1
|
Majumder N, Bhattacharjee M, Spagnoli GC, Ghosh S. Immune response profiles induced by silk-based biomaterials: a journey from 'immunogenicity' towards 'immuno-compatibility. J Mater Chem B 2024; 12:9508-9523. [PMID: 39225012 DOI: 10.1039/d4tb01231c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Silk is a widely accepted biomaterial for tissue regeneration owing to its tunable biomechanical properties and ease of chemical modification. However, a number of aspects associated with its clinical use are still debated. Indeed, to achieve clinical success, a biomaterial must favorably interact with host tissues without evoking local or systemic immuno-inflammatory responses. The analysis of immune responses associated with silk under in vitro and in vivo conditions provides useful insights, improving the understanding of the functional characteristics of silk biomaterials and further promoting their clinical application. Silk evokes moderate immune responses upon implantation in vivo, depending on the material structure, fabrication method, degradation time, and implantation in soft or hard tissue sites, which rapidly subside within a few days/weeks. In vitro studies indicate that its immune-stimulatory properties are largely due to inherent protein conformation and differential processing parameters. Strategically controlled levels of immune responses in vivo with marginal immunogenicity of silk-based biomaterials may contribute to matrix remodeling and replacement by native tissue matrix around the implanted site. Therefore, immunomodulatory strategies should be developed to promote the use of silk-based biomaterials as promising candidates for numerous clinical applications.
Collapse
Affiliation(s)
- Nilotpal Majumder
- Regenerative Engineering Laboratory, Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016, India.
| | - Maumita Bhattacharjee
- Regenerative Engineering Laboratory, Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016, India.
| | - Giulio C Spagnoli
- National Research Council Institute of Translational Pharmacology, Rome, Italy
| | - Sourabh Ghosh
- Regenerative Engineering Laboratory, Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016, India.
| |
Collapse
|
2
|
Wu H, Yang J, Yuan L, Tan Z, Zhang X, Hambly BD, Bao S, Tao K. IL-38 promotes the development of prostate cancer. Front Immunol 2024; 15:1384416. [PMID: 38779687 PMCID: PMC11109393 DOI: 10.3389/fimmu.2024.1384416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
Introduction Prostate Cancer (PCa) remains a significant concern in male cancer-related mortality. Tumour development is intricately regulated by the complex interactions between tumour cells and their microenvironment, making it essential to determine which is/are key factor(s) that influence the progression of PCa within the tumour microenvironment. Materials and methods The current study utilised histopathology and immunohistochemistry to determine the expression of IL-38 in PCa and analysed the correlation between the expression level of IL-38 within PCa and clinical pathological characteristics. Results There was a significant increase in IL-38 expression in PCa tissues compared to adjacent non-PCa tissues (P < 0.0001). In addition, IL-38 expression was significantly higher in tumour cells with a high proliferation index compared to those with a low value-added index. ROC curve analysis demonstrated that IL-38 has high specificity and sensitivity for the diagnosis of PCa (AUC=0.76). Moreover, we Probed the cellular source of IL-38 in prostate cancer tissue by immunofluorescence double staining. Additionally, within PCa, the expression of IL-38 was inversely correlated with the expression levels of CD8 and PD-1. Survival analysis revealed a significantly lower overall survival rate for PCa patients with high IL-38 expression (P=0.0069), and when IL-38 was co-expressed with CD8, the survival rate of the IL-38high/CD8low group was decreased significantly. Multivariate analysis indicated that the expression level of IL-38 and TNM staging were independent predictors of survival in PCa patients. Conclusion These findings suggest that IL-38 plays a crucial role in the development of PCa, and the exploration of the correlation between IL-38 and various immune factors in the tumour microenvironment further reveals its mechanism of action, making it a potential target for immunotherapy in PCa.
Collapse
Affiliation(s)
- Huiyan Wu
- Department of Pathology, Tongji Hospital, Tongji University, Shanghai, China
- Department of Pathology, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jing Yang
- Department of Pathology, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Liuhong Yuan
- Department of Pathology, Tongji Hospital, Tongji University, Shanghai, China
| | - Zhenyu Tan
- Department of Pathology, Tongji Hospital, Tongji University, Shanghai, China
| | - Xiuqin Zhang
- Department of Pathology, Tongji Hospital, Tongji University, Shanghai, China
| | - Brett D. Hambly
- Department of Pathology, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shisan Bao
- Department of Pathology, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Kun Tao
- Department of Pathology, Tongji Hospital, Tongji University, Shanghai, China
- Department of Pathology, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Tolmachev DA, Malkamäki M, Linder MB, Sammalkorpi M. Spidroins under the Influence of Alcohol: Effect of Ethanol on Secondary Structure and Molecular Level Solvation of Silk-Like Proteins. Biomacromolecules 2023; 24:5638-5653. [PMID: 38019577 PMCID: PMC10716855 DOI: 10.1021/acs.biomac.3c00637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/08/2023] [Accepted: 11/08/2023] [Indexed: 11/30/2023]
Abstract
Future sustainable materials based on designer biomolecules require control of the solution assembly, but also interfacial interactions. Alcohol treatments of protein materials are an accessible means to this, making understanding of the process at the molecular level of seminal importance. We focus here on the influence of ethanol on spidroins, the main proteins of silk. By large-scale atomistically detailed molecular dynamics (MD) simulations and interconnected experiments, we characterize the protein aggregation, secondary structure changes, molecular level origins of them, and solvation environment changes for the proteins, as induced by ethanol as a solvation additive. The MD and circular dichoroism (CD) findings jointly show that ethanol promotes ordered structure in the protein molecules, leading to an increase of helix content and turns but also increased aggregation, as revealed by dynamic light scattering (DLS) and light microscopy. The structural changes correlate at the molecular level with increased intramolecular hydrogen bonding. The simulations reveal that polar amino acids, such as glutamine and serine, are most influenced by ethanol, whereas glycine residues are most prone to be involved in the ethanol-induced secondary structure changes. Furthermore, ethanol engages in interactions with the hydrophobic alanine-rich regions of the spidroin, significantly decreasing the hydrophobic interactions of the protein with itself and its surroundings. The protein solutes also change the microstructure of water/ethanol mixtures, essentially decreasing the level of larger local clustering. Overall, the work presents a systematic characterization of ethanol effects on a widely used, common protein type, spidroins, and generalizes the findings to other intrinsically disordered proteins by pinpointing the general features of the response. The results can aid in designing effective alcohol treatments for proteins, but also enable design and tuning of protein material properties by a relatively controllable solvation handle, the addition of ethanol.
Collapse
Affiliation(s)
- Dmitry A. Tolmachev
- Department
of Chemistry and Materials Science, Aalto
University, P.O. Box 16100, FI-00076 Aalto, Finland
- Academy
of Finland Center of Excellence in Life-Inspired Hybrid Materials
(LIBER), Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland
| | - Maaria Malkamäki
- Department
of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland
- Academy
of Finland Center of Excellence in Life-Inspired Hybrid Materials
(LIBER), Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland
| | - Markus B. Linder
- Department
of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland
- Academy
of Finland Center of Excellence in Life-Inspired Hybrid Materials
(LIBER), Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland
| | - Maria Sammalkorpi
- Department
of Chemistry and Materials Science, Aalto
University, P.O. Box 16100, FI-00076 Aalto, Finland
- Department
of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland
- Academy
of Finland Center of Excellence in Life-Inspired Hybrid Materials
(LIBER), Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland
| |
Collapse
|
4
|
Unzai T, Washisaka T, Tabata Y. An artificial silk elastin-like protein modifies the polarization of human macrophages line THP-1. J Biomater Appl 2023; 38:361-371. [PMID: 37494553 DOI: 10.1177/08853282231192186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
A silk elastin-like protein (SELP) is an artificial compound with silk fibroin-like and elastin-like tandem repeats. The objective of this study is to evaluate the influence of SELP on the polarization of human monocytoma cell line (THP-1)-derived macrophages. When the macrophages of inflammation-type (M1) were cultured with different concentrations of SELP solution, the secretion of a pro-inflammatory cytokine, tumor necrotizing factor (TNF) -α was significantly suppressed at the higher concentrations. In addition, the secretion of an anti-inflammation cytokine, interleukin (IL)-10, was significantly enhanced from the macrophage of M0-, M1-, and M2-types. By the incubation with soluble SELP, the morphology of M2-type macrophages changed to be of an extended shape. Following incubation with the sponge of SELP, M0-type macrophages secreted IL-10 with time. It is concluded that the SELP itself in solution has an ability to induce the anti-inflammation of M2-type macrophages.
Collapse
Affiliation(s)
- Tomo Unzai
- Laboratory of Biomaterials, Kyoto University Institute for Life and Medical Sciences, Kyoto, Japan
| | - Taichi Washisaka
- Laboratory of Biomaterials, Kyoto University Institute for Life and Medical Sciences, Kyoto, Japan
| | - Yasuhiko Tabata
- Laboratory of Biomaterials, Kyoto University Institute for Life and Medical Sciences, Kyoto, Japan
| |
Collapse
|
5
|
Novel hybrid biocomposites for tendon grafts: The addition of silk to polydioxanone and poly(lactide-co-caprolactone) enhances material properties, in vitro and in vivo biocompatibility. Bioact Mater 2023; 25:291-306. [PMID: 36844365 PMCID: PMC9945711 DOI: 10.1016/j.bioactmat.2023.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/12/2023] Open
Abstract
Biopolymers play a critical role as scaffolds used in tendon and ligament (TL) regeneration. Although advanced biopolymer materials have been proposed with optimised mechanical properties, biocompatibility, degradation, and processability, it is still challenging to find the right balance between these properties. Here, we aim to develop novel hybrid biocomposites based on poly(p-dioxanone) (PDO), poly(lactide-co-caprolactone) (LCL) and silk to produce high-performance grafts suitable for TL tissue repair. Biocomposites containing 1-15% of silk were studied through a range of characterisation techniques. We then explored biocompatibility through in vitro and in vivo studies using a mouse model. We found that adding up to 5% silk increases the tensile properties, degradation rate and miscibility between PDO and LCL phases without agglomeration of silk inside the composites. Furthermore, addition of silk increases surface roughness and hydrophilicity. In vitro experiments show that the silk improved attachment of tendon-derived stem cells and proliferation over 72 h, while in vivo studies indicate that the silk can reduce the expression of pro-inflammatory cytokines after six weeks of implantation. Finally, we selected a promising biocomposite and created a prototype TL graft based on extruded fibres. We found that the tensile properties of both individual fibres and braided grafts could be suitable for anterior cruciate ligament (ACL) repair applications.
Collapse
|
6
|
Hume RD, Kanagalingam S, Deshmukh T, Chen S, Mithieux SM, Rashid FN, Roohani I, Lu J, Doan T, Graham D, Clayton ZE, Slaughter E, Kizana E, Stempien-Otero AS, Brown P, Thomas L, Weiss AS, Chong JJ. Tropoelastin Improves Post-Infarct Cardiac Function. Circ Res 2023; 132:72-86. [PMID: 36453283 PMCID: PMC9829044 DOI: 10.1161/circresaha.122.321123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
BACKGROUND Myocardial infarction (MI) is among the leading causes of death worldwide. Following MI, necrotic cardiomyocytes are replaced by a stiff collagen-rich scar. Compared to collagen, the extracellular matrix protein elastin has high elasticity and may have more favorable properties within the cardiac scar. We sought to improve post-MI healing by introducing tropoelastin, the soluble subunit of elastin, to alter scar mechanics early after MI. METHODS AND RESULTS We developed an ultrasound-guided direct intramyocardial injection method to administer tropoelastin directly into the left ventricular anterior wall of rats subjected to induced MI. Experimental groups included shams and infarcted rats injected with either PBS vehicle control or tropoelastin. Compared to vehicle treated controls, echocardiography assessments showed tropoelastin significantly improved left ventricular ejection fraction (64.7±4.4% versus 46.0±3.1% control) and reduced left ventricular dyssynchrony (11.4±3.5 ms versus 31.1±5.8 ms control) 28 days post-MI. Additionally, tropoelastin reduced post-MI scar size (8.9±1.5% versus 20.9±2.7% control) and increased scar elastin (22±5.8% versus 6.2±1.5% control) as determined by histological assessments. RNA sequencing (RNAseq) analyses of rat infarcts showed that tropoelastin injection increased genes associated with elastic fiber formation 7 days post-MI and reduced genes associated with immune response 11 days post-MI. To show translational relevance, we performed immunohistochemical analyses on human ischemic heart disease cardiac samples and showed an increase in tropoelastin within fibrotic areas. Using RNA-seq we also demonstrated the tropoelastin gene ELN is upregulated in human ischemic heart disease and during human cardiac fibroblast-myofibroblast differentiation. Furthermore, we showed by immunocytochemistry that human cardiac fibroblast synthesize increased elastin in direct response to tropoelastin treatment. CONCLUSIONS We demonstrate for the first time that purified human tropoelastin can significantly repair the infarcted heart in a rodent model of MI and that human cardiac fibroblast synthesize elastin. Since human cardiac fibroblasts are primarily responsible for post-MI scar synthesis, our findings suggest exciting future clinical translation options designed to therapeutically manipulate this synthesis.
