1
|
Li H, Ma L, Zhu N, Liang X, Tian X, Liu K, Fu X, Wang X, Zhang H, Chen H, Liu Q, Yang J. Mesenchymal stromal cells surface engineering for efficient hematopoietic reconstitution. Biomaterials 2025; 314:122882. [PMID: 39423513 DOI: 10.1016/j.biomaterials.2024.122882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/20/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024]
Abstract
Mesenchymal stromal cells (MSCs) are believed to migrate to injury sites, release chemical attractants, and either recruit local stem cells or modulate the immune system positively. Although MSCs are highly desired for their potential to reduce inflammation and promote tissue regeneration, their limited lifespan restricts their applications. This study presents a simple approach for protecting MSCs with epigallocatechin-3-gallate (EGCG) and magnesium (Mg) based metal-organic framework coatings (E-Mg@MSC). The layer strengthens MSCs resistant to harmful stresses and creates a favorable microenvironment for repair by providing Mg to facilitate MSCs' osteogenic differentiation and using EGCG to neutralize excessive reactive oxygen species (ROS). E-Mg@MSC serves as a treatment for hematopoietic injury induced by ionizing radiation (IR). Coated MSCs exhibit sustained secretion of hematopoietic growth factors and precise homing to radiation-sensitive tissues. In vivo studies show substantial enhancement in hematopoietic system recovery and multi-organ protection. Mechanistic investigations suggest that E-Mg@MSC mitigates IR-induced ROS, cell apoptosis, and ferroptosis, contributing to reduced radiation damage. The system represents a versatile and compelling strategy for cell-surface engineering with functional materials to advance MSCs therapy.
Collapse
Affiliation(s)
- Huiyang Li
- State Key Laboratory of Advanced Medical Materials and Devices, Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300192, China
| | - Lifei Ma
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Ni Zhu
- State Key Laboratory of Advanced Medical Materials and Devices, Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300192, China
| | - Xiaoyu Liang
- State Key Laboratory of Advanced Medical Materials and Devices, Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300192, China
| | - Xinxin Tian
- State Key Laboratory of Advanced Medical Materials and Devices, Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300192, China
| | - Kaijing Liu
- State Key Laboratory of Advanced Medical Materials and Devices, Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300192, China
| | - Xue Fu
- State Key Laboratory of Advanced Medical Materials and Devices, Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300192, China
| | - Xiaoli Wang
- State Key Laboratory of Advanced Medical Materials and Devices, Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300192, China
| | - Hailing Zhang
- State Key Laboratory of Advanced Medical Materials and Devices, Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300192, China.
| | - Houzao Chen
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Qiang Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Department of Radiobiology, Institute of Radiation Medicine of Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, 300192, China.
| | - Jing Yang
- State Key Laboratory of Advanced Medical Materials and Devices, Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300192, China.
| |
Collapse
|
2
|
Chen Y, Pan D, Zhu Q, Lu M, Zhang Y, Gao Z, Zhang L, Yi Y, Liu L, Liu Q, Li S, Shen C, Tang Q, Jiang C. Biomimetic metal-phenolic nanocarrier for co-delivery of multiple phytomedical bioactive components for anti-atherosclerotic therapy. Int J Pharm 2025; 671:125228. [PMID: 39832572 DOI: 10.1016/j.ijpharm.2025.125228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 01/10/2025] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
Atherosclerosis, a major cause of cardiovascular diseases, involves complex pathophysiological processes. The co-delivery of multiple bioactive components derived from phytomedicine to atherosclerotic plaque is challenging, especially for those with varied solubilities. This study introduces a novel metal-phenolic network-based core-shell recombinant high-density lipoprotein nanocarrier (SSPH-MPN@rHDL) for co-delivering multiple bioactive components from Salvia miltiorrhiza and Carthamus tinctorius, including salvianic acid A (SAA), salvianolic acid B (SAB), protocatechuic aldehyde (PCA), hydroxysafflor yellow A (HSYA), and tanshinone IIA (TS-IIA). These components have varied solubilities, presenting challenges for achieving synergistic therapeutic effects. The SSPH-MPN@rHDL system encapsulates the four hydrophilic components (i.e. SAA, SAB, PCA, HSYA) within a quaternary metal-phenolic network and a hydrophobic component (i.e. TS-IIA) in an outer lipid layer, facilitating targeted plaque delivery. In vitro and in vivo experimental results demonstrated that SSPH-MPN@rHDL enhanced anti-atherosclerotic efficacy through combined antioxidant, anti-inflammatory, and lipid-lowering actions. This approach offers new perspectives on using nanotechnology to optimize the delivery of phytomedicinal compounds for cardiovascular therapy.
Collapse
Affiliation(s)
- Yao Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515 China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou 510515 China
| | - Dongmei Pan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515 China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou 510515 China
| | - Qinglan Zhu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515 China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou 510515 China
| | - Meiting Lu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515 China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou 510515 China
| | - Ying Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515 China
| | - Ziting Gao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515 China
| | - Lu Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515 China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou 510515 China
| | - Yankui Yi
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515 China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou 510515 China
| | - Li Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515 China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou 510515 China
| | - Qiang Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515 China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou 510515 China
| | - Shasha Li
- College of Pharmacy, Xinjiang Medical University, Urumqi, People's Republic of China
| | - Chunyan Shen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515 China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou 510515 China; Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Guangzhou 510515 China.
| | - Qingfa Tang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515 China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou 510515 China; Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Guangzhou 510515 China.
| | - Cuiping Jiang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515 China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou 510515 China; Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Guangzhou 510515 China.
