1
|
Ding H, Zhou C, Li T. Nanomedicines with Versatile GSH-Responsive Linkers for Cancer Theranostics. ACS Biomater Sci Eng 2024; 10:5977-5994. [PMID: 39298132 DOI: 10.1021/acsbiomaterials.4c00897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Glutathione (GSH)-responsive nanomedicines have generated significant interest in biochemistry, oncology, and material sciences due to their diverse applications, including chemical and biological sensors, diagnostics, and drug delivery systems. The effectiveness of these smart GSH-responsive nanomedicines depends critically on the choice of GSH-responsive linkers. Despite their crucial role, comprehensive reviews of GSH-responsive linkers are scarce, revealing a gap in the current literature. This review addresses this gap by systematically summarizing various GSH-responsive linkers and exploring their potential applications in cancer treatment. We provide an overview of the mechanisms of action of these linkers and their bioapplications, evaluating their advantages and limitations. The insights presented aim to guide the development of advanced GSH-responsive agents for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Huamin Ding
- Department of Pharmacy, Punan Hospital, Pudong New District, Shanghai 200125, China
| | - Can Zhou
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Tiejun Li
- Department of Pharmacy, Punan Hospital, Pudong New District, Shanghai 200125, China
| |
Collapse
|
2
|
Sharma A, Verwilst P, Li M, Ma D, Singh N, Yoo J, Kim Y, Yang Y, Zhu JH, Huang H, Hu XL, He XP, Zeng L, James TD, Peng X, Sessler JL, Kim JS. Theranostic Fluorescent Probes. Chem Rev 2024; 124:2699-2804. [PMID: 38422393 PMCID: PMC11132561 DOI: 10.1021/acs.chemrev.3c00778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/31/2024] [Accepted: 02/08/2024] [Indexed: 03/02/2024]
Abstract
The ability to gain spatiotemporal information, and in some cases achieve spatiotemporal control, in the context of drug delivery makes theranostic fluorescent probes an attractive and intensely investigated research topic. This interest is reflected in the steep rise in publications on the topic that have appeared over the past decade. Theranostic fluorescent probes, in their various incarnations, generally comprise a fluorophore linked to a masked drug, in which the drug is released as the result of certain stimuli, with both intrinsic and extrinsic stimuli being reported. This release is then signaled by the emergence of a fluorescent signal. Importantly, the use of appropriate fluorophores has enabled not only this emerging fluorescence as a spatiotemporal marker for drug delivery but also has provided modalities useful in photodynamic, photothermal, and sonodynamic therapeutic applications. In this review we highlight recent work on theranostic fluorescent probes with a particular focus on probes that are activated in tumor microenvironments. We also summarize efforts to develop probes for other applications, such as neurodegenerative diseases and antibacterials. This review celebrates the diversity of designs reported to date, from discrete small-molecule systems to nanomaterials. Our aim is to provide insights into the potential clinical impact of this still-emerging research direction.
Collapse
Affiliation(s)
- Amit Sharma
- Amity
School of Chemical Sciences, Amity University
Punjab, Sector 82A, Mohali 140 306, India
| | - Peter Verwilst
- Rega
Institute for Medical Research, Medicinal Chemistry, KU Leuven, Herestraat 49, Box 1041, 3000 Leuven, Belgium
| | - Mingle Li
- College
of Materials Science and Engineering, Shenzhen
University, Shenzhen 518060, China
| | - Dandan Ma
- College
of Materials Science and Engineering, Shenzhen
University, Shenzhen 518060, China
- College
of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Nem Singh
- Department
of Chemistry, Korea University, Seoul 02841, Korea
| | - Jiyoung Yoo
- Department
of Chemistry, Korea University, Seoul 02841, Korea
| | - Yujin Kim
- Department
of Chemistry, Korea University, Seoul 02841, Korea
| | - Ying Yang
- School of
Light Industry and Food Engineering, Guangxi
University, Nanning, Guangxi 530004, China
| | - Jing-Hui Zhu
- College
of Materials Science and Engineering, Shenzhen
University, Shenzhen 518060, China
- College
of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Haiqiao Huang
- College
of Materials Science and Engineering, Shenzhen
University, Shenzhen 518060, China
- College
of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xi-Le Hu
- Key
Laboratory for Advanced Materials and Joint International Research
Laboratory of Precision Chemistry and Molecular Engineering, Feringa
Nobel Prize Scientist Joint Research Center, School of Chemistry and
Molecular Engineering, East China University
of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xiao-Peng He
- Key
Laboratory for Advanced Materials and Joint International Research
Laboratory of Precision Chemistry and Molecular Engineering, Feringa
Nobel Prize Scientist Joint Research Center, School of Chemistry and
Molecular Engineering, East China University
of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- National
Center for Liver Cancer, the International Cooperation Laboratory
on Signal Transduction, Eastern Hepatobiliary
Surgery Hospital, Shanghai 200438, China
| | - Lintao Zeng
- School of
Light Industry and Food Engineering, Guangxi
University, Nanning, Guangxi 530004, China
| | - Tony D. James
- Department
of Chemistry, University of Bath, Bath BA2 7AY, United Kingdom
- School
of Chemistry and Chemical Engineering, Henan
Normal University, Xinxiang 453007, China
| | - Xiaojun Peng
- College
of Materials Science and Engineering, Shenzhen
University, Shenzhen 518060, China
- State
Key Laboratory of Fine Chemicals, Dalian
University of Technology, Dalian 116024, China
| | - Jonathan L. Sessler
- Department
of Chemistry, The University of Texas at
Austin, Texas 78712-1224, United
States
| | - Jong Seung Kim
- Department
of Chemistry, Korea University, Seoul 02841, Korea
- TheranoChem Incorporation, Seongbuk-gu, Seoul 02841, Korea
| |
Collapse
|
3
|
Deng W, Shang H, Tong Y, Liu X, Huang Q, He Y, Wu J, Ba X, Chen Z, Chen Y, Tang K. The application of nanoparticles-based ferroptosis, pyroptosis and autophagy in cancer immunotherapy. J Nanobiotechnology 2024; 22:97. [PMID: 38454419 PMCID: PMC10921615 DOI: 10.1186/s12951-024-02297-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 01/02/2024] [Indexed: 03/09/2024] Open
Abstract
Immune checkpoint blockers (ICBs) have been applied for cancer therapy and achieved great success in the field of cancer immunotherapy. Nevertheless, the broad application of ICBs is limited by the low response rate. To address this issue, increasing studies have found that the induction of immunogenic cell death (ICD) in tumor cells is becoming an emerging therapeutic strategy in cancer treatment, not only straightly killing tumor cells but also enhancing dying cells immunogenicity and activating antitumor immunity. ICD is a generic term representing different cell death modes containing ferroptosis, pyroptosis, autophagy and apoptosis. Traditional chemotherapeutic agents usually inhibit tumor growth based on the apoptotic ICD, but most tumor cells are resistant to the apoptosis. Thus, the induction of non-apoptotic ICD is considered to be a more efficient approach for cancer therapy. In addition, due to the ineffective localization of ICD inducers, various types of nanomaterials have been being developed to achieve targeted delivery of therapeutic agents and improved immunotherapeutic efficiency. In this review, we briefly outline molecular mechanisms of ferroptosis, pyroptosis and autophagy, as well as their reciprocal interactions with antitumor immunity, and then summarize the current progress of ICD-induced nanoparticles based on different strategies and illustrate their applications in the cancer therapy.