Collapse
Affiliation(s)
- Robert D. Hume
- Centre for Heart Research, Westmead Institute for Medical Research, NSW, Australia (R.D.H., S.K., T.D., S.C., F.N.R., J.L., Z.E.C., E.K., J.J.H.C.).,Sydney Medical School, University of Sydney, NSW, Australia (R.D.H., T.D., F.R., Z.E.C., E.K., J.J.H.C.)
| | - Shaan Kanagalingam
- Centre for Heart Research, Westmead Institute for Medical Research, NSW, Australia (R.D.H., S.K., T.D., S.C., F.N.R., J.L., Z.E.C., E.K., J.J.H.C.)
| | - Tejas Deshmukh
- Centre for Heart Research, Westmead Institute for Medical Research, NSW, Australia (R.D.H., S.K., T.D., S.C., F.N.R., J.L., Z.E.C., E.K., J.J.H.C.).,Department of Cardiology, Westmead Hospital, NSW, Australia (T.D., J.L., E.K., P.B., L.T., J.J.H.C.).,Sydney Medical School, University of Sydney, NSW, Australia (R.D.H., T.D., F.R., Z.E.C., E.K., J.J.H.C.)
| | - Siqi Chen
- Centre for Heart Research, Westmead Institute for Medical Research, NSW, Australia (R.D.H., S.K., T.D., S.C., F.N.R., J.L., Z.E.C., E.K., J.J.H.C.)
| | - Suzanne M. Mithieux
- Charles Perkins Centre, University of Sydney, NSW, Australia (S.M.M., A.S.W.).,School of Life and Environmental Sciences, University of Sydney, NSW, Australia (S.M.M., A.S.W.)
| | - Fairooj N. Rashid
- Centre for Heart Research, Westmead Institute for Medical Research, NSW, Australia (R.D.H., S.K., T.D., S.C., F.N.R., J.L., Z.E.C., E.K., J.J.H.C.)
| | - Iman Roohani
- School of Biomedical Engineering, University of Sydney, NSW, Australia (I.R.).,School of Chemistry, University of New South Wales, Australia (I.R.)
| | - Juntang Lu
- Centre for Heart Research, Westmead Institute for Medical Research, NSW, Australia (R.D.H., S.K., T.D., S.C., F.N.R., J.L., Z.E.C., E.K., J.J.H.C.).,Department of Cardiology, Westmead Hospital, NSW, Australia (T.D., J.L., E.K., P.B., L.T., J.J.H.C.)
| | - Tram Doan
- Centre for Cancer Research, Westmead Institute for Medical Research, NSW, Australia (T.D.‚ D.G.)
| | - Dinny Graham
- Centre for Cancer Research, Westmead Institute for Medical Research, NSW, Australia (T.D.‚ D.G.).,Westmead Breast Cancer Institute, NSW, Australia (D.G.).,Westmead Clinical School, University of Sydney, NSW, Australia (D.G., L.T.)
| | - Zoe E. Clayton
- Centre for Heart Research, Westmead Institute for Medical Research, NSW, Australia (R.D.H., S.K., T.D., S.C., F.N.R., J.L., Z.E.C., E.K., J.J.H.C.).,Sydney Medical School, University of Sydney, NSW, Australia (R.D.H., T.D., F.R., Z.E.C., E.K., J.J.H.C.)
| | | | - Eddy Kizana
- Centre for Heart Research, Westmead Institute for Medical Research, NSW, Australia (R.D.H., S.K., T.D., S.C., F.N.R., J.L., Z.E.C., E.K., J.J.H.C.).,Department of Cardiology, Westmead Hospital, NSW, Australia (T.D., J.L., E.K., P.B., L.T., J.J.H.C.).,Sydney Medical School, University of Sydney, NSW, Australia (R.D.H., T.D., F.R., Z.E.C., E.K., J.J.H.C.)
| | - April S. Stempien-Otero
- Department of Medicine, Division of Cardiology, University of Washington School of Medicine, Seattle, WA (A.S.S.-O.)
| | - Paula Brown
- Department of Cardiology, Westmead Hospital, NSW, Australia (T.D., J.L., E.K., P.B., L.T., J.J.H.C.)
| | - Liza Thomas
- Department of Cardiology, Westmead Hospital, NSW, Australia (T.D., J.L., E.K., P.B., L.T., J.J.H.C.).,Westmead Clinical School, University of Sydney, NSW, Australia (D.G., L.T.)
| | | | - James J.H. Chong
- Centre for Heart Research, Westmead Institute for Medical Research, NSW, Australia (R.D.H., S.K., T.D., S.C., F.N.R., J.L., Z.E.C., E.K., J.J.H.C.).,Department of Cardiology, Westmead Hospital, NSW, Australia (T.D., J.L., E.K., P.B., L.T., J.J.H.C.).,Sydney Medical School, University of Sydney, NSW, Australia (R.D.H., T.D., F.R., Z.E.C., E.K., J.J.H.C.)
| |
Collapse
|
7
|
Unzai T, Washisaka T, Tabata Y. An Artificial Silk Elastin-Like Protein Modifies the Polarization of Macrophages. ACS APPLIED BIO MATERIALS 2022; 5:5657-5664. [PMID: 36445042 DOI: 10.1021/acsabm.2c00701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
A silk elastin-like protein (SELP) is an artificial compound with silk fibroin-like and elastin-like tandem repeats. The objective of this study is to evaluate the influence of SELP on the polarization of mouse bone marrow-derived macrophages. When the macrophages of inflammation-type (M1) were cultured with different concentrations of SELP solution, the secretion of a pro-inflammatory cytokine, tumor necrotizing factor (TNF)-α, was significantly suppressed at the higher concentrations. In addition, the secretion of an anti-inflammation cytokine, interleukin (IL)-10, was significantly enhanced from the macrophage of an original type (M0). By the incubation with soluble SELP, the morphology of M0- and M1-type macrophages changed to be of a round shape with a large size. Following incubation with the sponge of SELP, the M0-type macrophages secreted IL-10 with time. When injected into an air pouch of mice subcutis which had been prepared by the injection of air, the SELP sponge and 5 wt % of SELP solution induced IL-10 secretion to a significantly high extent compared with the saline injection. Cells isolated from the air pouch 24 h after the injection were stained by the CD206 of a M2 marker. It is concluded that the SELP itself in solution has an ability to induce the anti-inflammation M2-type macrophages.
Collapse
Affiliation(s)
- Tomo Unzai
- Laboratory of Biomaterials, Institute for Life and Medical Sciences, Kyoto University, 53 Kawara-cho Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Taichi Washisaka
- Laboratory of Biomaterials, Institute for Life and Medical Sciences, Kyoto University, 53 Kawara-cho Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yasuhiko Tabata
- Laboratory of Biomaterials, Institute for Life and Medical Sciences, Kyoto University, 53 Kawara-cho Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
8
|
Stanton KM, Liu H, Kienzle V, Bursill C, Bao S, Celermajer DS. The Effects of Exercise on Plaque Volume and Composition in a Mouse Model of Early and Late Life Atherosclerosis. Front Cardiovasc Med 2022; 9:837371. [PMID: 35419434 PMCID: PMC8995971 DOI: 10.3389/fcvm.2022.837371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/17/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundExercise is associated with a less atherogenic lipid profile; however, there is limited research on the effect of exercise on atherosclerotic plaque composition and markers of plaque stability.MethodsA total of 110 apolipoprotein (apo)E−/− mice were placed on a chow diet and randomly assigned to control or exercise for a period of 10 weeks, commencing either at 12 weeks of age (the early-stage atherosclerosis, EA group) or at 40 weeks of age (the late-stage atherosclerosis, LA group). At the end of the exercise period, blood was assayed for lipids. Histologic analysis of the aortic sinus was undertaken to assess plaque size and composition that includes macrophage content, monocyte chemoattractant protein (MCP)-1, matrix metalloproteinase-2 (MMP-2), and tissue inhibitors of metalloproteinase 1 and 2 (TIMP-1 and 2).ResultsA total of 103 mice (38 EA, 65 LA) completed the protocol. In the EA group, exercise reduced plasma total cholesterol (TC) (−16%), free cholesterol (−13%), triglyceride (TG) (−35%), and phospholipid (−27%) levels, when compared to sedentary control mice (p < 0.01). In the EA group, exercise also significantly reduced plaque stenosis (−25%, p < 0.01), and there were higher levels of elastin (3-fold increase, p < 0.0001) and collagen (11-fold increase, p < 0.0001) in plaques, compared to control mice. There was an increase in plaque MMP-2 content in the exercise group (13% increase, p < 0.05) but no significant difference in macrophage or MCP-1 content. In the LA group, exercise reduced plaque stenosis (−18%, p < 0.05), but there was no significant difference in plaque composition. There was no difference in macrophage, MCP-1, or MMP-2 content in the LA groups. TIMP-1 was lower with exercise in both the EA and LA groups (−59%, p < 0.01 and −51%, p < 0.01 respectively); however, there was no difference in TIMP-2 levels.ConclusionA 10-week exercise period reduces atherosclerotic plaque stenosis when commenced at both early- and late-stage atherosclerosis. Intervening earlier with exercise had a greater beneficial effect on lipids and plaque composition than when starting exercise at a later disease stage.
Collapse
Affiliation(s)
- Kelly M. Stanton
- Clinical Research Group, Heart Research Institute, Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- *Correspondence: Kelly M. Stanton
| | - Hongjuan Liu
- Discipline of Pathology and School of Medical Science, University of Sydney, Sydney, NSW, Australia
| | - Vivian Kienzle
- Clinical Research Group, Heart Research Institute, Sydney, NSW, Australia
| | - Christina Bursill
- Clinical Research Group, Heart Research Institute, Sydney, NSW, Australia
- Vascular Research Centre, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Faculty of Health and Medical Science, University of Adelaide, Adelaide, SA, Australia
| | - Shisan Bao
- Discipline of Pathology and School of Medical Science, University of Sydney, Sydney, NSW, Australia
| | - David S. Celermajer
- Clinical Research Group, Heart Research Institute, Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
9
|
Roohani I, Yeo GC, Mithieux SM, Weiss AS. Emerging concepts in bone repair and the premise of soft materials. Curr Opin Biotechnol 2021; 74:220-229. [PMID: 34974211 DOI: 10.1016/j.copbio.2021.12.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/10/2021] [Accepted: 12/12/2021] [Indexed: 02/07/2023]
Abstract
Human bone has a strong regenerative capacity that allows for restoration of its function and structure after damage. For degenerative bone diseases or large defects, bone regeneration requirements exceed the natural potential for self-healing, so bone grafts or bone substitute materials are required to support the regeneration of bone tissue. Compared to the plethora of endogenous bioactive molecules and cells in native bone grafts, the regenerative capacity of tissue-engineered materials is limited. The modest clinical impact of tissue-engineered strategies in this domain can be attributed to a failure to fully recognize key physical and biological events during bone healing, and to recapitulate the structure and composition of the target tissue to generate truly biomimetic grafts. This limitation has motivated the emergence of new strategies such as immunomodulation, endochondral ossification routes, engineered microtissues and hematoma regulation, and the development of advanced biomaterials including gene-activated matrices, soft microgels and hierarchically designed materials.
Collapse
Affiliation(s)
- Iman Roohani
- School of Life and Environmental Sciences, University of Sydney, NSW 2006, Australia; Charles Perkins Centre D17, University of Sydney, NSW 2006, Australia; Sydney Nano Institute, University of Sydney, NSW 2006, Australia
| | - Giselle C Yeo
- School of Life and Environmental Sciences, University of Sydney, NSW 2006, Australia; Charles Perkins Centre D17, University of Sydney, NSW 2006, Australia
| | - Suzanne M Mithieux
- School of Life and Environmental Sciences, University of Sydney, NSW 2006, Australia; Charles Perkins Centre D17, University of Sydney, NSW 2006, Australia
| | - Anthony S Weiss
- School of Life and Environmental Sciences, University of Sydney, NSW 2006, Australia; Charles Perkins Centre D17, University of Sydney, NSW 2006, Australia; Sydney Nano Institute, University of Sydney, NSW 2006, Australia.
| |
Collapse
|
10
|
Kambe Y, Yamaoka T. Initial immune response to a FRET-based MMP sensor-immobilized silk fibroin hydrogel in vivo. Acta Biomater 2021; 130:199-210. [PMID: 34087439 DOI: 10.1016/j.actbio.2021.05.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/20/2021] [Accepted: 05/20/2021] [Indexed: 12/26/2022]
Abstract
To investigate the initial immune response to biodegradable silk fibroin (SF) hydrogels in vivo, a Förster/fluorescence resonance energy transfer (FRET)-based sensor was developed to detect matrix metalloproteinase (MMP) activity (FRET-MMPS) and immobilized to SF hydrogel. FRET-MMPS immobilized to SF hydrogel in vitro displayed intra-molecular FRET more than inter-molecular FRET, and MMP activity was detected through a decrease in FRET signal intensity. Then, the SF hydrogel modified with FRET-MMPS was implanted into mice subcutaneously, and it was observed that the FRET signal intensity decreased significantly soon (< 3 h) after implantation. Although the intensity exhibited a sharp decrease toward 24 h post-implantation, histological evaluation proved that bulk-level hydrogel degradation, such as breakdown, was mainly caused by macrophages and foreign body giant cells on a timescale of weeks. These results indicated that, immediately upon implantation, active MMPs reached the SF hydrogel and began cleaving SF networks, which might result in the loosening of the networks and then enabled immune cells, such as macrophages, to start the bulk-level hydrogel degradation. The sensor clarified the initial immune response to SF hydrogels and will provide clues for designing the biodegradation behaviors of scaffolds for regenerative medicine. STATEMENT OF SIGNIFICANCE: Silk fibroin (SF) materials are degraded gradually by the immune response. Immune cells, such as macrophages, break down implanted SF materials on a timescale of weeks or months, but the initial (< 24 h) immune response to SF materials remains unclear. In this study, SF hydrogels modified with Förster/fluorescence resonance energy transfer (FRET)-based matrix metalloproteinase (MMP) sensors were implanted in mice and within 3 h post-implantation, the SF hydrogels were degraded by MMPs. Although this molecular-level biodegradation was not correlated with the hydrogel breakdown, the MMPs were likely to loosen the SF networks to enable immune cells to infiltrate and degrade the hydrogel. This is the first study to unveil the initial stage of immune response to biomaterials.