| |
Collapse
|
3
|
Chai Y, Zhou Y, Zhang K, Shao P. Resveratrol nanoparticles coated by metal-polyphenols supramolecular enhance antioxidant activity and long-term stability of dietary gel. Food Chem 2025; 465:141987. [PMID: 39608093 DOI: 10.1016/j.foodchem.2024.141987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 11/30/2024]
Abstract
Resveratrol (RES) is an important functional substance with multiple active properties. However, RES is susceptible to natural environmental conditions that reduce its bioactivity. To improve the bioavailability of RES, in this study, Catechin and Fe3+/Ca2+ were selected to form supramolecules, which were then coated on the surface of hydrophobic RES nanoparticles (RES NPs) to create composite RES NPs. The obtained composite RES NPs demonstrated higher antioxidant capacity and better photo-thermal stability than RES NPs. Additionally, a pectin (PE) dietary gel was designed as a delivery carrier for RES. The results showed that the incorporation of composite RES NPs not only endowed the gels with significant dietary activity but also enhanced the texture, water retention capacity and hydrophobicity. After 28 days of storage, the retention rate of RES could be maintained above 90 % in the dietary gels. Meanwhile, the controlled release of RES was achieved in in vitro simulated digestion.
Collapse
Affiliation(s)
- Yiyang Chai
- Department of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou 310014, PR China
| | - Ying Zhou
- Department of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou 310014, PR China
| | - Kai Zhang
- Sustainable Materials and Chemistry, Dept, Wood Technology and Wood-based Composites, University of Göttingen, Büsgenweg 4, 37077 Göttingen, Germany; Biotechnology Center (Biotechnikum), University of Göttingen, Büsgenweg 2, 37077 Göttingen, Germany
| | - Ping Shao
- Department of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou 310014, PR China; Moganshan Research Institute at Deqing County Zhejiang University of Technology, Zhejiang, Huzhou 313200, PR China.
| |
Collapse
|
4
|
Wang H, Lin F, Zhang Y, Lin Y, Gao B, Kang D. Biomaterial-based vascularization strategies for enhanced treatment of peripheral arterial disease. J Nanobiotechnology 2025; 23:103. [PMID: 39940018 PMCID: PMC11823048 DOI: 10.1186/s12951-025-03140-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/19/2025] [Indexed: 02/14/2025] Open
Abstract
Peripheral arterial disease (PAD) poses a global health challenge, particularly in its advanced stages known as critical limb ischemia (CLI). Conventional treatments often fail to achieve satisfactory outcomes. Patients with CLI face high rates of morbidity and mortality, underscoring the urgent need for innovative therapeutic strategies. Recent advancements in biomaterials and biotechnology have positioned biomaterial-based vascularization strategies as promising approaches to improve blood perfusion and ameliorate ischemic conditions in affected tissues. These materials have shown potential to enhance therapeutic outcomes while mitigating toxicity concerns. This work summarizes the current status of PAD and highlights emerging biomaterial-based strategies for its treatment, focusing on functional genes, cells, proteins, and metal ions, as well as their delivery and controlled release systems. Additionally, the limitations associated with these approaches are discussed. This review provides a framework for designing therapeutic biomaterials and offers insights into their potential for clinical translation, contributing to the advancement of PAD treatments.
Collapse
Affiliation(s)
- Haojie Wang
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350005, China
- Fujian Provincial Institutes of Brain Disorders and Brain Sciences, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350005, China
- Fujian Provincial Clinical Research Center for Neurological Diseases, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350005, China
- Department of Neurosurgery, Binhai Campus of the First Affiliated Hospital, National Regional Medical Center, Fujian Medical University, Fuzhou, 350212, China
| | - Fuxin Lin
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350005, China
- Fujian Provincial Institutes of Brain Disorders and Brain Sciences, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350005, China
- Fujian Provincial Clinical Research Center for Neurological Diseases, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350005, China
- Department of Neurosurgery, Binhai Campus of the First Affiliated Hospital, National Regional Medical Center, Fujian Medical University, Fuzhou, 350212, China
| | - Yibin Zhang
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350005, China
- Fujian Provincial Institutes of Brain Disorders and Brain Sciences, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350005, China
- Fujian Provincial Clinical Research Center for Neurological Diseases, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350005, China
- Department of Neurosurgery, Binhai Campus of the First Affiliated Hospital, National Regional Medical Center, Fujian Medical University, Fuzhou, 350212, China
| | - Yuanxiang Lin
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350005, China
- Fujian Provincial Institutes of Brain Disorders and Brain Sciences, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350005, China
- Fujian Provincial Clinical Research Center for Neurological Diseases, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350005, China
- Department of Neurosurgery, Binhai Campus of the First Affiliated Hospital, National Regional Medical Center, Fujian Medical University, Fuzhou, 350212, China
| | - Bin Gao
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350005, China.
- Fujian Provincial Institutes of Brain Disorders and Brain Sciences, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350005, China.
- Fujian Provincial Clinical Research Center for Neurological Diseases, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350005, China.
- Department of Neurosurgery, Binhai Campus of the First Affiliated Hospital, National Regional Medical Center, Fujian Medical University, Fuzhou, 350212, China.
| | - Dezhi Kang
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350005, China.
- Fujian Provincial Institutes of Brain Disorders and Brain Sciences, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350005, China.
- Fujian Provincial Clinical Research Center for Neurological Diseases, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350005, China.
