1
|
Pan K, Li Q, Guo Z, Li Z. Healing action of Interleukin-4 (IL-4) in acute and chronic inflammatory conditions: Mechanisms and therapeutic strategies. Pharmacol Ther 2025; 265:108760. [PMID: 39615600 DOI: 10.1016/j.pharmthera.2024.108760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 11/02/2024] [Accepted: 11/22/2024] [Indexed: 12/06/2024]
Abstract
Interleukin-4 (IL-4), which is traditionally associated with inflammation, has emerged as a key player in tissue regeneration. Produced primarily by T-helper 2 (Th2) and other immune cells, IL-4 activates endogenous lymphocytes and promotes M2 macrophage polarization, both of which are crucial for tissue repair. Moreover, IL-4 stimulates the proliferation and differentiation of various cell types, contributing to efficient tissue regeneration, and shows promise for promoting tissue regeneration after injury. This review explores the multifaceted roles of IL-4 in tissue repair, summarizing its mechanisms and potential for clinical application. This review delves into the multifaceted functions of IL-4, including its immunomodulatory effects, its involvement in tissue regeneration, and its potential therapeutic applications. We discuss the mechanisms underlying IL-4-induced M2 macrophage polarization, a crucial process for tissue repair. Additionally, we explore innovative strategies for delivering IL-4, including gene therapy, protein-based therapies, and cell-based therapies. By leveraging the regenerative properties of IL-4, we can potentially develop novel therapies for various diseases, including chronic inflammatory disorders, autoimmune diseases, and organ injuries. While early research has shown promise for the application of IL-4 in regenerative medicine, further studies are needed to fully elucidate its therapeutic potential and optimize its use.
Collapse
Affiliation(s)
- Kai Pan
- Henan Key Laboratory of Cardiac Remodeling and Transplantation, Zhengzhou Seventh People's Hospital, Zhengzhou, China; Nankai University School of Medicine, Tianjin, China; Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China
| | - Qiong Li
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China; Sanquan Medical College, Xinxiang Medical University, Xinxiang, China.
| | - Zhikun Guo
- Henan Key Laboratory of Cardiac Remodeling and Transplantation, Zhengzhou Seventh People's Hospital, Zhengzhou, China; Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China.
| | - Zongjin Li
- Henan Key Laboratory of Cardiac Remodeling and Transplantation, Zhengzhou Seventh People's Hospital, Zhengzhou, China; Nankai University School of Medicine, Tianjin, China; Sanquan Medical College, Xinxiang Medical University, Xinxiang, China; National Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
2
|
Sarker M, Park S, Kumar V, Lee CH. Micro-thin hydrogel coating integrated in 3D printing for spatiotemporal delivery of bioactive small molecules. Biofabrication 2024; 17:015019. [PMID: 39437834 PMCID: PMC11552100 DOI: 10.1088/1758-5090/ad89fe] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/17/2024] [Accepted: 10/22/2024] [Indexed: 10/25/2024]
Abstract
Three-dimensional (3D) printing incorporated with controlled delivery is an effective tool for complex tissue regeneration. Here, we explored a new strategy for spatiotemporal delivery of bioactive cues by establishing a precise-controlled micro-thin coating of hydrogel carriers on 3D-printed scaffolds. We optimized the printing parameters for three hydrogel carriers, fibrin cross-linked with genipin, methacrylate hyaluronic acid, and multidomain peptides, resulting in homogenous micro-coating on desired locations in 3D printed polycaprolactone microfibers at each layer. Using the optimized multi-head printing technique, we successfully established spatial-controlled micro-thin coating of hydrogel layers containing profibrogenic small molecules (SMs), Oxotremorine M and PPBP maleate, and a chondrogenic cue, Kartogenin. The delivered SMs showed sustained releases up to 28 d and guided regional differentiation of mesenchymal stem cells, thus leading to fibrous and cartilaginous tissue matrix formation at designated scaffold regionsin vitroandin vivo. Our micro-coating of hydrogel carriers may serve as an efficient approach to achieve spatiotemporal delivery of various bioactive cues through 3D printed scaffolds for engineering complex tissues.
Collapse
Affiliation(s)
- Md Sarker
- Biomedical Engineering, University of Maryland Eastern Shore, 30665 Student Services Center, Princess Anne, MD 21853, United States of America
| | - Soomin Park
- Center for Dental and Craniofacial Research, College of Dental Medicine, Columbia University Medical Center, 630 W. 168th Street, VC12-210, New York, NY 10032, United States of America
| | - Vivek Kumar
- Department of Bio-Medical Engineering, New Jersey Institute of Technology, 138 Warren St., Room 316, Newark, NJ 07102, United States of America
| | - Chang H Lee
- Center for Dental and Craniofacial Research, College of Dental Medicine, Columbia University Medical Center, 630 W. 168th Street, VC12-210, New York, NY 10032, United States of America
| |
Collapse
|
3
|
Jiang X, Jian Y, Zhang Y, Zhong J, Li Q, Wang X, Jia X, Wu X, Zhao K, Yao Y. Dual-Mode Release of IL-4 and TCP from a PGA-SF Core-Shell Electrospinning Scaffold for Enhanced Bone Regeneration through Synergistic Immunoregulation and Osteogenesis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:58148-58167. [PMID: 39279657 DOI: 10.1021/acsami.4c08996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
The successful filling of bone defects remains challenging due to the incongruity between bone graft materials and the dynamic process of bone healing. Developing multifunctional materials matching the dynamic process of bone healing offers a viable solution to the current dilemma. Lines of evidence have shown that engineering osteoimmunomodulatory biomaterials can modulate the function of immune cells and thus promote bone regeneration. Herein, we utilized silk fibroin (SF) and polyglycolic acid (PGA) to create a PGA-SF core-shell fibrous scaffold, incorporating interleukin-4 (IL-4) and tricalcium phosphate (TCP) as a codelivery system (PGA/TCP-SF/IL-4), aiming to achieve an initial rapid release of IL-4 and sustained release of TCP. The PGA/TCP-SF/IL-4 scaffold mimicked the native bone structure and showed superior tenacity in the wetting regime. In vitro studies demonstrated that the PGA/TCP-SF/IL-4 scaffold significantly reduced the inflammatory response by upregulating the M2 macrophages, created a favorable microenvironment for osteogenesis, and facilitated osteogenic differentiation and mineralization. Implantation of the PGA/TCP-SF/IL-4 scaffold into the rat skull defect model notably increased the formation of new bones. IL-4 and TCP acted synergistically in attenuating inflammation and enhancing osteogenic differentiation. Overall, this multifunctional scaffold comprehensively considers the various demands in the bone defect region, which might have a significant potential for application in bone reconstruction.
Collapse
Affiliation(s)
- Xiao Jiang
- Hospital of Stomatology, Guanghua School of Stomatology, Institute of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510275, China
| | - Yutao Jian
- Hospital of Stomatology, Guanghua School of Stomatology, Institute of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510275, China
| | - Yuan Zhang
- Hospital of Stomatology, Guanghua School of Stomatology, Institute of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510275, China
| | - Juan Zhong
- Hospital of Stomatology, Guanghua School of Stomatology, Institute of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510275, China
| | - Qiulan Li
- Hospital of Stomatology, Guanghua School of Stomatology, Institute of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510275, China
| | - Xiaodong Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Institute of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510275, China
| | - Xiaoshi Jia
- Hospital of Stomatology, Guanghua School of Stomatology, Institute of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510275, China
| | - Xiangnan Wu
- Hospital of Stomatology, Guanghua School of Stomatology, Institute of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510275, China
| | - Ke Zhao
- Hospital of Stomatology, Guanghua School of Stomatology, Institute of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510275, China
| | - Yitong Yao
- Hospital of Stomatology, Guanghua School of Stomatology, Institute of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510275, China
| |
Collapse
|
4
|
Roosa CA, Lempke SL, Hannan RT, Nicklow E, Sturek JM, Ewald SE, Griffin D. Conjugation of IL-33 to Microporous Annealed Particle Scaffolds Enhances Type 2-Like Immune Responses In Vitro and In Vivo. Adv Healthc Mater 2024; 13:e2400249. [PMID: 38648258 PMCID: PMC11461124 DOI: 10.1002/adhm.202400249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/11/2024] [Indexed: 04/25/2024]
Abstract
The inflammatory foreign body response (FBR) is the main driver of biomaterial implant failure. Current strategies to mitigate the onset of a FBR include modification of the implant surface, release of anti-inflammatory drugs, and cell-scale implant porosity. The microporous annealed particle (MAP) scaffold platform is an injectable, porous biomaterial composed of individual microgels, which are annealed in situ to provide a structurally stable scaffold with cell-scale microporosity. MAP scaffold does not induce a discernible foreign body response in vivo and, therefore, can be used a "blank canvas" for biomaterial-mediated immunomodulation. Damage associated molecular patterns (DAMPs), such as IL-33, are potent regulators of type 2 immunity that play an important role in tissue repair. In this manuscript, IL-33 is conjugated to the microgel building-blocks of MAP scaffold to generate a bioactive material (IL33-MAP) capable of stimulating macrophages in vitro via a ST-2 receptor dependent pathway and modulating immune cell recruitment to the implant site in vivo, which indicates an upregulation of a type 2-like immune response and downregulation of a type 1-like immune response.
Collapse
Affiliation(s)
- Colleen A. Roosa
- Department of Biomedical Engineering, University of Virginia, 415 Lane Rd, Charlottesville, Virginia 22903, USA
| | - Samantha L. Lempke
- Department of Microbiology, Immunology, and Cancer Biology, Beirne B. Carter Immunology Center, University of Virginia, 200 Jeanette Lancaster Way, Charlottesville, Virginia 22903, USA
| | - Riley T. Hannan
- Department of Medicine, Pulmonary and Critical Care, University of Virginia, 1221 Lee St, Charlottesville, Virginia 22903, USA
| | - Ethan Nicklow
- Department of Biomedical Engineering, University of Virginia, 415 Lane Rd, Charlottesville, Virginia 22903, USA
| | - Jeffrey M. Sturek
- Department of Medicine, Pulmonary and Critical Care, University of Virginia, 1221 Lee St, Charlottesville, Virginia 22903, USA
| | - Sarah E. Ewald
- Department of Microbiology, Immunology, and Cancer Biology, Beirne B. Carter Immunology Center, University of Virginia, 200 Jeanette Lancaster Way, Charlottesville, Virginia 22903, USA
| | - Donald Griffin
- Department of Biomedical Engineering, University of Virginia, 415 Lane Rd, Charlottesville, Virginia 22903, USA
| |
Collapse
|
5
|
Ju R, Gao X, Zhang C, Tang W, Tian W, He M. Exogenous MSC based tissue regeneration: a review of immuno-protection strategies from biomaterial scaffolds. J Mater Chem B 2024; 12:8868-8882. [PMID: 39171946 DOI: 10.1039/d4tb00778f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Mesenchymal stem cell (MSC)-based tissue engineering holds great potential for regenerative medicine as a means of replacing damaged or lost tissues to restore their structure and function. However, the efficacy of MSC-based regeneration is frequently limited by the low survival rate and limited survival time of transplanted MSCs. Despite the inherent immune privileges of MSCs, such as low expression of major histocompatibility complex antigens, tolerogenic properties, local immunosuppressive microenvironment creation, and induction of immune tolerance, immune rejection remains a major obstacle to their survival and regenerative potential. Evidence suggests that immune protection strategies can enhance MSC therapeutic efficacy by prolonging their survival and maintaining their biological functions. Among various immune protection strategies, biomaterial-based scaffolds or cell encapsulation systems that mediate the interaction between transplanted MSCs and the host immune system or spatially isolate MSCs from the immune system for a specific time period have shown great promise. In this review, we provide a comprehensive overview of these biomaterial-based immune protection strategies employed for exogenous MSCs, highlighting the crucial role of modulating the immune microenvironment. Each strategy is critically examined, discussing its strengths, limitations, and potential applications in MSC-based tissue engineering. By elucidating the mechanisms behind immune rejection and exploring immune protection strategies, we aim to address the challenges faced by MSC-based tissue engineering and pave the way for enhancing the therapeutic outcomes of MSC therapies. The insights gained from this review will contribute to the development of more effective strategies to protect transplanted MSCs from immune rejection and enable their successful application in regenerative medicine.
Collapse
Affiliation(s)
- Rongbai Ju
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xinhui Gao
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Chi Zhang
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Wei Tang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Weidong Tian
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Min He
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
6
|
Yang Y, He X, Zhao Z, Yi J. Macrophage-Centric Biomaterials for Bone Regeneration in Diabetes Mellitus: Contemporary Advancements, Challenges, and Future Trajectories. Cureus 2024; 16:e66621. [PMID: 39258053 PMCID: PMC11386247 DOI: 10.7759/cureus.66621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2024] [Indexed: 09/12/2024] Open
Abstract
Increased susceptibility to bone fragility and the diminution of bone regenerative capacity are recognized as significant and frequent sequelae of diabetes mellitus. Research has elucidated the pivotal role of macrophages in the pathogenesis and repair of diabetic bone defects. Notwithstanding this, the therapeutic efficacy of traditional interventions remains predominantly inadequate. Concomitant with substantial advancements in tissue engineering in recent epochs, there has been an escalation in the development of biomaterials designed to modulate macrophage activity, thereby augmenting osseous tissue regeneration in the context of hyperglycemia. This review amalgamates insights from extant research and delineates recent progressions in the domain of biomaterials that target macrophages for the regeneration of diabetic bone, whilst also addressing the clinical challenges and envisaging future directions within this field.