Collapse
|
11
|
Aghaei-Ghareh-Bolagh B, Mukherjee S, Lockley KM, Mithieux SM, Wang Z, Emmerson S, Darzi S, Gargett CE, Weiss AS. A novel tropoelastin-based resorbable surgical mesh for pelvic organ prolapse repair. Mater Today Bio 2020; 8:100081. [PMID: 33210083 PMCID: PMC7658716 DOI: 10.1016/j.mtbio.2020.100081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 09/30/2020] [Accepted: 10/05/2020] [Indexed: 11/03/2022] Open
Abstract
Pelvic organ prolapse is a common condition that affects 1 in 4 women across all age groups. It is mainly caused by vaginal birth injury and can be exacerbated by obesity and increased age. Until recently, treatment strategies often used non-degradable synthetic meshes for reconstructive surgery. However, owing to their frequent, unacceptable rate of adverse events such as mesh erosion, transvaginal meshes have been banned in many countries. Recent reports have highlighted the urgent need for biocompatible design of meshes for a safe and effective treatment in the long term. This study reports the design and evaluation of a novel, elastin based degradable mesh using an ovine model of POP as a potential surgical treatment. Elastin is a protein component of the ECM and provides elasticity to tissues throughout the body. Tropoelastin, the monomer subunit of elastin, has been used with success in electrospun constructs as it is a naturally cell interactive polymer. Biomaterials that incorporate tropoelastin support cell attachment and proliferation, and have been proven to encourage elastogenesis and angiogenesis in vitro and in vivo. The biological properties of tropoelastin were combined with the physical properties of PCL, a degradable synthetic polymer, with the aim of producing, characterizing and assessing the performance of continuous tropoelastin:PCL electrospun yarns. Using a modified spinneret electrospinning system and adjusting settings based on relative humidity, four blends of tropoelastin:PCL yarns were fabricated with concentration ratios of 75:25, 50:50, 25:75 and 0:100. Yarns were assessed for ease of manufacture, fibrous architecture, protein/polymer content, yarn stability - including initial tropoelastin release, mechanical strength, and ability to support cell growth. Based on overall favorable properties, a mesh woven from the 50:50 tropoelastin:PCL yarn was implanted into the vagina of a parous ewe with vaginal wall weakness as a model of pelvic organ prolapse. This mesh showed excellent integration with new collagen deposition by SEM and a predominant M2 macrophage response with few pro-inflammatory M1 macrophages after 30 days. The woven tropoelastin:PCL electrospun mesh shows potential as an alternative to non-degradable, synthetic pelvic organ prolapse mesh products.
Collapse
Affiliation(s)
- B Aghaei-Ghareh-Bolagh
- Charles Perkins Centre, University of Sydney, NSW, 2006, Australia.,School of Life and Environmental Sciences, University of Sydney, NSW, 2006, Australia
| | - S Mukherjee
- The Ritchie Centre, Hudson Institute of Medical Research, Victoria, 3168, Australia.,Department of Obstetrics and Gynaecology, Monash University, Victoria, 3168, Australia
| | - K M Lockley
- Charles Perkins Centre, University of Sydney, NSW, 2006, Australia.,School of Life and Environmental Sciences, University of Sydney, NSW, 2006, Australia
| | - S M Mithieux
- Charles Perkins Centre, University of Sydney, NSW, 2006, Australia.,School of Life and Environmental Sciences, University of Sydney, NSW, 2006, Australia
| | - Z Wang
- Charles Perkins Centre, University of Sydney, NSW, 2006, Australia.,School of Life and Environmental Sciences, University of Sydney, NSW, 2006, Australia
| | - S Emmerson
- The Ritchie Centre, Hudson Institute of Medical Research, Victoria, 3168, Australia.,Department of Obstetrics and Gynaecology, Monash University, Victoria, 3168, Australia
| | - S Darzi
- The Ritchie Centre, Hudson Institute of Medical Research, Victoria, 3168, Australia
| | - C E Gargett
- The Ritchie Centre, Hudson Institute of Medical Research, Victoria, 3168, Australia.,Department of Obstetrics and Gynaecology, Monash University, Victoria, 3168, Australia
| | - A S Weiss
- Charles Perkins Centre, University of Sydney, NSW, 2006, Australia.,School of Life and Environmental Sciences, University of Sydney, NSW, 2006, Australia.,The University of Sydney Nano Institute, University of Sydney, NSW, 2006, Australia
| |
Collapse
|
12
|
Bao SB. Professor Cristobal G dos Remedios mentorship. Biophys Rev 2020; 12:757-759. [PMID: 32661901 DOI: 10.1007/s12551-020-00741-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 07/09/2020] [Indexed: 01/20/2023] Open
Abstract
As a non-English-speaking PhD student without previous scientific skills, I have been so lucky to be supervised and mentored by Professor Cristobal dos Remedios. In this commentary, I have commented my experience in dos Remedios laboratory. Finally, I would like to express my greatest appreciation to Professor dos Remedios for his kindness and mentorship over the last 31 years. His continuous support, which continues to the present, has been instrumental for the achievement of my current position.
Collapse
Affiliation(s)
- Shisan Bob Bao
- Discipline of Pathology, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
13
|
Li Y, Liu Z, Tang Y, Fan Q, Feng W, Luo C, Dai G, Ge Z, Zhang J, Zou G, Liu Y, Hu N, Huang W. Three-dimensional silk fibroin scaffolds enhance the bone formation and angiogenic differentiation of human amniotic mesenchymal stem cells: a biocompatibility analysis. Acta Biochim Biophys Sin (Shanghai) 2020; 52:590-602. [PMID: 32393968 DOI: 10.1093/abbs/gmaa042] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Indexed: 02/06/2023] Open
Abstract
Silk fibroin (SF) is a fibrous protein with unique mechanical properties, adjustable biodegradation, and the potential to drive differentiation of mesenchymal stem cells (MSCs) along the osteogenic lineage, making SF a promising scaffold material for bone tissue engineering. In this study, hAMSCs were isolated by enzyme digestion and identified by multiple-lineage differentiation. SF scaffold was fabricated by freeze-drying, and the adhesion and proliferation abilities of hAMSCs on scaffolds were determined. Osteoblast differentiation and angiogenesis of hAMSCs on scaffolds were further evaluated, and histological staining of calvarial defects was performed to examine the cocultured scaffolds. We found that hAMSCs expressed the basic surface markers of MSCs. Collagen type I (COL-I) expression was observed on scaffolds cocultured with hAMSCs. The scaffolds potentiated the proliferation of hAMSCs and increased the expression of COL-I in hAMSCs. The scaffolds also enhanced the alkaline phosphatase activity and bone mineralization, and upregulated the expressions of osteogenic-related factors in vitro. The scaffolds also enhanced the angiogenic differentiation of hAMSCs. The cocultured scaffolds increased bone formation in treating critical calvarial defects in mice. This study first demonstrated that the application of 3D SF scaffolds co-cultured with hAMSCs greatly enhanced osteogenic differentiation and angiogenesis of hAMSCs in vitro and in vivo. Thus, 3D SF scaffolds cocultured with hAMSCs may be a better alternative for bone tissue engineering.
Collapse
Affiliation(s)
- Yuwan Li
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Ziming Liu
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing 100191, China
| | - Yaping Tang
- Department of Stomatology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, China
| | - Qinghong Fan
- Department of Orthopaedics, The First Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Wei Feng
- Laboratory of Skeletal Development and Regeneration, School of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Changqi Luo
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Guangming Dai
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Zhen Ge
- Department of Orthopaedics, The First Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Jun Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Gang Zou
- Department of Orthopaedics, The First Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Yi Liu
- Department of Orthopaedics, The First Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Ning Hu
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Wei Huang
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
14
|
Yang N, Tan RP, Chan AHP, Lee BSL, Santos M, Hung J, Liao Y, Bilek MMM, Fei J, Wise SG, Bao S. Immobilized Macrophage Colony-Stimulating Factor (M-CSF) Regulates the Foreign Body Response to Implanted Materials. ACS Biomater Sci Eng 2020; 6:995-1007. [PMID: 33464851 DOI: 10.1021/acsbiomaterials.9b01887] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The functionality and durability of implanted biomaterials are often compromised by an exaggerated foreign body reaction (FBR). M1/M2 polarization of macrophages is a critical regulator of scaffold-induced FBR. Macrophage colony-stimulating factor (M-CSF), a hematopoietic growth factor, induces macrophages into an M2-like polarized state, leading to immunoregulation and promoting tissue repair. In the present study, we explored the immunomodulatory effects of surface bound M-CSF on poly-l-lactic acid (PLLA)-induced FBR. M-CSF was immobilized on the surface of PLLA via plasma immersion ion implantation (PIII). M-CSF functionalized PLLA, PLLA-only, and PLLA+PIII were assessed in an IL-1β luciferase reporter mouse to detect real-time levels of IL-1β expression, reflecting acute inflammation in vivo. Additionally, these different treated scaffolds were implanted subcutaneously into wild-type mice to explore the effect of M-CSF in polarization of M2-like macrophages (CD68+/CD206+), related cytokines (pro-inflammatory: IL-1β, TNF and MCP-1; anti-inflammatory: IL-10 and TGF-β), and angiogenesis (CD31) by immunofluorescent staining. Our data demonstrated that IL-1β activity in M-CSF functionalized scaffolds was ∼50% reduced compared to PLLA-only at day 1 (p < 0.01) and day 2 (p < 0.05) post-implantation. There were >2.6-fold more CD206+ macrophages in M-CSF functionalized PLLA compared to PLLA-only at day 7 (p < 0.001), along with higher levels of IL-10 at both day 7 (p < 0.05) and day 14 (p < 0.01), and TGF-β at day 3 (p < 0.05), day 7 (p < 0.05), and day 14 (p < 0.001). Lower levels of pro-inflammatory cytokines were also detected in M-CSF functionalized PLLA in the early phase of the immune response compared to PLLA-only: a ∼58% decrease at day 3 in IL-1β; a ∼91% decrease at day 3 and a ∼66% decrease at day 7 in TNF; and a ∼60% decrease at day 7 in MCP-1. Moreover, enhanced angiogenesis inside and on/near the scaffold was observed in M-CSF functionalized PLLA compared to PLLA-only at day 3 (p < 0.05) and day 7 (p < 0.05), respectively. Overall, M-CSF functionalized PLLA enhanced CD206+ macrophage polarization and angiogenesis, consistent with lower levels of pro-inflammatory cytokines and higher levels of anti-inflammatory cytokines in early stages of the host response, indicating potential immunoregulatory functions on the local environment.
Collapse
Affiliation(s)
- Nianji Yang
- Discipline of Pathology, University of Sydney, Sydney, New South Wales 2006, Australia.,Discipline of Physiology, University of Sydney, Sydney, New South Wales 2006, Australia.,The Heart Research Institute, Sydney, Australia.,Charles Perkins Centre, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Richard P Tan
- Discipline of Physiology, University of Sydney, Sydney, New South Wales 2006, Australia.,The Heart Research Institute, Sydney, Australia.,Charles Perkins Centre, University of Sydney, Sydney, New South Wales 2006, Australia
| | | | - Bob S L Lee
- Discipline of Physiology, University of Sydney, Sydney, New South Wales 2006, Australia.,The Heart Research Institute, Sydney, Australia.,Charles Perkins Centre, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Miguel Santos
- Discipline of Physiology, University of Sydney, Sydney, New South Wales 2006, Australia.,The Heart Research Institute, Sydney, Australia.,Charles Perkins Centre, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Juichien Hung
- Discipline of Physiology, University of Sydney, Sydney, New South Wales 2006, Australia.,The Heart Research Institute, Sydney, Australia.,Charles Perkins Centre, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Yun Liao
- Department of Pharmacy, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Marcela M M Bilek
- Charles Perkins Centre, University of Sydney, Sydney, New South Wales 2006, Australia.,School of Physics, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Jian Fei
- School of Life Science and Technology, Shanghai Tongji University, Shanghai, China.,Research Centre for Model Organism, Shanghai, China
| | - Steven G Wise
- Discipline of Physiology, University of Sydney, Sydney, New South Wales 2006, Australia.,The Heart Research Institute, Sydney, Australia.,Charles Perkins Centre, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Shisan Bao
- Discipline of Pathology, University of Sydney, Sydney, New South Wales 2006, Australia.,Charles Perkins Centre, University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
15
|
Ng JL, Putra VDL, Knothe Tate ML. In vitro biocompatibility and biomechanics study of novel, Microscopy Aided Designed and ManufacturEd (MADAME) materials emulating natural tissue weaves and their intrinsic gradients. J Mech Behav Biomed Mater 2019; 103:103536. [PMID: 32090942 DOI: 10.1016/j.jmbbm.2019.103536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 10/04/2019] [Accepted: 11/14/2019] [Indexed: 02/07/2023]
Abstract
This study conducted biomechanical and biocompatibility tests of textiles and textile composites, created using recursive logic to emulate the properties of natural tissue weaves and their intrinsic mechanical stiffness gradients. Two sets of samples were created, first to test feasibility on textile samples designed as periosteum substitutes with elastane fibers mimicking periosteum's endogenous elastin and nylon fibers substituting for collagen, and then on composites comprising other combinations of suture materials before and after sterilization. In the first part, the bulk tensile mechanical stiffness of elastane-nylon textiles were tuned through respective fiber composition and orientation, i.e., aligned with and orthogonal to loading direction. Cell culture biocompatibility studies revealed no significant differences in proliferation rates of embryonic murine stem cells seeded on textiles compared to collagen membrane controls. Until the 15th day of culture, cells were rarely observed in direct contact with the elastane fibers, similar to previous observations with elastomeric sheets used in periosteum substitute implants. In the second part of the study textile samples were created from FDA-approved medical sutures comprising silk, expanded polytetrafluoroethylene, and polybutester. Biocompatibility and mechanical stiffness were assessed as a function of sterilization/disinfection mode (steam, ethylene oxide, and serial disinfection with ethanol). Cell proliferation rates did not differ significantly from controls, except for silk-suture containing textiles, which showed bacterial contamination and no viable cells after 15 days' culture for all sterilization methods. Sterilization had mixed (mostly not significant) effects on textile stiffness, except for the case of polybutester suture-based textiles that showed a significant increase in stiffness with ethylene oxide sterilization. In general, all textile combinations exhibited significantly higher stiffness than periosteum. Textiles comprising medical sutures of different stiffnesses arranged in engineered patterns offer a novel means to achieve mechanical gradients in medical device materials, emulating those of nature's own.