Collapse
Affiliation(s)
- Wen Deng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Haojie Shang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yonghua Tong
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiao Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qiu Huang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yu He
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jian Wu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaozhuo Ba
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhiqiang Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuan Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Kun Tang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
4
|
Photo-regulated self-assembly and photo-tailored drug-release kinetics from a polymeric supramolecular nanocage. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
5
|
Yang Q, Ma X, Xiao Y, Zhang T, Yang L, Yang S, Liang M, Wang S, Wu Z, Xu Z, Sun Z. Engineering prodrug nanomicelles as pyroptosis inducer for codelivery of PI3K/mTOR and CDK inhibitors to enhance antitumor immunity. Acta Pharm Sin B 2022; 12:3139-3155. [PMID: 35865097 PMCID: PMC9293721 DOI: 10.1016/j.apsb.2022.02.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/02/2021] [Accepted: 02/22/2022] [Indexed: 01/10/2023] Open
Abstract
Aberrant activation of oncogenic signaling pathways in tumors can promote resistance to the antitumor immune response. However, single blockade of these pathways is usually ineffective because of the complex crosstalk and feedback among oncogenic signaling pathways. The enhanced toxicity of free small molecule inhibitor combinations is considered an insurmountable barrier to their clinical applications. To circumvent this issue, we rationally designed an effective tumor microenvironment-activatable prodrug nanomicelle (PNM) for cancer therapy. PNM was engineered by integrating the PI3K/mTOR inhibitor PF-04691502 (PF) and the broad spectrum CDK inhibitor flavopiridol (Flav) into a single nanoplatform, which showed tumor-specific accumulation, activation and deep penetration in response to the high glutathione (GSH) tumoral microenvironment. The codelivery of PF and Flav could trigger gasdermin E (GSDME)-based immunogenic pyroptosis of tumor cells to elicit a robust antitumor immune response. Furthermore, the combination of PNM-induced immunogenic pyroptosis with anti-programmed cell death-1 (αPD-1) immunotherapy further boosted the antitumor effect and prolonged the survival time of mice. Collectively, these results indicated that the pyroptosis-induced nanoplatform codelivery of PI3K/mTOR and CDK inhibitors can reprogram the immunosuppressive tumor microenvironment and efficiently improve checkpoint blockade cancer immunotherapy.
Collapse
Affiliation(s)
- Qichao Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei- MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Xianbin Ma
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy & Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing 400715, China
| | - Yao Xiao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei- MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Tian Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy & Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing 400715, China
| | - Leilei Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei- MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Shaochen Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei- MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Mengyun Liang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy & Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing 400715, China
| | - Shuo Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei- MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Zhizhong Wu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei- MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Zhigang Xu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy & Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing 400715, China
| | - Zhijun Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei- MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| |
Collapse
|
6
|
Raju GSR, Pavitra E, Varaprasad GL, Bandaru SS, Nagaraju GP, Farran B, Huh YS, Han YK. Nanoparticles mediated tumor microenvironment modulation: current advances and applications. J Nanobiotechnology 2022; 20:274. [PMID: 35701781 PMCID: PMC9195263 DOI: 10.1186/s12951-022-01476-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/23/2022] [Indexed: 12/20/2022] Open
Abstract
The tumor microenvironment (TME) plays a key role in cancer development and emergence of drug resistance. TME modulation has recently garnered attention as a potential approach for reprogramming the TME and resensitizing resistant neoplastic niches to existing cancer therapies such as immunotherapy or chemotherapy. Nano-based solutions have important advantages over traditional platform and can be specifically targeted and delivered to desired sites. This review explores novel nano-based approaches aimed at targeting and reprogramming aberrant TME components such as macrophages, fibroblasts, tumor vasculature, hypoxia and ROS pathways. We also discuss how nanoplatforms can be combined with existing anti-tumor regimens such as radiotherapy, immunotherapy, phototherapy or chemotherapy to enhance clinical outcomes in solid tumors.
