1
|
Notarbartolo M, Alfieri ML, Avolio R, Ball V, Errico ME, Massaro M, Puglisi R, Sànchez-Espejo R, Viseras C, Riela S. Design of innovative and low-cost dopamine-biotin conjugate sensor for the efficient detection of protein and cancer cells. J Colloid Interface Sci 2025; 678:766-775. [PMID: 39307064 DOI: 10.1016/j.jcis.2024.09.145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/30/2024] [Accepted: 09/15/2024] [Indexed: 10/27/2024]
Abstract
The rapid, precise identification and quantification of specific biomarkers, toxins, or pathogens is currently a key strategy for achieving more efficient diagnoses. Herein a dopamine-biotin monomer was synthetized and oxidized in the presence of hexamethylenediamine, to obtain adhesive coatings based on polydopamine-biotin (PDA-BT) on different materials to be used in targeted molecular therapy. Insight into the structure of the PDA-BT coating was obtained by solid-state 13C NMR spectroscopy acquired, for the first time, directly onto the coating, deposited on alumina spheres. The receptor binding capacity of the PDA-BT coating toward 4-hydroxyazobenzene-2-carboxylic acid/Avidin complex was verified by means of UV-vis spectroscopy. Different deposition cycles of avidin onto the PDA-BT coating by layer-by-layer assembly showed that the film retains its receptor binding capacity for at least eight consecutive cycles. Finally, the feasibility of PDA-BT coating to recognize cell lines with different grade of overexpression of biotin receptors (BR) was investigated by tumor cell capture experiments by using MCF-7 (BR+) and HL-60 (BR-) cell lines. The results show that the developed system can selectively capture MCF-7 cells indicating that it could represent a first approach for the development of future more sophisticated biosensors easily accessible, low cost and recyclable with the dual and rapid detection of both proteins and cells.
Collapse
Affiliation(s)
- Monica Notarbartolo
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Viale delle Scienze, Parco d'Orleans II, Ed. 16-17, 90128 Palermo, Italy
| | - Maria Laura Alfieri
- Department of Chemical Sciences, University of Naples "Federico II", I-80126 Naples, Italy.
| | - Roberto Avolio
- Institute of Chemistry and Technology of Polymers, National Council of Research (CNR), via Campi Flegrei 34, Pozzuoli I-80078, Italy
| | - Vincent Ball
- Université de Strasbourg, Faculté de Chirurgie Dentaire, 8 rue Sainte Elizabeth, 67000 Strasbourg. France; Institut National de la Santé et de la Recherche Médicale, Unité mixte de rechere 1121. 1 rue Eugène Boeckel, 67084 Strasbourg Cedex, France
| | - Maria Emanuela Errico
- Institute of Chemistry and Technology of Polymers, National Council of Research (CNR), via Campi Flegrei 34, Pozzuoli I-80078, Italy
| | - Marina Massaro
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Viale delle Scienze, Parco d'Orleans II, Ed. 16-17, 90128 Palermo, Italy.
| | - Roberta Puglisi
- Dipartimento di Scienze Chimiche (DSC), Università di Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Rita Sànchez-Espejo
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Campus Universitario de Cartuja, 18071 Granada, Spain
| | - César Viseras
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Campus Universitario de Cartuja, 18071 Granada, Spain; Andalusian Institute of Earth Sciences, CSIC-UGR, 18100 Armilla, Granada, Spain
| | - Serena Riela
- Dipartimento di Scienze Chimiche (DSC), Università di Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| |
Collapse
|
2
|
Huang Z, Fu Y, Yang H, Zhou Y, Shi M, Li Q, Liu W, Liang J, Zhu L, Qin S, Hong H, Liu Y. Liquid biopsy in T-cell lymphoma: biomarker detection techniques and clinical application. Mol Cancer 2024; 23:36. [PMID: 38365716 PMCID: PMC10874034 DOI: 10.1186/s12943-024-01947-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/25/2024] [Indexed: 02/18/2024] Open
Abstract
T-cell lymphoma is a highly invasive tumor with significant heterogeneity. Invasive tissue biopsy is the gold standard for acquiring molecular data and categorizing lymphoma patients into genetic subtypes. However, surgical intervention is unfeasible for patients who are critically ill, have unresectable tumors, or demonstrate low compliance, making tissue biopsies inaccessible to these patients. A critical need for a minimally invasive approach in T-cell lymphoma is evident, particularly in the areas of early diagnosis, prognostic monitoring, treatment response, and drug resistance. Therefore, the clinical application of liquid biopsy techniques has gained significant attention in T-cell lymphoma. Moreover, liquid biopsy requires fewer samples, exhibits good reproducibility, and enables real-time monitoring at molecular levels, thereby facilitating personalized health care. In this review, we provide a comprehensive overview of the current liquid biopsy biomarkers used for T-cell lymphoma, focusing on circulating cell-free DNA (cfDNA), circulating tumor DNA (ctDNA), circulating tumor cells (CTCs), Epstein-Barr virus (EBV) DNA, antibodies, and cytokines. Additionally, we discuss their clinical application, detection methodologies, ongoing clinical trials, and the challenges faced in the field of liquid biopsy.
Collapse
Affiliation(s)
- Zongyao Huang
- Department of Pathology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Yao Fu
- Department of Pathology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Hong Yang
- Department of Pathology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Yehan Zhou
- Department of Pathology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Min Shi
- Department of Pathology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Qingyun Li
- Genecast Biotechnology Co., Ltd, Wuxi, 214104, China
| | - Weiping Liu
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Junheng Liang
- Nanjing Geneseeq Technology Inc., Nanjing, 210032, Jiangsu, China
| | - Liuqing Zhu
- Nanjing Geneseeq Technology Inc., Nanjing, 210032, Jiangsu, China
| | - Sheng Qin
- Department of Pathology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China.
| | - Huangming Hong
- Department of Medical Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China.
| | - Yang Liu
- Department of Pathology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
3
|
Chen K, Wang Z. A Micropillar Array Based Microfluidic Device for Rare Cell Detection and Single-Cell Proteomics. Methods Protoc 2023; 6:80. [PMID: 37736963 PMCID: PMC10514859 DOI: 10.3390/mps6050080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/25/2023] [Accepted: 08/31/2023] [Indexed: 09/23/2023] Open
Abstract
Advancements in single-cell-related technologies have opened new possibilities for analyzing rare cells, such as circulating tumor cells (CTCs) and rare immune cells. Among these techniques, single-cell proteomics, particularly single-cell mass spectrometric analysis (scMS), has gained significant attention due to its ability to directly measure transcripts without the need for specific reagents. However, the success of single-cell proteomics relies heavily on efficient sample preparation, as protein loss in low-concentration samples can profoundly impact the analysis. To address this challenge, an effective handling system for rare cells is essential for single-cell proteomic analysis. Herein, we propose a microfluidics-based method that offers highly efficient isolation, detection, and collection of rare cells (e.g., CTCs). The detailed fabrication process of the micropillar array-based microfluidic device is presented, along with its application for CTC isolation, identification, and collection for subsequent proteomic analysis.
Collapse
Affiliation(s)
- Kangfu Chen
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL 60208, USA;
- Chan Zuckerberg Biohub Chicago, Chicago, IL 60607, USA
| | - Zongjie Wang
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL 60208, USA;
- Chan Zuckerberg Biohub Chicago, Chicago, IL 60607, USA
| |
Collapse
|
4
|
Yeh PY, Chen JY, Shen MY, Che TF, Lim SC, Wang J, Tsai WS, Frank CW, Huang CJ, Chang YC. Liposome-tethered supported lipid bilayer platform for capture and release of heterogeneous populations of circulating tumor cells. J Mater Chem B 2023; 11:8159-8169. [PMID: 37313622 DOI: 10.1039/d3tb00547j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Because of scarcity, vulnerability, and heterogeneity in the population of circulating tumor cells (CTCs), the CTC isolation system relying on immunoaffinity interaction exhibits inconsistent efficiencies for all types of cancers and even CTCs with different phenotypes in individuals. Moreover, releasing viable CTCs from an isolation system is of importance for molecular analysis and drug screening in precision medicine, which remains a challenge for current systems. In this work, a new CTC isolation microfluidic platform was developed and contains a coating of the antibody-conjugated liposome-tethered-supported lipid bilayer in a developed chaotic-mixing microfluidic system, referred to as the "LIPO-SLB" platform. The biocompatible, soft, laterally fluidic, and antifouling properties of the LIPO-SLB platform offer high CTC capture efficiency, viability, and selectivity. We successfully demonstrated the capability of the LIPO-SLB platform to recapitulate different cancer cell lines with different antigen expression levels. In addition, the captured CTCs in the LIPO-SLB platform can be detached by air foam to destabilize the physically assembled bilayer structures due to a large water/air interfacial area and strong surface tension. More importantly, the LIPO-SLB platform was constructed and used for the verification of clinical samples from 161 patients with different primary cancer types. The mean values of both single CTCs and CTC clusters correlated well with the cancer stages. Moreover, a considerable number of CTCs were isolated from patients' blood samples in the early/localized stages. The clinical validation demonstrated the enormous potential of the universal LIPO-SLB platform as a tool for prognostic and predictive purposes in precision medicine.
Collapse
Affiliation(s)
- Po-Ying Yeh
- Genomics Research Center, Academia Sinica, 128, Sec 2, Academic Rd., Nankang, Taipei 115, Taiwan.
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Jia-Yang Chen
- Genomics Research Center, Academia Sinica, 128, Sec 2, Academic Rd., Nankang, Taipei 115, Taiwan.
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Mo-Yuan Shen
- Genomics Research Center, Academia Sinica, 128, Sec 2, Academic Rd., Nankang, Taipei 115, Taiwan.
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Ting-Fang Che
- Genomics Research Center, Academia Sinica, 128, Sec 2, Academic Rd., Nankang, Taipei 115, Taiwan.
| | - Syer Choon Lim
- Genomics Research Center, Academia Sinica, 128, Sec 2, Academic Rd., Nankang, Taipei 115, Taiwan.
| | - Jocelyn Wang
- The College, The University of Chicago, Chicago, IL 60637, USA
| | - Wen-Sy Tsai
- Division of Colon and Rectal Surgery, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
- Graduate Institute of Clinical Medical Science, Chang Gung University, Linkou, Taoyuan, Taiwan
| | - Curtis W Frank
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Chun-Jen Huang
- Department of Chemical & Materials Engineering, and NCU-Covestro Research Center, National Central University, Jhong-Li, Taoyuan 320, Taiwan.
- R&D Center for Membrane Technology, Chung Yuan Christian University, 200 Chung Pei Rd., Chung-Li City 32023, Taiwan
| | - Ying-Chih Chang
- Genomics Research Center, Academia Sinica, 128, Sec 2, Academic Rd., Nankang, Taipei 115, Taiwan.
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
5
|
Goldstein I, Alyas S, Asghar W, Ilyas A. Biosensors for the Isolation and Detection of Circulating Tumor Cells (CTCs) in Point-of-Care Settings. MICROMACHINES 2023; 14:mi14051035. [PMID: 37241658 DOI: 10.3390/mi14051035] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023]
Abstract
Circulating tumor cells (CTCs) are cells that have been shed from tumors and circulate in the bloodstream. These cells can also be responsible for further metastases and the spread of cancer. Taking a closer look and analyzing CTCs through what has come to be known as "liquid biopsy" has immense potential to further researchers' understanding of cancer biology. However, CTCs are very sparse and are therefore difficult to detect and capture. To combat this issue, researchers have attempted to create devices, assays, and further techniques to successfully isolate CTCs for analysis. In this work, new and existing biosensing techniques for CTC isolation, detection, and release/detachment are discussed and compared to evaluate their efficacy, specificity, and cost. Here, we specifically aim to evaluate and identify the potential success of these techniques and devices in point-of-care (POC) settings.
