi Bose
- Department of Materials Engineering
- Indian Institute of Science
- Bangalore
- India
| | - Bikramjit Basu
- Materials Research Centre
- Indian Institute of Science
- Bangalore
- India
| |
Collapse
|
43
|
Xie M, Wang L, Guo B, Wang Z, Chen YE, Ma PX. Ductile electroactive biodegradable hyperbranched polylactide copolymers enhancing myoblast differentiation. Biomaterials 2015; 71:158-167. [PMID: 26335860 PMCID: PMC4573316 DOI: 10.1016/j.biomaterials.2015.08.042] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 08/17/2015] [Accepted: 08/18/2015] [Indexed: 11/17/2022]
Abstract
Myotube formation is crucial to restoring muscular functions, and biomaterials that enhance the myoblast differentiation into myotubes are highly desirable for muscular repair. Here, we report the synthesis of electroactive, ductile, and degradable copolymers and their application in enhancing the differentiation of myoblasts to myotubes. A hyperbranched ductile polylactide (HPLA) was synthesized and then copolymerized with aniline tetramer (AT) to produce a series of electroactive, ductile and degradable copolymers (HPLAAT). The HPLA and HPLAAT showed excellent ductility with strain to failure from 158.9% to 42.7% and modulus from 265.2 to 758.2 MPa. The high electroactivity of the HPLAAT was confirmed by UV spectrometer and cyclic voltammogram measurements. These HPLAAT polymers also showed improved thermal stability and controlled biodegradation rate compared to HPLA. Importantly, when applying these polymers for myotube formation, the HPLAAT significantly improved the proliferation of C2C12 myoblasts in vitro compared to HPLA. Furthermore, these polymers greatly promoted myogenic differentiation of C2C12 cells as measured by quantitative analysis of myotube number, length, diameter, maturation index, and gene expression of MyoD and TNNT. Together, our study shows that these electroactive, ductile and degradable HPLAAT copolymers represent significantly improved biomaterials for muscle tissue engineering compared to HPLA.
Collapse
Affiliation(s)
- Meihua Xie
- Center for Biomedical Engineering and Regenerative Medicine, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Ling Wang
- Center for Biomedical Engineering and Regenerative Medicine, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Baolin Guo
- Center for Biomedical Engineering and Regenerative Medicine, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Zhong Wang
- Department of Cardiac Surgery, Cardiovascular Center, The University of Michigan, Ann Arbor, MI 48109, USA
| | - Y Eugene Chen
- Department of Cardiac Surgery, Cardiovascular Center, The University of Michigan, Ann Arbor, MI 48109, USA
| | - Peter X Ma
- Center for Biomedical Engineering and Regenerative Medicine, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biologic and Materials Sciences, University of Michigan, 1011, North University Ave., Room 2209, Ann Arbor, MI 48109, USA; Macromolecular Science and Engineering Center, University of Michigan, Ann Arbor, MI 48109, USA; Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
44
|
Slepicka P, Kasalkova NS, Siegel J, Kolska Z, Bacakova L, Svorcik V. Nano-structured and functionalized surfaces for cytocompatibility improvement and bactericidal action. Biotechnol Adv 2015; 33:1120-9. [DOI: 10.1016/j.biotechadv.2015.01.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 12/12/2014] [Accepted: 01/07/2015] [Indexed: 12/17/2022]
|
45
|
Effects of substrate conductivity on cell morphogenesis and proliferation using tailored, atomic layer deposition-grown ZnO thin films. Sci Rep 2015; 5:9974. [PMID: 25897486 PMCID: PMC4404712 DOI: 10.1038/srep09974] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 03/24/2015] [Indexed: 01/08/2023] Open
Abstract
We demonstrate that ZnO films grown by atomic layer deposition (ALD) can be employed as a substrate to explore the effects of electrical conductivity on cell adhesion, proliferation, and morphogenesis. ZnO substrates with precisely tunable electrical conductivity were fabricated on glass substrates using ALD deposition. The electrical conductivity of the film increased linearly with increasing duration of the ZnO deposition cycle (thickness), whereas other physical characteristics, such as surface energy and roughness, tended to saturate at a certain value. Differences in conductivity dramatically affected the behavior of SF295 glioblastoma cells grown on ZnO films, with high conductivity (thick) ZnO films causing growth arrest and producing SF295 cell morphologies distinct from those cultured on insulating substrates. Based on simple electrostatic calculations, we propose that cells grown on highly conductive substrates may strongly adhere to the substrate without focal-adhesion complex formation, owing to the enhanced electrostatic interaction between cells and the substrate. Thus, the inactivation of focal adhesions leads to cell proliferation arrest. Taken together, the work presented here confirms that substrates with high conductivity disturb the cell-substrate interaction, producing cascading effects on cellular morphogenesis and disrupting proliferation, and suggests that ALD-grown ZnO offers a single-variable method for uniquely tailoring conductivity.
Collapse
|
46
|
Boda SK, Thrivikraman G, Basu B. Magnetic field assisted stem cell differentiation – role of substrate magnetization in osteogenesis. J Mater Chem B 2015; 3:3150-3168. [DOI: 10.1039/c5tb00118h] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Substrate magnetization as a tool for modulating the osteogenesis of human mesenchymal stem cells for bone tissue engineering applications.
