1
|
Blondeel E, Peirsman A, Vermeulen S, Piccinini F, De Vuyst F, Estêvão D, Al-Jamei S, Bedeschi M, Castellani G, Cruz T, Dedeyne S, Oliveira MJ, Kawakita S, Nguyen HT, Kunz-Schughart LA, Lee S, Marino N, Steigemann P, Takayama S, Tesei A, Zablowsky N, Blondeel P, De Wever O. The Spheroid Light Microscopy Image Atlas for morphometrical analysis of three-dimensional cell cultures. Sci Data 2025; 12:283. [PMID: 39962061 PMCID: PMC11833042 DOI: 10.1038/s41597-025-04441-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 01/09/2025] [Indexed: 02/20/2025] Open
Abstract
The application of three-dimensional (3D) cell cultures such as spheroids and organoids is growing in popularity both in academia and industry. However, morphology of the 3D architecture remains remarkably understudied. Here, we introduce an open-access Spheroid Light Microscopy Image Atlas (SLiMIA) that can serve as a training set for morphology studies of 3D cell cultures. We provide images with a variety of metadata: 9 microscopes, 47 cell lines, 8 culture media, 4 spheroid formation methods and multiple cell seeding densities; totalling approximately 8,000 images of spheroids. This comprehensive dataset can guide spheroid researchers and promote economizing of resources by advancing 3D cell culture optimization, standardization and implementation by the community at large. Considering the exponentially growing interest in spheroid morphometrical analyses and the emerging technological possibilities to do so, this atlas can be applied to train and develop image segmentation models to deepen our understanding of 3D spheroid morphometry in biomedical research.
Collapse
Affiliation(s)
- Eva Blondeel
- Laboratory of Experimental Cancer Research (LECR), Ghent University, Ghent, Belgium
| | - Arne Peirsman
- Laboratory of Experimental Cancer Research (LECR), Ghent University, Ghent, Belgium.
- Plastic, Reconstructive and Aesthetic Surgery University Hospital Ghent, Ghent, Belgium.
- Terasaki Institute for Biomedical Innovation, Los Angeles, California, 90064, USA.
| | - Stephanie Vermeulen
- Laboratory of Experimental Cancer Research (LECR), Ghent University, Ghent, Belgium
| | - Filippo Piccinini
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Felix De Vuyst
- Laboratory of Experimental Cancer Research (LECR), Ghent University, Ghent, Belgium
| | - Diogo Estêvão
- Tumour and Microenvironment Interactions group, i3S - Institute for Research & Innovation in Health, Porto UnSiversity, Porto, Portugal
- ICBAS - Institute of Biomedical Sciences Abel Salazar, Porto University, Porto, Portugal
| | - Sayida Al-Jamei
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden and Helmholtz- Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Martina Bedeschi
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Gastone Castellani
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Tânia Cruz
- Tumour and Microenvironment Interactions group, i3S - Institute for Research & Innovation in Health, Porto UnSiversity, Porto, Portugal
| | - Sándor Dedeyne
- Laboratory of Experimental Cancer Research (LECR), Ghent University, Ghent, Belgium
| | - Maria José Oliveira
- Tumour and Microenvironment Interactions group, i3S - Institute for Research & Innovation in Health, Porto UnSiversity, Porto, Portugal
| | - Satoru Kawakita
- Terasaki Institute for Biomedical Innovation, Los Angeles, California, 90064, USA
| | - Huu Tuan Nguyen
- Terasaki Institute for Biomedical Innovation, Los Angeles, California, 90064, USA
| | - Leoni A Kunz-Schughart
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden and Helmholtz- Zentrum Dresden-Rossendorf, Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany
| | - Soojung Lee
- Wallace H. Coulter Department of Biomedical Engineering and Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Noemi Marino
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Patrick Steigemann
- Lead Discovery, Nuvisan ICB GmbH, Muellerstr. 178, 13342, Berlin, Germany
| | - Shuichi Takayama
- Wallace H. Coulter Department of Biomedical Engineering and Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Anna Tesei
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Nina Zablowsky
- Lead Discovery, Nuvisan ICB GmbH, Muellerstr. 178, 13342, Berlin, Germany
| | - Phillip Blondeel
- Plastic, Reconstructive and Aesthetic Surgery University Hospital Ghent, Ghent, Belgium
| | - Olivier De Wever
- Laboratory of Experimental Cancer Research (LECR), Ghent University, Ghent, Belgium.
| |
Collapse
|
2
|
Yin Z, Li L, Zhang Q, Zhang X, Shi R, Xia X, Wang Z, Li S, Ye M, Liu Y, Tan W, Chen Z. PerC B-Cells Activation via Thermogenetics-Based CXCL12 Generator for Intraperitoneal Immunity Against Metastatic Disseminated Tumor Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2411731. [PMID: 39865939 DOI: 10.1002/adma.202411731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 01/04/2025] [Indexed: 01/28/2025]
Abstract
During cancer peritoneal metastasis (PM), conventional antigen-presenting cells (dendritic cells, macrophages) promote tumorigenesis and immunosuppression in peritoneal cavity. While intraperitoneal immunotherapy (IPIT) has been used in clinical investigations to relieve PM, the limited knowledge of peritoneal immunocytes has hindered the development of therapeutic IPIT. Here, a dendritic cell-independent, next-generation IPIT is described that activates peritoneal cavity B (PerC B) cell subsets for intraperitoneal anti-tumor immunity via exogenous antigen presentation. The PerC B-cell-involved IPIT framework consists of an isotropic-porous, cell-fitting, thermogenetics-based CXCL12 generator. Such nanoscale thermal-confined generator can programmatically fine-tune the expression of CXCL12 to recruit disseminated tumor cells (DTCs) through CXCL12-CXCR4 axis while avoiding cytokine storm, subsequently release DTC-derived antigen to trigger PerC B-cell-involved immunity. Notably, antigen-presenting B-cell cluster, expressing the regulatory signaling molecules Ptpn6, Ms4a1, and Cd52, is identified playing the key role in the IPIT via single-cell RNA sequencing. Moreover, such IPIT availably assuages peritoneal effusion and PM in an orthotopic gastric cancer and metastatic model. Overall, this work offers a perspective on PerC B-cell-involved antigen-presenting in intraperitoneal immunity and provides a configurable strategy for activating anti-DTC immunity for next-generation IPIT.
Collapse
Affiliation(s)
- Zhiwei Yin
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Environmental Science and Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| | - Ling Li
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Environmental Science and Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310018, China
| | - Qiang Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Environmental Science and Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China
| | - Xiaoshen Zhang
- Department of Respiratory Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Rui Shi
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Environmental Science and Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| | - Xin Xia
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Environmental Science and Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| | - Zhaoxin Wang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Environmental Science and Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| | - Shengkai Li
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Environmental Science and Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| | - Mao Ye
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Environmental Science and Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| | - Yanlan Liu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Environmental Science and Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Environmental Science and Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310018, China
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhuo Chen
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Environmental Science and Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| |
Collapse
|
3
|
Van den Eynde A, Gehrcken L, Verhezen T, Lau HW, Hermans C, Lambrechts H, Flieswasser T, Quatannens D, Roex G, Zwaenepoel K, Marcq E, Joye P, Cardenas De La Hoz E, Deben C, Gasparini A, Montay-Gruel P, Le Compte M, Lion E, Lardon F, Van Laere S, Siozopoulou V, Campillo-Davo D, De Waele J, Pauwels P, Jacobs J, Smits E, Van Audenaerde JRM. IL-15-secreting CAR natural killer cells directed toward the pan-cancer target CD70 eliminate both cancer cells and cancer-associated fibroblasts. J Hematol Oncol 2024; 17:8. [PMID: 38331849 PMCID: PMC10854128 DOI: 10.1186/s13045-024-01525-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/11/2024] [Indexed: 02/10/2024] Open
Abstract
BACKGROUND It remains challenging to obtain positive outcomes with chimeric antigen receptor (CAR)-engineered cell therapies in solid malignancies, like colorectal cancer (CRC) and pancreatic ductal adenocarcinoma (PDAC). A major obstacle is the lack of targetable surface antigens that are not shared by healthy tissues. CD70 emerges as interesting target, due to its stringent expression pattern in healthy tissue and its apparent role in tumor progression in a considerable amount of malignancies. Moreover, CD70 is also expressed on cancer-associated fibroblasts (CAFs), another roadblock for treatment efficacy in CRC and PDAC. We explored the therapeutic potential of CD70 as target for CAR natural killer (NK) cell therapy in CRC, PDAC, focusing on tumor cells and CAFs, and lymphoma. METHODS RNA-seq data and immunohistochemical analysis of patient samples were used to explore CD70 expression in CRC and PDAC patients. In addition, CD70-targeting CAR NK cells were developed to assess cytotoxic activity against CD70+ tumor cells and CAFs, and the effect of cytokine stimulation on their efficacy was evaluated. The in vitro functionality of CD70-CAR NK cells was investigated against a panel of tumor and CAF cell lines with varying CD70 expression. Lymphoma-bearing mice were used to validate in vivo potency of CD70-CAR NK cells. Lastly, to consider patient variability, CD70-CAR NK cells were tested on patient-derived organoids containing CAFs. RESULTS In this study, we identified CD70 as a target for tumor cells and CAFs in CRC and PDAC patients. Functional evaluation of CD70-directed CAR NK cells indicated that IL-15 stimulation is essential to obtain effective elimination of CD70+ tumor cells and CAFs, and to improve tumor burden and survival of mice bearing CD70+ tumors. Mechanistically, IL-15 stimulation resulted in improved potency of CD70-CAR NK cells by upregulating CAR expression and increasing secretion of pro-inflammatory cytokines, in a mainly autocrine or intracellular manner. CONCLUSIONS We disclose CD70 as an attractive target both in hematological and solid tumors. IL-15 armored CAR NK cells act as potent effectors to eliminate these CD70+ cells. They can target both tumor cells and CAFs in patients with CRC and PDAC, and potentially other desmoplastic solid tumors.