Collapse
Affiliation(s)
- Isaac Goldstein
- Bio-Nanotechnology and Biomaterials (BNB) Lab, New York Institute of Technology, Old Westbury, NY 11568, USA
- Paul D. Schreiber High School, Port Washington, NY 11050, USA
| | - Sobia Alyas
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, Lahore 54000, Pakistan
| | - Waseem Asghar
- Department of Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Azhar Ilyas
- Bio-Nanotechnology and Biomaterials (BNB) Lab, New York Institute of Technology, Old Westbury, NY 11568, USA
- Department of Electrical and Computer Engineering, New York Institute of Technology, Old Westbury, NY 11568, USA
| |
Collapse
|
6
|
Onoshima D, Hase T, Kihara N, Kuboyama D, Tanaka H, Ozawa N, Yukawa H, Sato M, Ishikawa K, Hasegawa Y, Ishii M, Hori M, Baba Y. Leukocyte Depletion and Size-Based Enrichment of Circulating Tumor Cells Using a Pressure-Sensing Microfiltration Device. ACS MEASUREMENT SCIENCE AU 2023; 3:113-119. [PMID: 37090261 PMCID: PMC10120030 DOI: 10.1021/acsmeasuresciau.2c00057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 05/03/2023]
Abstract
Considering the challenges in isolating circulating tumor cells (CTCs) pertaining to cellular stress and purity, we report the application of a blood microfiltration device as an optimal approach for noninvasive liquid biopsy to target CTCs. We experimentally analyzed the filtration behavior of the microfilter using pressure sensing to separate tumor cells from leukocytes in whole blood. This approach achieved an average recovery of >96% of the spiked tumor cells and depletion of >99% of total leukocytes. Furthermore, we carried out genomic profiling of the CTCs using the blood microfiltration device. The method was also applied in a clinical setting; DNA amplification was performed using a small number of microfiltered CTCs and epidermal growth factor receptor mutations were successfully detected to characterize the efficacy of molecularly targeted drugs against lung cancer. Overall, the proposed method can provide a tool for evaluating efficient filtration pressure to concentrate CTCs from whole blood.
Collapse
Affiliation(s)
- Daisuke Onoshima
- Institute
of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Tetsunari Hase
- Department
of Respiratory Medicine, Nagoya University
Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Naoto Kihara
- AGC
Inc., Marunouchi 1-5-1, Chiyoda-ku, Tokyo 100-8405, Japan
| | - Daiki Kuboyama
- Department
of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Hiromasa Tanaka
- Division
of Host Defense Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Daikominami 1-1-20, Higashi-ku, Nagoya 461-8673, Japan
| | - Naoya Ozawa
- Department
of Respiratory Medicine, Nagoya University
Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Hiroshi Yukawa
- Institute
of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
- Department
of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Center for
Low-Temperature Plasma Sciences, Nagoya
University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Mitsuo Sato
- Division
of Host Defense Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Daikominami 1-1-20, Higashi-ku, Nagoya 461-8673, Japan
| | - Kenji Ishikawa
- Center for
Low-Temperature Plasma Sciences, Nagoya
University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Yoshinori Hasegawa
- Department
of Respiratory Medicine, Nagoya University
Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
- National
Hospital Organization, Nagoya Medical Center, 4-1-1, Sannomaru, Naka-ku, Nagoya 460-0001, Japan
| | - Makoto Ishii
- Department
of Respiratory Medicine, Nagoya University
Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Masaru Hori
- Center for
Low-Temperature Plasma Sciences, Nagoya
University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Yoshinobu Baba
- Institute
of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
- Department
of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Institute
of Quantum Life Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology
(QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan
| |
Collapse
|
7
|
Wang J, Zhang Y, Dong M, Liu Z, Guo B, Zhang H, Gao L. Capture and release of circulating tumor cells stimulated by pH and NIR irradiation of magnetic Fe 3O 4@ZIF-8 nanoparticles. Colloids Surf B Biointerfaces 2023; 224:113206. [PMID: 36791519 DOI: 10.1016/j.colsurfb.2023.113206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/01/2023] [Accepted: 02/10/2023] [Indexed: 02/13/2023]
Abstract
Detecting and analyzing circulating tumor cells(CTCs) is significant for early diagnosis, management, and personalized treatment of tumors. Herein, a smart magnetic aptamer modified Fe3O4@ZIF-8 core/shell structured nanoparticle (NPs) was successfully constructed using for capture and simultaneous pH- and NIR-irradiation responsive release of CTCs. Taking MCF-7 as model CTCs, it could be captured ca. 60 % in low-concentration artificial blood by aptamer (SYL3C) on the surface of Fe3O4@ZIF-8 NPs. After magnetic separation, the ZIF-8 shell in aptamer-modified Fe3O4@ZIF-8 NPs carrying captured CTCs would disintegrate within 20 min under the synergistic effect of an acidic environment (pH=6.0) and NIR irradiation leading to the release of CTCs with high cell viability, which was benefited for the subsequent culture and analysis. This magnetic and core/shell structured device integrated high-efficiency capture, quick isolation and perfect release into one system, which showed great potentials for the detection of CTCs in the clinic.
Collapse
Affiliation(s)
- Jidong Wang
- Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China; State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China.
| | - Yating Zhang
- Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Min Dong
- Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Zhaopeng Liu
- Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Binbin Guo
- Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Haipeng Zhang
- Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Liming Gao
- The First Hospital in Qinhuangdao Affiliated to Hebei Medical University, Qinhuangdao 066004, China
| |
Collapse
|
8
|
Li G, Chen T, Dahlman J, Eniola‐Adefeso L, Ghiran IC, Kurre P, Lam WA, Lang JK, Marbán E, Martín P, Momma S, Moos M, Nelson DJ, Raffai RL, Ren X, Sluijter JPG, Stott SL, Vunjak‐Novakovic G, Walker ND, Wang Z, Witwer KW, Yang PC, Lundberg MS, Ochocinska MJ, Wong R, Zhou G, Chan SY, Das S, Sundd P. Current challenges and future directions for engineering extracellular vesicles for heart, lung, blood and sleep diseases. J Extracell Vesicles 2023; 12:e12305. [PMID: 36775986 PMCID: PMC9923045 DOI: 10.1002/jev2.12305] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/19/2022] [Accepted: 01/09/2022] [Indexed: 02/14/2023] Open
Abstract
Extracellular vesicles (EVs) carry diverse bioactive components including nucleic acids, proteins, lipids and metabolites that play versatile roles in intercellular and interorgan communication. The capability to modulate their stability, tissue-specific targeting and cargo render EVs as promising nanotherapeutics for treating heart, lung, blood and sleep (HLBS) diseases. However, current limitations in large-scale manufacturing of therapeutic-grade EVs, and knowledge gaps in EV biogenesis and heterogeneity pose significant challenges in their clinical application as diagnostics or therapeutics for HLBS diseases. To address these challenges, a strategic workshop with multidisciplinary experts in EV biology and U.S. Food and Drug Administration (USFDA) officials was convened by the National Heart, Lung and Blood Institute. The presentations and discussions were focused on summarizing the current state of science and technology for engineering therapeutic EVs for HLBS diseases, identifying critical knowledge gaps and regulatory challenges and suggesting potential solutions to promulgate translation of therapeutic EVs to the clinic. Benchmarks to meet the critical quality attributes set by the USFDA for other cell-based therapeutics were discussed. Development of novel strategies and approaches for scaling-up EV production and the quality control/quality analysis (QC/QA) of EV-based therapeutics were recognized as the necessary milestones for future investigations.
Collapse
Affiliation(s)
- Guoping Li
- Cardiovascular Research CenterMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Tianji Chen
- Department of Pediatrics, College of MedicineUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - James Dahlman
- Department of Biomedical EngineeringGeorgia Institute of Technology and Emory University School of MedicineAtlantaGeorgiaUSA
| | - Lola Eniola‐Adefeso
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMichiganUSA
| | - Ionita C. Ghiran
- Department of Anesthesia and Pain MedicineBeth Israel Deaconess Medical Center, and Harvard Medical SchoolBostonMassachusettsUSA
| | - Peter Kurre
- Children's Hospital of Philadelphia, Comprehensive Bone Marrow Failure Center, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Wilbur A. Lam
- Wallace H. Coulter Department of Biomedical Engineering, Department of PediatricsEmory School of MedicineAflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta, Emory University and Georgia Institute of TechnologyAtlantaGeorgiaUSA
| | - Jennifer K. Lang
- Department of Medicine, Division of Cardiology, Jacobs School of Medicine and Biomedical SciencesVeterans Affairs Western New York Healthcare SystemBuffaloNew YorkUSA
| | - Eduardo Marbán
- Smidt Heart InstituteCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Pilar Martín
- Centro Nacional de Investigaciones Cardiovasculares (CNIC)Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV)MadridSpain
| | - Stefan Momma
- Institute of Neurology (Edinger Institute)University HospitalGoethe UniversityFrankfurt am MainGermany
| | - Malcolm Moos
- Division of Cellular and Gene Therapies, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and ResearchUnited States Food and Drug AdministrationSilver SpringMarylandUSA
| | - Deborah J. Nelson
- Department of Pharmacological and Physiological SciencesThe University of ChicagoChicagoIllinoisUSA
| | - Robert L. Raffai
- Department of Veterans Affairs, Surgical Service (112G)San Francisco VA Medical CenterSan FranciscoCaliforniaUSA
- Department of Surgery, Division of Vascular and Endovascular SurgeryUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Xi Ren
- Department of Biomedical EngineeringCarnegie Mellon UniversityPittsburghPennsylvaniaUSA
| | - Joost P. G. Sluijter
- Department of Experimental Cardiology, Circulatory Health LaboratoryRegenerative Medicine Centre, UMC Utrecht, University UtrechtUtrechtThe Netherlands
| | - Shannon L. Stott
- Massachusetts General Hospital Cancer Center and Harvard Medical SchoolBostonMassachusettsUSA
| | - Gordana Vunjak‐Novakovic
- Department of Biomedical Engineering, Department of MedicineColumbia UniversityNew YorkNew YorkUSA
| | - Nykia D. Walker
- Department of Biological SciencesUniversity of Maryland Baltimore CountyBaltimoreMarylandUSA
| | - Zhenjia Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical SciencesWashington State UniversitySpokaneWashingtonUSA
| | - Kenneth W. Witwer
- Department of Molecular and Comparative Pathobiology, Department of Neurology and Neurosurgeryand The Richman Family Precision Medicine Center of Excellence in Alzheimer's DiseaseThe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Phillip C. Yang
- Division of Cardiovascular Medicine, Department of MedicineStanford University School of MedicineStanfordCaliforniaUSA
| | - Martha S. Lundberg
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Margaret J. Ochocinska
- Division of Blood Diseases and Resources, National Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Renee Wong
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Guofei Zhou
- Division of Lung Diseases, National Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Stephen Y. Chan
- Pittsburgh Heart, Lung and Blood Vascular Medicine InstituteUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
- Division of Cardiology and Department of MedicineUniversity of Pittsburgh School of Medicine and University of Pittsburgh Medical CenterPittsburghPennsylvaniaUSA
| | - Saumya Das
- Cardiovascular Research CenterMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Prithu Sundd
- Pittsburgh Heart, Lung and Blood Vascular Medicine InstituteUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
- Division of Pulmonary Allergy and Critical Care Medicine and Department of MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
| |
Collapse
|
9
|
Rima XY, Zhang J, Reátegui E. Capture and Selective Release of Viable Circulating Tumor Cells. Methods Mol Biol 2023; 2679:67-81. [PMID: 37300609 DOI: 10.1007/978-1-0716-3271-0_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Selectively capturing and releasing viable circulating tumor cells (CTCs) from the peripheral blood of cancer patients is advantageous for investigating the molecular hallmarks of metastasis and developing personalized therapeutics. CTC-based liquid biopsies are flourishing in the clinical setting, offering opportunities to track the real-time responses of patients during clinical trials and lending accessibility to cancers that are traditionally difficult to diagnose. However, CTCs are rare compared to the breadth of cells that reside in the circulatory network, which has encouraged the engineering of novel microfluidic devices. Current microfluidic technologies either extensively enrich CTCs but compromise cellular viability or sort viable CTCs at low efficiencies. Herein we present a procedure to fabricate and operate a microfluidic device capable of capturing CTCs at high efficiencies while ensuring high viability. The microvortex-inducing microfluidic device functionalized with nanointerfaces positively enriches CTCs via cancer-specific immunoaffinity, while a thermally responsive surface chemistry releases the captured cells by raising the temperature to 37 °C.
Collapse
Affiliation(s)
- Xilal Y Rima
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, USA
| | - Jingjing Zhang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, USA
| | - Eduardo Reátegui
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, USA.