- Department of Neurosurgery, Binhai Campus of the First Affiliated Hospital, National Regional Medical Center, Fujian Medical University, Fuzhou, 350212, China.
| |
Collapse
|
5
|
Zhang Y, Hao F, Liu Y, Yang M, Zhang B, Bai Z, Zhao B, Li X. Recent advances of copper-based metal phenolic networks in biomedical applications. Colloids Surf B Biointerfaces 2024; 244:114163. [PMID: 39154599 DOI: 10.1016/j.colsurfb.2024.114163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/04/2024] [Accepted: 08/12/2024] [Indexed: 08/20/2024]
Abstract
Metal-phenolic Networks (MPNs) are a novel class of nanomaterial developed gradually in recent years which are self-assembled by metal ions and polyphenolic ligands. Due to their environmental protection, good adhesion, and biocompatibility with green phenolic ligands, MPNs can be used as a new type of nanomaterial. They show excellent properties such as anti-inflammatory, antioxidant, antibacterial, and anticancer, and have been widely studied in the biomedical field. As one of the most common subclasses of the MPNs family, copper-based MPNs have been widely studied for drug delivery, Photodynamic Therapy (PDT), Chemo dynamic Therapy (CDT), antibacterial and anti-inflammatory, bone tissue regeneration, skin regeneration wound repair, and metal ion imaging. In this paper, the preparation strategies of different types of copper-based MPNs are reviewed. Then, the application status of copper-based MPNs in the biomedical field under different polyphenol ligands is introduced in detail. Finally, the existing problems and challenges of copper-based MPNs are discussed, as well as their future application prospects in the biomedical field.
Collapse
Affiliation(s)
- Ying Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China; Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Fengxiang Hao
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China; Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Yingyu Liu
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China; Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Mengqi Yang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China; Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Bo Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China; Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Ziyang Bai
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China; Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Bin Zhao
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China.
| | - Xia Li
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China.
| |
Collapse
|
6
|
Wang S, Bai X, Wang X, Wang J, Tao W, Gao Y, Ning J, Hao J, Gao M. Metal Polyphenol Nanoparticle-Based Chemo/Ferroptosis Synergistic Therapy for the Treatment of Oral Squamous Cell Carcinoma. Bioconjug Chem 2024; 35:1835-1842. [PMID: 39450626 DOI: 10.1021/acs.bioconjchem.4c00462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Despite the use of surgical resection and chemotherapy in the clinical treatment of oral squamous cell carcinoma (OSCC), the 5-year survival rates of advanced patients are low. Therefore, more efficient strategies are urgently needed. Herein, a chemo/ferroptosis synergistic therapeutic system-DMEFe nanoparticles (NPs) is established for the treatment of OSCC. To create this system, the chemotherapeutic agent doxorubicin (DOX) was loaded into mesoporous silica nanoparticles and further coated with a pH-sensitive metal polyphenol (iron ion and epigallocatechin gallate). These nanoparticles displayed excellent pH-sensitive drug-control release properties, and the release ratio of DOX at pH 5.5 was twice as high than that at pH 7.4. Additionally, DMEF NPs were effectively taken up by the OSCC cell line SSC-25, which greatly impeded the proliferation of these cells. Notably, these nanoparticles increased the intracellular level of reactive oxygen species and effectively exhibited cytotoxity effects. The mechanistic results proved that DMEFe NPs regulated the expression of ferroptosis-related genes to induce ferroptosis of SSC-25 cells. Eventually, this chemo/ferroptosis therapeutic system exhibited remarkable antitumor effects and provided a novel strategy for the treatment of OSCC.
Collapse
Affiliation(s)
- Shoujun Wang
- Department of Thyroid and Breast Surgery, Tianjin Key Laboratory of General Surgery in Construction, Tianjin Cancer Institute of Integrative Traditional Chinese and Western Medicine, Tianjin Union Medical Center of Nankai University, Tianjin 300121, P.R. China
- Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center, Tianjin 300121, P.R. China
- School of Medicine, Nankai University, Tianjin 300071, P.R. China
| | - Xinwei Bai
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300071, P.R. China
| | - Xiaoya Wang
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300071, P.R. China
| | - Jinmiao Wang
- Department of Thyroid and Breast Surgery, Tianjin Key Laboratory of General Surgery in Construction, Tianjin Cancer Institute of Integrative Traditional Chinese and Western Medicine, Tianjin Union Medical Center of Nankai University, Tianjin 300121, P.R. China
- Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center, Tianjin 300121, P.R. China
- School of Medicine, Nankai University, Tianjin 300071, P.R. China
| | - Weijie Tao
- Department of Thyroid and Breast Surgery, Tianjin Key Laboratory of General Surgery in Construction, Tianjin Cancer Institute of Integrative Traditional Chinese and Western Medicine, Tianjin Union Medical Center of Nankai University, Tianjin 300121, P.R. China
- Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center, Tianjin 300121, P.R. China
| | - Ying Gao
- Department of Thyroid and Breast Surgery, Tianjin Key Laboratory of General Surgery in Construction, Tianjin Cancer Institute of Integrative Traditional Chinese and Western Medicine, Tianjin Union Medical Center of Nankai University, Tianjin 300121, P.R. China
- Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center, Tianjin 300121, P.R. China
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Huanhuxi Road, Ti-Yuan-Bei, Hexi District, Tianjin 300060, P. R. China
| | - Junya Ning