Collapse
Affiliation(s)
- Astrid Van den Eynde
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium.
| | - Laura Gehrcken
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
| | - Tias Verhezen
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
| | - Ho Wa Lau
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
| | - Christophe Hermans
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
| | - Hilde Lambrechts
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
| | - Tal Flieswasser
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
| | - Delphine Quatannens
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
| | - Gils Roex
- Laboratory of Experimental Hematology (LEH), Vaccine and Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, Edegem, Belgium
| | - Karen Zwaenepoel
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
- Department of Pathology, Antwerp University Hospital, Edegem, Belgium
| | - Elly Marcq
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
- Lab of Dendritic Cell Biology and Cancer Immunotherapy, VIB Center for Inflammation Research, Brussels, Belgium
- Brussels Center for Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Philippe Joye
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Wilrijk, Belgium
| | | | - Christophe Deben
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
| | - Alessia Gasparini
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
- Iridium Netwerk, Radiation Oncology, Antwerp, Belgium
| | - Pierre Montay-Gruel
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
- Iridium Netwerk, Radiation Oncology, Antwerp, Belgium
| | - Maxim Le Compte
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
| | - Eva Lion
- Laboratory of Experimental Hematology (LEH), Vaccine and Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, Edegem, Belgium
- Center for Cell Therapy and Regenerative Medicine (CCRG), Antwerp University Hospital, Edegem, Belgium
| | - Filip Lardon
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
| | - Steven Van Laere
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
- Department of Pathology, Antwerp University Hospital, Edegem, Belgium
| | - Vasiliki Siozopoulou
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
- University Hospital Saint-Luc, University of Louvain, Brussels, Belgium
| | - Diana Campillo-Davo
- Laboratory of Experimental Hematology (LEH), Vaccine and Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, Edegem, Belgium
| | - Jorrit De Waele
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
| | - Patrick Pauwels
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
- Department of Pathology, Antwerp University Hospital, Edegem, Belgium
| | - Julie Jacobs
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
| | - Evelien Smits
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
| | - Jonas R M Van Audenaerde
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
4
|
Demuytere J, Carlier C, Van de Sande L, Hoorens A, De Clercq K, Giordano S, Morosi L, Matteo C, Zucchetti M, Davoli E, Van Dorpe J, Vervaet C, Ceelen W. Preclinical Activity of Two Paclitaxel Nanoparticle Formulations After Intraperitoneal Administration in Ovarian Cancer Murine Xenografts. Int J Nanomedicine 2024; 19:429-440. [PMID: 38260242 PMCID: PMC10800285 DOI: 10.2147/ijn.s424045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/30/2023] [Indexed: 01/24/2024] Open
Abstract
Background Epithelial ovarian cancer is associated with high mortality due to diagnosis at later stages associated with peritoneal involvement. Several trials have evaluated the effect of intraperitoneal treatment. In this preclinical study, we report the efficacy, pharmacokinetics and pharmacodynamics of intraperitoneal treatment with two approved nanomolecular formulations of paclitaxel (nab-PTX and mic-PTX) in a murine ovarian cancer xenograft model. Methods IC50 was determined in vitro on three ovarian cancer cell lines (OVCAR-3, SK-OV-3 and SK-OV-3-Luc IP1). EOC xenografts were achieved using a modified subperitoneal implantation technique. Drug treatment was initiated 2 weeks after engraftment, and tumor volume and survival were assessed. Pharmacokinetics and drug distribution effects were assessed using UHPLC-MS/MS and MALDI imaging mass spectrometry, respectively. Pharmacodynamic effects were analyzed using immunohistochemistry and transmission electron microscopy using standard protocols. Results We demonstrated sub-micromolar IC50 concentrations for both formulations on three EOC cancer cell lines in vitro. Furthermore, IP administration of nab-PTX or mic-PTX lead to more than 2-fold longer survival compared to a control treatment of IP saline administration (30 days in controls, 66 days in nab-PTX treated animals, and 76 days in mic-PTX animals, respectively). We observed higher tissue uptake of drug following nab-PTX administration when compared to mic-PTX, with highest uptake after 4 hours post-treatment, and confirmed this lower uptake of mic-PTX using HPLC on digested tumor samples. Furthermore, apoptosis was not increased in tumor implants up to 24h post-treatment. Conclusion Intraperitoneal administration of both nab-PTX and mic-PTX results in a significant anticancer efficacy and survival benefit in a mouse OC xenograft model.
Collapse
Affiliation(s)
- Jesse Demuytere
- Department of GI Surgery, Ghent University Hospital, and Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Charlotte Carlier
- Department of GI Surgery, Ghent University Hospital, and Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Leen Van de Sande
- Department of GI Surgery, Ghent University Hospital, and Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Anne Hoorens
- Department of Pathology, Ghent University Hospital, Ghent, Belgium
| | - Kaat De Clercq
- Laboratory of Pharmaceutical Technology, Ghent University, Ghent, Belgium
| | - Silvia Giordano
- Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri - IRCCS, Milano, Italy
| | - Lavinia Morosi
- Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri - IRCCS, Milano, Italy
| | - Cristina Matteo
- Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri - IRCCS, Milano, Italy
| | - Massimo Zucchetti
- Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri - IRCCS, Milano, Italy
| | - Enrico Davoli
- Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri - IRCCS, Milano, Italy
| | - Jo Van Dorpe
- Department of Pathology, Ghent University Hospital, Ghent, Belgium
| | - Chris Vervaet
- Laboratory of Pharmaceutical Technology, Ghent University, Ghent, Belgium
| | - Wim Ceelen
- Department of GI Surgery, Ghent University Hospital, and Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| |
Collapse
|
5
|
Ramos Zapatero M, Tong A, Opzoomer JW, O'Sullivan R, Cardoso Rodriguez F, Sufi J, Vlckova P, Nattress C, Qin X, Claus J, Hochhauser D, Krishnaswamy S, Tape CJ. Trellis tree-based analysis reveals stromal regulation of patient-derived organoid drug responses. Cell 2023; 186:5606-5619.e24. [PMID: 38065081 DOI: 10.1016/j.cell.2023.11.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 07/27/2023] [Accepted: 11/02/2023] [Indexed: 12/18/2023]
Abstract
Patient-derived organoids (PDOs) can model personalized therapy responses; however, current screening technologies cannot reveal drug response mechanisms or how tumor microenvironment cells alter therapeutic performance. To address this, we developed a highly multiplexed mass cytometry platform to measure post-translational modification (PTM) signaling, DNA damage, cell-cycle activity, and apoptosis in >2,500 colorectal cancer (CRC) PDOs and cancer-associated fibroblasts (CAFs) in response to clinical therapies at single-cell resolution. To compare patient- and microenvironment-specific drug responses in thousands of single-cell datasets, we developed "Trellis"-a highly scalable, tree-based treatment effect analysis method. Trellis single-cell screening revealed that on-target cell-cycle blockage and DNA-damage drug effects are common, even in chemorefractory PDOs. However, drug-induced apoptosis is rarer, patient-specific, and aligns with cancer cell PTM signaling. We find that CAFs can regulate PDO plasticity-shifting proliferative colonic stem cells (proCSCs) to slow-cycling revival colonic stem cells (revCSCs) to protect cancer cells from chemotherapy.
Collapse
Affiliation(s)
- María Ramos Zapatero
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, London WC1E 6DD, UK
| | - Alexander Tong
- Department of Computer Science, Yale University, New Haven, CT, USA; Department of Computer Science and Operations Research, Université de Montréal, Montreal, QC, Canada; Mila - Quebec AI Institute, Montréal, QC, Canada
| | - James W Opzoomer
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, London WC1E 6DD, UK
| | - Rhianna O'Sullivan
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, London WC1E 6DD, UK
| | - Ferran Cardoso Rodriguez
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, London WC1E 6DD, UK
| | - Jahangir Sufi
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, London WC1E 6DD, UK
| | - Petra Vlckova
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, London WC1E 6DD, UK
| | - Callum Nattress
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, London WC1E 6DD, UK
| | - Xiao Qin
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, London WC1E 6DD, UK
| | - Jeroen Claus
- Phospho Biomedical Animation, The Greenhouse Studio 6, London N17 9QU, UK
| | - Daniel Hochhauser
- Drug-DNA Interactions Group, Department of Oncology, University College London Cancer Institute, London WC1E 6DD, UK
| | - Smita Krishnaswamy
- Department of Computer Science, Yale University, New Haven, CT, USA; Department of Genetics, Yale University, New Haven, CT, USA; Program for Computational Biology & Bioinformatics, Yale University, New Haven, CT, USA; Program for Applied Math, Yale University, New Haven, CT, USA; Wu-Tsai Institute, Yale University, New Haven, CT, USA.
| | - Christopher J Tape
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, London WC1E 6DD, UK.
| |
Collapse
|
6
|
De Vlieghere E, Van de Vijver K, Blondeel E, Carpentier N, Ghobeira R, Pauwels J, Riemann S, Minsart M, Fieuws C, Mestach J, Baeyens A, De Geyter N, Debbaut C, Denys H, Descamps B, Claes K, Vral A, Van Dorpe J, Gevaert K, De Geest BG, Ceelen W, Van Vlierberghe S, De Wever O. A preclinical platform for assessing long-term drug efficacy exploiting mechanically tunable scaffolds colonized by a three-dimensional tumor microenvironment. Biomater Res 2023; 27:104. [PMID: 37853495 PMCID: PMC10583378 DOI: 10.1186/s40824-023-00441-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 09/25/2023] [Indexed: 10/20/2023] Open
Abstract
BACKGROUND Long-term drug evaluation heavily relies upon rodent models. Drug discovery methods to reduce animal models in oncology may include three-dimensional (3D) cellular systems that take into account tumor microenvironment (TME) cell types and biomechanical properties. METHODS In this study we reconstructed a 3D tumor using an elastic polymer (acrylate-endcapped urethane-based poly(ethylene glycol) (AUPPEG)) with clinical relevant stiffness. Single cell suspensions from low-grade serous ovarian cancer (LGSOC) patient-derived early passage cultures of cancer cells and cancer-associated fibroblasts (CAF) embedded in a collagen gel were introduced to the AUPPEG scaffold. After self-organization in to a 3D tumor, this model was evaluated by a long-term (> 40 days) exposure to a drug combination of MEK and HSP90 inhibitors. The drug-response results from this long-term in vitro model are compared with drug responses in an orthotopic LGSOC xenograft mouse model. RESULTS The in vitro 3D scaffold LGSOC model mimics the growth ratio and spatial organization of the LGSOC. The AUPPEG scaffold approach allows to test new targeted treatments and monitor long-term drug responses. The results correlate with those of the orthotopic LGSOC xenograft mouse model. CONCLUSIONS The mechanically-tunable scaffolds colonized by a three-dimensional LGSOC allow long-term drug evaluation and can be considered as a valid alternative to reduce, replace and refine animal models in drug discovery.
Collapse
Affiliation(s)
- Elly De Vlieghere
- Department of Human Structure and Repair, Laboratory of Experimental Cancer Research, Ghent University, Ghent, Belgium
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Koen Van de Vijver
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University Hospital, Ghent, Belgium
| | - Eva Blondeel
- Department of Human Structure and Repair, Laboratory of Experimental Cancer Research, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Nathan Carpentier
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Rouba Ghobeira
- Department of Applied Physics, Research Unit Plasma Technology (RUPT), Ghent University, Ghent, Belgium
| | - Jarne Pauwels
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Department of Biomolecular Medicine, VIB Center for Medical Biotechnology, Ghent University, Ghent, Belgium
| | - Sebastian Riemann
- Department of Human Structure and Repair, Laboratory of Experimental Cancer Research, Ghent University, Ghent, Belgium
| | - Manon Minsart
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - Charlotte Fieuws
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Department of Biomolecular Medicine, Center for Medical Genetics, Ghent University, Ghent, Belgium
| | - Johanna Mestach
- Department of Human Structure and Repair, Laboratory of Experimental Cancer Research, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Ans Baeyens
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Department of Human Structure and Repair, Radiobiology Group, Ghent University, Ghent, Belgium
| | - Nathalie De Geyter
- Department of Applied Physics, Research Unit Plasma Technology (RUPT), Ghent University, Ghent, Belgium
| | - Charlotte Debbaut
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Department of Electronics and Information Systems, IBiTech-Biommeda, Ghent University, Ghent, Belgium
| | - Hannelore Denys
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Department of Medical Oncology, Ghent University Hospital, Ghent, Belgium
| | - Benedicte Descamps
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Department of Electronics and Information Systems, IbiTech-Medisip, Ghent University, Ghent, Belgium
| | - Kathleen Claes
- Department of Biomolecular Medicine, Center for Medical Genetics, Ghent University, Ghent, Belgium
| | - Anne Vral
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Department of Human Structure and Repair, Radiobiology Group, Ghent University, Ghent, Belgium
| | - Jo Van Dorpe
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University Hospital, Ghent, Belgium
| | - Kris Gevaert
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Department of Biomolecular Medicine, VIB Center for Medical Biotechnology, Ghent University, Ghent, Belgium
| | - Bruno G De Geest
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Department of Pharmaceutics, Ghent University, Ghent, Belgium
| | - Wim Ceelen
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Department of Human Structure and Repair, Experimental Surgery Lab, Ghent University, Ghent, Belgium
| | - Sandra Van Vlierberghe
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Olivier De Wever
- Department of Human Structure and Repair, Laboratory of Experimental Cancer Research, Ghent University, Ghent, Belgium.