Collapse
Affiliation(s)
- Ganji Seeta Rama Raju
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea
| | - Eluri Pavitra
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, Incheon, 22212, Republic of Korea
| | - Ganji Lakshmi Varaprasad
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, Incheon, 22212, Republic of Korea
| | | | | | - Batoul Farran
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA.
| | - Yun Suk Huh
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, Incheon, 22212, Republic of Korea.
| | - Young-Kyu Han
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea.
| |
Collapse
|
7
|
Zhao J, Huang H, Zhao J, Xiong X, Zheng S, Wei X, Zhou S. A hybrid bacterium with tumor-associated macrophage polarization for enhanced photothermal-immunotherapy. Acta Pharm Sin B 2022; 12:2683-2694. [PMID: 35755281 PMCID: PMC9214064 DOI: 10.1016/j.apsb.2021.10.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/18/2021] [Accepted: 10/15/2021] [Indexed: 12/17/2022] Open
Abstract
Remodeling the tumor microenvironment through reprogramming tumor-associated macrophages (TAMs) and increasing the immunogenicity of tumors via immunogenic cell death (ICD) have been emerging as promising anticancer immunotherapy strategies. However, the heterogeneous distribution of TAMs in tumor tissues and the heterogeneity of the tumor cells make the immune activation challenging. To overcome these dilemmas, a hybrid bacterium with tumor targeting and penetration, TAM polarization, and photothermal conversion capabilities is developed for improving antitumor immunotherapy in vivo. The hybrid bacteria (B.b@QDs) are prepared by loading Ag2S quantum dots (QDs) on the Bifidobacterium bifidum (B.b) through electrostatic interactions. The hybrid bacteria with hypoxia targeting ability can effectively accumulate and penetrate the tumor tissues, enabling the B.b to fully contact with the TAMs and mediate their polarization toward M1 phenotype to reverse the immunosuppressive tumor microenvironment. It also enables to overcome the intratumoral heterogeneity and obtain abundant tumor-associated antigens by coupling tumor penetration of the B.b with photothermal effect of the QDs, resulting in an enhanced immune effect. This strategy that combines B.b-triggered TAM polarization and QD-induced ICD achieved a remarkable inhibition of tumor growth in orthotopic breast cancer.
Collapse
|
8
|
Liu R, Luo C, Pang Z, Zhang J, Ruan S, Wu M, Wang L, Sun T, Li N, Han L, Shi J, Huang Y, Guo W, Peng S, Zhou W, Gao H. Advances of nanoparticles as drug delivery systems for disease diagnosis and treatment. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.05.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
9
|
Liu L, Liu F, Liu D, Yuan W, Zhang M, Wei P, Yi T. A Smart Theranostic Prodrug System Activated by Reactive Oxygen Species for Regional Chemotherapy of Metastatic Cancer. Angew Chem Int Ed Engl 2022; 61:e202116807. [PMID: 35068033 DOI: 10.1002/anie.202116807] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Indexed: 12/24/2022]
Abstract
Metastatic cancer is difficult to cure because of its uncontrollable nature and side effects during treatment. We constructed a reactive oxygen species (ROS)-activated smart theranostic prodrug system based on an ROS active site linked with both a targeting group and an anticancer drug for efficient regional chemotherapy of metastatic cancers. The optimized prodrug (Bio-(8)-MB-CPT) with biotin as the targeting group displayed high sensitivity towards ROS and selectively targeting ability towards cervical cancer cells, showing highly efficient drug release (up to 92 %) in vitro. Bio-(8)-MB-CPT thus exerted strong toxicity towards cervical cancer cells, but unlike the parent drug (camptothecin), showed no toxicity towards normal cells. Moreover, the prodrug displayed significantly enhanced antitumor efficacy in vivo and eradicated the tumor with no obvious side effects (inhibition of the tumor reached up to 99.9 %).
Collapse
Affiliation(s)
- Lingyan Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China
| | - Feiyang Liu
- Department of Chemistry, Fudan University, Shanghai, 200438, China
| | - Dongya Liu
- Department of Chemistry, Fudan University, Shanghai, 200438, China
| | - Wei Yuan
- Department of Chemistry, Fudan University, Shanghai, 200438, China
| | - Mengfan Zhang
- Department of Chemistry, Fudan University, Shanghai, 200438, China
| | - Peng Wei
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China
| | - Tao Yi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China.,Department of Chemistry, Fudan University, Shanghai, 200438, China
| |
Collapse
|
10
|
Liu L, Liu F, Liu D, Yuan W, Zhang M, Wei P, Yi T. A Smart Theranostic Prodrug System Activated by Reactive Oxygen Species for Regional Chemotherapy of Metastatic Cancer. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Affiliation(s)
- Lingyan Liu
- Donghua University College of Chemistry, Chemical Engineering and Biotechnology CHINA
| | - Feiyang Liu
- Fudan University Department of Chemistry CHINA
| | - Dongya Liu
- Fudan University Department of Chemistry CHINA
| | - Wei Yuan
- Fudan University Department of Chemistry CHINA
| | | | - Peng Wei
- Donghua University College of Chemistry, Chemical Engineering and biotechnology CHINA
| | - Tao Yi
- Fudan University Department of Chemistry 220 Handan Road 200433 Shanghai CHINA
| |
Collapse
|
11
|
Rong X, Liu C, Li M, Zhu H, Zhang Y, Su M, Wang X, Li X, Wang K, Yu M, Sheng W, Zhu B. An Integrated Fluorescent Probe for Ratiometric Detection of Glutathione in the Golgi Apparatus and Activated Organelle-Targeted Therapy. Anal Chem 2021; 93:16105-16112. [PMID: 34797641 DOI: 10.1021/acs.analchem.1c03836] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cancer is a serious threat to human health, and there is an urgent need to develop new treatment methods to overcome it. Organelle targeting therapy, as a highly effective and less toxic side effect treatment strategy, has great research significance and development prospects. Being an essential organelle, the Golgi apparatus plays a particularly major role in the growth of cancer cells. Acting as an indispensable and highly expressed antioxidant in cancer cells, glutathione (GSH) also contributes greatly during the Golgi oxidative stress. Therefore, it counts for much to track the changes of GSH concentration in Golgi for monitoring the occurrence and development of tumor cells, and exploring Golgi-targeted therapy is also extremely important for effective treatment of cancer. In this work, we designed and synthesized a simple Golgi-targeting fluorescent probe GT-GSH for accurately detecting GSH. The probe GT-GSH reacting with GSH decomposes toxic substances to Golgi, thereby killing cancer cells. At the same time, the ratiometric fluorescent probe can detect the concentration changes of GSH in Golgi stress with high sensitivity and selectivity in living cells. Therefore, such a GSH-responsive fluorescent probe with a Golgi-targeted therapy effect gives a new method for accurate treatment of cancer.