Collapse
Affiliation(s)
- Yiyan Yang
- Department of Orthodontics, State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, CHN
| | - Xiaoli He
- Department of Orthodontics, State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, CHN
| | - Zhihe Zhao
- Department of Orthodontics, State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, CHN
| | - Jianru Yi
- Department of Orthodontics, State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, CHN
| |
Collapse
|
7
|
Roy A, Hao L, Francisco J, Guan J, Mareedu S, Zhai P, Dodd-O J, Heffernan C, Del Re D, Lee EJA, Kumar VA. Injectable Peptide Hydrogels Loaded with Murine Embryonic Stem Cells Relieve Ischemia In Vivo after Myocardial Infarction. Biomacromolecules 2024; 25:1319-1329. [PMID: 38291600 PMCID: PMC11672772 DOI: 10.1021/acs.biomac.3c01345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Myocardial infarction (MI) is a major cause of morbidity and mortality worldwide, especially in aging and metabolically unhealthy populations. A major target of regenerative tissue engineering is the restoration of viable cardiomyocytes to preserve cardiac function and circumvent the progression to heart failure post-MI. Amelioration of ischemia is a crucial component of such restorative strategies. Angiogenic β-sheet peptides can self-assemble into thixotropic nanofibrous hydrogels. These syringe aspiratable cytocompatible gels were loaded with stem cells and showed excellent cytocompatibility and minimal impact on the storage and loss moduli of hydrogels. Gels with and without cells were delivered into the myocardium of a mouse MI model (LAD ligation). Cardiac function and tissue remodeling were evaluated up to 4 weeks in vivo. Injectable peptide hydrogels synergized with loaded murine embryonic stem cells to demonstrate enhanced survival after intracardiac delivery during the acute phase post-MI, especially at 7 days. This approach shows promise for post-MI treatment and potentially functional cardiac tissue regeneration and warrants large-scale animal testing prior to clinical translation.
Collapse
Affiliation(s)
- Abhishek Roy
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Lei Hao
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Jamie Francisco
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Newark, New Jersey 07103, United States
| | - Jin Guan
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Newark, New Jersey 07103, United States
| | - Satvik Mareedu
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Newark, New Jersey 07103, United States
| | - Peiyong Zhai
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Newark, New Jersey 07103, United States
| | - Joseph Dodd-O
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Corey Heffernan
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Dominic Del Re
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Newark, New Jersey 07103, United States
| | - Eun Jung A Lee
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Vivek A Kumar
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
- Department of Biological Sciences, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
- Department of Endodontics, Rutgers School of Dental Medicine, Newark, New Jersey 07103, United States
| |
Collapse
|
8
|
Zhang Z, He C, Chen X. Designing Hydrogels for Immunomodulation in Cancer Therapy and Regenerative Medicine. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308894. [PMID: 37909463 DOI: 10.1002/adma.202308894] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/26/2023] [Indexed: 11/03/2023]
Abstract
The immune system not only acts as a defense against pathogen and cancer cells, but also plays an important role in homeostasis and tissue regeneration. Targeting immune systems is a promising strategy for efficient cancer treatment and regenerative medicine. Current systemic immunomodulation therapies are usually associated with low persistence time, poor targeting to action sites, and severe side effects. Due to their extracellular matrix-mimetic nature, tunable properties and diverse bioactivities, hydrogels are intriguing platforms to locally deliver immunomodulatory agents and cells, as well as provide an immunomodulatory microenvironment to recruit, activate, and expand host immune cells. In this review, the design considerations, including polymer backbones, crosslinking mechanisms, physicochemical nature, and immunomodulation-related components, of the hydrogel platforms, are focused on. The immunomodulatory effects and therapeutic outcomes in cancer therapy and tissue regeneration of different hydrogel systems are emphasized, including hydrogel depots for delivery of immunomodulatory agents, hydrogel scaffolds for cell delivery, and immunomodulatory hydrogels depending on the intrinsic properties of materials. Finally, the remained challenges in current systems and future development of immunomodulatory hydrogels are discussed.
Collapse
Affiliation(s)
- Zhen Zhang
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Chaoliang He
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xuesi Chen
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
9
|
Hernandez A, Hartgerink JD, Young S. Self-assembling peptides as immunomodulatory biomaterials. Front Bioeng Biotechnol 2023; 11:1139782. [PMID: 36937769 PMCID: PMC10014862 DOI: 10.3389/fbioe.2023.1139782] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 02/20/2023] [Indexed: 03/05/2023] Open
Abstract
Self-assembling peptides are a type of biomaterial rapidly emerging in the fields of biomedicine and material sciences due to their promise in biocompatibility and effectiveness at controlled release. These self-assembling peptides can form diverse nanostructures in response to molecular interactions, making them versatile materials. Once assembled, the peptides can mimic biological functions and provide a combinatorial delivery of therapeutics such as cytokines and drugs. These self-assembling peptides are showing success in biomedical settings yet face unique challenges that must be addressed to be widely applied in the clinic. Herein, we describe self-assembling peptides' characteristics and current applications in immunomodulatory therapeutics.
Collapse
Affiliation(s)
- Andrea Hernandez
- Katz Department of Oral and Maxillofacial Surgery, The University of Texas Health Science Center at Houston, School of Dentistry, Houston, TX, United States
| | - Jeffrey D. Hartgerink
- Department of Chemistry and Department of Bioengineering, Rice University, Houston, TX, United States
| | - Simon Young
- Katz Department of Oral and Maxillofacial Surgery, The University of Texas Health Science Center at Houston, School of Dentistry, Houston, TX, United States
- *Correspondence: Simon Young,
| |
Collapse
|
10
|
Chen L, Yao Z, Zhang S, Tang K, Yang Q, Wang Y, Li B, Nie Y, Tian X, Sun L. Biomaterial-induced macrophage polarization for bone regeneration. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
11
|
Kobayashi Y, Nouet J, Baljinnyam E, Siddiqui Z, Fine DH, Fraidenraich D, Kumar VA, Shimizu E. iPSC-derived cranial neural crest-like cells can replicate dental pulp tissue with the aid of angiogenic hydrogel. Bioact Mater 2022; 14:290-301. [PMID: 35310357 PMCID: PMC8897656 DOI: 10.1016/j.bioactmat.2021.11.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 11/07/2021] [Accepted: 11/09/2021] [Indexed: 12/18/2022] Open
Abstract
The dental pulp has irreplaceable roles in maintaining healthy teeth and its regeneration is a primary aim of regenerative endodontics. This study aimed to replicate the characteristics of dental pulp tissue by using cranial neural crest (CNC)-like cells (CNCLCs); these cells were generated by modifying several steps of a previously established method for deriving NC-like cells from induced pluripotent stem cells (iPSCs). CNC is the anterior region of the neural crest in vertebrate embryos, which contains the primordium of dental pulp cells or odontoblasts. The produced CNCLCs showed approximately 2.5–12,000-fold upregulations of major CNC marker genes. Furthermore, the CNCLCs exhibited remarkable odontoblastic differentiation ability, especially when treated with a combination of the fibroblast growth factors (FGFs) FGF4 and FGF9. The FGFs induced odontoblast marker genes by 1.7–5.0-fold, as compared to bone morphogenetic protein 4 (BMP4) treatment. In a mouse subcutaneous implant model, the CNCLCs briefly fated with FGF4 + FGF9 replicated dental pulp tissue characteristics, such as harboring odontoblast-like cells, a dentin-like layer, and vast neovascularization, induced by the angiogenic self-assembling peptide hydrogel (SAPH), SLan. SLan acts as a versatile biocompatible scaffold in the canal space. This study demonstrated a successful collaboration between regenerative medicine and SAPH technology. Cranial neural crest like cells (CNCLCs) were generated by simplifying a previously established method for deriving neural crest-like cells from iPSCs. The produced CNCLCs showed approximately ∼12,000-fold upregulations of major CNC marker genes. The combination of fibroblast growth factors, FGF4 and FGF9, induced the CNCLCs toward odontoblastic differentiation more effectively than BMP4. In a mice subcutaneous implant model, the CNCLCs replicated the characteristics of dental pulp harboring vast neovascularization with the aid of the angiogenic hydrogel, SLan.
Collapse
|
12
|
Kim K, Siddiqui Z, Acevedo-Jake AM, Roy A, Choudhury M, Grasman J, Kumar V. Angiogenic Hydrogels to Accelerate Early Wound Healing. Macromol Biosci 2022; 22:e2200067. [PMID: 35579914 DOI: 10.1002/mabi.202200067] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/19/2022] [Indexed: 11/09/2022]
Abstract
The metabolic disorder diabetes mellitus affects an increasing proportion of the population, a number projected to double by 2060. Non-life-threatening comorbidities contribute to an interrupted healing process which is first delayed, then prolonged, and associated with increased susceptibility to infection and sustained and unresolved inflammation. This leads to chronic non-healing wounds and eventually potential amputation of extremities. Here we examine the use of a bioactive angiogenic peptide-based hydrogel, SLan, to improve early wound healing in diabetic rats, and compare its performance to clinically utilized biosynthetic peptide-based materials such as Puramatrix. Streptozotocin-treated diabetic rats underwent 8 mm biopsy wounding in their dorsum to remove the epithelium, adipose tissues and muscle layer of the skin, and served as a model for diabetic wound healing. Wounds were treated with either Low (1w%) SLan, High (4w%) SLan, PBS, Puramatrix or K2 (an unfunctionalized non-bioactive control sequentially similar to SLan), covered with Tegaderm and monitored on days 0, 3, 7, 10, 14, 17, 21, 28; animals were sacrificed for histomorphic analyses and immunostaining. An LC/MS method developed to detect SLan in plasma allows pharmacokinetic analysis showing no trafficking of peptides from the wound site into the circulation. Low and High SLan groups show similar final outcomes of wound contraction as control groups (Puramatrix, PBS and K2). SLan-treated rats, however, show marked improvement in healing in earlier time points, including increased deposition of new mature blood vessels. Additionally, rats in the Low SLan treatment groups showed significantly improved wound contraction over other groups and significantly improved healing in early time points. Altogether our results suggest this material can be used to "jumpstart" the diabetic wound healing process. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- KaKyung Kim
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Zain Siddiqui
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Amanda M Acevedo-Jake
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Abhishek Roy
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Marwa Choudhury
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Jonathan Grasman
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Vivek Kumar
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA.,Department of Biology, New Jersey Institute of Technology, Newark, NJ, 07102, USA.,Department of Chemical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA.,Department of Restorative Dentistry, Rutgers School of Dental Medicine, Newark, NJ, 07102, USA
| |
Collapse
|
13
|
Park GY, Tarafder S, Eyen SL, Park S, Kim R, Siddiqui Z, Kumar V, Lee CH. Oxo-M and 4-PPBP Delivery via Multi-Domain Peptide Hydrogel Toward Tendon Regeneration. Front Bioeng Biotechnol 2022; 10:773004. [PMID: 35155388 PMCID: PMC8829701 DOI: 10.3389/fbioe.2022.773004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 01/05/2022] [Indexed: 12/01/2022] Open
Abstract
We have recently identified novel small molecules, Oxo-M and 4-PPBP, which specifically stimulate endogenous tendon stem/progenitor cells (TSCs), leading to potential regenerative healing of fully transected tendons. Here, we investigated an injectable, multidomain peptide (MDP) hydrogel providing controlled delivery of the small molecules for regenerative tendon healing. We investigated the release kinetics of Oxo-M and 4-PPBP from MDP hydrogels and the effect of MDP-released small molecules on tenogenic differentiation of TSCs and in vivo tendon healing. In vitro, MDP showed a sustained release of Oxo-M and 4-PPBP and a slower degradation than fibrin. In addition, tenogenic gene expression was significantly increased in TSC with MDP-released Oxo-M and 4-PPBP as compared to the fibrin-released. Invivo, MDP releasing Oxo-M and 4-PPBP significantly improved tendon healing, likely associated with prolonged effects of Oxo-M and 4-PPBP on suppression of M1 macrophages and promotion of M2 macrophages. Comprehensive analyses including histomorphology, digital image processing, and modulus mapping with nanoindentation consistently suggested that Oxo-M and 4-PPBP delivered via MDP further improved tendon healing as compared to fibrin-based delivery. In conclusion, MDP delivered with Oxo-M and 4-PPBP may serve as an efficient regenerative therapeutic for in situ tendon regeneration and healing.
