1
|
Yang N, Wu T, Li M, Hu X, Ma R, Jiang W, Su Z, Yang R, Zhu C. Silver-quercetin-loaded honeycomb-like Ti-based interface combats infection-triggered excessive inflammation via specific bactericidal and macrophage reprogramming. Bioact Mater 2025; 43:48-66. [PMID: 39318638 PMCID: PMC11421951 DOI: 10.1016/j.bioactmat.2024.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/26/2024] [Accepted: 09/08/2024] [Indexed: 09/26/2024] Open
Abstract
Excessive inflammation caused by bacterial infection is the primary cause of implant failure. Antibiotic treatment often fails to prevent peri-implant infection and may induce unexpected drug resistance. Herein, a non-antibiotic strategy based on the synergy of silver ion release and macrophage reprogramming is proposed for preventing infection and bacteria-induced inflammation suppression by the organic-inorganic hybridization of silver nanoparticle (AgNP) and quercetin (Que) into a polydopamine (PDA)-based coating on the 3D framework of porous titanium (SQPdFT). Once the planktonic bacteria (e.g., Escherichia coli, Staphylococcus aureus) reach the surface of SQPdFT, released Que disrupts the bacterial membrane. Then, AgNP can penetrate the invading bacterium and kill them, which further inhibits the biofilm formation. Simultaneously, released Que can regulate macrophage polarization homeostasis via the peroxisome proliferators-activated receptors gamma (PPARγ)-mediated nuclear factor kappa-B (NF-κB) pathway, thereby terminating excessive inflammatory responses. These advantages facilitate the adhesion and osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs), concomitantly suppressing osteoclast maturation, and eventually conferring superior mechanical stability to SQPdFT within the medullary cavity. In summary, owing to its excellent antibacterial effect, immune remodeling function, and pro-osteointegration ability, SQPdFT is a promising protective coating for titanium-based implants used in orthopedic replacement surgery.
Collapse
Affiliation(s)
- Ning Yang
- Department of Orthopaedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Ting Wu
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Center of Materials Science and Optoelectronics Engineering, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Meng Li
- Department of Orthopaedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Xianli Hu
- Department of Orthopaedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Ruixiang Ma
- Department of Orthopaedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Wei Jiang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Zheng Su
- Department of Orthopaedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Rong Yang
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Center of Materials Science and Optoelectronics Engineering, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Chen Zhu
- Department of Orthopaedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| |
Collapse
|
2
|
Wei B, Wei M, Huang H, Fan T, Zhang Z, Song X. Mesenchymal Stem Cell-Derived Exosomes: A Promising Therapeutic Strategy for Age-Related Diseases. Cell Prolif 2024:e13795. [PMID: 39704104 DOI: 10.1111/cpr.13795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/09/2024] [Accepted: 12/04/2024] [Indexed: 12/21/2024] Open
Abstract
The global increase in the aging population has led to a concurrent rise in the incidence of age-related diseases, posing substantial challenges to healthcare systems and affecting the well-being of the elderly. Identifying and securing effective treatments has become an urgent priority. In this context, mesenchymal stem cell-derived exosomes (MSC-Exos) have emerged as a promising and innovative modality in the field of anti-aging medicine, offering a multifaceted therapeutic approach. MSC-Exos demonstrate significant potential due to their immunomodulatory and anti-inflammatory properties, their ability to inhibit oxidative stress, and their reparative effects on senescent tissues. These attributes make them valuable in combating a range of conditions associated with aging, such as cardiovascular diseases, neurodegeneration, skin aging, and osteoarthritis. The integration of exosomes with membrane-penetrating peptides introduces a novel strategy for the delivery of biomolecules, surmounting traditional cellular barriers and enhancing therapeutic efficacy. This review provides a comprehensive synthesis of the current understanding of MSC-Exos, underscoring their role as a novel and potent therapeutic strategy against the intricate challenges of age-related diseases.
Collapse
Affiliation(s)
- Bohua Wei
- School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China
| | - Mengting Wei
- School of Stomatology, China Medical University, Shenyang, Liaoning Province, China
| | - Haonan Huang
- China Medical University, Shenyang, Liaoning Province, China
| | - Ting Fan
- Department of Computer, School of Intelligent Medicine, China Medical University, Shenyang, Liaoning Province, China
| | - Zhichang Zhang
- Department of Computer, School of Intelligent Medicine, China Medical University, Shenyang, Liaoning Province, China
| | - Xiaoyu Song
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|
3
|
Avery D, Morandini L, Sheakley L, Alajmi A, Bergey L, Donahue HJ, Martin RK, Olivares-Navarrete R. Obesity prolongs the pro-inflammatory response and attenuates bone healing on titanium implants. Acta Biomater 2024:S1742-7061(24)00695-0. [PMID: 39586347 DOI: 10.1016/j.actbio.2024.11.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 11/27/2024]
Abstract
Obesity is a metabolic disease resulting from excess body fat accumulation associated with chronic systemic inflammation. Obesity has been shown to impact the function and activity of neutrophils, macrophages, and T cells, contributing to higher circulating levels of pro-inflammatory cytokines. Biomaterial surface properties such as roughness and hydrophilicity can influence the behavior of immune cells in the peri-implant microenvironment. This study aimed to determine how obesity induced by a high-fat diet (HFD) affects the inflammatory response to modified titanium (Ti) implants and subsequent bone formation. Obese mice had significantly more neutrophils, pro-inflammatory macrophages, and T cells and fewer anti-inflammatory macrophages and mesenchymal stem cells (MSCs) in the peri-implant tissue than lean mice. Obesity also increased circulating adipokines and pro-inflammatory cytokines when compared to lean animals. Bone formation around Ti implants was reduced in obese mice compared to controls. Adoptive transfer of bone marrow cells isolated from obese mice into wild-type mice demonstrated the localized impact of obesity on immune cell function and phenotype, promoting a pro-inflammatory peri-implant microenvironment and attenuating bone formation post-implantation. These results show that obesity significantly affects the inflammatory response to modified Ti implants, prolonging the pro-inflammatory response to the implanted biomaterial and compromising bone formation. STATEMENT OF SIGNIFICANCE: Obesity has been shown to significantly alter physiological processes, including the behavior of immune cells, inducing a state of systemic chronic inflammation. Our study demonstrates that obesity-induced via a high-fat diet alters immune cell response to implanted biomaterials, with increased pro-inflammatory response and attenuated immunomodulation that results in decreased biomaterial integration.
Collapse
Affiliation(s)
- Derek Avery
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Lais Morandini
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Luke Sheakley
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Asmaa Alajmi
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Leah Bergey
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Henry J Donahue
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Rebecca K Martin
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Rene Olivares-Navarrete
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA, United States.
| |
Collapse
|
4
|
Chen X, Wu Y, Song P, Feng L, Zhou Y, Shi J, Dong N, Qiao W. Matrix Metalloproteinase-Responsive Controlled Release of Self-Assembly Nanoparticles Accelerates Heart Valve Regeneration In Situ by Orchestrating Immunomodulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2403351. [PMID: 39535930 DOI: 10.1002/advs.202403351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 09/26/2024] [Indexed: 11/16/2024]
Abstract
In situ tissue engineering heart valves (TEHVs) are the most promising way to overcome the defects of existing valve prostheses. Despite their promising prospects, the clinical translation of TEHVs remains a formidable challenge, mainly due to unpredictable host interactions post-implantation. An immunomodulatory idea based on hydrogel encapsulation of nanoparticle-coated heart valve scaffolds is introduced. Specifically, galactose-modified human serum albumin nanoparticles (miR-93@HSA NPs) to deliver microRNA-93 mimics are utilized, which target macrophages and induce their differentiation into the anti-inflammatory M2 subtype, fostering a conducive immune microenvironment. Matrix metalloproteinase (MMP)-responsive hydrogel is used to encapsulate the nanoparticles, enabling targeted and sustained release. Results show that the miR-93@HSA NPs exhibit excellent ability to induce macrophage polarization toward the M2 phenotype. A decellularized valve modified with hydrogel reveals MMP-response release of the miR-93@HSA NPs. In vitro, the immunomodulatory heart valve possesses good endocytocompatibility and effectively reprograms macrophages when cocultured with HUVECs or RAW264.7 macrophages. In vivo, this valve scaffold promises to mitigate early inflammatory damage and provide a pro-endothelialization niche for scaffolds' constructive remodeling. With the use of cell coculture systems and transcriptome sequencing, the mechanism of immune-modulating scaffold accelerating endothelialization is being elucidated. The immunomodulatory heart valve scaffold holds promising potential for clinical translation.
Collapse
Affiliation(s)
- Xing Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Cardiovascular Surgery, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, 430071, China
| | - Yunlong Wu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Peng Song
- School of Chemistry and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Liandong Feng
- Hubei Provincial Key Laboratory of Occurrence and Intervention of Rheumatic Diseases, Minda Hospital of Hubei Minzu University, Enshi, 445000, China
| | - Ying Zhou
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiawei Shi
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Weihua Qiao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
5
|
Yin J, Bao Y, Xu M, Li P, Zhang Z, Xue H, Yang X. Anti-inflammatory role of low-intensity pulsed ultrasound in inhibiting lipopolysaccharide-induced M1 polarization of RAW264.7 cells via Wnt2b/AXIN/β-catenin. PeerJ 2024; 12:e18448. [PMID: 39553710 PMCID: PMC11568821 DOI: 10.7717/peerj.18448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 10/14/2024] [Indexed: 11/19/2024] Open
Abstract
Background Low-intensity pulsed ultrasound (LIPUS) is a special type of low-intensity ultrasound. In periodontal disease, LIPUS is applied as an adjuvant and non-invasive treatment. It has been reported that LIPUS significantly shifts the macrophage phenotype from M1 to M2, but the specific mechanism behind this shift is still unknown. Methods RAW264.7 cells were induced to M1/M2 polarization with lipopolysaccharide (LPS)/interleukin-4 (IL4). LIPUS was performed for 25 min two times, 24 h apart, at an intensity of 45 mW/cm2 to stimulate RAW264.7 cells. PolyA mRNA sequencing was conducted of both the LPS-induced RAW264.7 cells and the LPS-induced RAW264.7 cells with LIPUS treatment. The expression of Wnt2b in RAW264.7 cells was downregulated by siRNA. The macrophage surface markers and downstream inflammatory cytokines were detected using flow cytometry. The relative expression of proteins in the Wnt2b/AXIN/β-catenin pathway was assessed using reverse transcription real-time polymerase chain reaction (RT-qPCR) and Western blot. Results LIPUS reversed the M1 polarization of RAW264.7 cells, with decreased expression of CD80 and CD86. In addition, LIPUS enhanced the M2 polarization of RAW264.7 cells, with upregulated expression of CD163 and CD206. The polyA mRNA sequencing results indicated that the Wnt signaling pathway participated in the M1 polarization of LIPUS-treated RAW264.7. The results of the RT-qPCR showed a higher expression of Wnt2b in LIPUS-treated and M1- or M2-polarized RAW264.7 cells. Knocking down Wnt2b was shown to reverse the inhibitory effect of LIPUS on M1 polarization and increase the expression of CD80 and CD86. Wnt2b knockdown also regulated downstream AXIN, β-catenin, and inflammatory factors such as tumor necrosis factor alpha (TNFα) and interleukin-6 (IL6). Conclusions LIPUS plays an anti-inflammatory role by inhibiting LPS-induced M1 polarization of RAW264.7 cells in a Wnt2b/AXIN/β-catenin-dependent way. LIPUS may play a therapeutic role in periodontal diseases by inhibiting inflammation through the regulation of macrophage differentiation.
Collapse
Affiliation(s)
- Juan Yin
- Central Laboratory, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, China
| | - Yu Bao
- Department of Stomatology, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, China
| | - Minxin Xu
- Department of Stomatology, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, China
| | - Ping Li
- Central Laboratory, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, China
| | - Zhipeng Zhang
- Department of Stomatology, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, China
| | - Hui Xue
- Department of Stomatology, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, China
| | - Xing Yang
- Department of Orthopedics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, China
| |
Collapse
|
6
|
Huang M, Wang C, Li P, Lu H, Li A, Xu S. Role of immune dysregulation in peri-implantitis. Front Immunol 2024; 15:1466417. [PMID: 39555067 PMCID: PMC11563827 DOI: 10.3389/fimmu.2024.1466417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/10/2024] [Indexed: 11/19/2024] Open
Abstract
Peri-implantitis, a complex condition that can lead to dental implant failure, is characterized by inflammatory destruction resulting from immune dysregulation. Oral microbial dysbiosis and foreign body stimulation are the main factors contributing to such dysregulation, impairing immune cell function and triggering an inflammatory response. Immune dysregulation plays a critical role in the pathophysiology of peri-implantitis, impacting the balance of T cell subsets, the production of inflammatory factors, and immune-related molecular signaling pathways. Understanding the relationship between immune dysregulation and peri-implantitis is crucial for developing targeted strategies for clinical diagnosis and individualized treatment planning. This review explores the similarities and differences in the immune microenvironment of oral bacterial infections and foreign body rejection, analyzes the relevant molecular signaling pathways, and identifies new key targets for developing innovative immunotherapeutic drugs and effective and personalized treatment modalities for peri-implantitis. Additionally, it addresses the challenges and potential directions for translating immunotherapy into clinical practice for peri-implantitis, offering insights that bridge the gaps in current literature and pave the way for future research.
Collapse
Affiliation(s)
- Mingshu Huang
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Chao Wang
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Ping Li
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Medical University, Guangzhou, China
- Department of Prosthodontics, School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou, China
| | - Hongye Lu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - An Li
- Department of Periodontology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Shulan Xu
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| |
Collapse
|
7
|
Ding Y, Sun Y, Wang H, Zhao H, Yin R, Zhang M, Pan X, Zhu X. Atherosis-associated lnc_000048 activates PKR to enhance STAT1-mediated polarization of THP-1 macrophages to M1 phenotype. Neural Regen Res 2024; 19:2488-2498. [PMID: 38526285 PMCID: PMC11090429 DOI: 10.4103/nrr.nrr-d-23-01355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 12/12/2023] [Accepted: 01/20/2024] [Indexed: 03/26/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202419110-00029/figure1/v/2024-03-08T184507Z/r/image-tiff Our previous study has demonstrated that lnc_000048 is upregulated in large-artery atherosclerotic stroke and promotes atherosclerosis in ApoE-/- mice. However, little is known about the role of lnc_000048 in classically activated macrophage (M1) polarization. In this study, we established THP-1-derived testing state macrophages (M0), M1 macrophages, and alternately activated macrophages (M2). Real-time fluorescence quantitative PCR was used to verify the expression of marker genes and the expression of lnc_000048 in macrophages. Flow cytometry was used to detect phenotypic proteins (CD11b, CD38, CD80). We generated cell lines with lentivirus-mediated upregulation or downregulation of lnc_000048. Flow cytometry, western blot, and real-time fluorescence quantitative PCR results showed that down-regulation of lnc_000048 reduced M1 macrophage polarization and the inflammation response, while over-expression of lnc_000048 led to the opposite effect. Western blot results indicated that lnc_000048 enhanced the activation of the STAT1 pathway and mediated the M1 macrophage polarization. Moreover, catRAPID prediction, RNA-pull down, and mass spectrometry were used to identify and screen the protein kinase RNA-activated (PKR), then catRAPID and RPIseq were used to predict the binding ability of lnc_000048 to PKR. Immunofluorescence (IF)-RNA fluorescence in situ hybridization (FISH) double labeling was performed to verify the subcellular colocalization of lnc_000048 and PKR in the cytoplasm of M1 macrophage. We speculate that lnc_000048 may form stem-loop structure-specific binding and activate PKR by inducing its phosphorylation, leading to activation of STAT1 phosphorylation and thereby enhancing STAT1 pathway-mediated polarization of THP-1 macrophages to M1 and inflammatory factor expression. Taken together, these results reveal that the lnc_000048/PKR/STAT1 axis plays a crucial role in the polarization of M1 macrophages and may be a novel therapeutic target for atherosclerosis alleviation in stroke.