Collapse
Affiliation(s)
- Xiaodi Rong
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Caiyun Liu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Mingzhu Li
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Hanchuang Zhu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Yan Zhang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Meijun Su
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Xin Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Xiwei Li
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Kun Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Miaohui Yu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Wenlong Sheng
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Baocun Zhu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| |
Collapse
|
12
|
Sun T, Zhang G, Ning T, Chen Q, Chu Y, Luo Y, You H, Su B, Li C, Guo Q, Jiang C. A Versatile Theranostic Platform for Colorectal Cancer Peritoneal Metastases: Real-Time Tumor-Tracking and Photothermal-Enhanced Chemotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102256. [PMID: 34398516 PMCID: PMC8529449 DOI: 10.1002/advs.202102256] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/30/2021] [Indexed: 06/13/2023]
Abstract
A versatile tumor-targeting stimuli-responsive theranostic platform for peritoneal metastases of colorectal cancer is proposed in this work for tumor tracking and photothermal-enhanced chemotherapy. A quenched photosensitizer ("off" state) is developed and escorted into a tumor-targeting oxaliplatin-embedded micelle. Once reaching the tumor cell, the micelle is clasped to release free oxaliplatin, as well as the "off" photosensitizer, which is further activated ("turned-on") in the tumor reducing microenvironment to provide optical imaging and photothermal effect. The combined results from hyperthermia-enhanced chemotherapy, deep penetration, perfused O2 , and the leveraged GSH-ROS imbalance in tumor cells are achieved for improved antitumor efficacy and reduced systematic toxicity.
Collapse
Affiliation(s)
- Tao Sun
- Key Laboratory of Smart Drug Delivery (Ministry of Education)Minhang HospitalState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyFudan University826 Zhangheng RoadShanghai201203China
| | - Guangping Zhang
- Shandong Province Key Laboratory of Medical Physics and Image Processing TechnologySchool of Physics and Electronics and Institute of Materials and Clean EnergyShandong Normal University1 University RoadJinan250358P. R. China
| | - Tingting Ning
- Key Laboratory of Smart Drug Delivery (Ministry of Education)Minhang HospitalState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyFudan University826 Zhangheng RoadShanghai201203China
| | - Qinjun Chen
- Key Laboratory of Smart Drug Delivery (Ministry of Education)Minhang HospitalState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyFudan University826 Zhangheng RoadShanghai201203China
| | - Yongchao Chu
- Key Laboratory of Smart Drug Delivery (Ministry of Education)Minhang HospitalState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyFudan University826 Zhangheng RoadShanghai201203China
| | - Yifan Luo
- Key Laboratory of Smart Drug Delivery (Ministry of Education)Minhang HospitalState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyFudan University826 Zhangheng RoadShanghai201203China
| | - Haoyu You
- Key Laboratory of Smart Drug Delivery (Ministry of Education)Minhang HospitalState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyFudan University826 Zhangheng RoadShanghai201203China
| | - Boyu Su
- Key Laboratory of Smart Drug Delivery (Ministry of Education)Minhang HospitalState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyFudan University826 Zhangheng RoadShanghai201203China
| | - Chao Li
- Key Laboratory of Smart Drug Delivery (Ministry of Education)Minhang HospitalState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyFudan University826 Zhangheng RoadShanghai201203China
| | - Qin Guo
- Key Laboratory of Smart Drug Delivery (Ministry of Education)Minhang HospitalState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyFudan University826 Zhangheng RoadShanghai201203China
| | - Chen Jiang
- Key Laboratory of Smart Drug Delivery (Ministry of Education)Minhang HospitalState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyFudan University826 Zhangheng RoadShanghai201203China
| |
Collapse
|
13
|
Park SE, El-Sayed NS, Shamloo K, Lohan S, Kumar S, Sajid MI, Tiwari RK. Targeted Delivery of Cabazitaxel Using Cyclic Cell-Penetrating Peptide and Biomarkers of Extracellular Matrix for Prostate and Breast Cancer Therapy. Bioconjug Chem 2021; 32:1898-1914. [PMID: 34309357 DOI: 10.1021/acs.bioconjchem.1c00319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Targeted drug delivery for cancer therapy is an emerging area of research. Cancer cells overexpress certain biomarkers that can be exploited for their targeted therapy. Cyclic cell-penetrating peptides (cCPP) are increasingly assessed for intracellular cargo delivery in cancer cells. In this study, we have conjugated cabazitaxel (CBT) to the cCPP via an ester bond to assist CBT release in the tumor's acidic environment. Integrin targeting (RGDC, TP1) and extra domain B of fibronectin (EDB-Fn) targeting (CTVRTSAD, TP2) peptides were linked to the peptide-drug conjugate (cCPP-CBT) via a disulfide bond to provide targeting ability to the conjugates until they reach the tumor site. Conjugate 11 (TP1-cCPP-CBT) and conjugate 16 (TP2-cCPP-CBT) showed approximately 3-4-fold less antiproliferative activity on integrin and EDB-FN overexpressing cancer cell lines as compared to the CBT analogue used for comparison (CBT-GA, 5). Conjugates (11 and 16) were less toxic (31-34-fold less antiproliferative activity) to the normal human embryonic kidney (HEK-293) cells as compared to CBT. The flow cytometry and quantitative confocal microscopy data further confirm the selective efficacy of conjugates (TP1-cCPP-FAM (10) and TP1-cCPP-FAM (15)) toward biomarker overexpressing cancer cells. Furthermore, the stability and release studies of conjugate 11 revealed its therapeutic potential under different conditions, such as human plasma, different pHs, and redox conditions. This conjugation strategy was proven to enhance chemotherapeutics agents' efficacy and targeting and can be applied to other chemotherapeutic agents.