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
10
|
Chen Y, Yang Y, Feng J, Carrier AJ, Tyagi D, Yu X, Wang C, Oakes KD, Zhang X. A universal monoclonal antibody-aptamer conjugation strategy for selective non-invasive bioparticle isolation from blood on a regenerative microfluidic platform. Acta Biomater 2022; 152:210-220. [PMID: 36087870 DOI: 10.1016/j.actbio.2022.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022]
Abstract
Simultaneous isolation of various circulating tumor cell (CTC) subtypes from whole blood is useful in cancer diagnosis and prognosis. Microfluidic affinity separation devices are promising for CTC separation because of their high throughput capacity and automatability. However, current affinity agents, such as antibodies (mAbs) and aptamers (Apts) alone, are still suboptimal for efficient, consistent, and versatile cell analysis. By introducing a hybrid affinity agent, i.e., an aptamer-antibody (Apt-mAb) conjugate, we developed a universal and regenerative microchip with high efficiency and non-invasiveness in the separation and profiling of various CTCs from blood. The Apt-mAb conjugate consists of a monoclonal antibody that specifically binds the target cell receptor and a surface-bound aptamer that recognizes the conserved Fc region of the mAb. The aptamer then indirectly links the surface functionalization of the microfluidic channels to the mAbs. This hybrid affinity agent and the microchip platform may be widely useful for various bio-particle separations in different biological matrices. Further, the regeneration capability of the microchip improves data consistency between multiple uses and minimizes plastic waste while promoting environmental sustainability. STATEMENT OF SIGNIFICANCE: A hybrid affinity agent, Apt-mAb, consisting of a universal aptamer (Apt) that binds the conserved Fc region of monoclonal antibodies (mAbs) was developed. The invented nano-biomaterial combines the strengths and overcomes the weakness of both Apts and mAbs, thus changing the paradigm of affinity separation of cell subtypes. When Apt-mAb was used to fabricate microfluidic chips using a "universal screwdriver" approach, the microchip could be easily tuned to bind any cell type, exhibiting great universality. Besides high sensitivity and selectivity, the superior regenerative capacity of the microchips makes them reusable, which provides improved consistency and repeatability in cell profiling and opens a new approach towards in vitro diagnostic point-of-care testing devices with environmental sustainability and cost-effectiveness.
Collapse
Affiliation(s)
- Yongli Chen
- Department of Biological Applied Engineering, Shenzhen Key Laboratory of Fermentation Purification and Analysis, Shenzhen Polytechnic, Shenzhen, 518055, China
| | - Yikun Yang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong 518116, China.
| | - Jinglong Feng
- Department of Biological Applied Engineering, Shenzhen Key Laboratory of Fermentation Purification and Analysis, Shenzhen Polytechnic, Shenzhen, 518055, China
| | - Andrew J Carrier
- Department of Chemistry, Cape Breton University, 1250 Grand Lake Road, Sydney, Nova Scotia, B1P 6L2, Canada
| | - Deependra Tyagi
- Department of Chemistry, Cape Breton University, 1250 Grand Lake Road, Sydney, Nova Scotia, B1P 6L2, Canada
| | - Xin Yu
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong 518116, China
| | - Chunguang Wang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong 518116, China
| | - Ken D Oakes
- Department of Biology, Cape Breton University, 1250 Grand Lake Road, Sydney, Nova Scotia, B1P 6L2, Canada
| | - Xu Zhang
- Department of Chemistry, Cape Breton University, 1250 Grand Lake Road, Sydney, Nova Scotia, B1P 6L2, Canada.
| |
Collapse
|
11
|
Ju S, Chen C, Zhang J, Xu L, Zhang X, Li Z, Chen Y, Zhou J, Ji F, Wang L. Detection of circulating tumor cells: opportunities and challenges. Biomark Res 2022; 10:58. [PMID: 35962400 PMCID: PMC9375360 DOI: 10.1186/s40364-022-00403-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/26/2022] [Indexed: 11/25/2022] Open
Abstract
Circulating tumor cells (CTCs) are cells that shed from a primary tumor and travel through the bloodstream. Studying the functional and molecular characteristics of CTCs may provide in-depth knowledge regarding highly lethal tumor diseases. Researchers are working to design devices and develop analytical methods that can capture and detect CTCs in whole blood from cancer patients with improved sensitivity and specificity. Techniques using whole blood samples utilize physical prosperity, immunoaffinity or a combination of the above methods and positive and negative enrichment during separation. Further analysis of CTCs is helpful in cancer monitoring, efficacy evaluation and designing of targeted cancer treatment methods. Although many advances have been achieved in the detection and molecular characterization of CTCs, several challenges still exist that limit the current use of this burgeoning diagnostic approach. In this review, a brief summary of the biological characterization of CTCs is presented. We focus on the current existing CTC detection methods and the potential clinical implications and challenges of CTCs. We also put forward our own views regarding the future development direction of CTCs.
Collapse
Affiliation(s)
- Siwei Ju
- Department of Surgical Oncology, The Sir Run Run Shaw Hospital Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang, Hangzhou, China
| | - Cong Chen
- Department of Surgical Oncology, The Sir Run Run Shaw Hospital Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang, Hangzhou, China
| | - Jiahang Zhang
- Department of Surgical Oncology, The Sir Run Run Shaw Hospital Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang, Hangzhou, China
| | - Lin Xu
- Department of Surgical Oncology, The Sir Run Run Shaw Hospital Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang, Hangzhou, China
| | - Xun Zhang
- Department of Surgical Oncology, The Sir Run Run Shaw Hospital Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang, Hangzhou, China
| | - Zhaoqing Li
- Department of Surgical Oncology, The Sir Run Run Shaw Hospital Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang, Hangzhou, China
| | - Yongxia Chen
- Department of Surgical Oncology, The Sir Run Run Shaw Hospital Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang, Hangzhou, China
| | - Jichun Zhou
- Department of Surgical Oncology, The Sir Run Run Shaw Hospital Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang, Hangzhou, China
| | - Feiyang Ji
- Department of Surgical Oncology, The Sir Run Run Shaw Hospital Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China.
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang, Hangzhou, China.
| | - Linbo Wang
- Department of Surgical Oncology, The Sir Run Run Shaw Hospital Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China.
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang, Hangzhou, China.
| |
Collapse
|
12
|
Chen B, Zheng J, Gao K, Hu X, Guo SS, Zhao XZ, Liao F, Yang Y, Liu W. Noninvasive Optical Isolation and Identification of Circulating Tumor Cells Engineered by Fluorescent Microspheres. ACS APPLIED BIO MATERIALS 2022; 5:2768-2776. [PMID: 35537085 DOI: 10.1021/acsabm.2c00204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Circulating tumor cells (CTCs) are rare, meaning that current isolation strategies can hardly satisfy efficiency and cell biocompatibility requirements, which hinders clinical applications. In addition, the selected cells require immunofluorescence identification, which is a time-consuming and expensive process. Here, we developed a method to simultaneously separate and identify CTCs by the integration of optical force and fluorescent microspheres. Our method achieved high-purity separation of CTCs without damage through light manipulation and avoided additional immunofluorescence staining procedures, thus achieving rapid identification of sorted cells. White blood cells (WBCs) and CTCs are similar in size and density, which creates difficulties in distinguishing them optically. Therefore, fluorescent PS microspheres with high refractive index (RI) are designed here to capture the CTCs (PS-CTCs) and increase the average index of refraction of PS-CTCs. In optofluidic chips, PS-CTCs were propelled to the collection channel from the sample mixture, under the radiation of light force. Cells from the collection outlet were easily identified under a fluorescence microscope due to the fluorescence signals of PS microspheres. This method provides an approach for the sorting and identification of CTCs, which holds great potential for clinical applications in early diagnosis of disease.
Collapse
Affiliation(s)
- Bei Chen
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, Hubei 430072, China
| | - Jingjing Zheng
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, Hubei 430072, China
| | - Kefan Gao
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, Hubei 430072, China
| | - Xuejia Hu
- Department of Electronic Engineering School of Electronic Science and Engineering, Xiamen University, Xiamen, Fujian Province 361005, China
| | - Shi-Shang Guo
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, Hubei 430072, China
| | - Xing-Zhong Zhao
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, Hubei 430072, China
| | - Fei Liao
- Gastroenterology Department, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Yi Yang
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, Hubei 430072, China
| | - Wei Liu
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, Hubei 430072, China.,Wuhan Institute of Quantum Technology, Wuhan 430206, China.,Hubei Luojia Laboratory, Wuhan University, Wuhan, Hubei 430072, China
| |
Collapse
|
13
|
Chen B, Wang G, Huang C, Sun Y, Zhang J, Chai Z, Guo SS, Zhao XZ, Yuan Y, Liu W. A light-induced hydrogel responsive platform to capture and selectively isolate single circulating tumor cells. NANOSCALE 2022; 14:3504-3512. [PMID: 35171188 DOI: 10.1039/d1nr06876h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Isolation of circulating tumor cells (CTCs) from patients is a challenge due to the rarity of CTCs. Recently, various platforms to capture and release CTCs for downstream analysis have been developed. However, most of the reported release methods provide external stimuli to release all captured cells, which lead to lack of specificity in the pool of collected cells, and the external stimuli may affect the activity of the released cells. Here, we presented a simple method for single-cell recovery to overcome the shortcomings, which combined the nanostructures with a photocurable hydrogel, chondroitin sulfate methacryloyl (CSMA). In brief, we synthesized gelatin nanoparticles (Gnps) and modified them on flat glass (Gnp substrate) for the specific capture of CTCs. A 405 nm laser was projected onto the selected cells, and then CSMA was cured to encapsulate the selected CTCs. Unselected cells were removed with MMP-9 enzyme solution, and selected CTCs were recovered using a microcapillary. Finally, the photocurable hydrogel-encapsulated cells were analyzed by nucleic acid detection. In addition, the results suggested that the isolation platform showed good biocompatibility and successfully achieved the isolation of selected cells. In summary, our light-induced hydrogel responsive platform holds certain potential for clinical applications.
Collapse
Affiliation(s)
- Bei Chen
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, Hubei 430072, China.
| | - Ganggang Wang
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China.
| | - Chunyu Huang
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, Hubei 430072, China.
| | - Yue Sun
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, Hubei 430072, China.
| | - Jing Zhang
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, Hubei 430072, China.
| | - Zhuomin Chai
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, Hubei 430072, China.
| | - Shi-Shang Guo
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, Hubei 430072, China.
| | - Xing-Zhong Zhao
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, Hubei 430072, China.
| | - Yufeng Yuan
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China.
| | - Wei Liu
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, Hubei 430072, China.
| |
Collapse
|
14
|
Descamps L, Le Roy D, Deman AL. Microfluidic-Based Technologies for CTC Isolation: A Review of 10 Years of Intense Efforts towards Liquid Biopsy. Int J Mol Sci 2022; 23:ijms23041981. [PMID: 35216097 PMCID: PMC8875744 DOI: 10.3390/ijms23041981] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 02/01/2023] Open
Abstract
The selection of circulating tumor cells (CTCs) directly from blood as a real-time liquid biopsy has received increasing attention over the past ten years, and further analysis of these cells may greatly aid in both research and clinical applications. CTC analysis could advance understandings of metastatic cascade, tumor evolution, and patient heterogeneity, as well as drug resistance. Until now, the rarity and heterogeneity of CTCs have been technical challenges to their wider use in clinical studies, but microfluidic-based isolation technologies have emerged as promising tools to address these limitations. This review provides a detailed overview of latest and leading microfluidic devices implemented for CTC isolation. In particular, this study details must-have device performances and highlights the tradeoff between recovery and purity. Finally, the review gives a report of CTC potential clinical applications that can be conducted after CTC isolation. Widespread microfluidic devices, which aim to support liquid-biopsy-based applications, will represent a paradigm shift for cancer clinical care in the near future.