Collapse
Affiliation(s)
- Ga Young Park
- Regenerative Engineering Laboratory, Center for Dental and Craniofacial Research, Columbia University Irving Medical Center, New York, NY, United States
| | - Solaiman Tarafder
- Regenerative Engineering Laboratory, Center for Dental and Craniofacial Research, Columbia University Irving Medical Center, New York, NY, United States
| | - Samantha Lewis Eyen
- Regenerative Engineering Laboratory, Center for Dental and Craniofacial Research, Columbia University Irving Medical Center, New York, NY, United States
| | - Soomin Park
- Regenerative Engineering Laboratory, Center for Dental and Craniofacial Research, Columbia University Irving Medical Center, New York, NY, United States
| | - Ryunhyung Kim
- Regenerative Engineering Laboratory, Center for Dental and Craniofacial Research, Columbia University Irving Medical Center, New York, NY, United States
| | - Zain Siddiqui
- Department of Bio-Medical Engineering, New Jersey Institute of Technology, Hoboken, NJ, United States
| | - Vivek Kumar
- Department of Bio-Medical Engineering, New Jersey Institute of Technology, Hoboken, NJ, United States
| | - Chang H. Lee
- Regenerative Engineering Laboratory, Center for Dental and Craniofacial Research, Columbia University Irving Medical Center, New York, NY, United States
- *Correspondence: Chang H. Lee,
| |
Collapse
|
14
|
Acevedo-Jake A, Shi S, Siddiqui Z, Sanyal S, Schur R, Kaja S, Yuan A, Kumar VA. Preclinical Efficacy of Pro- and Anti-Angiogenic Peptide Hydrogels to Treat Age-Related Macular Degeneration. Bioengineering (Basel) 2021; 8:190. [PMID: 34940343 PMCID: PMC8698576 DOI: 10.3390/bioengineering8120190] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/20/2021] [Accepted: 11/21/2021] [Indexed: 12/15/2022] Open
Abstract
Pro-angiogenic and anti-angiogenic peptide hydrogels were evaluated against the standard of care wet age-related macular degeneration (AMD) therapy, Aflibercept (Eylea®). AMD was modeled in rats (laser-induced choroidal neovascularization (CNV) model), where the contralateral eye served as the control. After administration of therapeutics, vasculature was monitored for 14 days to evaluate leakiness. Rats were treated with either a low or high concentration of anti-angiogenic peptide hydrogel (0.02 wt% 8 rats, 0.2 wt% 6 rats), or a pro-angiogenic peptide hydrogel (1.0 wt% 7 rats). As controls, six rats were treated with commercially available Aflibercept and six with sucrose solution (vehicle control). Post lasering, efficacy was determined over 14 days via fluorescein angiography (FA) and spectral-domain optical coherence tomography (SD-OCT). Before and after treatment, the average areas of vascular leak per lesion were evaluated as well as the overall vessel leakiness. Unexpectedly, treatment with pro-angiogenic peptide hydrogel showed significant, immediate improvement in reducing vascular leak; in the short term, the pro-angiogenic peptide performed better than anti-angiogenic peptide hydrogel and was comparable to Aflibercept. After 14 days, both the pro-angiogenic and anti-angiogenic peptide hydrogels show a trend of improvement, comparable to Aflibercept. Based on our results, both anti-angiogenic and pro-angiogenic peptide hydrogels may prove good therapeutics in the future to treat wet AMD over a longer-term treatment period.
Collapse
Affiliation(s)
- Amanda Acevedo-Jake
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA; (A.A.-J.); (Z.S.)
| | - Siyu Shi
- Stanford School of Medicine, Stanford University, Stanford, CA 94305, USA;
| | - Zain Siddiqui
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA; (A.A.-J.); (Z.S.)
| | - Sreya Sanyal
- Department of Biology, New Jersey Institute of Technology, Newark, NJ 07102, USA;
| | - Rebecca Schur
- Cole Eye Institute, Cleveland Clinic Lerner College of Medicine, Cleveland, OH 44195, USA; (R.S.); (A.Y.)
| | - Simon Kaja
- Research & Development Division, Experimentica Ltd., 70211 Kuopio, Finland;
- Department of Ophthalmology, Loyola University Chicago, Maywood, IL 60153, USA
| | - Alex Yuan
- Cole Eye Institute, Cleveland Clinic Lerner College of Medicine, Cleveland, OH 44195, USA; (R.S.); (A.Y.)
| | - Vivek A. Kumar
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA; (A.A.-J.); (Z.S.)
- Department of Biology, New Jersey Institute of Technology, Newark, NJ 07102, USA;
- Department of Chemical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
- Department of Restorative Dentistry, Rutgers School of Dental Medicine, Newark, NJ 07102, USA
| |
Collapse
|
15
|
Elashnikov R, Ulbrich P, Vokatá B, Pavlíčková VS, Švorčík V, Lyutakov O, Rimpelová S. Physically Switchable Antimicrobial Surfaces and Coatings: General Concept and Recent Achievements. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3083. [PMID: 34835852 PMCID: PMC8619822 DOI: 10.3390/nano11113083] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 11/24/2022]
Abstract
Bacterial environmental colonization and subsequent biofilm formation on surfaces represents a significant and alarming problem in various fields, ranging from contamination of medical devices up to safe food packaging. Therefore, the development of surfaces resistant to bacterial colonization is a challenging and actively solved task. In this field, the current promising direction is the design and creation of nanostructured smart surfaces with on-demand activated amicrobial protection. Various surface activation methods have been described recently. In this review article, we focused on the "physical" activation of nanostructured surfaces. In the first part of the review, we briefly describe the basic principles and common approaches of external stimulus application and surface activation, including the temperature-, light-, electric- or magnetic-field-based surface triggering, as well as mechanically induced surface antimicrobial protection. In the latter part, the recent achievements in the field of smart antimicrobial surfaces with physical activation are discussed, with special attention on multiresponsive or multifunctional physically activated coatings. In particular, we mainly discussed the multistimuli surface triggering, which ensures a better degree of surface properties control, as well as simultaneous utilization of several strategies for surface protection, based on a principally different mechanism of antimicrobial action. We also mentioned several recent trends, including the development of the to-detect and to-kill hybrid approach, which ensures the surface activation in a right place at a right time.
Collapse
Affiliation(s)
- Roman Elashnikov
- Department of Solid State Engineering, University of Chemistry and Technology Prague, Technická 3, Prague 6, 166 28 Prague, Czech Republic; (R.E.); (V.Š.)
| | - Pavel Ulbrich
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 3, Prague 6, 166 28 Prague, Czech Republic; (P.U.); (B.V.); (V.S.P.)
| | - Barbora Vokatá
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 3, Prague 6, 166 28 Prague, Czech Republic; (P.U.); (B.V.); (V.S.P.)
| | - Vladimíra Svobodová Pavlíčková
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 3, Prague 6, 166 28 Prague, Czech Republic; (P.U.); (B.V.); (V.S.P.)
| | - Václav Švorčík
- Department of Solid State Engineering, University of Chemistry and Technology Prague, Technická 3, Prague 6, 166 28 Prague, Czech Republic; (R.E.); (V.Š.)
| | - Oleksiy Lyutakov
- Department of Solid State Engineering, University of Chemistry and Technology Prague, Technická 3, Prague 6, 166 28 Prague, Czech Republic; (R.E.); (V.Š.)
| | - Silvie Rimpelová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 3, Prague 6, 166 28 Prague, Czech Republic; (P.U.); (B.V.); (V.S.P.)
| |
Collapse
|
16
|
Berillo D, Yeskendir A, Zharkinbekov Z, Raziyeva K, Saparov A. Peptide-Based Drug Delivery Systems. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:medicina57111209. [PMID: 34833427 PMCID: PMC8617776 DOI: 10.3390/medicina57111209] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 12/14/2022]
Abstract
Peptide-based drug delivery systems have many advantages when compared to synthetic systems in that they have better biocompatibility, biochemical and biophysical properties, lack of toxicity, controlled molecular weight via solid phase synthesis and purification. Lysosomes, solid lipid nanoparticles, dendrimers, polymeric micelles can be applied by intravenous administration, however they are of artificial nature and thus may induce side effects and possess lack of ability to penetrate the blood-brain barrier. An analysis of nontoxic drug delivery systems and an establishment of prospective trends in the development of drug delivery systems was needed. This review paper summarizes data, mainly from the past 5 years, devoted to the use of peptide-based carriers for delivery of various toxic drugs, mostly anticancer or drugs with limiting bioavailability. Peptide-based drug delivery platforms are utilized as peptide–drug conjugates, injectable biodegradable particles and depots for delivering small molecule pharmaceutical substances (500 Da) and therapeutic proteins. Controlled drug delivery systems that can effectively deliver anticancer and peptide-based drugs leading to accelerated recovery without significant side effects are discussed. Moreover, cell penetrating peptides and their molecular mechanisms as targeting peptides, as well as stimuli responsive (enzyme-responsive and pH-responsive) peptides and peptide-based self-assembly scaffolds are also reviewed.
Collapse
Affiliation(s)
- Dmitriy Berillo
- Department of Pharmaceutical and Toxicological Chemistry, Pharmacognosy and Botany School of Pharmacy, Asfendiyarov Kazakh National Medical University, Almaty 050000, Kazakhstan
- Correspondence: (D.B.); (A.S.)
| | - Adilkhan Yeskendir
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (A.Y.); (Z.Z.); (K.R.)
| | - Zharylkasyn Zharkinbekov
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (A.Y.); (Z.Z.); (K.R.)
| | - Kamila Raziyeva
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (A.Y.); (Z.Z.); (K.R.)
| | - Arman Saparov
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (A.Y.); (Z.Z.); (K.R.)
- Correspondence: (D.B.); (A.S.)
| |
Collapse
|
17
|
Bonito V, Koch SE, Krebber MM, Carvajal‐Berrio DA, Marzi J, Duijvelshoff R, Lurier EB, Buscone S, Dekker S, de Jong SMJ, Mes T, Vaessen KRD, Brauchle EM, Bosman AW, Schenke‐Layland K, Verhaar MC, Dankers PYW, Smits AIPM, Bouten CVC. Distinct Effects of Heparin and Interleukin-4 Functionalization on Macrophage Polarization and In Situ Arterial Tissue Regeneration Using Resorbable Supramolecular Vascular Grafts in Rats. Adv Healthc Mater 2021; 10:e2101103. [PMID: 34523263 PMCID: PMC11469141 DOI: 10.1002/adhm.202101103] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/12/2021] [Indexed: 12/16/2022]
Abstract
Two of the greatest challenges for successful application of small-diameter in situ tissue-engineered vascular grafts are 1) preventing thrombus formation and 2) harnessing the inflammatory response to the graft to guide functional tissue regeneration. This study evaluates the in vivo performance of electrospun resorbable elastomeric vascular grafts, dual-functionalized with anti-thrombogenic heparin (hep) and anti-inflammatory interleukin 4 (IL-4) using a supramolecular approach. The regenerative capacity of IL-4/hep, hep-only, and bare grafts is investigated as interposition graft in the rat abdominal aorta, with follow-up at key timepoints in the healing cascade (1, 3, 7 days, and 3 months). Routine analyses are augmented with Raman microspectroscopy, in order to acquire the local molecular fingerprints of the resorbing scaffold and developing tissue. Thrombosis is found not to be a confounding factor in any of the groups. Hep-only-functionalized grafts resulted in adverse tissue remodeling, with cases of local intimal hyperplasia. This is negated with the addition of IL-4, which promoted M2 macrophage polarization and more mature neotissue formation. This study shows that with bioactive functionalization, the early inflammatory response can be modulated and affect the composition of neotissue. Nevertheless, variability between graft outcomes is observed within each group, warranting further evaluation in light of clinical translation.
