1
|
Olsen TC, LaGuardia JS, Chen DR, Lebens RS, Huang KX, Milek D, Noble M, Leckenby JI. Influencing factors and repair advancements in rodent models of peripheral nerve regeneration. Regen Med 2024:1-17. [PMID: 39469920 DOI: 10.1080/17460751.2024.2405318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/12/2024] [Indexed: 10/30/2024] Open
Abstract
Peripheral nerve injuries lead to severe functional impairments, with rodent models essential for studying regeneration. This review examines key factors affecting outcomes. Age-related declines, like reduced nerve fiber density and impaired axonal transport of vesicles, hinder recovery. Hormonal differences influence regeneration, with BDNF/trkB critical for testosterone and nerve growth factor for estrogen signaling pathways. Species and strain selection impact outcomes, with C57BL/6 mice and Sprague-Dawley rats exhibiting varying regenerative capacities. Injury models - crush for early regeneration, chronic constriction for neuropathic pain, stretch for traumatic elongation and transection for severe lacerations - provide insights into clinically relevant scenarios. Repair techniques, such as nerve grafts and conduits, show that autografts are the gold standard for gaps over 3 cm, with success influenced by graft type and diameter. Time course analysis highlights crucial early degeneration and regeneration phases within the first month, with functional recovery stabilizing by three to six months. Early intervention optimizes regeneration by reducing scar tissue formation, while later interventions focus on remyelination. Understanding these factors is vital for designing robust preclinical studies and translating research into effective clinical treatments for peripheral nerve injuries.
Collapse
Affiliation(s)
- Timothy C Olsen
- Division of Plastic & Reconstructive Surgery, University of Rochester Medical Center, 601 Elmwood Avenue Box 661Rochester, NY 14642, USA
| | - Jonnby S LaGuardia
- Division of Plastic & Reconstructive Surgery, University of Rochester Medical Center, 601 Elmwood Avenue Box 661Rochester, NY 14642, USA
| | - David R Chen
- University of California, 410 Charles E. Young Drive, East Los Angeles, CA 90095, USA
| | - Ryan S Lebens
- University of California, 410 Charles E. Young Drive, East Los Angeles, CA 90095, USA
| | - Kelly X Huang
- University of California, 410 Charles E. Young Drive, East Los Angeles, CA 90095, USA
| | - David Milek
- Division of Plastic & Reconstructive Surgery, University of Rochester Medical Center, 601 Elmwood Avenue Box 661Rochester, NY 14642, USA
| | - Mark Noble
- Department of Biomedical Genetics, University of Rochester Medical Center, 601 Elmwood Avenue Box 661Rochester, NY 14642, USA
| | - Jonathan I Leckenby
- Division of Plastic & Reconstructive Surgery, University of Rochester Medical Center, 601 Elmwood Avenue Box 661Rochester, NY 14642, USA
| |
Collapse
|
2
|
McBenedict B, Hauwanga WN, Escudeiro G, Petrus D, Onabanjo BB, Johnny C, Omer M, Amaravadhi AR, Felix A, Dang NB, Adolphsson L, Lima Pessôa B. A Review and Bibliometric Analysis of Studies on Advances in Peripheral Nerve Regeneration. Cureus 2024; 16:e69515. [PMID: 39416551 PMCID: PMC11481412 DOI: 10.7759/cureus.69515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 09/15/2024] [Indexed: 10/19/2024] Open
Abstract
Peripheral nerve injuries (PNIs) pose significant clinical challenges due to their complex healing processes and the often incomplete functional recovery. This review and bibliometric analysis aimed to provide a comprehensive overview of advancements in peripheral nerve regeneration research, focusing on trends, influential studies, and emerging areas. By analyzing 2921 publications from the Web of Science Core Collection, key themes such as nerve regeneration, repair, and the critical role of Schwann cells were identified. The study highlights a notable increase in research output since the early 2000s, with China and the United States leading in publication volume and citations. The analysis also underscores the importance of collaborative networks, which are driving innovation in this field. Despite significant progress, the challenge of achieving complete functional recovery from PNIs persists, emphasizing the need for continued research into novel therapeutic strategies. This review synthesizes current knowledge on the mechanisms of nerve regeneration, including the roles of cellular and molecular processes, neurotrophic factors, and emerging therapeutic approaches such as gene therapy and stem cell applications. Additionally, the study revealed the use of nanotechnology, biomaterials, and advanced imaging techniques, which hold promise for improving the outcomes of nerve repair. This bibliometric analysis not only maps the landscape of peripheral nerve regeneration research but also identifies opportunities for future investigation. This study has some limitations, including reliance on the Web of Science Core Collection, which may exclude relevant research from other databases. The analysis is predominantly English-based, potentially overlooking significant non-English studies. Citation trends might be influenced by shifting research priorities and accessibility issues, affecting the visibility of older work. Additionally, geographical disparities and limited collaboration networks may restrict the global applicability and knowledge exchange in this field.
Collapse
Affiliation(s)
| | - Wilhelmina N Hauwanga
- Cardiology, Faculty of Medicine, Federal University of the State of Rio de Janeiro, Rio de Janeiro, BRA
| | | | - Dulci Petrus
- Family Medicine, Directorate of Special Programs, Ministry of Health and Social Services, Windhoek, NAM
| | - Barakat B Onabanjo
- Research and Development, Montefiore Medical Center, Wakefield Campus, New York City, USA
| | | | - Mohamed Omer
- Internal Medicine, Sulaiman Al Rajhi University, Ar Rass, SAU
| | | | - Asaju Felix
- General Practice, Dorset County Hospital, Dorchester, GBR
| | - Ngoc B Dang
- Nursing, College of Health Sciences, VinUniversity, Hanoi, VNM
| | | | | |
Collapse
|
3
|
Crook BS, Cullen MM, Pidgeon TS. The Role of Tissue Engineering and Three-Dimensional-Filled Conduits in Bridging Nerve Gaps: A Review of Recent Advancements. JOURNAL OF HAND SURGERY GLOBAL ONLINE 2024; 6:700-704. [PMID: 39381400 PMCID: PMC11456632 DOI: 10.1016/j.jhsg.2024.01.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 01/20/2024] [Indexed: 10/10/2024] Open
Abstract
Tissue-engineered nerve guidance conduits (NGCs) are an area of research interest and investment. Currently, two separate three-dimensional, filled NGCs have Food and Drug Administration approval in the management of nerve gaps up to 3 cm in length, with more on the horizon. Future NGC options will leverage increasingly intricate designs to mimic the natural biology and architecture of native nerve tissue. To enhance the development of next-generation NGCs, experimental protocols and models should be standardized. For the NGCs currently on the market, more clinical data and randomized comparative studies are needed.
Collapse
Affiliation(s)
- Bryan S. Crook
- Department of Orthopaedic Surgery, Duke University Hospital, Durham, NC
| | - Mark M. Cullen
- Department of Orthopaedic Surgery, Duke University Hospital, Durham, NC
| | - Tyler S. Pidgeon
- Department of Orthopaedic Surgery, Duke University Hospital, Durham, NC
| |
Collapse
|
4
|
St Clair-Glover M, Finol-Urdaneta RK, Maddock M, Wallace E, Miellet S, Wallace G, Yue Z, Dottori M. Efficient fabrication of 3D bioprinted functional sensory neurons using an inducible Neurogenin-2 human pluripotent stem cell line. Biofabrication 2024; 16:045022. [PMID: 39084624 DOI: 10.1088/1758-5090/ad69c4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 07/31/2024] [Indexed: 08/02/2024]
Abstract
Three-dimensional (3D) tissue models have gained recognition for their improved ability to mimic the native cell microenvironment compared to traditional two-dimensional models. This progress has been driven by advances in tissue-engineering technologies such as 3D bioprinting, a promising method for fabricating biomimetic living tissues. While bioprinting has succeeded in generating various tissues to date, creating neural tissue models remains challenging. In this context, we present an accelerated approach to fabricate 3D sensory neuron (SN) structures using a transgenic human pluripotent stem cell (hPSC)-line that contains an inducible Neurogenin-2 (NGN2) expression cassette. The NGN2 hPSC line was first differentiated to neural crest cell (NCC) progenitors, then incorporated into a cytocompatible gelatin methacryloyl-based bioink for 3D bioprinting. Upregulated NGN2 expression in the bioprinted NCCs resulted in induced SN (iSN) populations that exhibited specific cell markers, with 3D analysis revealing widespread neurite outgrowth through the scaffold volume. Calcium imaging demonstrated functional activity of iSNs, including membrane excitability properties and voltage-gated sodium channel (NaV) activity. This efficient approach to generate 3D bioprinted iSN structures streamlines the development of neural tissue models, useful for the study of neurodevelopment and disease states and offering translational potential.
Collapse
Affiliation(s)
- Mitchell St Clair-Glover
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia
- School of Medical, Indigenous, and Health Sciences, Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, University of Wollongong, NSW 2522, Australia
| | - Rocio K Finol-Urdaneta
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia
- School of Medical, Indigenous, and Health Sciences, Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Marnie Maddock
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia
- School of Medical, Indigenous, and Health Sciences, Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Eileen Wallace
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia
- School of Medical, Indigenous, and Health Sciences, Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, University of Wollongong, NSW 2522, Australia
| | - Sara Miellet
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia
- School of Medical, Indigenous, and Health Sciences, Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Gordon Wallace
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, University of Wollongong, NSW 2522, Australia
| | - Zhilian Yue
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, University of Wollongong, NSW 2522, Australia
| | - Mirella Dottori
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia
- School of Medical, Indigenous, and Health Sciences, Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, University of Wollongong, NSW 2522, Australia
| |
Collapse
|
5
|
Vecchi JT, Claussen AD, Hansen MR. Decreasing the physical gap in the neural-electrode interface and related concepts to improve cochlear implant performance. Front Neurosci 2024; 18:1425226. [PMID: 39114486 PMCID: PMC11303154 DOI: 10.3389/fnins.2024.1425226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024] Open
Abstract
Cochlear implants (CI) represent incredible devices that restore hearing perception for those with moderate to profound sensorineural hearing loss. However, the ability of a CI to restore complex auditory function is limited by the number of perceptually independent spectral channels provided. A major contributor to this limitation is the physical gap between the CI electrodes and the target spiral ganglion neurons (SGNs). In order for CI electrodes to stimulate SGNs more precisely, and thus better approximate natural hearing, new methodologies need to be developed to decrease this gap, (i.e., transitioning CIs from a far-field to near-field device). In this review, strategies aimed at improving the neural-electrode interface are discussed in terms of the magnitude of impact they could have and the work needed to implement them. Ongoing research suggests current clinical efforts to limit the CI-related immune response holds great potential for improving device performance. This could eradicate the dense, fibrous capsule surrounding the electrode and enhance preservation of natural cochlear architecture, including SGNs. In the long term, however, optimized future devices will likely need to induce and guide the outgrowth of the peripheral process of SGNs to be in closer proximity to the CI electrode in order to better approximate natural hearing. This research is in its infancy; it remains to be seen which strategies (surface patterning, small molecule release, hydrogel coating, etc.) will be enable this approach. Additionally, these efforts aimed at optimizing CI function will likely translate to other neural prostheses, which face similar issues.
Collapse
Affiliation(s)
- Joseph T. Vecchi
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, Iowa City, IA, United States
- Department of Otolaryngology Head-Neck Surgery, Carver College of Medicine, Iowa City, IA, United States
| | - Alexander D. Claussen
- Department of Otolaryngology Head-Neck Surgery, Carver College of Medicine, Iowa City, IA, United States
| | - Marlan R. Hansen
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, Iowa City, IA, United States
- Department of Otolaryngology Head-Neck Surgery, Carver College of Medicine, Iowa City, IA, United States
| |
Collapse
|
6
|
Li L, Chu Z, Li S, Zheng T, Wei S, Zhao Y, Liu P, Lu Q. BDNF-loaded chitosan-based mimetic mussel polymer conduits for repair of peripheral nerve injury. Front Cell Dev Biol 2024; 12:1431558. [PMID: 39011392 PMCID: PMC11246889 DOI: 10.3389/fcell.2024.1431558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 06/11/2024] [Indexed: 07/17/2024] Open
Abstract
Care for patients with peripheral nerve injury is multifaceted, as traditional methods are not devoid of limitations. Although the utilization of neural conduits shows promise as a therapeutic modality for peripheral nerve injury, its efficacy as a standalone intervention is limited. Hence, there is a pressing need to investigate a composite multifunctional neural conduit as an alternative treatment for peripheral nerve injury. In this study, a BDNF-loaded chitosan-based mimetic mussel polymer conduit was prepared. Its unique adhesion characteristics allow it to be suture-free, improve the microenvironment of the injury site, and have good antibacterial properties. Researchers utilized a rat sciatic nerve injury model to evaluate the progression of nerve regeneration at the 12-week postoperative stage. The findings of this study indicate that the chitosan-based mimetic mussel polymer conduit loaded with BDNF had a substantial positive effect on myelination and axon outgrowth. The observed impact demonstrated a favorable outcome in terms of sciatic nerve regeneration and subsequent functional restoration in rats with a 15-mm gap. Hence, this approach is promising for nerve tissue regeneration during peripheral nerve injury.
Collapse
Affiliation(s)
- Lei Li
- Department of Adult Joint Reconstructive Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Ziyue Chu
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Shihao Li
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Tong Zheng
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Shusheng Wei
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yunpeng Zhao
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Peilai Liu
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Qunshan Lu
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
7
|
Elhelali A, Tuffaha S. A Systematic Review of Registered Clinical Trials for Peripheral Nerve Injuries. Ann Plast Surg 2024; 92:e32-e54. [PMID: 38527351 DOI: 10.1097/sap.0000000000003899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
ABSTRACT Upper extremity peripheral nerve injuries (PNIs) significantly impact daily functionality and necessitate effective treatment strategies. Clinical trials play a crucial role in developing these strategies. However, challenges like retrospective data collection, reporting biases, inconsistent outcome measures, and inadequate data sharing practices hinder effective research and treatment advancements. This review aims to analyze the landscape of reporting, methodological design, outcome measures, and data sharing practices in registered clinical trials concerning upper extremity PNIs. It seeks to guide future research in this vital area by identifying current trends and gaps.A systematic search was conducted on ClinicalTrials.gov and WHO International Clinical Trials Registry Platform up to November 10, 2023, using a combination of MeSH terms and keywords related to upper extremity nerve injury. The PRISMA 2020 guidelines were followed, and the studies were selected based on predefined inclusion and exclusion criteria. A narrative synthesis of findings was performed, with statistical analysis for associations and completion rates.Of 3051 identified studies, 96 met the inclusion criteria. These included 47 randomized controlled trials, 27 nonrandomized trials, and others. Sensory objective measures were the most common primary outcomes. Only 13 studies had a data sharing plan. The analysis revealed varied intervention methods and inconsistencies in outcome measures. There was a significant association between study funding, design, and completion status, but no association between enrollment numbers and completion.This review highlights the need for standardized outcome measures, patient-centered assessments, and improved data sharing in upper extremity PNI trials. The varied nature of interventions and inconsistency in outcome measures indicate the necessity for more rigorous and transparent research practices to strengthen the evidence base for managing these injuries.