- Department of Thyroid and Breast Surgery, Tianjin Key Laboratory of General Surgery in Construction, Tianjin Cancer Institute of Integrative Traditional Chinese and Western Medicine, Tianjin Union Medical Center of Nankai University, Tianjin 300121, P.R. China
- Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center, Tianjin 300121, P.R. China
| | - Jie Hao
- Department of Thyroid and Breast Surgery, Tianjin Key Laboratory of General Surgery in Construction, Tianjin Cancer Institute of Integrative Traditional Chinese and Western Medicine, Tianjin Union Medical Center of Nankai University, Tianjin 300121, P.R. China
- Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center, Tianjin 300121, P.R. China
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Huanhuxi Road, Ti-Yuan-Bei, Hexi District, Tianjin 300060, P. R. China
| | - Ming Gao
- Department of Thyroid and Breast Surgery, Tianjin Key Laboratory of General Surgery in Construction, Tianjin Cancer Institute of Integrative Traditional Chinese and Western Medicine, Tianjin Union Medical Center of Nankai University, Tianjin 300121, P.R. China
- Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center, Tianjin 300121, P.R. China
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Huanhuxi Road, Ti-Yuan-Bei, Hexi District, Tianjin 300060, P. R. China
| |
Collapse
|
7
|
Tan G, Qi C, Zhang Q, Hu H, Tu B, Tu J. Copper peroxide-decorated Prussian blue for effective bacterial elimination via photothermal-enhanced and H 2O 2-releasing chemodynamic therapy. J Control Release 2024; 376:S0168-3659(24)00745-4. [PMID: 39505214 DOI: 10.1016/j.jconrel.2024.10.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/23/2024] [Accepted: 10/31/2024] [Indexed: 11/08/2024]
Abstract
Bacterial infection is a major impediment towards wound healing and threaten human health worldwide. Traditional antibiotic therapy poses a high risk of inducing bacterial resistance, thus nanomaterial-based synergistic bactericidal strategy as effective alternatives have received tremendous attention. Herein, a NIR/pH-dual responsive nanoplatform was fabricated for synergistic photothermal and chemodynamic therapy (PTT/CDT). Prussian blue (PB) were employed as supporting material, while copper peroxide (CP) were growth in situ on PB surface, resulting in a core-shell structured nanoplatform (designated as PC). PB core served as photothermal/Fenton catalyst dual agents, and CP shell could co-release Cu2+ and H2O2 under acidic bacterial infection environment, realizing synergistic PTT and H2O2-releasing CDT. Under NIR irradiation, PC exhibited photothermal-enhanced Fenton-like reaction feature and the hyperthermia facilitated Cu2+ release, leading to the rapid conversion of H2O2 into toxic •OH to effectively kill Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus), eradicating S. aureus biofilm. Moreover, the released Cu2+ could improve the bactericidal effect of CDT via the depletion of GSH and significantly promote cell migration. Furthermore, in vivo experiments demonstrated PC with good biocompatibility exhibited robust bactericidal effect and promoted wound healing. Overall, this versatile nanoplatform offered an efficacious and safe antibiotic-free strategy for bacterial infection treatments.
Collapse
Affiliation(s)
- Guitao Tan
- State Key Laboratory of Advanced Technology for Material Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Chenyang Qi
- State Key Laboratory of Advanced Technology for Material Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Qinqin Zhang
- State Key Laboratory of Advanced Technology for Material Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Haonan Hu
- State Key Laboratory of Advanced Technology for Material Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Bingtian Tu
- State Key Laboratory of Advanced Technology for Material Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Jing Tu
- State Key Laboratory of Advanced Technology for Material Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
| |
Collapse
|
8
|
Chen S, Xiong Y, Yang F, Hu Y, Feng J, Zhou F, Liu Z, Liu H, Liu X, Zhao J, Zhang Z, Chen L. Approaches to scarless burn wound healing: application of 3D printed skin substitutes with dual properties of anti-infection and balancing wound hydration levels. EBioMedicine 2024; 106:105258. [PMID: 39068733 PMCID: PMC11332815 DOI: 10.1016/j.ebiom.2024.105258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 07/30/2024] Open
Abstract
BACKGROUND Severe burn wounds face two primary challenges: dysregulated cellular impairment functions following infection and an unbalanced wound hydration microenvironment leading to excessive inflammation and collagen deposition. These results in hypertrophic scar contraction, causing significant deformity and disability in survivors. METHODS A three-dimensional (3D) printed double-layer hydrogel (DLH) was designed and fabricated to address the problem of scar formation after burn injury. DLH was developed using methacrylated silk fibroin (SFMA) and gelatin methacryloyl (GelMA) for the upper layer, and GelMA and hyaluronic acid methacryloyl (HAMA) for the lower layer. To combat infection, copper-epigallocatechin gallate (Cu-EGCG) was incorporated into the lower layer bioink, collectively referred to as DLS. To balance wound hydration levels, HaCaT cells were additionally encapsulated in the upper layer, designed as DLS/c. FINDINGS DLH demonstrated suitable porosity, appropriate mechanical properties, and excellent biocompatibility. DLS exhibited potent antimicrobial properties, exerted anti-inflammatory effects by regulating macrophage polarisation, and may enhance angiogenesis through the HIF-1α/VEGF pathway. In the DLS/c group, animal studies showed significant improvements in epidermal formation, barrier function, and epidermal hydration, accompanied by reduced inflammation. In addition, Masson's trichrome and Sirius red staining revealed that the structure and ratio of dermal collagen in DLS/c resembled that of normal skin, indicating considerable potential for scarless wound healing. INTERPRETATION This biomimetic matrix shows promise in addressing the challenges of burn wounds and aiming for scarless repair, with benefits such as anti-infection, epidermal hydration, biological induction, and optimised topological properties. FUNDING Shown in Acknowledgements.