Collapse
Affiliation(s)
- Yuanyuan Ding
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Yu Sun
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Hongyan Wang
- Qingdao Cadre Health Care Service Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Hongqin Zhao
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Ruihua Yin
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Meng Zhang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Xudong Pan
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Xiaoyan Zhu
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| |
Collapse
|
8
|
Hu D, Li T, Bian H, Liu H, Wang P, Wang Y, Sun J. Silk films with distinct surface topography modulate plasma membrane curvature to polarize macrophages. Mater Today Bio 2024; 28:101193. [PMID: 39221204 PMCID: PMC11364906 DOI: 10.1016/j.mtbio.2024.101193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/03/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
The physical properties of a biomaterial play a vital role in modulating macrophage polarization. However, discerning the specific effects of individual parameters can be intricate due to their interdependencies, limiting the mechanism underlying a specific parameter on the polarization of macrophages. Here, we engineered silk fibroin (SF) films with tunable surface roughness while maintaining similar physical properties by combining casting and salting out techniques. We demonstrate that increased surface roughness in SF films promotes M2-like macrophage polarization, characterized by enhanced secretion of anti-inflammatory cytokines. Transcriptomic analysis unveils the modulation of genes associated with extracellular matrix-cell interactions, highlighting the role of surface topography in regulating cellular processes. Mechanistically, we show that surface roughness induces macrophage membrane curvature, facilitating integrin αv endocytosis and thereby inhibiting the integrin-NF-kB signaling pathway. In vivo implantation assays corroborate that rough SF films substantially mitigate early inflammatory responses. This work establishes a direct link between surface roughness and intracellular signaling in macrophages, adding to our understanding of the biomaterial surface effect at the material-cell interface and bringing insights into material design.
Collapse
Affiliation(s)
- Doudou Hu
- Subtropical Sericulture and Mulberry Resources Protection and Safety Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, 999078, China
| | - Tiandong Li
- Subtropical Sericulture and Mulberry Resources Protection and Safety Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, 999078, China
| | - Haixu Bian
- Subtropical Sericulture and Mulberry Resources Protection and Safety Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Haiyu Liu
- Subtropical Sericulture and Mulberry Resources Protection and Safety Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Pengwei Wang
- Subtropical Sericulture and Mulberry Resources Protection and Safety Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Yeyuan Wang
- Subtropical Sericulture and Mulberry Resources Protection and Safety Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Jingchen Sun
- Subtropical Sericulture and Mulberry Resources Protection and Safety Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| |
Collapse
|
9
|
Xue JD, Gao J, Tang AF, Feng C. Shaping the immune landscape: Multidimensional environmental stimuli refine macrophage polarization and foster revolutionary approaches in tissue regeneration. Heliyon 2024; 10:e37192. [PMID: 39296009 PMCID: PMC11408064 DOI: 10.1016/j.heliyon.2024.e37192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/21/2024] Open
Abstract
In immunology, the role of macrophages extends far beyond their traditional classification as mere phagocytes; they emerge as pivotal architects of the immune response, with their function being significantly influenced by multidimensional environmental stimuli. This review investigates the nuanced mechanisms by which diverse external signals ranging from chemical cues to physical stress orchestrate macrophage polarization, a process that is crucial for the modulation of immune responses. By transitioning between pro-inflammatory (M1) and anti-inflammatory (M2) states, macrophages exhibit remarkable plasticity, enabling them to adapt to and influence their surroundings effectively. The exploration of macrophage polarization provides a compelling narrative on how these cells can be manipulated to foster an immune environment conducive to tissue repair and regeneration. Highlighting cutting-edge research, this review presents innovative strategies that leverage the dynamic interplay between macrophages and their environment, proposing novel therapeutic avenues that harness the potential of macrophages in regenerative medicine. Moreover, this review critically evaluates the current challenges and future prospects of translating macrophage-centered strategies from the laboratory to clinical applications.
Collapse
Affiliation(s)
- Jing-Dong Xue
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Jing Gao
- Department of Obstetrics and Gynecology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Ai-Fang Tang
- Department of Geratology, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, 200233, China
| | - Chao Feng
- Department of Reproductive Medicine, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai 200030, China
| |
Collapse
|
10
|
Zhao W, Tang H, Liang Z, Wang N, Sun R, Su R, Yang Z, Zhou K, Peng Y, Zheng S, Xie H. Carvacrol ameliorates skin allograft rejection through modulating macrophage polarization by activating the Wnt signalling pathway. Phytother Res 2024; 38:4675-4694. [PMID: 39120138 DOI: 10.1002/ptr.8282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/22/2024] [Accepted: 06/13/2024] [Indexed: 08/10/2024]
Abstract
Post-transplantation immune rejection remains an important factor for transplant patients. However, conventional immunosuppressants are associated with substantial adverse effects. Natural immunosuppressants present a promising alternative to conventional counterparts, boasting exceptional biological activity, minimal toxicity and reduced side effects. We identified carvacrol as a prospective immunosuppressive agent following T cell proliferation experiment and validated carvacrol's immunosuppressive efficacy in the murine allogeneic skin graft model. T cell proliferation assay was used to screen natural small molecule compounds and the immunosuppressive effect of compounds was evaluated in MHC-mismatched murine allogeneic skin graft model. H&E and immunohistochemical staining were applied to evaluate the pathological grade. Furthermore, flow cytometry was uitlized to analyse the immunophenotype changes of immune cells. Western blotting and q-PCR were used to detect the expression of key molecules in macrophages. In vitro, carvacrol demonstrates significant inhibition of the proliferation of CD4+ T and CD8+ T cells. It notably reduces inflammatory factor expression within the allografts, suppresses T cell differentiation toward Th1 phenotype and expansion. Furthermore, carvacrol prominently hinders M1-type macrophages polarization by activating Wnt signaling. Notably, the anti-rejection efficacy of carvacrol was significantly weakened upon the removal of macrophages in mice using chlorophosphate liposomes. Carvacrol could significantly inhibit T cell proliferation, alleviate graft rejection and has outstanding toxicological safety. The molecular mechanism of the anti-rejection effect of carvacrol is closely related to its mediating activation of macrophage Wnt pathway, inhibiting M1 polarization and inducing T cell differentiation.
Collapse
Affiliation(s)
- Wentao Zhao
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hong Tang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhi Liang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ning Wang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ruiqi Sun
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Rong Su
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
| | - Zhentao Yang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ke Zhou
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yiyang Peng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Haiyang Xie
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| |
Collapse
|
11
|
Zhang Y, Wu Z, Wu J, Li T, Jiang F, Yang B. Current multi-scale biomaterials for tissue regeneration following spinal cord injury. Neurochem Int 2024; 178:105801. [PMID: 38971503 DOI: 10.1016/j.neuint.2024.105801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/27/2024] [Accepted: 07/04/2024] [Indexed: 07/08/2024]
Abstract
Spinal cord injury (SCI) may cause loss of motor and sensory function, autonomic dysfunction, and thus disrupt the quality of life of patients, leading to severe disability and significant psychological, social, and economic burden. At present, existing therapy for SCI have limited ability to promote neural function recovery, and there is an urgent need to develop innovative regenerative approaches to repair SCI. Biomaterials have become a promising strategy to promote the regeneration and repair of damaged nerve tissue after SCI. Biomaterials can provide support for nerve tissue by filling cavities, and improve local inflammatory responses and reshape extracellular matrix structures through unique biochemical properties to create the optimal microenvironment at the SCI site, thereby promoting neurogenesis and reconnecting damaged spinal cord tissue. Considering the importance of biomaterials in repairing SCI, this article reviews the latest progress of multi-scale biomaterials in SCI treatment and tissue regeneration, and evaluates the relevant technologies for manufacturing biomaterials.
Collapse
Affiliation(s)
- Yuang Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, PR China
| | - Zhonghuan Wu
- Department of Orthopedics, People's Hospital of Qiandongnan Miao and Dong Autonomous Prefecture, Kaili, 556000, PR China; Department of Orthopedics, Qiandongnan Hospital of Guizhou Medical University Affiliated Hospital, Kaili, 556000, PR China
| | - Junfeng Wu
- Department of Orthopedics, People's Hospital of Qiandongnan Miao and Dong Autonomous Prefecture, Kaili, 556000, PR China; Department of Orthopedics, Qiandongnan Hospital of Guizhou Medical University Affiliated Hospital, Kaili, 556000, PR China
| | - Tingdong Li
- Department of Orthopedics, People's Hospital of Qiandongnan Miao and Dong Autonomous Prefecture, Kaili, 556000, PR China; Department of Orthopedics, Qiandongnan Hospital of Guizhou Medical University Affiliated Hospital, Kaili, 556000, PR China
| | - Fugui Jiang
- Department of Orthopedics, People's Hospital of Qiandongnan Miao and Dong Autonomous Prefecture, Kaili, 556000, PR China; Department of Orthopedics, Qiandongnan Hospital of Guizhou Medical University Affiliated Hospital, Kaili, 556000, PR China
| | - Biao Yang
- Department of Orthopedics, People's Hospital of Qiandongnan Miao and Dong Autonomous Prefecture, Kaili, 556000, PR China; Department of Orthopedics, Qiandongnan Hospital of Guizhou Medical University Affiliated Hospital, Kaili, 556000, PR China.
| |
Collapse
|
12
|
Wang X, Wang L, Cheng B, Wan Q, Wang J, Chen J, Zhu Z, Pei X. Mechanochemically Reprogrammed Tantalum Interfaces Enhance Osseointegration Via Immunomodulation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:44451-44466. [PMID: 39141574 DOI: 10.1021/acsami.4c08533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Bone and tooth defects can considerably affect the quality of life and health of patients, and orthopedic implants remain the primary method of addressing such defects. However, implant materials cannot coordinate with the immune microenvironment because of their biological inertness, which may lead to implant loosening or failure. Motivated by the microstructure of nacre, we engineered a biomimetic micro/nanoscale topography on a tantalum surface using a straightforward method. This comprised an organized array of tantalum nanotubes arranged in a brick wall structure, with epigallocatechin gallate acting as "mortar." The coating improved the corrosion resistance, biocompatibility, and antioxidant properties. In vitro and in vivo evaluations further confirmed that coatings can create a favorable bone immune microenvironment through the synergistic effects of mechanochemistry and enhance bone integration. This research offers a new viewpoint on the creation of sophisticated functional implants, possessing vast potential for use in the regeneration and repair of bone tissue.
Collapse
Affiliation(s)
- Xu Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Liang Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Bin Cheng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Qianbing Wan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jian Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Junyu Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Zhou Zhu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xibo Pei
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
13
|
Zhang T, Shao M, Li H, Chen X, Zhang R, Wu J, Wang J, Guo Y. Decellularized Amnion Membrane Triggers Macrophage Polarization for Desired Host Immune Response. Adv Healthc Mater 2024:e2402139. [PMID: 39039984 DOI: 10.1002/adhm.202402139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/11/2024] [Indexed: 07/24/2024]
Abstract
Appropriate regulation of immunomodulatory responses, particularly acute inflammation involving macrophages, is crucial for the desired functionality of implants. Decellularized amnion membrane (DAM) is produced by removing cellular components and antigenicity, expected to reduce immunogenicity and the risk of inflammation. Despite the potential of DAM as biomaterial implants, few studies have investigated its specific effects on immunomodulation. Here, it is demonstrated that DAM can regulate macrophage-driven inflammatory response and potential mechanisms are investigated. In vitro results show that DAM significantly inhibits M1 polarization in LPS-induced macrophages by inhibiting Toll-like receptors (TLR) signaling pathway and TNF signaling pathway and promotes macrophage M2 polarization. Physical signals from the 3D micro-structure and the active protein, DCN, binding to key targets may play roles in the process. In the subcutaneous implant model in rats, DAM inhibits the persistence of inflammation and fibrous capsule formation, while promoting M2 macrophage polarization, thereby facilitating tissue regeneration. This study provides insights into DAM's effect and potential mechanisms on the balance of M1/M2 macrophage polarization in vitro and vivo, emphasizing the immunomodulation of ECM-based materials as promising implants.
Collapse
Affiliation(s)
- Tong Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Mingfei Shao
- Hangzhou CASbios Medical Co., Hangzhou, 310000, P. R. China
| | - Hanfeng Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Xin Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Ruiying Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jingwen Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Hangzhou CASbios Medical Co., Hangzhou, 310000, P. R. China
| | - Jianing Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yanchuan Guo
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
14
|
田 晨, 罗 锋, 李 洁, 何 学. [Preparation and Performance of a Novel Polyurethane Microporous Film on Polypropylene Medical Mesh Surface]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2024; 55:853-860. [PMID: 39170003 PMCID: PMC11334284 DOI: 10.12182/20240760202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Indexed: 08/23/2024]
Abstract
Objective This study aims to develop a medical patch surface material featuring a microporous polyurethane (PU) membrane and to assess the material's properties and biological performance. The goal is to enhance the clinical applicability of pelvic floor repair patch materials. Methods PU films with a microporous surface were prepared using PU prepolymer foaming technology. The films were produced by optimizing the PU prepolymer isocyanate index (R value) and the relative humidity (RH) of the foaming environment. The surface morphology of the PU microporous films was observed by scanning electron microscopy, and the chemical properties of the PU microporous films, including hydrophilicity, were analyzed using infrared spectroscopy, Raman spectroscopy, and water contact angle measurements. In vitro evaluations included testing the effects of PU microporous film extracts on the proliferation of L929 mouse fibroblasts and observing the adhesion and morphology of these fibroblasts. Additionally, the effect of the PU microporous films on RAW264.7 mouse macrophages was studied. Immune response and tissue regeneration were assessed in vivo using Sprague Dawley (SD) rats. Results The PU films exhibited a well-defined and uniform microporous structure when the R value of PU prepolymer=1.5 and the foaming environment RH=70%. The chemical structure of the PU microporous films was not significantly altered compared to the PU films, with a significantly lower water contact angle ([55.7±1.5]° ) compared to PU films ([69.5±1.7]° ) and polypropylene (PP) ([ 104.3±2.5]°), indicating superior hydrophilicity. The extracts from PU microporous films demonstrated good in vitro biocompatibility, promoting the proliferation of L929 mouse fibroblasts. The surface morphology of the PU microporous films facilitated fibroblast adhesion and spreading. The films also inhibited the secretion of tumor necrosis factor-α (TNF-α) and interleukin (IL)-1β by RAW264.7 macrophages while enhancing IL-10 and IL-4 secretion. Compared to 24 hours, after 72 hours of culture, the expression levels of TNF-α and IL-1β were reduced in both the PU film and PU microporous film groups and were significantly lower than those in the PP film group (P<0.05), with the most notable decreases observed in the PU microporous film group. IL-10 and IL-4 levels increased significantly in the PU microporous film group, surpassing those in the PP film group (P<0.01), with the most pronounced increase in IL-4. The PU microporous film induced mild inflammation with no significant fibrous capsule formation in vivo. After 60 days of implantation, the film partially degraded, showing extensive collagen fiber growth and muscle formation in its central region. Conclusion The PU microporous film exhibits good hydrophilicity and biocompatibility. Its surface morphology enhances cell adhesion, regulates the function of RAW264.7 macrophages, and promotes tissue repair, offering new insights for the design of pelvic floor repair and reconstruction patch materials.
Collapse
Affiliation(s)
- 晨旭 田
- 四川大学高分子科学与工程学院 (成都 610065)College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - 锋 罗
- 四川大学高分子科学与工程学院 (成都 610065)College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - 洁华 李
- 四川大学高分子科学与工程学院 (成都 610065)College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - 学令 何
- 四川大学高分子科学与工程学院 (成都 610065)College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
15
|
Jiang W, Zhan Y, Zhang Y, Sun D, Zhang G, Wang Z, Chen L, Sun J. Synergistic large segmental bone repair by 3D printed bionic scaffolds and engineered ADSC nanovesicles: Towards an optimized regenerative microenvironment. Biomaterials 2024; 308:122566. [PMID: 38603824 DOI: 10.1016/j.biomaterials.2024.122566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/08/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024]
Abstract
Achieving sufficient bone regeneration in large segmental defects is challenging, with the structure of bone repair scaffolds and their loaded bioactive substances crucial for modulating the local osteogenic microenvironment. This study utilized digital laser processing (DLP)-based 3D printing technology to successfully fabricate high-precision methacryloylated polycaprolactone (PCLMA) bionic bone scaffold structures. Adipose-derived stem cell-engineered nanovesicles (ADSC-ENs) were uniformly and stably modified onto the bionic scaffold surface using a perfusion device, constructing a conducive microenvironment for tissue regeneration and long bone defect repair through the scaffold's structural design and the vesicles' biological functions. Scanning electron microscopy (SEM) examination of the scaffold surface confirmed the efficient loading of ADSC-ENs. The material group loaded with vesicles (PCLMA-BAS-ENs) demonstrated good cell compatibility and osteogenic potential when analyzed for the adhesion and osteogenesis of primary rabbit bone marrow mesenchymal stem cells (BMSCs) on the material surface. Tested in a 15 mm critical rabbit radial defect model, the PCLMA-BAS-ENs scaffold facilitated near-complete bone defect repair after 12 weeks. Immunofluorescence and proteomic results indicated that the PCLMA-BAS-ENs scaffold significantly improved the osteogenic microenvironment at the defect site in vivo, promoted angiogenesis, and enhanced the polarization of macrophages towards M2 phenotype, and facilitated the recruitment of BMSCs. Thus, the PCLMA-BAS-ENs scaffold was proven to significantly promote the repair of large segmental bone defects. Overall, this strategy of combining engineered vesicles with highly biomimetic scaffolds to promote large-segment bone tissue regeneration holds great potential in orthopedic and other regenerative medicine applications.