Collapse
Affiliation(s)
- Valentina Bonito
- Department of Biomedical Engineering and Institute for Complex Molecular Systems (ICMS)Eindhoven University of TechnologyEindhoven5600 MBThe Netherlands
| | - Suzanne E. Koch
- Department of Biomedical Engineering and Institute for Complex Molecular Systems (ICMS)Eindhoven University of TechnologyEindhoven5600 MBThe Netherlands
| | - Merle M. Krebber
- Department of Nephrology and HypertensionUniversity Medical Center UtrechtUtrecht3584 CXThe Netherlands
| | - Daniel A. Carvajal‐Berrio
- Department of Biomedical EngineeringResearch Institute of Women's Health and Cluster of Excellence iFIT (EXC 2180) “Image‐Guided and Functionally Instructed Tumor Therapies”Eberhard Karls University TübingenTübingen72076Germany
- NMI Natural and Medical Sciences Institute at the University of TübingenReutlingen72770Germany
| | - Julia Marzi
- Department of Biomedical EngineeringResearch Institute of Women's Health and Cluster of Excellence iFIT (EXC 2180) “Image‐Guided and Functionally Instructed Tumor Therapies”Eberhard Karls University TübingenTübingen72076Germany
- NMI Natural and Medical Sciences Institute at the University of TübingenReutlingen72770Germany
| | - Renee Duijvelshoff
- Department of Biomedical Engineering and Institute for Complex Molecular Systems (ICMS)Eindhoven University of TechnologyEindhoven5600 MBThe Netherlands
- Department of CardiologyIsala Hospitalvan Heesweg 2Zwolle8025 ABThe Netherlands
| | - Emily B. Lurier
- Department of Biomedical Engineering and Institute for Complex Molecular Systems (ICMS)Eindhoven University of TechnologyEindhoven5600 MBThe Netherlands
- School of Biomedical EngineeringScience and Health SystemsDrexel UniversityPhiladelphiaPA19104USA
| | - Serena Buscone
- Department of Biomedical Engineering and Institute for Complex Molecular Systems (ICMS)Eindhoven University of TechnologyEindhoven5600 MBThe Netherlands
| | - Sylvia Dekker
- Department of Biomedical Engineering and Institute for Complex Molecular Systems (ICMS)Eindhoven University of TechnologyEindhoven5600 MBThe Netherlands
| | - Simone M. J. de Jong
- Department of Biomedical Engineering and Institute for Complex Molecular Systems (ICMS)Eindhoven University of TechnologyEindhoven5600 MBThe Netherlands
| | - Tristan Mes
- SupraPolix BVEindhoven5612 AXThe Netherlands
| | - Koen R. D. Vaessen
- Central Laboratory Animal Research Facility (CLARF)Utrecht UniversityUtrecht3584 CXThe Netherlands
| | - Eva M. Brauchle
- Department of Biomedical EngineeringResearch Institute of Women's Health and Cluster of Excellence iFIT (EXC 2180) “Image‐Guided and Functionally Instructed Tumor Therapies”Eberhard Karls University TübingenTübingen72076Germany
- NMI Natural and Medical Sciences Institute at the University of TübingenReutlingen72770Germany
| | | | - Katja Schenke‐Layland
- Department of Biomedical EngineeringResearch Institute of Women's Health and Cluster of Excellence iFIT (EXC 2180) “Image‐Guided and Functionally Instructed Tumor Therapies”Eberhard Karls University TübingenTübingen72076Germany
- NMI Natural and Medical Sciences Institute at the University of TübingenReutlingen72770Germany
| | - Marianne C. Verhaar
- Department of Nephrology and HypertensionUniversity Medical Center UtrechtUtrecht3584 CXThe Netherlands
| | - Patricia Y. W. Dankers
- Department of Biomedical Engineering and Institute for Complex Molecular Systems (ICMS)Eindhoven University of TechnologyEindhoven5600 MBThe Netherlands
| | - Anthal I. P. M. Smits
- Department of Biomedical Engineering and Institute for Complex Molecular Systems (ICMS)Eindhoven University of TechnologyEindhoven5600 MBThe Netherlands
| | - Carlijn V. C. Bouten
- Department of Biomedical Engineering and Institute for Complex Molecular Systems (ICMS)Eindhoven University of TechnologyEindhoven5600 MBThe Netherlands
| |
Collapse
|
18
|
Kharaziha M, Baidya A, Annabi N. Rational Design of Immunomodulatory Hydrogels for Chronic Wound Healing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100176. [PMID: 34251690 PMCID: PMC8489436 DOI: 10.1002/adma.202100176] [Citation(s) in RCA: 283] [Impact Index Per Article: 70.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/03/2021] [Indexed: 05/03/2023]
Abstract
With all the advances in tissue engineering for construction of fully functional skin tissue, complete regeneration of chronic wounds is still challenging. Since immune reaction to the tissue damage is critical in regulating both the quality and duration of chronic wound healing cascade, strategies to modulate the immune system are of importance. Generally, in response to an injury, macrophages switch from pro-inflammatory to an anti-inflammatory phenotype. Therefore, controlling macrophages' polarization has become an appealing approach in regenerative medicine. Recently, hydrogels-based constructs, incorporated with various cellular and molecular signals, have been developed and utilized to adjust immune cell functions in various stages of wound healing. Here, the current state of knowledge on immune cell functions during skin tissue regeneration is first discussed. Recent advanced technologies used to design immunomodulatory hydrogels for controlling macrophages' polarization are then summarized. Rational design of hydrogels for providing controlled immune stimulation via hydrogel chemistry and surface modification, as well as incorporation of cell and molecules, are also dicussed. In addition, the effects of hydrogels' properties on immunogenic features and the wound healing process are summarized. Finally, future directions and upcoming research strategies to control immune responses during chronic wound healing are highlighted.
Collapse
Affiliation(s)
- Mahshid Kharaziha
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Avijit Baidya
- Chemical and Biomolecular Engineering, University of California - Los Angeles, Los Angeles, CA, 90095, USA
| | - Nasim Annabi
- Chemical and Biomolecular Engineering, University of California - Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
19
|
Panchal D, Kataria J, Patel K, Crowe K, Pai V, Azizogli A, Kadian N, Sanyal S, Roy A, Dodd‐o J, Acevedo‐Jake AM, Kumar VA. Peptide-Based Inhibitors for SARS-CoV-2 and SARS-CoV. ADVANCED THERAPEUTICS 2021; 4:2100104. [PMID: 34514085 PMCID: PMC8420164 DOI: 10.1002/adtp.202100104] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/14/2021] [Indexed: 12/20/2022]
Abstract
The COVID-19 (coronavirus disease) global pandemic, caused by the spread of the SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) virus, currently has limited treatment options which include vaccines, anti-virals, and repurposed therapeutics. With their high specificity, tunability, and biocompatibility, small molecules like peptides are positioned to act as key players in combating SARS-CoV-2, and can be readily modified to match viral mutation rate. A recent expansion of the understanding of the viral structure and entry mechanisms has led to the proliferation of therapeutic viral entry inhibitors. In this comprehensive review, inhibitors of SARS and SARS-CoV-2 are investigated and discussed based on therapeutic design, inhibitory mechanistic approaches, and common targets. Peptide therapeutics are highlighted, which have demonstrated in vitro or in vivo efficacy, discuss advantages of peptide therapeutics, and common strategies in identifying targets for viral inhibition.
Collapse
Affiliation(s)
- Disha Panchal
- Department of Biomedical EngineeringNew Jersey Institute of TechnologyNewarkNJ07102USA
| | - Jeena Kataria
- Department of Biomedical EngineeringNew Jersey Institute of TechnologyNewarkNJ07102USA
| | - Kamiya Patel
- Department of Biomedical EngineeringNew Jersey Institute of TechnologyNewarkNJ07102USA
| | - Kaytlyn Crowe
- Department of Biomedical EngineeringNew Jersey Institute of TechnologyNewarkNJ07102USA
| | - Varun Pai
- Department of Biomedical EngineeringNew Jersey Institute of TechnologyNewarkNJ07102USA
| | - Abdul‐Rahman Azizogli
- Department of Biomedical EngineeringNew Jersey Institute of TechnologyNewarkNJ07102USA
| | - Neil Kadian
- Department of Biomedical EngineeringNew Jersey Institute of TechnologyNewarkNJ07102USA
| | - Sreya Sanyal
- Department of Biomedical EngineeringNew Jersey Institute of TechnologyNewarkNJ07102USA
| | - Abhishek Roy
- Department of Biomedical EngineeringNew Jersey Institute of TechnologyNewarkNJ07102USA
| | - Joseph Dodd‐o
- Department of Biomedical EngineeringNew Jersey Institute of TechnologyNewarkNJ07102USA
| | | | - Vivek A. Kumar
- Department of Biomedical EngineeringNew Jersey Institute of TechnologyNewarkNJ07102USA
- Department of Biomedical EngineeringDepartment of ChemicalBiological and Pharmaceutical EngineeringNew Jersey Institute of TechnologyNewarkNJ07102USA
| |
Collapse
|
20
|
Siddiqui Z, Sarkar B, Kim KK, Kumar A, Paul R, Mahajan A, Grasman JM, Yang J, Kumar VA. Self-assembling Peptide Hydrogels Facilitate Vascularization in Two-Component Scaffolds. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2021; 422:130145. [PMID: 34054331 PMCID: PMC8158327 DOI: 10.1016/j.cej.2021.130145] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
One of the major constraints against using polymeric scaffolds as tissue-regenerative matrices is a lack of adequate implant vascularization. Self-assembling peptide hydrogels can sequester small molecules and biological macromolecules, and they can support infiltrating cells in vivo. Here we demonstrate the ability of self-assembling peptide hydrogels to facilitate angiogenic sprouting into polymeric scaffolds after subcutaneous implantation. We constructed two-component scaffolds that incorporated microporous polymeric scaffolds and viscoelastic nanoporous peptide hydrogels. Nanofibrous hydrogels modified the biocompatibility and vascular integration of polymeric scaffolds with microscopic pores (pore diameters: 100-250 μm). In spite of similar amphiphilic sequences, charges, secondary structures, and supramolecular nanostructures, two soft hydrogels studied herein had different abilities to aid implant vascularization, but had similar levels of cellular infiltration. The functional difference of the peptide hydrogels was predicted by the difference in the bioactive moieties inserted into the primary sequences of the peptide monomers. Our study highlights the utility of soft supramolecular hydrogels to facilitate host-implant integration and control implant vascularization in biodegradable polyester scaffolds in vivo. Our study provides useful tools in designing multi-component regenerative scaffolds that recapitulate vascularized architectures of native tissues.
Collapse
Affiliation(s)
- Zain Siddiqui
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Biplab Sarkar
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Ka Kyung Kim
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Arjun Kumar
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Reshma Paul
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Aryan Mahajan
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Jonathan M. Grasman
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Jian Yang
- Department of Biomedical Engineering, Huck Institutes of The Life Sciences, Materials Research Institute, Pennsylvania State University, University Park, PA, USA
| | - Vivek A. Kumar
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
- Department of Chemical & Materials Engineering, New Jersey Institute of Technology, Newark, NJ, USA
- Department of Restorative Dentistry, Rutgers School of Dental Medicine, Newark, NJ, USA
| |
Collapse
|
21
|
Whitaker R, Hernaez-Estrada B, Hernandez RM, Santos-Vizcaino E, Spiller KL. Immunomodulatory Biomaterials for Tissue Repair. Chem Rev 2021; 121:11305-11335. [PMID: 34415742 DOI: 10.1021/acs.chemrev.0c00895] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
All implanted biomaterials are targets of the host's immune system. While the host inflammatory response was once considered a detrimental force to be blunted or avoided, in recent years, it has become a powerful force to be leveraged to augment biomaterial-tissue integration and tissue repair. In this review, we will discuss the major immune cells that mediate the inflammatory response to biomaterials, with a focus on how biomaterials can be designed to modulate immune cell behavior to promote biomaterial-tissue integration. In particular, the intentional activation of monocytes and macrophages with controlled timing, and modulation of their interactions with other cell types involved in wound healing, have emerged as key strategies to improve biomaterial efficacy. To this end, careful design of biomaterial structure and controlled release of immunomodulators can be employed to manipulate macrophage phenotype for the maximization of the wound healing response with enhanced tissue integration and repair, as opposed to a typical foreign body response characterized by fibrous encapsulation and implant isolation. We discuss current challenges in the clinical translation of immunomodulatory biomaterials, such as limitations in the use of in vitro studies and animal models to model the human immune response. Finally, we describe future directions and opportunities for understanding and controlling the biomaterial-immune system interface, including the application of new imaging tools, new animal models, the discovery of new cellular targets, and novel techniques for in situ immune cell reprogramming.
Collapse
Affiliation(s)
- Ricardo Whitaker
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Beatriz Hernaez-Estrada
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States.,NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz 01006, Spain
| | - Rosa Maria Hernandez
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz 01006, Spain.,Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz 01006, Spain
| | - Edorta Santos-Vizcaino
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz 01006, Spain.,Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz 01006, Spain
| | - Kara L Spiller
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
22
|
Hou J, Yang R, Vuong I, Li F, Kong J, Mao HQ. Biomaterials strategies to balance inflammation and tenogenesis for tendon repair. Acta Biomater 2021; 130:1-16. [PMID: 34082095 DOI: 10.1016/j.actbio.2021.05.043] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 05/15/2021] [Accepted: 05/24/2021] [Indexed: 12/17/2022]
Abstract
Adult tendon tissue demonstrates a limited regenerative capacity, and the natural repair process leaves fibrotic scar tissue with inferior mechanical properties. Surgical treatment is insufficient to provide the mechanical, structural, and biochemical environment necessary to restore functional tissue. While numerous strategies including biodegradable scaffolds, bioactive factor delivery, and cell-based therapies have been investigated, most studies have focused exclusively on either suppressing inflammation or promoting tenogenesis, which includes tenocyte proliferation, ECM production, and tissue formation. New biomaterials-based approaches represent an opportunity to more effectively balance the two processes and improve regenerative outcomes from tendon injuries. Biomaterials applications that have been explored for tendon regeneration include formation of biodegradable scaffolds presenting topographical, mechanical, and/or immunomodulatory cues conducive to tendon repair; delivery of immunomodulatory or tenogenic biomolecules; and delivery of therapeutic cells such as tenocytes and stem cells. In this review, we provide the biological context for the challenges in tendon repair, discuss biomaterials approaches to modulate the immune and regenerative environment during the healing process, and consider the future development of comprehensive biomaterials-based strategies that can better restore the function of injured tendon. STATEMENT OF SIGNIFICANCE: Current strategies for tendon repair focus on suppressing inflammation or enhancing tenogenesis. Evidence indicates that regulated inflammation is beneficial to tendon healing and that excessive tissue remodeling can cause fibrosis. Thus, it is necessary to adopt an approach that balances the benefits of regulated inflammation and tenogenesis. By reviewing potential treatments involving biodegradable scaffolds, biological cues, and therapeutic cells, we contrast how each strategy promotes or suppresses specific repair steps to improve the healing outcome, and highlight the advantages of a comprehensive approach that facilitates the clearance of necrotic tissue and recruitment of cells during the inflammatory stage, followed by ECM synthesis and organization in the proliferative and remodeling stages with the goal of restoring function to the tendon.