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium.
- Department of Pharmaceutics, Ghent University, Ghent, Belgium.
| |
Collapse
|
7
|
Roux Q, Boiy R, De Vuyst F, Tkach M, Pinheiro C, de Geyter S, Miinalainen I, Théry C, De Wever O, Hendrix A. Depletion of soluble cytokines unlocks the immunomodulatory bioactivity of extracellular vesicles. J Extracell Vesicles 2023; 12:e12339. [PMID: 37548263 PMCID: PMC10405237 DOI: 10.1002/jev2.12339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 05/31/2023] [Accepted: 06/11/2023] [Indexed: 08/08/2023] Open
Abstract
Despite an enormous interest in understanding the bioactivity of extracellular vesicles (EV) in physiology and disease for the development of therapeutic applications, the impact of EV preparation methods remains minimally explored. In this study, we implemented density gradient ultracentrifugation combined with size-exclusion chromatography (DG-SEC), differential ultracentrifugation (dUC) and/or stand-alone SEC (sSEC) to fractionate media conditioned by different cancer cells and/or cancer-associated fibroblasts (CAF). EV-enriched but protein-depleted versus EV-depleted but protein-enriched DG-SEC fractions, and EV-containing dUC and sSEC preparations were quality controlled for particle number, protein concentration, selected protein composition and ultrastructure, characterized for their cytokine content, and dose-dependently evaluated for monocyte-derived dendritic cell (MoDC) maturation by measuring surface marker expression and/or cytokine secretion. EV preparations obtained by DG-SEC from media conditioned by different cancer cell lines or CAF, were depleted from soluble immune suppressive cytokines such as VEGF-A and MCP-1 and potently stimulated MoDC maturation. In contrast, EV-containing dUC or sSEC preparations were not depleted from these soluble cytokines and were unable to mature MoDC. Subsequent processing of dUC EV preparations by SEC dose-dependently restored the immunomodulatory bioactivity. Overall, our results demonstrate that method-dependent off-target enrichment of soluble cytokines has implications for the study of EV immunomodulatory bioactivity and warrants careful consideration.
Collapse
Affiliation(s)
- Quentin Roux
- Laboratory of Experimental Cancer Research, Department of Human Structure and RepairGhent UniversityGhentBelgium
- Cancer Research Institute GhentGhentBelgium
| | - Robin Boiy
- Laboratory of Experimental Cancer Research, Department of Human Structure and RepairGhent UniversityGhentBelgium
- Cancer Research Institute GhentGhentBelgium
| | - Felix De Vuyst
- Laboratory of Experimental Cancer Research, Department of Human Structure and RepairGhent UniversityGhentBelgium
- Cancer Research Institute GhentGhentBelgium
| | - Mercedes Tkach
- Institute CuriePSL Research University, INSERM U932ParisFrance
| | - Claudio Pinheiro
- Laboratory of Experimental Cancer Research, Department of Human Structure and RepairGhent UniversityGhentBelgium
- Cancer Research Institute GhentGhentBelgium
| | - Sofie de Geyter
- Laboratory of Experimental Cancer Research, Department of Human Structure and RepairGhent UniversityGhentBelgium
- Cancer Research Institute GhentGhentBelgium
| | | | - Clotilde Théry
- Institute CuriePSL Research University, INSERM U932ParisFrance
| | - Olivier De Wever
- Laboratory of Experimental Cancer Research, Department of Human Structure and RepairGhent UniversityGhentBelgium
- Cancer Research Institute GhentGhentBelgium
| | - An Hendrix
- Laboratory of Experimental Cancer Research, Department of Human Structure and RepairGhent UniversityGhentBelgium
- Cancer Research Institute GhentGhentBelgium
| |
Collapse
|
8
|
Zhang X, Liang S, Wang E, Tao N. Fibroblasts and mouse breast cancer cells can form cellular aggregates in improved soft agar culture medium. Mol Cell Biochem 2022; 478:1457-1464. [DOI: 10.1007/s11010-022-04603-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 10/28/2022] [Indexed: 11/12/2022]
|
9
|
Van Rymenant Y, Tanc M, Van Elzen R, Bracke A, De Wever O, Augustyns K, Lambeir AM, Kockx M, De Meester I, Van Der Veken P. In Vitro and In Situ Activity-Based Labeling of Fibroblast Activation Protein with UAMC1110-Derived Probes. Front Chem 2021; 9:640566. [PMID: 33996747 PMCID: PMC8114891 DOI: 10.3389/fchem.2021.640566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/08/2021] [Indexed: 12/29/2022] Open
Abstract
Fibroblast activation protein (FAP) is a proline-selective protease that belongs to the S9 family of serine proteases. It is typically highly expressed in the tumor microenvironment (TME) and especially in cancer-associated fibroblasts, the main cell components of the tumor stroma. The exact role of its enzymatic activity in the TME remains largely unknown. Hence, tools that enable selective, activity-based visualization of FAP within the TME can help to unravel FAP’s function. We describe the synthesis, biochemical characterization, and application of three different activity-based probes (biotin-, Cy3-, and Cy5-labeled) based on the FAP-inhibitor UAMC1110, an in-house developed molecule considered to be the most potent and selective FAP inhibitor available. We demonstrate that the three probes have subnanomolar FAP affinity and pronounced selectivity with respect to the related S9 family members. Furthermore, we report that the fluorescent Cy3- and Cy5-labeled probes are capable of selectively detecting FAP in a cellular context, making these chemical probes highly suitable for further biological studies. Moreover, proof of concept is provided for in situ FAP activity staining in patient-derived cryosections of urothelial tumors.
Collapse
Affiliation(s)
- Yentl Van Rymenant
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Muhammet Tanc
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | | | - An Bracke
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Olivier De Wever
- Laboratory of Experimental Cancer Research, Faculty of Medicine and Health Sciences, University of Ghent, Ghent, Belgium
| | - Koen Augustyns
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Anne-Marie Lambeir
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | | | - Ingrid De Meester
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Pieter Van Der Veken
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
10
|
Morris AH, Orbach SM, Bushnell GG, Oakes RS, Jeruss JS, Shea LD. Engineered Niches to Analyze Mechanisms of Metastasis and Guide Precision Medicine. Cancer Res 2020; 80:3786-3794. [PMID: 32409307 PMCID: PMC7501202 DOI: 10.1158/0008-5472.can-20-0079] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 03/04/2020] [Accepted: 05/11/2020] [Indexed: 12/20/2022]
Abstract
Cancer metastasis poses a challenging problem both clinically and scientifically, as the stochastic nature of metastatic lesion formation introduces complexity for both early detection and the study of metastasis in preclinical models. Engineered metastatic niches represent an emerging approach to address this stochasticity by creating bioengineered sites where cancer can preferentially metastasize. As the engineered niche captures the earliest metastatic cells at a nonvital location, both noninvasive and biopsy-based monitoring of these sites can be performed routinely to detect metastasis early and monitor alterations in the forming metastatic niche. The engineered metastatic niche also provides a new platform technology that serves as a tunable site to molecularly dissect metastatic disease mechanisms. Ultimately, linking the engineered niches with advances in sensor development and synthetic biology can provide enabling tools for preclinical cancer models and fosters the potential to impact the future of clinical cancer care.
Collapse
Affiliation(s)
- Aaron H Morris
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Sophia M Orbach
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Grace G Bushnell
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
- Department of Internal Medicine, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Robert S Oakes
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| | - Jacqueline S Jeruss
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan.
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Lonnie D Shea
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan.
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
11
|
Inhibition of colorectal cancer-associated fibroblasts by lipid nanocapsules loaded with acriflavine or paclitaxel. Int J Pharm 2020; 584:119337. [PMID: 32371002 DOI: 10.1016/j.ijpharm.2020.119337] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/03/2020] [Accepted: 04/14/2020] [Indexed: 12/12/2022]
Abstract
Crosstalk between cancer-associated fibroblasts (CAFs) and colorectal cancer cells promotes tumor growth and contributes to chemoresistance. In this study, we assessed the sensitivity of a primary CAF cell line, CT5.3hTERT, to standard-of-care and alternative cytotoxic treatments. Paclitaxel (PTX) and acriflavine (ACF) were identified as the most promising molecules to inhibit CAF development. To allow the translational use of both drugs, we developed lipid nanocapsule (LNC) formulations for PTX and ACF. Finally, we mixed CAFs and tumor cell lines in a cocultured spheroid, and the effect of both drugs was investigated by histological analyses. We demonstrated CAF inhibition by LNC-ACF and whole tumor inhibition by LNC-PTX. Altogether, we proposed a new strategy to reduce CAF populations in the colorectal microenvironment that should be tested in vivo.
Collapse
|
12
|
Demuytere J, Ceelen W, Van Dorpe J, Hoorens A. The role of the peritoneal microenvironment in the pathogenesis of colorectal peritoneal carcinomatosis. Exp Mol Pathol 2020; 115:104442. [PMID: 32305340 DOI: 10.1016/j.yexmp.2020.104442] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/01/2020] [Accepted: 04/15/2020] [Indexed: 01/06/2023]
Abstract
Recent insights have implicated mesothelial-to-mesenchymal transition (MMT) as a mechanism by which mesothelial cells can transdifferentiate into cancer-associated fibroblasts (CAFs) in several cancers metastasizing to the peritoneum. However, this was not evaluated extensively in colorectal cancer. We examined the presumed mesothelial origin of CAFs in three types of colorectal carcinoma: conventional type adenocarcinoma, mucinous carcinoma and signet ring cell carcinoma. We evaluated the expression of mesothelial, mesenchymal, angiogenesis and colorectal cancer-related markers in peritoneal samples of twelve colorectal cancer patients with peritoneal carcinomatosis and four control patients by immunohistochemistry. We observed morphological and immunohistochemical changes in the vicinity of tumor implants in all studied colorectal cancer types. Mesothelial cells acquired a spindle-shaped myofibroblast-like morphology, lost expression of mesothelial markers, and gained expression of mesenchymal markers. Analysis of consecutive tissue sections and double staining for mesothelial and mesenchymal markers revealed overlap in expression of mesothelial and CAF markers. These findings are highly suggestive of a mesothelial origin of CAFs in peritoneal carcinomatosis in colorectal cancer. Interfering with the process of MMT might be a valuable approach in treating and preventing peritoneal carcinomatosis. Differences observed between colorectal cancer types suggest that one single strategy might not be applicable.
Collapse
Affiliation(s)
- Jesse Demuytere
- Laboratory of Experimental Surgery, Department of Human Structure and Repair, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Wim Ceelen
- Laboratory of Experimental Surgery, Department of Human Structure and Repair, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Jo Van Dorpe
- Department of Pathology, Ghent University Hospital, Ghent, Belgium
| | - Anne Hoorens
- Department of Pathology, Ghent University Hospital, Ghent, Belgium..
| |
Collapse
|
13
|
Nguyen HV, Faivre V. Targeted drug delivery therapies inspired by natural taxes. J Control Release 2020; 322:439-456. [PMID: 32259545 DOI: 10.1016/j.jconrel.2020.04.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 12/18/2022]
Abstract
A taxis is the movement responding to a stimulus of an organism. This behavior helps organisms to migrate, to find food or to avoid dangers. By mimicking and using natural taxes, many bio-inspired and bio-hybrid drug delivery systems have been synthesized. Under the guidance of physical and chemical stimuli, drug-loaded carriers are led to a target, for example tumors, then locally release the drug, inducing a therapeutic effect without influencing other parts of the body. On the other hand, for moving targets, for example metastasis cancer cells or bacteria, taking advantage of their taxes behavior is a solution to capture and to eliminate them. For instance, several traps and ecological niches have been fabricated to attract cancer cells by releasing chemokines. Cancer cells are then eliminated by drug loaded inside the trap, by radiotherapy focusing on the trap location or by simply removing the trap. Further research is needed to deeply understand the taxis behavior of organisms, which is essential to ameliorate the performance of taxes-inspired drug delivery application.