Collapse
Affiliation(s)
- Lucie Descamps
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INSA Lyon, Ecole Centrale de Lyon, CPE Lyon, INL, UMR5270, 69622 Villeurbanne, France;
| | - Damien Le Roy
- Institut Lumière Matière ILM-UMR 5306, CNRS, Université Lyon 1, 69622 Villeurbanne, France;
| | - Anne-Laure Deman
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INSA Lyon, Ecole Centrale de Lyon, CPE Lyon, INL, UMR5270, 69622 Villeurbanne, France;
- Correspondence:
| |
Collapse
|
15
|
Nanostructure Materials: Efficient Strategies for Circulating Tumor Cells Capture, Release, and Detection. BIOTECHNOL BIOPROC E 2021. [DOI: 10.1007/s12257-020-0257-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
16
|
Hou J, Liu X, Zhou S. Programmable materials for efficient CTCs isolation: From micro/nanotechnology to biomimicry. VIEW 2021. [DOI: 10.1002/viw.20200023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Jianwen Hou
- Key Laboratory of Advanced Technologies of Materials Ministry of Education School of Materials Science and Engineering Southwest Jiaotong University Chengdu China
| | - Xia Liu
- School of Life Science and Engineering Southwest Jiaotong University Chengdu China
| | - Shaobing Zhou
- Key Laboratory of Advanced Technologies of Materials Ministry of Education School of Materials Science and Engineering Southwest Jiaotong University Chengdu China
| |
Collapse
|
17
|
|
18
|
Kumar T, Soares RRG, Ali Dholey L, Ramachandraiah H, Aval NA, Aljadi Z, Pettersson T, Russom A. Multi-layer assembly of cellulose nanofibrils in a microfluidic device for the selective capture and release of viable tumor cells from whole blood. NANOSCALE 2020; 12:21788-21797. [PMID: 33103175 DOI: 10.1039/d0nr05375a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
According to reports by the World Health Organization (WHO), cancer-related deaths reached almost 10 million in 2018. Nearly 65% of these deaths occurred in low- to middle-income countries, a trend that is bound to increase since cancer diagnostics are not currently considered a priority in resource-limited settings (RLS). Thus, cost-effective and specific cancer screening and diagnostics tools are in high demand, particularly in RLS. The selective isolation and up-concentration of rare cells while maintaining cell viability and preventing phenotypic changes is a powerful tool to allow accurate and sensitive downstream analysis. Here, multi-layer cellulose nanofibril-based coatings functionalized with anti-EpCAM antibodies on the surface of disposable microfluidic devices were optimized for specific capture of target cells, followed by efficient release without significant adverse effects. HCT 116 colon cancer cells were captured in a single step with >97% efficiency at 41.25 μL min-1 and, when spiked in whole blood, an average enrichment factor of ∼200-fold relative to white blood cells was achieved. The release of cells was performed by enzymatic digestion of the cellulose nanofibrils which had a negligible impact on cell viability. In particular, >80% of the cells were recovered with at least 97% viability in less than 30 min. Such performance paves the way to expand and improve clinical diagnostic applications by simplifying the isolation of circulating tumor cells (CTCs) and other rare cells directly from whole blood.
Collapse
Affiliation(s)
- Tharagan Kumar
- KTH Royal Institute of Technology, Division of Nanobiotechnology, Department of Protein Science, Science for Life Laboratory, Solna, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Rima XY, Walters N, Nguyen LTH, Reátegui E. Surface engineering within a microchannel for hydrodynamic and self-assembled cell patterning. BIOMICROFLUIDICS 2020; 14:014104. [PMID: 31933714 PMCID: PMC6941948 DOI: 10.1063/1.5126608] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/18/2019] [Indexed: 05/27/2023]
Abstract
The applications of cell patterning are widespread due to the high-throughput testing and different resolutions offered by these platforms. Cell patterning has aided in deconvoluting in vivo experiments to better characterize cellular mechanisms and increase therapeutic output. Here, we present a technique for engineering an artificial surface via surface chemistry to form large-scale arrays of cells within a microchannel by employing microstamping. By changing the approach in surface chemistry, H1568 cells were patterned hydrodynamically using immunoaffinity, and neutrophils were patterned through self-assembly via chemotaxis. The high patterning efficiencies (93% for hydrodynamic patterning and 68% for self-assembled patterning) and the lack of secondary adhesion demonstrate the reproducibility of the platform. The interaction between H1568 and neutrophils was visualized and quantified to determine the capability of the platform to encourage cell-cell interaction. With the introduction of H1568 cells into the self-assembled patterning platform, a significant hindrance in the neutrophils' ability to swarm was observed, indicating the important roles of inflammatory mediators within the nonsmall cell lung cancer tumor microenvironment.
Collapse
Affiliation(s)
- Xilal Y. Rima
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, USA
| | - Nicole Walters
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, USA
| | - Luong T. H. Nguyen
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, USA
| | | |
Collapse
|
20
|
Dong J, Chen JF, Smalley M, Zhao M, Ke Z, Zhu Y, Tseng HR. Nanostructured Substrates for Detection and Characterization of Circulating Rare Cells: From Materials Research to Clinical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1903663. [PMID: 31566837 PMCID: PMC6946854 DOI: 10.1002/adma.201903663] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/02/2019] [Indexed: 05/03/2023]
Abstract
Circulating rare cells in the blood are of great significance for both materials research and clinical applications. For example, circulating tumor cells (CTCs) have been demonstrated as useful biomarkers for "liquid biopsy" of the tumor. Circulating fetal nucleated cells (CFNCs) have shown potential in noninvasive prenatal diagnostics. However, it is technically challenging to detect and isolate circulating rare cells due to their extremely low abundance compared to hematologic cells. Nanostructured substrates offer a unique solution to address these challenges by providing local topographic interactions to strengthen cell adhesion and large surface areas for grafting capture agents, resulting in improved cell capture efficiency, purity, sensitivity, and reproducibility. In addition, rare-cell retrieval strategies, including stimulus-responsiveness and additive reagent-triggered release on different nanostructured substrates, allow for on-demand retrieval of the captured CTCs/CFNCs with high cell viability and molecular integrity. Several nanostructured substrate-enabled CTC/CFNC assays are observed maturing from enumeration and subclassification to molecular analyses. These can one day become powerful tools in disease diagnosis, prognostic prediction, and dynamic monitoring of therapeutic response-paving the way for personalized medical care.
Collapse
Affiliation(s)
- Jiantong Dong
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Jie-Fu Chen
- Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Matthew Smalley
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Meiping Zhao
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Zunfu Ke
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, P. R. China
| | - Yazhen Zhu
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Hsian-Rong Tseng
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
21
|
Kamal M, Saremi S, Klotz R, Iriondo O, Amzaleg Y, Chairez Y, Tulpule V, Lang JE, Kang I, Yu M. PIC&RUN: An integrated assay for the detection and retrieval of single viable circulating tumor cells. Sci Rep 2019; 9:17470. [PMID: 31767951 PMCID: PMC6877641 DOI: 10.1038/s41598-019-53899-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 11/07/2019] [Indexed: 12/21/2022] Open
Abstract
Circulating tumor cells (CTCs) shed from solid tumors can serve as a minimally invasive liquid biopsy for monitoring disease progression. Because CTCs are rare and heterogeneous, their biological properties need to be investigated at the single cell level, which requires efficient ways to isolate and analyze live single CTCs. Current methods for CTC isolation and identification are either performed on fixed and stained cells or need multiple procedures to isolate pure live CTCs. Here, we used the AccuCyte-RareCyte system to develop a Protocol for Integrated Capture and Retrieval of Ultra-pure single live CTCs using Negative and positive selection (PIC&RUN). The positive selection module of PIC&RUN identifies CTCs based on detection of cancer surface markers and exclusion of immune markers. Combined with a two-step cell picking protocol to retrieve ultrapure single CTCs, the positive selection module is compatible for downstream single cell transcriptomic analysis. The negative selection module of PIC&RUN identifies CTCs based on a live cell dye and the absence of immune markers, allowing retrieval of viable CTCs that are suitable for ex vivo culture. This new assay combines the CTC capture and retrieval in one integrated platform, providing a valuable tool for downstream live CTC analyses.
Collapse
Affiliation(s)
- Mohamed Kamal
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA, 90033, USA
- USC Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, California, 90033, USA
- Department of Zoology, Faculty of Science, University of Benha, Benha, Egypt
| | - Shahin Saremi
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA, 90033, USA
- USC Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, California, 90033, USA
- MS Biotechnology program, California State University Channel Islands, Camarillo, CA, 93012, USA
| | - Remi Klotz
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA, 90033, USA
- USC Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, California, 90033, USA
| | - Oihana Iriondo
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA, 90033, USA
- USC Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, California, 90033, USA
| | - Yonatan Amzaleg
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA, 90033, USA
- USC Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, California, 90033, USA
| | - Yvonne Chairez
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA, 90033, USA
- USC Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, California, 90033, USA
| | - Varsha Tulpule
- USC Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, California, 90033, USA
- Department of Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California, 90033, USA
| | - Julie E Lang
- USC Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, California, 90033, USA
- Department of Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, California, 90033, USA
| | - Irene Kang
- USC Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, California, 90033, USA
- Department of Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California, 90033, USA
| | - Min Yu
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA, 90033, USA.
- USC Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, California, 90033, USA.
| |
Collapse
|
22
|
Yue WQ, Tan Z, Li XP, Liu FF, Wang C. Micro/nanofluidic technologies for efficient isolation and detection of circulating tumor cells. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.06.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
23
|
Specific cell capture and noninvasive release via moderate electrochemical oxidation of boronic ester linkage. Biosens Bioelectron 2019; 138:111316. [DOI: 10.1016/j.bios.2019.111316] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 05/07/2019] [Accepted: 05/09/2019] [Indexed: 12/11/2022]
|
24
|
Cheng SB, Chen MM, Wang YK, Sun ZH, Xie M, Huang WH. Current techniques and future advance of microfluidic devices for circulating tumor cells. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.06.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
25
|
Yu D, Tang L, Dong Z, Loftis KA, Ding Z, Cheng J, Qin B, Yan J, Li W. Effective reduction of non-specific binding of blood cells in a microfluidic chip for isolation of rare cancer cells. Biomater Sci 2019; 6:2871-2880. [PMID: 30246818 DOI: 10.1039/c8bm00864g] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The high purity of target cells enriched from blood samples plays an important role in the clinical detection of diseases. However, non-specific binding of blood cells in the isolated cell samples can complicate downstream molecular and genetic analysis. In this work, we report a simple solution to non-specific binding of blood cells by modifying the surface of microchips with a multilayer nanofilm, with the outmost layer containing both PEG brushes for reducing blood cell adhesion and antibodies for enriching target cells. This layer-by-layer (LbL) polysaccharide nanofilm was modified with neutravindin and then conjugated with a mixture of biotinylated PEG molecules and biotinylated antibodies. Using EpCAM-expressing and HER2-expressing cancer cells in blood as model platforms, we were able to dramatically reduce the non-specific binding of blood cells to approximately 1 cell per mm2 without sacrificing the high capture efficiency of the microchip. To support the rational extension of this approach to other applications for cell isolation and blood cell resistance, we conducted extensive characterization on the nanofilm formation and degradation, antifouling with PEG brushes and introducing functional antibodies. This simple, yet effective, approach can be applied to a variety of microchip applications that require high purity of sample cells containing minimal contamination from blood cells.
Collapse
Affiliation(s)
- Dan Yu
- Department of Critical Care Medicine, People's Hospital of Zhengzhou University (Henan Provincial People's Hospital), Zhengzhou, 450003, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Iliescu FS, Poenar DP, Yu F, Ni M, Chan KH, Cima I, Taylor HK, Cima I, Iliescu C. Recent advances in microfluidic methods in cancer liquid biopsy. BIOMICROFLUIDICS 2019; 13:041503. [PMID: 31431816 PMCID: PMC6697033 DOI: 10.1063/1.5087690] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 06/24/2019] [Indexed: 05/04/2023]
Abstract
Early cancer detection, its monitoring, and therapeutical prediction are highly valuable, though extremely challenging targets in oncology. Significant progress has been made recently, resulting in a group of devices and techniques that are now capable of successfully detecting, interpreting, and monitoring cancer biomarkers in body fluids. Precise information about malignancies can be obtained from liquid biopsies by isolating and analyzing circulating tumor cells (CTCs) or nucleic acids, tumor-derived vesicles or proteins, and metabolites. The current work provides a general overview of the latest on-chip technological developments for cancer liquid biopsy. Current challenges for their translation and their application in various clinical settings are discussed. Microfluidic solutions for each set of biomarkers are compared, and a global overview of the major trends and ongoing research challenges is given. A detailed analysis of the microfluidic isolation of CTCs with recent efforts that aimed at increasing purity and capture efficiency is provided as well. Although CTCs have been the focus of a vast microfluidic research effort as the key element for obtaining relevant information, important clinical insights can also be achieved from alternative biomarkers, such as classical protein biomarkers, exosomes, or circulating-free nucleic acids. Finally, while most work has been devoted to the analysis of blood-based biomarkers, we highlight the less explored potential of urine as an ideal source of molecular cancer biomarkers for point-of-care lab-on-chip devices.