Collapse
|
23
|
Strategies for inclusion of growth factors into 3D printed bone grafts. Essays Biochem 2021; 65:569-585. [PMID: 34156062 DOI: 10.1042/ebc20200130] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/25/2021] [Accepted: 06/08/2021] [Indexed: 02/06/2023]
Abstract
There remains a critical need to develop new technologies and materials that can meet the demands of treating large bone defects. The advancement of 3-dimensional (3D) printing technologies has allowed the creation of personalized and customized bone grafts, with specific control in both macro- and micro-architecture, and desired mechanical properties. Nevertheless, the biomaterials used for the production of these bone grafts often possess poor biological properties. The incorporation of growth factors (GFs), which are the natural orchestrators of the physiological healing process, into 3D printed bone grafts, represents a promising strategy to achieve the bioactivity required to enhance bone regeneration. In this review, the possible strategies used to incorporate GFs to 3D printed constructs are presented with a specific focus on bone regeneration. In particular, the strengths and limitations of different methods, such as physical and chemical cross-linking, which are currently used to incorporate GFs to the engineered constructs are critically reviewed. Different strategies used to present one or more GFs to achieve simultaneous angiogenesis and vasculogenesis for enhanced bone regeneration are also covered in this review. In addition, the possibility of combining several manufacturing approaches to fabricate hybrid constructs, which better mimic the complexity of biological niches, is presented. Finally, the clinical relevance of these approaches and the future steps that should be taken are discussed.
Collapse
|
24
|
Siddiqui Z, Sarkar B, Kim KK, Kadincesme N, Paul R, Kumar A, Kobayashi Y, Roy A, Choudhury M, Yang J, Shimizu E, Kumar VA. Angiogenic hydrogels for dental pulp revascularization. Acta Biomater 2021. [PMID: 33689817 DOI: 10.1016/j.actbio.2021.1003.1001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2023]
Abstract
Angiogenesis is critical for tissue healing and regeneration. Promoting angiogenesis in materials implanted within dental pulp after pulpectomy is a major clinical challenge in endodontics. We demonstrate the ability of acellular self-assembling peptide hydrogels to create extracellular matrix mimetic architectures that guide in vivo development of neovasculature and tissue deposition. The hydrogels possess facile injectability, as well as sequence-level functionalizability. We explore the therapeutic utility of an angiogenic hydrogel to regenerate vascularized pulp-like soft tissue in a large animal (canine) orthotopic model. The regenerated soft tissue recapitulates key features of native pulp, such as blood vessels, neural filaments, and an odontoblast-like layer next to dentinal tubules. Our study establishes angiogenic peptide hydrogels as potent scaffolds for promoting soft tissue regeneration in vivo. STATEMENT OF SIGNIFICANCE: A major challenge to endodontic tissue engineering is the lack of in situ angiogenesis within intracanal implants, especially after complete removal of the dental pulp. The lack of a robust vasculature in implants limit integration of matrices with the host tissue and regeneration of soft tissue. We demonstrate the development of an acellular material that promotes tissue revascularization in vivo without added growth factors, in a preclinical canine model of pulp-like soft-tissue regeneration. Such acellular biomaterials would facilitate pulp revascularization approaches in large animal models, and translation into human clinical trials.
Collapse
Affiliation(s)
- Zain Siddiqui
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Biplab Sarkar
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Ka-Kyung Kim
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Nurten Kadincesme
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Reshma Paul
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Arjun Kumar
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Yoshifumi Kobayashi
- Department of Oral Biology, Department of Endodontics, Rutgers School of Dental Medicine, Newark, NJ, USA
| | - Abhishek Roy
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Marwa Choudhury
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Jian Yang
- Department of Biomedical Engineering, Huck Institutes of The Life Sciences, Materials Research Institute, Pennsylvania State University, University Park, PA, USA
| | - Emi Shimizu
- Department of Oral Biology, Department of Endodontics, Rutgers School of Dental Medicine, Newark, NJ, USA
| | - Vivek A Kumar
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA; Department of Oral Biology, Department of Endodontics, Rutgers School of Dental Medicine, Newark, NJ, USA; Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ, USA; Department of Restorative Dentistry, Rutgers School of Dental Medicine, Newark, NJ, USA.
| |
Collapse
|
25
|
Siddiqui Z, Sarkar B, Kim KK, Kadincesme N, Paul R, Kumar A, Kobayashi Y, Roy A, Choudhury M, Yang J, Shimizu E, Kumar VA. Angiogenic hydrogels for dental pulp revascularization. Acta Biomater 2021; 126:109-118. [PMID: 33689817 PMCID: PMC8096688 DOI: 10.1016/j.actbio.2021.03.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/24/2021] [Accepted: 03/01/2021] [Indexed: 12/15/2022]
Abstract
Angiogenesis is critical for tissue healing and regeneration. Promoting angiogenesis in materials implanted within dental pulp after pulpectomy is a major clinical challenge in endodontics. We demonstrate the ability of acellular self-assembling peptide hydrogels to create extracellular matrix mimetic architectures that guide in vivo development of neovasculature and tissue deposition. The hydrogels possess facile injectability, as well as sequence-level functionalizability. We explore the therapeutic utility of an angiogenic hydrogel to regenerate vascularized pulp-like soft tissue in a large animal (canine) orthotopic model. The regenerated soft tissue recapitulates key features of native pulp, such as blood vessels, neural filaments, and an odontoblast-like layer next to dentinal tubules. Our study establishes angiogenic peptide hydrogels as potent scaffolds for promoting soft tissue regeneration in vivo. STATEMENT OF SIGNIFICANCE: A major challenge to endodontic tissue engineering is the lack of in situ angiogenesis within intracanal implants, especially after complete removal of the dental pulp. The lack of a robust vasculature in implants limit integration of matrices with the host tissue and regeneration of soft tissue. We demonstrate the development of an acellular material that promotes tissue revascularization in vivo without added growth factors, in a preclinical canine model of pulp-like soft-tissue regeneration. Such acellular biomaterials would facilitate pulp revascularization approaches in large animal models, and translation into human clinical trials.
Collapse
Affiliation(s)
- Zain Siddiqui
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Biplab Sarkar
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Ka-Kyung Kim
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Nurten Kadincesme
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Reshma Paul
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Arjun Kumar
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Yoshifumi Kobayashi
- Department of Oral Biology, Department of Endodontics, Rutgers School of Dental Medicine, Newark, NJ, USA
| | - Abhishek Roy
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Marwa Choudhury
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Jian Yang
- Department of Biomedical Engineering, Huck Institutes of The Life Sciences, Materials Research Institute, Pennsylvania State University, University Park, PA, USA
| | - Emi Shimizu
- Department of Oral Biology, Department of Endodontics, Rutgers School of Dental Medicine, Newark, NJ, USA
| | - Vivek A Kumar
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA; Department of Oral Biology, Department of Endodontics, Rutgers School of Dental Medicine, Newark, NJ, USA; Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ, USA; Department of Restorative Dentistry, Rutgers School of Dental Medicine, Newark, NJ, USA.
| |
Collapse
|
26
|
Gurunathan S, Kang MH, Jeyaraj M, Kim JH. Palladium Nanoparticle-Induced Oxidative Stress, Endoplasmic Reticulum Stress, Apoptosis, and Immunomodulation Enhance the Biogenesis and Release of Exosome in Human Leukemia Monocytic Cells (THP-1). Int J Nanomedicine 2021; 16:2849-2877. [PMID: 33883895 PMCID: PMC8055296 DOI: 10.2147/ijn.s305269] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/11/2021] [Indexed: 12/23/2022] Open
Abstract
Background Exosomes are endosome-derived nano-sized vesicles that have emerged as important mediators of intercellular communication and play significant roles in various diseases. However, their applications are rigorously restricted by the limited secretion competence of cells. Therefore, strategies to enhance the production and functions of exosomes are warranted. Studies have shown that nanomaterials can significantly enhance the effects of cells and exosomes in intercellular communication; however, how palladium nanoparticles (PdNPs) enhance exosome release in human leukemia monocytic cells (THP-1) remains unclear. Therefore, this study aimed to address the effect of PdNPs on exosome biogenesis and release in THP-1 cells. Methods Exosomes were isolated by ultracentrifugation and ExoQuickTM and characterized by dynamic light scattering, nanoparticle tracking analysis system, scanning electron microscopy, transmission electron microscopy, EXOCETTM assay, and fluorescence polarization. The expression levels of exosome markers were analyzed via quantitative reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay. Results PdNP treatment enhanced the biogenesis and release of exosomes by inducing oxidative stress, endoplasmic reticulum stress, apoptosis, and immunomodulation. The exosomes were spherical in shape and had an average diameter of 50–80 nm. Exosome production was confirmed via total protein concentration, exosome counts, acetylcholinesterase activity, and neutral sphingomyelinase activity. The expression levels of TSG101, CD9, CD63, and CD81 were significantly higher in PdNP-treated cells than in control cells. Further, cytokine and chemokine levels were significantly higher in exosomes isolated from PdNP-treated THP-1 cells than in those isolated from control cells. THP-1 cells pre-treated with N-acetylcysteine or GW4869 showed significant decreases in PdNP-induced exosome biogenesis and release. Conclusion To our knowledge, this is the first study showing that PdNPs stimulate exosome biogenesis and release and simultaneously increase the levels of cytokines and chemokines by modulating various physiological processes. Our findings suggest a reasonable approach to improve the production of exosomes for various therapeutic applications.
Collapse
Affiliation(s)
| | - Min-Hee Kang
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, Korea
| | - Muniyandi Jeyaraj
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, Korea
| | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, Korea
| |
Collapse
|
27
|
Li X, Cui H, Suyila Q, Yang X, Wu X, Su X. The hydrogels based on peptide/collagen as potential multifunctional materials for soft tissue filling and inhibition of tumor growth. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2020.1867134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Xian Li
- Clinical Medical Research Center, Affiliated Hospital, Inner Mongolia Medical University, Huhhot, China
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi’an, China
- Key Laboratory of Medical Cell Biology in Inner Mongolia Autonomous Region, Huhhot, China
| | - Hongwei Cui
- Clinical Medical Research Center, Affiliated Hospital, Inner Mongolia Medical University, Huhhot, China
- Key Laboratory of Medical Cell Biology in Inner Mongolia Autonomous Region, Huhhot, China
| | - Qimuge Suyila
- Clinical Medical Research Center, Affiliated Hospital, Inner Mongolia Medical University, Huhhot, China
- Key Laboratory of Medical Cell Biology in Inner Mongolia Autonomous Region, Huhhot, China
| | - Xiaoyu Yang
- Clinical Medical Research Center, Affiliated Hospital, Inner Mongolia Medical University, Huhhot, China
- Key Laboratory of Medical Cell Biology in Inner Mongolia Autonomous Region, Huhhot, China
| | - Xinlin Wu
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Xiulan Su
- Clinical Medical Research Center, Affiliated Hospital, Inner Mongolia Medical University, Huhhot, China
- Key Laboratory of Medical Cell Biology in Inner Mongolia Autonomous Region, Huhhot, China
| |
Collapse
|
28
|
Imere A, Ligorio C, O'Brien M, Wong JKF, Domingos M, Cartmell SH. Engineering a cell-hydrogel-fibre composite to mimic the structure and function of the tendon synovial sheath. Acta Biomater 2021; 119:140-154. [PMID: 33189954 DOI: 10.1016/j.actbio.2020.11.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 11/05/2020] [Accepted: 11/10/2020] [Indexed: 12/27/2022]
Abstract
The repair of tendon injuries is often compromised by post-operative peritendinous adhesions. Placing a physical barrier at the interface between the tendon and the surrounding tissue could potentially solve this problem by reducing adhesion formation. At present, no such system is available for routine use in clinical practice. Here, we propose the development of a bilayer membrane combining a nanofibrous poly(ε-caprolactone) (PCL) electrospun mesh with a layer of self-assembling peptide hydrogel (SAPH) laden with type-B synoviocytes. This bilayer membrane would act as an anti-adhesion system capable of restoring tendon lubrication, while assisting with synovial sheath regeneration. The PCL mesh showed adequate mechanical properties (Young's modulus=19±4 MPa, ultimate tensile stress=9.6±1.7 MPa, failure load=0.5±0.1 N), indicating that the membrane is easy to handle and capable to withstand the frictional forces generated on the tendon's surface during movement (~0.3 N). Morphological analysis confirmed the generation of a mesh with nanosized PCL fibres and small pores (< 3 μm), which prevented fibroblast infiltration to impede extrinsic healing but still allowing diffusion of nutrients and waste. Rheological tests showed that incorporation of SAPH layer allows good lubrication properties when the membrane is articulated against porcine tendon or hypodermis, suggesting that restoration of tendon gliding is possible upon implantation. Moreover, viability and metabolic activity tests indicated that the SAPH was conducive to rabbit synoviocyte growth and proliferation over 28 days of 3D culture, sustaining cell production of specific matrix components, particularly hyaluronic acid. Synoviocyte-laden peptide hydrogel promoted a sustained endogenous production of hyaluronic acid, providing an anti-friction layer that potentially restores the tendon gliding environment.