Collapse
Affiliation(s)
- Joanna L Ng
- MechBio Team, Graduate School of Biomedical Engineering, University of New South Wales, UNSW Sydney, Australia
| | - Vina D L Putra
- MechBio Team, Graduate School of Biomedical Engineering, University of New South Wales, UNSW Sydney, Australia
| | - Melissa L Knothe Tate
- MechBio Team, Graduate School of Biomedical Engineering, University of New South Wales, UNSW Sydney, Australia.
| |
Collapse
|
16
|
Chan AHP, Filipe EC, Tan RP, Santos M, Yang N, Hung J, Feng J, Nazir S, Benn AJ, Ng MKC, Rnjak-Kovacina J, Wise SG. Altered processing enhances the efficacy of small-diameter silk fibroin vascular grafts. Sci Rep 2019; 9:17461. [PMID: 31767928 PMCID: PMC6877724 DOI: 10.1038/s41598-019-53972-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 11/06/2019] [Indexed: 01/24/2023] Open
Abstract
Current synthetic vascular grafts are not suitable for use in low-diameter applications. Silk fibroin is a promising natural graft material which may be an effective alternative. In this study, we compared two electrospun silk grafts with different manufacturing processes, using either water or hexafluoroisopropanol (HFIP) as solvent. This resulted in markedly different Young's modulus, ultimate tensile strength and burst pressure, with HFIP spun grafts observed to have thicker fibres, and greater stiffness and strength relative to water spun. Assessment in a rat abdominal aorta grafting model showed significantly faster endothelialisation of the HFIP spun graft relative to water spun. Neointimal hyperplasia in the HFIP graft also stabilised significantly earlier, correlated with an earlier SMC phenotype switch from synthetic to contractile, increasing extracellular matrix protein density. An initial examination of the macrophage response showed that HFIP spun conduits promoted an anti-inflammatory M2 phenotype at early timepoints while reducing the pro-inflammatory M1 phenotype relative to water spun grafts. These observations demonstrate the important role of the manufacturing process and physical graft properties in determining the physiological response. Our study is the first to comprehensively study these differences for silk in a long-term rodent model.
Collapse
Affiliation(s)
- Alex H P Chan
- The Heart Research Institute, 7 Eliza Street, Newtown, Sydney, NSW, 2042, Australia.,Sydney Medical School, University of Sydney, Sydney, NSW, 2006, Australia
| | - Elysse C Filipe
- Garvan Institute of Medical Research & The Kinghorn Cancer Center, Sydney, NSW, 2010, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, 2010, Australia
| | - Richard P Tan
- The Heart Research Institute, 7 Eliza Street, Newtown, Sydney, NSW, 2042, Australia.,Sydney Medical School, University of Sydney, Sydney, NSW, 2006, Australia
| | - Miguel Santos
- The Heart Research Institute, 7 Eliza Street, Newtown, Sydney, NSW, 2042, Australia.,Sydney Medical School, University of Sydney, Sydney, NSW, 2006, Australia
| | - Nianji Yang
- The Heart Research Institute, 7 Eliza Street, Newtown, Sydney, NSW, 2042, Australia
| | - Juichien Hung
- The Heart Research Institute, 7 Eliza Street, Newtown, Sydney, NSW, 2042, Australia
| | - Jieyao Feng
- The Heart Research Institute, 7 Eliza Street, Newtown, Sydney, NSW, 2042, Australia
| | - Sidra Nazir
- The Heart Research Institute, 7 Eliza Street, Newtown, Sydney, NSW, 2042, Australia
| | - Alexander J Benn
- The Heart Research Institute, 7 Eliza Street, Newtown, Sydney, NSW, 2042, Australia
| | - Martin K C Ng
- Sydney Medical School, University of Sydney, Sydney, NSW, 2006, Australia.,Department of Cardiology, Royal Prince Alfred Hospital, Camperdown, Sydney, NSW, 2050, Australia
| | - Jelena Rnjak-Kovacina
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia.
| | - Steven G Wise
- The Heart Research Institute, 7 Eliza Street, Newtown, Sydney, NSW, 2042, Australia. .,Sydney Medical School, University of Sydney, Sydney, NSW, 2006, Australia. .,School of Medical Sciences, Dept of Physiology, University of Sydney, Sydney, NSW, 2006, Australia. .,Charles Perkins Centre, University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
17
|
Fabricated tropoelastin-silk yarns and woven textiles for diverse tissue engineering applications. Acta Biomater 2019; 91:112-122. [PMID: 31004842 DOI: 10.1016/j.actbio.2019.04.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/23/2019] [Accepted: 04/11/2019] [Indexed: 12/13/2022]
Abstract
Electrospun yarns offer substantial opportunities for the fabrication of elastic scaffolds for flexible tissue engineering applications. Currently available yarns are predominantly made of synthetic elastic materials. Thus scaffolds made from these yarns typically lack cell signaling cues. This can result in poor integration or even rejection on implantation, which drive demands for a new generation of yarns made from natural biologically compatible materials. Here, we present a new type of cell-attractive, highly twisted protein-based yarns made from blended tropoelastin and silk fibroin. These yarns combine physical and biological benefits by being rendered elastic and bioactive through the incorporation of tropoelastin and strengthened through the presence of silk fibroin. Remarkably, the process delivered multi-meter long yarns of tropoelastin-silk mixture that were conducive to fabrication of meshes on hand-made frames. The resulting hydrated meshes are elastic and cell interactive. Furthermore, subcutaneous implantation of the meshes in mice demonstrates their tolerance and persistence over 8 weeks. This combination of mechanical properties, biocompatibility and processability into diverse shapes and patterns underscores the value of these materials and platform technology for tissue engineering applications. STATEMENT OF SIGNIFICANCE: Synthetic yarns are used to fabricate textile materials for various applications such as surgical meshes for hernia repair and pelvic organ prolapse. However, synthetic materials lack the attractive biological and physical cues characteristic of extracellular matrix and there is a demand for materials that can minimize postoperative complications. To address this need, we made yarns from a combination of recombinant human tropoelastin and silk fibroin using a modified electrospinning approach that blended these proteins into functional yarns. Prior to this study, no protein-based yarns using tropoelastin were available for the fabrication of functional textile materials. Multimeter-long, uniform and highly twisted yarns based on these proteins were elastic and cell interactive and demonstrated processing to yield textile fabrics. By using these yarns to weave fabrics, we demonstrate that an elastic human matrix protein blend can deliver a versatile platform technology to make textiles that can be explored for efficacy in tissue repair.
Collapse
|
18
|
Ren M, McGowan E, Li Y, Zhu X, Lu X, Zhu Z, Lin Y, He S. Saikosaponin-d Suppresses COX2 Through p-STAT3/C/EBPβ Signaling Pathway in Liver Cancer: A Novel Mechanism of Action. Front Pharmacol 2019; 10:623. [PMID: 31191326 PMCID: PMC6549044 DOI: 10.3389/fphar.2019.00623] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 05/15/2019] [Indexed: 01/30/2023] Open
Abstract
Saikosaponin-d (SSd) is an active extract from Radix Bupleuri, the dried root from the plant Bupleurum falcatum used in China for thousands of years to treat liver diseases. The SSd extract possesses valuable pharmacological activities including anti-cancer and anti-inflammatory effects; however, the mechanism underlying the anti-cancer activity of SSd is largely unknown. Here, we explored the mechanism of action of SSd as an anti-cancer agent for liver cancer in two human hepatocellular carcinoma cell lines. Using MTT and annexin-V-FITC/PI assays, Western blots, immunohistochemistry, qRT-PCR, luciferase reporter assay, and a JAK2-specific inhibitor (AG490), we demonstrated that the anti-tumorigenic effects of SSd act through the intermediatory p-STAT3/C/EBPβ signaling pathway to suppress cyclooxygenase (COX)-2. SSd effectively inhibited cell proliferation in a dose-dependent manner. Apoptosis was significantly increased in cells treated with SSd (2.5–15 µg/ml) with concurrent increase and decrease in pro- and anti-apoptosis proteins, respectively. COX-2, C/EBPβ, and p-STAT3 were significantly decreased, at both the translational and transcriptional levels, by SSd treatment. AG490 produced similar inhibitory effects on STAT3, p-STAT3, C/EBPβ, and COX-2. In conclusion, our data suggest that SSd controls liver cancer proliferation through suppression of the p-STAT3/C/EBPβ signaling pathway inhibiting COX2 expression. These findings further our understanding of the pharmacological action of SSd, providing new information on SSd mechanism of action and showing potential for SSd as a novel therapy for liver cancer.
Collapse
Affiliation(s)
- Mudan Ren
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiao tong University, Xi'an, China
| | - Eileen McGowan
- School of Life Sciences, University of Technology Sydney, Broadway, NSW, Australia
| | - Yarui Li
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiao tong University, Xi'an, China
| | - Xiaofeng Zhu
- Department of Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xinlan Lu
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiao tong University, Xi'an, China
| | - Zhanfang Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiao tong University, Xi'an, China
| | - Yiguang Lin
- School of Life Sciences, University of Technology Sydney, Broadway, NSW, Australia
| | - Shuixiang He
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiao tong University, Xi'an, China
| |
Collapse
|
19
|
Liao Y, Ouyang L, Ci L, Chen B, Lv D, Li Q, Sun Y, Fei J, Bao S, Liu X, Li L. Pravastatin regulates host foreign-body reaction to polyetheretherketone implants via miR-29ab1-mediated SLIT3 upregulation. Biomaterials 2019; 203:12-22. [PMID: 30851489 DOI: 10.1016/j.biomaterials.2019.02.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 02/27/2019] [Accepted: 02/28/2019] [Indexed: 12/20/2022]
Abstract
Host rejection to biomaterials can induce uncontrolled foreign-body reactions (FBR), resulting in a dense fibrous encapsulation that blocks mass transport and/or communication between the host and the implant. Adequate angiogenesis between the body and the implant has been implicated as a key regulator for overcoming FBR. Thus, approaches for stimulating neovascularization and/or suppressing FBR are under investigation. In this study, pravastatin (Pra) was loaded onto a 3D network surface of sulfonated polyetheretherketone (SP) to achieve superior local drug effects. The SP loaded with Pra (SP-Pra) promoted angiogenesis and mitigated FBR via miR-29 dependent SLIT3 upregulation in wild-type (WT) mice. miR-29a and miR-29b1 were significantly downregulated in the SP-Pra capsule compared to levels in the SP capsule, while SLIT3 and neovascularization were substantially upregulated in WT mice. However, the above effects presented in the WT mice were not detected in miR-29ab1 knockout mice which was generated by the CRISPR/Cas9 approach. Overall, the results suggest that miR-29 plays a critical role in reducing FBR to these implants by targeting SLIT3. Suppression of FBR by SP-Pra implants offers the potential to improve the performance of current medical devices.
Collapse
Affiliation(s)
- Yun Liao
- Department of Pharmacy, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Liping Ouyang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Ci
- Shanghai Engineering Research Center for Model Organisms, Shanghai Model Organisms Center, INC., Shanghai 201203, China
| | - Baohui Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dan Lv
- Department of Pharmacy, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Qin Li
- Department of Pharmacy, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Yingxiao Sun
- Department of Pharmacy, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Jian Fei
- School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Shisan Bao
- Department of Pharmacy, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China; Discipline of Pathology, Charles Perkin Centre, Bosch Institute and School of Medical Sciences, The University of Sydney, Australia.
| | - Xuanyong Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.
| | - Ling Li
- Department of Pharmacy, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China.
| |
Collapse
|
20
|
Enhanced biocompatibility of polyurethane-type shape memory polymers modified by plasma immersion ion implantation treatment and collagen coating: An in vivo study. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:863-874. [PMID: 30889761 DOI: 10.1016/j.msec.2019.02.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/06/2019] [Accepted: 02/10/2019] [Indexed: 01/23/2023]
Abstract
As one of the promising smart materials, polyurethane-type shape memory polymers (SMPU) have been extensively investigated as potential biomedical implant materials. However, the hydrophobicity and bio-inertness of SMPU are major problems for biomedical applications. We applied plasma immersion ion implantation (PIII) to increase surface wettability and enable one-step covalent, functionalisation of SMPU with biological molecules to create a tuneable, biocompatible surface. The changes of surface properties due to PIII treatment in nitrogen plasma were determined by measurements of morphology, contact angle, surface energy, and nanoindentation. Collagen attachment on SMPU with and without PIII treatment was measured by Attenuated total reflectance-Fourier transform infrared (ATR-FTIR). To investigate in vivo biocompatibility, SMPU with/without PIII and with/without collagen were subcutaneously implanted in mice. SMPU implants with surrounding tissue were collected at days 1, 3, 7, 14 and 28 to study acute/subacute inflammatory responses at histopathological and immunohistochemical levels. The results show that PIII treatment improves wettability and releases residual stress in the SMPU surfaces substantially. Covalent attachment of collagen on PIII treated SMPU in a single step incubation was demonstrated by its resistance to removal by rigorous Sodium Dodecyl Sulfonate (SDS) washing. The in-vivo results showed significantly lower acute/subacute inflammation in response to SMPU with PIII treatment + collagen coating compared to untreated SMPU, collagen coated untreated SMPU, and PIII treated SMPU, characterised by lower total cell numbers, macrophages, neovascularisation, cellular proliferation, cytokine production, and matrix metalloproteinase production. This comprehensive in vivo study of PIII treatment with protein coating demonstrates that the combination of PIII treatment and collagen coating is a promising approach to enhance the biocompatibility of SMPU, facilitating its application as an implantable biomaterial.