Collapse
Affiliation(s)
- Shuying Chen
- Department of Burn, Wound Repair & Reconstruction, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China; Guangdong Provincial Engineering Technology Research Center of Burn and Wound Accurate Diagnosis and Treatment Key Technology and Series of Products, Sun Yat-sen University, Guangzhou 510080, China; Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Yahui Xiong
- Department of Burn, Wound Repair & Reconstruction, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China; Guangdong Provincial Engineering Technology Research Center of Burn and Wound Accurate Diagnosis and Treatment Key Technology and Series of Products, Sun Yat-sen University, Guangzhou 510080, China; Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Fan Yang
- Department of Burn, Wound Repair & Reconstruction, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China; Guangdong Provincial Engineering Technology Research Center of Burn and Wound Accurate Diagnosis and Treatment Key Technology and Series of Products, Sun Yat-sen University, Guangzhou 510080, China; Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Yanke Hu
- Department of Burn, Wound Repair & Reconstruction, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China; Guangdong Provincial Engineering Technology Research Center of Burn and Wound Accurate Diagnosis and Treatment Key Technology and Series of Products, Sun Yat-sen University, Guangzhou 510080, China; Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Jinghao Feng
- Guangzhou Panyu Central Hospital, Guangzhou 511400, China
| | - Fei Zhou
- Department of Burn, Wound Repair & Reconstruction, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China; Guangdong Provincial Engineering Technology Research Center of Burn and Wound Accurate Diagnosis and Treatment Key Technology and Series of Products, Sun Yat-sen University, Guangzhou 510080, China; Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhonghua Liu
- South China Agricultural University, Guangzhou 510642, China
| | - Hengdeng Liu
- Department of Burn, Wound Repair & Reconstruction, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China; Guangdong Provincial Engineering Technology Research Center of Burn and Wound Accurate Diagnosis and Treatment Key Technology and Series of Products, Sun Yat-sen University, Guangzhou 510080, China; Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiaogang Liu
- Department of Burn, Wound Repair & Reconstruction, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China; Guangdong Provincial Engineering Technology Research Center of Burn and Wound Accurate Diagnosis and Treatment Key Technology and Series of Products, Sun Yat-sen University, Guangzhou 510080, China; Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Jingling Zhao
- Department of Burn, Wound Repair & Reconstruction, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China; Guangdong Provincial Engineering Technology Research Center of Burn and Wound Accurate Diagnosis and Treatment Key Technology and Series of Products, Sun Yat-sen University, Guangzhou 510080, China; Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhaoqiang Zhang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China.
| | - Lei Chen
- Department of Burn, Wound Repair & Reconstruction, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China; Guangdong Provincial Engineering Technology Research Center of Burn and Wound Accurate Diagnosis and Treatment Key Technology and Series of Products, Sun Yat-sen University, Guangzhou 510080, China; Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
9
|
Gu J, Huang W, Duanmu Z, Zhuang R, Yang X. Cuproptosis and copper deficiency in ischemic vascular injury and repair. Apoptosis 2024; 29:1007-1018. [PMID: 38649508 DOI: 10.1007/s10495-024-01969-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2024] [Indexed: 04/25/2024]
Abstract
Ischemic vascular diseases are on the rise globally, including ischemic heart diseases, ischemic cerebrovascular diseases, and ischemic peripheral arterial diseases, posing a significant threat to life. Copper is an essential element in various biological processes, copper deficiency can reduce blood vessel elasticity and increase platelet aggregation, thereby increasing the risk of ischemic vascular disease; however, excess copper ions can lead to cytotoxicity, trigger cell death, and ultimately result in vascular injury through several signaling pathways. Herein, we review the role of cuproptosis and copper deficiency implicated in ischemic injury and repair including myocardial, cerebral, and limb ischemia. We conclude with a perspective on the therapeutic opportunities and future challenges of copper biology in understanding the pathogenesis of ischemic vascular disease states.
Collapse
Affiliation(s)
- Jiayi Gu
- Department of Neurology, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Huang
- Department of Neurology, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zheng Duanmu
- School of Instrument Science and Opto-Electronics Engineering of Beijing Information Science and Technology University, Beijing, China
| | - Rulin Zhuang
- Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.
| | - Xilan Yang
- Department of General Practice, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
10
|
Basuthakur P, Roy A, Ghosh S, Vijay V, Sinha D, Radhakrishnan M, Kumar A, Patra CR, Chakravarty S. Pro-angiogenic Terbium Hydroxide Nanorods Improve Critical Limb Ischemia in Part by Amelioration of Ischemia-Induced Endothelial Injury. ACS APPLIED BIO MATERIALS 2024; 7:4389-4405. [PMID: 38848346 DOI: 10.1021/acsabm.4c00252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
Critical limb ischemia (CLI) refers to a severe condition resulting from gradual obstruction in the supply of blood, oxygen, and nutrients to the limbs. The most promising clinical solution to CLI is therapeutic angiogenesis. This study explored the potency of pro-angiogenic terbium hydroxide nanorods (THNR) for treatment of CLI, with a major focus on their impact on ischemia-induced maladaptive alterations in endothelial cells as well as on vascularization in ischemic limbs. This study demonstrated that, in hypoxia-exposed endothelial cells, THNR improve survival and promote proliferation, migration, restoration of nitric oxide production, and regulation of vascular permeability. Based on molecular studies, these attributes of THNR can be traced to the stimulation of PI3K/AKT/eNOS signaling pathways. Besides, Wnt/GSK-3β/β-catenin signaling pathways may also play a role in the therapeutic actions of THNR. Furthermore, in the murine model of CLI, THNR administration can integrally re-establish blood perfusion with concomitant reduction of muscle damage and inflammation. Additionally, improvement of locomotor activities and motor coordination in ischemic limbs in THNR treated mice is also evident. Overall, the study demonstrates that THNR have the potential to be developed as an efficacious and cost-effective alternative clinical therapy for CLI, using a nanomedicine approach.