Collapse
Affiliation(s)
- Ala Elhelali
- From the Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | | |
Collapse
|
8
|
Das S, Thimukonda Jegadeesan J, Basu B. Advancing Peripheral Nerve Regeneration: 3D Bioprinting of GelMA-Based Cell-Laden Electroactive Bioinks for Nerve Conduits. ACS Biomater Sci Eng 2024; 10:1620-1645. [PMID: 38345020 DOI: 10.1021/acsbiomaterials.3c01226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Peripheral nerve injuries often result in substantial impairment of the neurostimulatory organs. While the autograft is still largely used as the "gold standard" clinical treatment option, nerve guidance conduits (NGCs) are currently considered a promising approach for promoting peripheral nerve regeneration. While several attempts have been made to construct NGCs using various biomaterial combinations, a comprehensive exploration of the process science associated with three-dimensional (3D) extrusion printing of NGCs with clinically relevant sizes (length: 20 mm; diameter: 2-8 mm), while focusing on tunable buildability using electroactive biomaterial inks, remains unexplored. In addressing this gap, we present here the results of the viscoelastic properties of a range of a multifunctional gelatin methacrylate (GelMA)/poly(ethylene glycol) diacrylate (PEGDA)/carbon nanofiber (CNF)/gellan gum (GG) hydrogel bioink formulations and printability assessment using experiments and quantitative models. Our results clearly established the positive impact of the gellan gum on the enhancement of the rheological properties. Interestingly, the strategic incorporation of PEGDA as a secondary cross-linker led to a remarkable enhancement in the strength and modulus by 3 and 8-fold, respectively. Moreover, conductive CNF addition resulted in a 4-fold improvement in measured electrical conductivity. The use of four-component electroactive biomaterial ink allowed us to obtain high neural cell viability in 3D bioprinted constructs. While the conventionally cast scaffolds can support the differentiation of neuro-2a cells, the most important result has been the excellent cell viability of neural cells in 3D encapsulated structures. Taken together, our findings demonstrate the potential of 3D bioprinting and multimodal biophysical cues in developing functional yet critical-sized nerve conduits for peripheral nerve tissue regeneration.
Collapse
Affiliation(s)
- Soumitra Das
- Laboratory for Biomaterials, Materials Research Centre, Indian Institute of Science, Bangalore 560012, India
| | | | - Bikramjit Basu
- Laboratory for Biomaterials, Materials Research Centre, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
9
|
Raghavan A, Ghosh S. Influence of Graphene-Based Nanocomposites in Neurogenesis and Neuritogenesis: A Brief Summary. ACS APPLIED BIO MATERIALS 2024; 7:711-726. [PMID: 38265040 DOI: 10.1021/acsabm.3c00852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Graphene is a prospective candidate for various biomedical applications, including drug transporters, bioimaging agents, and scaffolds for tissue engineering, thanks to its superior electrical conductivity and biocompatibility. The clinical issue of nerve regeneration and rehabilitation still has a major influence on people's lives. Nanomaterials based on graphene have been exploited extensively to promote nerve cell differentiation and proliferation. Their high electrical conductivity and mechanical robustness make them appropriate for nerve tissue engineering. Combining graphene with other substances, such as biopolymers, may transmit biochemical signals that support brain cell division, proliferation, and regeneration. The utilization of nanocomposites based on graphene in neurogenesis and neuritogenesis is the primary emphasis of this review. Here are some examples of the many synthetic strategies used. For neuritogenesis and neurogenesis, it has also been explored to combine electrical stimulation with graphene-based materials.
Collapse
Affiliation(s)
- Akshaya Raghavan
- Polymers & Functional Materials Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sutapa Ghosh
- Polymers & Functional Materials Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
10
|
Fellin CR, Steiner RC, Buchen JT, Anders JJ, Jariwala SH. Photobiomodulation and Vascularization in Conduit-Based Peripheral Nerve Repair: A Narrative Review. Photobiomodul Photomed Laser Surg 2024; 42:1-10. [PMID: 38109199 DOI: 10.1089/photob.2023.0103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023] Open
Abstract
Background: Peripheral nerve injuries pose a significant clinical issue for patients, especially in the most severe cases wherein complete transection (neurotmesis) results in total loss of sensory/motor function. Nerve guidance conduits (NGCs) are a common treatment option that protects and guides regenerating axons during recovery. However, treatment outcomes remain limited and often fail to achieve full reinnervation, especially in critically sized defects (>3 cm) where a lack of vascularization leads to neural necrosis. Conclusions: A multitreatment approach is, therefore, necessary to improve the efficacy of NGCs. Stimulating angiogenesis within NGCs can help alleviate oxygen deficiency through rapid inosculation with the host vasculature, whereas photobiomodulation therapy (PBMT) has demonstrated beneficial therapeutic effects on regenerating nerve cells and neovascularization. In this review, we discuss the current trends of NGCs, vascularization, and PBMT as treatments for peripheral nerve neurotmesis and highlight the need for a combinatorial approach to improve functional and clinical outcomes.
Collapse
Affiliation(s)
- Christopher R Fellin
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
- The Center for Rehabilitation Sciences Research, Department of Physical Medicine and Rehabilitation, Uniformed Services University of Health Sciences, Bethesda, Maryland, USA
| | - Richard C Steiner
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
- The Center for Rehabilitation Sciences Research, Department of Physical Medicine and Rehabilitation, Uniformed Services University of Health Sciences, Bethesda, Maryland, USA
| | - Jack T Buchen
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
- The Center for Rehabilitation Sciences Research, Department of Physical Medicine and Rehabilitation, Uniformed Services University of Health Sciences, Bethesda, Maryland, USA
| | - Juanita J Anders
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of Health Sciences, Bethesda, Maryland, USA
| | - Shailly H Jariwala
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
- The Center for Rehabilitation Sciences Research, Department of Physical Medicine and Rehabilitation, Uniformed Services University of Health Sciences, Bethesda, Maryland, USA
| |
Collapse
|
11
|
Casal D, Casimiro MH, Ferreira LM, Leal JP, Rodrigues G, Lopes R, Moura DL, Gonçalves L, Lago JB, Pais D, Santos PMP. Review of Piezoelectrical Materials Potentially Useful for Peripheral Nerve Repair. Biomedicines 2023; 11:3195. [PMID: 38137416 PMCID: PMC10740581 DOI: 10.3390/biomedicines11123195] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/21/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
It has increasingly been recognized that electrical currents play a pivotal role in cell migration and tissue repair, in a process named "galvanotaxis". In this review, we summarize the current evidence supporting the potential benefits of electric stimulation (ES) in the physiology of peripheral nerve repair (PNR). Moreover, we discuss the potential of piezoelectric materials in this context. The use of these materials has deserved great attention, as the movement of the body or of the external environment can be used to power internally the electrical properties of devices used for providing ES or acting as sensory receptors in artificial skin (e-skin). The fact that organic materials sustain spontaneous degradation inside the body means their piezoelectric effect is limited in duration. In the case of PNR, this is not necessarily problematic, as ES is only required during the regeneration period. Arguably, piezoelectric materials have the potential to revolutionize PNR with new biomedical devices that range from scaffolds and nerve-guiding conduits to sensory or efferent components of e-skin. However, much remains to be learned regarding piezoelectric materials, their use in manufacturing of biomedical devices, and their sterilization process, to fine-tune their safe, effective, and predictable in vivo application.
Collapse
Affiliation(s)
- Diogo Casal
- Departamento de Anatomia, NOVA Medical School|Faculdade de Ciências Médicas (NMS|FCM), Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal; (L.G.); (D.P.)
- Plastic and Reconstructive Surgery Department and Burn Unit, Centro Hospitalar Universitário de Lisboa Central, Rua José António Serrano, 1169-045 Lisbon, Portugal
| | - Maria Helena Casimiro
- Centro de Ciências e Tecnologias Nucleares (C2TN), Instituto Superior Técnico (IST), Universidade de Lisboa, 2695-066 Bobadela, Portugal; (M.H.C.); (P.M.P.S.)
| | - Luís M. Ferreira
- Departamento de Engenharia e Ciências Nucleares (DECN), Instituto Superior Técnico (IST), Universidade de Lisboa, 2695-066 Bobadela, Portugal;
| | - João Paulo Leal
- Centro de Química Estrutural (CQE), Institute of Molecular Sciences (IMS), Instituto Superior Técnico (IST), Universidade de Lisboa, 2695-066 Bobadela, Portugal;
| | - Gabriela Rodrigues
- Centro de Ecologia, Evolução e Alterações Ambientais (cE3c) & CHANGE—Global Change and Sustainability Institute, Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa (FCUL), 1749-016 Lisboa, Portugal;
| | - Raquel Lopes
- Gynaecology and Obstetrics Department, Maternidade Alfredo da Costa, Centro Hospitalar Universitário de Lisboa Central, R. Viriato 1, 2890-495 Lisboa, Portugal;
| | - Diogo Lino Moura
- Anatomy Institute and Orthopedics Department, Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal;
- Spine Unit, Orthopedics Department, Coimbra University Hospital, 3000-602 Coimbra, Portugal
| | - Luís Gonçalves
- Departamento de Anatomia, NOVA Medical School|Faculdade de Ciências Médicas (NMS|FCM), Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal; (L.G.); (D.P.)
| | - João B. Lago
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa (FCUL), 1749-016 Lisboa, Portugal;
| | - Diogo Pais
- Departamento de Anatomia, NOVA Medical School|Faculdade de Ciências Médicas (NMS|FCM), Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal; (L.G.); (D.P.)
| | - Pedro M. P. Santos
- Centro de Ciências e Tecnologias Nucleares (C2TN), Instituto Superior Técnico (IST), Universidade de Lisboa, 2695-066 Bobadela, Portugal; (M.H.C.); (P.M.P.S.)
| |
Collapse
|
12
|
Sun P, Guan Y, Yang C, Hou H, Liu S, Yang B, Li X, Chen S, Wang L, Wang H, Huang Y, Sheng X, Peng J, Xiong W, Wang Y, Yin L. A Bioresorbable and Conductive Scaffold Integrating Silicon Membranes for Peripheral Nerve Regeneration. Adv Healthc Mater 2023; 12:e2301859. [PMID: 37750601 DOI: 10.1002/adhm.202301859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/03/2023] [Indexed: 09/27/2023]
Abstract
Peripheral nerve injury represents one of the most common types of traumatic damage, severely impairing motor and sensory functions, and posttraumatic nerve regeneration remains a major challenge. Electrical cues are critical bioactive factors that promote nerve regrowth, and bioartificial scaffolds incorporating conductive materials to enhance the endogenous electrical field have been demonstrated to be effective. The utilization of fully biodegradable scaffolds can eliminate material residues, and circumvent the need for secondary retrieval procedures. Here, a fully bioresorbable and conductive nerve scaffold integrating N-type silicon (Si) membranes is proposed, which can deliver both structural guidance and electrical cues for the repair of nerve defects. The entire scaffold is fully biodegradable, and the introduction of N-type Si can significantly promote the proliferation and production of neurotrophic factors of Schwann cells and enhance the calcium activity of dorsal root ganglion (DRG) neurons. The conductive scaffolds enable accelerated nerve regeneration and motor functional recovery in rodents with sciatic nerve transection injuries. This work sheds light on the advancement of bioresorbable and electrically active materials to achieve desirable neural interfaces and improved therapeutic outcomes, offering essential strategies for regenerative medicine.
Collapse
Affiliation(s)
- Pengcheng Sun
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Yanjun Guan
- Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 51 Fucheng Road, Beijing, 100048, P. R. China
- Co-innovation Center of Neuroregeneration, Nantong University Nantong, Nantong, Jiangsu Province, 226007, P. R. China
- Graduate School of Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853, P. R. China
| | - Can Yang
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Hanqing Hou
- School of Life Sciences, IDG/McGovern Institute for Brain Research at Tsinghua University, Tsinghua University, Beijing, 100084, P. R. China
| | - Shuang Liu
- School of Life Sciences, IDG/McGovern Institute for Brain Research at Tsinghua University, Tsinghua University, Beijing, 100084, P. R. China
| | - Boyao Yang
- Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 51 Fucheng Road, Beijing, 100048, P. R. China
- Graduate School of Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853, P. R. China
| | - Xiangling Li
- Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 51 Fucheng Road, Beijing, 100048, P. R. China
| | - Shengfeng Chen
- Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 51 Fucheng Road, Beijing, 100048, P. R. China
| | - Liu Wang
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, P. R. China
| | - Huachun Wang
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Center for Flexible Electronics Technology, and IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China
| | - Yunxiang Huang
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Center for Flexible Electronics Technology, and IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China
| | - Xing Sheng
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Center for Flexible Electronics Technology, and IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China
| | - Jiang Peng
- Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 51 Fucheng Road, Beijing, 100048, P. R. China
| | - Wei Xiong
- School of Life Sciences, IDG/McGovern Institute for Brain Research at Tsinghua University, Tsinghua University, Beijing, 100084, P. R. China
| | - Yu Wang
- Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 51 Fucheng Road, Beijing, 100048, P. R. China
| | - Lan Yin
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
13
|
Dong X, Yang Y, Bao Z, Midgley AC, Li F, Dai S, Yang Z, Wang J, Liu L, Li W, Zheng Y, Liu S, Liu Y, Yu W, Liu J, Fan M, Zhu M, Shen Z, Xiaosong G, Kong D. Micro-nanofiber composite biomimetic conduits promote long-gap peripheral nerve regeneration in canine models. Bioact Mater 2023; 30:98-115. [PMID: 37560200 PMCID: PMC10406865 DOI: 10.1016/j.bioactmat.2023.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/01/2023] [Accepted: 06/19/2023] [Indexed: 08/11/2023] Open
Abstract
Peripheral nerve injuries may result in severe long-gap interruptions that are challenging to repair. Autografting is the gold standard surgical approach for repairing long-gap nerve injuries but can result in prominent donor-site complications. Instead, imitating the native neural microarchitecture using synthetic conduits is expected to offer an alternative strategy for improving nerve regeneration. Here, we designed nerve conduits composed of high-resolution anisotropic microfiber grid-cordes with randomly organized nanofiber sheaths to interrogate the positive effects of these biomimetic structures on peripheral nerve regeneration. Anisotropic microfiber-grids demonstrated the capacity to directionally guide Schwann cells and neurites. Nanofiber sheaths conveyed adequate elasticity and permeability, whilst exhibiting a barrier function against the infiltration of fibroblasts. We then used the composite nerve conduits bridge 30-mm long sciatic nerve defects in canine models. At 12 months post-implant, the morphometric and histological recovery, gait recovery, electrophysiological function, and degree of muscle atrophy were assessed. The newly regenerated nerve tissue that formed within the composite nerve conduits showed restored neurological functions that were superior compared to sheaths-only scaffolds and Neurolac nerve conduit controls. Our findings demonstrate the feasibility of using synthetic biophysical cues to effectively bridge long-gap peripheral nerve injuries and indicates the promising clinical application prospects of biomimetic composite nerve conduits.