Collapse
Affiliation(s)
- Florina S. Iliescu
- School of Applied Science, Republic Polytechnic, Singapore 738964, Singapore
| | - Daniel P. Poenar
- VALENS-Centre for Bio Devices and Signal Analysis, School of EEE, Nanyang Technological University, Singapore 639798, Singapore
| | - Fang Yu
- Singapore Institute of Manufacturing Technology, A*STAR, Singapore 138634, Singapore
| | - Ming Ni
- School of Biological Sciences and Engineering, Yachay Technological University, San Miguel de Urcuquí 100105, Ecuador
| | - Kiat Hwa Chan
- Division of Science, Yale-NUS College, Singapore 138527, Singapore
| | | | - Hayden K. Taylor
- Department of Mechanical Engineering, University of California, Berkeley, California 94720, USA
| | - Igor Cima
- DKFZ-Division of Translational Oncology/Neurooncology, German Cancer Consortium (DKTK), Heidelberg and University Hospital Essen, Essen 45147, Germany
| | | |
Collapse
|
27
|
Yu D, Dong Z, Lim H, Chen Y, Ding Z, Sultana N, Wu J, Qin B, Cheng J, Li W. Microfluidic preparation, shrinkage, and surface modification of monodispersed alginate microbeads for 3D cell culture. RSC Adv 2019; 9:11101-11110. [PMID: 35520215 PMCID: PMC9062992 DOI: 10.1039/c9ra01443h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 03/28/2019] [Indexed: 12/20/2022] Open
Abstract
Functionalized alginate microbeads (MB) have been widely used for three-dimensional (3D) culture of cells and creating biomimetic tissue models. However, conventional methods for preparing these MB suffer from poor polydispersity, due to coalescence of droplets during the gelation process and post-aggregation. It remains an immense challenge to prepare alginate MB with narrow size distribution and uniform shape, especially when their diameters are similar to the size of cells. In this work, we developed a simple method to produce monodispersed, cell-size alginate MB through microfluidic emulsification, followed by a controlled shrinkage process and gelation in mineral oil with low concentration of calcium ion (Ca2+). During the gelation process caused by the diffusion of Ca2+ from the oil to water phase, a large amount of satellite droplets with sub-micrometer sizes was formed at the water/oil interface. As a result, each original droplet was transformed to one shrunken-MB with much smaller size and numerous submicron-size satellites. To explore the feasibility of the shrunken-MB for culturing with cells, we have successfully modified a variety of polymer nanofilms on MB surfaces using a layer-by-layer assembly approach. Finally, the nanofilm-modified MB was applied to a 3D culture of GFP-expressing fibroblast cells and demonstrated good biocompatibility. Cell-size alginate microbeads for 3D cell culture were prepared by microfluidic emulsification and controlled shrinkage, followed by nanofilm modification.![]()
Collapse
Affiliation(s)
- Dan Yu
- Department of Critical Care Medicine, People's Hospital of Zhengzhou University (Henan Provincial People's Hospital) Zhengzhou 450003 China .,Department of Chemical Engineering, Texas Tech University 807 Canton Ave Lubbock Texas 79409 USA
| | - Ziye Dong
- Department of Chemical Engineering, Texas Tech University 807 Canton Ave Lubbock Texas 79409 USA
| | - HyunTaek Lim
- Department of Chemical Engineering, Texas Tech University 807 Canton Ave Lubbock Texas 79409 USA
| | - Yuting Chen
- School of Materials Science & Engineering, Wuhan Institute of Technology LiuFang Campus, No. 206, Guanggu 1st Road, Donghu New & High Technology Development Zone Wuhan 430205 P. R. China
| | - Zhenya Ding
- Department of Chemical Engineering, Texas Tech University 807 Canton Ave Lubbock Texas 79409 USA
| | - Nadia Sultana
- Department of Chemical Engineering, Texas Tech University 807 Canton Ave Lubbock Texas 79409 USA
| | - Jiangyu Wu
- School of Materials Science & Engineering, Wuhan Institute of Technology LiuFang Campus, No. 206, Guanggu 1st Road, Donghu New & High Technology Development Zone Wuhan 430205 P. R. China
| | - Bingyu Qin
- Department of Critical Care Medicine, People's Hospital of Zhengzhou University (Henan Provincial People's Hospital) Zhengzhou 450003 China
| | - Jianjian Cheng
- Department of Critical Care Medicine, People's Hospital of Zhengzhou University (Henan Provincial People's Hospital) Zhengzhou 450003 China
| | - Wei Li
- Department of Chemical Engineering, Texas Tech University 807 Canton Ave Lubbock Texas 79409 USA
| |
Collapse
|
28
|
LeValley PJ, Tibbitt MW, Noren B, Kharkar P, Kloxin AM, Anseth KS, Toner M, Oakey J. Immunofunctional photodegradable poly(ethylene glycol) hydrogel surfaces for the capture and release of rare cells. Colloids Surf B Biointerfaces 2019; 174:483-492. [PMID: 30497010 PMCID: PMC6545105 DOI: 10.1016/j.colsurfb.2018.11.049] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 11/16/2018] [Accepted: 11/20/2018] [Indexed: 12/14/2022]
Abstract
Circulating tumor cells (CTCs) play a central role in cancer metastasis and represent a rich source of data for cancer prognostics and therapeutic guidance. Reliable CTC recovery from whole blood therefore promises a less invasive and more sensitive approach to cancer diagnosis and progression tracking. CTCs, however, are exceedingly rare in whole blood, making their quantitative recovery challenging. Several techniques capable of isolating these rare cells have been introduced and validated, yet most suffer from low CTC purity or viability, both of which are essential to develop a clinically viable CTC isolation platform. To address these limitations, we introduce a patterned, immunofunctional, photodegradable poly(ethylene glycol) (PEG) hydrogel capture surface for the isolation and selective release of rare cell populations. Flat and herringbone capture surfaces were successfully patterned via PDMS micromolding and photopolymerization of photolabile PEG hydrogels. Patterned herringbone surfaces, designed to convectively transport cells to the capture surface, exhibited improved capture density relative to flat surfaces for target cell capture from buffer, buffy coat, and whole blood. Uniquely, captured cells were released for collection by degrading the hydrogel capture surface with either bulk or targeted irradiation with cytocompatible doses of long wavelength UV light. Recovered cells remained viable following capture and release and exhibited similar growth rates as untreated control cells. The implementation of molded photodegradable PEG hydrogels as a CTC capture surface provides a micropatternable, cytocompatible platform that imparts the unique ability to recover pure, viable CTC samples by selectively releasing target cells.
Collapse
Affiliation(s)
- Paige J LeValley
- Department of Chemical Engineering, University of Wyoming, Laramie, WY 82071, United States; Department of Biomolecular and Chemical Engineering, University of Delaware, Newark, DE 19716, United States
| | - Mark W Tibbitt
- Department of Chemical and Biological Engineering, University of Colorado Boulder,Boulder, CO 80309, United States; Department of Mechanical and Process Engineering, ETH Zürich, Zürich, 8092, Switzerland
| | - Ben Noren
- Department of Chemical Engineering, University of Wyoming, Laramie, WY 82071, United States
| | - Prathamesh Kharkar
- Department of Biomolecular and Chemical Engineering, University of Delaware, Newark, DE 19716, United States
| | - April M Kloxin
- Department of Biomolecular and Chemical Engineering, University of Delaware, Newark, DE 19716, United States
| | - Kristi S Anseth
- Department of Chemical and Biological Engineering, University of Colorado Boulder,Boulder, CO 80309, United States; BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80309, United States; Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO 80309, United States
| | - Mehmet Toner
- BioMEMS Resource Center, Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital, Shriners Hospital for Children and Harvard Medical School, Boston, MA 02114, United States
| | - John Oakey
- Department of Chemical Engineering, University of Wyoming, Laramie, WY 82071, United States.
| |
Collapse
|
29
|
Abstract
Control of cell functions by layer-by-layer assembly has a great challenge in tissue engineering and biomedical applications. We summarize current hot approaches in this review.
Collapse
Affiliation(s)
- Jinfeng Zeng
- Department of Applied Chemistry
- Graduate School of Engineering
- Osaka University
- Suita
- Japan
| | - Michiya Matsusaki
- Department of Applied Chemistry
- Graduate School of Engineering
- Osaka University
- Suita
- Japan
| |
Collapse
|
30
|
Wu J, Chen Q, Lin JM. Microfluidic technologies in cell isolation and analysis for biomedical applications. Analyst 2018; 142:421-441. [PMID: 27900377 DOI: 10.1039/c6an01939k] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Efficient platforms for cell isolation and analysis play an important role in applied and fundamental biomedical studies. As cells commonly have a size of around 10 microns, conventional handling approaches at a large scale are still challenged in precise control and efficient recognition of cells for further performance of isolation and analysis. Microfluidic technologies have become more prominent in highly efficient cell isolation for circulating tumor cells (CTCs) detection, single-cell analysis and stem cell separation, since microfabricated devices allow for the spatial and temporal control of complex biochemistries and geometries by matching cell morphology and hydrodynamic traps in a fluidic network, as well as enabling specific recognition with functional biomolecules in the microchannels. In addition, the fabrication of nano-interfaces in the microchannels has been increasingly emerging as a very powerful strategy for enhancing the capability of cell capture by improving cell-interface interactions. In this review, we focus on highlighting recent advances in microfluidic technologies for cell isolation and analysis. We also describe the general biomedical applications of microfluidic cell isolation and analysis, and finally make a prospective for future studies.
Collapse
Affiliation(s)
- Jing Wu
- School of Science, China University of Geosciences (Beijing), Beijing 100083, China.
| | - Qiushui Chen
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Tsinghua University, Beijing 100084, China.
| | - Jin-Ming Lin
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
31
|
Dong Z, Yu D, Liu Q, Ding Z, Lyons VJ, Bright RK, Pappas D, Liu X, Li W. Enhanced capture and release of circulating tumor cells using hollow glass microspheres with a nanostructured surface. NANOSCALE 2018; 10:16795-16804. [PMID: 30160287 PMCID: PMC6693900 DOI: 10.1039/c8nr04434a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Self-floating hollow glass microspheres (HGMS) modified with tumor-specific antibodies have been developed for the capture of circulating tumor cells (CTCs), and have demonstrated effective cell isolation and good viability of isolated cancer cells. However, the capture efficiency decreases dramatically if the spiked cell concentration is low, possibly due to insufficient interactions between cancer cells and the HGMS surface. In order to apply HGMS-based CTC isolation to clinically relevant samples, it is desirable to create nanostructures on the surface of HGMS to enhance cell-surface interactions. Nevertheless, current microfabrication methods cannot generate nanostructured-surfaces on microspheres. The authors have developed a new HGMS with a controlled nanotopographical surface structure (NSHGMS), and demonstrated isolation and recovery of rare cancer cells. NSHGMS are achieved by applying layer-by-layer (LbL) assembly of negatively charged SiO2 nanoparticles and positively charged poly-l-arginine molecules, then sheathing the surface with an enzymatically degradable LbL film made from biotinylated alginate and poly-l-arginine, and capping with anti-EpCAM antibodies and anti-fouling PEG molecules. Compared to smooth-surfaced HGMS, NSHGMS showed shorter isolation time (20 min), enhanced capture efficiency (93.6 ± 4.9%) and lower detection limit (30 cells per mL) for commonly used cancer cell lines (MCF7, SK-BR-3, PC-3, A549 and CCRF-CEM). This NSHGMS-based CTC isolation method does not require specialized lab equipment or an external power source, and thus, can be used for the separation of targeted cells from blood or other body fluids in a resource-limited environment.