Collapse
Affiliation(s)
- Papia Basuthakur
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Arpita Roy
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Soumya Ghosh
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vincy Vijay
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Debiprasad Sinha
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mydhili Radhakrishnan
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Arvind Kumar
- Centre for Cellular and Molecular Biology (CCMB), Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Chitta Ranjan Patra
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sumana Chakravarty
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
11
|
Li J, Song J, Deng Z, Yang J, Wang X, Gao B, Zhu Y, Yang M, Long D, Luo X, Zhang M, Zhang M, Li R. Robust reactive oxygen species modulator hitchhiking yeast microcapsules for colitis alleviation by trilogically intestinal microenvironment renovation. Bioact Mater 2024; 36:203-220. [PMID: 38463553 PMCID: PMC10924178 DOI: 10.1016/j.bioactmat.2024.02.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/21/2024] [Accepted: 02/25/2024] [Indexed: 03/12/2024] Open
Abstract
Ulcerative colitis (UC) is characterized by chronic inflammatory processes of the intestinal tract of unknown origin. Current treatments lack understanding on how to effectively alleviate oxidative stress, relieve inflammation, as well as modulate gut microbiota for maintaining intestinal homeostasis synchronously. In this study, a novel drug delivery system based on a metal polyphenol network (MPN) was constructed via metal coordination between epigallocatechin gallate (EGCG) and Fe3+. Curcumin (Cur), an active polyphenolic compound, with distinguished anti-inflammatory activity was assembled and encapsulated into MPN to generate Cur-MPN. The obtained Cur-MPN could serve as a robust reactive oxygen species modulator by efficiently scavenging superoxide radical (O2•-) as well as hydroxyl radical (·OH). By hitchhiking yeast microcapsule (YM), Cur-MPN was then encapsulated into YM to obtain CM@YM. Our findings demonstrated that CM@YM was able to protect Cur-MPN to withstand the harsh gastrointestinal environment and enhance the targeting and retention abilities of the inflamed colon. When administered orally, CM@YM could alleviate DSS-induced colitis with protective and therapeutic effects by scavenging ROS, reducing pro-inflammatory cytokines, and regulating the polarization of macrophages to M1, thus restoring barrier function and maintaining intestinal homeostasis. Importantly, CM@YM also modulated the gut microbiome to a favorable state by improving bacterial diversity and transforming the compositional structure to an anti-inflammatory phenotype as well as increasing the content of short-chain fatty acids (SCFA) (such as acetic acid, propionic acid, and butyric acid). Collectively, with excellent biocompatibility, our findings indicate that synergistically regulating intestinal microenvironment will be a promising approach for UC.
Collapse
Affiliation(s)
- Jintao Li
- Department of Radiology, the First Affiliated Hospital, School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Jian Song
- Institute of Cardiovascular Sciences, Guangxi Academy of Medical Sciences, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, 530021, China
| | - Zhichao Deng
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Jian Yang
- Department of Radiology, the First Affiliated Hospital, School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Xiaoqin Wang
- Department of Clinical Laboratory, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Bowen Gao
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Yuanyuan Zhu
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Mei Yang
- Department of Thoracic Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Dingpei Long
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing, 400715, China
| | - Xiaoqin Luo
- Department of Radiology, the First Affiliated Hospital, School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Mingxin Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi, 710077, China
| | - Mingzhen Zhang
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Runqing Li
- Department of Radiology, the First Affiliated Hospital, School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| |
Collapse
|
12
|
Gao Q, Chu X, Yang J, Guo Y, Guo H, Qian S, Yang Y, Wang B. An Antibiotic Nanobomb Constructed from pH-Responsive Chemical Bonds in Metal-Phenolic Network Nanoparticles for Biofilm Eradication and Corneal Ulcer Healing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309086. [PMID: 38488341 PMCID: PMC11165475 DOI: 10.1002/advs.202309086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/13/2024] [Indexed: 06/12/2024]
Abstract
In the treatment of refractory corneal ulcers caused by Pseudomonas aeruginosa, antibacterial drugs delivery faces the drawbacks of low permeability and short ocular surface retention time. Hence, novel positively-charged modular nanoparticles (NPs) are developed to load tobramycin (TOB) through a one-step self-assembly method based on metal-phenolic network and Schiff base reaction using 3,4,5-trihydroxybenzaldehyde (THBA), ε-poly-ʟ-lysine (EPL), and Cu2+ as matrix components. In vitro antibacterial test demonstrates that THBA-Cu-TOB NPs exhibit efficient instantaneous sterilization owing to the rapid pH responsiveness to bacterial infections. Notably, only 2.6 µg mL-1 TOP is needed to eradicate P. aeruginosa biofilm in the nano-formed THBA-Cu-TOB owing to the greatly enhanced penetration, which is only 1.6% the concentration of free TOB (160 µg mL-1). In animal experiments, THBA-Cu-TOB NPs show significant advantages in ocular surface retention, corneal permeability, rapid sterilization, and inflammation elimination. Based on molecular biology analysis, the toll-like receptor 4 and nuclear factor kappa B signaling pathways are greatly downregulated as well as the reduction of inflammatory cytokines secretions. Such a simple and modular strategy in constructing nano-drug delivery platform offers a new idea for toxicity reduction, physiological barrier penetration, and intelligent drug delivery.