Collapse
Affiliation(s)
- Wenbin Jiang
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, China
| | - Yichen Zhan
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, China
| | - Yifan Zhang
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, China
| | - Di Sun
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, China
| | - Guo Zhang
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, China
| | - Zhenxing Wang
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, China
| | - Lifeng Chen
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, China.
| | - Jiaming Sun
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, China.
| |
Collapse
|
16
|
Shen Y, Pang L, Jiang C, Jin J, Zhang Y, Xing H, Li J, Wu H, Chen J, Guan M, Zhu T, Gao Z, Cui W, Wang Y. Extracellular Vesicles Functional “Brick‐Cement” Bio‐Integrated System for Annulus Fibrosus Repair. ADVANCED FUNCTIONAL MATERIALS 2024; 34. [DOI: 10.1002/adfm.202400066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Indexed: 01/06/2025]
Abstract
AbstractDue to the deficiency of mechanical supporting after discectomy and weak proliferative capacity of annulus fibrosus (AF) cells, the AF defect repair remains a clinical challenge. Herein, a myofibroblasts derived extracellular vesicles (M‐EVs) functional “brick‐cement” bio‐integrated system (M‐EVs@PGBgel) is developed to repair AF defect. The modified Poly(glycerol‐sebacate) (PGBS), “bio‐brick” layer, exhibited excellent support features on account of its elastomeric mechanical properties. The loaded M‐EVs in the “bio‐cement” layer activated ITGA6/PI3K/AKT pathway, regulated M2 macrophage polarization, thus synergistically promoting AF cell proliferation and migration. The “bio‐cement” layer integrated PGBS and remnant tissue at the defect through the Schiff base reaction and aided M‐EVs’ sustained release. This study demonstrated that M‐EVs@PGBgel significantly improved the disc's biological and mechanical properties in the AF defect microenvironments and promoted AF regeneration in vivo. The M‐EVs@PGBgel shows promise as an effective strategy to simultaneously address the mechanical imbalance and biological disruptions resulting from AF defect.
Collapse
Affiliation(s)
- Yifan Shen
- Spine lab, Department of Orthopedic Surgery The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou 310003 P. R. China
| | - Libin Pang
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| | - Chao Jiang
- Spine lab, Department of Orthopedic Surgery The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou 310003 P. R. China
| | - Jiale Jin
- Spine lab, Department of Orthopedic Surgery The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou 310003 P. R. China
| | - Yijian Zhang
- Department of Orthopedics The First Affiliated Hospital of Soochow University Soochow University Suzhou 215006 P. R. China
| | - Hongyuan Xing
- Spine lab, Department of Orthopedic Surgery The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou 310003 P. R. China
| | - Jiafeng Li
- Department of Orthopedic Surgery The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou 310003 P. R. China
| | - Honghao Wu
- Spine lab, Department of Orthopedic Surgery The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou 310003 P. R. China
| | - Jingyao Chen
- Core Facilities Zhejiang University School of Medicine Hangzhou 310058 P. R. China
| | - Ming Guan
- Spine lab, Department of Orthopedic Surgery The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou 310003 P. R. China
| | - Tonghe Zhu
- School of Chemistry and Chemical Engineering Institute for Frontier Medical Technology Shanghai University of Engineering Science Shanghai 201620 P. R. China
| | - Zhongyang Gao
- Spine lab, Department of Orthopedic Surgery The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou 310003 P. R. China
| | - Wenguo Cui
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| | - Yue Wang
- Spine lab, Department of Orthopedic Surgery The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou 310003 P. R. China
| |
Collapse
|
17
|
Bian A, Sun Y, Guan J, Xie L, Yang H, Han P, Lin H, Qiao H, Zhang X, Huang Y. Dopamine-mediated copper-loaded ZnTiO3 antimicrobial coating with immunomodulatory properties effectively enhances vascularised osteogenesis on titanium implants. J IND ENG CHEM 2024; 135:94-109. [DOI: 10.1016/j.jiec.2024.01.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
18
|
Zhao D, Cheng L, Lu F, Zhang X, Ying J, Wei X, Cao F, Ran C, Zheng G, Liu G, Yi P, Wang H, Song L, Wu B, Liu L, Li L, Wang X, Li J. Design, fabrication and clinical characterization of additively manufactured tantalum hip joint prosthesis. Regen Biomater 2024; 11:rbae057. [PMID: 38854680 PMCID: PMC11162747 DOI: 10.1093/rb/rbae057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/04/2024] [Indexed: 06/11/2024] Open
Abstract
The joint prosthesis plays a vital role in the outcome of total hip arthroplasty. The key factors that determine the performance of joint prostheses are the materials used and the structural design of the prosthesis. This study aimed to fabricate a porous tantalum (Ta) hip prosthesis using selective laser melting (SLM) technology. The feasibility of SLM Ta use in hip prosthesis was verified by studying its chemical composition, metallographic structure and mechanical properties. In vitro experiments proved that SLM Ta exhibited better biological activities in promoting osteogenesis and inhibiting inflammation than SLM Ti6Al4V. Then, the topological optimization design of the femoral stem of the SLM Ta hip prosthesis was carried out by finite element simulation, and the fatigue performance of the optimized prosthesis was tested to verify the biomechanical safety of the prosthesis. A porous Ta acetabulum cup was also designed and fabricated using SLM. Its mechanical properties were then studied. Finally, clinical trials were conducted to verify the clinical efficacy of the SLM Ta hip prosthesis. The porous structure could reduce the weight of the prosthesis and stress shielding and avoid bone resorption around the prosthesis. In addition, anti-infection drugs can also be loaded into the pores for infection treatment. The acetabular cup can be custom-designed based on the severity of bone loss on the acetabular side, and the integrated acetabular cup can repair the acetabular bone defect while achieving the function of the acetabular cup.
Collapse
Affiliation(s)
- Dewei Zhao
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| | - Liangliang Cheng
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| | - Faqiang Lu
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| | - Xiuzhi Zhang
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| | - Jiawei Ying
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| | - Xiaowei Wei
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| | - Fang Cao
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| | - Chunxiao Ran
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| | - Guoshuang Zheng
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| | - Ge Liu
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| | - Pinqiao Yi
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| | - Haiyao Wang
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| | - Liqun Song
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| | - Bin Wu
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| | - Lingpeng Liu
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| | - Lu Li
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| | - Xiaohu Wang
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| | - Junlei Li
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| |
Collapse
|
19
|
Wu Y, Chen X, Song P, Li R, Zhou Y, Wang Q, Shi J, Qiao W, Dong N. Functional Oxidized Hyaluronic Acid Cross-Linked Decellularized Heart Valves for Improved Immunomodulation, Anti-Calcification, and Recellularization. Adv Healthc Mater 2024; 13:e2303737. [PMID: 38560921 DOI: 10.1002/adhm.202303737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/09/2024] [Indexed: 04/04/2024]
Abstract
Tissue engineering heart valves (TEHVs) are expected to address the limitations of mechanical and bioprosthetic valves used in clinical practice. Decellularized heart valve (DHV) is an important scaffold of TEHVs due to its natural three-dimensional structure and bioactive extracellular matrix, but its mechanical properties and hemocompatibility are impaired. In this study, DHV is cross-linked with three different molecular weights of oxidized hyaluronic acid (OHA) by a Schiff base reaction and presented enhanced stability and hemocompatibility, which could be mediated by the molecular weight of OHA. Notably, DHV cross-linked with middle- and high-molecular-weight OHA could drive the macrophage polarization toward the M2 phenotype in vitro. Moreover, DHV cross-linked with middle-molecular-weight OHA scaffolds are further modified with RGD-PHSRN peptide (RPF-OHA/DHV) to block the residual aldehyde groups of the unreacted OHA. The results show that RPF-OHA/DHV not only exhibits anti-calcification properties, but also facilitates endothelial cell adhesion and proliferation in vitro. Furthermore, RPF-OHA/DHV shows excellent performance under an in vivo hemodynamic environment with favorable recellularization and immune regulation without calcification. The optimistic results demonstrate that OHA with different molecular weights has different cross-linking effects on DHV and that RPF-OHA/DHV scaffold with enhanced immune regulation, anti-calcification, and recellularization properties for clinical transformation.
Collapse
Affiliation(s)
- Yunlong Wu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Xing Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Department of Cardiovascular Surgery, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, 430071, China
| | - Peng Song
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Rui Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Ying Zhou
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Qin Wang
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Jiawei Shi
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Weihua Qiao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| |
Collapse
|
20
|
Yang S, Li Y, Zheng X, Zheng X, Lin Y, Guo S, Liu C. Effects of folate-chicory acid liposome on macrophage polarization and TLR4/NF-κB signaling pathway in ulcerative colitis mouse. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155415. [PMID: 38503151 DOI: 10.1016/j.phymed.2024.155415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/31/2024] [Accepted: 02/03/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUND Chichoric acid (CA) is a major active ingredient found in chicory and Echinacea. As a derivative of caffeic acid, it has various pharmacological effects. PURPOSE Due to the unclear etiology and disease mechanisms, effective treatment methods for ulcerative colitis (UC) are currently lacking. The study investigated the therapeutic effects of the folate-chicory acid liposome on both LPS-induced macrophage inflammation models and dextran sulfate sodium (DSS)-induced mouse UC models. METHODS Folate-chicory acid liposome was prepared using the double emulsion ultrasonic method with the aim of targeting folate receptors specifically expressed on macrophages. The study investigated the therapeutic effects of the folate-chicory acid liposome on both LPS-induced macrophage inflammation models and DSS -induced mouse UC models. Furthermore, the effects of the liposomes on macrophage polarization and their underlying mechanisms in UC were explored. RESULTS The average particle size of folate-chicory acid liposome was 120.4 ± 0.46 nm, with an encapsulation efficiency of 77.32 ± 3.19 %. The folate-chicory acid liposome could alleviate macrophage apoptosis induced by LPS, decrease the expression of inflammatory factors in macrophages, enhance the expression of anti-inflammatory factors, inhibit macrophage polarization towards the M1 phenotype, and mitigate cellular inflammation in vetro. In vivo test, folate-chicory acid liposome could attenuate clinical symptoms, increased colon length, reduced DAI scores, CMDI scores, and alleviated the severity of colonic histopathological damage in UC mice. Furthermore, it inhibited the polarization of macrophages towards the M1 phenotype in the colon and downregulated the TLR4/NF-κB signaling pathway, thereby ameliorating UC in mice. CONCLUSION Folate-chicory acid liposome exhibited a uniform particle size distribution and high encapsulation efficiency. It effectively treated UC mice by inhibiting the polarization of macrophages towards the M1 phenotype in the colon and downregulating the TLR4/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Shijing Yang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yaoxing Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoman Zheng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Xirui Zheng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yongshi Lin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Shining Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, PR China; Guangdong Technology Research Center for Traditional Chinese Veterinary Medicine and Nature Medicine, Guangzhou 510642, China
| | - Cui Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, PR China; Guangdong Technology Research Center for Traditional Chinese Veterinary Medicine and Nature Medicine, Guangzhou 510642, China.
| |
Collapse
|
21
|
Park JE, Kim DH. Advanced Immunomodulatory Biomaterials for Therapeutic Applications. Adv Healthc Mater 2024:e2304496. [PMID: 38716543 DOI: 10.1002/adhm.202304496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 04/15/2024] [Indexed: 05/22/2024]
Abstract
The multifaceted biological defense system modulating complex immune responses against pathogens and foreign materials plays a critical role in tissue homeostasis and disease progression. Recently developed biomaterials that can specifically regulate immune responses, nanoparticles, graphene, and functional hydrogels have contributed to the advancement of tissue engineering as well as disease treatment. The interaction between innate and adaptive immunity, collectively determining immune responses, can be regulated by mechanobiological recognition and adaptation of immune cells to the extracellular microenvironment. Therefore, applying immunomodulation to tissue regeneration and cancer therapy involves manipulating the properties of biomaterials by tailoring their composition in the context of the immune system. This review provides a comprehensive overview of how the physicochemical attributes of biomaterials determine immune responses, focusing on the physical properties that influence innate and adaptive immunity. This review also underscores the critical aspect of biomaterial-based immune engineering for the development of novel therapeutics and emphasizes the importance of understanding the biomaterials-mediated immunological mechanisms and their role in modulating the immune system.
Collapse
Affiliation(s)
- Ji-Eun Park
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Dong-Hwee Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
- Department of Integrative Energy Engineering, College of Engineering, Korea University, Seoul, 02841, Republic of Korea
- Biomedical Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| |
Collapse
|
22
|
Nie R, Zhang QY, Feng ZY, Huang K, Zou CY, Fan MH, Zhang YQ, Zhang JY, Li-Ling J, Tan B, Xie HQ. Hydrogel-based immunoregulation of macrophages for tissue repair and regeneration. Int J Biol Macromol 2024; 268:131643. [PMID: 38643918 DOI: 10.1016/j.ijbiomac.2024.131643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/10/2024] [Accepted: 04/14/2024] [Indexed: 04/23/2024]
Abstract
The rational design of hydrogel materials to modulate the immune microenvironment has emerged as a pivotal approach in expediting tissue repair and regeneration. Within the immune microenvironment, an array of immune cells exists, with macrophages gaining prominence in the field of tissue repair and regeneration due to their roles in cytokine regulation to promote regeneration, maintain tissue homeostasis, and facilitate repair. Macrophages can be categorized into two types: classically activated M1 (pro-inflammatory) and alternatively activated M2 (anti-inflammatory and pro-repair). By regulating the physical and chemical properties of hydrogels, the phenotypic transformation and cell behavior of macrophages can be effectively controlled, thereby promoting tissue regeneration and repair. A full understanding of the interaction between hydrogels and macrophages can provide new ideas and methods for future tissue engineering and clinical treatment. Therefore, this paper reviews the effects of hydrogel components, hardness, pore size, and surface morphology on cell behaviors such as macrophage proliferation, migration, and phenotypic polarization, and explores the application of hydrogels based on macrophage immune regulation in skin, bone, cartilage, and nerve tissue repair. Finally, the challenges and future prospects of macrophage-based immunomodulatory hydrogels are discussed.
Collapse
Affiliation(s)
- Rong Nie
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Qing-Yi Zhang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Zi-Yuan Feng
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Kai Huang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Chen-Yu Zou
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Ming-Hui Fan
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Yue-Qi Zhang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Ji-Ye Zhang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Jesse Li-Ling
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; Department of Medical Genetics, West China Second Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Bo Tan
- Department of Orthopedic Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, PR China
| | - Hui-Qi Xie
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; Frontier Medical Center, Tianfu Jincheng Laboratory, Chengdu, Sichuan 610212, PR China.
| |
Collapse
|
23
|
Sun G, Shu T, Ma S, Li M, Qu Z, Li A. A submicron forest-like silicon surface promotes bone regeneration by regulating macrophage polarization. Front Bioeng Biotechnol 2024; 12:1356158. [PMID: 38707505 PMCID: PMC11066256 DOI: 10.3389/fbioe.2024.1356158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/14/2024] [Indexed: 05/07/2024] Open
Abstract
Introduction: Silicon is a major trace element in humans and a prospective supporting biomaterial to bone regeneration. Submicron silicon pillars, as a representative surface topography of silicon-based biomaterials, can regulate macrophage and osteoblastic cell responses. However, the design of submicron silicon pillars for promoting bone regeneration still needs to be optimized. In this study, we proposed a submicron forest-like (Fore) silicon surface (Fore) based on photoetching. The smooth (Smo) silicon surface and photoetched regular (Regu) silicon pillar surface were used for comparison in the bone regeneration evaluation. Methods: Surface parameters were investigated using a field emission scanning electron microscope, atomic force microscope, and contact angle instrument. The regulatory effect of macrophage polarization and succedent osteogenesis was studied using Raw264.7, MC3T3-E1, and rBMSCs. Finally, a mouse calvarial defect model was used for evaluating the promoting effect of bone regeneration on the three surfaces. Results: The results showed that the Fore surface can increase the expression of M2-polarized markers (CD163 and CD206) and decrease the expression of inflammatory cytokines, including interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α). Fore surface can promote the osteogenesis in MC3T3-E1 cells and osteoblastic differentiation of rBMSCs. Furthermore, the volume fraction of new bone and the thickness of trabeculae on the Fore surface were significantly increased, and the expression of RANKL was downregulated. In summary, the upregulation of macrophage M2 polarization on the Fore surface contributed to enhanced osteogenesis in vitro and accelerated bone regeneration in vivo. Discussion: This study strengthens our understanding of the topographic design for developing future silicon-based biomaterials.