Collapse
Affiliation(s)
- Hung V Nguyen
- Université Paris-Saclay, CNRS, Institut Galien Paris Sud, 5 rue JB Clément, 92296 Châtenay-Malabry, France
| | - Vincent Faivre
- Université Paris-Saclay, CNRS, Institut Galien Paris Sud, 5 rue JB Clément, 92296 Châtenay-Malabry, France.
| |
Collapse
|
14
|
Laplagne C, Domagala M, Le Naour A, Quemerais C, Hamel D, Fournié JJ, Couderc B, Bousquet C, Ferrand A, Poupot M. Latest Advances in Targeting the Tumor Microenvironment for Tumor Suppression. Int J Mol Sci 2019; 20:E4719. [PMID: 31547627 PMCID: PMC6801830 DOI: 10.3390/ijms20194719] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 12/13/2022] Open
Abstract
The tumor bulk is composed of a highly heterogeneous population of cancer cells, as well as a large variety of resident and infiltrating host cells, extracellular matrix proteins, and secreted proteins, collectively known as the tumor microenvironment (TME). The TME is essential for driving tumor development by promoting cancer cell survival, migration, metastasis, chemoresistance, and the ability to evade the immune system responses. Therapeutically targeting tumor-associated macrophages (TAMs), cancer-associated fibroblasts (CAFs), regulatory T-cells (T-regs), and mesenchymal stromal/stem cells (MSCs) is likely to have an impact in cancer treatment. In this review, we focus on describing the normal physiological functions of each of these cell types and their behavior in the cancer setting. Relying on the specific surface markers and secreted molecules in this context, we review the potential targeting of these cells inducing their depletion, reprogramming, or differentiation, or inhibiting their pro-tumor functions or recruitment. Different approaches were developed for this targeting, namely, immunotherapies, vaccines, small interfering RNA, or small molecules.
Collapse
Affiliation(s)
- Chloé Laplagne
- Centre de Recherches en Cancérologie de Toulouse, Inserm UMR1037, 31037 Toulouse, France.
- Université Toulouse III Paul-Sabatier, 31400 Toulouse, France.
- ERL 5294 CNRS, 31037 Toulouse, France.
| | - Marcin Domagala
- Centre de Recherches en Cancérologie de Toulouse, Inserm UMR1037, 31037 Toulouse, France.
- Université Toulouse III Paul-Sabatier, 31400 Toulouse, France.
- ERL 5294 CNRS, 31037 Toulouse, France.
| | - Augustin Le Naour
- Centre de Recherches en Cancérologie de Toulouse, Inserm UMR1037, 31037 Toulouse, France.
- Université Toulouse III Paul-Sabatier, 31400 Toulouse, France.
- Institut Claudius Regaud, IUCT-Oncopole, 31000 Toulouse, France.
| | - Christophe Quemerais
- Centre de Recherches en Cancérologie de Toulouse, Inserm UMR1037, 31037 Toulouse, France.
- Université Toulouse III Paul-Sabatier, 31400 Toulouse, France.
- ERL 5294 CNRS, 31037 Toulouse, France.
| | - Dimitri Hamel
- Université Toulouse III Paul-Sabatier, 31400 Toulouse, France.
- Institut de Recherche en Santé Digestive, Inserm U1220, INRA, ENVT, 31024 Toulouse, France.
| | - Jean-Jacques Fournié
- Centre de Recherches en Cancérologie de Toulouse, Inserm UMR1037, 31037 Toulouse, France.
- Université Toulouse III Paul-Sabatier, 31400 Toulouse, France.
- ERL 5294 CNRS, 31037 Toulouse, France.
| | - Bettina Couderc
- Centre de Recherches en Cancérologie de Toulouse, Inserm UMR1037, 31037 Toulouse, France.
- Université Toulouse III Paul-Sabatier, 31400 Toulouse, France.
- Institut Claudius Regaud, IUCT-Oncopole, 31000 Toulouse, France.
| | - Corinne Bousquet
- Centre de Recherches en Cancérologie de Toulouse, Inserm UMR1037, 31037 Toulouse, France.
- Université Toulouse III Paul-Sabatier, 31400 Toulouse, France.
- ERL 5294 CNRS, 31037 Toulouse, France.
| | - Audrey Ferrand
- Université Toulouse III Paul-Sabatier, 31400 Toulouse, France.
- Institut de Recherche en Santé Digestive, Inserm U1220, INRA, ENVT, 31024 Toulouse, France.
| | - Mary Poupot
- Centre de Recherches en Cancérologie de Toulouse, Inserm UMR1037, 31037 Toulouse, France.
- Université Toulouse III Paul-Sabatier, 31400 Toulouse, France.
- ERL 5294 CNRS, 31037 Toulouse, France.
| |
Collapse
|
15
|
Najberg M, Haji Mansor M, Boury F, Alvarez-Lorenzo C, Garcion E. Reversing the Tumor Target: Establishment of a Tumor Trap. Front Pharmacol 2019; 10:887. [PMID: 31456685 PMCID: PMC6699082 DOI: 10.3389/fphar.2019.00887] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 07/15/2019] [Indexed: 12/19/2022] Open
Abstract
Despite the tremendous progress made in the field of cancer therapy in recent years, certain solid tumors still cannot be successfully treated. Alongside classical treatments in the form of chemotherapy and/or radiotherapy, targeted treatments such as immunotherapy that cause fewer side effects emerge as new options in the clinics. However, these alternative treatments may not be useful for treating all types of cancers, especially for killing infiltrative and circulating tumor cells (CTCs). Recent advances pursue the trapping of these cancer cells within a confined area to facilitate their removal for therapeutic and diagnostic purposes. A good understanding of the mechanisms behind tumor cell migration may drive the design of traps that mimic natural tumor niches and guide the movement of the cancer cells. To bring this trapping idea into reality, strong efforts are being made to create structured materials that imitate myelinated fibers, blood vessels, or pre-metastatic niches and incorporate chemical cues such as chemoattractants or adhesive proteins. In this review, the different strategies used (or could be used) to trap tumor cells are described, and relevant examples of their performance are analyzed.
Collapse
Affiliation(s)
- Mathie Najberg
- CRCINA, INSERM, Université de Nantes, Université d’Angers, Angers, France
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, R + D Pharma Group (GI-1645), Facultad de Farmacia, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Muhammad Haji Mansor
- CRCINA, INSERM, Université de Nantes, Université d’Angers, Angers, France
- Center for Education and Research on Macromolecules (CERM), Université de Liège, Liège, Belgium
| | - Frank Boury
- CRCINA, INSERM, Université de Nantes, Université d’Angers, Angers, France
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, R + D Pharma Group (GI-1645), Facultad de Farmacia, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Emmanuel Garcion
- CRCINA, INSERM, Université de Nantes, Université d’Angers, Angers, France
| |
Collapse
|
16
|
Ieranò C, D'Alterio C, Giarra S, Napolitano M, Rea G, Portella L, Santagata A, Trotta AM, Barbieri A, Campani V, Luciano A, Arra C, Anniciello AM, Botti G, Mayol L, De Rosa G, Pacelli R, Scala S. CXCL12 loaded-dermal filler captures CXCR4 expressing melanoma circulating tumor cells. Cell Death Dis 2019; 10:562. [PMID: 31332163 PMCID: PMC6646345 DOI: 10.1038/s41419-019-1796-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 07/02/2019] [Accepted: 07/04/2019] [Indexed: 12/22/2022]
Abstract
Development of distant metastasis relies on interactions between cancer and stromal cells. CXCL12, also known as stromal-derived factor 1α (SDF-1α), is a major chemokine constitutively secreted in bone marrow, lymph nodes, liver and lung, playing a critical role in the migration and seeding of neoplastic cells. CXCL12 activates the CXCR4 receptor that is overexpressed in several human cancer cells. Recent evidence reveals that tumors induce pre-metastatic niches in target organ producing tumor-derived factors. Pre-metastatic niches represent a tumor growth-favoring microenvironment in absence of cancer cells. A commercially available dermal filler, hyaluronic acid (HA) -based gel, loaded with CXCL12 (CLG) reproduced a "fake" pre-metastatic niche. In vitro, B16-hCXCR4-GFP, human cxcr4 expressing murine melanoma cells efficiently migrated toward CLG. In vivo, CLGs and empty gels (EGs) were subcutaneously injected into C57BL/6 mice and 5 days later B16-hCXCR4-GFP cells were intravenously inoculated. CLGs were able to recruit a significantly higher number of B16-hCXCR4-GFP cells as compared to EGs, with reduced lung metastasis in mice carrying CLG. CLG were infiltrated by higher number of CD45-positive leukocytes, mainly neutrophils CD11b+Ly6G+ cells, myeloid CD11b+Ly6G- and macrophages F4/80. CLG recovered cells recapitulated the features of B16-hCXCR4-GFP (epithelial, melanin rich, MELAN A/ S100/ c-Kit/CXCR4 pos; α-SMA neg). Thus a HA-based dermal filler loaded with CXCL12 can attract and trap CXCR4+tumor cells. The CLG trapped cells can be recovered and biologically characterized. As a corollary, a reduction in CXCR4 dependent lung metastasis was detected.
Collapse
Affiliation(s)
- Caterina Ieranò
- Functional Genomics, Istituto Nazionale Tumori - IRCCS - Fondazione "G. Pascale", Napoli, Italy
| | - Crescenzo D'Alterio
- Functional Genomics, Istituto Nazionale Tumori - IRCCS - Fondazione "G. Pascale", Napoli, Italy
| | - Simona Giarra
- Department of Pharmacy, Federico II University, Napoli, Italy
| | - Maria Napolitano
- Functional Genomics, Istituto Nazionale Tumori - IRCCS - Fondazione "G. Pascale", Napoli, Italy
| | - Giuseppina Rea
- Functional Genomics, Istituto Nazionale Tumori - IRCCS - Fondazione "G. Pascale", Napoli, Italy
| | - Luigi Portella
- Functional Genomics, Istituto Nazionale Tumori - IRCCS - Fondazione "G. Pascale", Napoli, Italy
| | - Assunta Santagata
- Functional Genomics, Istituto Nazionale Tumori - IRCCS - Fondazione "G. Pascale", Napoli, Italy
| | - Anna Maria Trotta
- Functional Genomics, Istituto Nazionale Tumori - IRCCS - Fondazione "G. Pascale", Napoli, Italy
| | - Antonio Barbieri
- Animal Facility, Istituto Nazionale Tumori - IRCCS - Fondazione "G. Pascale", Napoli, Italy
| | | | - Antonio Luciano
- Animal Facility, Istituto Nazionale Tumori - IRCCS - Fondazione "G. Pascale", Napoli, Italy
| | - Claudio Arra
- Animal Facility, Istituto Nazionale Tumori - IRCCS - Fondazione "G. Pascale", Napoli, Italy
| | - Anna Maria Anniciello
- Pathology Unit, Istituto Nazionale Tumori - IRCCS - Fondazione "G. Pascale", Napoli, Italy
| | - Gerardo Botti
- Pathology Unit, Istituto Nazionale Tumori - IRCCS - Fondazione "G. Pascale", Napoli, Italy
| | - Laura Mayol
- Department of Pharmacy, Federico II University, Napoli, Italy
| | | | - Roberto Pacelli
- Department of Advanced Biomedical Sciences, Federico II University School of Medicine, Napoli, Italy
| | - Stefania Scala
- Functional Genomics, Istituto Nazionale Tumori - IRCCS - Fondazione "G. Pascale", Napoli, Italy.