Collapse
Affiliation(s)
- Ziye Dong
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Opoku-Damoah Y, Assanhou AG, Sooro MA, Baduweh CA, Sun C, Ding Y. Functional Diagnostic and Therapeutic Nanoconstructs for Efficient Probing of Circulating Tumor Cells. ACS APPLIED MATERIALS & INTERFACES 2018; 10:14231-14247. [PMID: 29557165 DOI: 10.1021/acsami.7b17896] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The circulation of tumor cells in peripheral blood is mostly recognized as a prerequisite for cancer progression or systemic invasion, and it correlates with the pivotal hallmark of malignancies known as metastasis. Multiple detection schemes for circulating tumor cells (CTCs) have emerged as the most discerning criteria for monitoring the outcome of anticancer therapy. Therefore, there has been a tremendous increase in the use of robust nanostructured platforms for observation of these mobile tumor cells through various simultaneous diagnosis and treatment regimens developed from conventional techniques. This review seeks to give detailed information about the nature of CTCs as well as techniques for exploiting specific biomarkers to help monitor cancer via detection, capturing, and analysis of unstable tumor cells. We will further discuss nanobased diagnostic interventions and novel platforms which have recently been developed from versatile nanomaterials such as polymer nanocomposites, metal organic frameworks, bioderived nanomaterials and other physically responsive particles with desirable intrinsic and external properties. Herein, we will also include in vivo nanotheranostic platforms which have received a lot of attention because of their enormous clinical potential. In all, this review sums up the general potential of key promising nanoinspired systems as well as other advanced strategies under research and those in clinical use.
Collapse
Affiliation(s)
- Yaw Opoku-Damoah
- Australian Institute for Bioengineering & Nanotechnology , The University of Queensland , St. Lucia , Brisbane, QLD 4072
| | - Assogba G Assanhou
- UFR Pharmacie, Falculté des Sciences de la Santé , Université d'Abomey-Calavi , 01BP188 Cotonou , Benin
| | | | | | | | | |
Collapse
|
33
|
Sharma S, Zhuang R, Long M, Pavlovic M, Kang Y, Ilyas A, Asghar W. Circulating tumor cell isolation, culture, and downstream molecular analysis. Biotechnol Adv 2018; 36:1063-1078. [PMID: 29559380 DOI: 10.1016/j.biotechadv.2018.03.007] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 03/07/2018] [Accepted: 03/12/2018] [Indexed: 12/12/2022]
Abstract
Circulating tumor cells (CTCs) are a major contributor of cancer metastases and hold a promising prognostic significance in cancer detection. Performing functional and molecular characterization of CTCs provides an in-depth knowledge about this lethal disease. Researchers are making efforts to design devices and develop assays for enumeration of CTCs with a high capture and detection efficiency from whole blood of cancer patients. The existing and on-going research on CTC isolation methods has revealed cell characteristics which are helpful in cancer monitoring and designing of targeted cancer treatments. In this review paper, a brief summary of existing CTC isolation methods is presented. We also discuss methods of detaching CTC from functionalized surfaces (functional assays/devices) and their further use for ex-vivo culturing that aid in studies regarding molecular properties that encourage metastatic seeding. In the clinical applications section, we discuss a number of cases that CTCs can play a key role for monitoring metastases, drug treatment response, and heterogeneity profiling regarding biomarkers and gene expression studies that bring treatment design further towards personalized medicine.
Collapse
Affiliation(s)
- Sandhya Sharma
- Department of Computer & Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA; Asghar-Lab, Micro and Nanotechnology in Medicine, College of Engineering and Computer Science, Boca Raton, FL 33431, USA
| | - Rachel Zhuang
- Asghar-Lab, Micro and Nanotechnology in Medicine, College of Engineering and Computer Science, Boca Raton, FL 33431, USA
| | - Marisa Long
- Asghar-Lab, Micro and Nanotechnology in Medicine, College of Engineering and Computer Science, Boca Raton, FL 33431, USA
| | - Mirjana Pavlovic
- Department of Computer & Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Yunqing Kang
- Department of Ocean & Mechanical Engineering, College of Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA; Department of Biomedical Science, College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Azhar Ilyas
- Department of Electrical & Computer Engineering, New York Institute of Technology, Old Westbury, NY 11568, USA
| | - Waseem Asghar
- Department of Computer & Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA; Asghar-Lab, Micro and Nanotechnology in Medicine, College of Engineering and Computer Science, Boca Raton, FL 33431, USA; Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA.
| |
Collapse
|
34
|
Konvičková Z, Holišová V, Kolenčík M, Niide T, Kratošová G, Umetsu M, Seidlerová J. Phytosynthesis of colloidal Ag-AgCl nanoparticles mediated by Tilia sp. leachate, evaluation of their behaviour in liquid phase and catalytic properties. Colloid Polym Sci 2018. [DOI: 10.1007/s00396-018-4290-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
35
|
Rauta PR, Hallur PM, Chaubey A. Gold nanoparticle-based rapid detection and isolation of cells using ligand-receptor chemistry. Sci Rep 2018; 8:2893. [PMID: 29440656 PMCID: PMC5811494 DOI: 10.1038/s41598-018-21068-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 01/22/2018] [Indexed: 01/07/2023] Open
Abstract
Identification and isolation of low-frequency cells of interest from a heterogeneous cell mixture is an important aspect of many diagnostic applications (including enumeration of circulating tumor cells) and is integral to various assays in (cancer) biology. Current techniques typically require expensive instrumentation and are not amenable to high throughput. Here, we demonstrate a simple and effective platform for cell detection and isolation using gold nanoparticles (Au NPs) conjugated with hyaluronic acid (HA) i.e. Au-PEG-HA NPs. The proposed platform exploits ligand-receptor chemistry to detect/isolate cells with high specificity and efficiency. When the Au-PEG-HA NPs come in contact with cells that express CD44 (the receptor for HA), a clear colorimetric change occurs (along with an accompanying SPR peak shift from 521 nm to 559 nm) in the solution due to NPs-cell interaction. This clearly discernible, colorimetric change can be leveraged by point-of-care devices employed in diagnostic applications. Finally, we show that we can successfully isolate viable cells from a heterogeneous cell population (including from human blood samples) with high specificity, which can be used in further downstream applications. The developed NPs-based platform can be a convenient and cost-efficient alternative for diagnostic applications and for cell isolation or sorting in research laboratories.
Collapse
Affiliation(s)
- Pradipta Ranjan Rauta
- Anti-Cancer Technologies Program, Mazumdar Shaw Center for Translational Research, NH Health City, Bangalore, 560 099, India
| | - Pavan M Hallur
- Anti-Cancer Technologies Program, Mazumdar Shaw Center for Translational Research, NH Health City, Bangalore, 560 099, India
| | - Aditya Chaubey
- Anti-Cancer Technologies Program, Mazumdar Shaw Center for Translational Research, NH Health City, Bangalore, 560 099, India.
| |
Collapse
|
36
|
Shen MY, Chen JF, Luo CH, Lee S, Li CH, Yang YL, Tsai YH, Ho BC, Bao LR, Lee TJ, Jan YJ, Zhu YZ, Cheng S, Feng FY, Chen P, Hou S, Agopian V, Hsiao YS, Tseng HR, Posadas EM, Yu HH. Glycan Stimulation Enables Purification of Prostate Cancer Circulating Tumor Cells on PEDOT NanoVelcro Chips for RNA Biomarker Detection. Adv Healthc Mater 2018; 7:10.1002/adhm.201700701. [PMID: 28892262 PMCID: PMC5803304 DOI: 10.1002/adhm.201700701] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 07/31/2017] [Indexed: 12/30/2022]
Abstract
A glycan-stimulated and poly(3,4-ethylene-dioxythiophene)s (PEDOT)-based nanomaterial platform is fabricated to purify circulating tumor cells (CTCs) from blood samples of prostate cancer (PCa) patients. This new platform, phenylboronic acid (PBA)-grafted PEDOT NanoVelcro, combines the 3D PEDOT nanosubstrate, which greatly enhances CTC capturing efficiency, with a poly(EDOT-PBA-co-EDOT-EG3) interfacial layer, which not only provides high specificity for CTC capture upon antibody conjugation but also enables competitive binding of sorbitol to gently release the captured cells. CTCs purified by this PEDOT NanoVelcro chip provide well-preserved RNA transcripts for the analysis of the expression level of several PCa-specific RNA biomarkers, which may provide clinical insights into the disease.
Collapse
Affiliation(s)
- Mo-Yuan Shen
- Smart Organic Material Laboratory, Institute of Chemistry, Academia Sinica, No. 128, Sec. 2, Academia Rd., Nankang, Taipei, 11529, Taiwan
| | - Jie-Fu Chen
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA, 90048, USA
| | - Chun-Hao Luo
- Smart Organic Material Laboratory, Institute of Chemistry, Academia Sinica, No. 128, Sec. 2, Academia Rd., Nankang, Taipei, 11529, Taiwan
| | - Sangjun Lee
- Department of Molecular and Medical Pharmacology, California NanoSystems Institute, University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, CA, 90095-1770, USA
| | - Cheng-Hsuan Li
- Smart Organic Material Laboratory, Institute of Chemistry, Academia Sinica, No. 128, Sec. 2, Academia Rd., Nankang, Taipei, 11529, Taiwan
| | - Yung-Ling Yang
- Smart Organic Material Laboratory, Institute of Chemistry, Academia Sinica, No. 128, Sec. 2, Academia Rd., Nankang, Taipei, 11529, Taiwan
| | - Yu-Han Tsai
- Smart Organic Material Laboratory, Institute of Chemistry, Academia Sinica, No. 128, Sec. 2, Academia Rd., Nankang, Taipei, 11529, Taiwan
| | - Bo-Cheng Ho
- Department of Material Engineering, Ming Chi University of Technology, 84 Gungjuan Rd., Taishan Dist., New Taipei City, 24301, Taiwan
| | - Li-Rong Bao
- Department of Molecular and Medical Pharmacology, California NanoSystems Institute, University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, CA, 90095-1770, USA
| | - Tien-Jung Lee
- Department of Molecular and Medical Pharmacology, California NanoSystems Institute, University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, CA, 90095-1770, USA
| | - Yu Jen Jan
- Department of Molecular and Medical Pharmacology, California NanoSystems Institute, University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, CA, 90095-1770, USA
| | - Ya-Zhen Zhu
- Department of Molecular and Medical Pharmacology, California NanoSystems Institute, University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, CA, 90095-1770, USA
| | - Shirley Cheng
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA, 90048, USA
| | - Felix Y Feng
- Departments of Radiation Oncology, Urology, and Medicine, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Peilin Chen
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Shuang Hou
- Liver Transplantation and Hepatobiliary Surgery, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Vatche Agopian
- Liver Transplantation and Hepatobiliary Surgery, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Yu-Sheng Hsiao
- Department of Material Engineering, Ming Chi University of Technology, 84 Gungjuan Rd., Taishan Dist., New Taipei City, 24301, Taiwan
| | - Hsian-Rong Tseng
- Department of Molecular and Medical Pharmacology, California NanoSystems Institute, University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, CA, 90095-1770, USA
| | - Edwin M Posadas
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA, 90048, USA
| | - Hsiao-Hua Yu
- Smart Organic Material Laboratory, Institute of Chemistry, Academia Sinica, No. 128, Sec. 2, Academia Rd., Nankang, Taipei, 11529, Taiwan
| |
Collapse
|
37
|
Jan YJ, Chen JF, Zhu Y, Lu YT, Chen SH, Chung H, Smalley M, Huang YW, Dong J, Chen LC, Yu HH, Tomlinson JS, Hou S, Agopian VG, Posadas EM, Tseng HR. NanoVelcro rare-cell assays for detection and characterization of circulating tumor cells. Adv Drug Deliv Rev 2018; 125:78-93. [PMID: 29551650 PMCID: PMC5993593 DOI: 10.1016/j.addr.2018.03.006] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 03/08/2018] [Accepted: 03/13/2018] [Indexed: 12/12/2022]
Abstract
Circulating tumor cells (CTCs) are cancer cells shredded from either a primary tumor or a metastatic site and circulate in the blood as the potential cellular origin of metastasis. By detecting and analyzing CTCs, we will be able to noninvasively monitor disease progression in individual cancer patients and obtain insightful information for assessing disease status, thus realizing the concept of "tumor liquid biopsy". However, it is technically challenging to identify CTCs in patient blood samples because of the extremely low abundance of CTCs among a large number of hematologic cells. In order to address this challenge, our research team at UCLA pioneered a unique concept of "NanoVelcro" cell-affinity substrates, in which CTC capture agent-coated nanostructured substrates were utilized to immobilize CTCs with remarkable efficiency. Four generations of NanoVelcro CTC assays have been developed over the past decade for a variety of clinical utilities. The 1st-gen NanoVelcro Chips, composed of a silicon nanowire substrate (SiNS) and an overlaid microfluidic chaotic mixer, were created for CTC enumeration. The 2nd-gen NanoVelcro Chips (i.e., NanoVelcro-LMD), based on polymer nanosubstrates, were developed for single-CTC isolation in conjunction with the use of the laser microdissection (LMD) technique. By grafting thermoresponsive polymer brushes onto SiNS, the 3rd-gen Thermoresponsive NanoVelcro Chips have demonstrated the capture and release of CTCs at 37 and 4 °C respectively, thereby allowing for rapid CTC purification while maintaining cell viability and molecular integrity. Fabricated with boronic acid-grafted conducting polymer-based nanomaterial on chip surface, the 4th-gen NanoVelcro Chips (Sweet chip) were able to purify CTCs with well-preserved RNA transcripts, which could be used for downstream analysis of several cancer specific RNA biomarkers. In this review article, we will summarize the development of the four generations of NanoVelcro CTC assays, and the clinical applications of each generation of devices.