Collapse
Affiliation(s)
- Shang Eun Park
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California 92618, United States
| | - Naglaa Salem El-Sayed
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California 92618, United States.,Cellulose and Paper Department, National Research Center, Dokki 12622, Cairo, Egypt
| | - Kiumars Shamloo
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California 92618, United States
| | - Sandeep Lohan
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California 92618, United States
| | - Sumit Kumar
- Department of Chemistry, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Haryana 131039, India
| | - Muhammad Imran Sajid
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California 92618, United States.,Faculty of Pharmacy, University of Central Punjab, Lahore 54000, Pakistan
| | - Rakesh Kumar Tiwari
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California 92618, United States
| |
Collapse
|
14
|
Multifunctional polymeric micellar nanomedicine in the diagnosis and treatment of cancer. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 126:112186. [PMID: 34082985 DOI: 10.1016/j.msec.2021.112186] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 05/08/2021] [Accepted: 05/11/2021] [Indexed: 02/07/2023]
Abstract
Polymeric micelles are a prevalent topic of research for the past decade, especially concerning their fitting ability to deliver drug and diagnostic agents. This delivery system offers outstanding advantages, such as biocompatibility, high loading efficiency, water-solubility, and good stability in biological fluids, to name a few. The multifunctional polymeric micellar architect offers the added capability to adapt its surface to meet the looked-for clinical needs. This review cross-talks the recent reports, proof-of-concept studies, patents, and clinical trials that utilize polymeric micellar family architectures concerning cancer targeted delivery of anticancer drugs, gene therapeutics, and diagnostic agents. The manuscript also expounds on the underlying opportunities, allied challenges, and ways to resolve their bench-to-bedside translation for allied clinical applications.
Collapse
|
15
|
Zhang X, Li X, Sun S, Wang P, Ma X, Hou R, Liang X. Anti-Tumor Metastasis via Platelet Inhibitor Combined with Photothermal Therapy under Activatable Fluorescence/Magnetic Resonance Bimodal Imaging Guidance. ACS APPLIED MATERIALS & INTERFACES 2021; 13:19679-19694. [PMID: 33876926 DOI: 10.1021/acsami.1c02302] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Photothermal therapy (PTT) is a promising tumor therapy strategy; however, heterogeneous heat distribution over the tumor often exists, resulting in insufficient photothermal ablation and potential risk of cancer metastasis, which has been demonstrated to be associate with platelets. Herein, a near-infrared (NIR) photothermal agent of IR780 was conjugated with MRI agent of Gd-DOTA via a disulfide linkage (ICD-Gd), which was coassembly with lipid connecting tumor-homing pentapeptide CREKA (Cys-Arg-Glu-Lys-Ala) (DSPE-PEG-CREKA) to encapsulate a platelet inhibitor of ticagrelor (Tic), affording a multistimuli-responsive nanosystem (DPC@ICD-Gd-Tic). The nanosystem with completely quenching fluorescence could specifically target the tumor-associated platelets and showed pH/reduction/NIR light-responsive drug release, which simultaneously resulting in dis-assembly of nanoparticle and fluorescence recovery, enabling the drug delivery visualization in tumor in situ via activatable NIR fluorescence/MR bimodal imaging. Finally, DPC@ICD-Gd-Tic further integrated the photoinduced hyperthermia and platelet function inhibitor to achieve synergistic anticancer therapy, leading to ablation of primary tumor cells and effectively suppressed their distant metastasis. The number of lung metastases in 4T1 tumor bearing mice was reduced by about 90%, and the size of tumor was reduced by about 70%, while half of the mouse was completely cured by this smart nanosystem.
Collapse
Affiliation(s)
- Xu Zhang
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, P. R. China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an 710069, P. R. China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, University of Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Xiaoda Li
- School of Basic Medical Sciences, Peking University, Beijing 100190, P. R. China
| | - Suhui Sun
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, P. R. China
| | - Ping Wang
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, P. R. China
| | - Xiaotu Ma
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, P. R. China
| | - Rui Hou
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, P. R. China
| | - Xiaolong Liang
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, P. R. China
| |
Collapse
|
16
|
A magnetism/laser-auxiliary cascaded drug delivery to pulmonary carcinoma. Acta Pharm Sin B 2020; 10:1549-1562. [PMID: 32963949 PMCID: PMC7488357 DOI: 10.1016/j.apsb.2019.12.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/08/2019] [Accepted: 11/30/2019] [Indexed: 01/16/2023] Open
Abstract
Although high-efficiency targeted delivery is investigated for years, the efficiency of tumor targeting seems still a hard core to smash. To overcome this problem, we design a three-step delivery strategy based on streptavidin–biotin interaction with the help of c(RGDfK), magnetic fields and lasers. The ultrasmall superparamagnetic iron oxide nanoparticles (USIONPs) modified with c(RGDfK) and biotin are delivered at step 1, followed by streptavidin and the doxorubicin (Dox) loaded nanosystems conjugated with biotin at steps 2 and 3, respectively. The delivery systems were proved to be efficient on A549 cells. The co-localization of signal for each step revealed the targeting mechanism. The external magnetic field could further amplify the endocytosis of USPIONs based on c(RGDfK), and magnify the uptake distinctions among different test groups. Based on photoacoustic imaging, laser-heating treatment could enhance the permeability of tumor venous blood vessels and change the insufficient blood flow in cancer. Then, it was noticed in vivo that only three-step delivery with laser-heating and magnetic fields realized the highest tumor distribution of nanosystem. Finally, the magnetism/laser-auxiliary cascaded delivery exhibited the best antitumor efficacy. Generally, this study demonstrated the necessity of combining physical, biological and chemical means of targeting.