Collapse
Affiliation(s)
- Guo Sun
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
- MOE Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an, China
| | - Tianyu Shu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
| | - Shaoyang Ma
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
| | - Meng Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
| | - Zhiguo Qu
- MOE Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an, China
| | - Ang Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
24
|
Emam SM, Moussa N. Signaling pathways of dental implants' osseointegration: a narrative review on two of the most relevant; NF-κB and Wnt pathways. BDJ Open 2024; 10:29. [PMID: 38580623 PMCID: PMC10997788 DOI: 10.1038/s41405-024-00211-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/09/2024] [Accepted: 03/11/2024] [Indexed: 04/07/2024] Open
Abstract
INTRODUCTION Cell signaling pathways are the biological reactions that control cell functions and fate. They also directly affect the body reactions to implanted biomaterials. It is well-known that dental implants success depends on a successful integration with the alveolar bone: "osseointegration" which events comprise early and later responses to the implanted biomaterials. The early events are mainly immune-inflammatory responses to the implant considered by its microenvironment as a foreign body. Later reactions are osteogenic aiming to regulate bone formation and remodeling. All these events are controlled by the cell signaling pathways in an incredible harmonious coordination. AIM The number of pathways having a role in osseointegration is so big to be reviewed in a single article. So the aim of this review was to study only two of the most relevant ones: the inflammatory Nuclear Factor Kappa B (NF-κB) pathway regulating the early osseointegration events and the osteogenic Wnt pathway regulating later events. METHODS We conducted a literature review using key databases to provide an overview about the NF-κB and Wnt cell signaling pathways and their mutual relationship with dental implants. A simplified narrative approach was conducted to explain these cell signaling pathways, their mode of activation and how they are related to the cellular events of osseointegration. RESULTS AND CONCLUSION NF-κB and Wnt cell signaling pathways are important cross-talking pathways that are affected by the implant's material and surface characteristics. The presence of the implant itself in the bone alters the intracellular events of both pathways in the adjacent implant's cellular microenvironment. Both pathways have a great role in the success or failure of osseointegration. Such knowledge can offer a new hope to treat failed implants and enhance osseointegration in difficult cases. This is consistent with advances in Omics technologies that can change the paradigm of dental implant therapy.
Collapse
Affiliation(s)
- Samar Mohamed Emam
- Department of Prosthodontics, Faculty of Dentistry, Alexandria University, Alexandria, Egypt.
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt.
| | - Nermine Moussa
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| |
Collapse
|
25
|
曾 辉, 郭 芳, 黄 硕, 刘 宁, 郭 亚, 刘 昌. [Study on NaOH improving the surface morphology of three-dimensional printed poly- L- lactic acid mesh scaffolds]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2024; 38:348-355. [PMID: 38500430 PMCID: PMC10982027 DOI: 10.7507/1002-1892.202311089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/07/2024] [Accepted: 02/07/2024] [Indexed: 03/20/2024]
Abstract
Objective To explore the effect of NaOH on the surface morphology of three-dimensional (3D) printed poly- L-lactic acid (PLLA) mesh scaffolds. Methods The 3D printed PLLA mesh scaffolds were prepared by fused deposition molding technology, then the scaffold surfaces were etched with the NaOH solution. The concentrations of NaOH solution were 0.01, 0.1, 0.5, 1.0, and 3.0 mol/L, and the treatment time was 1, 3, 6, 9, and 12 hours, respectively. There were a total of 25 concentration and time combinations. After treatment, the microstructure, energy spectrum, roughness, hydrophilicity, compressive strength, as well as cell adhesion and proliferation of the scaffolds were observed. The untreated scaffolds were used as a normal control. Results 3D printed PLLA mesh scaffolds were successfully prepared by using fused deposition molding technology. After NaOH etching treatment, a rough or micro porous structure was constructed on the surface of the scaffold, and with the increase of NaOH concentration and treatment time, the size and density of the pores increased. The characterization of the scaffolds by energy dispersive spectroscopy showed that the crystal contains two elements, Na and O. The surface roughness of NaOH treated scaffolds significantly increased ( P<0.05) and the contact angle significantly decreased ( P<0.05) compared to untreated scaffolds. There was no significant difference in compressive strength between the untreated scaffolds and treated scaffolds under conditions of 0.1 mol/L/12 h and 1.0 mol/L/3 h ( P>0.05), while the compression strength of the other treated scaffolds were significantly lower than that of the untreated scaffolds ( P<0.05). After co-culturing the cells with the scaffold, NaOH treatment resulted in an increase in the number of cells on the surface of the scaffold and the spreading area of individual cells, and more synapses extending from adherent cells. Conclusion NaOH treatment is beneficial for increasing the surface hydrophilicity and cell adhesion of 3D printed PLLA mesh scaffolds.
Collapse
Affiliation(s)
- 辉 曾
- 西安医学院口腔医学院牙颌面组织再生与修复研究中心(西安 710021)Research Center of Tooth and Maxillofacial Tissue Regeneration and Restoration, School of Stomatology, Xi’an Medical University, Xi’an Shaanxi, 710021, P. R. China
| | - 芳 郭
- 西安医学院口腔医学院牙颌面组织再生与修复研究中心(西安 710021)Research Center of Tooth and Maxillofacial Tissue Regeneration and Restoration, School of Stomatology, Xi’an Medical University, Xi’an Shaanxi, 710021, P. R. China
| | - 硕 黄
- 西安医学院口腔医学院牙颌面组织再生与修复研究中心(西安 710021)Research Center of Tooth and Maxillofacial Tissue Regeneration and Restoration, School of Stomatology, Xi’an Medical University, Xi’an Shaanxi, 710021, P. R. China
| | - 宁 刘
- 西安医学院口腔医学院牙颌面组织再生与修复研究中心(西安 710021)Research Center of Tooth and Maxillofacial Tissue Regeneration and Restoration, School of Stomatology, Xi’an Medical University, Xi’an Shaanxi, 710021, P. R. China
| | - 亚媛 郭
- 西安医学院口腔医学院牙颌面组织再生与修复研究中心(西安 710021)Research Center of Tooth and Maxillofacial Tissue Regeneration and Restoration, School of Stomatology, Xi’an Medical University, Xi’an Shaanxi, 710021, P. R. China
| | - 昌奎 刘
- 西安医学院口腔医学院牙颌面组织再生与修复研究中心(西安 710021)Research Center of Tooth and Maxillofacial Tissue Regeneration and Restoration, School of Stomatology, Xi’an Medical University, Xi’an Shaanxi, 710021, P. R. China
| |
Collapse
|
26
|
Zhang X, Zhou W, Xi W. Advancements in incorporating metal ions onto the surface of biomedical titanium and its alloys via micro-arc oxidation: a research review. Front Chem 2024; 12:1353950. [PMID: 38456182 PMCID: PMC10917964 DOI: 10.3389/fchem.2024.1353950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/31/2024] [Indexed: 03/09/2024] Open
Abstract
The incorporation of biologically active metallic elements into nano/micron-scale coatings through micro-arc oxidation (MAO) shows significant potential in enhancing the biological characteristics and functionality of titanium-based materials. By introducing diverse metal ions onto titanium implant surfaces, not only can their antibacterial, anti-inflammatory and corrosion resistance properties be heightened, but it also promotes vascular growth and facilitates the formation of new bone tissue. This review provides a thorough examination of recent advancements in this field, covering the characteristics of commonly used metal ions and their associated preparation parameters. It also highlights the diverse applications of specific metal ions in enhancing osteogenesis, angiogenesis, antibacterial efficacy, anti-inflammatory and corrosion resistance properties of titanium implants. Furthermore, the review discusses challenges faced and future prospects in this promising area of research. In conclusion, the synergistic approach of micro-arc oxidation and metal ion doping demonstrates substantial promise in advancing the effectiveness of biomedical titanium and its alloys, promising improved outcomes in medical implant applications.
Collapse
Affiliation(s)
- Xue’e Zhang
- Jiangxi Province Key Laboratory of Oral Biomedicine, School of Stomatology, Jiangxi Medical College, Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang University, Nanchang, China
| | - Wuchao Zhou
- Jiangxi Province Key Laboratory of Oral Biomedicine, The Affiliated Stomatological Hospital, Jiangxi Medical College, Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang University, Nanchang, China
| | - Weihong Xi
- Jiangxi Province Key Laboratory of Oral Biomedicine, The Affiliated Stomatological Hospital, Jiangxi Medical College, Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang University, Nanchang, China
| |
Collapse
|
27
|
Xiao B, Liu Y, Chandrasiri I, Adjei-Sowah E, Mereness J, Yan M, Benoit DSW. Bone-Targeted Nanoparticle Drug Delivery System-Mediated Macrophage Modulation for Enhanced Fracture Healing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305336. [PMID: 37797180 PMCID: PMC10922143 DOI: 10.1002/smll.202305336] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/03/2023] [Indexed: 10/07/2023]
Abstract
Despite decades of progress, developing minimally invasive bone-specific drug delivery systems (DDS) to improve fracture healing remains a significant clinical challenge. To address this critical therapeutic need, nanoparticle (NP) DDS comprised of poly(styrene-alt-maleic anhydride)-b-poly(styrene) (PSMA-b-PS) functionalized with a peptide that targets tartrate-resistant acid phosphatase (TRAP) and achieves preferential fracture accumulation has been developed. The delivery of AR28, a glycogen synthase kinase-3 beta (GSK3β) inhibitor, via the TRAP binding peptide-NP (TBP-NP) expedites fracture healing. Interestingly, however, NPs are predominantly taken up by fracture-associated macrophages rather than cells typically associated with fracture healing. Therefore, the underlying mechanism of healing via TBP-NP is comprehensively investigated herein. TBP-NPAR28 promotes M2 macrophage polarization and enhances osteogenesis in preosteoblast-macrophage co-cultures in vitro. Longitudinal analysis of TBP-NPAR28 -mediated fracture healing reveals distinct spatial distributions of M2 macrophages, an increased M2/M1 ratio, and upregulation of anti-inflammatory and downregulated pro-inflammatory genes compared to controls. This work demonstrates the underlying therapeutic mechanism of bone-targeted NP DDS, which leverages macrophages as druggable targets and modulates M2 macrophage polarization to enhance fracture healing, highlighting the therapeutic benefit of this approach for fractures and bone-associated diseases.
Collapse
Affiliation(s)
- Baixue Xiao
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14623, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, 14623, USA
| | - Yuxuan Liu
- Materials Science Program, University of Rochester, Rochester, NY, 14623, USA
| | - Indika Chandrasiri
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14623, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, 14623, USA
| | - Emmanuela Adjei-Sowah
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14623, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, 14623, USA
| | - Jared Mereness
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14623, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, 14623, USA
| | - Ming Yan
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14623, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, 14623, USA
| | - Danielle S W Benoit
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14623, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, 14623, USA
- Materials Science Program, University of Rochester, Rochester, NY, 14623, USA
- Department of Chemical Engineering, University of Rochester, Rochester, NY, 14623, USA
- Department of Bioengineering, Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR, 97403, USA
| |
Collapse
|
28
|
Shi Y, Tao W, Yang W, Wang L, Qiu Z, Qu X, Dang J, He J, Fan H. Calcium phosphate coating enhances osteointegration of melt electrowritten scaffold by regulating macrophage polarization. J Nanobiotechnology 2024; 22:47. [PMID: 38297240 PMCID: PMC10829397 DOI: 10.1186/s12951-024-02310-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/26/2024] [Indexed: 02/02/2024] Open
Abstract
The osteoimmune microenvironment induced by implants plays a significant role in bone regeneration. It is essential to efficiently and timely switch the macrophage phenotype from M1 to M2 for optimal bone healing. This study examined the impact of a calcium phosphate (CaP) coating on the physiochemical properties of highly ordered polycaprolactone (PCL) scaffolds fabricated using melt electrowritten (MEW). Additionally, it investigated the influence of these scaffolds on macrophage polarization and their immunomodulation on osteogenesis. The results revealed that the CaP coated PCL scaffold exhibited a rougher surface topography and higher hydrophilicity in comparison to the PCL scaffold without coating. Besides, the surface morphology of the coating and the release of Ca2+ from the CaP coating were crucial in regulating the transition of macrophages from M1 to M2 phenotypes. They might activate the PI3K/AKT and cAMP-PKA pathways, respectively, to facilitate M2 polarization. In addition, the osteoimmune microenvironment induced by CaP coated PCL could not only enhance the osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) in vitro but also promote the bone regeneration in vivo. Taken together, the CaP coating can be employed to control the phenotypic switching of macrophages, thereby creating a beneficial immunomodulatory microenvironment that promotes bone regeneration.
Collapse
Affiliation(s)
- Yubo Shi
- Department of Orthopedic Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Weidong Tao
- Department of Orthopedic Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Wenjing Yang
- Xijing 986 Hospital Department, The Fourth Military Medical University, Xi'an, China
| | - Lei Wang
- Department of Orthopedic Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Zhennan Qiu
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, China
- Rapid Manufacturing Research Center of Shaanxi Province, Xi'an Jiaotong University, Xi'an, China
| | - Xiaoli Qu
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, China
- Rapid Manufacturing Research Center of Shaanxi Province, Xi'an Jiaotong University, Xi'an, China
| | - Jingyi Dang
- Department of Orthopedic Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jiankang He
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, China
- Rapid Manufacturing Research Center of Shaanxi Province, Xi'an Jiaotong University, Xi'an, China
| | - Hongbin Fan
- Department of Orthopedic Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
29
|
Yang X, Wu L, Li C, Li S, Hou W, Hao Y, Lu Y, Li L. Synergistic Amelioration of Osseointegration and Osteoimmunomodulation with a Microarc Oxidation-Treated Three-Dimensionally Printed Ti-24Nb-4Zr-8Sn Scaffold via Surface Activity and Low Elastic Modulus. ACS APPLIED MATERIALS & INTERFACES 2024; 16:3171-3186. [PMID: 38205810 DOI: 10.1021/acsami.3c16459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Biomaterial scaffolds, including bone substitutes, have evolved from being primarily a biologically passive structural element to one in which material properties such as surface topography and chemistry actively direct bone regeneration by influencing stem cells and the immune microenvironment. Ti-6Al-4V(Ti6Al4V) implants, with a significantly higher elastic modulus than human bone, may lead to stress shielding, necessitating improved stability at the bone-titanium alloy implant interface. Ti-24Nb-4Zr-8Sn (Ti2448), a low elastic modulus β-type titanium alloy devoid of potentially toxic elements, was utilized in this study. We employed 3D printing technology to fabricate a porous scaffold structure to further decrease the structural stiffness of the implant to approximate that of cancellous bone. Microarc oxidation (MAO) surface modification technology is then employed to create a microporous structure and a hydrophilic oxide ceramic layer on the surface and interior of the scaffold. In vitro studies demonstrated that MAO treatment enhances the proliferation, adhesion, and osteogenesis capabilities on the scaffold surface. The chemical composition of the MAO-Ti2448 oxide layer is found to enhance the transcription and expression of osteogenic genes in bone mesenchymal stem cells (BMSCs), potentially related to the enrichment of Nb2O5 and SnO2 in the oxide layer. The MAO-Ti2448 scaffold, with its synergistic surface activity and low stiffness, significantly activates the anti-inflammatory macrophage phenotype, creating an immune microenvironment that promotes the osteogenic differentiation of BMSCs. In vivo experiments in a rabbit model demonstrated a significant improvement in the quantity and quality of the newly formed bone trabeculae within the scaffold under the contact osteogenesis pattern with a matched elastic modulus. These trabeculae exhibit robust connections to the external structure of the scaffold, accelerating the formation of an interlocking structure between the bone and implant and providing higher implantation stability. These findings suggest that the MAO-Ti2448 scaffold has significant potential as a bone defect repair material by regulating osteoimmunomodulation and osteogenesis to enhance osseointegration. This study demonstrates an optional strategy that combines the mechanism of reducing the elastic modulus with surface modification treatment, thereby extending the application scope of β-type titanium alloy.