Collapse
Affiliation(s)
- Sunil Kumar Boda
- Laboratory for Biomaterials
- Materials Research Centre
- Indian Institute of Science
- Bangalore – 560012
- India
| | - Greeshma Thrivikraman
- Laboratory for Biomaterials
- Materials Research Centre
- Indian Institute of Science
- Bangalore – 560012
- India
| | - Bikramjit Basu
- Laboratory for Biomaterials
- Materials Research Centre
- Indian Institute of Science
- Bangalore – 560012
- India
| |
Collapse
|
47
|
Thrivikraman G, Madras G, Basu B. Intermittent electrical stimuli for guidance of human mesenchymal stem cell lineage commitment towards neural-like cells on electroconductive substrates. Biomaterials 2014; 35:6219-35. [PMID: 24816362 DOI: 10.1016/j.biomaterials.2014.04.018] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Accepted: 04/06/2014] [Indexed: 02/06/2023]
Abstract
In the context of the role of multiple physical factors in dictating stem cell fate, the present paper demonstrates the effectiveness of the intermittently delivered external electric field stimulation towards switching the stem cell fate to specific lineage, when cultured in the absence of biochemical growth factors. In particular, our findings present the ability of human mesenchymal stem cells (hMSCs) to respond to the electric stimuli by adopting extended neural-like morphology on conducting polymeric substrates. Polyaniline (PANI) is selected as the model system to demonstrate this effect, as the electrical conductivity of the polymeric substrates can be systematically tailored over a broad range (10(-9) to 10 S/cm) from highly insulating to conducting by doping with varying concentrations (10(-5) to 1 m) of HCl. On the basis of the culture protocol involving the systematic delivery of intermittent electric field (dc) stimulation, the parametric window of substrate conductivity and electric field strength was established to promote significant morphological extensions, with minimal cellular damage. A time dependent morphological change in hMSCs with significant filopodial elongation was observed after 7 days of electrically stimulated culture. Concomitant with morphological changes, a commensurate increase in the expression of neural lineage commitment markers such as nestin and βIII tubulin was recorded from hMSCs grown on highly conducting substrates, as revealed from the mRNA expression analysis using Reverse Transcriptase-Polymerase Chain Reaction (RT-PCR) as well as by immune-fluorescence imaging. Therefore, the present work establishes the key role of intermittent and systematic delivery of electric stimuli as guidance cues in promoting neural-like differentiation of hMSCs, when grown on electroconductive substrates.
Collapse
Affiliation(s)
- Greeshma Thrivikraman
- Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Giridhar Madras
- Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Bikramjit Basu
- Laboratory for Biomaterials, Materials Research Centre, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
48
|
Chandorkar Y, Bhagat RK, Madras G, Basu B. Cross-linked, biodegradable, cytocompatible salicylic acid based polyesters for localized, sustained delivery of salicylic acid: an in vitro study. Biomacromolecules 2014; 15:863-75. [PMID: 24517727 DOI: 10.1021/bm401715z] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In order to suppress chronic inflammation while supporting cell proliferation, there has been a continuous surge toward development of polymers with the intention of delivering anti-inflammatory molecules in a sustained manner. In the above backdrop, we report the synthesis of a novel, stable, cross-linked polyester with salicylic acid (SA) incorporated in the polymeric backbone and propose a simple synthesis route by melt condensation. The as-synthesized polymer was hydrophobic with a glass transition temperature of 1 °C, which increases to 17 °C upon curing. The combination of NMR and FT-IR spectral techniques established the ester linkages in the as-synthesized SA-based polyester. The pH-dependent degradation rate and the rate of release of salicylic acid from the as-synthesized SA-based polymer were studied at physiological conditions in vitro. The polyester underwent surface erosion and exhibited linear degradation kinetics in which a change in degradation rate is observed after 4-10 days and 24% mass loss was recorded after 4 months at 37 °C and pH 7.4. The delivery of salicylic acid also showed a similar change in slopes, with a sustained release rate of 3.5% in 4 months. The cytocompatibility studies of these polyesters were carried out with C2C12 murine myoblast cells using techniques like MTT assay and flow cytometry. Our results strongly suggest that SA-based polyester supports cell proliferation for 3 days in culture and do not cause cell death (<7%), as quantified by propidium iodide (PI) stained cells. Hence, these polyesters can be used as implant materials for localized, sustained delivery of salicylic acid and have applications in adjuvant cancer therapy, chronic wound healing, and as an alternative to commercially available polymers like poly(lactic acid) and poly(glycolic acid) or their copolymers.
Collapse
Affiliation(s)
- Yashoda Chandorkar
- Laboratory for biomaterials, Materials Research Centre and ‡Department of Chemical Engineering, Indian Institute of Science , Bangalore, India
| | | | | | | |
Collapse
|
49
|
Niu Y, Cao L, Wei J, Ma Y, Song S, Weng W, Li H, Liu C, Su J. Development of a bioactive composite of nano fluorapatite and poly(butylene succinate) for bone tissue regeneration. J Mater Chem B 2014; 2:1174-1181. [DOI: 10.1039/c3tb21371d] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
50
|
Thrivikraman G, Madras G, Basu B. In vitro/In vivo assessment and mechanisms of toxicity of bioceramic materials and its wear particulates. RSC Adv 2014. [DOI: 10.1039/c3ra44483j] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|