Collapse
Affiliation(s)
- Yu Jen Jan
- Urologic Oncology Program and Uro-Oncology Research Laboratories, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Department of Molecular and Medical Pharmacology, California NanoSystems Institute, Crump Institute for Molecular Imaging, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jie-Fu Chen
- Urologic Oncology Program and Uro-Oncology Research Laboratories, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yazhen Zhu
- Department of Molecular and Medical Pharmacology, California NanoSystems Institute, Crump Institute for Molecular Imaging, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yi-Tsung Lu
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Szu Hao Chen
- Department of Molecular and Medical Pharmacology, California NanoSystems Institute, Crump Institute for Molecular Imaging, University of California, Los Angeles, Los Angeles, CA, USA
| | - Howard Chung
- Department of Molecular and Medical Pharmacology, California NanoSystems Institute, Crump Institute for Molecular Imaging, University of California, Los Angeles, Los Angeles, CA, USA
| | - Matthew Smalley
- Department of Molecular and Medical Pharmacology, California NanoSystems Institute, Crump Institute for Molecular Imaging, University of California, Los Angeles, Los Angeles, CA, USA; CytoLumina Technologies Corp., Los Angeles, CA, USA
| | - Yen-Wen Huang
- Department of Molecular and Medical Pharmacology, California NanoSystems Institute, Crump Institute for Molecular Imaging, University of California, Los Angeles, Los Angeles, CA, USA; CytoLumina Technologies Corp., Los Angeles, CA, USA
| | - Jiantong Dong
- Department of Molecular and Medical Pharmacology, California NanoSystems Institute, Crump Institute for Molecular Imaging, University of California, Los Angeles, Los Angeles, CA, USA
| | - Li-Ching Chen
- Department of Obstetrics and Gynecology, Cathay General Hospital, Taipei, Taiwan
| | - Hsiao-Hua Yu
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - James S Tomlinson
- Department of Surgery, University of California, Los Angeles, Los Angeles, CA, USA; Center for Pancreatic Disease, University of California, Los Angeles, Los Angeles, CA, USA; Department of Surgery, Greater Los Angeles Veteran's Affairs Administration, Los Angeles, CA, USA
| | - Shuang Hou
- Department of Surgery, University of California, Los Angeles, Los Angeles, CA, USA
| | - Vatche G Agopian
- Department of Surgery, University of California, Los Angeles, Los Angeles, CA, USA; Liver Transplantation and Hepatobiliary Surgery, University of California, Los Angeles, Los Angeles, CA, USA
| | - Edwin M Posadas
- Urologic Oncology Program and Uro-Oncology Research Laboratories, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Hsian-Rong Tseng
- Department of Molecular and Medical Pharmacology, California NanoSystems Institute, Crump Institute for Molecular Imaging, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
38
|
An L, Wang G, Han Y, Li T, Jin P, Liu S. Electrochemical biosensor for cancer cell detection based on a surface 3D micro-array. LAB ON A CHIP 2018; 18:335-342. [PMID: 29260185 DOI: 10.1039/c7lc01117b] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The detection of rare circulating tumour cells (CTCs) in patients' blood is crucial for the early diagnosis of cancer, highly precise cancer therapy and monitoring therapeutic outcomes in real time. In this study we have developed an efficient strategy to capture and detect CTCs from the blood of cancer patients using a benzoboric acid modified gold-plated polymeric substrate with a regular 3D surface array. Compared with the smooth substrate, the substrate with the surface 3D microarrays exhibited a higher capture efficiency, i.e. 3.8 times that afforded by the smooth substrate. Additionally, due to the reversible reaction between the benzoboric acid on the 3D microarray and the sialic acid on CTCs, our strategy allowed for easy detachment of the captured CTCs from the substrate without causing critical damage to the cells. This will be of benefit for gaining further access to these rare cells for downstream characterization. The proposed strategy provides several advantages, including enhanced capture efficiency, high sensitivity, low cost and recovery of isolated CTCs, and could become a promising platform for early stage diagnosis of cancer.
Collapse
Affiliation(s)
- Li An
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | | | | | | | | | | |
Collapse
|
39
|
Huang Q, Wang Y, Chen X, Wang Y, Li Z, Du S, Wang L, Chen S. Nanotechnology-Based Strategies for Early Cancer Diagnosis Using Circulating Tumor Cells as a Liquid Biopsy. Nanotheranostics 2018; 2:21-41. [PMID: 29291161 PMCID: PMC5743836 DOI: 10.7150/ntno.22091] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 10/10/2017] [Indexed: 12/11/2022] Open
Abstract
Circulating tumor cells (CTCs) are cancer cells that shed from a primary tumor and circulate in the bloodstream. As a form of “tumor liquid biopsy”, CTCs provide important information for the mechanistic investigation of cancer metastasis and the measurement of tumor genotype evolution during treatment and disease progression. However, the extremely low abundance of CTCs in the peripheral blood and the heterogeneity of CTCs make their isolation and characterization major technological challenges. Recently, nanotechnologies have been developed for sensitive CTC detection; such technologies will enable better cell and molecular characterization and open up a wide range of clinical applications, including early disease detection and evaluation of treatment response and disease progression. In this review, we summarize the nanotechnology-based strategies for CTC isolation, including representative nanomaterials (such as magnetic nanoparticles, gold nanoparticles, silicon nanopillars, nanowires, nanopillars, carbon nanotubes, dendrimers, quantum dots, and graphene oxide) and microfluidic chip technologies that incorporate nanoroughened surfaces and discuss their key challenges and perspectives in CTC downstream analyses, such as protein expression and genetic mutations that may reflect tumor aggressiveness and patient outcome.
Collapse
Affiliation(s)
- Qinqin Huang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery of Ministry of Education, School of Pharmaceutical Sciences, and Brain Center, Zhongnan Hospital, and Medical Research Institute, Wuhan University, Wuhan 430072, China
| | - Yin Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery of Ministry of Education, School of Pharmaceutical Sciences, and Brain Center, Zhongnan Hospital, and Medical Research Institute, Wuhan University, Wuhan 430072, China
| | - Xingxiang Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery of Ministry of Education, School of Pharmaceutical Sciences, and Brain Center, Zhongnan Hospital, and Medical Research Institute, Wuhan University, Wuhan 430072, China
| | - Yimeng Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery of Ministry of Education, School of Pharmaceutical Sciences, and Brain Center, Zhongnan Hospital, and Medical Research Institute, Wuhan University, Wuhan 430072, China
| | - Zhiqiang Li
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery of Ministry of Education, School of Pharmaceutical Sciences, and Brain Center, Zhongnan Hospital, and Medical Research Institute, Wuhan University, Wuhan 430072, China
| | - Shiming Du
- Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, China
| | - Lianrong Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery of Ministry of Education, School of Pharmaceutical Sciences, and Brain Center, Zhongnan Hospital, and Medical Research Institute, Wuhan University, Wuhan 430072, China
| | - Shi Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery of Ministry of Education, School of Pharmaceutical Sciences, and Brain Center, Zhongnan Hospital, and Medical Research Institute, Wuhan University, Wuhan 430072, China
| |
Collapse
|
40
|
Yan S, Chen P, Zeng X, Zhang X, Li Y, Xia Y, Wang J, Dai X, Feng X, Du W, Liu BF. Integrated Multifunctional Electrochemistry Microchip for Highly Efficient Capture, Release, Lysis, and Analysis of Circulating Tumor Cells. Anal Chem 2017; 89:12039-12044. [DOI: 10.1021/acs.analchem.7b02469] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Shuangqian Yan
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics—Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Peng Chen
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics—Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xuemei Zeng
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics—Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xian Zhang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics—Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yiwei Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics—Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yun Xia
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics—Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jie Wang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics—Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaofang Dai
- Cancer
Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaojun Feng
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics—Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wei Du
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics—Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Bi-Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics—Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
41
|
Yang G, Li X, He Y, Xiong X, Wang P, Zhou S. Capturing Circulating Tumor Cells through a Combination of Hierarchical Nanotopography and Surface Chemistry. ACS Biomater Sci Eng 2017; 4:2081-2088. [PMID: 33434965 DOI: 10.1021/acsbiomaterials.7b00683] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Circulating tumor cells (CTCs) have become known as minimally invasive multifunctional biomarkers for earlier diagnosis, prognosis, recurrence risk assessment, and therapeutic monitoring in recent years. However, effectively capturing these CTCs is still difficult because of the extremely low abundance of CTCs and the diverse phenotypes of cancer cells. In this study, we present a novel necklace-like polydopamine nanosphere (PDA NS)/alginate composite nanofiber with a hierarchical nanotopographical structure and a surface chemical signal for capturing the CTCs. The height of the nanotopography, which is formed by connecting PDA NSs with nanofibers via electrospinning, can be easily adjusted by changing the size of the PDA NSs. Four types of cancer cells are employed to investigate the capture efficiency of the fiber. More importantly, in a blood environment containing rare cancer cells, the fiber still has a great ability to capture these cells. Therefore, this nanofiber is identified as a potential device for the diagnosis of cancer.
Collapse
Affiliation(s)
- Guang Yang
- School of Materials Science and Engineering, Key Laboratory of Advanced Technologies of Material, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, Sichuan, P. R. China.,College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, P. R. China
| | - Xilin Li
- School of Materials Science and Engineering, Key Laboratory of Advanced Technologies of Material, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, Sichuan, P. R. China
| | - Yang He
- School of Materials Science and Engineering, Key Laboratory of Advanced Technologies of Material, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, Sichuan, P. R. China
| | - Xiang Xiong
- School of Materials Science and Engineering, Key Laboratory of Advanced Technologies of Material, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, Sichuan, P. R. China
| | - Pu Wang
- School of Materials Science and Engineering, Key Laboratory of Advanced Technologies of Material, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, Sichuan, P. R. China
| | - Shaobing Zhou
- School of Materials Science and Engineering, Key Laboratory of Advanced Technologies of Material, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, Sichuan, P. R. China
| |
Collapse
|
42
|
Ge H, Riss PJ, Mirabello V, Calatayud DG, Flower SE, Arrowsmith RL, Fryer TD, Hong Y, Sawiak S, Jacobs RM, Botchway SW, Tyrrell RM, James TD, Fossey JS, Dilworth JR, Aigbirhio FI, Pascu SI. Behavior of Supramolecular Assemblies of Radiometal-Filled and Fluorescent Carbon Nanocapsules In Vitro and In Vivo. Chem 2017. [DOI: 10.1016/j.chempr.2017.06.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
43
|
Jackson JM, Witek MA, Kamande JW, Soper SA. Materials and microfluidics: enabling the efficient isolation and analysis of circulating tumour cells. Chem Soc Rev 2017; 46:4245-4280. [PMID: 28632258 PMCID: PMC5576189 DOI: 10.1039/c7cs00016b] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We present a critical review of microfluidic technologies and material effects on the analyses of circulating tumour cells (CTCs) selected from the peripheral blood of cancer patients. CTCs are a minimally invasive source of clinical information that can be used to prognose patient outcome, monitor minimal residual disease, assess tumour resistance to therapeutic agents, and potentially screen individuals for the early diagnosis of cancer. The performance of CTC isolation technologies depends on microfluidic architectures, the underlying principles of isolation, and the choice of materials. We present a critical review of the fundamental principles used in these technologies and discuss their performance. We also give context to how CTC isolation technologies enable downstream analysis of selected CTCs in terms of detecting genetic mutations and gene expression that could be used to gain information that may affect patient outcome.