Collapse
|
17
|
Li S, Shan X, Wang Y, Chen Q, Sun J, He Z, Sun B, Luo C. Dimeric prodrug-based nanomedicines for cancer therapy. J Control Release 2020; 326:510-522. [PMID: 32721523 DOI: 10.1016/j.jconrel.2020.07.036] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 01/10/2023]
Abstract
With the rapid development of conjugation chemistry and biomedical nanotechnology, prodrug-based nanosystems (PNS) have emerged as promising drug delivery nanoplatforms. Dimeric prodrug, as an emerging branch of prodrug, has been widely investigated by covalently conjugating two same or different drug molecules. In recent years, great progress has been made in dimeric prodrug-based nanosystems (DPNS) for cancer therapy. Many advantages offered by DPNS have significantly facilitated the delivery efficiency of anticancer drugs, such as high drug loading capacity, favorable pharmacokinetics, tumor stimuli-sensitive drug release and facile combination theranostics. Given the rapid developments in this field, we here outline the latest updates of DPNS in cancer treatment, focusing on dimeric prodrug-encapsulated nanosystems, dimeric prodrug-nanoassemblies and tumor stimuli-responsive DPNS. Moreover, the design principle, advantages and challenges of DPNS for clinical cancer therapy are also highlighted.
Collapse
Affiliation(s)
- Shumeng Li
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Xinzhu Shan
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Yuequan Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Qin Chen
- Department of Pharmacy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang 110042, PR China
| | - Jin Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Zhonggui He
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Bingjun Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, PR China.
| | - Cong Luo
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, PR China.
| |
Collapse
|
18
|
Sun T, Ding Y, Wang X, Zhang K, Zhang GP, Liang D, Yu K, Chu Y, Chen Q, Jiang C. Carry-On Nitric-Oxide Luggage for Enhanced Chemotherapeutic Efficacy. NANO LETTERS 2020; 20:5275-5283. [PMID: 32421336 DOI: 10.1021/acs.nanolett.0c01532] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this work, we proposed a carry-on nitric-oxide (NO) luggage strategy for enhanced chemotherapeutic efficacy. A stimuli-responsive NO-releasing polypeptide was prepared as the building block to assemble into a micelle as a chemodrug-carrier. The micelle was anchored with cRGD peptide with the aim of targeting to tumors' neoangiogenesis. In situ generation of NO at the tumor site can promote the neovascularization to recruit more chemotherapeutics. Besides, the introduced exogenous NO can directly induce apoptosis, synergistically with the chemotherapeutics. A specific near-infrared-region (NIR) NO-probe was also developed to be coloaded to the micelle to report the in situ NO-release. In vitro and in vivo experiments were performed to demonstrate the targeting capability, increased accumulation, real-time NO-release reporting phenomenon, improved antitumor efficacy, and favorable biosafety. Embedding NO into drug cargo as carry-on luggage for enhanced chemotherapeutic efficacy, hopefully, can cast new lights and build a basic principle in the future clinical translation of nanomedicines.
Collapse
Affiliation(s)
- Tao Sun
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Pharmaceutics, School of Pharmacy, Research Center on Aging and Medicine, Fudan University, Shanghai 201203, China
| | - Yunhui Ding
- Shanghai SPH Zhongxi Pharmaceutical Co., Ltd., Shanghai Pharma, Shanghai 201806, China
| | - Xiaofei Wang
- Shandong Key Laboratory of Medical Physics and Image Processing & Shandong Provincial Engineering and Technical Center of Light Manipulations, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China
| | - Kai Zhang
- Shandong Key Laboratory of Medical Physics and Image Processing & Shandong Provincial Engineering and Technical Center of Light Manipulations, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China
| | - Guang-Ping Zhang
- Shandong Key Laboratory of Medical Physics and Image Processing & Shandong Provincial Engineering and Technical Center of Light Manipulations, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China
| | - Donghui Liang
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Pharmaceutics, School of Pharmacy, Research Center on Aging and Medicine, Fudan University, Shanghai 201203, China
| | - Kunjiao Yu
- Shanghai Pharmaceuticals Holding Co. Ltd., Shanghai 20020, China
| | - Yongchao Chu
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Pharmaceutics, School of Pharmacy, Research Center on Aging and Medicine, Fudan University, Shanghai 201203, China
| | - Qinjun Chen
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Pharmaceutics, School of Pharmacy, Research Center on Aging and Medicine, Fudan University, Shanghai 201203, China
| | - Chen Jiang
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Pharmaceutics, School of Pharmacy, Research Center on Aging and Medicine, Fudan University, Shanghai 201203, China
| |
Collapse
|
19
|
Mi P, Cabral H, Kataoka K. Ligand-Installed Nanocarriers toward Precision Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1902604. [PMID: 31353770 DOI: 10.1002/adma.201902604] [Citation(s) in RCA: 171] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/04/2019] [Indexed: 05/20/2023]
Abstract
Development of drug-delivery systems that selectively target neoplastic cells has been a major goal of nanomedicine. One major strategy for achieving this milestone is to install ligands on the surface of nanocarriers to enhance delivery to target tissues, as well as to enhance internalization of nanocarriers by target cells, which improves accuracy, efficacy, and ultimately enhances patient outcomes. Herein, recent advances regarding the development of ligand-installed nanocarriers are introduced and the effect of their design on biological performance is discussed. Besides academic achievements, progress on ligand-installed nanocarriers in clinical trials is presented, along with the challenges faced by these formulations. Lastly, the future perspectives of ligand-installed nanocarriers are discussed, with particular emphasis on their potential for emerging precision therapies.