Collapse
Affiliation(s)
- Angela Imere
- Department of Materials, School of Natural Sciences, Faculty of Science and Engineering, The University of Manchester, Manchester, UK.; The Henry Royce Institute, Royce Hub Building, The University of Manchester, Manchester, UK
| | - Cosimo Ligorio
- Department of Materials, School of Natural Sciences, Faculty of Science and Engineering, The University of Manchester, Manchester, UK.; Manchester Institute of Biotechnology (MIB), The University of Manchester, Manchester, UK
| | - Marie O'Brien
- Department of Materials, School of Natural Sciences, Faculty of Science and Engineering, The University of Manchester, Manchester, UK.; The Henry Royce Institute, Royce Hub Building, The University of Manchester, Manchester, UK
| | - Jason K F Wong
- Blond McIndoe Laboratories, Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.; Department of Plastic Surgery & Burns, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Marco Domingos
- The Henry Royce Institute, Royce Hub Building, The University of Manchester, Manchester, UK.; Department of Mechanical, Aerospace and Civil Engineering, School of Engineering, Faculty of Science and Engineering, The University of Manchester, Manchester, UK
| | - Sarah H Cartmell
- Department of Materials, School of Natural Sciences, Faculty of Science and Engineering, The University of Manchester, Manchester, UK.; The Henry Royce Institute, Royce Hub Building, The University of Manchester, Manchester, UK..
| |
Collapse
|
29
|
Cai Y, Zheng C, Xiong F, Ran W, Zhai Y, Zhu HH, Wang H, Li Y, Zhang P. Recent Progress in the Design and Application of Supramolecular Peptide Hydrogels in Cancer Therapy. Adv Healthc Mater 2021; 10:e2001239. [PMID: 32935937 DOI: 10.1002/adhm.202001239] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/04/2020] [Indexed: 12/15/2022]
Abstract
Supramolecular peptide hydrogel (SPH) is a class of biomaterials self-assembled from peptide-based gelators through non-covalent interactions. Among many of its biomedical applications, the potential of SPH in cancer therapy has been vastly explored in the past decade, taking advantage of its good biocompatibility, multifunctionality, and injectability. SPHs can exert localized cancer therapy and induce systemic anticancer immunity to prevent tumor recurrence, depending on the design of SPH. This review first gives a brief introduction to SPH and then outlines the major types of peptide-based gelators that have been developed so far. The methodologies to tune the physicochemical properties and biological activities are summarized. The recent advances of SPH in cancer therapy as carriers, prodrugs, or drugs are highlighted. Finally, the clinical translation potential and main challenges in this field are also discussed.
Collapse
Affiliation(s)
- Ying Cai
- State Key Laboratory of Drug Research and Center of Pharmaceutics Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Chao Zheng
- State Key Laboratory of Drug Research and Center of Pharmaceutics Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 China
- China State Institute of Pharmaceutical Industry Shanghai 200040 China
| | - Fengqin Xiong
- State Key Laboratory of Drug Research and Center of Pharmaceutics Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 China
- China State Institute of Pharmaceutical Industry Shanghai 200040 China
| | - Wei Ran
- State Key Laboratory of Drug Research and Center of Pharmaceutics Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Yihui Zhai
- State Key Laboratory of Drug Research and Center of Pharmaceutics Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Helen H. Zhu
- State Key Laboratory of Oncogenes and Related Genes Renji‐Med‐X Stem Cell Research Center Department of Urology Ren Ji Hospital School of Medicine and School of Biomedical Engineering Shanghai Jiao Tong University Shanghai 200127 China
| | - Hao Wang
- China State Institute of Pharmaceutical Industry Shanghai 200040 China
| | - Yaping Li
- State Key Laboratory of Drug Research and Center of Pharmaceutics Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Pengcheng Zhang
- State Key Laboratory of Drug Research and Center of Pharmaceutics Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Sciences Beijing 100049 China
- Yantai Key Laboratory of Nanomedicine and Advanced Preparations Yantai Institute of Materia Medica Shandong 264000 China
| |
Collapse
|
30
|
Crowe KM, Siddiqui Z, Harbour V, Kim K, Syed S, Paul R, Roy A, Naik R, Mitchell K, Mahajan A, Sarkar B, Kumar VA. Evaluation of Injectable Naloxone-Releasing Hydrogels. ACS APPLIED BIO MATERIALS 2020; 3:7858-7864. [PMID: 35019526 PMCID: PMC11697516 DOI: 10.1021/acsabm.0c01016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The opioid epidemic in the United States is a serious public health crisis affecting over 1.7 million Americans. In the last two decades, almost 450 000 people have died from an opioid overdose, with nearly 20% of these deaths occurring in 2017 and 2018 alone. During an overdose, overstimulation of the μ-opioid receptor leads to severe and potentially fatal respiratory depression. Naloxone is a competitive μ-opioid-receptor antagonist that is widely used to displace opioids and rescue from an overdose. Here, we describe the development of a slow-release, subcutaneous naloxone formulation for potential management of opioid overdose, chronic pain, and opioid-induced constipation. Naloxone is loaded into self-assembling peptide hydrogels for controlled drug release. The mechanical, chemical, and structural properties of the nanofibrous hydrogel enable subcutaneous administration and slow, diffusion-based release kinetics of naloxone over 30 days in vitro. The naloxone hydrogel scaffold showed cytocompatibility and did not alter the β-sheet secondary structure or thixotropic properties characteristic of self-assembling peptide hydrogels. Our results show that this biocompatible and injectable self-assembling peptide hydrogel may be useful as a vehicle for tunable, sustained release of therapeutic naloxone. This therapy may be particularly suited for preventing renarcotization in patients who refuse additional medical assistance following an overdose.
Collapse
Affiliation(s)
- Kaytlyn M Crowe
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Zain Siddiqui
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Victoria Harbour
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - KaKyung Kim
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Shareef Syed
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Reshma Paul
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Abhishek Roy
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Ruhi Naik
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Kayla Mitchell
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Aryan Mahajan
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Biplab Sarkar
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Vivek A Kumar
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
- Department of Restorative Dentistry, Rutgers School of Dental Medicine, Newark, New Jersey 07102, United States
| |
Collapse
|
31
|
Tarafder S, Park GY, Felix J, Lee CH. Bioadhesives for musculoskeletal tissue regeneration. Acta Biomater 2020; 117:77-92. [PMID: 33031966 DOI: 10.1016/j.actbio.2020.09.050] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 12/28/2022]
Abstract
Natural or synthetic materials designed to adhere to biological components, bioadhesives, have received significant attention in clinics and surgeries. As a result, there are several commercially available, FDA-approved bioadhesives used for skin wound closure, hemostasis, and sealing tissue gaps or cracks in soft tissues. Recently, the application of bioadhesives has been expanded to various areas including musculoskeletal tissue engineering and regenerative medicine. The instant establishment of a strong adhesion force on tissue surfaces has shown potential to augment repair of connective tissues. Bioadhesives have also been applied to secure tissue grafts to host bodies and to fill or seal gaps in musculoskeletal tissues caused by injuries or degenerative diseases. In addition, the injectability equipped with the instant adhesion formation may provide the great potential of bioadhesives as vehicles for localized delivery of cells, growth factors, and small molecules to facilitate tissue healing and regeneration. This review covers recent research progress in bioadhesives as focused on their applications in musculoskeletal tissue repair and regeneration. We also discuss the advantages and outstanding challenges of bioadhesives, as well as the future perspective toward regeneration of connective tissues with high mechanical demand.
Collapse
|
32
|
Fischer NG, Münchow EA, Tamerler C, Bottino MC, Aparicio C. Harnessing biomolecules for bioinspired dental biomaterials. J Mater Chem B 2020; 8:8713-8747. [PMID: 32747882 PMCID: PMC7544669 DOI: 10.1039/d0tb01456g] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Dental clinicians have relied for centuries on traditional dental materials (polymers, ceramics, metals, and composites) to restore oral health and function to patients. Clinical outcomes for many crucial dental therapies remain poor despite many decades of intense research on these materials. Recent attention has been paid to biomolecules as a chassis for engineered preventive, restorative, and regenerative approaches in dentistry. Indeed, biomolecules represent a uniquely versatile and precise tool to enable the design and development of bioinspired multifunctional dental materials to spur advancements in dentistry. In this review, we survey the range of biomolecules that have been used across dental biomaterials. Our particular focus is on the key biological activity imparted by each biomolecule toward prevention of dental and oral diseases as well as restoration of oral health. Additional emphasis is placed on the structure-function relationships between biomolecules and their biological activity, the unique challenges of each clinical condition, limitations of conventional therapies, and the advantages of each class of biomolecule for said challenge. Biomaterials for bone regeneration are not reviewed as numerous existing reviews on the topic have been recently published. We conclude our narrative review with an outlook on the future of biomolecules in dental biomaterials and potential avenues of innovation for biomaterial-based patient oral care.
Collapse
Affiliation(s)
- Nicholas G Fischer
- Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, 16-250A Moos Tower, 515 Delaware St. SE, Minneapolis, Minnesota 55455, USA.
| | | | | | | | | |
Collapse
|
33
|
Gupta D, Gangwar A, Jyoti K, Sainaga Jyothi VG, Sodhi RK, Mehra NK, Singh SB, Madan J. Self healing hydrogels: A new paradigm immunoadjuvant for delivering peptide vaccine. Colloids Surf B Biointerfaces 2020; 194:111171. [DOI: 10.1016/j.colsurfb.2020.111171] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/24/2020] [Accepted: 06/02/2020] [Indexed: 12/11/2022]
|
34
|
Sarkar B, Siddiqui Z, Kim KK, Nguyen PK, Reyes X, McGill TJ, Kumar VA. Implantable anti-angiogenic scaffolds for treatment of neovascular ocular pathologies. Drug Deliv Transl Res 2020; 10:1191-1202. [PMID: 32232681 PMCID: PMC7483832 DOI: 10.1007/s13346-020-00753-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The retinal physiology can accrue oxidative damage and inflammatory insults due to age and metabolic irregularities. Two notable diseases that involve retinal and choroidal neovascularization are proliferative diabetic retinopathy and wet age-related macular degeneration. Currently, these diseases are mainly treated with anti-VEGF drugs (VEGF = vascular endothelial growth factor), generally on a monthly dosage scheme. We discuss recent developments for the treatment of these diseases, including bioactive tissue-engineered materials, which may reduce frequency of dosage and propose a path forward for improving patient outcomes. Graphical abstract Development of materials for long-term intravitreal delivery for management of posterior segment diseases.
Collapse
Affiliation(s)
- Biplab Sarkar
- Department of Biomedical Engineering, New Jersey Institute of Technology, 138 Warren St. LSEB 316, Newark, NJ, 07102, USA
| | - Zain Siddiqui
- Department of Biomedical Engineering, New Jersey Institute of Technology, 138 Warren St. LSEB 316, Newark, NJ, 07102, USA
| | - Ka Kyung Kim
- Department of Biomedical Engineering, New Jersey Institute of Technology, 138 Warren St. LSEB 316, Newark, NJ, 07102, USA
| | - Peter K Nguyen
- Department of Biomedical Engineering, New Jersey Institute of Technology, 138 Warren St. LSEB 316, Newark, NJ, 07102, USA
| | - Xavier Reyes
- Department of Biomedical Engineering, New Jersey Institute of Technology, 138 Warren St. LSEB 316, Newark, NJ, 07102, USA
| | - Trevor J McGill
- Casey Eye Institute, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Vivek A Kumar
- Department of Biomedical Engineering, New Jersey Institute of Technology, 138 Warren St. LSEB 316, Newark, NJ, 07102, USA.
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA.
- Department of Restorative Dentistry, Rutgers School of Dental Medicine, Newark, NJ, USA.
| |
Collapse
|
35
|
Levin A, Hakala TA, Schnaider L, Bernardes GJL, Gazit E, Knowles TPJ. Biomimetic peptide self-assembly for functional materials. Nat Rev Chem 2020; 4:615-634. [PMID: 39650726 PMCID: PMC7617017 DOI: 10.1038/s41570-020-0215-y] [Citation(s) in RCA: 377] [Impact Index Per Article: 75.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2020] [Indexed: 01/20/2023]
Abstract
Natural biomolecular systems have evolved to form a rich variety of supramolecular materials and machinery fundamental to cellular function. The assembly of these structures commonly involves interactions between specific molecular building blocks, a strategy that can also be replicated in an artificial setting to prepare functional materials. The self-assembly of synthetic biomimetic peptides thus allows the exploration of chemical and sequence space beyond that used routinely by biology. In this Review, we discuss recent conceptual and experimental advances in self-assembling artificial peptidic materials. In particular, we explore how naturally occurring structures and phenomena have inspired the development of functional biomimetic materials that we can harness for potential interactions with biological systems. As our fundamental understanding of peptide self-assembly evolves, increasingly sophisticated materials and applications emerge and lead to the development of a new set of building blocks and assembly principles relevant to materials science, molecular biology, nanotechnology and precision medicine.