Collapse
Affiliation(s)
- Xianhao Dong
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, China
| | - Yueyue Yang
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, China
| | - Zheheng Bao
- Department of Orthopaedics, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
- Outpatient Department, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Adam C. Midgley
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, China
| | - Feiyi Li
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, China
| | - Shuxin Dai
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, China
| | - Zhuangzhuang Yang
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, China
| | - Jin Wang
- Outpatient Department, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Lihua Liu
- Department of Radiology, Tianjin First Central Hospital, Tianjin Medical Imaging Institute, School of Medicine, Nankai University, Tianjin, China
| | - Wenlei Li
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, China
| | - Yayuan Zheng
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, China
| | - Siyang Liu
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, China
| | - Yang Liu
- Department of Radiology, Tianjin First Central Hospital, Tianjin Medical Imaging Institute, School of Medicine, Nankai University, Tianjin, China
| | - Weijian Yu
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, China
| | - Jun Liu
- Clinical School/College of Orthopedics, Tianjin Medical University, Tianjin, China
- Department of Joint, Tianjin Hospital, Tianjin, China
| | - Meng Fan
- Department of Orthopaedics, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Meifeng Zhu
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, China
- Haihe Laboratory of Sustainable Chemical Transformations, Keyan West Road, Tianjin, 300192, China
| | - Zhongyang Shen
- Institute of Transplantation Medicine, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Gu Xiaosong
- Jiangsu Key Laboratory of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| | - Deling Kong
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, China
- Institute of Transplantation Medicine, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
- Haihe Laboratory of Sustainable Chemical Transformations, Keyan West Road, Tianjin, 300192, China
| |
Collapse
|
14
|
Meng Q, Burrell JC, Zhang Q, Le AD. Potential Application of Orofacial MSCs in Tissue Engineering Nerve Guidance for Peripheral Nerve Injury Repair. Stem Cell Rev Rep 2023; 19:2612-2631. [PMID: 37642899 DOI: 10.1007/s12015-023-10609-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2023] [Indexed: 08/31/2023]
Abstract
Injury to the peripheral nerve causes potential loss of sensory and motor functions, and peripheral nerve repair (PNR) remains a challenging endeavor. The current clinical methods of nerve repair, such as direct suture, autografts, and acellular nerve grafts (ANGs), exhibit their respective disadvantages like nerve tension, donor site morbidity, size mismatch, and immunogenicity. Even though commercially available nerve guidance conduits (NGCs) have demonstrated some clinical successes, the overall clinical outcome is still suboptimal, especially for nerve injuries with a large gap (≥ 3 cm) due to the lack of biologics. In the last two decades, the combination of advanced tissue engineering technologies, stem cell biology, and biomaterial science has significantly advanced the generation of a new generation of NGCs incorporated with biological factors or supportive cells, including mesenchymal stem cells (MSCs), which hold great promise to enhance peripheral nerve repair/regeneration (PNR). Orofacial MSCs are emerging as a unique source of MSCs for PNR due to their neural crest-origin and easy accessibility. In this narrative review, we have provided an update on the pathophysiology of peripheral nerve injury and the properties and biological functions of orofacial MSCs. Then we have highlighted the application of orofacial MSCs in tissue engineering nerve guidance for PNR in various preclinical models and the potential challenges and future directions in this field.
Collapse
Affiliation(s)
- Qingyu Meng
- Department of Oral & Maxillofacial Surgery & Pharmacology, University of Pennsylvania School of Dental Medicine, 240 South 40Th Street, Philadelphia, PA, 19104, USA
| | - Justin C Burrell
- Department of Oral & Maxillofacial Surgery & Pharmacology, University of Pennsylvania School of Dental Medicine, 240 South 40Th Street, Philadelphia, PA, 19104, USA
| | - Qunzhou Zhang
- Department of Oral & Maxillofacial Surgery & Pharmacology, University of Pennsylvania School of Dental Medicine, 240 South 40Th Street, Philadelphia, PA, 19104, USA.
| | - Anh D Le
- Department of Oral & Maxillofacial Surgery & Pharmacology, University of Pennsylvania School of Dental Medicine, 240 South 40Th Street, Philadelphia, PA, 19104, USA.
- Department of Oral & Maxillofacial Surgery, Penn Medicine Hospital of the University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA, 19104, USA.
| |
Collapse
|
15
|
Tai Y, Tonmoy TI, Win S, Brinkley NT, Park BH, Nam J. Enhanced peripheral nerve regeneration by mechano-electrical stimulation. NPJ Regen Med 2023; 8:57. [PMID: 37848428 PMCID: PMC10582163 DOI: 10.1038/s41536-023-00334-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 09/29/2023] [Indexed: 10/19/2023] Open
Abstract
To address limitations in current approaches for treating large peripheral nerve defects, the presented study evaluated the feasibility of functional material-mediated physical stimuli on peripheral nerve regeneration. Electrospun piezoelectric poly(vinylidene fluoride-trifluoroethylene) nanofibers were utilized to deliver mechanical actuation-activated electrical stimulation to nerve cells/tissues in a non-invasive manner. Using morphologically and piezoelectrically optimized nanofibers for neurite extension and Schwann cell maturation based on in vitro experiments, piezoelectric nerve conduits were synthesized and implanted in a rat sciatic nerve transection model to bridge a critical-sized sciatic nerve defect (15 mm). A therapeutic shockwave system was utilized to periodically activate the piezoelectric effect of the implanted nerve conduit on demand. The piezoelectric nerve conduit-mediated mechano-electrical stimulation (MES) induced enhanced peripheral nerve regeneration, resulting in full axon reconnection with myelin regeneration from the proximal to the distal ends over the critical-sized nerve gap. In comparison, a control group, in which the implanted piezoelectric conduits were not activated in vivo, failed to exhibit such nerve regeneration. In addition, at both proximal and distal ends of the implanted conduits, a decreased number of damaged myelination (ovoids), an increased number of myelinated nerves, and a larger axonal diameter were observed under the MES condition as compared to the control condition. Furthermore, unlike the control group, the MES condition exhibited a superior functional nerve recovery, assessed by walking track analysis and polarization-sensitive optical coherence tomography, demonstrating the significant potential of the piezoelectric conduit-based physical stimulation approach for the treatment of peripheral nerve injury.
Collapse
Affiliation(s)
- Youyi Tai
- Department of Bioengineering, University of California, Riverside, CA, 92521, USA
| | | | - Shwe Win
- Department of Bioengineering, University of California, Riverside, CA, 92521, USA
| | - Natasha T Brinkley
- Department of Bioengineering, University of California, Riverside, CA, 92521, USA
| | - B Hyle Park
- Department of Bioengineering, University of California, Riverside, CA, 92521, USA
| | - Jin Nam
- Department of Bioengineering, University of California, Riverside, CA, 92521, USA.
| |
Collapse
|
16
|
Wu S, Shen W, Ge X, Ao F, Zheng Y, Wang Y, Jia X, Mao Y, Luo Y. Advances in Large Gap Peripheral Nerve Injury Repair and Regeneration with Bridging Nerve Guidance Conduits. Macromol Biosci 2023; 23:e2300078. [PMID: 37235853 DOI: 10.1002/mabi.202300078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/10/2023] [Indexed: 05/28/2023]
Abstract
Peripheral nerve injury is a common complication of accidents and diseases. The traditional autologous nerve graft approach remains the gold standard for the treatment of nerve injuries. While sources of autologous nerve grafts are very limited and difficult to obtain. Nerve guidance conduits are widely used in the treatment of peripheral nerve injuries as an alternative to nerve autografts and allografts. However, the development of nerve conduits does not meet the needs of large gap peripheral nerve injury. Functional nerve conduits can provide a good microenvironment for axon elongation and myelin regeneration. Herein, the manufacturing methods and different design types of functional bridging nerve conduits for nerve conduits combined with electrical or magnetic stimulation and loaded with Schwann cells, etc., are summarized. It summarizes the literature and finds that the technical solutions of functional nerve conduits with electrical stimulation, magnetic stimulation and nerve conduits combined with Schwann cells can be used as effective strategies for bridging large gap nerve injury and provide an effective way for the study of large gap nerve injury repair. In addition, functional nerve conduits provide a new way to construct delivery systems for drugs and growth factors in vivo.
Collapse
Affiliation(s)
- Shang Wu
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Wen Shen
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Xuemei Ge
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Fen Ao
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Yan Zheng
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Yigang Wang
- Department of Pharmacy, No. 215 Hospital of Shaanxi Nuclear Industry, Xianyang, Shaanxi, 712000, P. R. China
| | - Xiaoni Jia
- Central Laboratory, Xi'an Mental Health Center, Xi'an, 710061, P. R. China
| | - Yueyang Mao
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Yali Luo
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, P. R. China
| |
Collapse
|
17
|
Chen L, Song X, Yao Z, Zhou C, Yang J, Yang Q, Chen J, Wu J, Sun Z, Gu L, Ma Y, Lee SJ, Zhang C, Mao HQ, Sun L. Gelatin nanofiber-reinforced decellularized amniotic membrane promotes axon regeneration and functional recovery in the surgical treatment of peripheral nerve injury. Biomaterials 2023; 300:122207. [PMID: 37352606 DOI: 10.1016/j.biomaterials.2023.122207] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 06/25/2023]
Abstract
Effective recovery of peripheral nerve injury (PNI) after surgical treatment relies on promoting axon regeneration and minimizing the fibrotic response. Decellularized amniotic membrane (dAM) has unique features as a natural matrix for promoting PNI repair due to its pro-regenerative extracellular matrix (ECM) structure and anti-inflammatory properties. However, the fragile nature and rapid degradation rate of dAM limit its widespread use in PNI surgery. Here we report an engineered composite membrane for PNI repair by combining dAM with gelatin (Gel) nanofiber membrane to construct a Gel nanofiber-dAM composite membrane (Gel-dAM) through interfacial bonding. The Gel-dAM showed enhanced mechanical properties and reduced degradation rate, while retaining maximal bioactivity and biocompatibility of dAM. These factors led to improved axon regeneration, reduced fibrotic response, and better functional recovery in PNI repair. As a fully natural materials-derived off-the-shelf matrix, Gel-dAM exhibits superior clinical translational potential for the surgical treatment of PNI.
Collapse
Affiliation(s)
- Long Chen
- Department of Orthopedics, Guizhou Provincial People's Hospital, Guiyang, Guizhou, 550000, China; The Lab of Tissue Engineering and Translational Medicine, College of Medicine, Guizhou University, Guiyang, Guizhou, 550000, China
| | - Xiongbo Song
- Department of Orthopedics, Guizhou Provincial People's Hospital, Guiyang, Guizhou, 550000, China; The Lab of Tissue Engineering and Translational Medicine, College of Medicine, Guizhou University, Guiyang, Guizhou, 550000, China
| | - Zhicheng Yao
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, 21218, USA; Department of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Conglai Zhou
- Department of Orthopedics, Guizhou Provincial People's Hospital, Guiyang, Guizhou, 550000, China; The Lab of Tissue Engineering and Translational Medicine, College of Medicine, Guizhou University, Guiyang, Guizhou, 550000, China
| | - Junjun Yang
- The Lab of Tissue Engineering and Translational Medicine, College of Medicine, Guizhou University, Guiyang, Guizhou, 550000, China
| | - Qiming Yang
- Department of Orthopedics, Guizhou Provincial People's Hospital, Guiyang, Guizhou, 550000, China; The Lab of Tissue Engineering and Translational Medicine, College of Medicine, Guizhou University, Guiyang, Guizhou, 550000, China
| | - Junrong Chen
- Department of Orthopedics, Guizhou Provincial People's Hospital, Guiyang, Guizhou, 550000, China; The Lab of Tissue Engineering and Translational Medicine, College of Medicine, Guizhou University, Guiyang, Guizhou, 550000, China
| | - Jiarui Wu
- Department of Orthopedics, Guizhou Provincial People's Hospital, Guiyang, Guizhou, 550000, China; The Lab of Tissue Engineering and Translational Medicine, College of Medicine, Guizhou University, Guiyang, Guizhou, 550000, China
| | - Zeyu Sun
- Department of Orthopedics, Guizhou Provincial People's Hospital, Guiyang, Guizhou, 550000, China
| | - Liling Gu
- Department of Orthopedics, Guizhou Provincial People's Hospital, Guiyang, Guizhou, 550000, China
| | - Yi Ma
- The Lab of Tissue Engineering and Translational Medicine, College of Medicine, Guizhou University, Guiyang, Guizhou, 550000, China
| | - Shin-Jae Lee
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, 21218, USA; Department of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Chi Zhang
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, 21218, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
| | - Hai-Quan Mao
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, 21218, USA; Department of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| | - Li Sun
- Department of Orthopedics, Guizhou Provincial People's Hospital, Guiyang, Guizhou, 550000, China; The Lab of Tissue Engineering and Translational Medicine, College of Medicine, Guizhou University, Guiyang, Guizhou, 550000, China.
| |
Collapse
|
18
|
Wu W, Dong Y, Liu H, Jiang X, Yang L, Luo J, Hu Y, Gou M. 3D printed elastic hydrogel conduits with 7,8-dihydroxyflavone release for peripheral nerve repair. Mater Today Bio 2023; 20:100652. [PMID: 37214548 PMCID: PMC10199216 DOI: 10.1016/j.mtbio.2023.100652] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/17/2023] [Accepted: 04/29/2023] [Indexed: 05/24/2023] Open
Abstract
Nerve guide conduit is a promising treatment for long gap peripheral nerve injuries, yet its efficacy is limited. Drug-releasable scaffolds may provide reliable platforms to build a regenerative microenvironment for nerve recovery. In this study, an elastic hydrogel conduit encapsulating with prodrug nanoassemblies is fabricated by a continuous 3D printing technique for promoting nerve regeneration. The bioactive hydrogel is comprised of gelatin methacryloyl (GelMA) and silk fibroin glycidyl methacrylate (SF-MA), exhibiting positive effects on adhesion, proliferation, and migration of Schwann cells. Meanwhile, 7,8-dihydroxyflavone (7,8-DHF) prodrug nanoassemblies with high drug-loading capacities are developed through self-assembly of the lipophilic prodrug and loaded into the GelMA/SF-MA hydrogel. The drug loading conduit could sustainedly release 7,8-DHF to facilitate neurite elongation. A 12 mm nerve defect model is established for therapeutic efficiency evaluation by implanting the conduit through surgical suturing with rat sciatic nerve. The electrophysiological, morphological, and histological assessments indicate that this conduit can promote axon regeneration, remyelination, and function recovery by providing a favorable microenvironment. These findings implicate that the GelMA/SF-MA conduit with 7,8-DHF release has potentials in the treatment of long-gap peripheral nerve injury.