Collapse
|
44
|
Cheng SB, Xie M, Chen Y, Xiong J, Liu Y, Chen Z, Guo S, Shu Y, Wang M, Yuan BF, Dong WG, Huang WH. Three-Dimensional Scaffold Chip with Thermosensitive Coating for Capture and Reversible Release of Individual and Cluster of Circulating Tumor Cells. Anal Chem 2017; 89:7924-7932. [PMID: 28661138 DOI: 10.1021/acs.analchem.7b00905] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Shi-Bo Cheng
- Key Laboratory of
Analytical Chemistry for Biology and Medicine (Ministry of Education),
College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Min Xie
- Key Laboratory of
Analytical Chemistry for Biology and Medicine (Ministry of Education),
College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yan Chen
- Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jun Xiong
- Key Laboratory of
Analytical Chemistry for Biology and Medicine (Ministry of Education),
College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Ya Liu
- Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zhen Chen
- Key Laboratory of
Analytical Chemistry for Biology and Medicine (Ministry of Education),
College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Shan Guo
- Key Laboratory of
Analytical Chemistry for Biology and Medicine (Ministry of Education),
College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Ying Shu
- Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ming Wang
- Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Bi-Feng Yuan
- Key Laboratory of
Analytical Chemistry for Biology and Medicine (Ministry of Education),
College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Wei-Guo Dong
- Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Wei-Hua Huang
- Key Laboratory of
Analytical Chemistry for Biology and Medicine (Ministry of Education),
College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
45
|
Cai P, Leow WR, Wang X, Wu YL, Chen X. Programmable Nano-Bio Interfaces for Functional Biointegrated Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1605529. [PMID: 28397302 DOI: 10.1002/adma.201605529] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 01/07/2017] [Indexed: 05/24/2023]
Abstract
A large amount of evidence has demonstrated the revolutionary role of nanosystems in the screening and shielding of biological systems. The explosive development of interfacing bioentities with programmable nanomaterials has conveyed the intriguing concept of nano-bio interfaces. Here, recent advances in functional biointegrated devices through the precise programming of nano-bio interactions are outlined, especially with regard to the rational assembly of constituent nanomaterials on multiple dimension scales (e.g., nanoparticles, nanowires, layered nanomaterials, and 3D-architectured nanomaterials), in order to leverage their respective intrinsic merits for different functions. Emerging nanotechnological strategies at nano-bio interfaces are also highlighted, such as multimodal diagnosis or "theragnostics", synergistic and sequential therapeutics delivery, and stretchable and flexible nanoelectronic devices, and their implementation into a broad range of biointegrated devices (e.g., implantable, minimally invasive, and wearable devices). When utilized as functional modules of biointegrated devices, these programmable nano-bio interfaces will open up a new chapter for precision nanomedicine.
Collapse
Affiliation(s)
- Pingqiang Cai
- Innovative Center for Flexible Devices, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Wan Ru Leow
- Innovative Center for Flexible Devices, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Xiaoyuan Wang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, P. R. China
| | - Yun-Long Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, P. R. China
| | - Xiaodong Chen
- Innovative Center for Flexible Devices, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| |
Collapse
|
46
|
Dong Z, Ahrens CC, Yu D, Ding Z, Lim H, Li W. Cell Isolation and Recovery Using Hollow Glass Microspheres Coated with Nanolayered Films for Applications in Resource-Limited Settings. ACS APPLIED MATERIALS & INTERFACES 2017; 9:15265-15273. [PMID: 28414907 DOI: 10.1021/acsami.7b02197] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Established cell isolation and purification techniques such as fluorescence-activated cell sorting (FACS), isolation through magnetic micro/nanoparticles, and recovery via microfluidic devices have limited application as disposable technologies appropriate for point-of-care use in remote areas where lab equipment as well as electrical, magnetic, and optical sources are restricted. We report a simple yet effective method for cell isolation and recovery that requires neither specialized lab equipment nor any form of power source. Specifically, self-floating hollow glass microspheres were coated with an enzymatically degradable nanolayered film and conjugated with antibodies to allow both fast capture and release of subpopulations of cells from a cell mixture. Targeted cells were captured by the microspheres and allowed to float to the top of the hosting liquid, thereby isolating targeted cells. To minimize nonspecific adhesion of untargeted cells and to enhance the purity of the isolated cell population, an antifouling polymer brush layer was grafted onto the nanolayered film. Using the EpCAM-expressing cancer cell line PC-3 in blood as a model system, we have demonstrated the isolation and recovery of cancer cells without compromising cell viability or proliferative potential. The whole process takes less than 1 h. To support the rational extension of this platform technology, we introduce extensive characterization of the critical design parameters: film formation and degradation, grafting with a poly(ethylene glycol) (PEG) sheath, and introducing functional antibodies. Our approach is expected to overcome practical hurdles and provide viable targeted cells for downstream analyses in resource-limited settings.
Collapse
Affiliation(s)
- Ziye Dong
- Department of Chemical Engineering, Texas Tech University , Lubbock, Texas 79409, United States
| | - Caroline C Ahrens
- Department of Chemical Engineering, Texas Tech University , Lubbock, Texas 79409, United States
| | - Dan Yu
- Department of Critical Care Medicine, People's Hospital of Zhengzhou University Zhengzhou, China 450003
| | - Zhenya Ding
- Department of Chemical Engineering, Texas Tech University , Lubbock, Texas 79409, United States
| | - HyunTaek Lim
- Department of Chemical Engineering, Texas Tech University , Lubbock, Texas 79409, United States
| | - Wei Li
- Department of Chemical Engineering, Texas Tech University , Lubbock, Texas 79409, United States
| |
Collapse
|
47
|
Park MH, Reátegui E, Li W, Tessier SN, Wong KHK, Jensen AE, Thapar V, Ting D, Toner M, Stott SL, Hammond PT. Enhanced Isolation and Release of Circulating Tumor Cells Using Nanoparticle Binding and Ligand Exchange in a Microfluidic Chip. J Am Chem Soc 2017; 139:2741-2749. [PMID: 28133963 DOI: 10.1021/jacs.6b12236] [Citation(s) in RCA: 173] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The detection of rare circulating tumor cells (CTCs) in the blood of cancer patients has the potential to be a powerful and noninvasive method for examining metastasis, evaluating prognosis, assessing tumor sensitivity to drugs, and monitoring therapeutic outcomes. In this study, we have developed an efficient strategy to isolate CTCs from the blood of breast cancer patients using a microfluidic immune-affinity approach. Additionally, to gain further access to these rare cells for downstream characterization, our strategy allows for easy detachment of the captured CTCs from the substrate without compromising cell viability or the ability to employ next generation RNA sequencing for the identification of specific breast cancer genes. To achieve this, a chemical ligand-exchange reaction was engineered to release cells attached to a gold nanoparticle coating bound to the surface of a herringbone microfluidic chip (NP-HBCTC-Chip). Compared to the use of the unmodified HBCTC-Chip, our approach provides several advantages, including enhanced capture efficiency and recovery of isolated CTCs.
Collapse
Affiliation(s)
- Myoung-Hwan Park
- Department of Chemistry, Sahmyook University , Seoul, 01795, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Molecular profiling of single circulating tumor cells from lung cancer patients. Proc Natl Acad Sci U S A 2016; 113:E8379-E8386. [PMID: 27956614 DOI: 10.1073/pnas.1608461113] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Circulating tumor cells (CTCs) are established cancer biomarkers for the "liquid biopsy" of tumors. Molecular analysis of single CTCs, which recapitulate primary and metastatic tumor biology, remains challenging because current platforms have limited throughput, are expensive, and are not easily translatable to the clinic. Here, we report a massively parallel, multigene-profiling nanoplatform to compartmentalize and analyze hundreds of single CTCs. After high-efficiency magnetic collection of CTC from blood, a single-cell nanowell array performs CTC mutation profiling using modular gene panels. Using this approach, we demonstrated multigene expression profiling of individual CTCs from non-small-cell lung cancer (NSCLC) patients with remarkable sensitivity. Thus, we report a high-throughput, multiplexed strategy for single-cell mutation profiling of individual lung cancer CTCs toward minimally invasive cancer therapy prediction and disease monitoring.
Collapse
|
49
|
Dong Z, Tang L, Ahrens CC, Ding Z, Cao V, Castleberry S, Yan J, Li W. A benchtop capillary flow layer-by-layer (CF-LbL) platform for rapid assembly and screening of biodegradable nanolayered films. LAB ON A CHIP 2016; 16:4601-4611. [PMID: 27785506 DOI: 10.1039/c6lc01065b] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Capillary flow layer-by-layer (CF-LbL) is a microfluidic platform for high throughput preparation and screening of nanolayered polymer films. Using a simple benchtop version of CF-LbL, we systematically studied the effects of various flow conditions and channel geometries on the thickness and surface roughness of the resulting films. We also investigated the biocompatibility and degradation behaviors of a series of enzymatically-degradable films made from naturally derived polymers, i.e. either alginate or hyaluronic acid as the anionic species and poly-l-arginine as the positive species. Furthermore, using one optimized film formulation for coating on the inside walls of a microfluidic chip, we successfully demonstrated the ability of this film to capture and rapidly release cancer cells from whole blood. This simple platform is expected to be a powerful tool to increase the accessibility of the LbL film assembly to a broader scientific community.
Collapse
Affiliation(s)
- Ziye Dong
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA.
| | - Ling Tang
- Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Caroline C Ahrens
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA.
| | - Zhenya Ding
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA.
| | - Vi Cao
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA.
| | | | - Jiangtao Yan
- Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Wei Li
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA.
| |
Collapse
|
50
|
Wang B, Ye Z, Xu Q, Liu H, Lin Q, Chen H, Nan K. Construction of a temperature-responsive terpolymer coating with recyclable bactericidal and self-cleaning antimicrobial properties. Biomater Sci 2016; 4:1731-1741. [PMID: 27782243 DOI: 10.1039/c6bm00587j] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Once a biomedical implant is implanted into a human body, proteins and bacteria can easily colonize the implant, and subsequently, a biofilm can grow on the surface. A biofilm can protect the inhabiting bacteria against macrophages and neutrophil cell attack from the host immune system. The most important issue for artificial antibacterial surfaces is the accumulation of the bacteria corpse after they are killed by contact, which promotes further adhesion of bacteria and biofilm formation. Therefore, we constructed a novel multifunctional bactericidal and fouling release antibacterial surface through the combination of temperature-responsive N-vinylcaprolactam (VCL), hydrophilic 2-methacryloyloxyethyl phosphorylcholine (MPC) and a bactericidal quaternary ammonium salt (2-(dimethylamino)-ethyl methacrylate (DMAEMA+)). The terpolymer coating was prepared through surface-initiated reversible addition-fragmentation chain-transfer (RAFT) polymerization and characterized using water contact angle measurements, atomic force microscopy and spectroscopic ellipsometry. At a temperature above the lower critical solution temperature (LCST), the P(VCL-co-DMAEMA+-co-MPC) terpolymer coating was in a compressed and hydrophobic state with low moisture content, which displayed bactericidal efficiency against Gram-positive Staphylococcus aureus. The coating could be switched into a relatively hydrophilic surface at a temperature below the LCST, which showed self-cleaning properties against both bacteria and bovine serum albumin. The functionalized surface showed good biocompatibility against human lens epithelial cells as evaluated by morphology studies and activity measurements.
Collapse
Affiliation(s)
- Bailiang Wang
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China. and Wenzhou Institute of Biomaterials and Engineering, Chinese Academy of Sciences, Wenzhou, 32500, China
| | - Zi Ye
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| | - Qingwen Xu
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| | - Huihua Liu
- Wenzhou Institute of Biomaterials and Engineering, Chinese Academy of Sciences, Wenzhou, 32500, China
| | - Quankui Lin
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China. and Wenzhou Institute of Biomaterials and Engineering, Chinese Academy of Sciences, Wenzhou, 32500, China
| | - Hao Chen
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China. and Wenzhou Institute of Biomaterials and Engineering, Chinese Academy of Sciences, Wenzhou, 32500, China
| | - Kaihui Nan
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China. and Wenzhou Institute of Biomaterials and Engineering, Chinese Academy of Sciences, Wenzhou, 32500, China
| |
Collapse
|