Collapse
Affiliation(s)
- Peng Mi
- Department of Radiology, Center for Medical Imaging, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No.17 People's South Road, Chengdu, 610041, China
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Kazunori Kataoka
- Innovation Center of Nanomedicine (iCONM), Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki, 210-0821, Japan
- Institute for Future Initiatives, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
20
|
Sun T, Zhang G, Guo Z, Chen Q, Zhang Y, Chu Y, Guo Q, Li C, Zhou W, Zhang Y, Liu P, Chen H, Yu H, Jiang L, Jiang C. Co-delivery of Cu(I) chelator and chemotherapeutics as a new strategy for tumor theranostic. J Control Release 2020; 321:483-496. [PMID: 32061623 DOI: 10.1016/j.jconrel.2020.02.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/06/2020] [Accepted: 02/12/2020] [Indexed: 01/02/2023]
Abstract
Chelating Cu from tumors has been verified as an effective and promising strategy for cancer therapy through antiangiogenesis. However, systematic removal Cu by injecting with Cu chelators will result unavoidable side effects, since Cu is indispensable to the body. In this work, a micelle targeting to tumors' newborn vessels based on a polypeptide was developed to co-load DOX and Probe X, which can go through an "OFF-to-ON" procedure to report the Cu+-capture events in vivo in a real-time way by giving near infrared (NIR) fluorescence and photoacoustic signal. By co-delivering antiangiogenesis and chemotherapeutic reagents, the tumor can be significantly suppressed, meanwhile with a low systematic toxicity. Hopefully, this work can offer new insights in designing sophisticated antitumor strategy.
Collapse
Affiliation(s)
- Tao Sun
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Pharmaceutics, School of Pharmacy, Research Center on Aging and Medicine, Fudan University, Shanghai 201203, PR China
| | - Guangping Zhang
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics & Institute of Materials and Clean Energy, Shandong Normal University, 1 University Road, Jinan, 250358, PR China
| | - Zhongyuan Guo
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Pharmaceutics, School of Pharmacy, Research Center on Aging and Medicine, Fudan University, Shanghai 201203, PR China
| | - Qinjun Chen
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Pharmaceutics, School of Pharmacy, Research Center on Aging and Medicine, Fudan University, Shanghai 201203, PR China
| | - Yujie Zhang
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Pharmaceutics, School of Pharmacy, Research Center on Aging and Medicine, Fudan University, Shanghai 201203, PR China
| | - Yongchao Chu
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Pharmaceutics, School of Pharmacy, Research Center on Aging and Medicine, Fudan University, Shanghai 201203, PR China
| | - Qin Guo
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Pharmaceutics, School of Pharmacy, Research Center on Aging and Medicine, Fudan University, Shanghai 201203, PR China
| | - Chao Li
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Pharmaceutics, School of Pharmacy, Research Center on Aging and Medicine, Fudan University, Shanghai 201203, PR China
| | - Wenxi Zhou
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Pharmaceutics, School of Pharmacy, Research Center on Aging and Medicine, Fudan University, Shanghai 201203, PR China
| | - Yiwen Zhang
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Pharmaceutics, School of Pharmacy, Research Center on Aging and Medicine, Fudan University, Shanghai 201203, PR China
| | - Peixin Liu
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Pharmaceutics, School of Pharmacy, Research Center on Aging and Medicine, Fudan University, Shanghai 201203, PR China
| | - Hongyi Chen
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Pharmaceutics, School of Pharmacy, Research Center on Aging and Medicine, Fudan University, Shanghai 201203, PR China
| | - Haijun Yu
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China
| | - Liping Jiang
- State key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, PR China
| | - Chen Jiang
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Pharmaceutics, School of Pharmacy, Research Center on Aging and Medicine, Fudan University, Shanghai 201203, PR China.
| |
Collapse
|
21
|
Principles and applications of nanomaterial-based hyperthermia in cancer therapy. Arch Pharm Res 2020; 43:46-57. [PMID: 31993968 DOI: 10.1007/s12272-020-01206-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/09/2020] [Indexed: 12/19/2022]
Abstract
Over the past few decades, hyperthermia therapy (HTT) has become one of the most promising strategies to treat cancer. HTT has been applied with nanotechnology to overcome drawbacks such as non-selectivity and invasiveness and to maximize therapeutic efficacy. The high temperature of HTT induces protein denaturation that leads to apoptosis or necrosis. It can also enhance the effects of other cancer therapies because heat-damaged tissues reduce radioresistance and help accumulate anticancer drugs. Gold nanoparticles and superparamagnetic iron oxide with different energy sources are commonly used as hyperthermia agents. New types of nanoparticles such as those whose surface is coated with several polymers and those modified with targeting moieties have been studied as novel HTT agents. In this review, we introduce principles and applications of nanotechnology-based HTT using gold nanoparticles and superparamagnetic iron oxide.
Collapse
|
22
|
Wang Q, Guo X, Chen Y, Wu Z, Zhou Y, Sadaf S, Han L, Ding X, Sun T. Theranostics system caged in human serum albumin as a therapy for breast tumors. J Mater Chem B 2020; 8:6877-6885. [PMID: 32249887 DOI: 10.1039/d0tb00377h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Biomimetic materials are attracting increasing attention in the field of drug delivery due to their low immunogenicity, good biocompatibility and degradability.