Collapse
Affiliation(s)
- Wenbi Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yinchu Dong
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Haofan Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xuebing Jiang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ling Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Luo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yu Hu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan province, China
| | - Maling Gou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
19
|
Fang Y, Wang C, Liu Z, Ko J, Chen L, Zhang T, Xiong Z, Zhang L, Sun W. 3D Printed Conductive Multiscale Nerve Guidance Conduit with Hierarchical Fibers for Peripheral Nerve Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205744. [PMID: 36808712 PMCID: PMC10131803 DOI: 10.1002/advs.202205744] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Nerve guidance conduits (NGCs) have become a promising alternative for peripheral nerve regeneration; however, the outcome of nerve regeneration and functional recovery is greatly affected by the physical, chemical, and electrical properties of NGCs. In this study, a conductive multiscale filled NGC (MF-NGC) consisting of electrospun poly(lactide-co-caprolactone) (PCL)/collagen nanofibers as the sheath, reduced graphene oxide /PCL microfibers as the backbone, and PCL microfibers as the internal structure for peripheral nerve regeneration is developed. The printed MF-NGCs presented good permeability, mechanical stability, and electrical conductivity, which further promoted the elongation and growth of Schwann cells and neurite outgrowth of PC12 neuronal cells. Animal studies using a rat sciatic nerve injury model reveal that the MF-NGCs promote neovascularization and M2 transition through the rapid recruitment of vascular cells and macrophages. Histological and functional assessments of the regenerated nerves confirm that the conductive MF-NGCs significantly enhance peripheral nerve regeneration, as indicated by improved axon myelination, muscle weight increase, and sciatic nerve function index. This study demonstrates the feasibility of using 3D-printed conductive MF-NGCs with hierarchically oriented fibers as functional conduits that can significantly enhance peripheral nerve regeneration.
Collapse
Affiliation(s)
- Yongcong Fang
- Biomanufacturing CenterDepartment of Mechanical EngineeringTsinghua UniversityBeijing100084P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of BeijingBeijing100084P. R. China
- “Biomanufacturing and Engineering Living Systems” Innovation International Talents Base (111 Base)Beijing100084P. R. China
| | - Chengjin Wang
- Biomanufacturing CenterDepartment of Mechanical EngineeringTsinghua UniversityBeijing100084P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of BeijingBeijing100084P. R. China
- “Biomanufacturing and Engineering Living Systems” Innovation International Talents Base (111 Base)Beijing100084P. R. China
| | - Zibo Liu
- Biomanufacturing CenterDepartment of Mechanical EngineeringTsinghua UniversityBeijing100084P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of BeijingBeijing100084P. R. China
- “Biomanufacturing and Engineering Living Systems” Innovation International Talents Base (111 Base)Beijing100084P. R. China
| | - Jeonghoon Ko
- Biomanufacturing CenterDepartment of Mechanical EngineeringTsinghua UniversityBeijing100084P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of BeijingBeijing100084P. R. China
- “Biomanufacturing and Engineering Living Systems” Innovation International Talents Base (111 Base)Beijing100084P. R. China
| | - Li Chen
- Biomanufacturing CenterDepartment of Mechanical EngineeringTsinghua UniversityBeijing100084P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of BeijingBeijing100084P. R. China
- “Biomanufacturing and Engineering Living Systems” Innovation International Talents Base (111 Base)Beijing100084P. R. China
| | - Ting Zhang
- Biomanufacturing CenterDepartment of Mechanical EngineeringTsinghua UniversityBeijing100084P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of BeijingBeijing100084P. R. China
- “Biomanufacturing and Engineering Living Systems” Innovation International Talents Base (111 Base)Beijing100084P. R. China
| | - Zhuo Xiong
- Biomanufacturing CenterDepartment of Mechanical EngineeringTsinghua UniversityBeijing100084P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of BeijingBeijing100084P. R. China
- “Biomanufacturing and Engineering Living Systems” Innovation International Talents Base (111 Base)Beijing100084P. R. China
| | - Lei Zhang
- Biomanufacturing CenterDepartment of Mechanical EngineeringTsinghua UniversityBeijing100084P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of BeijingBeijing100084P. R. China
- “Biomanufacturing and Engineering Living Systems” Innovation International Talents Base (111 Base)Beijing100084P. R. China
| | - Wei Sun
- Biomanufacturing CenterDepartment of Mechanical EngineeringTsinghua UniversityBeijing100084P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of BeijingBeijing100084P. R. China
- “Biomanufacturing and Engineering Living Systems” Innovation International Talents Base (111 Base)Beijing100084P. R. China
- Department of Mechanical EngineeringDrexel UniversityPhiladelphiaPA19104USA
| |
Collapse
|
20
|
Neuman K, Zhang X, Mills C, Koppes R, Lewis LH, Koppes A. En route to next-generation nerve repair: static passive magnetostimulation modulates neurite outgrowth. J Neural Eng 2023; 20. [PMID: 36608343 DOI: 10.1088/1741-2552/acb103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 01/06/2023] [Indexed: 01/07/2023]
Abstract
Objective. Regeneration of damaged nerves is required for recovery following nervous system injury. While neural cell behavior may be modified by neuromodulation techniques, the impact of static direct current (DC) magnetic stimulation remains unclear.Approach. This study quantifies the effects of DC magnetostimulation on primary neuronal outgrowthin vitro. The extension of neurites of dorsal root ganglia (DRG) subjected to two different low-strength (mT) static magnetic flux configurations was investigated.Main results. After 3 d of 1 h in-plane (IP) magnetic field stimulation, a 62.5% increase in neurite outgrowth area was seen relative to unstimulated controls. The combined action of in-plane + out-of-plane (IP + OOP) magnetic field application produced a directional outgrowth bias parallel to the IP field direction. At the same time, the diverse magnetic field conditions produced no changes in two soluble neurotrophic factors, nerve growth factor and brain-derived neurotrophic factor, released from resident glia.Significance. These results demonstrate the potential for DC magnetostimulation to enhance neuronal regrowth and improve clinical outcomes.
Collapse
Affiliation(s)
- Katelyn Neuman
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, United States of America
| | - Xiaoyu Zhang
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115, United States of America
| | - Caroline Mills
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, United States of America
| | - Ryan Koppes
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, United States of America
| | - Laura H Lewis
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, United States of America.,Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115, United States of America
| | - Abigail Koppes
- Department of Biology, Northeastern University, Boston, MA 02115, United States of America.,Department of Bioengineering, Northeastern University, Boston, MA 02115, United States of Ameria
| |
Collapse
|
21
|
Micropattern-based nerve guidance conduit with hundreds of microchannels and stem cell recruitment for nerve regeneration. NPJ Regen Med 2022; 7:62. [PMID: 36261427 PMCID: PMC9582221 DOI: 10.1038/s41536-022-00257-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 10/05/2022] [Indexed: 11/12/2022] Open
Abstract
Guiding the regrowth of thousands of nerve fibers within a regeneration-friendly environment enhances the regeneration capacity in the case of peripheral nerve injury (PNI) and spinal cord injury (SCI). Although clinical treatments are available and several studies have been conducted, the development of nerve guidance conduits (NGCs) with desirable properties, including controllable size, hundreds of nerve bundle-sized microchannels, and host stem-cell recruitment, remains challenging. In this study, the micropattern-based fabrication method was combined with stem-cell recruitment factor (substance P, SP) immobilization onto the main material to produce a size-tunable NGC with hundreds of microchannels with stem-cell recruitment capability. The SP-immobilized multiple microchannels aligned the regrowth of nerve fibers and recruited the host stem cells, which enhanced the functional regeneration capacity. This method has wide applicability in the modification and augmentation of NGCs, such as bifurcated morphology or directional topographies on microchannels. Additional improvements in fabrication will advance the regeneration technology and improve the treatment of PNI/SCI.
Collapse
|
22
|
Sanchez Rezza A, Kulahci Y, Gorantla VS, Zor F, Drzeniek NM. Implantable Biomaterials for Peripheral Nerve Regeneration-Technology Trends and Translational Tribulations. Front Bioeng Biotechnol 2022; 10:863969. [PMID: 35573254 PMCID: PMC9092979 DOI: 10.3389/fbioe.2022.863969] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/05/2022] [Indexed: 02/01/2023] Open
Abstract
The use of autografted nerve in surgical repair of peripheral nerve injuries (PNI) is severely limited due to donor site morbidity and restricted tissue availability. As an alternative, synthetic nerve guidance channels (NGCs) are available on the market for surgical nerve repair, but they fail to promote nerve regeneration across larger critical gap nerve injuries. Therefore, such injuries remain unaddressed, result in poor healing outcomes and are a limiting factor in limb reconstruction and transplantation. On the other hand, a myriad of advanced biomaterial strategies to address critical nerve injuries are proposed in preclinical literature but only few of those have found their way into clinical practice. The design of synthetic nerve grafts should follow rational criteria and make use of a combination of bioinstructive cues to actively promote nerve regeneration. To identify the most promising NGC designs for translation into applicable products, thorough mode of action studies, standardized readouts and validation in large animals are needed. We identify design criteria for NGC fabrication according to the current state of research, give a broad overview of bioactive and functionalized biomaterials and highlight emerging composite implant strategies using therapeutic cells, soluble factors, structural features and intrinsically conductive substrates. Finally, we discuss translational progress in bioartificial conduits for nerve repair from the surgeon's perspective and give an outlook toward future challenges in the field.
Collapse
Affiliation(s)
- Angela Sanchez Rezza
- Charité— Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt–Universität zu Berlin, Institute of Medical Immunology, Berlin, Germany
| | - Yalcin Kulahci
- Wake Forest School of Medicine, Department of Surgery, Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, United States
| | - Vijay S. Gorantla
- Wake Forest School of Medicine, Department of Surgery, Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, United States
| | - Fatih Zor
- Wake Forest School of Medicine, Department of Surgery, Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, United States
| | - Norman M. Drzeniek
- Charité— Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt–Universität zu Berlin, Institute of Medical Immunology, Berlin, Germany
- Berlin Institute of Health at Charité—Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany
- Charité — Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Berlin-Brandenburg School for Regenerative Therapies (BSRT), Berlin, Germany
| |
Collapse
|
23
|
Zhang J, Tao J, Cheng H, Liu H, Wu W, Dong Y, Liu X, Gou M, Yang S, Xu J. Nerve transfer with 3D-printed branch nerve conduits. BURNS & TRAUMA 2022; 10:tkac010. [PMID: 35441080 PMCID: PMC9012979 DOI: 10.1093/burnst/tkac010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 02/15/2022] [Accepted: 02/27/2022] [Indexed: 02/05/2023]
Abstract
Background Nerve transfer is an important clinical surgical procedure for nerve repair by the coaptation of a healthy donor nerve to an injured nerve. Usually, nerve transfer is performed in an end-to-end manner, which will lead to functional loss of the donor nerve. In this study, we aimed to evaluate the efficacy of 3D-printed branch nerve conduits in nerve transfer. Methods Customized branch conduits were constructed using gelatine-methacryloyl by 3D printing. The nerve conduits were characterized both in vitro and in vivo. The efficacy of 3D-printed branch nerve conduits in nerve transfer was evaluated in rats through electrophysiology testing and histological evaluation. Results The results obtained showed that a single nerve stump could form a complex nerve network in the 3D-printed multibranch conduit. A two-branch conduit was 3D printed for transferring the tibial nerve to the peroneal nerve in rats. In this process, the two branches were connected to the distal tibial nerve and peroneal nerve. It was found that the two nerves were successfully repaired with functional recovery. Conclusions It is implied that the two-branch conduit could not only repair the peroneal nerve but also preserve partial function of the donor tibial nerve. This work demonstrated that 3D-printed branch nerve conduits provide a potential method for nerve transfer.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Neurosurgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - Jie Tao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - Hao Cheng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - Haofan Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - Wenbi Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - Yinchu Dong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - Xuesong Liu
- Department of Neurosurgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - Maling Gou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - Siming Yang
- Key Laboratory of Wound Repair and Regeneration of PLA, Chinese PLA General Hospital, Medical College of PLA, Beijing 100853, P.R. China
| | - Jianguo Xu
- Department of Neurosurgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| |
Collapse
|
24
|
Yeoh S, Warner WS, Merchant SS, Hsu EW, Agoston DV, Mahan MA. Incorporating Blood Flow in Nerve Injury and Regeneration Assessment. Front Surg 2022; 9:862478. [PMID: 35529911 PMCID: PMC9069240 DOI: 10.3389/fsurg.2022.862478] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/04/2022] [Indexed: 01/22/2023] Open
Abstract
Peripheral nerve injury is a significant public health challenge, with limited treatment options and potential lifelong impact on function. More than just an intrinsic part of nerve anatomy, the vascular network of nerves impact regeneration, including perfusion for metabolic demands, appropriate signaling and growth factors, and structural scaffolding for Schwann cell and axonal migration. However, the established nerve injury classification paradigm proposed by Sydney Sunderland in 1951 is based solely on hierarchical disruption to gross anatomical nerve structures and lacks further information regarding the state of cellular, metabolic, or inflammatory processes that are critical in determining regenerative outcomes. This review covers the anatomical structure of nerve-associated vasculature, and describes the biological processes that makes these vessels critical to successful end-organ reinnervation after severe nerve injuries. We then propose a theoretical framework that incorporates measurements of blood vessel perfusion and inflammation to unify perspectives on all mechanisms of nerve injury.