Collapse
|
21
|
Tan RP, Chan AH, Wei S, Santos M, Lee BS, Filipe EC, Akhavan B, Bilek MM, Ng MK, Xiao Y, Wise SG. Bioactive Materials Facilitating Targeted Local Modulation of Inflammation. JACC Basic Transl Sci 2019; 4:56-71. [PMID: 30847420 PMCID: PMC6390730 DOI: 10.1016/j.jacbts.2018.10.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/10/2018] [Accepted: 10/12/2018] [Indexed: 11/02/2022]
Abstract
Cardiovascular disease is an inflammatory disorder that may benefit from appropriate modulation of inflammation. Systemic treatments lower cardiac events but have serious adverse effects. Localized modulation of inflammation in current standard treatments such as bypass grafting may more effectively treat CAD. The present study investigated a bioactive vascular graft coated with the macrophage polarizing cytokine interleukin-4. These grafts repolarize macrophages to anti-inflammatory phenotypes, leading to modulation of the pro-inflammatory microenvironment and ultimately to a reduction of foreign body encapsulation and inhibition of neointimal hyperplasia development. These resulting functional improvements have significant implications for the next generation of synthetic vascular grafts.
Collapse
Affiliation(s)
- Richard P. Tan
- Heart Research Institute, Sydney, New South Wales, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Alex H.P. Chan
- Heart Research Institute, Sydney, New South Wales, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Simon Wei
- Science and Engineering Faculty, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Miguel Santos
- Heart Research Institute, Sydney, New South Wales, Australia
- School of Physics, University of Sydney, Sydney, New South Wales, Australia
| | - Bob S.L. Lee
- Heart Research Institute, Sydney, New South Wales, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Elysse C. Filipe
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
- Garvan Institute of Medical Research, Cancer Division, Sydney, New South Wales, Australia
| | - Behnam Akhavan
- Heart Research Institute, Sydney, New South Wales, Australia
- School of Physics, University of Sydney, Sydney, New South Wales, Australia
- School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, Sydney, New South Wales, Australia
| | - Marcela M. Bilek
- School of Physics, University of Sydney, Sydney, New South Wales, Australia
- School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, Sydney, New South Wales, Australia
- Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
- Sydney Nano Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Martin K.C. Ng
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
- Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Yin Xiao
- Science and Engineering Faculty, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Steven G. Wise
- Heart Research Institute, Sydney, New South Wales, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
22
|
Chen Y, Huang P, Chen H, Wang S, Wang H, Guo J, Zhang X, Zhang S, Yan J, Xia J, Xu Z. Assessment of the Biocompatibility and Biological Effects of Biodegradable Pure Zinc Material in the Colorectum. ACS Biomater Sci Eng 2018; 4:4095-4103. [PMID: 33418809 DOI: 10.1021/acsbiomaterials.8b00957] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Little attention has been paid to the biocompatibility and biological effects of zinc as a material. Here, we therefore investigated the biocompatibility and anti-inflammatory and collagen-promoting effects of pure zinc material in the colorectum. Our in vitro results indicated that zinc toxicity and concentration were closely related. Low concentrations of zinc ions and pure zinc material extract had only minor effects on the viability of primary rectal mucosal epithelial cells; however, cytotoxicity was observed at concentrations greater than 0.017 μg/μL and 60%, respectively. In vivo experiments demonstrated that zinc pins degraded slowly in the colorectum (their volume decreasing by approximately 7.79% over 1 month) and did not cause serious adverse reactions. Pure zinc material was found to inhibit acute inflammation through increased expression of ENA-78 and F4/80. Moreover, zinc material heightened expression of collagen and VEGF, factors conducive to wound healing, in surrounding colorectal tissues. These preliminary results suggest that zinc shows great promise as an implant material for medical applications involving colorectal surgery.
Collapse
Affiliation(s)
| | | | - Hui Chen
- Department of Pathology, Nanjing Jinling Hospital, Nanjing University School of Medicine, Jiangsu 210000, People's Republic of China
| | | | | | | | - Xiaonong Zhang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Shaoxiang Zhang
- Suzhou Origin Medical Technology Co. Ltd., 2 Haicheng Road, Changshu Economic and Technology Development Zone, Jiangsu 215513, People's Republic of China
| | - Jun Yan
- Department of General Surgery, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, China
| | | | | |
Collapse
|
23
|
Tang JD, Caliari SR, Lampe KJ. Temperature-Dependent Complex Coacervation of Engineered Elastin-like Polypeptide and Hyaluronic Acid Polyelectrolytes. Biomacromolecules 2018; 19:3925-3935. [DOI: 10.1021/acs.biomac.8b00837] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
24
|
Li L, Stiadle JM, Levendoski EE, Lau HK, Thibeault SL, Kiick KL. Biocompatibility of injectable resilin-based hydrogels. J Biomed Mater Res A 2018; 106:2229-2242. [PMID: 29611890 PMCID: PMC6030450 DOI: 10.1002/jbm.a.36418] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 01/21/2018] [Accepted: 03/21/2018] [Indexed: 12/25/2022]
Abstract
Vocal folds are connective tissues housed in the larynx, which can be subjected to various injuries and traumatic stimuli that lead to aberrant tissue structural alterations and fibrotic-induced biomechanical stiffening observed in patients with voice disorders. Much effort has been devoted to generate soft biomaterials that are injectable directly to sites of injury. To date, materials applied toward these applications have been largely focused on natural extracellular matrix-derived materials such as collagen, fibrin or hyaluronic acid; these approaches have suffered from the fact that materials are not sufficiently robust mechanically nor offer sufficient flexibility to modulate material properties for targeted injection. We have recently developed multiple resilin-inspired elastomeric hydrogels that possess similar mechanical properties as those reported for vocal fold tissues, and that also show promising in vitro cytocompatibility and in vivo biocompatibility. Here we report studies that test the delivery of resilin-based hydrogels through injection to the subcutaneous tissue in a wild-type mice model; histological and genetic expression outcomes were monitored. The rapid kinetics of crosslinking enabled facile injection and ensured the rapid transition of the viscous resilin precursor solution to a solid-like hydrogel in the subcutaneous space in vivo; the materials exhibited storage shear moduli in the range of 1000-2000 Pa when characterized through oscillatory rheology. Histological staining and gene expression profiles suggested minimal inflammatory profiles three weeks after injection, thereby demonstrating the potential suitability for site-specific in vivo injection of these elastomeric materials. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 2229-2242, 2018.
Collapse
Affiliation(s)
- Linqing Li
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Jeanna M. Stiadle
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of Wisconsin-Madison, 5136 WIMR, 1111 Highland Ave, Madison, WI, 53792, USA
- Department of Communication Sciences and Disorders, University of Wisconsin-Madison, Madison, WI, 53792, USA
| | - Elizabeth E. Levendoski
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of Wisconsin-Madison, 5136 WIMR, 1111 Highland Ave, Madison, WI, 53792, USA
- Department of Communication Sciences and Disorders, University of Wisconsin-Madison, Madison, WI, 53792, USA
| | - Hang K. Lau
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Susan L. Thibeault
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of Wisconsin-Madison, 5136 WIMR, 1111 Highland Ave, Madison, WI, 53792, USA
- Department of Communication Sciences and Disorders, University of Wisconsin-Madison, Madison, WI, 53792, USA
| | - Kristi L. Kiick
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, 19716, USA
- Department of Biomedical Engineering, University of Delaware, Newark, DE, 19716, USA
- Delaware Biotechnology Institute, 15 Innovation Way, Newark, DE, 19711, USA
| |
Collapse
|
25
|
Liao Y, Zhang P, Yuan B, Li L, Bao S. Pravastatin Protects Against Avascular Necrosis of Femoral Head via Autophagy. Front Physiol 2018; 9:307. [PMID: 29686621 PMCID: PMC5900057 DOI: 10.3389/fphys.2018.00307] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 03/14/2018] [Indexed: 12/22/2022] Open
Abstract
Autophagy serves as a stress response and may contribute to the pathogenesis of avascular necrosis of the femoral head induced by steroids. Statins promote angiogenesis and ameliorate endothelial functions through apoptosis inhibition and necrosis of endothelial progenitor cells, however the process used by statins to modulate autophagy in avascular necrosis of the femoral head remains unclear. This manuscript determines whether pravastatin protects against dexamethasone-induced avascular necrosis of the femoral head by activating endothelial progenitor cell autophagy. Pravastatin was observed to enhance the autophagy activity in endothelial progenitor cells, specifically by upregulating LC3-II/Beclin-1 (autophagy related proteins), and autophagosome formation in vivo and in vitro. An autophagy inhibitor, 3-MA, reduced pravastatin protection in endothelial progenitor cells exposed to dexamethasone by attenuating pravastatin-induced autophagy. Adenosine monophosphate-activated protein kinase (AMPK) is a key autophagy regulator by sensing cellular energy changes, and indirectly suppressing activation of the mammalian target of rapamycin (mTOR). We found that phosphorylation of AMPK was upregulated however phosphorylation of mTOR was downregulated in pravastatin-treated endothelial progenitor cells, which was attenuated by AMPK inhibitor compound C. Furthermore, liver kinase B1 (a phosphorylase of AMPK) knockdown eliminated pravastatin regulated autophagy protein LC3-II in endothelial progenitor cells in vitro. We therefore demonstrated pravastatin rescued endothelial progenitor cells from dexamethasone-induced autophagy dysfunction through the AMPK-mTOR signaling pathway in a liver kinase B1-dependent manner. Our results provide useful information for the development of novel therapeutics for management of glucocorticoids-induced avascular necrosis of the femoral head.
Collapse
Affiliation(s)
- Yun Liao
- Department of Pharmacy, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Ping Zhang
- Department of Pharmacy, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bo Yuan
- Department of Pharmacy, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ling Li
- Department of Pharmacy, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shisan Bao
- Department of Pharmacy, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Discipline of Pathology, Charles Perkin Center, School of Medical Sciences and Bosch Institute, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
26
|
Yu Y, Yin G, Bao S, Guo Z. Kinetic alterations of collagen and elastic fibres and their association with cardiac function in acute myocardial infarction. Mol Med Rep 2017; 17:3519-3526. [PMID: 29286107 PMCID: PMC5802149 DOI: 10.3892/mmr.2017.8347] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 09/14/2017] [Indexed: 11/16/2022] Open
Abstract
The present study aimed to investigate kinetic alterations of collagen and elastic fibres and their association with cardiac function in the acute myocardial infarction (AMI) heart. AMI was generated in Sprague-Dawley rats by ligation of the left anterior descending coronary artery. Cardiac function was determined using B-ultrasonography, AMI was verified using histopathology. The kinetics of collagen type I/III and elastic fibre were evaluated using immunohistochemistry and western blotting at 1 week (1 w), 2 weeks (2 w), 3 weeks (3 w) and 4 weeks (4 w) post-AMI. Cardiac function was decreased by 78, 70, 50 and 38% at weeks 1, 2, 3 or 4 post-AMI, respectively, compared with the normal heart. Elastic fibre was decreased gradually, demonstrating alterations of 2, 77, 86 or 97% reduction, respectively, at weeks 1, 2, 3 or 4 in the AMI heart. Collagen I fibre was increased 1.4-, 1.5-, 2.9- or 3.9-fold at weeks 1, 2, 3 or 4 respectively, compared with the normal heart. Similarly, collagen III was increased 1.2-, 1.7-, 2.8- or 3.9-fold, following AMI. Kinetics of increased collagen I/III, in combination with decreased elastic fibre in infarcted area following AMI, provided evidence that compromised cardiac function following AMI was due to graduate wound healing/scar formation in the infarcted zone, increased stiffness and reduced flexibility of the heart.
Collapse
Affiliation(s)
- Yuexin Yu
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Guotian Yin
- Department of Cardiology, Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453000, P.R. China
| | - Shisan Bao
- Discipline of Pathology, School of Medical Sciences and Bosch Institute, Sydney Medical School, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Zhikun Guo
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| |
Collapse
|
27
|
Li F, Li J, Huang G, Wang W, Dong W, Yan L. Surface Activity Study of Water-Soluble Silk Fibroin Prepared using Cocoons and Ca(NO3)2 · 4H2O. TENSIDE SURFACT DET 2017. [DOI: 10.3139/113.110512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
The objective of this study was to analyze the relationship between structural changes and surface-activity of water-soluble silk fibroin prepared by treatment with calcium nitrate tetrahydrate (Ca(NO3)2 · 4 H2O). Ca(NO3)2 · 4 H2O, is a hygroscopic compound at room temperature and a suitable solvent upon melting at 100 °C, which was traditionally used as a solvent for dissolving cocoons or silk. The cocoons or silk were optimally dissolved by Ca(NO3)2 · 4 H2O when using a 40 % (w/w) Ca(NO3)2 solution, a 1 : 10 ratio of cocoons or silk to solvent and a dissolving time of 69 min. The results showed that the hydrophobic region of the silk fibroin was destroyed, resulting in the exposure of the hydrophobic groups. The emulsifying ability and the emulsion stability as well as the foaming ability and the foam stability, and the γCMC and CMC of soluble silk fibroin were 92.8 %, 97.3 %, 213.3 %, 88.1 %, 65.83 mN/m and 0.42 mg/mL, respectively. The molecular conformation of silk fibroin chains was the β-sheet, as shown by the intense amide I–III bands at 3 163 cm−1, 1 627 cm−1, 1 518 cm−1, and 1 231 cm−1. The random coil/α-helix structure induced from Ca(NO3)2 convert to β-sheet conformation. Owing to the calcium nitrate's dissolution, silk fibroin can be dissolved in water by changing its structure, and shows excellent surface activity.