Collapse
Affiliation(s)
- Qingbing Wang
- Department of Interventional Radiology
- Ruijin Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai
- P. R. China
| | - Xiaoxia Guo
- Department of Interventional Radiology
- Ruijin Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai
- P. R. China
| | - Yi Chen
- Department of Interventional Radiology
- Zhongshan Hospital
- Fudan University
- Shanghai Institution of Medical Imaging
- Shanghai
| | - Zhiyuan Wu
- Department of Interventional Radiology
- Ruijin Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai
- P. R. China
| | - Yu Zhou
- Department of Interventional Radiology
- Ruijin Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai
- P. R. China
| | - Saima Sadaf
- Institute of Biochemistry and Biotechnology
- University of the Punjab
- Quaid-i-Azam Campus
- Lahore
- Pakistan
| | - Liang Han
- Jiangsu Key Laboratory of Neuropsychiatric Diseases Research
- School of Pharmacy
- Soochow University
- Suzhou
- P. R. China
| | - Xiaoyi Ding
- Department of Interventional Radiology
- Ruijin Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai
- P. R. China
| | - Tao Sun
- Jiangsu Key Laboratory of Neuropsychiatric Diseases Research
- School of Pharmacy
- Soochow University
- Suzhou
- P. R. China
| |
Collapse
|
23
|
Cao Z, Li W, Liu R, Li X, Li H, Liu L, Chen Y, Lv C, Liu Y. pH- and enzyme-triggered drug release as an important process in the design of anti-tumor drug delivery systems. Biomed Pharmacother 2019; 118:109340. [PMID: 31545284 DOI: 10.1016/j.biopha.2019.109340] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 07/31/2019] [Accepted: 08/05/2019] [Indexed: 12/16/2022] Open
Abstract
It is necessary to design a reasonable drug delivery system(DDS) for targeted release to overcome the potential toxicity and poor selectivity of anti-tumor drug. How a drug is released from a DDS is a critical issue that determines whether the DDS is designed successfully. We all know that the microenvironment of tumors is quite different from normal tissues, such as its acidic environment, different expression levels of some enzymes, etc. These features are widely used in the design of DDSs and play an important role in the drug release process in vivo. Numerous DDSs have been designed and synthesized. This article attention to how drugs are released from DDSs. We summarizes and classify the characteristic enzymes and chemical bonds used in the drug release process by browsing a large number of papers, and describes how they are applied in DDSs with specific examples. By understanding these acid-sensitive chemical bonds and over-expressed enzymes in tumors, different DDSs can be designed for different drug structures to solve specific problems of anti-tumor drugs.
Collapse
Affiliation(s)
- Zhiwen Cao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wen Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Rui Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiang Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Hui Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Linlin Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Youwen Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Cheng Lv
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Yuanyan Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
24
|
Sun T, Zhang G, Wang Q, Guo Z, Chen Q, Chen X, Lu Y, Zhang Y, Zhang Y, Guo Q, Gao X, Cheng Y, Jiang C. Pre-blocked molecular shuttle as an in-situ real-time theranostics. Biomaterials 2019; 204:46-58. [PMID: 30878796 DOI: 10.1016/j.biomaterials.2019.02.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/23/2019] [Accepted: 02/19/2019] [Indexed: 02/05/2023]
Abstract
Real-time monitor of drug-release from drug formulations in a noninvasive way can provide spatio-temporal information for drug activation and guide further clinical rational administration. In this work, a molecular shuttle, as a typical nanosized artificial molecular machine, was managed to act as a conceptually-new nanotheranostics for oxaliplatin. A post-recognition strategy was utilized, where a default supramolecular-dye couple was pre-blocked. The rational design, synthesis, characterization and proof-of-concept of this strategy were described in detail. The drug-release upon reducing environment can be translated into near-infrared (NIR) fluorescence signal (OFF-to-ON), allowing to track the drug-release procedure by multi-modal images including IVIS, FLECT and photoacoustic imaging. The versatile nanotheranostics system can target to triple negative breast tumor via conjugated F3 peptide, and show an improved anti-tumor efficacy with much lower side effect. The intelligent nanotheranostics system based on molecular shuttle provides new reference for precision medicine in preclinical trial and postclinical evaluation.
Collapse
Affiliation(s)
- Tao Sun
- Key Laboratory of Smart Drug Delivery (Ministry of Education), State Key Laboratory of Medical Neurobiology, Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, PR China
| | - Guangping Zhang
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics & Institute of Materials and Clean Energy, Shandong Normal University, 1 University Road, Jinan, 250358, PR China
| | - Qingbing Wang
- Department of Interventional Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, PR China
| | - Zhongyuan Guo
- Key Laboratory of Smart Drug Delivery (Ministry of Education), State Key Laboratory of Medical Neurobiology, Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, PR China
| | - Qinjun Chen
- Key Laboratory of Smart Drug Delivery (Ministry of Education), State Key Laboratory of Medical Neurobiology, Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, PR China
| | - Xinli Chen
- Key Laboratory of Smart Drug Delivery (Ministry of Education), State Key Laboratory of Medical Neurobiology, Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, PR China
| | - Yifei Lu
- Key Laboratory of Smart Drug Delivery (Ministry of Education), State Key Laboratory of Medical Neurobiology, Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, PR China
| | - Yu Zhang
- Key Laboratory of Smart Drug Delivery (Ministry of Education), State Key Laboratory of Medical Neurobiology, Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, PR China
| | - Yujie Zhang
- Key Laboratory of Smart Drug Delivery (Ministry of Education), State Key Laboratory of Medical Neurobiology, Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, PR China
| | - Qin Guo
- Key Laboratory of Smart Drug Delivery (Ministry of Education), State Key Laboratory of Medical Neurobiology, Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, PR China
| | - Xiang Gao
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy West China Hospital, West China Medical School, Sichuan University/Collaborative Innovation Center for Biotherapy, 24 Renmin Nan Road, Chengdu, 610041, PR China
| | - Yongzhong Cheng
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy West China Hospital, West China Medical School, Sichuan University/Collaborative Innovation Center for Biotherapy, 24 Renmin Nan Road, Chengdu, 610041, PR China
| | - Chen Jiang
- Key Laboratory of Smart Drug Delivery (Ministry of Education), State Key Laboratory of Medical Neurobiology, Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, PR China.
| |
Collapse
|
25
|
Xie Z, Song J, Zhang H, Zhuang Y, Xie S, Li Y, Li Z, Liu M, Sun K. Disulfide-based PEGylated prodrugs: Reconversion kinetics, self-assembly and antitumor efficacy. Colloids Surf B Biointerfaces 2018; 172:414-422. [DOI: 10.1016/j.colsurfb.2018.08.068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 08/23/2018] [Accepted: 08/30/2018] [Indexed: 01/22/2023]
|