Collapse
Affiliation(s)
- Stewart Yeoh
- Department of Neurosurgery, University of Utah, Salt Lake City, Utah, United States
| | - Wesley S. Warner
- Department of Neurosurgery, University of Utah, Salt Lake City, Utah, United States
| | - Samer S. Merchant
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, United States
| | - Edward W. Hsu
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, United States
| | - Denes v. Agoston
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States
| | - Mark A. Mahan
- Department of Neurosurgery, University of Utah, Salt Lake City, Utah, United States
| |
Collapse
|
25
|
Liu K, Yan L, Li R, Song Z, Ding J, Liu B, Chen X. 3D Printed Personalized Nerve Guide Conduits for Precision Repair of Peripheral Nerve Defects. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103875. [PMID: 35182046 PMCID: PMC9036027 DOI: 10.1002/advs.202103875] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 12/25/2021] [Indexed: 05/07/2023]
Abstract
The treatment of peripheral nerve defects has always been one of the most challenging clinical practices in neurosurgery. Currently, nerve autograft is the preferred treatment modality for peripheral nerve defects, while the therapy is constantly plagued by the limited donor, loss of donor function, formation of neuroma, nerve distortion or dislocation, and nerve diameter mismatch. To address these clinical issues, the emerged nerve guide conduits (NGCs) are expected to offer effective platforms to repair peripheral nerve defects, especially those with large or complex topological structures. Up to now, numerous technologies are developed for preparing diverse NGCs, such as solvent casting, gas foaming, phase separation, freeze-drying, melt molding, electrospinning, and three-dimensional (3D) printing. 3D printing shows great potential and advantages because it can quickly and accurately manufacture the required NGCs from various natural and synthetic materials. This review introduces the application of personalized 3D printed NGCs for the precision repair of peripheral nerve defects and predicts their future directions.
Collapse
Affiliation(s)
- Kai Liu
- Department of Hand and Foot SurgeryThe First Hospital of Jilin University1 Xinmin StreetChangchun130061P. R. China
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences5625 Renmin StreetChangchun130022P. R. China
| | - Lesan Yan
- Biomedical Materials and Engineering Research Center of Hubei ProvinceState Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of Technology122 Luoshi RoadWuhan430070P. R. China
| | - Ruotao Li
- Department of Hand and Foot SurgeryThe First Hospital of Jilin University1 Xinmin StreetChangchun130061P. R. China
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences5625 Renmin StreetChangchun130022P. R. China
| | - Zhiming Song
- Department of Sports MedicineThe First Hospital of Jilin University1 Xinmin StreetChangchun130061P. R. China
| | - Jianxun Ding
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences5625 Renmin StreetChangchun130022P. R. China
- State Key Laboratory of Molecular Engineering of PolymersFudan University220 Handan RoadShanghai200433P. R. China
| | - Bin Liu
- Department of Hand and Foot SurgeryThe First Hospital of Jilin University1 Xinmin StreetChangchun130061P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences5625 Renmin StreetChangchun130022P. R. China
| |
Collapse
|
26
|
Kurian AG, Singh RK, Patel KD, Lee JH, Kim HW. Multifunctional GelMA platforms with nanomaterials for advanced tissue therapeutics. Bioact Mater 2022; 8:267-295. [PMID: 34541401 PMCID: PMC8424393 DOI: 10.1016/j.bioactmat.2021.06.027] [Citation(s) in RCA: 155] [Impact Index Per Article: 77.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 02/06/2023] Open
Abstract
Polymeric hydrogels are fascinating platforms as 3D scaffolds for tissue repair and delivery systems of therapeutic molecules and cells. Among others, methacrylated gelatin (GelMA) has become a representative hydrogel formulation, finding various biomedical applications. Recent efforts on GelMA-based hydrogels have been devoted to combining them with bioactive and functional nanomaterials, aiming to provide enhanced physicochemical and biological properties to GelMA. The benefits of this approach are multiple: i) reinforcing mechanical properties, ii) modulating viscoelastic property to allow 3D printability of bio-inks, iii) rendering electrical/magnetic property to produce electro-/magneto-active hydrogels for the repair of specific tissues (e.g., muscle, nerve), iv) providing stimuli-responsiveness to actively deliver therapeutic molecules, and v) endowing therapeutic capacity in tissue repair process (e.g., antioxidant effects). The nanomaterial-combined GelMA systems have shown significantly enhanced and extraordinary behaviors in various tissues (bone, skin, cardiac, and nerve) that are rarely observable with GelMA. Here we systematically review these recent efforts in nanomaterials-combined GelMA hydrogels that are considered as next-generation multifunctional platforms for tissue therapeutics. The approaches used in GelMA can also apply to other existing polymeric hydrogel systems.
Collapse
Affiliation(s)
- Amal George Kurian
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Rajendra K. Singh
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Kapil D. Patel
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, London, WC1X8LD, UK
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
- Cell & Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Regenerative Dental Medicine, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
- Cell & Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Regenerative Dental Medicine, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
| |
Collapse
|
27
|
Changes of Functional, Morphological, and Inflammatory Reactions in Spontaneous Peripheral Nerve Reinnervation after Thermal Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9927602. [PMID: 35154578 PMCID: PMC8826209 DOI: 10.1155/2022/9927602] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 07/25/2021] [Accepted: 01/04/2022] [Indexed: 12/27/2022]
Abstract
In recent decades, the use of energy-based devices has substantially increased the incidence of iatrogenic thermal injury to nerves (cauterization, etc.). While recovery of the nerve after thermal injury is important, the changes in neural structure, function, and peripheral inflammatory reactions postinjury remain unclear. This study is aimed at demonstrating the changes mentioned above during the acute, subacute, and chronic stages of nerve reinnervation after thermal injury. Spontaneous reinnervation was evaluated, including the neural structures, nerve conduction abilities, and muscle regeneration. These effects vary depending on the severity of thermal injury (slight, moderate, and severe). Peripheral inflammatory reactions, as impediments to reinnervation, were found in significant numbers 3 days after thermal injury, exhibiting high expression of IL-1β and TNF-α, but low expression of IL-10. Our findings reveal the pathogenesis of peripheral nerve reinnervation after thermal injury, which will assist in selecting appropriate treatments in further research.
Collapse
|
28
|
Cao S, Deng Y, Zhang L, Aleahmad M. Chitosan nanoparticles, as biological macromolecule-based drug delivery systems to improve the healing potential of artificial neural guidance channels: A review. Int J Biol Macromol 2022; 201:569-579. [PMID: 35031319 DOI: 10.1016/j.ijbiomac.2022.01.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 12/25/2021] [Accepted: 01/05/2022] [Indexed: 12/13/2022]
Abstract
The healing potential of artificial neural guidance channels (NGCs) can be improved by various approaches such as seeding them with supporting cells, the incorporation of various cues, and modification with different fabrication methods. Recently, the therapeutic appeal towards the use of drug-delivering NGCs has increased. In this framework, neuroprotective agents are incorporated into the structure of NGCs using different techniques. Among available methods, nanoparticle-based drug carriers offer numerous advantages over other formulations such as controlled drug release, targeted delivery, high encapsulation efficacy, and high surface to volume ratio. Chitosan nanoparticles have different interesting features for drug delivery applications. These nanocarriers are biocompatible, biodegradable, non-immunogenic, stable, and possess tunable properties. In the current review, applications, challenges, and future perspectives of drug-loaded chitosan nanoparticles to augment the healing potential of NGCs will be discussed.
Collapse
Affiliation(s)
- Shuang Cao
- Department of Neuroelectrophysiology, Jinan Children's Hospital, Jinan 250022, Shandong, China
| | - Yang Deng
- School of Public Health and Management, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, Shandong, China.
| | - Le Zhang
- School of Public Health and Management, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, Shandong, China.
| | - Mehdi Aleahmad
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
29
|
Zhang F, Zhang M, Liu S, Li C, Ding Z, Wan T, Zhang P. Application of Hybrid Electrically Conductive Hydrogels Promotes Peripheral Nerve Regeneration. Gels 2022; 8:41. [PMID: 35049576 PMCID: PMC8775167 DOI: 10.3390/gels8010041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/18/2021] [Accepted: 01/01/2022] [Indexed: 12/12/2022] Open
Abstract
Peripheral nerve injury (PNI) occurs frequently, and the prognosis is unsatisfactory. As the gold standard of treatment, autologous nerve grafting has several disadvantages, such as lack of donors and complications. The use of functional biomaterials to simulate the natural microenvironment of the nervous system and the combination of different biomaterials are considered to be encouraging alternative methods for effective tissue regeneration and functional restoration of injured nerves. Considering the inherent presence of an electric field in the nervous system, electrically conductive biomaterials have been used to promote nerve regeneration. Due to their singular physical properties, hydrogels can provide a three-dimensional hydrated network that can be integrated into diverse sizes and shapes and stimulate the natural functions of nerve tissue. Therefore, conductive hydrogels have become the most effective biological material to simulate human nervous tissue's biological and electrical characteristics. The principal merits of conductive hydrogels include their physical properties and their electrical peculiarities sufficient to effectively transmit electrical signals to cells. This review summarizes the recent applications of conductive hydrogels to enhance peripheral nerve regeneration.
Collapse
Affiliation(s)
- Fengshi Zhang
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (F.Z.); (M.Z.); (S.L.); (C.L.); (Z.D.); (T.W.)
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Beijing 100044, China
- National Center for Trauma Medicine, Beijing 100044, China
| | - Meng Zhang
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (F.Z.); (M.Z.); (S.L.); (C.L.); (Z.D.); (T.W.)
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Beijing 100044, China
- National Center for Trauma Medicine, Beijing 100044, China
| | - Songyang Liu
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (F.Z.); (M.Z.); (S.L.); (C.L.); (Z.D.); (T.W.)
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Beijing 100044, China
- National Center for Trauma Medicine, Beijing 100044, China
| | - Ci Li
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (F.Z.); (M.Z.); (S.L.); (C.L.); (Z.D.); (T.W.)
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Beijing 100044, China
- National Center for Trauma Medicine, Beijing 100044, China
| | - Zhentao Ding
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (F.Z.); (M.Z.); (S.L.); (C.L.); (Z.D.); (T.W.)
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Beijing 100044, China
- National Center for Trauma Medicine, Beijing 100044, China
| | - Teng Wan
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (F.Z.); (M.Z.); (S.L.); (C.L.); (Z.D.); (T.W.)
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Beijing 100044, China
- National Center for Trauma Medicine, Beijing 100044, China
| | - Peixun Zhang
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (F.Z.); (M.Z.); (S.L.); (C.L.); (Z.D.); (T.W.)
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Beijing 100044, China
- National Center for Trauma Medicine, Beijing 100044, China
| |
Collapse
|
30
|
Aleemardani M, Zare P, Seifalian A, Bagher Z, Seifalian AM. Graphene-Based Materials Prove to Be a Promising Candidate for Nerve Regeneration Following Peripheral Nerve Injury. Biomedicines 2021; 10:73. [PMID: 35052753 PMCID: PMC8773001 DOI: 10.3390/biomedicines10010073] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 12/16/2022] Open
Abstract
Peripheral nerve injury is a common medical condition that has a great impact on patient quality of life. Currently, surgical management is considered to be a gold standard first-line treatment; however, is often not successful and requires further surgical procedures. Commercially available FDA- and CE-approved decellularized nerve conduits offer considerable benefits to patients suffering from a completely transected nerve but they fail to support neural regeneration in gaps > 30 mm. To address this unmet clinical need, current research is focused on biomaterial-based therapies to regenerate dysfunctional neural tissues, specifically damaged peripheral nerve, and spinal cord. Recently, attention has been paid to the capability of graphene-based materials (GBMs) to develop bifunctional scaffolds for promoting nerve regeneration, often via supporting enhanced neural differentiation. The unique features of GBMs have been applied to fabricate an electroactive conductive surface in order to direct stem cells and improve neural proliferation and differentiation. The use of GBMs for nerve tissue engineering (NTE) is considered an emerging technology bringing hope to peripheral nerve injury repair, with some products already in preclinical stages. This review assesses the last six years of research in the field of GBMs application in NTE, focusing on the fabrication and effects of GBMs for neurogenesis in various scaffold forms, including electrospun fibres, films, hydrogels, foams, 3D printing, and bioprinting.