Collapse
Affiliation(s)
- Xinyue Yang
- Department of Orthopaedic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110055, P.R. China
| | - Lijun Wu
- Engineering Research Center of High Entropy Alloy Materials (Liaoning Province), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, P.R. China
| | - Cheng Li
- Department of Orthopaedic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110055, P.R. China
| | - Shujun Li
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, P.R. China
| | - Wentao Hou
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, P.R. China
| | - Yulin Hao
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, P.R. China
| | - Yiping Lu
- Engineering Research Center of High Entropy Alloy Materials (Liaoning Province), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, P.R. China
| | - Lei Li
- Department of Orthopaedic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110055, P.R. China
| |
Collapse
|
30
|
Fan S, Tan Y, Yuan X, Liu C, Wu X, Dai T, Ni S, Wang J, Weng Y, Zhao H. Regulation of the immune microenvironment by pioglitazone-loaded polylactic glycolic acid nanosphere composite scaffolds to promote vascularization and bone regeneration. J Tissue Eng 2024; 15:20417314241231452. [PMID: 38361536 PMCID: PMC10868507 DOI: 10.1177/20417314241231452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/24/2024] [Indexed: 02/17/2024] Open
Abstract
Osteogenesis is caused by multiple factors, and the inflammatory response, osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs), regeneration of blood vessels, and other factors must be considered in bone tissue engineering. To effectively repair bone defect, it is important to decrease excessive inflammation, enhance the differentiation of mesenchymal stem cells into osteoblasts, and stimulate angiogenesis. Herein, nano-attapulgite (ATP), polyvinyl alcohol (PVA), and gelatin (GEL) scaffolds were produced using 3D printing technology and pioglitazone (PIO)-containing polylactic acid-glycolic acid (PLGA) nanospheres were added. In both in vitro and in vivo studies, material scaffolds with PIO-loaded polylactic acid-glycolic acid nanospheres could reduce the inflammatory response by encouraging macrophage polarization from M1 to M2 and promoting the osteogenic differentiation of BMSCs by activating the BMP2/Smad/RUNX2 signal pathway to repair bone defects. The vascularization of human umbilical vein endothelial cells (HUVECs) through the PI3K/AKT/HIF1-/VEGF pathway was also encouraged. In vivo research using PIO-containing PLGA nanospheres revealed massive collagen deposition in skin models. These findings indicate a potentially effective scaffold for bone healing, when PLGA nanospheres-which contain the drug PIO-are combined with ATP/PVA/GEL scaffolds.
Collapse
Affiliation(s)
- Shijie Fan
- Department of Orthopedics, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| | - Yadong Tan
- Department of Orthopedics, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| | - Xiuchen Yuan
- Department of Orthopedics, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| | - Chun Liu
- Department of Orthopedics, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| | - Xiaoyu Wu
- Department of Orthopedics, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| | - Ting Dai
- Department of Orthopedics, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| | - Su Ni
- Department of Orthopedics, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| | - Jiafeng Wang
- Department of Orthopedics, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| | - Yiping Weng
- Department of Orthopedics, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| | - Hongbin Zhao
- Department of Orthopedics, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| |
Collapse
|
31
|
Tang Y, Sun Z, Wu S, Zhang C, Zhang Y, Cao Y. Jin-Fu-An decoction manipulation of macrophage polarization via β-catenin (CTNNB1) synergizes with cisplatin in lung cancer. Biomed Pharmacother 2023; 168:115828. [PMID: 37925939 DOI: 10.1016/j.biopha.2023.115828] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/20/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023] Open
Abstract
Previous studies have demonstrated that tumor-associated macrophages (TAMs) exhibiting an M2 phenotype contribute significantly to the pathogenesis of various cancer types, including lung cancer. Therapeutic approaches targeting TAMs have the potential to complement and synergize with conventional chemotherapy and immunotherapy. Through database analysis, it has become evident that the expression of CTNNB1 (β-catenin) is predominantly localized in macrophages, and its presence is associated with unfavorable outcomes in the absence of CD8+ cells. Jin-Fu-An decoction (JFAD) has been utilized as an adjunct to augment current clinical interventions. By conducting a network pharmacological analysis, we discovered that CTNNB1 is a significant target of JFAD. Experiments were conducted to examine the impact of JFAD on macrophage polarization both in vitro and in vivo. Furthermore, the study investigated the combined effect of JFAD and cisplatin (CDDP) on mitigating adverse reactions and prolonging survival in subcutaneously transplanted tumor models and orthotopic lung cancer models. The percentage of M1 and M2 macrophages in the tumor and spleen were measured using flow cytometry. Additionally, the levels of β-catenin, M1, and M2 macrophage markers were measured by Western blotting and qPCR, while CD8 and iNOS protein expression was analyzed via immunohistochemistry. Our research findings indicate that JFAD has the ability to modulate the transformation of M2 macrophages into M1 macrophages, augment the anticancer efficacy of CDDP, and diminish the expression of cell-related markers in M2 cells. This regulatory effect may potentially be associated with the downregulation of β-catenin expression.
Collapse
Affiliation(s)
- Yang Tang
- The First Clinical School of Guangzhou University of Chinese Medicine, Guangzhou 510000, China; Department of Oncology, The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou 510000, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528437, China
| | - Zhe Sun
- The First Clinical School of Guangzhou University of Chinese Medicine, Guangzhou 510000, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528437, China
| | - Siqi Wu
- The First Clinical School of Guangzhou University of Chinese Medicine, Guangzhou 510000, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528437, China
| | - Chengyu Zhang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528437, China; Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510000, China
| | - Yanling Zhang
- The First Clinical School of Guangzhou University of Chinese Medicine, Guangzhou 510000, China; Department of Oncology, The Forth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510000, China
| | - Yang Cao
- The First Clinical School of Guangzhou University of Chinese Medicine, Guangzhou 510000, China; Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510000, China.
| |
Collapse
|
32
|
Chen L, Tong Z, Luo H, Qu Y, Gu X, Si M. Titanium particles in peri-implantitis: distribution, pathogenesis and prospects. Int J Oral Sci 2023; 15:49. [PMID: 37996420 PMCID: PMC10667540 DOI: 10.1038/s41368-023-00256-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/25/2023] Open
Abstract
Peri-implantitis is one of the most important biological complications in the field of oral implantology. Identifying the causative factors of peri-implant inflammation and osteolysis is crucial for the disease's prevention and treatment. The underlying risk factors and detailed pathogenesis of peri-implantitis remain to be elucidated. Titanium-based implants as the most widely used implant inevitably release titanium particles into the surrounding tissue. Notably, the concentration of titanium particles increases significantly at peri-implantitis sites, suggesting titanium particles as a potential risk factor for the condition. Previous studies have indicated that titanium particles can induce peripheral osteolysis and foster the development of aseptic osteoarthritis in orthopedic joint replacement. However, it remains unconfirmed whether this phenomenon also triggers inflammation and bone resorption in peri-implant tissues. This review summarizes the distribution of titanium particles around the implant, the potential roles in peri-implantitis and the prevalent prevention strategies, which expects to provide new directions for the study of the pathogenesis and treatment of peri-implantitis.
Collapse
Affiliation(s)
- Long Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
- Department of Stomatology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zian Tong
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Hongke Luo
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Yuan Qu
- Zhejiang University-University of Edinburgh Institute, International Campus, Zhejiang University, Haining, China
| | - Xinhua Gu
- Department of Stomatology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Misi Si
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
33
|
Zhu F, Wang S, Zhu X, Pang C, Cui P, Yang F, Li R, Zhan Q, Xin H. Potential effects of biomaterials on macrophage function and their signalling pathways. Biomater Sci 2023; 11:6977-7002. [PMID: 37695360 DOI: 10.1039/d3bm01213a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
The use of biomaterials in biomedicine and healthcare has increased in recent years. Macrophages are the primary immune cells that induce inflammation and tissue repair after implantation of biomaterials. Given that macrophages exhibit high heterogeneity and plasticity, the influence of biomaterials on macrophage phenotype should be considered a crucial evaluation criterion during the development of novel biomaterials. This review provides a comprehensive summary of the physicochemical, biological, and dynamic characteristics of biomaterials that drive the regulation of immune responses in macrophages. The mechanisms involved in the interaction between macrophages and biomaterials, including endocytosis, receptors, signalling pathways, integrins, inflammasomes and long non-coding RNAs, are summarised in this review. In addition, research prospects of the interaction between macrophages and biomaterials are discussed. An in-depth understanding of mechanisms underlying the spatiotemporal changes in macrophage phenotype induced by biomaterials and their impact on macrophage polarization can facilitate the identification and development of novel biomaterials with superior performance. These biomaterials may be used for tissue repair and regeneration, vaccine or drug delivery and immunotherapy.
Collapse
Affiliation(s)
- Fujun Zhu
- Department of Burns and Plastic Surgery, the No. 924th Hospital of the Joint Logistic Support Force of the Chinese PLA, Guilin, Guangxi 541002, People's Republic of China.
| | - Shaolian Wang
- Central Sterile Supply Department, the No. 924th Hospital of the Joint Logistic Support Force of the Chinese PLA, Guilin, Guangxi 541002, People's Republic of China
| | - Xianglian Zhu
- Outpatient Department, the No. 924th Hospital of the Joint Logistic Support Force of the Chinese PLA, Guilin, Guangxi 541002, People's Republic of China
| | - Caixiang Pang
- Department of Emergency Medicine, the No. 924th Hospital of the Joint Logistic Support Force of the Chinese PLA, Guilin, Guangxi 541002, People's Republic of China
| | - Pei Cui
- Animal Laboratory, the No. 924th Hospital of the Joint Logistic Support Force of the Chinese PLA, Guilin, Guangxi 541002, People's Republic of China
| | - Fuwang Yang
- Department of Burns and Plastic Surgery, the No. 924th Hospital of the Joint Logistic Support Force of the Chinese PLA, Guilin, Guangxi 541002, People's Republic of China.
| | - Rongsheng Li
- Animal Laboratory, the No. 924th Hospital of the Joint Logistic Support Force of the Chinese PLA, Guilin, Guangxi 541002, People's Republic of China
| | - Qiu Zhan
- Animal Laboratory, the No. 924th Hospital of the Joint Logistic Support Force of the Chinese PLA, Guilin, Guangxi 541002, People's Republic of China
| | - Haiming Xin
- Department of Burns and Plastic Surgery, the No. 924th Hospital of the Joint Logistic Support Force of the Chinese PLA, Guilin, Guangxi 541002, People's Republic of China.
| |
Collapse
|
34
|
Dutta SD, Ganguly K, Patil TV, Randhawa A, Lim KT. Unraveling the potential of 3D bioprinted immunomodulatory materials for regulating macrophage polarization: State-of-the-art in bone and associated tissue regeneration. Bioact Mater 2023; 28:284-310. [PMID: 37303852 PMCID: PMC10248805 DOI: 10.1016/j.bioactmat.2023.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/29/2023] [Accepted: 05/20/2023] [Indexed: 06/13/2023] Open
Abstract
Macrophage-assisted immunomodulation is an alternative strategy in tissue engineering, wherein the interplay between pro-inflammatory and anti-inflammatory macrophage cells and body cells determines the fate of healing or inflammation. Although several reports have demonstrated that tissue regeneration depends on spatial and temporal regulation of the biophysical or biochemical microenvironment of the biomaterial, the underlying molecular mechanism behind immunomodulation is still under consideration for developing immunomodulatory scaffolds. Currently, most fabricated immunomodulatory platforms reported in the literature show regenerative capabilities of a particular tissue, for example, endogenous tissue (e.g., bone, muscle, heart, kidney, and lungs) or exogenous tissue (e.g., skin and eye). In this review, we briefly introduced the necessity of the 3D immunomodulatory scaffolds and nanomaterials, focusing on material properties and their interaction with macrophages for general readers. This review also provides a comprehensive summary of macrophage origin and taxonomy, their diverse functions, and various signal transduction pathways during biomaterial-macrophage interaction, which is particularly helpful for material scientists and clinicians for developing next-generation immunomodulatory scaffolds. From a clinical standpoint, we briefly discussed the role of 3D biomaterial scaffolds and/or nanomaterial composites for macrophage-assisted tissue engineering with a special focus on bone and associated tissues. Finally, a summary with expert opinion is presented to address the challenges and future necessity of 3D bioprinted immunomodulatory materials for tissue engineering.
Collapse
Affiliation(s)
- Sayan Deb Dutta
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Institute of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Keya Ganguly
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Tejal V. Patil
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Aayushi Randhawa
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Ki-Taek Lim
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Institute of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| |
Collapse
|
35
|
Avery D, Morandini L, Gabriec M, Sheakley L, Peralta M, Donahue HJ, Martin RK, Olivares-Navarrete R. Contribution of αβ T cells to macrophage polarization and MSC recruitment and proliferation on titanium implants. Acta Biomater 2023; 169:605-624. [PMID: 37532133 PMCID: PMC10528595 DOI: 10.1016/j.actbio.2023.07.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/20/2023] [Accepted: 07/26/2023] [Indexed: 08/04/2023]
Abstract
Physiochemical cues like topography and wettability can impact the inflammatory response and tissue integration after biomaterial implantation. T cells are essential for immunomodulation of innate immune cells and play an important role in the host response to biomaterial implantation. This study aimed to understand how CD4+ and CD8+ T cell subsets, members of the αβ T cell family, polarize in response to smooth, rough, or rough-hydrophilic titanium (Ti) implants and whether their presence modulates immune cell crosstalk and mesenchymal stem cell (MSC) recruitment following biomaterial implantation. Post-implantation in mice, we found that CD4+ and CD8+ T cell subsets polarized differentially in response to modified Ti surfaces. Additionally, mice lacking αβ T cells had significantly more pro-inflammatory macrophages, fewer anti-inflammatory macrophages, and reduced MSC recruitment in response to modified Ti post-implantation than αβ T cell -competent mice. Our results demonstrate that T cell activation plays a significant role during the inflammatory response to implanted biomaterials, contributing to macrophage polarization and MSC recruitment and proliferation, and the absence of αβ T cells compromises new bone formation at the implantation site. STATEMENT OF SIGNIFICANCE: T cells are essential for immunomodulation and play an important role in the host response to biomaterial implantation. Our results demonstrate that T cells actively participate during the inflammatory response to implanted biomaterials, controlling macrophage phenotype and recruitment of MSCs to the implantation site.
Collapse
Affiliation(s)
- Derek Avery
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Lais Morandini
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Melissa Gabriec
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Luke Sheakley
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Matthieu Peralta
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Henry J Donahue
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Rebecca K Martin
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Rene Olivares-Navarrete
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA, United States.
| |
Collapse
|
36
|
Zhou L, Xing Y, Ou Y, Ding J, Han Y, Lin D, Chen J. Prolonged release of an antimicrobial peptide GL13K-loaded thermosensitive hydrogel on a titanium surface improves its antibacterial and anti-inflammatory properties. RSC Adv 2023; 13:23308-23319. [PMID: 37538512 PMCID: PMC10395452 DOI: 10.1039/d3ra03414c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/17/2023] [Indexed: 08/05/2023] Open
Abstract
The application of titanium in the orthopedic and dental fields is associated with bacterial infection and chronic inflammation, especially in the early stages after its implantation. In the present study, we investigated the antibacterial and anti-inflammatory activities of a titanium surface that was immobilized in a thermosensitive PLGA-PEG-PLGA hydrogel containing the antimicrobial peptide GL13K. The FTIR results confirmed the successful loading of GL13K. The degradation of the hydrogel and release of GL13K persisted for two weeks. The modified titanium surface exhibited a significant inhibitory effect on Porphyromonas gingivalis in contact with its surface, as well as an inhibitory effect on P.g in the surrounding environment by releasing GL13K antimicrobial peptides. The modified titanium surfaces were biocompatible with RAW264.7. Furthermore, the expression of pro-inflammatory cytokines IL-1β, TNF-α and iNOS was down-regulated, whereas anti-inflammatory cytokines Arg-1, IL-10 and VEGF-A were up-regulated on the modified titanium surfaces on days 3 and 5. This effect was attributed to the polarization of macrophages from the M1 to M2 phenotype, which was confirmed by the detection of macrophage M1/M2 biomarkers via immunofluorescence staining and flow cytometry. Thus, the thermosensitive PLGA-PEG-PLGA hydrogel release system carrying the antimicrobial peptide GL13K on a titanium surface exhibited antibacterial and anti-inflammatory properties and promoted macrophage polarization from the M1 to M2 phenotype, which may help create a favourable niche for bone formation under infective condition.