| |
Collapse
|
17
|
Gieniec KA, Butler LM, Worthley DL, Woods SL. Cancer-associated fibroblasts-heroes or villains? Br J Cancer 2019; 121:293-302. [PMID: 31289350 PMCID: PMC6738083 DOI: 10.1038/s41416-019-0509-3] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 05/19/2019] [Accepted: 05/22/2019] [Indexed: 01/05/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs) were originally presumed to represent a homogeneous population uniformly driving tumorigenesis, united by their morphology and peritumoural location. Our understanding of CAFs has since been shaped by sophisticated in vitro and in vivo experiments, pathological association and, more recently, ablation, and it is now widely appreciated that CAFs form a group of highly heterogeneous cells with no single overarching marker. Studies have demonstrated that the CAF population contains different subtypes based on the expression of marker proteins with the capacity to promote or inhibit cancer, with their biological role as accomplices or adversaries dependent on many factors, including the cancer stage. So, while CAFs have been endlessly shown to promote the growth, survival and spread of tumours via improvements in functionality and an altered secretome, they are also capable of retarding tumorigenesis via largely unknown mechanisms. It is important to reconcile these disparate results so that the functions of, or factors produced by, tumour-promoting subtypes can be specifically targeted to improve cancer patient outcomes. This review will dissect out CAF complexity and CAF-directed cancer treatment strategies in order to provide a case for future, rational therapies.
Collapse
Affiliation(s)
- Krystyna A Gieniec
- School of Medicine, University of Adelaide, Adelaide, SA, Australia.,Precision Medicine, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Lisa M Butler
- School of Medicine, University of Adelaide, Adelaide, SA, Australia.,Precision Medicine, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Daniel L Worthley
- Precision Medicine, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Susan L Woods
- School of Medicine, University of Adelaide, Adelaide, SA, Australia. .,Precision Medicine, South Australian Health and Medical Research Institute, Adelaide, SA, Australia.
| |
Collapse
|
18
|
Depetter Y, Geurs S, De Vreese R, Goethals S, Vandoorn E, Laevens A, Steenbrugge J, Meyer E, de Tullio P, Bracke M, D'hooghe M, De Wever O. Selective pharmacological inhibitors of HDAC6 reveal biochemical activity but functional tolerance in cancer models. Int J Cancer 2019; 145:735-747. [DOI: 10.1002/ijc.32169] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/14/2018] [Accepted: 01/22/2019] [Indexed: 02/03/2023]
Affiliation(s)
- Yves Depetter
- SynBioC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering; Ghent University; Ghent Belgium
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences; Ghent University; Ghent Belgium
- Cancer Research Institute Ghent (CRIG); Ghent Belgium
| | - Silke Geurs
- SynBioC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering; Ghent University; Ghent Belgium
| | - Rob De Vreese
- SynBioC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering; Ghent University; Ghent Belgium
| | - Sophie Goethals
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences; Ghent University; Ghent Belgium
| | - Elien Vandoorn
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences; Ghent University; Ghent Belgium
| | - Alien Laevens
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences; Ghent University; Ghent Belgium
| | - Jonas Steenbrugge
- Laboratory of Biochemistry, Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine; Ghent University; Merelbeke Belgium
| | - Evelyne Meyer
- Cancer Research Institute Ghent (CRIG); Ghent Belgium
- Laboratory of Biochemistry, Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine; Ghent University; Merelbeke Belgium
| | - Pascal de Tullio
- Center for Interdisciplinary Research on Medicines (CIRM), Metabolomics Group; Université de Liège; Liège Belgium
| | - Marc Bracke
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences; Ghent University; Ghent Belgium
- Cancer Research Institute Ghent (CRIG); Ghent Belgium
| | - Matthias D'hooghe
- SynBioC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering; Ghent University; Ghent Belgium
| | - Olivier De Wever
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences; Ghent University; Ghent Belgium
- Cancer Research Institute Ghent (CRIG); Ghent Belgium
| |
Collapse
|
19
|
Carlier C, Strese S, Viktorsson K, Velander E, Nygren P, Uustalu M, Juntti T, Lewensohn R, Larsson R, Spira J, De Vlieghere E, Ceelen WP, Gullbo J. Preclinical activity of melflufen (J1) in ovarian cancer. Oncotarget 2018; 7:59322-59335. [PMID: 27528037 PMCID: PMC5312315 DOI: 10.18632/oncotarget.11163] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 07/19/2016] [Indexed: 12/12/2022] Open
Abstract
Ovarian cancer carries a significant mortality. Since symptoms tend to be minimal, the disease is often diagnosed when peritoneal metastases are already present. The standard of care in advanced ovarian cancer consists of platinum-based chemotherapy combined with cytoreductive surgery. Unfortunately, even after optimal cytoreduction and adjuvant chemotherapy, most patients with stage III disease will develop a recurrence. Intraperitoneal administration of chemotherapy is an alternative treatment for patients with localized disease. The pharmacological and physiochemical properties of melflufen, a peptidase potentiated alkylator, raised the hypothesis that this drug could be useful in ovarian cancer and particularily against peritoneal carcinomatosis. In this study the preclinical effects of melflufen were investigated in different ovarian cancer models. Melflufen was active against ovarian cancer cell lines, primary cultures of patient-derived ovarian cancer cells, and inhibited the growth of subcutaneous A2780 ovarian cancer xenografts alone and when combined with gemcitabine or liposomal doxorubicin when administered intravenously. In addition, an intra- and subperitoneal xenograft model showed activity of intraperitoneal administered melflufen for peritoneal carcinomatosis, with minimal side effects and modest systemic exposure. In conclusion, results from this study support further investigations of melflufen for the treatment of peritoneal carcinomatosis from ovarian cancer, both for intravenous and intraperitoneal administration.
Collapse
Affiliation(s)
- Charlotte Carlier
- Department of Surgery, Laboratory of Experimental Surgery, Ghent University, Ghent, Belgium
| | - Sara Strese
- Department of Medical Sciences, Division of Cancer Pharmacology and Computational Medicine, Uppsala University, Uppsala, Sweden
| | - Kristina Viktorsson
- Department of Oncology and Pathology, Karolinska Biomics Center, Karolinska Institutet, Stockholm, Sweden
| | - Ebba Velander
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Peter Nygren
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | | | - Therese Juntti
- Department of Oncology and Pathology, Karolinska Biomics Center, Karolinska Institutet, Stockholm, Sweden.,Oncopeptides AB, Stockholm, Sweden
| | - Rolf Lewensohn
- Department of Oncology and Pathology, Karolinska Biomics Center, Karolinska Institutet, Stockholm, Sweden
| | - Rolf Larsson
- Department of Medical Sciences, Division of Cancer Pharmacology and Computational Medicine, Uppsala University, Uppsala, Sweden
| | - Jack Spira
- Present address: InSpira Medical AB, Tyresö, Sweden
| | - Elly De Vlieghere
- Radiation Oncology and Experimental Cancer Research, Laboratory of Experimental Cancer Research, Ghent University, Ghent, Belgium
| | - Wim P Ceelen
- Department of Surgery, Laboratory of Experimental Surgery, Ghent University, Ghent, Belgium
| | - Joachim Gullbo
- Department of Medical Sciences, Division of Cancer Pharmacology and Computational Medicine, Uppsala University, Uppsala, Sweden.,Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
20
|
De Jaeghere E, De Vlieghere E, Van Hoorick J, Van Vlierberghe S, Wagemans G, Pieters L, Melsens E, Praet M, Van Dorpe J, Boone MN, Ghobeira R, De Geyter N, Bracke M, Vanhove C, Neyt S, Berx G, De Geest BG, Dubruel P, Declercq H, Ceelen W, De Wever O. Heterocellular 3D scaffolds as biomimetic to recapitulate the tumor microenvironment of peritoneal metastases in vitro and in vivo. Biomaterials 2017; 158:95-105. [PMID: 29306747 DOI: 10.1016/j.biomaterials.2017.12.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/20/2017] [Accepted: 12/21/2017] [Indexed: 01/01/2023]
Abstract
Peritoneal metastasis is a major cause of death and preclinical models are urgently needed to enhance therapeutic progress. This study reports on a hybrid hydrogel-polylactic acid (PLA) scaffold that mimics the architecture of peritoneal metastases at the qualitative, quantitative and spatial level. Porous PLA scaffolds with controllable pore size, geometry and surface properties are functionalized by type I collagen hydrogel. Co-seeding of cancer-associated fibroblasts (CAF) increases cancer cell adhesion, recovery and exponential growth by in situ heterocellular spheroid formation. Scaffold implantation into the peritoneum allows long-term follow-up (>14 weeks) and results in a time-dependent increase in vascularization, which correlates with cancer cell colonization in vivo. CAF, endothelial cells, macrophages and cancer cells show spatial and quantitative aspects as similarly observed in patient-derived peritoneal metastases. CAF provide long-term secretion of complementary paracrine factors implicated in spheroid formation in vitro as well as in recruitment and organization of host cells in vivo. In conclusion, the multifaceted heterocellular interactions that occur within peritoneal metastases are reproduced in this tissue-engineered implantable scaffold model.