Collapse
Affiliation(s)
- Mina Aleemardani
- Biomaterials and Tissue Engineering Group, Department of Materials Science and Engineering, Kroto Research Institute, The University of Sheffield, Sheffield S3 7HQ, UK;
| | - Pariya Zare
- Department of Chemical Engineering, University of Tehran, Tehran 1417935840, Iran;
| | - Amelia Seifalian
- Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK;
| | - Zohreh Bagher
- ENT and Head and Neck Research Centre, Hazrat Rasoul Akram Hospital, The Five Senses Health Institute, Iran University of Medical Sciences, Tehran 16844, Iran
| | - Alexander M. Seifalian
- Nanotechnology and Regenerative Medicine Commercialization Centre (NanoRegMed Ltd.), London BioScience Innovation Centre, London NW1 0NH, UK
| |
Collapse
|
31
|
Shen J, Wang J, Liu X, Sun Y, Yin A, Chai Y, Zhang K, Wang C, Zheng X. In Situ Prevascularization Strategy with Three-Dimensional Porous Conduits for Neural Tissue Engineering. ACS APPLIED MATERIALS & INTERFACES 2021; 13:50785-50801. [PMID: 34664947 DOI: 10.1021/acsami.1c16138] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Neovascularization is crucial for peripheral nerve regeneration and long-term functional restoration. Previous studies have emphasized strategies that enhance axonal repair over vascularization. Here, we describe the development and application of an in situ prevascularization strategy that uses 3D porous nerve guidance conduits (NGCs) to achieve angiogenesis-mediated neural regeneration. The optimal porosity of the NGC is a critical feature for achieving neovascularization and nerve growth patency. Hollow silk fibroin/poly(l-lactic acid-co-ε-caprolactone) NGCs with 3D sponge-like walls were fabricated using electrospinning and freeze-drying. In vitro results showed that 3D porous NGC favored cell biocompatibility had neuroregeneration potential and, most importantly, had angiogenic activity. Results from our mechanistic studies suggest that activation of HIF-1α signaling might be associated with this process. We also tested in situ prevascularized 3D porous NGCs in vivo by transplanting them into a 10 mm rat sciatic nerve defect model with the aim of regenerating the severed nerve. The prevascularized 3D porous NGCs greatly enhanced intraneural angiogenesis, resulting in demonstrable neurogenesis. Eight weeks after transplantation, the performance of the prevascularized 3D NGCs was similar to that of traditional autografts in terms of improved anatomical structure, morphology, and neural function. In conclusion, combining a reasonably fabricated 3D-pore conduit structure with in situ prevascularization promoted functional nerve regeneration, suggesting an alternative strategy for achieving functional recovery after peripheral nerve trauma.
Collapse
Affiliation(s)
- Junjie Shen
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Yishan Road 600, Shanghai 200233, PR China
- Haikou Orthopedic and Diabetes Hospital of Shanghai Sixth People's Hospital, Hainan 570300, PR China
| | - Jiayan Wang
- College of Materials and Textile Engineering, Nanotechnology Research Institute, Jiaxing University, Zhejiang 314001, PR China
- Key Laboratory of Yarn Materials Forming and Composite Processing Technology, Zhejiang 314001, PR China
| | - Xuanzhe Liu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Yishan Road 600, Shanghai 200233, PR China
| | - Yi Sun
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Yishan Road 600, Shanghai 200233, PR China
| | - Anlin Yin
- College of Materials and Textile Engineering, Nanotechnology Research Institute, Jiaxing University, Zhejiang 314001, PR China
- Key Laboratory of Yarn Materials Forming and Composite Processing Technology, Zhejiang 314001, PR China
| | - Yimin Chai
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Yishan Road 600, Shanghai 200233, PR China
| | - Kuihua Zhang
- College of Materials and Textile Engineering, Nanotechnology Research Institute, Jiaxing University, Zhejiang 314001, PR China
- Key Laboratory of Yarn Materials Forming and Composite Processing Technology, Zhejiang 314001, PR China
| | - Chunyang Wang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Yishan Road 600, Shanghai 200233, PR China
- Haikou Orthopedic and Diabetes Hospital of Shanghai Sixth People's Hospital, Hainan 570300, PR China
| | - Xianyou Zheng
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Yishan Road 600, Shanghai 200233, PR China
| |
Collapse
|
32
|
Manipulating electrostatic field to control the distribution of bioactive proteins or polymeric microparticles on planar surfaces for guiding cell migration. Colloids Surf B Biointerfaces 2021; 209:112185. [PMID: 34749191 DOI: 10.1016/j.colsurfb.2021.112185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/18/2021] [Accepted: 10/23/2021] [Indexed: 11/22/2022]
Abstract
We report a general strategy to generate linear and circular gradients of active proteins or polymeric microparticles on planar surfaces by controlling the distribution of electrostatic field during electrohydrodynamic jet printing or electrospray process. Taking fibronectin as an example, we generated a circular gradient of fibronectin and investigated its effect on accelerating the migration of fibroblasts to suit for use in wound closure. In another demonstration, we created linear gradients of laminin in unidirectional and bidirectional patterns, respectively. We showed that such gradations significantly promoted the migration of human neuroblastoma cells with the increase of laminin content. When we changed fibronectin/laminin to electrosprayed poly(lactic-co-glycolic acid) (PLGA) microparticles, we found similar results in terms of guiding cell migration, except that the guidance cues varied from biological signal to topographic structure. Taken together, this method for generating linear/circular gradients of fibronectin/laminin and PLGA microparticles can be readily extended to different types of bioactive proteins and polymeric microparticles to suit wound closure, nerve repair, and related applications involving cell migration.
Collapse
|
33
|
Cadena M, Ning L, King A, Hwang B, Jin L, Serpooshan V, Sloan SA. 3D Bioprinting of Neural Tissues. Adv Healthc Mater 2021; 10:e2001600. [PMID: 33200587 PMCID: PMC8711131 DOI: 10.1002/adhm.202001600] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/19/2020] [Indexed: 02/06/2023]
Abstract
The human nervous system is a remarkably complex physiological network that is inherently challenging to study because of obstacles to acquiring primary samples. Animal models offer powerful alternatives to study nervous system development, diseases, and regenerative processes, however, they are unable to address some species-specific features of the human nervous system. In vitro models of the human nervous system have expanded in prevalence and sophistication, but still require further advances to better recapitulate microenvironmental and cellular features. The field of neural tissue engineering (TE) is rapidly adopting new technologies that enable scientists to precisely control in vitro culture conditions and to better model nervous system formation, function, and repair. 3D bioprinting is one of the major TE technologies that utilizes biocompatible hydrogels to create precisely patterned scaffolds, designed to enhance cellular responses. This review focuses on the applications of 3D bioprinting in the field of neural TE. Important design parameters are considered when bioprinting neural stem cells are discussed. The emergence of various bioprinted in vitro platforms are also reviewed for developmental and disease modeling and drug screening applications within the central and peripheral nervous systems, as well as their use as implants for in vivo regenerative therapies.
Collapse
Affiliation(s)
- Melissa Cadena
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Liqun Ning
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
| | - Alexia King
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Boeun Hwang
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
| | - Linqi Jin
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
| | - Vahid Serpooshan
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Steven A. Sloan
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
34
|
Chen F, Wu M, Wu P, Xiao A, Ke M, Huselstein C, Cai L, Tong Z, Chen Y. Natural Flammulina velutipes-Based Nerve Guidance Conduit as a Potential Biomaterial for Peripheral Nerve Regeneration: In Vitro and In Vivo Studies. ACS Biomater Sci Eng 2021; 7:3821-3834. [PMID: 34297535 DOI: 10.1021/acsbiomaterials.1c00304] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The treatment and repair of serious peripheral nerve injuries remain challenging in the clinical practice, while the application of multifunctional nerve guidance conduits (NGCs) based on naturally derived polymers has attracted much attention in recent years because of their excellent physicochemical properties and biological characteristics. Flammulina velutipes (Curt. ex FV) is a popular edible mushroom characterized by hollow tubular structures, antibacterial activities, and high nutritional properties. In this study, FV is utilized to construct NGCs (labeled FVC) via a freeze-drying technique without chemical modifications. The morphology, physical properties, cellular biocompatibility, antibacterial properties, and nerve regeneration capacity of FVC were assessed both in vitro and in vivo. FVC is composed of hollow tubes and evenly irregular interconnected micropores with 73.8 ± 5.5% porosity and 476.1 ± 12.9 μm hollow tube diameter. The inner surface of the FVC presents multiple microgrooves elongated parallel to the long axis. Moreover, FVC possessed strong antibacterial activity and could inhibit Gram-positive Staphylococcus aureus growth by up to 96.0% and Gram-negative Escherichia coli growth by up to 94.8% in vitro. FVC exhibited excellent biocompatibility and effectively promoted PC-12 cell proliferation and elongation in vitro. When applied to repair critical-sized sciatic nerve defects, FVC could effectively stimulate nerve functional recovery and axonal outgrowth in a rat model. Interestingly, Western blot analysis indicated that growth-associated protein 43 (GAP-43) had increased expression levels in the FVC group compared with the autograft group. This result suggested that by activating the Janus activated kinase2 (JAK2)/Phosphorylation ofsignal transducer and activator of transcription-3 (STAT3) signaling pathway, FVC upregulated Phosphorylation of signal transducer and activator of transcription-3 (P-STAT3) in vivo, resulting in the secretion of GAP-43. Collectively, a natural NGC FVC was fabricated based on FV without chemical modifications. The morphology, physical properties, cellular biocompatibility, antibacterial properties, and nerve regeneration capacity of FVC provide new insights for its further optimization and application in the field of nerve tissue engineering.
Collapse
Affiliation(s)
- Feixiang Chen
- Department of Biomedical Engineering and Hubei Province Key Laboratory of Allergy and Immune Related Diseases, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Minhao Wu
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Ping Wu
- Department of Biomedical Engineering and Hubei Province Key Laboratory of Allergy and Immune Related Diseases, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Ao Xiao
- Department of Biomedical Engineering and Hubei Province Key Laboratory of Allergy and Immune Related Diseases, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Meifang Ke
- Department of Biomedical Engineering and Hubei Province Key Laboratory of Allergy and Immune Related Diseases, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Céline Huselstein
- CNRS UMR 7561 and FR CNRS-INSERM 32.09 Nancy University, Vandœuvre-lès-Nancy 54500, France
| | - Lin Cai
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Zan Tong
- Department of Biomedical Engineering and Hubei Province Key Laboratory of Allergy and Immune Related Diseases, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Yun Chen
- Department of Biomedical Engineering and Hubei Province Key Laboratory of Allergy and Immune Related Diseases, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| |
Collapse
|
35
|
Lu Q, Zhang F, Cheng W, Gao X, Ding Z, Zhang X, Lu Q, Kaplan DL. Nerve Guidance Conduits with Hierarchical Anisotropic Architecture for Peripheral Nerve Regeneration. Adv Healthc Mater 2021; 10:e2100427. [PMID: 34038626 PMCID: PMC8295195 DOI: 10.1002/adhm.202100427] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/15/2021] [Indexed: 12/24/2022]
Abstract
Nerve guidance conduits with multifunctional features could offer microenvironments for improved nerve regeneration and functional recovery. However, the challenge remains to optimize multiple cues in nerve conduit systems due to the interplay of these factors during fabrication. Here, a modular assembly for the fabrication of nerve conduits is utilized to address the goal of incorporating multifunctional guidance cues for nerve regeneration. Silk-based hollow conduits with suitable size and mechanical properties, along with silk nanofiber fillers with tunable hierarchical anisotropic architectures and microporous structures, are developed and assembled into conduits. These conduits supported improves nerve regeneration in terms of cell proliferation (Schwann and PC12 cells) and growth factor secretion (BDNF, brain-derived neurotrophic factor) in vitro, and the in vivo repair and functional recovery of rat sciatic nerve defects. Nerve regeneration using these new conduit designs is comparable to autografts, providing a path towards future clinical impact.
Collapse
Affiliation(s)
- Qingqing Lu
- National Engineering Laboratory for Modern Silk and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Feng Zhang
- National Engineering Laboratory for Modern Silk and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Weinan Cheng
- Department of Orthopedics, The First Affiliated Hospital of Xiamen University, Xiamen, 361000, P. R. China
| | - Xiang Gao
- National Engineering Laboratory for Modern Silk and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China
| | - Zhaozhao Ding
- National Engineering Laboratory for Modern Silk and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China
| | - Xiaoyi Zhang
- National Engineering Laboratory for Modern Silk and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China
| | - Qiang Lu
- National Engineering Laboratory for Modern Silk and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| |
Collapse
|
36
|
Yan Z, Qian Y, Fan C. Biomimicry in 3D printing design: implications for peripheral nerve regeneration. Regen Med 2021; 16:683-701. [PMID: 34189955 DOI: 10.2217/rme-2020-0182] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Nerve guide conduits (NGCs) connect dissected nerve stumps and effectively repair short-range peripheral nerve defects. However, for long-range defects, autografts show better therapeutic effects, despite intrinsic limitations. Recent evidence shows that biomimetic design is essential for high-performance NGCs, and 3D printing is a promising fabricating technique. The current work includes a brief review of the challenges for peripheral nerve regeneration. The authors propose a potential solution using biomimetic 3D-printed NGCs as alternative therapies. The assessment of biomimetic designs includes microarchitecture, mechanical property, electrical conductivity and biologics inclusion. The applications of 3D printing in preparing NGCs and present strategies to improve therapeutic effects are also discussed.
Collapse
Affiliation(s)
- Zhiwen Yan
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.,Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, 200233, China.,Youth Science and Technology Innovation Studio, Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yun Qian
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.,Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, 200233, China.,Youth Science and Technology Innovation Studio, Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Cunyi Fan
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.,Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, 200233, China.,Youth Science and Technology Innovation Studio, Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| |
Collapse
|
37
|
Minini A, Megaro A. Muscle in vein conduits: our experience. ACTA BIO-MEDICA : ATENEI PARMENSIS 2021; 92:e2021163. [PMID: 33944845 PMCID: PMC8142788 DOI: 10.23750/abm.v92is1.9202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 02/10/2020] [Indexed: 01/09/2023]
Abstract
Muscle in vein (MIV ) conduits have gradually been employed in the last 20 years as a valuable technique in bridging peripheral nerve gaps after nerve lesions who cannot undergo a direct tension-free coaptation. The advantages of this procedure comparing to the actual benchmark (autograft) is the sparing of the donor site, and the huge availability of both components (i.e. muscle and veins). Here we present a case serie of four MIV performed at our hospital from 2018 to 2019. The results we obtained in our experi-ence confirmed its effectiveness both in nerve regeneration (as sensibility recovery) and in neuropathic pain eradication. Our positive outcomes encourage its use in selected cases of residual nerve gaps up to 30 mm.
Collapse
Affiliation(s)
- Andrea Minini
- Clinica Ortopedica dell'Università degli Studi di Brescia.
| | | |
Collapse
|
38
|
Protein-Based 3D Biofabrication of Biomaterials. Bioengineering (Basel) 2021; 8:bioengineering8040048. [PMID: 33923425 PMCID: PMC8073780 DOI: 10.3390/bioengineering8040048] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/09/2021] [Accepted: 04/13/2021] [Indexed: 01/01/2023] Open
Abstract
Protein/peptide-based hydrogel biomaterial inks with the ability to incorporate various cells and mimic the extracellular matrix's function are promising candidates for 3D printing and biomaterials engineering. This is because proteins contain multiple functional groups as reactive sites for enzymatic, chemical modification or physical gelation or cross-linking, which is essential for the filament formation and printing processes in general. The primary mechanism in the protein gelation process is the unfolding of its native structure and its aggregation into a gel network. This network is then stabilized through both noncovalent and covalent cross-link. Diverse proteins and polypeptides can be obtained from humans, animals, or plants or can be synthetically engineered. In this review, we describe the major proteins that have been used for 3D printing, highlight their physicochemical properties in relation to 3D printing and their various tissue engineering application are discussed.