Collapse
Affiliation(s)
- Fengguang Li
- Department of Biological and Chemical Engineering , Guangxi University of Science and Technology, Liuzhou , P.R. China
- Guangxi Key Laboratory of Green Processing of Sugar Resources ,Guangxi University of Science and Technology
- Key Laboratory for Processing of Sugar Resources of Guangxi Higher Education Institutes , Guangxi University of Science and Technology
| | - Junsheng Li
- Department of Biological and Chemical Engineering , Guangxi University of Science and Technology, Liuzhou , P.R. China
- Guangxi Key Laboratory of Green Processing of Sugar Resources ,Guangxi University of Science and Technology
- Key Laboratory for Processing of Sugar Resources of Guangxi Higher Education Institutes , Guangxi University of Science and Technology
| | - Guoxia Huang
- Department of Biological and Chemical Engineering , Guangxi University of Science and Technology, Liuzhou , P.R. China
- Guangxi Key Laboratory of Green Processing of Sugar Resources ,Guangxi University of Science and Technology
- Key Laboratory for Processing of Sugar Resources of Guangxi Higher Education Institutes , Guangxi University of Science and Technology
| | - Wei Wang
- Department of Biological and Chemical Engineering , Guangxi University of Science and Technology, Liuzhou , P.R. China
- Guangxi Key Laboratory of Green Processing of Sugar Resources ,Guangxi University of Science and Technology
- Key Laboratory for Processing of Sugar Resources of Guangxi Higher Education Institutes , Guangxi University of Science and Technology
| | - Wenxiu Dong
- Department of Biological and Chemical Engineering , Guangxi University of Science and Technology, Liuzhou , P.R. China
- Guangxi Key Laboratory of Green Processing of Sugar Resources ,Guangxi University of Science and Technology
- Key Laboratory for Processing of Sugar Resources of Guangxi Higher Education Institutes , Guangxi University of Science and Technology
| | - Liujuan Yan
- Department of Biological and Chemical Engineering , Guangxi University of Science and Technology, Liuzhou , P.R. China
- Guangxi Key Laboratory of Green Processing of Sugar Resources ,Guangxi University of Science and Technology
- Key Laboratory for Processing of Sugar Resources of Guangxi Higher Education Institutes , Guangxi University of Science and Technology
| |
Collapse
|
28
|
Zhang L, Niu X, Sun L, She Z, Tan R, Wang W. Immune response of bovine sourced cross-linked collagen sponge for hemostasis. J Biomater Appl 2017; 32:920-931. [PMID: 29199891 DOI: 10.1177/0885328217744080] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A comprehensive immunogenicity scheme is proposed to examine immune response of bovine sourced hemostasis collagen sponge to establish foundation for further researches and decrease the incidence of adverse reaction in clinical trials. Compared with negative control group without any implant, spleen and lymph nodes morphology show no apparent swelling in mice with different doses of collagen sponge implants. Immune cells population, especially lymph nodes cells population, is practically coincident with organs. However, splenic cells display slight proliferation in early phase following collagen sponge implantation. Splenic cells apoptosis also demonstrates no significant difference among all groups. T lymphocytes subsets, CD4/CD8 cells ratio, in spleen and lymph nodes are practically normal. Splenic cells Ki67 + proportions do not exhibit significant difference between collagen sponge groups and negative control group. Humoral response is determined by detection of IgG and IgM concentration in serum, not exhibiting remarkable increase with collagen sponge implantation, compared to the drastic increase in positive control group with bovine tendon implantation. Local analysis around implants by hematoxylin-eosin staining discovers slight cell infiltration around collagen sponge. Tumour necrosis factor-α immunostaining indicates slight inflammation in early phase following collagen sponge implantation, but interferon-γ immunostaining is negligible even in positive control group. Collagen sponge, especially in high dose, may have evoked benign immune response in BALB/c mice, but this response is transient. The present evaluation scheme for immune response is integrated and comprehensive, suitable for various biomaterials.
Collapse
Affiliation(s)
- Lin Zhang
- 1 Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, P. R. China
| | - Xufeng Niu
- 1 Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, P. R. China
| | - Lei Sun
- 1 Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, P. R. China
| | - Zhending She
- 2 Shenzhen Lando Biomaterials Co., Ltd, Shenzhen, P. R. China
| | - Rongwei Tan
- 2 Shenzhen Lando Biomaterials Co., Ltd, Shenzhen, P. R. China
| | - Wei Wang
- 3 Department of Immunology, School of Basic Medical Sciences, 33133 Peking University , Key Laboratory of Medical Immunology, Ministry of Health (Peking University), Beijing, P. R. China
| |
Collapse
|
29
|
Tan RP, Lee BS, Chan AH, Yuen SCG, Hung J, Wise SG, Ng MK. Non-invasive tracking of injected bone marrow mononuclear cells to injury and implanted biomaterials. Acta Biomater 2017; 53:378-388. [PMID: 28167301 DOI: 10.1016/j.actbio.2017.02.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/31/2017] [Accepted: 02/01/2017] [Indexed: 02/07/2023]
Abstract
Biomaterial scaffolds enhancing the engraftment of transplanted bone-marrow mononuclear cells (BM-MNC) have enormous potential for tissue regeneration applications. However, development of appropriate materials is challenging given the precise microenvironments required to support BM-MNC engraftment and function. In this study, we have developed a non-invasive, real-time tracking model of injected BM-MNC engraftment to wounds and implanted biomaterial scaffolds. BM-MNCs, encoded with firefly luciferase and enhanced GFP reporter genes, were tail vein injected into subcutaneously wounded mice. Luciferase-dependent cell bioluminescence curves revealed our injected BM-MNCs homed to and engrafted within subcutaneous wound sites over the course of 21days. Further immunohistochemical characterization showed that these engrafted cells drove functional changes by increasing the number of immune cells present at early time points and remodelling cell phenotypes at later time points. Using this model, we subcutaneously implanted electrospun polycaprolactone (PCL) and PCL/Collagen scaffolds, to determine differences in exogenous BM-MNC response to these materials. Following BM-MNC injection, immunohistochemical analysis revealed a high exogenous BM-MNC density around the periphery of PCL scaffolds consistent with a classical foreign body response. In contrast, transplanted BM-MNCs engrafted throughout PCL/Collagen scaffolds indicating an improved biological response. Importantly, these differences were closely correlated with the real-time bioluminescence curves, with PCL/Collagen scaffolds exhibiting a∼2-fold increase in maximum bioluminescence compared with PCL scaffolds. Collectively, these results demonstrate a new longitudinal cell tracking model that can non-invasively determine transplanted BM-MNC homing and engraftment to biomaterials, providing a valuable tool to inform the design scaffolds that help augment current BM-MNC tissue engineering strategies. STATEMENT OF SIGNIFICANCE Tracking the dynamic behaviour of transplanted bone-marrow mononuclear cells (BM-MNCs) is a long-standing research goal. Conventional methods involving contrast and tracer agents interfere with cellular function while also yielding false signals. The use of bioluminescence addresses these shortcomings while allowing for real-time non-invasive tracking in vivo. Given the failures of transplanted BM-MNCs to engraft into injured tissue, biomaterial scaffolds capable of attracting and enhancing BM-MNC engraftment at sites of injury are highly sought in numerous tissue engineering applications. To this end, the results from this study demonstrate a new longitudinal tracking model that can non-invasively determine exogenous BM-MNC homing and engraftment to biomaterials, providing a valuable tool to inform the design of scaffolds with implications for countless tissue engineering applications.
Collapse
|
30
|
Wise SG, Liu H, Yeo GC, Michael PL, Chan AHP, Ngo AKY, Bilek MMM, Bao S, Weiss AS. Blended Polyurethane and Tropoelastin as a Novel Class of Biologically Interactive Elastomer. Tissue Eng Part A 2016; 22:524-33. [PMID: 26857114 DOI: 10.1089/ten.tea.2015.0409] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Polyurethanes are versatile elastomers but suffer from biological limitations such as poor control over cell attachment and the associated disadvantages of increased fibrosis. We address this problem by presenting a novel strategy that retains elasticity while modulating biological performance. We describe a new biomaterial that comprises a blend of synthetic and natural elastomers: the biostable polyurethane Elast-Eon and the recombinant human tropoelastin protein. We demonstrate that the hybrid constructs yield a class of coblended elastomers with unique physical properties. Hybrid constructs displayed higher elasticity and linear stress-strain responses over more than threefold strain. The hybrid materials showed increased overall porosity and swelling in comparison to polyurethane alone, facilitating enhanced cellular interactions. In vitro, human dermal fibroblasts showed enhanced proliferation, while in vivo, following subcutaneous implantation in mice, hybrid scaffolds displayed a reduced fibrotic response and tunable degradation rate. To our knowledge, this is the first example of a blend of synthetic and natural elastomers and is a promising approach for generating tailored bioactive scaffolds for tissue repair.
Collapse
Affiliation(s)
- Steven G Wise
- 1 The Heart Research Institute , Sydney, Australia .,2 Sydney Medical School, University of Sydney , Sydney, Australia .,3 School of Molecular Bioscience, University of Sydney , Sydney, Australia
| | - Hongjuan Liu
- 2 Sydney Medical School, University of Sydney , Sydney, Australia .,4 Discipline of Pathology and School of Medical Science, University of Sydney , Sydney, Australia .,5 Charles Perkins Centre, University of Sydney , Sydney, Australia .,6 Bosch Institute, University of Sydney , Sydney, Australia
| | - Giselle C Yeo
- 3 School of Molecular Bioscience, University of Sydney , Sydney, Australia .,5 Charles Perkins Centre, University of Sydney , Sydney, Australia
| | - Praveesuda L Michael
- 1 The Heart Research Institute , Sydney, Australia .,2 Sydney Medical School, University of Sydney , Sydney, Australia
| | - Alex H P Chan
- 1 The Heart Research Institute , Sydney, Australia .,2 Sydney Medical School, University of Sydney , Sydney, Australia
| | - Alan K Y Ngo
- 3 School of Molecular Bioscience, University of Sydney , Sydney, Australia
| | | | - Shisan Bao
- 2 Sydney Medical School, University of Sydney , Sydney, Australia .,4 Discipline of Pathology and School of Medical Science, University of Sydney , Sydney, Australia .,5 Charles Perkins Centre, University of Sydney , Sydney, Australia .,6 Bosch Institute, University of Sydney , Sydney, Australia
| | - Anthony S Weiss
- 3 School of Molecular Bioscience, University of Sydney , Sydney, Australia .,5 Charles Perkins Centre, University of Sydney , Sydney, Australia .,6 Bosch Institute, University of Sydney , Sydney, Australia
| |
Collapse
|
31
|
Muiznieks LD, Keeley FW. Biomechanical Design of Elastic Protein Biomaterials: A Balance of Protein Structure and Conformational Disorder. ACS Biomater Sci Eng 2016; 3:661-679. [DOI: 10.1021/acsbiomaterials.6b00469] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Lisa D. Muiznieks
- Molecular
Structure and Function Program, Research Institute, The Hospital for Sick Children, 686 Bay Street, Toronto, Ontario, Canada M5G 0A4
| | - Fred W. Keeley
- Molecular
Structure and Function Program, Research Institute, The Hospital for Sick Children, 686 Bay Street, Toronto, Ontario, Canada M5G 0A4
- Department
of Biochemistry and Department of Laboratory Medicine and Pathobiology, 1 King’s College Circle, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| |
Collapse
|
32
|
Boddupalli A, Zhu L, Bratlie KM. Methods for Implant Acceptance and Wound Healing: Material Selection and Implant Location Modulate Macrophage and Fibroblast Phenotypes. Adv Healthc Mater 2016; 5:2575-2594. [PMID: 27593734 DOI: 10.1002/adhm.201600532] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 06/17/2016] [Indexed: 12/12/2022]
Abstract
This review focuses on materials and methods used to induce phenotypic changes in macrophages and fibroblasts. Herein, we give a brief overview on how changes in macrophages and fibroblasts phenotypes are critical biomarkers for identification of implant acceptance, wound healing effectiveness, and are also essential for evaluating the regenerative capabilities of some hybrid strategies that involve the combination of natural and synthetic materials. The different types of cells present during the host response have been extensively studied for evaluating the reaction to different materials and there are varied material approaches towards fabrication of biocompatible substrates. We discuss how natural and synthetic materials have been used to engineer desirable outcomes in lung, heart, liver, skin, and musculoskeletal implants, and how certain properties such as rigidity, surface shape, and porosity play key roles in the progression of the host response. Several fabrication strategies are discussed to control the phenotype of infiltrating macrophages and fibroblasts: decellularization of scaffolds, surface coatings, implant shape, and pore size apart from biochemical signaling pathways that can inhibit or accelerate unfavorable host responses. It is essential to factor all the different design principles and material fabrication criteria for evaluating the choice of implant materials or regenerative therapeutic strategies.