Collapse
Affiliation(s)
- Lin Zhou
- Affiliated Stomatological Hospital of Fujian Medical University, Fujian Medical University Fujian China
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University Fuzhou China
| | - Yifeng Xing
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University Fuzhou China
- Fujian Biological Materials Engineering and Technology Center of Stomatology, Fujian Medical University Fuzhou China
| | - Yanjin Ou
- Affiliated Stomatological Hospital of Fujian Medical University, Fujian Medical University Fujian China
- Fujian Biological Materials Engineering and Technology Center of Stomatology, Fujian Medical University Fuzhou China
| | - Jiamin Ding
- Department of Oral Mucosa, Affiliated Stomatological Hospital of Fujian Medical University Fuzhou China
| | - Yu Han
- Division of Craniofacial Development and Tissue Biology, Graduate School of Dentistry, Tohoku University Sendai City Japan
| | - Dong Lin
- Affiliated Stomatological Hospital of Fujian Medical University, Fujian Medical University Fujian China
| | - Jiang Chen
- Affiliated Stomatological Hospital of Fujian Medical University, Fujian Medical University Fujian China
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University Fuzhou China
| |
Collapse
|
37
|
Weng J, Fan H, Liu H, Tang S, Zheng Y. Abnormal Decrease of Macrophage ALKBH5 Expression Causes Abnormal Polarization and Inhibits Osteoblast Differentiation. Stem Cells Int 2023; 2023:9974098. [PMID: 37519314 PMCID: PMC10372297 DOI: 10.1155/2023/9974098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 06/18/2023] [Accepted: 07/05/2023] [Indexed: 08/01/2023] Open
Abstract
Peri-implant tissue inflammation is an inflammatory injury that occurs in the soft and hard tissues surrounding the implant and is the main cause of short- or long-term failure of implant prosthetic restorations, which is compounded by bone loss and bone destruction in the alveolar bone of diabetes patients with peri-implantitis. However, the mechanisms underlying the persistence of diabetic peri-implantitis, as well as the essential connections and key molecules that regulate its start and progression, remain unknown. In this study, we discovered that M1 macrophage polarization was abnormally enhanced in diabetic peri-implantitis and influenced the osteogenic differentiation of mesenchymal stem cells. RNA sequencing revealed that ALKBH5 expression was abnormally reduced in diabetic peri-implantitis. Further mechanism study showed that ALKBH5 and its mediated m6A can influence osteogenic differentiation, which in turn influences the persistence of diabetic peri-implantitis. Our findings present a new mechanism for the suppression of osteoblast development in diabetic peri-implantitis and a new treatment strategy to promote anabolism by inhibiting ALKBH5.
Collapse
Affiliation(s)
- Junquan Weng
- Department of Stomatology, Shenzhen People's Hospital, Shenzhen 518020, Guangdong, China
- The Second Clinical Medical College, Jinan University, Shenzhen, China
- The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Haidong Fan
- Department of Stomatology, Shenzhen People's Hospital, Shenzhen 518020, Guangdong, China
- The Second Clinical Medical College, Jinan University, Shenzhen, China
- The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Huijuan Liu
- Department of Stomatology, Shenzhen People's Hospital, Shenzhen 518020, Guangdong, China
- The Second Clinical Medical College, Jinan University, Shenzhen, China
- The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Su Tang
- Department of Stomatology, Shenzhen People's Hospital, Shenzhen 518020, Guangdong, China
- The Second Clinical Medical College, Jinan University, Shenzhen, China
- The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Yuyan Zheng
- Department of Stomatology, Shenzhen People's Hospital, Shenzhen 518020, Guangdong, China
- The Second Clinical Medical College, Jinan University, Shenzhen, China
- The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
38
|
Tang Y, Xu Z, Tang J, Xu Y, Li Z, Wang W, Wu L, Xi K, Gu Y, Chen L. Architecture-Engineered Electrospinning Cascade Regulates Spinal Microenvironment to Promote Nerve Regeneration. Adv Healthc Mater 2023; 12:e2202658. [PMID: 36652529 PMCID: PMC11469115 DOI: 10.1002/adhm.202202658] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/14/2023] [Indexed: 01/19/2023]
Abstract
The inflammatory cascade after spinal cord injury (SCI) causes necrotizing apoptosis of local stem cells, which limits nerve regeneration. Therefore, coordinating the inflammatory immune response and neural stem cell (NSC) functions is key to promoting the recovery of central nervous system function. In this study, a hydrogel "perfusion" system and electrospinning technology are integrated, and a "concrete" composite support for the repair of nerve injuries is built. The hydrogel's hydrophilic properties activate macrophage integrin receptors to mediate polarization into anti-inflammatory subtypes and cause a 10% increase in polarized M2 macrophages, thus reprogramming the SCI immune microenvironment. Programmed stromal cell-derived factor-1α and brain-derived neurotrophic factor released from the composite increase recruitment and neuronal differentiation of NSCs by approximately four- and twofold, respectively. The fiber system regulates the SCI immune inflammatory microenvironment, recruits endogenous NSCs, promotes local blood vessel germination and maturation, and improves nerve function recovery in a rat SCI model. In conclusion, the engineering fiber composite improves the local inflammatory response. It promotes nerve regeneration through a hydrophilic programmed cytokine-delivery system, which further improves and supplements the immune response mechanism regulated by the inherent properties of the biomaterial. The new fiber composite may serve as a new treatment approach for SCI.
Collapse
Affiliation(s)
- Yu Tang
- Department of Orthopedicsthe First Affiliated Hospital of Soochow UniversityOrthopedic InstituteSoochow University188 Shizi RoadSuzhouJiangsu215006P. R. China
| | - Zonghan Xu
- Department of Orthopedicsthe First Affiliated Hospital of Soochow UniversityOrthopedic InstituteSoochow University188 Shizi RoadSuzhouJiangsu215006P. R. China
| | - Jincheng Tang
- Department of Orthopedicsthe First Affiliated Hospital of Soochow UniversityOrthopedic InstituteSoochow University188 Shizi RoadSuzhouJiangsu215006P. R. China
| | - Yichang Xu
- Department of Orthopedicsthe First Affiliated Hospital of Soochow UniversityOrthopedic InstituteSoochow University188 Shizi RoadSuzhouJiangsu215006P. R. China
| | - Ziang Li
- Department of Orthopedicsthe First Affiliated Hospital of Soochow UniversityOrthopedic InstituteSoochow University188 Shizi RoadSuzhouJiangsu215006P. R. China
| | - Wenbo Wang
- Department of Orthopedicsthe First Affiliated Hospital of Soochow UniversityOrthopedic InstituteSoochow University188 Shizi RoadSuzhouJiangsu215006P. R. China
| | - Liang Wu
- Department of Orthopedicsthe First Affiliated Hospital of Soochow UniversityOrthopedic InstituteSoochow University188 Shizi RoadSuzhouJiangsu215006P. R. China
| | - Kun Xi
- Department of Orthopedicsthe First Affiliated Hospital of Soochow UniversityOrthopedic InstituteSoochow University188 Shizi RoadSuzhouJiangsu215006P. R. China
| | - Yong Gu
- Department of Orthopedicsthe First Affiliated Hospital of Soochow UniversityOrthopedic InstituteSoochow University188 Shizi RoadSuzhouJiangsu215006P. R. China
| | - Liang Chen
- Department of Orthopedicsthe First Affiliated Hospital of Soochow UniversityOrthopedic InstituteSoochow University188 Shizi RoadSuzhouJiangsu215006P. R. China
| |
Collapse
|
39
|
Li W, Xu F, Dai F, Deng T, Ai Y, Xu Z, He C, Ai F, Song L. Hydrophilic surface-modified 3D printed flexible scaffolds with high ceramic particle concentrations for immunopolarization-regulation and bone regeneration. Biomater Sci 2023; 11:3976-3997. [PMID: 37115001 DOI: 10.1039/d3bm00362k] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Bioceramic scaffolds used in bone tissue engineering suffer from a low concentration of ceramic particles (<50 wt%), because the high concentration of ceramic particles increases the brittleness of the composite. 3D printed flexible PCL/HA scaffolds with high ceramic particle concentrations (84 wt%) were successfully fabricated in this study. However, the hydrophobicity of PCL weakens the composite scaffold hydrophilicity, which may limit the osteogenic ability to some extent. Thus, as a less time-consuming, less labour intensive, and more cost-effective treatment method, alkali treatment (AT) was employed to modify the surface hydrophilicity of the PCL/HA scaffold, and its regulation of immune responses and bone regeneration were investigated in vivo and in vitro. Initially, several concentrations of NaOH (0.5, 1, 1.5, 2, 2.5, and 5 mol L-1) were employed in tests to determine the appropriate concentration for AT. Based on the comprehensive consideration of the results of mechanical experiments and hydrophilicity, 2 mol L-1 and 2.5 mol L-1 of NaOH were selected for further investigation in this study. The PCL/HA-AT-2 scaffold dramatically reduced foreign body reactions as compared to the PCL/HA and PCL/HA-AT-2.5 scaffolds, promoted macrophage polarization towards the M2 phenotype and enhanced new bone formation. The Wnt/β-catenin pathway might participate in the signal transduction underlying hydrophilic surface-modified 3D printed scaffold-regulated osteogenesis, according to the results of immunohistochemical staining. In conclusion, hydrophilic surface-modified 3D printed flexible scaffolds with high ceramic particle concentrations can regulate the immune reactions and macrophage polarization to promote bone regeneration, and the PCL/HA-AT-2 scaffold is a potential candidate for bone tissue repair.
Collapse
Affiliation(s)
- Wenfeng Li
- The Center of Stomatology, the Second Affiliated Hospital of Nanchang University, Nanchang, China
- The Institute of Periodontal Disease, Nanchang University, Nanchang, China.
- JXHC Key Laboratory of Periodontology (The Second Affiliated Hospital of Nanchang University), Nanchang, China
| | - Fancheng Xu
- The Center of Stomatology, the Second Affiliated Hospital of Nanchang University, Nanchang, China
- The Institute of Periodontal Disease, Nanchang University, Nanchang, China.
- JXHC Key Laboratory of Periodontology (The Second Affiliated Hospital of Nanchang University), Nanchang, China
| | - Fang Dai
- The Center of Stomatology, the Second Affiliated Hospital of Nanchang University, Nanchang, China
- The Institute of Periodontal Disease, Nanchang University, Nanchang, China.
- JXHC Key Laboratory of Periodontology (The Second Affiliated Hospital of Nanchang University), Nanchang, China
| | - Tian Deng
- The Center of Stomatology, the Second Affiliated Hospital of Nanchang University, Nanchang, China
- The Institute of Periodontal Disease, Nanchang University, Nanchang, China.
- JXHC Key Laboratory of Periodontology (The Second Affiliated Hospital of Nanchang University), Nanchang, China
| | - Yufeng Ai
- The Center of Stomatology, the Second Affiliated Hospital of Nanchang University, Nanchang, China
- The Institute of Periodontal Disease, Nanchang University, Nanchang, China.
- JXHC Key Laboratory of Periodontology (The Second Affiliated Hospital of Nanchang University), Nanchang, China
| | - Zhiyong Xu
- School of Pharmacy, Nanchang University, Nanchang, China
| | - Chenjiang He
- The Center of Stomatology, the Second Affiliated Hospital of Nanchang University, Nanchang, China
- The Institute of Periodontal Disease, Nanchang University, Nanchang, China.
- JXHC Key Laboratory of Periodontology (The Second Affiliated Hospital of Nanchang University), Nanchang, China
| | - Fanrong Ai
- JXHC Key Laboratory of Periodontology (The Second Affiliated Hospital of Nanchang University), Nanchang, China
- School of Advanced Manufacturing, Nanchang University, Nanchang, China.
| | - Li Song
- The Center of Stomatology, the Second Affiliated Hospital of Nanchang University, Nanchang, China
- The Institute of Periodontal Disease, Nanchang University, Nanchang, China.
- JXHC Key Laboratory of Periodontology (The Second Affiliated Hospital of Nanchang University), Nanchang, China
| |
Collapse
|
40
|
Li C, Wu Y, Huang MY, Song XJ. Characterization of Inflammatory Signals in BV-2 Microglia in Response to Wnt3a. Biomedicines 2023; 11:biomedicines11041121. [PMID: 37189739 DOI: 10.3390/biomedicines11041121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/31/2023] [Accepted: 04/05/2023] [Indexed: 05/17/2023] Open
Abstract
Activation of microglia is one of the pathological bases of neuroinflammation, which involves various diseases of the central nervous system. Inhibiting the inflammatory activation of microglia is a therapeutic approach to neuroinflammation. In this study, we report that activation of the Wnt/β-catenin signaling pathway in a model of neuroinflammation in Lipopolysaccharide (LPS)/IFN-γ-stimulated BV-2 cells can result in inhibition of production of nitric oxide (NO), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α). Activation of the Wnt/β-catenin signaling pathway also results in inhibition of the phosphorylation of nuclear factor-κB (NF-κB) and extracellular signal-regulated kinase (ERK) in the LPS/IFN-γ-stimulated BV-2 cells. These findings indicate that activation of the Wnt/β-catenin signaling pathway can inhibit neuroinflammation through downregulating the pro-inflammatory cytokines including iNOS, TNF-α, and IL-6, and suppress NF-κB/ERK-related signaling pathways. In conclusion, this study indicates that the Wnt/β-catenin signaling activation may play an important role in neuroprotection in certain neuroinflammatory diseases.
Collapse
Affiliation(s)
- Cheng Li
- Department of Medical Neuroscience, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
- SUSTech Center for Pain Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ying Wu
- Department of Medical Neuroscience, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
- SUSTech Center for Pain Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ming-Yue Huang
- Department of Medical Neuroscience, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xue-Jun Song
- Department of Medical Neuroscience, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
- SUSTech Center for Pain Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
41
|
Han X, Shen J, Chen S, Cai Z, Zhu Y, Yi W, Li K, Cai W, Tao B, Cui W, Bai D. Ultrasonic-controlled "explosive" hydrogels to precisely regulate spatiotemporal osteoimmune disturbance. Biomaterials 2023; 295:122057. [PMID: 36805244 DOI: 10.1016/j.biomaterials.2023.122057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 01/28/2023] [Accepted: 02/14/2023] [Indexed: 02/17/2023]
Abstract
Spatiotemporal Immune disorder is a key factor leading to the failure of bone tissue healing. It is of vital importance to accurately suppress excessive peak immune response within 24-48 h of the injury and so regulate the spatiotemporal osteoimmune disturbance of bones. In this study, Ultrasound Controlled "Explosive" (UCE) hydrogels were prepared from gelatin-hyaluronic acid methacrylate hydrogels loaded with resveratrol nanobubbles produced by double emulsification through a condensation reaction. Such materials innovatively enable ultrasound-controlled RES release for precise regulation of spatiotemporal osteoimmune disorders. Under an ultrasonic power level of 1.5 W/cm2, the rate of effectively released RES through the blast of UCE hydrogels reached 38.14 %. And compared with the control group, the in vivo inhibition of inflammation and osteogenesis effects of UCE hydrogels were more effective, respectively. As suggested by the results, the excessive local inflammatory response was inhibited by the release of resveratrol, the temporospatial disorder of bone immune was precisely regulated, and as a result, the process of bone repair was accelerated. Altogether, this study confirms that the newly created UCE Hydrogels effectively promote bone repair by intervening peak inflammation during the early phase of fracture healing.