Collapse
Affiliation(s)
- Qiang Gao
- National Engineering Research Center of Ophthalmology and OptometryEye HospitalWenzhou Medical UniversityWenzhou325000P. R. China
- State Key Laboratory of Ophthalmology, Optometry and Visual ScienceWenzhou Medical UniversityWenzhou325027P. R. China
| | - Xiaoying Chu
- National Engineering Research Center of Ophthalmology and OptometryEye HospitalWenzhou Medical UniversityWenzhou325000P. R. China
| | - Jie Yang
- School of Life SciencesJilin University2699 Qianjin StreetChangchun130012P. R. China
| | - Yishun Guo
- National Engineering Research Center of Ophthalmology and OptometryEye HospitalWenzhou Medical UniversityWenzhou325000P. R. China
| | - Hanwen Guo
- National Engineering Research Center of Ophthalmology and OptometryEye HospitalWenzhou Medical UniversityWenzhou325000P. R. China
| | - Siyuan Qian
- National Engineering Research Center of Ophthalmology and OptometryEye HospitalWenzhou Medical UniversityWenzhou325000P. R. China
| | - Ying‐Wei Yang
- College of ChemistryJilin University2699 Qianjin StreetChangchun130012P. R. China
| | - Bailiang Wang
- National Engineering Research Center of Ophthalmology and OptometryEye HospitalWenzhou Medical UniversityWenzhou325000P. R. China
- State Key Laboratory of Ophthalmology, Optometry and Visual ScienceWenzhou Medical UniversityWenzhou325027P. R. China
- NMPA Key Laboratory for Clinical Research and Evaluation of Medical Devices and Drug for Ophthalmic DiseasesWenzhou325027P. R. China
| |
Collapse
|
13
|
Liu Z, Wang T, Zhang L, Luo Y, Zhao J, Chen Y, Wang Y, Cao W, Zhao X, Lu B, Chen F, Zhou Z, Zheng L. Metal-Phenolic Networks-Reinforced Extracellular Matrix Scaffold for Bone Regeneration via Combining Radical-Scavenging and Photo-Responsive Regulation of Microenvironment. Adv Healthc Mater 2024; 13:e2304158. [PMID: 38319101 DOI: 10.1002/adhm.202304158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/24/2024] [Indexed: 02/07/2024]
Abstract
The limited regulation strategies of the regeneration microenvironment significantly hinder bone defect repair effectiveness. One potential solution is using biomaterials capable of releasing bioactive ions and biomolecules. However, most existing biomaterials lack real-time control features, failing to meet high regulation requirements. Herein, a new Strontium (Sr) and epigallocatechin-3-gallate (EGCG) based metal-phenolic network with polydopamine (PMPNs) modification is prepared. This material reinforces a biomimetic scaffold made of extracellular matrix (ECM) and hydroxyapatite nanowires (nHAW). The PMPNs@ECM/nHAW scaffold demonstrates exceptional scavenging of free radicals and reactive oxygen species (ROS), promoting HUVECs cell migration and angiogenesis, inducing stem cell osteogenic differentiation, and displaying high biocompatibility. Additionally, the PMPNs exhibit excellent photothermal properties, further enhancing the scaffold's bioactivities. In vivo studies confirm that PMPNs@ECM/nHAW with near-infrared (NIR) stimulation significantly promotes angiogenesis and osteogenesis, effectively regulating the microenvironment and facilitating bone tissue repair. This research not only provides a biomimetic scaffold for bone regeneration but also introduces a novel strategy for designing advanced biomaterials. The combination of real-time photothermal intervention and long-term chemical intervention, achieved through the release of bioactive molecules/ions, represents a promising direction for future biomaterial development.
Collapse
Affiliation(s)
- Zhiqing Liu
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Tianlong Wang
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Lei Zhang
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Yiping Luo
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Jinhui Zhao
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Yixing Chen
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Yao Wang
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Wentao Cao
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Xinyu Zhao
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Bingqiang Lu
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Feng Chen
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Zifei Zhou
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Longpo Zheng
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
- Shanghai Trauma Emergency Center, Shanghai, 200072, China
- Orthopedic Intelligent Minimally Invasive Diagnosis & Treatment Center, Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| |
Collapse
|
14
|
Walencik PK, Choińska R, Gołębiewska E, Kalinowska M. Metal-Flavonoid Interactions-From Simple Complexes to Advanced Systems. Molecules 2024; 29:2573. [PMID: 38893449 PMCID: PMC11173564 DOI: 10.3390/molecules29112573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/27/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
For many years, metal-flavonoid complexes have been widely studied as a part of drug discovery programs, but in the last decade their importance in materials science has increased significantly. A deeper understanding of the role of metal ions and flavonoids in constructing simple complexes and more advanced hybrid networks will facilitate the assembly of materials with tailored architecture and functionality. In this Review, we highlight the most essential data on metal-flavonoid systems, presenting a promising alternative in the design of hybrid inorganic-organic materials. We focus mainly on systems containing CuII/I and FeIII/II ions, which are necessary in natural and industrial catalysis. We discuss two kinds of interactions that typically ensure the formation of metal-flavonoid systems, namely coordination and redox reactions. Our intention is to cover the fundamentals of metal-flavonoid systems to show how this knowledge has been already transferred from small molecules to complex materials.