Collapse
Affiliation(s)
- Emiel De Jaeghere
- Laboratory Experimental Cancer Research (LECR), Ghent University, De Pintelaan 185, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University, De Pintelaan 185, 9000 Ghent, Belgium
| | - Elly De Vlieghere
- Laboratory Experimental Cancer Research (LECR), Ghent University, De Pintelaan 185, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University, De Pintelaan 185, 9000 Ghent, Belgium
| | - Jasper Van Hoorick
- Polymer Chemistry & Biomaterials Group, Centre of Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4-Bis, 9000 Ghent, Belgium
| | - Sandra Van Vlierberghe
- Polymer Chemistry & Biomaterials Group, Centre of Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4-Bis, 9000 Ghent, Belgium
| | - Glenn Wagemans
- Laboratory Experimental Cancer Research (LECR), Ghent University, De Pintelaan 185, 9000 Ghent, Belgium
| | - Leen Pieters
- Department of Basic Medical Sciences, Ghent University, De Pintelaan 185, 9000 Ghent, Belgium
| | - Elodie Melsens
- Experimental Surgery Lab, Department of Surgery, Ghent University, De Pintelaan 185, 9000 Ghent, Belgium
| | - Marleen Praet
- Department of Pathology, Ghent University Hospital, Ghent University, De Pintelaan 185, 9000 Ghent, Belgium
| | - Jo Van Dorpe
- Cancer Research Institute Ghent (CRIG), Ghent University, De Pintelaan 185, 9000 Ghent, Belgium; Department of Pathology, Ghent University Hospital, Ghent University, De Pintelaan 185, 9000 Ghent, Belgium
| | - Matthieu N Boone
- Department of Physics and Astronomy, Ghent University, Proeftuinstraat 86, 9000 Ghent, Belgium
| | - Rouba Ghobeira
- Department of Applied Physics, Research Unit Plasma Technology (RUPT), Ghent University, Sint-Pietersnieuwstraat 41, B4, 9000 Ghent, Belgium
| | - Nathalie De Geyter
- Department of Applied Physics, Research Unit Plasma Technology (RUPT), Ghent University, Sint-Pietersnieuwstraat 41, B4, 9000 Ghent, Belgium
| | - Marc Bracke
- Laboratory Experimental Cancer Research (LECR), Ghent University, De Pintelaan 185, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University, De Pintelaan 185, 9000 Ghent, Belgium
| | - Christian Vanhove
- Cancer Research Institute Ghent (CRIG), Ghent University, De Pintelaan 185, 9000 Ghent, Belgium; Institute Biomedical Technology, Ghent University, De Pintelaan 185, 9000 Ghent, Belgium
| | - Sara Neyt
- MOLECUBES NV, Ottergemsesteenweg-Zuid 808, 325 Ghent, Belgium
| | - Geert Berx
- Cancer Research Institute Ghent (CRIG), Ghent University, De Pintelaan 185, 9000 Ghent, Belgium; Department of Biomedical Molecular Biology, Unit of Molecular and Cellular Oncology, Inflammation Research Center, VIB, Technologiepark Zwijnaarde 927, 9052 Ghent, Belgium
| | - Bruno G De Geest
- Cancer Research Institute Ghent (CRIG), Ghent University, De Pintelaan 185, 9000 Ghent, Belgium; Department of Pharmaceutics, Ghent University, Ottergemstesteenweg 460, 9000 Ghent, Belgium
| | - Peter Dubruel
- Polymer Chemistry & Biomaterials Group, Centre of Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4-Bis, 9000 Ghent, Belgium
| | - Heidi Declercq
- Cancer Research Institute Ghent (CRIG), Ghent University, De Pintelaan 185, 9000 Ghent, Belgium; Department of Basic Medical Sciences, Ghent University, De Pintelaan 185, 9000 Ghent, Belgium
| | - Wim Ceelen
- Cancer Research Institute Ghent (CRIG), Ghent University, De Pintelaan 185, 9000 Ghent, Belgium; Experimental Surgery Lab, Department of Surgery, Ghent University, De Pintelaan 185, 9000 Ghent, Belgium
| | - Olivier De Wever
- Laboratory Experimental Cancer Research (LECR), Ghent University, De Pintelaan 185, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University, De Pintelaan 185, 9000 Ghent, Belgium.
| |
Collapse
|
21
|
Tommelein J, De Vlieghere E, Verset L, Melsens E, Leenders J, Descamps B, Debucquoy A, Vanhove C, Pauwels P, Gespach CP, Vral A, De Boeck A, Haustermans K, de Tullio P, Ceelen W, Demetter P, Boterberg T, Bracke M, De Wever O. Radiotherapy-Activated Cancer-Associated Fibroblasts Promote Tumor Progression through Paracrine IGF1R Activation. Cancer Res 2017; 78:659-670. [PMID: 29217764 DOI: 10.1158/0008-5472.can-17-0524] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 07/26/2017] [Accepted: 11/21/2017] [Indexed: 01/01/2023]
Abstract
Preoperative radiotherapy (RT) is a mainstay in the management of rectal cancer, a tumor characterized by desmoplastic stroma containing cancer-associated fibroblasts (CAF). Although CAFs are abundantly present, the effects of RT to CAF and its impact on cancer cells are unknown. We evaluated the damage responses of CAF to RT and investigated changes in colorectal cancer cell growth, transcriptome, metabolome, and kinome in response to paracrine signals emerging from irradiated CAF. RT to CAF induced DNA damage, p53 activation, cell-cycle arrest, and secretion of paracrine mediators, including insulin-like growth factor-1 (IGF1). Subsequently, RT-activated CAFs promoted survival of colorectal cancer cells, as well as a metabolic switch favoring glutamine consumption through IGF1 receptor (IGF1R) activation. RT followed by IGF1R neutralization in orthotopic colorectal cancer models reduced the number of mice with organ metastases. Activation of the downstream IGF1R mediator mTOR was significantly higher in matched (intrapatient) samples and in unmatched (interpatient) samples from rectal cancer patients after neoadjuvant chemoradiotherapy. Taken together, our data support the notion that paracrine IGF1/IGF1R signaling initiated by RT-activated CAF worsens colorectal cancer progression, establishing a preclinical rationale to target this activation loop to further improve clinical responses and patient survival.Significance: These findings reveal that paracrine IGF1/IGF1R signaling promotes colorectal cancer progression, establishing a preclinical rationale to target this activation loop. Cancer Res; 78(3); 659-70. ©2017 AACR.
Collapse
Affiliation(s)
- Joke Tommelein
- Laboratory of Experimental Cancer Research, Department of Radiation Oncology and Experimental Cancer Research, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Elly De Vlieghere
- Laboratory of Experimental Cancer Research, Department of Radiation Oncology and Experimental Cancer Research, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Laurine Verset
- Department of Pathology, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Elodie Melsens
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Surgery, Ghent University Hospital, Ghent, Belgium
| | - Justine Leenders
- Center for Interdisciplinary Research on Medicines (CIRM), Université de Liège, Liège, Belgium
| | - Benedicte Descamps
- Department of Electronics and Information System, iMinds-IBiTech-MEDISIP, Ghent University, Ghent, Belgium
| | - Annelies Debucquoy
- Department of Oncology, Experimental Radiotherapy, KU Leuven, University Hospitals Leuven, Leuven, Belgium
| | - Christian Vanhove
- Department of Electronics and Information System, iMinds-IBiTech-MEDISIP, Ghent University, Ghent, Belgium
| | - Patrick Pauwels
- Center for Oncological Research (CORE), University of Antwerp, Antwerp, Belgium
| | - Christian P Gespach
- Institut National de la Santé et de la Recherche Médicale, INSERM U938, Molecular and Clinical Oncology, Université Paris VI Pierre et Marie Curie, Paris, France
| | - Anne Vral
- Department of Basic Medical Sciences, Physiology Group, Ghent University, Ghent, Belgium
| | - Astrid De Boeck
- Arnie Charbonneau Cancer Centre, University of Calgary, Calgary, Alberta, Canada
| | - Karin Haustermans
- Department of Oncology, Experimental Radiotherapy, KU Leuven, University Hospitals Leuven, Leuven, Belgium
| | - Pascal de Tullio
- Center for Interdisciplinary Research on Medicines (CIRM), Université de Liège, Liège, Belgium
| | - Wim Ceelen
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Surgery, Ghent University Hospital, Ghent, Belgium
| | - Pieter Demetter
- Department of Pathology, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Tom Boterberg
- Laboratory of Experimental Cancer Research, Department of Radiation Oncology and Experimental Cancer Research, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Marc Bracke
- Laboratory of Experimental Cancer Research, Department of Radiation Oncology and Experimental Cancer Research, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Olivier De Wever
- Laboratory of Experimental Cancer Research, Department of Radiation Oncology and Experimental Cancer Research, Ghent University, Ghent, Belgium.
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| |
Collapse
|
22
|
Drebert Z, De Vlieghere E, Bridelance J, De Wever O, De Bosscher K, Bracke M, Beck IM. Glucocorticoids indirectly decrease colon cancer cell proliferation and invasion via effects on cancer-associated fibroblasts. Exp Cell Res 2017; 362:332-342. [PMID: 29196164 DOI: 10.1016/j.yexcr.2017.11.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 11/20/2017] [Accepted: 11/26/2017] [Indexed: 01/02/2023]
Abstract
Cancer-associated fibroblasts (CAFs) support cancer growth, invasion, and metastasis. Glucocorticoids (GCs), drugs often administered together with chemotherapy, are steroidal ligands of the glucocorticoid receptor (GR), a transcription factor which upon activation regulates expression of multiple genes involved in suppression of inflammation. We have previously shown that in dexamethasone (Dex)-treated CAFs derived from colon cancer, production and secretion of several factors related to cancer progression, such as tenascin C (TNC) and hepatocyte growth factor (HGF), were strongly suppressed. In this study we show that GCs can neutralize the cancer cell-promoting properties of CAFs. Conditioned medium from solvent-treated CAFs (CMCTRL) stimulates proliferation, motility and stretched morphotype of GR-deficient HCT8/E11 colon cancer cells. Yet, HCT8/E11 proliferation and stretched morphotype are impaired upon treatment with conditioned medium from Dex-treated CAFs (CMDEX), but HCT8/E11 cell migration is slightly increased under these conditions. Moreover, expression and potential activity of MMP-2 is also reduced in CMDEX compared with CMCTRL. These combined in vitro results concur with the results from in vivo chick chorioallantoic membrane assays, where the co-cultures of CAFs with colon cancer cells displayed impaired tumor formation and cancer cell invasion due to Dex administration. Combined, GC treatment influences cancer cell behavior indirectly through effects on CAFs.
Collapse
Affiliation(s)
- Zuzanna Drebert
- Laboratory of Experimental Cancer Research, Department of Radiation Oncology & Experimental Cancer Research, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Elly De Vlieghere
- Laboratory of Experimental Cancer Research, Department of Radiation Oncology & Experimental Cancer Research, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Jolien Bridelance
- Molecular Signaling and Cell Death Unit, VIB Center for Inflammation Research, Ghent University, Ghent, Belgium
| | - Olivier De Wever
- Laboratory of Experimental Cancer Research, Department of Radiation Oncology & Experimental Cancer Research, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Karolien De Bosscher
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium; Receptor Research Laboratories, Nuclear Receptor Lab, VIB Center for Medical Biotechnology, Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Marc Bracke
- Laboratory of Experimental Cancer Research, Department of Radiation Oncology & Experimental Cancer Research, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Ilse M Beck
- Laboratory of Experimental Cancer Research, Department of Radiation Oncology & Experimental Cancer Research, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium; Department Health Sciences, Odisee University College, Ghent, Belgium.
| |
Collapse
|
23
|
Holzner S, Brenner S, Atanasov AG, Senfter D, Stadler S, Nguyen CH, Fristiohady A, Milovanovic D, Huttary N, Krieger S, Bago-Horvath Z, de Wever O, Tentes I, Özmen A, Jäger W, Dolznig H, Dirsch VM, Mader RM, Krenn L, Krupitza G. Intravasation of SW620 colon cancer cell spheroids through the blood endothelial barrier is inhibited by clinical drugs and flavonoids in vitro. Food Chem Toxicol 2017; 111:114-124. [PMID: 29129665 DOI: 10.1016/j.fct.2017.11.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/06/2017] [Accepted: 11/08/2017] [Indexed: 12/14/2022]
Abstract
Mechanisms how colorectal cancer (CRC) cells penetrate blood micro-vessel endothelia and metastasise is poorly understood. To study blood endothelial cell (BEC) barrier breaching by CRC emboli, an in vitro assay measuring BEC-free areas underneath SW620 cell spheroids, so called "circular chemorepellent induced defects" (CCIDs, appearing in consequence of endothelial retraction), was adapted and supported by Western blotting, EIA-, EROD- and luciferase reporter assays. Inhibition of ALOX12 or NF-κB in SW620 cells or BECs, respectively, caused attenuation of CCIDs. The FDA approved drugs vinpocetine [inhibiting ALOX12-dependent 12(S)-HETE synthesis], ketotifen [inhibiting NF-κB], carbamazepine and fenofibrate [inhibiting 12(S)-HETE and NF-κB] significantly attenuated CCID formation at low μM concentrations. In the 5-FU-resistant SW620-R/BEC model guanfacine, nifedipine and proadifen inhibited CCIDs stronger than in the naïve SW620/BEC model. This indicated that in SW620-R cells formerly silent (yet unidentified) genes became expressed and targetable by these drugs in course of resistance acquisition. Fenofibrate, and the flavonoids hispidulin and apigenin, which are present in medicinal plants, spices, herbs and fruits, attenuated CCID formation in both, naïve- and resistant models. As FDA-approved drugs and food-flavonoids inhibited established and acquired intravasative pathways and attenuated BEC barrier-breaching in vitro, this warrants testing of these compounds in CRC models in vivo.