Collapse
Affiliation(s)
- Aviad Levin
- Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge, UK
| | - Tuuli A Hakala
- Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge, UK
| | - Lee Schnaider
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Gonçalo J L Bernardes
- Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge, UK
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Lisboa, Portugal
| | - Ehud Gazit
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- Department of Materials Science and Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Tuomas P J Knowles
- Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge, UK
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| |
Collapse
|
36
|
Chen W, Li S, Lang JC, Chang Y, Pan Z, Kroll P, Sun X, Tang L, Dong H. Combined Tumor Environment Triggered Self-Assembling Peptide Nanofibers and Inducible Multivalent Ligand Display for Cancer Cell Targeting with Enhanced Sensitivity and Specificity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2002780. [PMID: 32812362 PMCID: PMC8283777 DOI: 10.1002/smll.202002780] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/14/2020] [Indexed: 05/03/2023]
Abstract
Many new technologies, such as cancer microenvironment-induced nanoparticle targeting and multivalent ligand approach for cell surface receptors, are developed for active targeting in cancer therapy. While the principle of each technology is well illustrated, most systems suffer from low targeting specificity and sensitivity. To fill the gap, this work demonstrates a successful attempt to combine both technologies to simultaneously improve cancer cell targeting sensitivity and specificity. Specifically, the main component is a targeting ligand conjugated self-assembling monomer precursor (SAM-P), which, at the tumor site, undergoes tumor-triggered cleavage to release the active form of self-assembling monomer capable of forming supramolecular nanostructures. Biophysical characterization confirms the chemical and physical transformation of SAM-P from unimers or oligomers with low ligand valency to supramolecular assemblies with high ligand valency under a tumor-mimicking reductive microenvironment. The in vitro fluorescence assay shows the importance of supramolecular morphology in mediating ligand-receptor interactions and targeting sensitivity. Enhanced targeting specificity and sensitivity can be achieved via tumor-triggered supramolecular assembly and induces multivalent ligand presentation toward cell surface receptors, respectively. The results support this combined tumor microenvironment-induced cell targeting and multivalent ligand display approach, and have great potential for use as cell-specific molecular imaging and therapeutic agents with high sensitivity and specificity.
Collapse
Affiliation(s)
- Weike Chen
- Department of Chemistry & Biochemistry, The University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Shuxin Li
- Department of Bioengineering, The University of Texas at Arlington, Arlington, TX, 76019, USA
| | - John C Lang
- Department of Chemistry & Biochemistry, The University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Yan Chang
- College of Nursing and Health Innovation, The University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Zui Pan
- College of Nursing and Health Innovation, The University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Peter Kroll
- Department of Chemistry & Biochemistry, The University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Xiankai Sun
- Department of Radiology, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Liping Tang
- Department of Bioengineering, The University of Texas at Arlington, Arlington, TX, 76019, USA
| | - He Dong
- Department of Chemistry & Biochemistry, The University of Texas at Arlington, Arlington, TX, 76019, USA
| |
Collapse
|
37
|
He W, Reaume M, Hennenfent M, Lee BP, Rajachar R. Biomimetic hydrogels with spatial- and temporal-controlled chemical cues for tissue engineering. Biomater Sci 2020; 8:3248-3269. [PMID: 32490441 PMCID: PMC7323904 DOI: 10.1039/d0bm00263a] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Biomimetic hydrogels have emerged as the most useful tissue engineering scaffold materials. Their versatile chemistry can recapitulate multiple physical and chemical features to integrate cells, scaffolds, and signaling molecules for tissue regeneration. Due to their highly hydrophilic nature hydrogels can recreate nutrient-rich aqueous environments for cells. Soluble regulatory molecules can be incorporated to guide cell proliferation and differentiation. Importantly, the controlled dynamic parameters and spatial distribution of chemical cues in hydrogel scaffolds are critical for cell-cell communication, cell-scaffold interaction, and morphogenesis. Herein, we review biomimetic hydrogels that provide cells with spatiotemporally controlled chemical cues as tissue engineering scaffolds. Specifically, hydrogels with temporally controlled growth factor-release abilities, spatially controlled conjugated bioactive molecules/motifs, and targeting delivery and reload properties for tissue engineering applications are discussed in detail. Examples of hydrogels that possess clinically favorable properties, such as injectability, self-healing ability, stimulus-responsiveness, and pro-remodeling features, are also covered.
Collapse
Affiliation(s)
- Weilue He
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931, USA
- FM Wound Care, LLC, Hancock, MI 49930, USA
| | - Max Reaume
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931, USA
| | - Maureen Hennenfent
- Department of Civil and Environmental Engineering, Michigan Technological University, Houghton, MI 49931, USA
| | - Bruce P. Lee
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931, USA
| | - Rupak Rajachar
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931, USA
| |
Collapse
|
38
|
Gupta S, Singh I, Sharma AK, Kumar P. Ultrashort Peptide Self-Assembly: Front-Runners to Transport Drug and Gene Cargos. Front Bioeng Biotechnol 2020; 8:504. [PMID: 32548101 PMCID: PMC7273840 DOI: 10.3389/fbioe.2020.00504] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/29/2020] [Indexed: 12/18/2022] Open
Abstract
The translational therapies to promote interaction between cell and signal come with stringent eligibility criteria. The chemically defined, hierarchically organized, and simpler yet blessed with robust intermolecular association, the peptides, are privileged to make the cut-off for sensing the cell-signal for biologics delivery and tissue engineering. The signature service and insoluble network formation of the peptide self-assemblies as hydrogels have drawn a spell of research activity among the scientists all around the globe in the past decades. The therapeutic peptide market players are anticipating promising growth opportunities due to the ample technological advancements in this field. The presence of the other organic moieties, enzyme substrates and well-established protecting groups like Fmoc and Boc etc., bring the best of both worlds. Since the large sequences of peptides severely limit the purification and their isolation, this article reviews the account of last 5 years' efforts on novel approaches for formulation and development of single molecule amino acids, ultra-short peptide self-assemblies (di- and tri- peptides only) and their derivatives as drug/gene carriers and tissue-engineering systems.
Collapse
Affiliation(s)
- Seema Gupta
- Chemistry Department, Acharya Narendra Dev College, University of Delhi, New Delhi, India
| | - Indu Singh
- Chemistry Department, Acharya Narendra Dev College, University of Delhi, New Delhi, India
- Nucleic Acids Research Laboratory, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Ashwani K. Sharma
- Nucleic Acids Research Laboratory, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Pradeep Kumar
- Nucleic Acids Research Laboratory, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| |
Collapse
|
39
|
Abstract
Treatment strategies in clinics have been shifting from small molecules to protein drugs due to the promising results of a highly specific mechanism of action and reduced toxicity. Despite their prominent roles in disease treatment, delivery of the protein therapeutics is challenging due to chemical instability, immunogenicity and biological barriers. Peptide hydrogels with spatiotemporally tunable properties have shown an outstanding potential to deliver complex protein therapeutics, maintain drug efficacy and stability over time, mimicking the extracellular matrix, and responding to external stimuli. In this review, we present recent advances in peptide hydrogel design strategies, protein release kinetics and mechanisms for protein drug delivery in cellular engineering, tissue engineering, immunotherapy and disease treatments.
Collapse
|
40
|
Ma X, Agas A, Siddiqui Z, Kim K, Iglesias-Montoro P, Kalluru J, Kumar V, Haorah J. Angiogenic peptide hydrogels for treatment of traumatic brain injury. Bioact Mater 2020; 5:124-132. [PMID: 32128463 PMCID: PMC7042674 DOI: 10.1016/j.bioactmat.2020.01.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 01/06/2020] [Accepted: 01/09/2020] [Indexed: 01/07/2023] Open
Abstract
Traumatic brain injury (TBI) impacts over 3.17 million Americans. Management of hemorrhage and coagulation caused by vascular disruption after TBI is critical for the recovery of patients. Cerebrovascular pathologies play an important role in the underlying mechanisms of TBI. The objective of this study is to evaluate a novel regenerative medicine for the injured tissue after brain injury. We utilized a recently described synthetic growth factor with angiogenic potential to facilitate vascular growth in situ at the injury site. Previous work has shown how this injectable self-assembling peptide-based hydrogel (SAPH) creates a regenerative microenvironment for neovascularization at the injury site. Supramolecular assembly allows for thixotropy; the injectable drug delivery system provides sustained in vivo efficacy. In this study, a moderate blunt injury model was used to cause physical vascular damage and hemorrhage. The angiogenic SAPH was then applied directly on the injured rat brain. At day 7 post-TBI, significantly more blood vessels were observed than the sham and injury control group, as well as activation of VEGF-receptor 2, demonstrating the robust angiogenic response elicited by the angiogenic SAPH. Vascular markers von-Willebrand factor (vWF) and α-smooth muscle actin (α-SMA) showed a concomitant increase with blood vessel density in response to the angiogenic SAPH. Moreover, blood brain barrier integrity and blood coagulation were also examined as the parameters to indicate wound recovery post TBI. Neuronal rescue examination by NeuN and myelin basic protein staining showed that the angiogenic SAPH may provide and neuroprotective benefit in the long-term recovery.
Collapse
Affiliation(s)
- Xiaotang Ma
- Department of Biomedical Engineering, Center for Injury Bio-Mechanics, Materials and Medicine, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Agnieszka Agas
- Department of Biomedical Engineering, Center for Injury Bio-Mechanics, Materials and Medicine, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Zain Siddiqui
- Department of Biomedical Engineering, Center for Injury Bio-Mechanics, Materials and Medicine, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - KaKyung Kim
- Department of Biomedical Engineering, Center for Injury Bio-Mechanics, Materials and Medicine, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Patricia Iglesias-Montoro
- Department of Biomedical Engineering, Center for Injury Bio-Mechanics, Materials and Medicine, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Jagathi Kalluru
- Department of Biomedical Engineering, Center for Injury Bio-Mechanics, Materials and Medicine, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Vivek Kumar
- Department of Biomedical Engineering, Center for Injury Bio-Mechanics, Materials and Medicine, New Jersey Institute of Technology, Newark, NJ, 07102, USA
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
- Department of Restorative Dentistry, Rutgers School of Dental Medicine, Newark, NJ, USA
| | - James Haorah
- Department of Biomedical Engineering, Center for Injury Bio-Mechanics, Materials and Medicine, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| |
Collapse
|
41
|
Chen J, Zou X. Self-assemble peptide biomaterials and their biomedical applications. Bioact Mater 2019; 4:120-131. [PMID: 31667440 PMCID: PMC6812166 DOI: 10.1016/j.bioactmat.2019.01.002] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 01/23/2019] [Accepted: 01/23/2019] [Indexed: 12/17/2022] Open
Abstract
Inspired by self-assembling peptides found in native proteins, deliberately designed engineered peptides have shown outstanding biocompatibility, biodegradability, and extracellular matrix-mimicking microenvironments. Assembly of the peptides can be triggered by external stimuli, such as electrolytes, temperature, and pH. The formation of nanostructures and subsequent nanocomposite materials often occur under physiological conditions. The respective properties of side chains in each amino acids provide numerous sites for chemical modification and conjugation choices of the peptides, enabling various resulting supramolecular nanostructures and hydrogels with adjustable mechanical and physicochemical properties. Moreover, additional functionalities can be easily induced into the hydrogels, including shear-thinning, bioactivity, self-healing, and shape memory. It further broaden the scope of application of self-assemble peptide materials. This review outlines designs of self-assembly peptide (β-sheet, α-helix, collagen-like peptides, elastin-like polypeptides, and peptide amphiphiles) with potential additional functionalities and their biomedical applications in bioprinting, tissue engineering, and drug delivery.
Collapse
Affiliation(s)
- Jun Chen
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, PR China
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Guangzhou, 510080, PR China
| | - Xuenong Zou
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, PR China
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Guangzhou, 510080, PR China
| |
Collapse
|
42
|
Miller S, Yamada Y, Patel N, Suárez E, Andrews C, Tau S, Luke BT, Cachau RE, Schneider JP. Electrostatically Driven Guanidinium Interaction Domains that Control Hydrogel-Mediated Protein Delivery In Vivo. ACS CENTRAL SCIENCE 2019; 5:1750-1759. [PMID: 31807676 PMCID: PMC6891851 DOI: 10.1021/acscentsci.9b00501] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Indexed: 05/10/2023]
Abstract
Protein biologics are an important class of drugs, but the necessity for frequent parenteral administration is a major limitation. Drug-delivery materials offer a potential solution, but protein-material adsorption can cause denaturation, which reduces their effectiveness. Here, we describe a new protein delivery platform that limits direct contact between globular protein domains and material matrix, yet from a single subcutaneous administration can be tuned for long-term drug release. The strategy utilizes complementary electrostatic interactions made between a suite of designed interaction domains (IDs), installed onto the terminus of a protein of interest, and a negatively charged self-assembled fibrillar hydrogel. These intermolecular interactions can be easily modulated by choice of ID to control material interaction and desorption energies, which allows regulation of protein release kinetics to fit desired release profiles. Molecular dynamics studies provided a molecular-level understanding of the mechanisms that govern release and identified optimal binding zones on the gel fibrils that facilitate strong ID-material interactions, which are crucial for sustained release of protein. This delivery platform can be easily loaded with cargo, is shear-thin syringe implantable, provides improved protein stability, is capable of a diverse range of in vitro release rates, and most importantly, can accomplish long-term control over in vivo protein delivery.