Collapse
Affiliation(s)
- Xiaoyu Han
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Jieliang Shen
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Shuyu Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Zhengwei Cai
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Ying Zhu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Weiwei Yi
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Kai Li
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Weiye Cai
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Bailong Tao
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China.
| | - Dingqun Bai
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
42
|
Williams DF. The plasticity of biocompatibility. Biomaterials 2023; 296:122077. [PMID: 36907003 DOI: 10.1016/j.biomaterials.2023.122077] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/19/2023] [Accepted: 03/02/2023] [Indexed: 03/11/2023]
Abstract
Biocompatibility concerns the phenomena that occur within the interactions between biomaterials and human patients, which ultimately control the performance of many facets of medical technology. It involves aspects of materials science, many different forms of engineering and nanotechnology, chemistry, biophysics, molecular and cellular biology, immunology, pathology and a myriad of clinical applications. It is not surprising that an overarching framework of mechanisms of biocompatibility has been difficult to elucidate and validate. This essay discusses one fundamental reason for this; we have tended to consider biocompatibility pathways as essentially linear sequences of events which follow well-understood processes of materials science and biology. The reality, however, is that the pathways may involve a great deal of plasticity, in which many additional idiosyncratic factors, including those of genetic, epigenetic and viral origin, exert influence, as do complex mechanical, physical and pharmacological variables. Plasticity is an inherent core feature of the performance of synthetic materials; here we follow the more recent biological applications of plasticity concepts into the sphere of biocompatibility pathways. A straightforward linear pathway may result in successful outcomes for many patients; we may describe this in terms of classic biocompatibility pathways. In other situations, which usually command much more attention because of their unsuccessful outcomes, these plasticity-driven processes follow alternative biocompatibility pathways; often, the variability in outcomes with identical technologies is due to biological plasticity rather than material or device deficiency.
Collapse
Affiliation(s)
- David F Williams
- Wake Forest Institute of Regenerative Medicine, Winston-Salem, North Carolina, USA.
| |
Collapse
|
43
|
Berger MB, Cohen DJ, Bosh KB, Kapitanov M, Slosar PJ, Levit MM, Gallagher M, Rawlinson JJ, Schwartz Z, Boyan BD. Bone marrow stromal cells generate an osteoinductive microenvironment when cultured on titanium-aluminum-vanadium substrates with biomimetic multiscale surface roughness. Biomed Mater 2023; 18. [PMID: 36827708 PMCID: PMC9993812 DOI: 10.1088/1748-605x/acbf15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 02/24/2023] [Indexed: 02/26/2023]
Abstract
Osseointegration of titanium-based implants possessing complex macroscale/microscale/mesoscale/nanoscale (multiscale) topographies support a direct and functional connection with native bone tissue by promoting recruitment, attachment and osteoblastic differentiation of bone marrow stromal cells (MSCs). Recent studies show that the MSCs on these surfaces produce factors, including bone morphogenetic protein 2 (BMP2) that can cause MSCs not on the surface to undergo osteoblast differentiation, suggesting they may produce an osteogenic environmentin vivo. This study examined if soluble factors produced by MSCs in contact with titanium-aluminum-vanadium (Ti6Al4V) implants possessing a complex multiscale biomimetic topography are able to induce osteogenesis ectopically. Ti6Al4V disks were grit-blasted and acid-etched to create surfaces possessing macroscale and microscale roughness (MM), micro/meso/nanoscale topography (MN), and macro/micro/meso/nanoscale topography (MMNTM). Polyether-ether-ketone (PEEK) disks were also fabricated by machining to medical-grade specifications. Surface properties were assessed by scanning electron microscopy, contact angle, optical profilometry, and x-ray photoelectron spectroscopy. MSCs were cultured in growth media (GM). Proteins and local factors in their conditioned media (CM) were measured on days 4, 8, 10 and 14: osteocalcin, osteopontin, osteoprotegerin, BMP2, BMP4, and cytokines interleukins 6, 4 and 10 (IL6, IL4, and IL10). CM was collected from D14 MSCs on MMNTMand tissue culture polystyrene (TCPS) and lyophilized. Gel capsules containing active demineralized bone matrix (DBM), heat-inactivated DBM (iDBM), and iDBM + MMN-GM were implanted bilaterally in the gastrocnemius of athymic nude mice (N= 8 capsules/group). Controls included iDBM + GM; iDBM + TCPS-CM from D5 to D10 MSCs; iDBM + MMN-CM from D5 to D10; and iDBM + rhBMP2 (R&D Systems) at a concentration similar to D5-D10 production of MSCs on MMNTMsurfaces. Legs were harvested at 35D. Bone formation was assessed by micro computed tomography and histomorphometry (hematoxylin and eosin staining) with the histology scored according to ASTM 2529-13. DNA was greatest on PEEK at all time points; DNA was lowest on MN at early time points, but increased with time. Cells on PEEK exhibited small changes in differentiation with reduced production of BMP2. Osteoblast differentiation was greatest on the MN and MMNTM, reflecting increased production of BMP2 and BMP4. Pro-regenerative cytokines IL4 and IL10 were increased on Ti-based surfaces; IL6 was reduced compared to PEEK. None of the media from TCPS cultures was osteoinductive. However, MMN-CM exhibited increased bone formation compared to iDBM and iDBM + rhBMP2. Furthermore, exogenous rhBMP2 alone, at the concentration found in MMN-CM collected from D5 to D10 cultures, failed to induce new bone, indicating that other factors in the CM play a critical role in that osteoinductive microenvironment. MSCs cultured on MMNTMTi6Al4V surfaces differentiate and produce an increase in local factors, including BMP2, and the CM from these cultures can induce ectopic bone formation compared to control groups, indicating that the increased bone formation arises from the local response by MSCs to a biomimetic, multiscale surface topography.
Collapse
Affiliation(s)
- Michael B Berger
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, 601 W. Main Street, Richmond, VA 23284, United States of America
| | - D Joshua Cohen
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, 601 W. Main Street, Richmond, VA 23284, United States of America
| | - Kyla B Bosh
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, 601 W. Main Street, Richmond, VA 23284, United States of America
| | - Marina Kapitanov
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, 601 W. Main Street, Richmond, VA 23284, United States of America
| | - Paul J Slosar
- SpineCare Medical Group, 455 Hickey Blvd., Suite 310, Daly City, CA 94015, United States of America
| | - Michael M Levit
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, 601 W. Main Street, Richmond, VA 23284, United States of America
| | - Michelle Gallagher
- Medtronic, Applied Research-Spine, Minneapolis, MN, United States of America
| | - Jeremy J Rawlinson
- Medtronic, Applied Research-Spine, Minneapolis, MN, United States of America
| | - Zvi Schwartz
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, 601 W. Main Street, Richmond, VA 23284, United States of America.,Department of Periodontology, University of Texas Health Science Center at San Antonio, 7703, Floyd Curl Drive, San Antonio, TX 78229, United States of America
| | - Barbara D Boyan
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, 601 W. Main Street, Richmond, VA 23284, United States of America.,Wallace H. Coulter Department of Biomedical Engineering at the Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, GA 30332, United States of America
| |
Collapse
|
44
|
Wei Y, Yun X, Guan Y, Cao S, Li X, Wang Y, Meng H, Liu Y, Quan Q, Wei M. Wnt3a-Modified Nanofiber Scaffolds Facilitate Tendon Healing by Driving Macrophage Polarization during Repair. ACS APPLIED MATERIALS & INTERFACES 2023; 15:9010-9023. [PMID: 36758166 DOI: 10.1021/acsami.2c20386] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Inflammation is part of the natural healing response, but persistent inflammatory events tend to contribute to pathology changes of tendon or ligament. Phenotypic switching of macrophages within the inflammatory niche is crucial for tendon healing. One viable strategy to improve the functional and biomechanical properties of ruptured tendons is to modulate the transition from inflammatory to regenerative signals during tendon regeneration at the site of injury. Here, we developed a tendon repair scaffold made of biodegradable polycaprolactone by electrospinning, which was modified to deliver Wnt3a protein and served as an implant to improve tendon healing in a rat model of Achilles tendon defect. During the in vitro study, Wnt3a protein promoted the polarization of M2 macrophages. In the in vivo experiment, Wnt3a scaffold promoted the early recruitment and counting curve of macrophages and increased the proportion of M2 macrophages. Achilles function index and mechanical properties showed that the implantation effect of the Wnt3a group was better than that of the control group. We believe that this type of scaffold can be used to repair tendon defects. This work highlights the beneficial role of local delivery of biological factors in directing inflammatory responses toward regenerative strategies in tendon healing.
Collapse
Affiliation(s)
- Yu Wei
- Department of Orthopedic Surgery, the Fourth Medical Center of Chinese PLA General Hospital, Beijing 100142, China
| | - Xing Yun
- Department of Orthopedic Surgery, the Fourth Medical Center of Chinese PLA General Hospital, Beijing 100142, China
| | - Yanjun Guan
- Department of Orthopedic Surgery, the Fourth Medical Center of Chinese PLA General Hospital, Beijing 100142, China
- Department of Orthopedic Surgery, Key Laboratory of Musculoskeletal Trauma &War Injuries PLA, Beijing Key Lab of Regenerative Medicine in Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
| | - Shunze Cao
- Department of Engineering Mechanics, Tsinghua University, 100084 Beijing, China
| | - Xiangling Li
- Department of Orthopedic Surgery, the Fourth Medical Center of Chinese PLA General Hospital, Beijing 100142, China
- Department of Orthopedic Surgery, Key Laboratory of Musculoskeletal Trauma &War Injuries PLA, Beijing Key Lab of Regenerative Medicine in Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
| | - Yu Wang
- Department of Orthopedic Surgery, the Fourth Medical Center of Chinese PLA General Hospital, Beijing 100142, China
- Department of Orthopedic Surgery, Key Laboratory of Musculoskeletal Trauma &War Injuries PLA, Beijing Key Lab of Regenerative Medicine in Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
| | - Haoye Meng
- Department of Orthopedic Surgery, the Fourth Medical Center of Chinese PLA General Hospital, Beijing 100142, China
- Department of Orthopedic Surgery, Key Laboratory of Musculoskeletal Trauma &War Injuries PLA, Beijing Key Lab of Regenerative Medicine in Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
| | - Yujie Liu
- Department of Orthopedic Surgery, the Fourth Medical Center of Chinese PLA General Hospital, Beijing 100142, China
| | - Qi Quan
- Department of Orthopedic Surgery, the Fourth Medical Center of Chinese PLA General Hospital, Beijing 100142, China
- Department of Orthopedic Surgery, Key Laboratory of Musculoskeletal Trauma &War Injuries PLA, Beijing Key Lab of Regenerative Medicine in Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
| | - Min Wei
- Department of Orthopedic Surgery, the Fourth Medical Center of Chinese PLA General Hospital, Beijing 100142, China
| |
Collapse
|
45
|
Jin P, Liu L, Cheng L, Chen X, Xi S, Jiang T. Calcium-to-phosphorus releasing ratio affects osteoinductivity and osteoconductivity of calcium phosphate bioceramics in bone tissue engineering. Biomed Eng Online 2023; 22:12. [PMID: 36759894 PMCID: PMC9912630 DOI: 10.1186/s12938-023-01067-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/16/2023] [Indexed: 02/11/2023] Open
Abstract
Calcium phosphate (Ca-P) bioceramics, including hydroxyapatite (HA), biphasic calcium phosphate (BCP), and beta-tricalcium phosphate (β-TCP), have been widely used in bone reconstruction. Many studies have focused on the osteoconductivity or osteoinductivity of Ca-P bioceramics, but the association between osteoconductivity and osteoinductivity is not well understood. In our study, the osteoconductivity of HA, BCP, and β-TCP was investigated based on the osteoblastic differentiation in vitro and in situ as well as calvarial defect repair in vivo, and osteoinductivity was evaluated by using pluripotent mesenchymal stem cells (MSCs) in vitro and heterotopic ossification in muscles in vivo. Our results showed that the cell viability, alkaline phosphatase activity, and expression of osteogenesis-related genes, including osteocalcin (Ocn), bone sialoprotein (Bsp), alpha-1 type I collagen (Col1a1), and runt-related transcription factor 2 (Runx2), of osteoblasts each ranked as BCP > β-TCP > HA, but the alkaline phosphatase activity and expression of osteogenic differentiation genes of MSCs each ranked as β-TCP > BCP > HA. Calvarial defect implantation of Ca-P bioceramics ranked as BCP > β-TCP ≥ HA, but intramuscular implantation ranked as β-TCP ≥ BCP > HA in vivo. Further investigation indicated that osteoconductivity and osteoinductivity are affected by the Ca/P ratio surrounding the Ca-P bioceramics. Thus, manipulating the appropriate calcium-to-phosphorus releasing ratio is a critical factor for determining the osteoinductivity of Ca-P bioceramics in bone tissue engineering.
Collapse
Affiliation(s)
- Pan Jin
- grid.410654.20000 0000 8880 6009Health Science Center, Yangtze University, Jingzhou, 434023 Hubei China ,Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed By the Province and MinistryGuangxi Medical University, Nanning, 530021 Guangxi China
| | - Lei Liu
- grid.452877.b0000 0004 6005 8466Articular Surgery, The Second Nanning People’s Hospital, Third Affiliated Hospital of Guangxi Medical University), Nanning, 530031 Guangxi China
| | - Lin Cheng
- grid.410654.20000 0000 8880 6009Health Science Center, Yangtze University, Jingzhou, 434023 Hubei China
| | - Xichi Chen
- grid.410654.20000 0000 8880 6009Health Science Center, Yangtze University, Jingzhou, 434023 Hubei China
| | - Shanshan Xi
- Health Science Center, Yangtze University, Jingzhou, 434023, Hubei, China.
| | - Tongmeng Jiang
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, 571199, China. .,Key Laboratory of Emergency and Trauma, Ministry of Education, Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou, 571199, China.
| |
Collapse
|
46
|
Liu Z, Zhu J, Li Z, Liu H, Fu C. Biomaterial scaffolds regulate macrophage activity to accelerate bone regeneration. Front Bioeng Biotechnol 2023; 11:1140393. [PMID: 36815893 PMCID: PMC9932600 DOI: 10.3389/fbioe.2023.1140393] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023] Open
Abstract
Bones are important for maintaining motor function and providing support for internal organs. Bone diseases can impose a heavy burden on individuals and society. Although bone has a certain ability to repair itself, it is often difficult to repair itself alone when faced with critical-sized defects, such as severe trauma, surgery, or tumors. There is still a heavy reliance on metal implants and autologous or allogeneic bone grafts for bone defects that are difficult to self-heal. However, these grafts still have problems that are difficult to circumvent, such as metal implants that may require secondary surgical removal, lack of bone graft donors, and immune rejection. The rapid advance in tissue engineering and a better comprehension of the physiological mechanisms of bone regeneration have led to a new focus on promoting endogenous bone self-regeneration through the use of biomaterials as the medium. Although bone regeneration involves a variety of cells and signaling factors, and these complex signaling pathways and mechanisms of interaction have not been fully understood, macrophages undoubtedly play an essential role in bone regeneration. This review summarizes the design strategies that need to be considered for biomaterials to regulate macrophage function in bone regeneration. Subsequently, this review provides an overview of therapeutic strategies for biomaterials to intervene in all stages of bone regeneration by regulating macrophages.