Collapse
|
39
|
Selim OA, Lakhani S, Midha S, Mosahebi A, Kalaskar DM. Three-Dimensional Engineered Peripheral Nerve: Toward a New Era of Patient-Specific Nerve Repair Solutions. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:295-335. [PMID: 33593147 DOI: 10.1089/ten.teb.2020.0355] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Reconstruction of peripheral nerve injuries (PNIs) with substance loss remains challenging because of limited treatment solutions and unsatisfactory patient outcomes. Currently, nerve autografting is the first-line management choice for bridging critical-sized nerve defects. The procedure, however, is often complicated by donor site morbidity and paucity of nerve tissue, raising a quest for better alternatives. The application of other treatment surrogates, such as nerve guides, remains questionable, and it is inefficient in irreducible nerve gaps. More importantly, these strategies lack customization for personalized patient therapy, which is a significant drawback of these nerve repair options. This negatively impacts the fascicle-to-fascicle regeneration process, critical to restoring the physiological axonal pathway of the disrupted nerve. Recently, the use of additive manufacturing (AM) technologies has offered major advancements to the bioengineering solutions for PNI therapy. These techniques aim at reinstating the native nerve fascicle pathway using biomimetic approaches, thereby augmenting end-organ innervation. AM-based approaches, such as three-dimensional (3D) bioprinting, are capable of biofabricating 3D-engineered nerve graft scaffolds in a patient-specific manner with high precision. Moreover, realistic in vitro models of peripheral nerve tissues that represent the physiologically and functionally relevant environment of human organs could also be developed. However, the technology is still nascent and faces major translational hurdles. In this review, we spotlighted the clinical burden of PNIs and most up-to-date treatment to address nerve gaps. Next, a summarized illustration of the nerve ultrastructure that guides research solutions is discussed. This is followed by a contrast of the existing bioengineering strategies used to repair peripheral nerve discontinuities. In addition, we elaborated on the most recent advances in 3D printing and biofabrication applications in peripheral nerve modeling and engineering. Finally, the major challenges that limit the evolution of the field along with their possible solutions are also critically analyzed.
Collapse
Affiliation(s)
- Omar A Selim
- Department of Surgical Biotechnology, Division of Surgery and Interventional Sciences, Royal Free Hospital, University College London (UCL), London, United Kingdom
| | - Saad Lakhani
- Department of Surgical Biotechnology, Division of Surgery and Interventional Sciences, Royal Free Hospital, University College London (UCL), London, United Kingdom
| | - Swati Midha
- Department of Surgical Biotechnology, Division of Surgery and Interventional Sciences, Royal Free Hospital, University College London (UCL), London, United Kingdom.,Department of Surgical Biotechnology, Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, India
| | - Afshin Mosahebi
- Department of Plastic Surgery, Royal Free Hospital, University College London (UCL), London, United Kingdom
| | - Deepak M Kalaskar
- Department of Surgical Biotechnology, Division of Surgery and Interventional Sciences, Royal Free Hospital, University College London (UCL), London, United Kingdom.,Department of Surgical Biotechnology, Institute of Orthopaedics and Musculoskeletal Science, Royal National Orthopaedic Hospital, University College London (UCL), Stanmore, United Kingdom
| |
Collapse
|
40
|
Kjar A, McFarland B, Mecham K, Harward N, Huang Y. Engineering of tissue constructs using coaxial bioprinting. Bioact Mater 2021; 6:460-471. [PMID: 32995673 PMCID: PMC7490764 DOI: 10.1016/j.bioactmat.2020.08.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/12/2020] [Accepted: 08/23/2020] [Indexed: 12/13/2022] Open
Abstract
Bioprinting is a rapidly developing technology for the precise design and manufacture of tissues in various biological systems or organs. Coaxial extrusion bioprinting, an emergent branch, has demonstrated a strong potential to enhance bioprinting's engineering versatility. Coaxial bioprinting assists in the fabrication of complex tissue constructs, by enabling concentric deposition of biomaterials. The fabricated tissue constructs started with simple, tubular vasculature but have been substantially developed to integrate complex cell composition and self-assembly, ECM patterning, controlled release, and multi-material gradient profiles. This review article begins with a brief overview of coaxial printing history, followed by an introduction of crucial engineering components. Afterward, we review the recent progress and untapped potential in each specific organ or biological system, and demonstrate how coaxial bioprinting facilitates the creation of tissue constructs. Ultimately, we conclude that this growing technology will contribute significantly to capabilities in the fields of in vitro modeling, pharmaceutical development, and clinical regenerative medicine.
Collapse
Affiliation(s)
- Andrew Kjar
- Department of Biological Engineering, Utah State University, Logan, UT, 84322, USA
| | - Bailey McFarland
- Department of Biological Engineering, Utah State University, Logan, UT, 84322, USA
| | - Keetch Mecham
- Department of Biological Engineering, Utah State University, Logan, UT, 84322, USA
| | - Nathan Harward
- Department of Biological Engineering, Utah State University, Logan, UT, 84322, USA
| | - Yu Huang
- Department of Biological Engineering, Utah State University, Logan, UT, 84322, USA
| |
Collapse
|
41
|
Huang Q, Cai Y, Zhang X, Liu J, Liu Z, Li B, Wong H, Xu F, Sheng L, Sun D, Qin J, Luo Z, Lu X. Aligned Graphene Mesh-Supported Double Network Natural Hydrogel Conduit Loaded with Netrin-1 for Peripheral Nerve Regeneration. ACS APPLIED MATERIALS & INTERFACES 2021; 13:112-122. [PMID: 33397079 DOI: 10.1021/acsami.0c16391] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The gold standard treatment for peripheral nerve injuries (PNIs) is the autologous graft, while it is associated with the shortage of donors and results in major complications. In the present study, we engineer a graphene mesh-supported double-network (DN) hydrogel scaffold, loaded with netrin-1. Natural alginate and gelatin-methacryloyl entangled hydrogel that is synthesized via fast exchange of ions and ultraviolet irradiation provide proper mechanical strength and excellent biocompatibility and can also serve as a reservoir for netrin-1. Meanwhile, the graphene mesh can promote the proliferation of Schwann cells and guide their alignments. This approach allows scaffolds to have an acceptable Young's modulus of 725.8 ± 46.52 kPa, matching with peripheral nerves, as well as a satisfactory electrical conductivity of 6.8 ± 0.85 S/m. In addition, netrin-1 plays a dual role in directing axon pathfinding and neuronal migration that optimizes the tube formation ability at a concentration of 100 ng/mL. This netrin-1-loaded graphene mesh tube/DN hydrogel nerve scaffold can significantly promote the regeneration of peripheral nerves and the restoration of denervated muscle, which is even superior to autologous grafts. Our findings may provide an effective therapeutic strategy for PNI patients that can replace the scarce autologous graft.
Collapse
Affiliation(s)
- Qun Huang
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Yuting Cai
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
- Department of Chemical and Biological Engineering, and William Mong Institute of Nano Science and Technology, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| | - Xing Zhang
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Junchao Liu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Zhenjing Liu
- Department of Chemical and Biological Engineering, and William Mong Institute of Nano Science and Technology, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| | - Bo Li
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Hoilun Wong
- Department of Chemical and Biological Engineering, and William Mong Institute of Nano Science and Technology, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| | - Feng Xu
- Bioinspired Engineering and Biomechanics Center, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Liyuan Sheng
- Shenzhen Institute, Peking University, Shenzhen 518057, China
| | - Dazhi Sun
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Jinbao Qin
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Vascular Center of Shanghai Jiao Tong University, Shanghai 200011, China
| | - Zhengtang Luo
- Department of Chemical and Biological Engineering, and William Mong Institute of Nano Science and Technology, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| | - Xinwu Lu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Vascular Center of Shanghai Jiao Tong University, Shanghai 200011, China
| |
Collapse
|
42
|
Zhang J, Chen Y, Huang Y, Wu W, Deng X, Liu H, Li R, Tao J, Li X, Liu X, Gou M. A 3D-Printed Self-Adhesive Bandage with Drug Release for Peripheral Nerve Repair. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2002601. [PMID: 33304766 PMCID: PMC7709979 DOI: 10.1002/advs.202002601] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/01/2020] [Indexed: 02/05/2023]
Abstract
Peripheral nerve injury is a common disease that often causes disability and challenges surgeons. Drug-releasable biomaterials provide a reliable tool to regulate the nerve healing-associated microenvironment for nerve repair. Here, a self-adhesive bandage is designed that can form a wrap surrounding the injured nerve to promote nerve regeneration and recovery. Via a 3D printing technique, the bandage is prepared with a special structure and made up of two different hydrogel layers that can adhere to each other by a click reaction. The nanodrug is encapsulated in one layer with a grating structure. Wrapping the injured nerve, the grating layer of the bandage is closed to the injured site. The drug can be mainly released to the inner area of the wrap to promote the nerve repair by improving the proliferation and migration of Schwann cells. In this study, the bandage is used to assist the neurorrhaphy for the treatment of complete sciatic nerve transection without obvious defect in rats. Results indicate that the self-adhesive capacity can simplify the installation process and the drug-loaded bandage can promote the repairing of injured nerves. The demonstrated 3D-printed self-adhesive bandage has potential application in assisting the neurorrhaphy for nerve repair.
Collapse
Affiliation(s)
- Jiumeng Zhang
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuan610041P. R. China
| | - Yuwen Chen
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuan610041P. R. China
| | - Yulan Huang
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuan610041P. R. China
| | - Wenbi Wu
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuan610041P. R. China
| | - Xianming Deng
- State Key Laboratory of Cellular Stress BiologyInnovation Center for Cell Signaling NetworkSchool of Life SciencesXiamen UniversityXiamenFujian361102P. R. China
| | - Haofan Liu
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuan610041P. R. China
| | - Rong Li
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuan610041P. R. China
| | - Jie Tao
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuan610041P. R. China
| | - Xiang Li
- Department of UrologyInstitute of UrologyWest China HospitalSichuan UniversityChengduSichuan610041P. R. China
| | - Xuesong Liu
- Department of NeurosurgeryWest China HospitalSichuan UniversityChengduSichuan610041P. R. China
| | - Maling Gou
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuan610041P. R. China
| |
Collapse
|
43
|
Guedan-Duran A, Jemni-Damer N, Orueta-Zenarruzabeitia I, Guinea GV, Perez-Rigueiro J, Gonzalez-Nieto D, Panetsos F. Biomimetic Approaches for Separated Regeneration of Sensory and Motor Fibers in Amputee People: Necessary Conditions for Functional Integration of Sensory-Motor Prostheses With the Peripheral Nerves. Front Bioeng Biotechnol 2020; 8:584823. [PMID: 33224936 PMCID: PMC7670549 DOI: 10.3389/fbioe.2020.584823] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 09/25/2020] [Indexed: 12/22/2022] Open
Abstract
The regenerative capacity of the peripheral nervous system after an injury is limited, and a complete function is not recovered, mainly due to the loss of nerve tissue after the injury that causes a separation between the nerve ends and to the disorganized and intermingled growth of sensory and motor nerve fibers that cause erroneous reinnervations. Even though the development of biomaterials is a very promising field, today no significant results have been achieved. In this work, we study not only the characteristics that should have the support that will allow the growth of nerve fibers, but also the molecular profile necessary for a specific guidance. To do this, we carried out an exhaustive study of the molecular profile present during the regeneration of the sensory and motor fibers separately, as well as of the effect obtained by the administration and inhibition of different factors involved in the regeneration. In addition, we offer a complete design of the ideal characteristics of a biomaterial, which allows the growth of the sensory and motor neurons in a differentiated way, indicating (1) size and characteristics of the material; (2) necessity to act at the microlevel, on small groups of neurons; (3) combination of molecules and specific substrates; and (4) temporal profile of those molecules expression throughout the regeneration process. The importance of the design we offer is that it respects the complexity and characteristics of the regeneration process; it indicates the appropriate temporal conditions of molecular expression, in order to obtain a synergistic effect; it takes into account the importance of considering the process at the group of neuron level; and it gives an answer to the main limitations in the current studies.
Collapse
Affiliation(s)
- Atocha Guedan-Duran
- Neuro-computing and Neuro-robotics Research Group, Complutense University of Madrid, Madrid, Spain
- Innovation Group, Institute for Health Research San Carlos Clinical Hospital (IdISSC), Madrid, Spain
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Nahla Jemni-Damer
- Neuro-computing and Neuro-robotics Research Group, Complutense University of Madrid, Madrid, Spain
- Innovation Group, Institute for Health Research San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - Irune Orueta-Zenarruzabeitia
- Neuro-computing and Neuro-robotics Research Group, Complutense University of Madrid, Madrid, Spain
- Innovation Group, Institute for Health Research San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - Gustavo Víctor Guinea
- Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain
- Department of Material Science, Civil Engineering Superior School, Universidad Politécnica de Madrid, Madrid, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
- Silk Biomed SL, Madrid, Spain
| | - José Perez-Rigueiro
- Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain
- Department of Material Science, Civil Engineering Superior School, Universidad Politécnica de Madrid, Madrid, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
- Silk Biomed SL, Madrid, Spain
| | - Daniel Gonzalez-Nieto
- Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
- Silk Biomed SL, Madrid, Spain
| | - Fivos Panetsos
- Neuro-computing and Neuro-robotics Research Group, Complutense University of Madrid, Madrid, Spain
- Innovation Group, Institute for Health Research San Carlos Clinical Hospital (IdISSC), Madrid, Spain
- Silk Biomed SL, Madrid, Spain
| |
Collapse
|
44
|
Mota C, Camarero-Espinosa S, Baker MB, Wieringa P, Moroni L. Bioprinting: From Tissue and Organ Development to in Vitro Models. Chem Rev 2020; 120:10547-10607. [PMID: 32407108 PMCID: PMC7564098 DOI: 10.1021/acs.chemrev.9b00789] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Indexed: 02/08/2023]
Abstract
Bioprinting techniques have been flourishing in the field of biofabrication with pronounced and exponential developments in the past years. Novel biomaterial inks used for the formation of bioinks have been developed, allowing the manufacturing of in vitro models and implants tested preclinically with a certain degree of success. Furthermore, incredible advances in cell biology, namely, in pluripotent stem cells, have also contributed to the latest milestones where more relevant tissues or organ-like constructs with a certain degree of functionality can already be obtained. These incredible strides have been possible with a multitude of multidisciplinary teams around the world, working to make bioprinted tissues and organs more relevant and functional. Yet, there is still a long way to go until these biofabricated constructs will be able to reach the clinics. In this review, we summarize the main bioprinting activities linking them to tissue and organ development and physiology. Most bioprinting approaches focus on mimicking fully matured tissues. Future bioprinting strategies might pursue earlier developmental stages of tissues and organs. The continuous convergence of the experts in the fields of material sciences, cell biology, engineering, and many other disciplines will gradually allow us to overcome the barriers identified on the demanding path toward manufacturing and adoption of tissue and organ replacements.