Collapse
Affiliation(s)
- Stephen
E. Miller
- Chemical
Biology Laboratory and Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Yuji Yamada
- Chemical
Biology Laboratory and Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Nimit Patel
- Small Animal Imaging Program and Advanced Biomedical Computational Science Group, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Ernesto Suárez
- Small Animal Imaging Program and Advanced Biomedical Computational Science Group, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Caroline Andrews
- Chemical
Biology Laboratory and Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Steven Tau
- Chemical
Biology Laboratory and Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Brian T. Luke
- Small Animal Imaging Program and Advanced Biomedical Computational Science Group, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Raul E. Cachau
- Small Animal Imaging Program and Advanced Biomedical Computational Science Group, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Joel P. Schneider
- Chemical
Biology Laboratory and Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland 21702, United States
| |
Collapse
|
43
|
Sis MJ, Webber MJ. Drug Delivery with Designed Peptide Assemblies. Trends Pharmacol Sci 2019; 40:747-762. [DOI: 10.1016/j.tips.2019.08.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/07/2019] [Accepted: 08/08/2019] [Indexed: 12/18/2022]
|
44
|
Sequential drug delivery to modulate macrophage behavior and enhance implant integration. Adv Drug Deliv Rev 2019; 149-150:85-94. [PMID: 31103451 DOI: 10.1016/j.addr.2019.05.005] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 05/03/2019] [Accepted: 05/15/2019] [Indexed: 12/30/2022]
Abstract
Macrophages are major upstream regulators of the inflammatory response to implanted biomaterials. Sequential functions of distinct macrophage phenotypes are essential to the normal tissue repair process, which ideally results in vascularization and integration of implants. Improper timing of M1 or M2 macrophage activation results in dysfunctional healing in the form of chronic inflammation or fibrous encapsulation of the implant. Thus, biphasic drug delivery systems that modulate macrophage behavior are an appealing approach to promoting implant integration. In this review, we describe the timing and roles of macrophage phenotypes in healing, then highlight current drug delivery systems designed to sequentially modulate macrophage behavior.
Collapse
|
45
|
Sarkar B, Siddiqui Z, Nguyen PK, Dube N, Fu W, Park S, Jaisinghani S, Paul R, Kozuch SD, Deng D, Iglesias-Montoro P, Li M, Sabatino D, Perlin DS, Zhang W, Mondal J, Kumar VA. Membrane-Disrupting Nanofibrous Peptide Hydrogels. ACS Biomater Sci Eng 2019; 5:4657-4670. [DOI: 10.1021/acsbiomaterials.9b00967] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Biplab Sarkar
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102-1982, United States
| | - Zain Siddiqui
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102-1982, United States
| | - Peter K. Nguyen
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102-1982, United States
| | - Namita Dube
- Center for Interdisciplinary Sciences, Tata Institute of Fundamental Research, 500075 Hyderabad, India
| | - Wanyi Fu
- Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102-1982, United States
| | - Steven Park
- Public Health Research Institute, Rutgers University—New Jersey Medical School, Newark, New Jersey 07103, United States
| | - Shivani Jaisinghani
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102-1982, United States
| | - Reshma Paul
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102-1982, United States
| | - Stephen D. Kozuch
- Department of Chemistry and Biochemistry, Seton Hall University, South Orange, New Jersey 07079-2646, United States
| | - Daiyong Deng
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102-1982, United States
| | - Patricia Iglesias-Montoro
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102-1982, United States
| | - Mengyan Li
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102-1982, United States
| | - David Sabatino
- Department of Chemistry and Biochemistry, Seton Hall University, South Orange, New Jersey 07079-2646, United States
| | - David S. Perlin
- Public Health Research Institute, Rutgers University—New Jersey Medical School, Newark, New Jersey 07103, United States
| | - Wen Zhang
- Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102-1982, United States
| | - Jagannath Mondal
- Center for Interdisciplinary Sciences, Tata Institute of Fundamental Research, 500075 Hyderabad, India
| | - Vivek A. Kumar
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102-1982, United States
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, New Jersey 07103, United States
- Department of Restorative Dentistry, Rutgers School of Dental Medicine, Newark, New Jersey 07103 United States
| |
Collapse
|
46
|
Lou S, Wang X, Yu Z, Shi L. Peptide Tectonics: Encoded Structural Complementarity Dictates Programmable Self-Assembly. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1802043. [PMID: 31380179 PMCID: PMC6662064 DOI: 10.1002/advs.201802043] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 03/20/2019] [Indexed: 05/23/2023]
Abstract
Programmable self-assembly of peptides into well-defined nanostructures represents one promising approach for bioinspired and biomimetic synthesis of artificial complex systems and functional materials. Despite the progress made over the past two decades in the development of strategies for precise manipulation of the self-assembly of peptides, there is a remarkable gap between current peptide assemblies and biological systems in terms of structural complexity and functions. Here, the concept of peptide tectonics for the creation of well-defined nanostructures predominately driven by the complementary association at the interacting interfaces of tectons is introduced. Peptide tectons are defined as peptide building blocks exhibiting structural complementarity at the interacting interfaces of commensurate domains and undergoing programmable self-assembly into defined supramolecular structures promoted by complementary interactions. Peptide tectons are categorized based on their conformational entropy and the underlying mechanism for the programmable self-assembly of peptide tectons is highlighted focusing on the approaches for incorporating the structural complementarity within tectons. Peptide tectonics not only provides an alternative perspective to understand the self-assembly of peptides, but also allows for precise manipulation of peptide interactions, thus leading to artificial systems with advanced complexity and functions and paves the way toward peptide-related functional materials resembling natural systems.
Collapse
Affiliation(s)
- Shaofeng Lou
- Key Laboratory of Functional Polymer Materials, Ministryof EducationState Key Laboratory of Medicinal Chemical BiologyInstitute of Polymer ChemistryCollege of ChemistryNankai UniversityWeijin Road 94Tianjin300071China
| | - Xinmou Wang
- Key Laboratory of Functional Polymer Materials, Ministryof EducationState Key Laboratory of Medicinal Chemical BiologyInstitute of Polymer ChemistryCollege of ChemistryNankai UniversityWeijin Road 94Tianjin300071China
| | - Zhilin Yu
- Key Laboratory of Functional Polymer Materials, Ministryof EducationState Key Laboratory of Medicinal Chemical BiologyInstitute of Polymer ChemistryCollege of ChemistryNankai UniversityWeijin Road 94Tianjin300071China
| | - Linqi Shi
- Key Laboratory of Functional Polymer Materials, Ministryof EducationState Key Laboratory of Medicinal Chemical BiologyInstitute of Polymer ChemistryCollege of ChemistryNankai UniversityWeijin Road 94Tianjin300071China
| |
Collapse
|
47
|
Rowley AT, Nagalla RR, Wang S, Liu WF. Extracellular Matrix-Based Strategies for Immunomodulatory Biomaterials Engineering. Adv Healthc Mater 2019; 8:e1801578. [PMID: 30714328 DOI: 10.1002/adhm.201801578] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/08/2019] [Indexed: 12/14/2022]
Abstract
The extracellular matrix (ECM) is a complex and dynamic structural scaffold for cells within tissues and plays an important role in regulating cell function. Recently it has become appreciated that the ECM contains bioactive motifs that can directly modulate immune responses. This review describes strategies for engineering immunomodulatory biomaterials that utilize natural ECM-derived molecules and have the potential to harness the immune system for applications ranging from tissue regeneration to drug delivery. A top-down approach utilizes full-length ECM proteins, including collagen, fibrin, or hyaluronic acid-based materials, as well as matrices derived from decellularized tissue. These materials have the benefit of maintaining natural conformation and structure but are often heterogeneous and encumber precise control. By contrast, a bottom-up approach leverages immunomodulatory domains, such as Arg-Gly-Asp (RGD), matrix metalloproteinase (MMP)-sensitive peptides, or leukocyte-associated immunoglobulin-like receptor-1(LAIR-1) ligands, by incorporating them into synthetic materials. These materials have tunable control over immune cell functions and allow for combinatorial approaches. However, the synthetic approach lacks the full natural context of the original ECM protein. These two approaches provide a broad range of engineering techniques for immunomodulation through material interactions and hold the potential for the development of future therapeutic applications.
Collapse
Affiliation(s)
- Andrew T. Rowley
- Department of Chemical and Biomolecular EngineeringUniversity of California Irvine CA 92697 USA
| | - Raji R. Nagalla
- Department of Biomedical EngineeringUniversity of California Irvine CA 92697 USA
| | - Szu‐Wen Wang
- Department of Chemical and Biomolecular EngineeringUniversity of California Irvine CA 92697 USA
- Department of Biomedical EngineeringUniversity of California Irvine CA 92697 USA
- Department of Materials Science and EngineeringUniversity of California Irvine CA 92697 USA
| | - Wendy F. Liu
- Department of Chemical and Biomolecular EngineeringUniversity of California Irvine CA 92697 USA
- Department of Biomedical EngineeringUniversity of California Irvine CA 92697 USA
- The Edwards Lifesciences Center for Advanced Cardiovascular TechnologyUniversity of California Irvine CA 92697 USA
| |
Collapse
|
48
|
Petrak K, Vissapragada R, Shi S, Siddiqui Z, Kim KK, Sarkar B, Kumar VA. Challenges in Translating from Bench to Bed-Side: Pro-Angiogenic Peptides for Ischemia Treatment. Molecules 2019; 24:E1219. [PMID: 30925755 PMCID: PMC6479440 DOI: 10.3390/molecules24071219] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 03/21/2019] [Accepted: 03/25/2019] [Indexed: 02/07/2023] Open
Abstract
We describe progress and obstacles in the development of novel peptide-hydrogel therapeutics for unmet medical needs in ischemia treatment, focusing on the development and translation of therapies specifically in peripheral artery disease (PAD). Ischemia is a potentially life-threatening complication in PAD, which affects a significant percentage of the elderly population. While studies on inducing angiogenesis to treat PAD were started two decades ago, early results from animal models as well as clinical trials have not yet been translated into clinical practice. We examine some of the challenges encountered during such translation. We further note the need for sustained angiogenic effect involving whole growth factor, gene therapy and synthetic growth factor strategies. Finally, we discuss the need for tissue depots for de novo formation of microvasculature. These scaffolds can act as templates for neovasculature development to improve circulation and healing at the preferred anatomical location.
Collapse
Affiliation(s)
| | - Ravi Vissapragada
- Department of Gastrointestinal Surgery, Flinders Medical Centre, 5042 Bedford Park, South Australia, Australia.
| | - Siyu Shi
- Department of Medicine Stanford School of Medicine, Stanford, CA 94305, USA.
| | - Zain Siddiqui
- Department of Biomedical Engineering, Newark, NJ 07102, USA.
| | - Ka Kyung Kim
- Department of Biomedical Engineering, Newark, NJ 07102, USA.
| | - Biplab Sarkar
- Department of Biomedical Engineering, Newark, NJ 07102, USA.
| | - Vivek A Kumar
- Department of Biomedical Engineering, Newark, NJ 07102, USA.
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA.
- Rutgers School of Dental Medicine, Newark, NJ 07103, USA.
| |
Collapse
|
49
|
Amengual-Peñafiel L, Brañes-Aroca M, Marchesani-Carrasco F, Jara-Sepúlveda MC, Parada-Pozas L, Cartes-Velásquez R. Coupling between Osseointegration and Mechanotransduction to Maintain Foreign Body Equilibrium in the Long-Term: A Comprehensive Overview. J Clin Med 2019; 8:E139. [PMID: 30691022 PMCID: PMC6407014 DOI: 10.3390/jcm8020139] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/22/2019] [Accepted: 01/22/2019] [Indexed: 12/15/2022] Open
Abstract
The permanent interaction between bone tissue and the immune system shows us the complex biology of the tissue in which we insert oral implants. At the same time, new knowledge in relation to the interaction of materials and the host, reveals to us the true nature of osseointegration. So, to achieve clinical success or perhaps most importantly, to understand why we sometimes fail, the study of oral implantology should consider the following advice equally important: a correct clinical protocol, the study of the immunomodulatory capacity of the device and the osteoimmunobiology of the host. Although osseointegration may seem adequate from the clinical point of view, a deeper vision shows us that a Foreign Body Equilibrium could be susceptible to environmental conditions. This is why maintaining this cellular balance should become our therapeutic target and, more specifically, the understanding of the main cell involved, the macrophage. The advent of new information, the development of new implant surfaces and the introduction of new therapeutic proposals such as therapeutic mechanotransduction, will allow us to maintain a healthy host-implant relationship long-term.
Collapse
Affiliation(s)
| | | | | | | | - Leopoldo Parada-Pozas
- Regenerative Medicine Center, Hospital Clínico de Viña del Mar, Viña del Mar 2520626, Chile.
| | - Ricardo Cartes-Velásquez
- School of Dentistry, Universidad Andres Bello, Concepción 4300866, Chile.
- Institute of Biomedical Sciences, Universidad Autónoma de Chile, Temuco 4810101, Chile.
| |
Collapse
|
50
|
Kumar M, Gupta P, Bhattacharjee S, Nandi SK, Mandal BB. Immunomodulatory injectable silk hydrogels maintaining functional islets and promoting anti-inflammatory M2 macrophage polarization. Biomaterials 2018; 187:1-17. [DOI: 10.1016/j.biomaterials.2018.09.037] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/28/2018] [Accepted: 09/23/2018] [Indexed: 02/08/2023]
|