Collapse
Affiliation(s)
- Silvio Holzner
- Clinical Institute of Pathology, Medical University of Vienna, Austria
| | - Stefan Brenner
- Department of Clinical Pharmacy and Diagnostics, University of Vienna, A-1090 Vienna, Austria
| | - Atanas Georgiev Atanasov
- Department of Pharmacognosy, Faculty of Life Sciences, University of Vienna, A-1090 Vienna, Austria
| | - Daniel Senfter
- Clinical Institute of Pathology, Medical University of Vienna, Austria
| | - Serena Stadler
- Clinical Institute of Pathology, Medical University of Vienna, Austria
| | - Chi Huu Nguyen
- Clinical Institute of Pathology, Medical University of Vienna, Austria
| | - Adryan Fristiohady
- Clinical Institute of Pathology, Medical University of Vienna, Austria; Department of Clinical Pharmacy and Diagnostics, University of Vienna, A-1090 Vienna, Austria
| | | | - Nicole Huttary
- Clinical Institute of Pathology, Medical University of Vienna, Austria
| | - Sigurd Krieger
- Clinical Institute of Pathology, Medical University of Vienna, Austria
| | | | - Oliver de Wever
- Department of Radiation Oncology and Experimental Cancer Research, Ghent University, Ghent B-9000, Belgium
| | - Ioannis Tentes
- Department of Biochemistry, Medical School, Democritus University of Thrace, 681 00 Dragana/Alexandroupolis, Greece
| | - Ali Özmen
- Adnan Menderes University, Faculty of Science and Art, Department of Biology, 09010 Aydin, Turkey
| | - Walter Jäger
- Department of Clinical Pharmacy and Diagnostics, University of Vienna, A-1090 Vienna, Austria
| | - Helmut Dolznig
- Department of Medical Genetics, Medical University of Vienna, A-1090 Vienna, Austria
| | - Verena Maria Dirsch
- Department of Pharmacognosy, Faculty of Life Sciences, University of Vienna, A-1090 Vienna, Austria
| | - Robert Michael Mader
- Department of Medicine I, Comprehensive Cancer Center of the Medical University of Vienna, A-1090 Vienna, Austria
| | - Liselotte Krenn
- Department of Pharmacognosy, Faculty of Life Sciences, University of Vienna, A-1090 Vienna, Austria
| | - Georg Krupitza
- Clinical Institute of Pathology, Medical University of Vienna, Austria.
| |
Collapse
|
24
|
Abstract
The pre-metastatic niche — the accumulation of aberrant immune cells and extracellular matrix proteins in target organs — primes the initially healthy organ microenvironment and renders it amenable for subsequent metastatic cell colonization. By attracting metastatic cancer cells, mimics of the pre-metastatic niche offer both diagnostic and therapeutic potential. However, deconstructing the complexity of the niche by identifying the interactions between cell populations and the mediatory roles of the immune system, soluble factors, extracellular matrix proteins, and stromal cells has proved challenging. Experimental models need to recapitulate niche-population biology in situ and mediate in vivo tumour-cell homing, colonization and proliferation. In this Review, we outline the biology of the pre-metastatic niche and discuss advances in engineered niche-mimicking biomaterials that regulate the behaviour of tumour cells at an implant site. Such oncomaterials offer strategies for early detection of metastatic events, inhibiting the formation of the pre-metastatic niche, and attenuating metastatic progression.
Collapse
|
25
|
Lybaert L, Ryu KA, De Rycke R, Chon AC, De Wever O, Vermaelen KY, Esser‐Kahn A, De Geest BG. Polyelectrolyte-Enrobed Cancer Cells in View of Personalized Immune-Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2017; 4:1700050. [PMID: 28638786 PMCID: PMC5473321 DOI: 10.1002/advs.201700050] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/16/2017] [Indexed: 05/19/2023]
Abstract
Targeting the immune system with a personalized vaccine containing cues derived from the patient's malignancy might be a promising approach in the fight against cancer. It includes neo-antigens as well as nonmutated tumor antigens, preferentially leading to an immune response that is directed to a broader range of epitopes compared to strategies involving a single antigen. Here, this paper reports on an elegant method to encapsulate whole cancer cells into polyelectrolyte particles. Porous and nonaggregated microparticles containing dead cancer cells are obtained by admixing mannitol and live cancer cells with oppositely charged polyelectrolytes, dextran sulfate (anionic polysaccharide), and poly-l-arginine (cationic polypeptide) prior to atomization into a hot air stream. It shows that the polyelectrolyte-enrobed cancer cells, upon redispersion in phosphate buffered saline buffer, are stable and do not release cell proteins in the supernatant. In vitro experiments reveal that the particles are nontoxic and strongly increase uptake of cell lysate by dendritic cells. In vitro assessment of antigen presentation by dendritic cells reveal the potential of the polyelectrolyte-enrobed cancer cells as promotors of antigen cross-presentation. Finally, it is demonstrated that the immunogenicity can be enhanced by surface adsorption of a polymer-substituted TLR7-agonist.
Collapse
Affiliation(s)
- Lien Lybaert
- Department of PharmaceuticsGhent University9000GhentBelgium
| | - Keun Ah Ryu
- Department of ChemistryUniversity of California92618IrvineCAUSA
| | - Riet De Rycke
- VIB Inflammation Research Centerand Department of Biomedical Molecular BiologyGhent University9052GhentBelgium
- Department of Plant Systems BiologyVIB and Department of Plant Biotechnology and BioinformaticsGhent University9052GentBelgium
| | - Alfred C. Chon
- Department of ChemistryUniversity of California92618IrvineCAUSA
| | - Olivier De Wever
- Laboratory of Experimental Cancer ResearchGhent University9000GhentBelgium
| | - Karim Y. Vermaelen
- Tumor Immunology LaboratoryDepartment of Respiratory MedicineGhent University Hospital9000GhentBelgium
| | | | | |
Collapse
|
26
|
García-Caballero M, Van de Velde M, Blacher S, Lambert V, Balsat C, Erpicum C, Durré T, Kridelka F, Noel A. Modeling pre-metastatic lymphvascular niche in the mouse ear sponge assay. Sci Rep 2017; 7:41494. [PMID: 28128294 PMCID: PMC5270255 DOI: 10.1038/srep41494] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 12/21/2016] [Indexed: 01/17/2023] Open
Abstract
Lymphangiogenesis, the formation of new lymphatic vessels, occurs in primary tumors and in draining lymph nodes leading to pre-metastatic niche formation. Reliable in vivo models are becoming instrumental for investigating alterations occurring in lymph nodes before tumor cell arrival. In this study, we demonstrate that B16F10 melanoma cell encapsulation in a biomaterial, and implantation in the mouse ear, prevents their rapid lymphatic spread observed when cells are directly injected in the ear. Vascular remodeling in lymph nodes was detected two weeks after sponge implantation, while their colonization by tumor cells occurred two weeks later. In this model, a huge lymphangiogenic response was induced in primary tumors and in pre-metastatic and metastatic lymph nodes. In control lymph nodes, lymphatic vessels were confined to the cortex. In contrast, an enlargement and expansion of lymphatic vessels towards paracortical and medullar areas occurred in pre-metastatic lymph nodes. We designed an original computerized-assisted quantification method to examine the lymphatic vessel structure and the spatial distribution. This new reliable and accurate model is suitable for in vivo studies of lymphangiogenesis, holds promise for unraveling the mechanisms underlying lymphatic metastases and pre-metastatic niche formation in lymph nodes, and will provide new tools for drug testing.
Collapse
Affiliation(s)
- Melissa García-Caballero
- Laboratory of Tumor and Developmental Biology, GIGA-Cancer, University of Liège, Sart-Tilman, B-4000, Liège, Belgium
| | - Maureen Van de Velde
- Laboratory of Tumor and Developmental Biology, GIGA-Cancer, University of Liège, Sart-Tilman, B-4000, Liège, Belgium
| | - Silvia Blacher
- Laboratory of Tumor and Developmental Biology, GIGA-Cancer, University of Liège, Sart-Tilman, B-4000, Liège, Belgium
| | - Vincent Lambert
- Laboratory of Tumor and Developmental Biology, GIGA-Cancer, University of Liège, Sart-Tilman, B-4000, Liège, Belgium
| | - Cédric Balsat
- Laboratory of Tumor and Developmental Biology, GIGA-Cancer, University of Liège, Sart-Tilman, B-4000, Liège, Belgium
| | - Charlotte Erpicum
- Laboratory of Tumor and Developmental Biology, GIGA-Cancer, University of Liège, Sart-Tilman, B-4000, Liège, Belgium
| | - Tania Durré
- Laboratory of Tumor and Developmental Biology, GIGA-Cancer, University of Liège, Sart-Tilman, B-4000, Liège, Belgium
| | - Frédéric Kridelka
- Laboratory of Tumor and Developmental Biology, GIGA-Cancer, University of Liège, Sart-Tilman, B-4000, Liège, Belgium.,Department of Obstetrics and Gynecology, CHU Liège, Sart-Tilman, B-4000, Liège, Belgium
| | - Agnès Noel
- Laboratory of Tumor and Developmental Biology, GIGA-Cancer, University of Liège, Sart-Tilman, B-4000, Liège, Belgium
| |
Collapse
|
27
|
Stadler S, Nguyen CH, Schachner H, Milovanovic D, Holzner S, Brenner S, Eichsteininger J, Stadler M, Senfter D, Krenn L, Schmidt WM, Huttary N, Krieger S, Koperek O, Bago-Horvath Z, Brendel KA, Marian B, de Wever O, Mader RM, Giessrigl B, Jäger W, Dolznig H, Krupitza G. Colon cancer cell-derived 12(S)-HETE induces the retraction of cancer-associated fibroblast via MLC2, RHO/ROCK and Ca 2+ signalling. Cell Mol Life Sci 2016; 74:1907-1921. [PMID: 28013338 PMCID: PMC5390003 DOI: 10.1007/s00018-016-2441-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 12/06/2016] [Accepted: 12/09/2016] [Indexed: 12/24/2022]
Abstract
Retraction of mesenchymal stromal cells supports the invasion of colorectal cancer cells (CRC) into the adjacent compartment. CRC-secreted 12(S)-HETE enhances the retraction of cancer-associated fibroblasts (CAFs) and therefore, 12(S)-HETE may enforce invasivity of CRC. Understanding the mechanisms of metastatic CRC is crucial for successful intervention. Therefore, we studied pro-invasive contributions of stromal cells in physiologically relevant three-dimensional in vitro assays consisting of CRC spheroids, CAFs, extracellular matrix and endothelial cells, as well as in reductionist models. In order to elucidate how CAFs support CRC invasion, tumour spheroid-induced CAF retraction and free intracellular Ca2+ levels were measured and pharmacological- or siRNA-based inhibition of selected signalling cascades was performed. CRC spheroids caused the retraction of CAFs, generating entry gates in the adjacent surrogate stroma. The responsible trigger factor 12(S)-HETE provoked a signal, which was transduced by PLC, IP3, free intracellular Ca2+, Ca2+-calmodulin-kinase-II, RHO/ROCK and MYLK which led to the activation of myosin light chain 2, and subsequent CAF mobility. RHO activity was observed downstream as well as upstream of Ca2+ release. Thus, Ca2+ signalling served as central signal amplifier. Treatment with the FDA-approved drugs carbamazepine, cinnarizine, nifedipine and bepridil HCl, which reportedly interfere with cellular calcium availability, inhibited CAF-retraction. The elucidation of signalling pathways and identification of approved inhibitory drugs warrant development of intervention strategies targeting tumour–stroma interaction.