Collapse
Affiliation(s)
- Anuraag Boddupalli
- Department of Chemical & Biological Engineering; Iowa State University; 2114 Sweeney Hall Ames IA 50011 USA
| | - Lida Zhu
- Department of Chemical & Biological Engineering; Iowa State University; 2114 Sweeney Hall Ames IA 50011 USA
| | - Kaitlin M. Bratlie
- Department of Chemical & Biological Engineering; Iowa State University; 2114 Sweeney Hall Ames IA 50011 USA
- Department of Materials Science & Engineering; Iowa State University; 2220 Hoover Hall Ames IA 50011 USA
- Division of Materials Science & Engineering; Ames National Laboratory; 126 Metals Development Ames IA 50011 USA
| |
Collapse
|
33
|
Tang JD, McAnany CE, Mura C, Lampe KJ. Toward a Designable Extracellular Matrix: Molecular Dynamics Simulations of an Engineered Laminin-Mimetic, Elastin-Like Fusion Protein. Biomacromolecules 2016; 17:3222-3233. [DOI: 10.1021/acs.biomac.6b00951] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- James D. Tang
- Departments of †Chemical Engineering and ‡Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Charles E. McAnany
- Departments of †Chemical Engineering and ‡Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Cameron Mura
- Departments of †Chemical Engineering and ‡Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Kyle J. Lampe
- Departments of †Chemical Engineering and ‡Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
34
|
Miranda-Nieves D, Chaikof EL. Collagen and Elastin Biomaterials for the Fabrication of Engineered Living Tissues. ACS Biomater Sci Eng 2016; 3:694-711. [PMID: 33440491 DOI: 10.1021/acsbiomaterials.6b00250] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Collagen and elastin represent the two most predominant proteins in the body and are responsible for modulating important biological and mechanical properties. Thus, the focus of this review is the use of collagen and elastin as biomaterials for the fabrication of living tissues. Considering the importance of both biomaterials, we first propose the notion that many tissues in the human body represent a reinforced composite of collagen and elastin. In the rest of the review, collagen and elastin biosynthesis and biophysics, as well as molecular sources and biomaterial fabrication methodologies, including casting, fiber spinning, and bioprinting, are discussed. Finally, we summarize the current attempts to fabricate a subset of living tissues and, based on biochemical and biomechanical considerations, suggest that future tissue-engineering efforts consider direct incorporation of collagen and elastin biomaterials.
Collapse
Affiliation(s)
- David Miranda-Nieves
- Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Surgery, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, United States
| | - Elliot L Chaikof
- Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Surgery, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, United States.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02215, United States
| |
Collapse
|
35
|
Wise SG, Liu H, Kondyurin A, Byrom MJ, Bannon PG, Edwards GA, Weiss AS, Bao S, Bilek MM. Plasma Ion Activated Expanded Polytetrafluoroethylene Vascular Grafts with a Covalently Immobilized Recombinant Human Tropoelastin Coating Reducing Neointimal Hyperplasia. ACS Biomater Sci Eng 2016; 2:1286-1297. [DOI: 10.1021/acsbiomaterials.6b00208] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Steven G. Wise
- The Heart Research Institute, 7 Eliza Street, Newtown, Sydney, New South Wales 2042, Australia
- Sydney
Medical School, University of Sydney, Edward Ford Building (A27), Fisher
Road, Sydney, New South Wales 2006, Australia
- School
of Molecular Bioscience, University of Sydney, Biochemistry Building (G08), Butlin
Avenue, Sydney, New South
Wales 2006, Australia
| | - Hongjuan Liu
- Department
of Pathology, University of Sydney, Blackburn Building (D06), Blackburn Circuit, Sydney, New South Wales 2006, Australia
| | - Alexey Kondyurin
- School
of Physics (A28), University of Sydney, Physics Road, Sydney, New South Wales 2006, Australia
| | - Michael J. Byrom
- The Heart Research Institute, 7 Eliza Street, Newtown, Sydney, New South Wales 2042, Australia
- The Baird Institute, Suite 305, 100 Carillon Avenue, Newtown, Sydney, New South Wales 2042, Australia
| | - Paul G. Bannon
- Sydney
Medical School, University of Sydney, Edward Ford Building (A27), Fisher
Road, Sydney, New South Wales 2006, Australia
- The Baird Institute, Suite 305, 100 Carillon Avenue, Newtown, Sydney, New South Wales 2042, Australia
| | - Glenn A. Edwards
- School
of Veterinary Science, University of Melbourne, 757 Swanston Street, Parkville, Victoria 3030, Australia
| | - Anthony S. Weiss
- School
of Molecular Bioscience, University of Sydney, Biochemistry Building (G08), Butlin
Avenue, Sydney, New South
Wales 2006, Australia
- Bosch
Institute, University of Sydney, Anderson Stuart Building (F13), Fisher Road, Sydney, New
South Wales 2006, Australia
- Charles
Perkins Centre (D17), University of Sydney, John Hopkins Drive, Sydney, New South Wales 2006, Australia
| | - Shisan Bao
- Department
of Pathology, University of Sydney, Blackburn Building (D06), Blackburn Circuit, Sydney, New South Wales 2006, Australia
| | - Marcela M. Bilek
- School
of Physics (A28), University of Sydney, Physics Road, Sydney, New South Wales 2006, Australia
| |
Collapse
|
36
|
Gupta P, Kumar M, Bhardwaj N, Kumar JP, Krishnamurthy CS, Nandi SK, Mandal BB. Mimicking Form and Function of Native Small Diameter Vascular Conduits Using Mulberry and Non-mulberry Patterned Silk Films. ACS APPLIED MATERIALS & INTERFACES 2016; 8:15874-15888. [PMID: 27269821 DOI: 10.1021/acsami.6b00783] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Autologous graft replacement as a strategy to treat diseased peripheral small diameter (≤6 mm) blood vessel is often challenged by prior vein harvesting. To address this issue, we fabricated native-tissue mimicking multilayered small diameter vascular graft (SDVG) using mulberry (Bombyx mori) and Indian endemic non-mulberry (Antheraea assama and Philosamia ricini) silk. Patterned silk films were fabricated on microgrooved PDMS mold, casted by soft lithography. The biodegradable patterned film templates with aligned cell sheets were rolled onto an inert mandrel to mimic vascular conduit. The hemocompatible and mechanically strong non-mulberry films with RGD motif supported ∼1.2 folds greater proliferation of vascular cells with aligned anchorage. Elicitation of minimal immune response on subcutaneous implantation of the films in mice was complemented by ∼45% lower TNF α secretion by in vitro macrophage culture post 7 days. Pattern-induced alignment favored the functional contractile phenotype of smooth muscle cells (SMCs), expressing the signature markers-calponin, α-smooth muscle actin (α-SMA), and smooth muscle myosin heavy chain (SM-MHC). Endothelial cells (ECs) exhibited a typical punctuated pattern of von Willebrand factor (vWF). Deposition of collagen and elastin by the SMCs substantiated the aptness of the graft with desired biomechanical attributes. Furthermore, the burst strength of the fabricated conduit was in the range of ∼915-1260 mmHg, a prerequisite to withstand physiological pressure. This novel fabrication approach may eliminate the need of maturation in a pulsatile bioreactor for obtaining functional cellular phenotype. This work is thereby an attestation to the immense prospects of exploring non-mulberry silk for bioengineering a multilayered vascular conduit similar to a native vessel in "form and function", befitting for in vivo transplantation.
Collapse
Affiliation(s)
- Prerak Gupta
- Biomaterial and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati , Guwahati-781039, Assam, India
| | - Manishekhar Kumar
- Biomaterial and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati , Guwahati-781039, Assam, India
| | - Nandana Bhardwaj
- Life Science Division, Institute of Advanced Study in Science and Technology (IASST) , Guwahati-781035, Assam, India
| | - Jadi Praveen Kumar
- Biomaterial and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati , Guwahati-781039, Assam, India
| | - C S Krishnamurthy
- Biomaterial and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati , Guwahati-781039, Assam, India
| | - Samit Kumar Nandi
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences , Kolkata-700037, West Bengal, India
| | - Biman B Mandal
- Biomaterial and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati , Guwahati-781039, Assam, India
| |
Collapse
|
37
|
Aghaei-Ghareh-Bolagh B, Mithieux SM, Weiss AS. Elastic proteins and elastomeric protein alloys. Curr Opin Biotechnol 2016; 39:56-60. [PMID: 26780495 PMCID: PMC4899202 DOI: 10.1016/j.copbio.2015.12.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 12/26/2015] [Accepted: 12/29/2015] [Indexed: 10/22/2022]
Abstract
The elastomeric proteins elastin and resilin have been used extensively in the fabrication of biomaterials for tissue engineering applications due to their unique mechanical and biological properties. Tropoelastin is the soluble monomer component of elastin. Tropoelastin and resilin are both highly elastic with high resilience, substantial extensibility, high durability and low energy loss, which makes them excellent candidates for the fabrication of elastic tissues that demand regular and repetitive movement like the skin, lung, blood vessels, muscles and vocal folds. Combinations of these proteins with silk fibroin further enhance their biomechanical and biological properties leading to a new class of protein alloy materials with versatile properties. In this review, the properties of tropoelastin-based and resilin-based biomaterials with and without silk are described in concert with examples of their applications in tissue engineering.
Collapse
Affiliation(s)
- Behnaz Aghaei-Ghareh-Bolagh
- Molecular Bioscience, University of Sydney, NSW 2006, Australia; Charles Perkins Centre, University of Sydney, NSW 2006, Australia; Bosch Institute, University of Sydney, NSW 2006, Australia
| | - Suzanne M Mithieux
- Molecular Bioscience, University of Sydney, NSW 2006, Australia; Charles Perkins Centre, University of Sydney, NSW 2006, Australia; Bosch Institute, University of Sydney, NSW 2006, Australia
| | - Anthony S Weiss
- Molecular Bioscience, University of Sydney, NSW 2006, Australia; Charles Perkins Centre, University of Sydney, NSW 2006, Australia; Bosch Institute, University of Sydney, NSW 2006, Australia.
| |
Collapse
|
38
|
Lin Y, Wang S, Chen Y, Wang Q, Burke KA, Spedden EM, Staii C, Weiss AS, Kaplan DL. Electrodeposited gels prepared from protein alloys. Nanomedicine (Lond) 2016; 10:803-14. [PMID: 25816881 DOI: 10.2217/nnm.14.230] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM Silk-tropoelastin alloys, composed of recombinant human tropoelastin and regenerated Bombyx mori silk fibroin, are an emerging, versatile class of biomaterials endowed with tunable combinations of physical and biological properties. Electrodeposition of these alloys provides a programmable means to assemble functional gels with both spatial and temporal controllability. MATERIALS & METHODS Tropoelastin-modified silk was prepared by enzymatic coupling between tyrosine residues. Hydrogel coatings were electrodeposited using two wire electrodes. RESULTS & DISCUSSION Mechanical characterization and in vitro cell culture revealed enhanced adhesive capability and cellular response of these alloy gels as compared with electrogelled silk alone. CONCLUSION These electro-depositable silk-tropoelastin alloys constitute a suitable coating material for nanoparticle-based drug carriers and offer a novel opportunity for on-demand encapsulation/release of nanomedicine.
Collapse
Affiliation(s)
- Yinan Lin
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Calabrese R, Raia N, Huang W, Ghezzi CE, Simon M, Staii C, Weiss AS, Kaplan DL. Silk-ionomer and silk-tropoelastin hydrogels as charged three-dimensional culture platforms for the regulation of hMSC response. J Tissue Eng Regen Med 2016; 11:2549-2564. [DOI: 10.1002/term.2152] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 12/19/2015] [Accepted: 12/22/2015] [Indexed: 01/08/2023]
Affiliation(s)
- Rossella Calabrese
- Department of Biomedical Engineering; Tufts University Science and Technology Center; Medford MA USA
| | - Nicole Raia
- Department of Biomedical Engineering; Tufts University Science and Technology Center; Medford MA USA
| | - Wenwen Huang
- Department of Biomedical Engineering; Tufts University Science and Technology Center; Medford MA USA
| | - Chiara E. Ghezzi
- Department of Biomedical Engineering; Tufts University Science and Technology Center; Medford MA USA
| | - Marc Simon
- Department of Physics and Astronomy, and Center for Nanoscopic Physics; Tufts University Science and Technology Center; Medford MA USA
| | - Cristian Staii
- Department of Physics and Astronomy, and Center for Nanoscopic Physics; Tufts University Science and Technology Center; Medford MA USA
| | - Anthony S. Weiss
- School of Molecular Bioscience; University of Sydney; NSW Australia
- Charles Perkins Center; University of Sydney; NSW Australia
- Bosch Institute; University of Sydney; NSW Australia
| | - David L. Kaplan
- Department of Biomedical Engineering; Tufts University Science and Technology Center; Medford MA USA
| |
Collapse
|
40
|
Yeo GC, Aghaei-Ghareh-Bolagh B, Brackenreg EP, Hiob MA, Lee P, Weiss AS. Fabricated Elastin. Adv Healthc Mater 2015; 4:2530-2556. [PMID: 25771993 PMCID: PMC4568180 DOI: 10.1002/adhm.201400781] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Revised: 02/09/2015] [Indexed: 12/18/2022]
Abstract
The mechanical stability, elasticity, inherent bioactivity, and self-assembly properties of elastin make it a highly attractive candidate for the fabrication of versatile biomaterials. The ability to engineer specific peptide sequences derived from elastin allows the precise control of these physicochemical and organizational characteristics, and further broadens the diversity of elastin-based applications. Elastin and elastin-like peptides can also be modified or blended with other natural or synthetic moieties, including peptides, proteins, polysaccharides, and polymers, to augment existing capabilities or confer additional architectural and biofunctional features to compositionally pure materials. Elastin and elastin-based composites have been subjected to diverse fabrication processes, including heating, electrospinning, wet spinning, solvent casting, freeze-drying, and cross-linking, for the manufacture of particles, fibers, gels, tubes, sheets and films. The resulting materials can be tailored to possess specific strength, elasticity, morphology, topography, porosity, wettability, surface charge, and bioactivity. This extraordinary tunability of elastin-based constructs enables their use in a range of biomedical and tissue engineering applications such as targeted drug delivery, cell encapsulation, vascular repair, nerve regeneration, wound healing, and dermal, cartilage, bone, and dental replacement.