Collapse
Affiliation(s)
- Carlos Mota
- Department of Complex Tissue Regeneration,
MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Sandra Camarero-Espinosa
- Department of Complex Tissue Regeneration,
MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Matthew B. Baker
- Department of Complex Tissue Regeneration,
MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Paul Wieringa
- Department of Complex Tissue Regeneration,
MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Lorenzo Moroni
- Department of Complex Tissue Regeneration,
MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6211 LK Maastricht, The Netherlands
| |
Collapse
|
45
|
Kargozar S, Singh RK, Kim HW, Baino F. "Hard" ceramics for "Soft" tissue engineering: Paradox or opportunity? Acta Biomater 2020; 115:1-28. [PMID: 32818612 DOI: 10.1016/j.actbio.2020.08.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/25/2020] [Accepted: 08/11/2020] [Indexed: 12/11/2022]
Abstract
Tissue engineering provides great possibilities to manage tissue damages and injuries in modern medicine. The involvement of hard biocompatible materials in tissue engineering-based therapies for the healing of soft tissue defects has impressively increased over the last few years: in this regard, different types of bioceramics were developed, examined and applied either alone or in combination with polymers to produce composites. Bioactive glasses, carbon nanostructures, and hydroxyapatite nanoparticles are among the most widely-proposed hard materials for treating a broad range of soft tissue damages, from acute and chronic skin wounds to complex injuries of nervous and cardiopulmonary systems. Although being originally developed for use in contact with bone, these substances were also shown to offer excellent key features for repair and regeneration of wounds and "delicate" structures of the body, including improved cell proliferation and differentiation, enhanced angiogenesis, and antibacterial/anti-inflammatory activities. Furthermore, when embedded in a soft matrix, these hard materials can improve the mechanical properties of the implant. They could be applied in various forms and formulations such as fine powders, granules, and micro- or nanofibers. There are some pre-clinical trials in which bioceramics are being utilized for skin wounds; however, some crucial questions should still be addressed before the extensive and safe use of bioceramics in soft tissue healing. For example, defining optimal formulations, dosages, and administration routes remain to be fixed and summarized as standard guidelines in the clinic. This review paper aims at providing a comprehensive picture of the use and potential of bioceramics in treatment, reconstruction, and preservation of soft tissues (skin, cardiovascular and pulmonary systems, peripheral nervous system, gastrointestinal tract, skeletal muscles, and ophthalmic tissues) and critically discusses their pros and cons (e.g., the risk of calcification and ectopic bone formation as well as the local and systemic toxicity) in this regard. STATEMENT OF SIGNIFICANCE: Soft tissues form a big part of the human body and play vital roles in maintaining both structure and function of various organs; however, optimal repair and regeneration of injured soft tissues (e.g., skin, peripheral nerve) still remain a grand challenge in biomedicine. Although polymers were extensively applied to restore the lost or injured soft tissues, the use of bioceramics has the potential to provides new opportunities which are still partially unexplored or at the very beginning. This reviews summarizes the state of the art of bioceramics in this field, highlighting the latest evolutions and the new horizons that can be opened by their use in the context of soft tissue engineering. Existing results and future challenges are discussed in order to provide an up-to-date contribution that is useful to both experienced scientists and early-stage researchers of the biomaterials community.
Collapse
Affiliation(s)
- Saeid Kargozar
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran.
| | - Rajendra K Singh
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 330-714, Republic of Korea; Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 330-714, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 330-714, Republic of Korea; Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 330-714, Republic of Korea; Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan 330-714, Republic of Korea; UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan 330-714, Republic of Korea.
| | - Francesco Baino
- Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino 10129, Italy.
| |
Collapse
|
46
|
Song S, Wang X, Wang T, Yu Q, Hou Z, Zhu Z, Li R. Additive Manufacturing of Nerve Guidance Conduits for Regeneration of Injured Peripheral Nerves. Front Bioeng Biotechnol 2020; 8:590596. [PMID: 33102468 PMCID: PMC7546374 DOI: 10.3389/fbioe.2020.590596] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 09/07/2020] [Indexed: 01/28/2023] Open
Abstract
As a common and frequent clinical disease, peripheral nerve defect has caused a serious social burden, which is characterized by poor curative effect, long course of treatment and high cost. Nerve autografting is first-line treatment of peripheral nerve injuries (PNIs) but can result in loss of function of the donor site, neuroma formation, and prolonged operative time. Nerve guidance conduit (NGC) serves as the most promising alternative to autologous transplantation, but its production process is complicated and it is difficult to effectively combine growth factors and bioactive substances. In recent years, additive manufacturing of NGCs has effectively solved the above problems due to its simple and efficient manufacturing method, and it can be used as the carrier of bioactive substances. This review examines recent advances in additive manufacture of NGCs for PNIs as well as insight into how these approaches could be improved in future studies.
Collapse
Affiliation(s)
- Shaochen Song
- Department of Hand Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Xuejie Wang
- Department of Hand Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Tiejun Wang
- Department of Orthopaedic Traumatology, The First Hospital of Jilin University, Changchun, China
| | - Qinghua Yu
- Department of Burn Surgery, The First Hospital of Jilin University, Changchun, China
| | - Zheyu Hou
- Department of Burn Surgery, The First Hospital of Jilin University, Changchun, China
| | - Zhe Zhu
- Department of Hand Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Rui Li
- Department of Hand Surgery, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
47
|
Stewart CE, Kan CFK, Stewart BR, Sanicola HW, Jung JP, Sulaiman OAR, Wang D. Machine intelligence for nerve conduit design and production. J Biol Eng 2020; 14:25. [PMID: 32944070 PMCID: PMC7487837 DOI: 10.1186/s13036-020-00245-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 08/13/2020] [Indexed: 02/08/2023] Open
Abstract
Nerve guidance conduits (NGCs) have emerged from recent advances within tissue engineering as a promising alternative to autografts for peripheral nerve repair. NGCs are tubular structures with engineered biomaterials, which guide axonal regeneration from the injured proximal nerve to the distal stump. NGC design can synergistically combine multiple properties to enhance proliferation of stem and neuronal cells, improve nerve migration, attenuate inflammation and reduce scar tissue formation. The aim of most laboratories fabricating NGCs is the development of an automated process that incorporates patient-specific features and complex tissue blueprints (e.g. neurovascular conduit) that serve as the basis for more complicated muscular and skin grafts. One of the major limitations for tissue engineering is lack of guidance for generating tissue blueprints and the absence of streamlined manufacturing processes. With the rapid expansion of machine intelligence, high dimensional image analysis, and computational scaffold design, optimized tissue templates for 3D bioprinting (3DBP) are feasible. In this review, we examine the translational challenges to peripheral nerve regeneration and where machine intelligence can innovate bottlenecks in neural tissue engineering.
Collapse
Affiliation(s)
- Caleb E. Stewart
- Current Affiliation: Department of Neurosurgery, Louisiana State University Health Sciences Center, Shreveport Louisiana, USA
| | - Chin Fung Kelvin Kan
- Current Affiliation: Department of General Surgery, Brigham and Women’s Hospital, Boston, MA 02115 USA
| | - Brody R. Stewart
- Current Affiliation: Department of Surgery, Mayo Clinic College of Medicine, Rochester, MN 55905 USA
| | - Henry W. Sanicola
- Current Affiliation: Department of Neurosurgery, Louisiana State University Health Sciences Center, Shreveport Louisiana, USA
| | - Jangwook P. Jung
- Department of Biological Engineering, Louisiana State University, Baton Rouge, LA 70803 USA
| | - Olawale A. R. Sulaiman
- Ochsner Neural Injury & Regeneration Laboratory, Ochsner Clinic Foundation, New Orleans, LA 70121 USA
- Department of Neurosurgery, Ochsner Clinic Foundation, New Orleans, 70121 USA
| | - Dadong Wang
- Quantitative Imaging Research Team, Data 61, Commonwealth Scientific and Industrial Research Organization, Marsfield, NSW 2122 Australia
| |
Collapse
|
48
|
Liu J, Zhang B, Li L, Yin J, Fu J. Additive-lathe 3D bioprinting of bilayered nerve conduits incorporated with supportive cells. Bioact Mater 2020; 6:219-229. [PMID: 32913930 PMCID: PMC7451927 DOI: 10.1016/j.bioactmat.2020.08.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/29/2020] [Accepted: 08/11/2020] [Indexed: 02/09/2023] Open
Abstract
Nerve conduits have been identified as one of the most promising treatments for peripheral nerve injuries, yet it remains unsolved how to develop ideal nerve conduits with both appropriate biological and mechanical properties. Existing nerve conduits must make trade-offs between mechanical strength and biocompatibility. Here, we propose a multi-nozzle additive-lathe 3D bioprinting technology to fabricate a bilayered nerve conduit. The materials for printing consisted of gelatin methacrylate (GelMA)-based inner layer, which was cellularized with bone marrow mesenchymal stem cells (BMSCs) and GelMA/poly(ethylene glycol) diacrylate (PEGDA)-based outer layer. The high viability and extensive morphological spreading of BMSCs encapsulated in the inner layer was achieved by adjusting the degree of methacryloyl substitution and the concentration of GelMA. Strong mechanical performance of the outer layer was obtained by the addition of PEGDA. The performance of the bilayered nerve conduits was assessed using in vitro culture of PC12 cells. The cell density of PC12 cells attached to cellularized bilayered nerve conduits was more than 4 times of that on acellular bilayered nerve conduits. The proliferation rate of PC12 cells attached to cellularized bilayered nerve conduits was over 9 times higher than that on acellular bilayered nerve conduits. These results demonstrate the additive-lathe 3D bioprinting of BMSCs embedded bilayered nerve conduits holds great potential in facilitating peripheral nerve repair. A multi-nozzle additive-lathe 3D bioprinting technology is developed to fabricate a bilayered nerve conduit. The outer layer of nerve conduit provide a strong mechanical property and the inner layer has a good biocompatibility. Bone marrow mesenchymal stem cells (BMSCs) are incorporated in the inner layer of nerve conduit using bioprinting. In vitro culture of PC12 cells demonstrates the neuron outgrowth is significantly improved in BMSCs embedded nerve conduits.
Collapse
Affiliation(s)
- Jingyi Liu
- The State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310028, China.,Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310028, China
| | - Bin Zhang
- The State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310028, China
| | - Liang Li
- Department of Orthopedics, No. 906 Hospital of People's Liberation Army, Ningbo, 315040, China
| | - Jun Yin
- The State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310028, China.,Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310028, China
| | - Jianzhong Fu
- The State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310028, China.,Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310028, China
| |
Collapse
|
49
|
Li X, Yang W, Xie H, Wang J, Zhang L, Wang Z, Wang L. CNT/Sericin Conductive Nerve Guidance Conduit Promotes Functional Recovery of Transected Peripheral Nerve Injury in a Rat Model. ACS APPLIED MATERIALS & INTERFACES 2020; 12:36860-36872. [PMID: 32649170 DOI: 10.1021/acsami.0c08457] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Peripheral nerve injury usually leads to poor outcomes such as painful neuropathies and disabilities. Autogenous nerve grafting is the current gold standard; however, the limited source of a donor nerve remains a problem. Numerous tissue engineering nerve guidance conduits have been developed as substitutes for autografts. However, a few conduits can achieve the reparative effect equivalent to autografts. Here, we report for the development and application of a carbon nanotube (CNT)/sericin nerve conduit with electrical conductivity and suitable mechanical properties for nerve repair. This CNT/sericin conduit possesses favorable properties including biocompatibility, biodegradability, porous microarchitecture, and suitable swelling property. We thus applied this conduit for bridging a 10 mm gap defect of a transected sciatic nerve combined with electrical stimulation (ES) in a rat injury model. By the end of 12 weeks, we observed that the CNT/sericin conduit combined with electrical stimulation could effectively promote both structural repair and functional recovery comparable to those of the autografts, evidenced by the morphological and histological analyses, electrophysiological responses, functional studies, and target muscle reinnervation evaluations. These findings suggest that this electric conductive CNT/sericin conduit combined with electrical stimulation may have the potential to serve as a new alternative for the repair of transected peripheral nerves.
Collapse
Affiliation(s)
- Xiaolin Li
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wen Yang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hongjian Xie
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jian Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lei Zhang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zheng Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lin Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
50
|
Perspectives on 3D Bioprinting of Peripheral Nerve Conduits. Int J Mol Sci 2020; 21:ijms21165792. [PMID: 32806758 PMCID: PMC7461058 DOI: 10.3390/ijms21165792] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/28/2020] [Accepted: 08/10/2020] [Indexed: 12/25/2022] Open
Abstract
The peripheral nervous system controls the functions of sensation, movement and motor coordination of the body. Peripheral nerves can get damaged easily by trauma or neurodegenerative diseases. The injury can cause a devastating effect on the affected individual and his aides. Treatment modalities include anti-inflammatory medications, physiotherapy, surgery, nerve grafting and rehabilitation. 3D bioprinted peripheral nerve conduits serve as nerve grafts to fill the gaps of severed nerve bodies. The application of induced pluripotent stem cells, its derivatives and bioprinting are important techniques that come in handy while making living peripheral nerve conduits. The design of nerve conduits and bioprinting require comprehensive information on neural architecture, type of injury, neural supporting cells, scaffold materials to use, neural growth factors to add and to streamline the mechanical properties of the conduit. This paper gives a perspective on the factors to consider while bioprinting the peripheral nerve conduits.
Collapse
|