Collapse
Affiliation(s)
- Serena Stadler
- Clinical Institute of Pathology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Institute of Medical Genetics, Medical University of Vienna, Waehringer Strasse 10, 1090, Vienna, Austria
| | - Chi Huu Nguyen
- Clinical Institute of Pathology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Department for Clinical Pharmacy and Diagnostics, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Helga Schachner
- Clinical Institute of Pathology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Daniela Milovanovic
- Clinical Institute of Pathology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Silvio Holzner
- Clinical Institute of Pathology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Institute of Medical Genetics, Medical University of Vienna, Waehringer Strasse 10, 1090, Vienna, Austria
- Department of Medicine I, Comprehensive Cancer Centre, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Stefan Brenner
- Department for Clinical Pharmacy and Diagnostics, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Julia Eichsteininger
- Clinical Institute of Pathology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Department of Pharmacognosy, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Mira Stadler
- Institute of Medical Genetics, Medical University of Vienna, Waehringer Strasse 10, 1090, Vienna, Austria
| | - Daniel Senfter
- Clinical Institute of Pathology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Institute of Medical Genetics, Medical University of Vienna, Waehringer Strasse 10, 1090, Vienna, Austria
- Department of Medicine I, Comprehensive Cancer Centre, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Liselotte Krenn
- Department of Pharmacognosy, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Wolfgang M Schmidt
- Neuromuscular Research Department, Centre of Anatomy and Cell Biology, Medical University of Vienna, Waehringer Strasse 13, 1090, Vienna, Austria
| | - Nicole Huttary
- Clinical Institute of Pathology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Sigurd Krieger
- Clinical Institute of Pathology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Oskar Koperek
- Clinical Institute of Pathology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Zsuzsanna Bago-Horvath
- Clinical Institute of Pathology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | | | - Brigitte Marian
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Centre, Medical University of Vienna, Borschkegasse 8a, 1090, Vienna, Austria
| | - Oliver de Wever
- Department of Radiation Oncology and Experimental Cancer Research, Ghent University, De Pintelaan 185, 9000, Ghent, Belgium
| | - Robert M Mader
- Department of Medicine I, Comprehensive Cancer Centre, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Benedikt Giessrigl
- Clinical Institute of Pathology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Department for Clinical Pharmacy and Diagnostics, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Walter Jäger
- Department for Clinical Pharmacy and Diagnostics, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Helmut Dolznig
- Institute of Medical Genetics, Medical University of Vienna, Waehringer Strasse 10, 1090, Vienna, Austria
| | - Georg Krupitza
- Clinical Institute of Pathology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
| |
Collapse
|
28
|
Drebert Z, MacAskill M, Doughty-Shenton D, De Bosscher K, Bracke M, Hadoke PWF, Beck IM. Colon cancer-derived myofibroblasts increase endothelial cell migration by glucocorticoid-sensitive secretion of a pro-migratory factor. Vascul Pharmacol 2016; 89:19-30. [PMID: 27717848 PMCID: PMC5328197 DOI: 10.1016/j.vph.2016.10.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 08/08/2016] [Accepted: 10/03/2016] [Indexed: 02/04/2023]
Abstract
Angiogenesis is important in cancer progression and can be influenced by tumor-associated myofibroblasts. We addressed the hypothesis that glucocorticoids indirectly affect angiogenesis by altering the release of pro-angiogenic factors from colon cancer-derived myofibroblasts. Our study shows that glucocorticoids reduced prostanoids, urokinase-type plasminogen activator (uPA) and angiopoietin-like protein-2 (ANGPTL2) levels, but increased angiogenin (ANG) in supernatant from human CT5.3hTERT colon cancer-derived myofibroblasts. Conditioned medium from solvent- (CMS) and dexamethasone (Dex)-treated (CMD) myofibroblasts increased human umbilical vein endothelial cell (HUVEC) proliferation, but did not affect expression of pro-angiogenic factors or tube-like structure formation (by HUVECs or human aortic ECs). In a HUVEC scratch assay CMS-induced acceleration of wound healing was blunted by CMD treatment. Moreover, CMS-induced neovessel growth in mouse aortic rings ex vivo was also blunted using CMD. The latter effect could be ascribed to both Dex-driven reduction of secreted factors and potential residual Dex present in CMD (indicated using a dexamethasone-spiked CMS control). A similar control in the scratch assay, however, revealed that altered levels of factors in the CMD, and not potential residual Dex, were responsible for decreased wound closure. In conclusion, our results suggest that glucocorticoids indirectly alter endothelial cell function during tumor development in vivo.
Collapse
Affiliation(s)
- Zuzanna Drebert
- Laboratory of Experimental Cancer Research, Department of Radiation Oncology & Experimental Cancer Research, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Mark MacAskill
- University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Dahlia Doughty-Shenton
- Edinburgh Phenotypic Assay Centre, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Karolien De Bosscher
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium; Receptor Research Laboratories, Nuclear Receptor Lab (NRL), VIB Department of Medical Protein Research, Ghent University, Ghent, Belgium
| | - Marc Bracke
- Laboratory of Experimental Cancer Research, Department of Radiation Oncology & Experimental Cancer Research, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Patrick W F Hadoke
- University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom.
| | - Ilse M Beck
- Laboratory of Experimental Cancer Research, Department of Radiation Oncology & Experimental Cancer Research, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| |
Collapse
|
29
|
Biochemical and biomechanical drivers of cancer cell metastasis, drug response and nanomedicine. Drug Discov Today 2016; 21:1489-1494. [PMID: 27238384 DOI: 10.1016/j.drudis.2016.05.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 04/11/2016] [Accepted: 05/18/2016] [Indexed: 12/27/2022]
Abstract
Metastasis, drug resistance and recurrence in cancer are regulated by the tumor microenvironment. This review describes recent advances in understanding how cancer cells respond to extracellular environmental cues via integrins, how to build engineered microenvironments to study these interactions in vitro and how nanomaterials can be used to detect and target tumor microenvironments.
Collapse
|
30
|
De Vlieghere E, Carlier C, Ceelen W, Bracke M, De Wever O. Data on in vivo selection of SK-OV-3 Luc ovarian cancer cells and intraperitoneal tumor formation with low inoculation numbers. Data Brief 2016; 6:542-9. [PMID: 26904717 PMCID: PMC4724710 DOI: 10.1016/j.dib.2015.12.037] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 12/15/2015] [Accepted: 12/28/2015] [Indexed: 12/11/2022] Open
Abstract
This data paper contains information about the in vivo model for peritoneal implants used in the paper "Tumor-environment biomimetics delay peritoneal metastasis formation by deceiving and redirecting disseminated cancer cells" (De Vlieghere et al., 2015) [1]. A double in vivo selection of SK-OV-3 Luc human ovarian cancer cell line was used to create SK-OV-3 Luc IP1 and SK-OV-3 Luc IP2 cell lines. This data paper shows functional activities of the three cell lines in vitro and in vivo. Phase-contrast images show the morphology of these cells, metabolic and luciferase activity has been determined. Survival data of mice peritoneally injected with SK-OV-3 Luc or SK-OV-3 Luc IP2 is available with H&E histology of the peritoneal implants. Tumor growth curves and bioluminescent images of mice inoculated with a different number of SK-OV-3 Luc IP2 cells are also included.
Collapse
Affiliation(s)
- Elly De Vlieghere
- Laboratory of Experimental Cancer Research, Ghent University, Belgium
| | - Charlotte Carlier
- Laboratory of Experimental Surgery, Ghent University hospital, Belgium
| | - Wim Ceelen
- Laboratory of Experimental Surgery, Ghent University hospital, Belgium
| | - Marc Bracke
- Laboratory of Experimental Cancer Research, Ghent University, Belgium
| | - Olivier De Wever
- Laboratory of Experimental Cancer Research, Ghent University, Belgium
| |
Collapse
|
31
|
The Mesothelial Origin of Carcinoma Associated-Fibroblasts in Peritoneal Metastasis. Cancers (Basel) 2015; 7:1994-2011. [PMID: 26426054 PMCID: PMC4695872 DOI: 10.3390/cancers7040872] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 09/14/2015] [Accepted: 09/23/2015] [Indexed: 01/15/2023] Open
Abstract
Solid tumors are complex and unstructured organs that, in addition to cancer cells, also contain other cell types. Carcinoma-associated fibroblasts (CAFs) represent an important population in the tumor microenviroment and participate in several stages of tumor progression, including cancer cell migration/invasion and metastasis. During peritoneal metastasis, cancer cells detach from the primary tumor, such as ovarian or gastrointestinal, disseminate through the peritoneal fluid and colonize the peritoneum. Tumor cells metastasize by attaching to and invading through the mesothelial cell (MC) monolayer that lines the peritoneal cavity, then colonizing the submesothelial compact zone where CAFs accumulate. CAFs may derive from different sources depending on the surrounding metastatic niche. In peritoneal metastasis, a sizeable subpopulation of CAFs originates from MCs through a mesothelial-to-mesenchymal transition (MMT), which promotes adhesion, invasion, vascularization and subsequent tumor growth. The bidirectional communication between cancer cells and MC-derived CAFs via secretion of a wide range of cytokines, growth factors and extracellular matrix components seems to be crucial for the establishment and progression of the metastasis in the peritoneum. This manuscript provides a comprehensive review of novel advances in understanding how peritoneal CAFs provide cancer cells with a supportive microenvironment, as well as the development of future therapeutic approaches by interfering with the MMT in the peritoneum.
Collapse
|
32
|
De Vlieghere E, Verset L, Demetter P, Bracke M, De Wever O. Cancer-associated fibroblasts as target and tool in cancer therapeutics and diagnostics. Virchows Arch 2015; 467:367-82. [PMID: 26259962 DOI: 10.1007/s00428-015-1818-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 07/21/2015] [Accepted: 07/27/2015] [Indexed: 12/11/2022]
Abstract
Cancer-associated fibroblasts (CAFs) are drivers of tumour progression and are considered as a target and a tool in cancer diagnostic and therapeutic applications. An increased abundance of CAFs or CAF signatures are recognized as a bad prognostic marker in several cancer types. Tumour-environment biomimetics strongly improve our understanding of the communication between CAFs, cancer cells and other host cells. Several experimental drugs targeting CAFs are in clinical trials for multiple tumour entities; alternatively, CAFs can be exploited as a tool to characterize the functionality of circulating tumour cells or to capture them as a tool to prevent metastasis. The continuous interaction between tissue engineers, biomaterial experts and cancer researchers creates the possibility to biomimic the tumour-environment and provides new opportunities in cancer diagnostics and management.
Collapse
Affiliation(s)
- Elly De Vlieghere
- Laboratory of Experimental Cancer Research, Department of Radiation Oncology and Experimental Cancer Research, Ghent University Hospital, De Pintelaan 185, 9000, Ghent, Belgium
| | - Laurine Verset
- Departments of Pathology, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Pieter Demetter
- Departments of Pathology, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Marc Bracke
- Laboratory of Experimental Cancer Research, Department of Radiation Oncology and Experimental Cancer Research, Ghent University Hospital, De Pintelaan 185, 9000, Ghent, Belgium
| | - Olivier De Wever
- Laboratory of Experimental Cancer Research, Department of Radiation Oncology and Experimental Cancer Research, Ghent University Hospital, De Pintelaan 185, 9000, Ghent, Belgium.
| |
Collapse
|