Collapse
Affiliation(s)
- Giselle C. Yeo
- Charles Perkins Centre, The University of Sydney, NSW 2006, Australia
- School of Molecular Bioscience, The University of Sydney, NSW 2006, Australia
| | - Behnaz Aghaei-Ghareh-Bolagh
- Charles Perkins Centre, The University of Sydney, NSW 2006, Australia
- School of Molecular Bioscience, The University of Sydney, NSW 2006, Australia
| | - Edwin P. Brackenreg
- Charles Perkins Centre, The University of Sydney, NSW 2006, Australia
- School of Molecular Bioscience, The University of Sydney, NSW 2006, Australia
| | - Matti A. Hiob
- Charles Perkins Centre, The University of Sydney, NSW 2006, Australia
- School of Molecular Bioscience, The University of Sydney, NSW 2006, Australia
| | - Pearl Lee
- Charles Perkins Centre, The University of Sydney, NSW 2006, Australia
- School of Molecular Bioscience, The University of Sydney, NSW 2006, Australia
| | - Anthony S. Weiss
- Charles Perkins Centre, The University of Sydney, NSW 2006, Australia
- School of Molecular Bioscience, The University of Sydney, NSW 2006, Australia
- Bosch Institute, The University of Sydney, NSW 2006, Australia
| |
Collapse
|
41
|
Girotti A, Orbanic D, Ibáñez-Fonseca A, Gonzalez-Obeso C, Rodríguez-Cabello JC. Recombinant Technology in the Development of Materials and Systems for Soft-Tissue Repair. Adv Healthc Mater 2015; 4:2423-55. [PMID: 26172311 DOI: 10.1002/adhm.201500152] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 05/04/2015] [Indexed: 12/16/2022]
Abstract
The field of biomedicine is constantly investing significant research efforts in order to gain a more in-depth understanding of the mechanisms that govern the function of body compartments and to develop creative solutions for the repair and regeneration of damaged tissues. The main overall goal is to develop relatively simple systems that are able to mimic naturally occurring constructs and can therefore be used in regenerative medicine. Recombinant technology, which is widely used to obtain new tailored synthetic genes that express polymeric protein-based structures, now offers a broad range of advantages for that purpose by permitting the tuning of biological and mechanical properties depending on the intended application while simultaneously ensuring adequate biocompatibility and biodegradability of the scaffold formed by the polymers. This Progress Report is focused on recombinant protein-based materials that resemble naturally occurring proteins of interest for use in soft tissue repair. An overview of recombinant biomaterials derived from elastin, silk, collagen and resilin is given, along with a description of their characteristics and suggested applications. Current endeavors in this field are continuously providing more-improved materials in comparison with conventional ones. As such, a great effort is being made to put these materials through clinical trials in order to favor their future use.
Collapse
Affiliation(s)
- Alessandra Girotti
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology); CIBER-BBN; University of Valladolid, Edificio LUCIA; Paseo de Belén, 19 47011 Valladolid Spain
| | - Doriana Orbanic
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology); CIBER-BBN; University of Valladolid, Edificio LUCIA; Paseo de Belén, 19 47011 Valladolid Spain
| | - Arturo Ibáñez-Fonseca
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology); CIBER-BBN; University of Valladolid, Edificio LUCIA; Paseo de Belén, 19 47011 Valladolid Spain
| | - Constancio Gonzalez-Obeso
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology); CIBER-BBN; University of Valladolid, Edificio LUCIA; Paseo de Belén, 19 47011 Valladolid Spain
| | - José Carlos Rodríguez-Cabello
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology); CIBER-BBN; University of Valladolid, Edificio LUCIA; Paseo de Belén, 19 47011 Valladolid Spain
| |
Collapse
|
42
|
In vivo bioresponses to silk proteins. Biomaterials 2015; 71:145-157. [PMID: 26322725 DOI: 10.1016/j.biomaterials.2015.08.039] [Citation(s) in RCA: 292] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 08/15/2015] [Accepted: 08/18/2015] [Indexed: 12/22/2022]
Abstract
Silks are appealing materials for numerous biomedical applications involving drug delivery, tissue engineering, or implantable devices, because of their tunable mechanical properties and wide range of physical structures. In addition to the functionalities needed for specific clinical applications, a key factor necessary for clinical success for any implanted material is appropriate interactions with the body in vivo. This review summarizes our current understanding of the in vivo biological responses to silks, including degradation, the immune and inflammatory response, and tissue remodeling with particular attention to vascularization. While we focus in this review on silkworm silk fibroin protein due to the large quantity of in vivo data thanks to its widespread use in medical materials and consumer products, spider silk information is also included if available. Silk proteins are degraded in the body on a time course that is dependent on the method of silk fabrication and can range from hours to years. Silk protein typically induces a mild inflammatory response that decreases within a few weeks of implantation. The response involves recruitment and activation of macrophages and may include activation of a mild foreign body response with the formation of multinuclear giant cells, depending on the material format and location of implantation. The number of immune cells present decreases with time and granulation tissue, if formed, is replaced by endogenous, not fibrous, tissue. Importantly, silk materials have not been demonstrated to induce mineralization, except when used in calcified tissues. Due to its ability to be degraded, silk can be remodeled in the body allowing for vascularization and tissue ingrowth with eventual complete replacement by native tissue. The degree of remodeling, tissue ingrowth, or other specific cell behaviors can be modulated with addition of growth or other signaling factors. Silk can also be combined with numerous other materials including proteins, synthetic polymers, and ceramics to enhance its characteristics for a particular function. Overall, the diverse array of silk materials shows excellent bioresponses in vivo with low immunogenicity and the ability to be remodeled and replaced by native tissue making it suitable for numerous clinical applications.
Collapse
|
43
|
Pan G, Liu S, Zhao X, Zhao J, Fan C, Cui W. Full-course inhibition of biodegradation-induced inflammation in fibrous scaffold by loading enzyme-sensitive prodrug. Biomaterials 2015; 53:202-10. [DOI: 10.1016/j.biomaterials.2015.02.078] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 02/13/2015] [Accepted: 02/19/2015] [Indexed: 01/08/2023]
|
44
|
Anti-inflammatory activity of curcumin-loaded solid lipid nanoparticles in IL-1β transgenic mice subjected to the lipopolysaccharide-induced sepsis. Biomaterials 2015; 53:475-83. [DOI: 10.1016/j.biomaterials.2015.02.116] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 02/23/2015] [Accepted: 02/27/2015] [Indexed: 12/14/2022]
|
45
|
Abstract
Elastin is the dominant mammalian elastic protein found in soft tissue. Elastin-based biomaterials have the potential to repair elastic tissues by improving local elasticity and providing appropriate cellular interactions and signaling. Studies that combine these biomaterials with mesenchymal stem cells have demonstrated their capacity to also regenerate non-elastic tissue. Mesenchymal stem cell differentiation can be controlled by their immediate environment, and their sensitivity to elasticity makes them an ideal candidate for combining with elastin-based biomaterials. With the growing accessibility of the elastin precursor, tropoelastin, and elastin-derived materials, the amount of research interest in combining these two fields has increased and, subsequently, is leading to the realization of a potentially new strategy for regenerative medicine.
Collapse
Affiliation(s)
- Jazmin Ozsvar
- School of Molecular Bioscience, The University of Sydney, NSW 2006, Australia ; Charles Perkins Centre, The University of Sydney, NSW 2006, Australia
| | - Suzanne M Mithieux
- School of Molecular Bioscience, The University of Sydney, NSW 2006, Australia ; Charles Perkins Centre, The University of Sydney, NSW 2006, Australia
| | - Richard Wang
- School of Molecular Bioscience, The University of Sydney, NSW 2006, Australia ; Charles Perkins Centre, The University of Sydney, NSW 2006, Australia
| | - Anthony S Weiss
- School of Molecular Bioscience, The University of Sydney, NSW 2006, Australia ; Charles Perkins Centre, The University of Sydney, NSW 2006, Australia
| |
Collapse
|
46
|
Abdelghani M, El-Heba GAA, Abdelhadi AA, Abdallah NA. Expression of synthetic human tropoelastin (hTE) protein in Nicotiana tabacum. GM CROPS & FOOD 2015; 6:54-62. [PMID: 25984768 PMCID: PMC5033175 DOI: 10.1080/21645698.2015.1026524] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 02/26/2015] [Accepted: 03/01/2015] [Indexed: 02/08/2023]
Abstract
Plant molecular farming (PMF) is an important growing prospective approach in plant biotechnology; it includes production of recombinant pharmaceutical and industrial proteins in large quantities from engineered plants. Elastin is a major protein component of tissues that require elasticity, it helps keep skin smooth as it stretches to allow normal. Elastin is used as a raw material for the cosmetic industry. In this work, we aimed to use plant as a bioreactor for the expression and production of the full human tropoelastin protein. Agrobacterium- mediated transient expression system into Nicotiana tabacum using syringe agroinfiltration was used to provide fast and convenient way to produce recombinant proteins with greater expression overall the plant leaf. This study aimed to establish an efficient and rapid system for transiently expression and production of human recombinant tropoelastin protein in transgenic N. tabacum plants. Modified elastin (ELN) gene was biosynthesized and cloned into pCambia1390 vector to be used into N. tabacum agroinfilteration. Optimization of codon usage for the human tropoelastin gene, without changing the primary structure of the protein was carried out to ensure high expression in tobacco plants. The obtained data proved that the 5(th) day post-infiltration is the optimum interval to obtain the maximum production of our recombinant protein. Southern blot analysis was able to detect 2175 bp fragment length representing the ELN orf (open reding frame). On the other hand, ELN -expression within plant's tissue was visualized by RT-PCR during the period 3-10 days post agroinfiltration. At the protein level, western and ELISA confirmed the expression of recombinant tropoelastin protein. Western blot analysis detected the tropoelastin protein as parent band at ∼70 kDa from freshly extracted protein, while two degraded bands of ∼55 and ∼45 kDa, representing a pattern of tropoelastin were appeared with frozen samples. This study showed that biosynthetic ELN gene was successfully expressed into N. tabacum leaves using agroinfiltration technique.
Collapse
Affiliation(s)
- Mona Abdelghani
- Department of Nucleic Acid and Protein Structure; Agricultural Genetic Engineering Research Institute (AGERI); ARC; Giza, Egypt
| | - Ghada A Abu El-Heba
- Department of Nucleic Acid and Protein Structure; Agricultural Genetic Engineering Research Institute (AGERI); ARC; Giza, Egypt
| | | | - Naglaa A Abdallah
- Department of Nucleic Acid and Protein Structure; Agricultural Genetic Engineering Research Institute (AGERI); ARC; Giza, Egypt
- Department of Genetics; Faculty of Agriculture; Cairo University; Giza, Egypt
| |
Collapse
|
47
|
Desai MS, Lee SW. Protein-based functional nanomaterial design for bioengineering applications. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2014; 7:69-97. [DOI: 10.1002/wnan.1303] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Revised: 08/12/2014] [Accepted: 09/02/2014] [Indexed: 01/01/2023]
Affiliation(s)
- Malav S. Desai
- Department of Bioengineering; University of California, Berkeley; Berkeley CA USA
- Physical Biosciences Division; Lawrence Berkeley National Laboratory; Berkeley CA USA
| | - Seung-Wuk Lee
- Department of Bioengineering; University of California, Berkeley; Berkeley CA USA
| |
Collapse
|
48
|
Patterson JL, Arenas-Gamboa AM, Wang TY, Hsiao HC, Howell DW, Pellois JP, Rice-Ficht A, Bondos SE. Materials composed of theDrosophilaHox protein Ultrabithorax are biocompatible and nonimmunogenic. J Biomed Mater Res A 2014; 103:1546-53. [DOI: 10.1002/jbm.a.35295] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 06/25/2014] [Accepted: 07/23/2014] [Indexed: 12/23/2022]
Affiliation(s)
- Jan L. Patterson
- Department of Molecular and Cellular Medicine; Texas A&M Health Science Center; College Station Texas 77843
| | - Angela M. Arenas-Gamboa
- Department of Molecular and Cellular Medicine; Texas A&M Health Science Center; College Station Texas 77843
| | - Ting-Yi Wang
- Department of Biochemistry and Biophysics; Texas A&M University; College Station Texas 77843
| | - Hao-Ching Hsiao
- Department of Molecular and Cellular Medicine; Texas A&M Health Science Center; College Station Texas 77843
| | - David W. Howell
- Department of Molecular and Cellular Medicine; Texas A&M Health Science Center; College Station Texas 77843
| | - Jean-Philippe Pellois
- Department of Biochemistry and Biophysics; Texas A&M University; College Station Texas 77843
| | - Allison Rice-Ficht
- Department of Biochemistry and Biophysics; Texas A&M University; College Station Texas 77843
| | - Sarah E. Bondos
- Department of Molecular and Cellular Medicine; Texas A&M Health Science Center; College Station Texas 77843
- Department of Biochemistry and Cell Biology; Rice University; Houston Texas 77005
| |
Collapse
|