Collapse
Affiliation(s)
- Zongtai Liu
- Department of Spine Surgery, First Hospital of Jilin University, Changchun, China
- Department of Orthopedics, Affiliated Hospital of Beihua University, Jilin, China
| | - Jiabo Zhu
- Department of Orthopedics, Affiliated Hospital of Beihua University, Jilin, China
| | - Zhuohan Li
- Department of Gynecology, Affiliated Hospital of Beihua University, Jilin, China
| | - Hanyan Liu
- Department of Orthopedics, Baicheng Central Hospital, Baicheng, China
| | - Changfeng Fu
- Department of Spine Surgery, First Hospital of Jilin University, Changchun, China
| |
Collapse
|
47
|
Albrektsson T, Tengvall P, Amengual L, Coli P, Kotsakis GA, Cochran D. Osteoimmune regulation underlies oral implant osseointegration and its perturbation. Front Immunol 2023; 13:1056914. [PMID: 36761175 PMCID: PMC9902598 DOI: 10.3389/fimmu.2022.1056914] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/20/2022] [Indexed: 01/26/2023] Open
Abstract
In the field of biomaterials, an endosseous implant is now recognized as an osteoimmunomodulatory but not bioinert biomaterial. Scientific advances in bone cell biology and in immunology have revealed a close relationship between the bone and immune systems resulting in a field of science called osteoimmunology. These discoveries have allowed for a novel interpretation of osseointegration as representing an osteoimmune reaction rather than a classic bone healing response, in which the activation state of macrophages ((M1-M2 polarization) appears to play a critical role. Through this viewpoint, the immune system is responsible for isolating the implant biomaterial foreign body by forming bone around the oral implant effectively shielding off the implant from the host bone system, i.e. osseointegration becomes a continuous and dynamic host defense reaction. At the same time, this has led to the proposal of a new model of osseointegration, the foreign body equilibrium (FBE). In addition, as an oral wound, the soft tissues are involved with all their innate immune characteristics. When implant integration is viewed as an osteoimmune reaction, this has implications for how marginal bone is regulated. For example, while bacteria are constitutive components of the soft tissue sulcus, if the inflammatory front and immune reaction is at some distance from the marginal bone, an equilibrium is established. If however, this inflammation approaches the marginal bone, an immune osteoclastic reaction occurs and marginal bone is removed. A number of clinical scenarios can be envisioned whereby the osteoimmune equilibrium is disturbed and marginal bone loss occurs, such as complications of aseptic nature and the synergistic activation of pro-inflammatory pathways (implant/wear debris, DAMPs, and PAMPs). Understanding that an implant is a foreign body and that the host reacts osteoimmunologically to shield off the implant allows for a distinction to be drawn between osteoimmunological conditions and peri-implant bone loss. This review will examine dental implant placement as an osteoimmune reaction and its implications for marginal bone loss.
Collapse
Affiliation(s)
- T. Albrektsson
- Department of Biomaterials, University of Gothenburg, Gothenburg, Sweden
| | - P. Tengvall
- Department of Biomaterials, University of Gothenburg, Gothenburg, Sweden,*Correspondence: P. Tengvall,
| | - L. Amengual
- Dental Implantology Unit, Hospital Leonardo Guzmán, Antofagasta, Chile
| | - P. Coli
- Edinburgh Dental Specialists, Edinburgh, United Kingdom,Department of Prosthetic Dentistry and Dental Material Science, The Sahlgrenska Academy at Gothenburg University, Gothenburg, Sweden,Department of Dental Material Science, The Sahlgrenska Academy at Gothenburg University, Gothenburg, Sweden
| | - G. A. Kotsakis
- Department of Periodontology, University of Texas, San Antonio, TX, United States
| | - D. Cochran
- Department of Periodontology, University of Texas, San Antonio, TX, United States
| |
Collapse
|
48
|
Xiong Y, Xu Y, Zhou F, Hu Y, Zhao J, Liu Z, Zhai Q, Qi S, Zhang Z, Chen L. Bio-functional hydrogel with antibacterial and anti-inflammatory dual properties to combat with burn wound infection. Bioeng Transl Med 2023; 8:e10373. [PMID: 36684072 PMCID: PMC9842067 DOI: 10.1002/btm2.10373] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 05/07/2022] [Accepted: 06/12/2022] [Indexed: 01/25/2023] Open
Abstract
Burn infection delays wound healing and increases the burn patient mortality. Consequently, a new dressing with antibacterial and anti-inflammatory dual properties is urgently required for wound healing. In this study, we propose a combination of methacrylate gelatin (GelMA) hydrogel system with silver nanoparticles embed in γ-cyclodextrin metal-organic frameworks (Ag@MOF) and hyaluronic acid-epigallocatechin gallate (HA-E) for the burn wound infection treatment. Ag@MOF is used as an antibacterial agent and epigallocatechin gallate (EGCG) has exhibited biological properties of anti-inflammation and antibacterial. The GelMA/HA-E/Ag@MOF hydrogel enjoys suitable physical properties and sustained release of Ag+. Meanwhile, the hydrogel has excellent biocompatibility and could promote macrophage polarization from M1 to M2. In vivo wound healing evaluations further demonstrate that the GelMA/HA-E/Ag@MOF hydrogel reduces the number of the bacterium efficiently, accelerates wound healing, promotes early angiogenesis, and regulates immune reaction. A further evaluation indicates that the noncanonical Wnt signal pathway is significantly activated in the GelMA/HA-E/Ag@MOF hydrogel treated group. In conclusion, the GelMA/HA-E/Ag@MOF hydrogel could serve as a promising multifunctional dressing for the burn wound healing.
Collapse
Affiliation(s)
- Yahui Xiong
- Department of Burns, Laboratory of General SurgeryThe First Affiliated Hospital, SunYat‐Sen UniversityGuangzhouChina
- Guangdong Provincial Engineering Technology Research Center of Burn and Wound Accurate Diagnosis and Treatment Key Technology and Series of ProductsSunYat‐Sen UniversityGuangzhouChina
- Institute of Precision MedicineThe First Affiliated Hospital, SunYat‐Sen UniversityGuangzhouChina
| | - Yingbin Xu
- Department of Burns, Laboratory of General SurgeryThe First Affiliated Hospital, SunYat‐Sen UniversityGuangzhouChina
- Guangdong Provincial Engineering Technology Research Center of Burn and Wound Accurate Diagnosis and Treatment Key Technology and Series of ProductsSunYat‐Sen UniversityGuangzhouChina
- Institute of Precision MedicineThe First Affiliated Hospital, SunYat‐Sen UniversityGuangzhouChina
| | - Fei Zhou
- Department of Burns, Laboratory of General SurgeryThe First Affiliated Hospital, SunYat‐Sen UniversityGuangzhouChina
- Guangdong Provincial Engineering Technology Research Center of Burn and Wound Accurate Diagnosis and Treatment Key Technology and Series of ProductsSunYat‐Sen UniversityGuangzhouChina
- Institute of Precision MedicineThe First Affiliated Hospital, SunYat‐Sen UniversityGuangzhouChina
| | - Yanke Hu
- Department of Burns, Laboratory of General SurgeryThe First Affiliated Hospital, SunYat‐Sen UniversityGuangzhouChina
- Guangdong Provincial Engineering Technology Research Center of Burn and Wound Accurate Diagnosis and Treatment Key Technology and Series of ProductsSunYat‐Sen UniversityGuangzhouChina
- Institute of Precision MedicineThe First Affiliated Hospital, SunYat‐Sen UniversityGuangzhouChina
| | - Jingling Zhao
- Department of Burns, Laboratory of General SurgeryThe First Affiliated Hospital, SunYat‐Sen UniversityGuangzhouChina
- Guangdong Provincial Engineering Technology Research Center of Burn and Wound Accurate Diagnosis and Treatment Key Technology and Series of ProductsSunYat‐Sen UniversityGuangzhouChina
- Institute of Precision MedicineThe First Affiliated Hospital, SunYat‐Sen UniversityGuangzhouChina
| | - Zhonghua Liu
- South China Agricultural UniversityGuangzhouChina
| | - Qiyi Zhai
- ZhuJiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Shaohai Qi
- Department of Burns, Laboratory of General SurgeryThe First Affiliated Hospital, SunYat‐Sen UniversityGuangzhouChina
- Guangdong Provincial Engineering Technology Research Center of Burn and Wound Accurate Diagnosis and Treatment Key Technology and Series of ProductsSunYat‐Sen UniversityGuangzhouChina
- Institute of Precision MedicineThe First Affiliated Hospital, SunYat‐Sen UniversityGuangzhouChina
| | - Zhaoqiang Zhang
- Department of Oral and Maxillofacial SurgeryStomatological Hospital, Southern Medical UniversityGuangzhouChina
| | - Lei Chen
- Department of Burns, Laboratory of General SurgeryThe First Affiliated Hospital, SunYat‐Sen UniversityGuangzhouChina
- Guangdong Provincial Engineering Technology Research Center of Burn and Wound Accurate Diagnosis and Treatment Key Technology and Series of ProductsSunYat‐Sen UniversityGuangzhouChina
- Institute of Precision MedicineThe First Affiliated Hospital, SunYat‐Sen UniversityGuangzhouChina
| |
Collapse
|
49
|
Qin H, Luo Z, Sun Y, He Z, Qi B, Chen Y, Wang J, Li C, Lin W, Han Z, Zhu Y. Low-intensity pulsed ultrasound promotes skeletal muscle regeneration via modulating the inflammatory immune microenvironment. Int J Biol Sci 2023; 19:1123-1145. [PMID: 36923940 PMCID: PMC10008697 DOI: 10.7150/ijbs.79685] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 01/15/2023] [Indexed: 03/14/2023] Open
Abstract
Background: Low-intensity pulsed ultrasound (LIPUS, a form of mechanical stimulation) can promote skeletal muscle functional repair, but a lack of mechanistic understanding of its relationship and tissue regeneration limits progress in this field. We investigated the hypothesis that specific energy levels of LIPUS mediates skeletal muscle regeneration by modulating the inflammatory microenvironment. Methods: To address these gaps, LIPUS irritation was applied in vivo for 5 min at two different intensities (30mW/cm2 and 60mW/cm2) in next 7 consecutive days, and the treatment begun at 24h after air drop-induced contusion injury. In vitro experiments, LIPUS irritation was applied at three different intensities (30mW/cm2, 45mW/cm2, and 60mW/cm2) for 2 times 24h after introduction of LPS in RAW264.7. Then, we comprehensively assessed the functional and histological parameters of skeletal muscle injury in mice and the phenotype shifting in macrophages through molecular biological methods and immunofluorescence analysis both in vivo and in vitro. Results: We reported that LIPUS therapy at intensity of 60mW/cm2 exhibited the most significant differences in functional recovery of contusion-injured muscle in mice. The comprehensive functional tests and histological analysis in vivo indirectly and directly proved the effectiveness of LIPUS for muscle recovery. Through biological methods and immunofluorescence analysis both in vivo and in vitro, we found that this improvement was attributable in part to the clearance of M1 macrophages populations and the increase in M2 subtypes with the change of macrophage-mediated factors. Depletion of macrophages in vivo eliminated the therapeutic effects of LIPUS, indicating that improvement in muscle function was the result of M2-shifted macrophage polarization. Moreover, the M2-inducing effects of LIPUS were proved partially through the WNT pathway by upregulating FZD5 expression and enhancing β-catenin nuclear translocation in macrophages both in vitro and in vivo. The inhibition and augment of WNT pathway in vitro further verified our results. Conclusion: LIPUS at intensity of 60mW/cm2 could significantly promoted skeletal muscle regeneration through shifting macrophage phenotype from M1 to M2. The ability of LIPUS to direct macrophage polarization may be a beneficial target in the clinical treatment of many injuries and inflammatory diseases.
Collapse
Affiliation(s)
- Haocheng Qin
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhiwen Luo
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yaying Sun
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhong He
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Beijie Qi
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University, Shanghai, China
| | - Yisheng Chen
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Junlong Wang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Ce Li
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Weiwei Lin
- Department of Neurosurgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Zhejiang, China
| | - Zhihua Han
- Department of Orthopedics and Traumatology, Shanghai General Hospital Shanghai Jiaotong University, Shanghai, China
| | - Yulian Zhu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
50
|
Li L, Yang LL, Yang SL, Wang RQ, Gao H, Lin ZY, Zhao YY, Tang WW, Han R, Wang WJ, Liu P, Hou ZL, Meng MY, Liao LW. Andrographolide suppresses breast cancer progression by modulating tumor-associated macrophage polarization through the Wnt/β-catenin pathway. Phytother Res 2022; 36:4587-4603. [PMID: 35916377 PMCID: PMC10086840 DOI: 10.1002/ptr.7578] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 06/24/2022] [Accepted: 07/07/2022] [Indexed: 12/13/2022]
Abstract
Andrographolide(ADE) has been demonstrated to inhibit tumor growth through direct cytotoxicity on tumor cells. However, its potential activity on tumor microenvironment (TME) remains unclear. Tumor-associated macrophages (TAMs), composed mainly of M2 macrophages, are the key cells that create an immunosuppressive TME by secretion of cytokines, thus enhancing tumor progression. Re-polarized subpopulations of macrophages may represent vital new therapeutic alternatives. Our previous studies showed that ADE possessed anti-metastasis and anoikis-sensitization effects. Here, we demonstrated that ADE significantly suppressed M2-like polarization and enhanced M1-like polarization of macrophages. Moreover, ADE inhibited the migration of M2 and tube formation in HUVECs under M2 stimulation. In vivo studies showed that ADE restrained the growth of MDA-MB-231 and HCC1806 human breast tumor xenografts and 4T-1 mammary gland tumors through TAMs. Wnt5a/β-catenin pathway and MMPs were particularly associated with ADE's regulatory mechanisms to M2 according to RNA-seq and bioinformatics analysis. Moreover, western blot also verified the expressions of these proteins were declined with ADE exposure. Among the cytokines released by M2, PDGF-AA and CCL2 were reduced. Our current findings for the first time elucidated that ADE could modulate macrophage polarization and function through Wnt5a signaling pathway, thereby playing its role in inhibition of triple-negative breast cancer.
Collapse
Affiliation(s)
- Lin Li
- Central Laboratory of Yan'an Hospital Affiliated to Kunming Medical University, Kunming, People's Republic of China.,Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming, People's Republic of China.,Yunnan Cell Biology and Clinical Translation Research Center, Kunming, People's Republic of China
| | - Li-Li Yang
- Central Laboratory of Yan'an Hospital Affiliated to Kunming Medical University, Kunming, People's Republic of China.,Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming, People's Republic of China.,Kunming Medical University, Kunming, People's Republic of China
| | - Song-Lin Yang
- Central Laboratory of Yan'an Hospital Affiliated to Kunming Medical University, Kunming, People's Republic of China.,Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming, People's Republic of China.,Kunming Medical University, Kunming, People's Republic of China
| | - Run-Qing Wang
- Central Laboratory of Yan'an Hospital Affiliated to Kunming Medical University, Kunming, People's Republic of China.,Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming, People's Republic of China.,Kunming Medical University, Kunming, People's Republic of China
| | - Hui Gao
- Central Laboratory of Yan'an Hospital Affiliated to Kunming Medical University, Kunming, People's Republic of China.,Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming, People's Republic of China.,Yunnan Cell Biology and Clinical Translation Research Center, Kunming, People's Republic of China
| | - Zhu-Ying Lin
- Central Laboratory of Yan'an Hospital Affiliated to Kunming Medical University, Kunming, People's Republic of China.,Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming, People's Republic of China.,Kunming Medical University, Kunming, People's Republic of China
| | - Yi-Yi Zhao
- Central Laboratory of Yan'an Hospital Affiliated to Kunming Medical University, Kunming, People's Republic of China.,Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming, People's Republic of China.,Yunnan Cell Biology and Clinical Translation Research Center, Kunming, People's Republic of China
| | - Wei-Wei Tang
- Central Laboratory of Yan'an Hospital Affiliated to Kunming Medical University, Kunming, People's Republic of China.,Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming, People's Republic of China.,Yunnan Cell Biology and Clinical Translation Research Center, Kunming, People's Republic of China
| | - Rui Han
- Central Laboratory of Yan'an Hospital Affiliated to Kunming Medical University, Kunming, People's Republic of China.,Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming, People's Republic of China.,Kunming Medical University, Kunming, People's Republic of China
| | - Wen-Ju Wang
- Central Laboratory of Yan'an Hospital Affiliated to Kunming Medical University, Kunming, People's Republic of China.,Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming, People's Republic of China.,Yunnan Cell Biology and Clinical Translation Research Center, Kunming, People's Republic of China
| | - Ping Liu
- Central Laboratory of Yan'an Hospital Affiliated to Kunming Medical University, Kunming, People's Republic of China.,Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming, People's Republic of China.,Yunnan Cell Biology and Clinical Translation Research Center, Kunming, People's Republic of China
| | - Zong-Liu Hou
- Central Laboratory of Yan'an Hospital Affiliated to Kunming Medical University, Kunming, People's Republic of China.,Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming, People's Republic of China.,Yunnan Cell Biology and Clinical Translation Research Center, Kunming, People's Republic of China
| | - Ming-Yao Meng
- Central Laboratory of Yan'an Hospital Affiliated to Kunming Medical University, Kunming, People's Republic of China.,Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming, People's Republic of China.,Yunnan Cell Biology and Clinical Translation Research Center, Kunming, People's Republic of China
| | - Li-Wei Liao
- Central Laboratory of Yan'an Hospital Affiliated to Kunming Medical University, Kunming, People's Republic of China.,Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming, People's Republic of China.,Yunnan Cell Biology and Clinical Translation Research Center, Kunming, People's Republic of China
| |
Collapse
|