Collapse
Affiliation(s)
- Paulina Katarzyna Walencik
- Institute of Agricultural and Food Biotechnology-State Research Institute, Rakowiecka 36, 02-532 Warsaw, Poland;
| | - Renata Choińska
- Institute of Agricultural and Food Biotechnology-State Research Institute, Rakowiecka 36, 02-532 Warsaw, Poland;
| | - Ewelina Gołębiewska
- Department of Chemistry, Biology and Biotechnology, Faculty of Civil and Environmental Sciences, Bialystok University of Technology, Wiejska 45E Street, 15-351 Bialystok, Poland;
| | - Monika Kalinowska
- Department of Chemistry, Biology and Biotechnology, Faculty of Civil and Environmental Sciences, Bialystok University of Technology, Wiejska 45E Street, 15-351 Bialystok, Poland;
| |
Collapse
|
15
|
Dai X, Liu X, Wang X, Zhang Y, Li Y, Gao F. Cascade-Targeted Nanoplatforms for Synergetic Antibiotic/ROS/NO/Immunotherapy against Intracellular Bacterial Infection. Biomacromolecules 2024; 25:3190-3199. [PMID: 38693753 DOI: 10.1021/acs.biomac.4c00339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Intracellular bacteria in dormant states can escape the immune response and tolerate high-dose antibiotic treatment, leading to severe infections. To overcome this challenge, cascade-targeted nanoplatforms that can target macrophages and intracellular bacteria, exhibiting synergetic antibiotic/reactive oxygen species (ROS)/nitric oxide (NO)/immunotherapy, were developed. These nanoplatforms were fabricated by encapsulating trehalose (Tr) and vancomycin (Van) into phosphatidylserine (PS)-coated poly[(4-allylcarbamoylphenylboric acid)-ran-(arginine-methacrylamide)-ran-(N,N'-bisacryloylcystamine)] nanoparticles (PABS), denoted as PTVP. PS on PTVP simulates a signal of "eat me" to macrophages to promote cell uptake (the first-step targeting). After the uptake, the nanoplatform in the acidic phagolysosomes could release Tr, and the exposed phenylboronic acid on the nanoplatform could target bacteria (the second-step targeting). Nanoplatforms can release Van in response to infected intracellular overexpressed glutathione (GSH) and weak acid microenvironment. l-arginine (Arg) on the nanoplatforms could be catalyzed by upregulated inducible nitric oxide synthase (iNOS) in the infected macrophages to generate nitric oxide (NO). N,N'-Bisacryloylcystamine (BAC) on nanoplatforms could deplete GSH, allow the generation of ROS in macrophages, and then upregulate proinflammatory activity, leading to the reinforced antibacterial capacity. This nanoplatform possesses macrophage and bacteria-targeting antibiotic delivery, intracellular ROS, and NO generation, and pro-inflammatory activities (immunotherapy) provides a new strategy for eradicating intracellular bacterial infections.
Collapse
Affiliation(s)
- Xiaomei Dai
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Xiaojun Liu
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Xingxing Wang
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Yongjie Zhang
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Yu Li
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Feng Gao
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| |
Collapse
|
16
|
Zhang Q, Zhang Y, Qi C, Chen J, Hu H, Tan G, Tu J. Epigallocatechin-3-gallate derived polymer coated Prussian blue for synergistic ROS elimination and antibacterial therapy. Int J Pharm 2024; 656:124095. [PMID: 38588757 DOI: 10.1016/j.ijpharm.2024.124095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/22/2024] [Accepted: 04/05/2024] [Indexed: 04/10/2024]
Abstract
Reactive oxygen species (ROS) play a vital role in wound healing process by fighting against invaded bacteria. However, excess ROS at the wound sites lead to oxidative stress that can trigger deleterious effects, causing cell death, tissue damage and chronic inflammation. Therefore, we fabricated a core-shell structured nanomedicine with antibacterial and antioxidant properties via a facile and green strategy. Specifically, Prussian blue (PB) nanozyme was fabricated and followed by coating a layer of epigallocatechin-3-gallate (EGCG)-derived polymer via polyphenolic condensation reaction and self-assembly process, resulting in PB@EGCG. The introduction of PB core endowed EGCG-based polyphenol nanoparticles with excellent NIR-triggered photothermal properties. Besides, owing to multiple enzyme-mimic activity of PB and potent antioxidant capacity of EGCG-derived polymer, PB@EGCG exhibited a remarkable ROS-scavenging ability, mitigated intracellular ROS level and protected cells from oxidative damage. Under NIR irradiation (808 nm, 1.5 W/cm2), PB@EGCG (50 µg/mL) exerted synergistic EGCG-derived polymer-photothermal antibacterial activity against Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus). In vivo therapeutic effect was evaluated using a S. aureus-infected rat model indicated PB@EGCG with a prominent bactericidal ability could modulate the inflammatory microenvironment and accelerate wound healing. Overall, this dual-functional nanomedicine provides a promising strategy for efficient antibacterial therapy.
Collapse
Affiliation(s)
- Qinqin Zhang
- State Key Laboratory of Advanced Technology for Material Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Yipin Zhang
- State Key Laboratory of Advanced Technology for Material Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Chenyang Qi
- State Key Laboratory of Advanced Technology for Material Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Jie Chen
- State Key Laboratory of Advanced Technology for Material Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Haonan Hu
- State Key Laboratory of Advanced Technology for Material Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Guitao Tan
- State Key Laboratory of Advanced Technology for Material Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Jing Tu
- State Key Laboratory of Advanced Technology for Material Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China.
| |
Collapse
|
17
|
Duan J, Chen Z, Liang X, Chen Y, Li H, Liu K, Gui L, Wang X, Li Y, Yang J. Engineering M2-type macrophages with a metal polyphenol network for peripheral artery disease treatment. Free Radic Biol Med 2024; 213:138-149. [PMID: 38218551 DOI: 10.1016/j.freeradbiomed.2024.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/30/2023] [Accepted: 01/10/2024] [Indexed: 01/15/2024]
Abstract
Functional cell treatment for critical limb ischemia is limited by cell viability loss and dysfunction resulting from a harmful ischemic microenvironment. Metal-polyphenol networks have emerged as novel cell delivery vehicles for protecting cells from the detrimental ischemic microenvironment and prolonging the survival rate of cells in the ischemic microenvironment. M2 macrophages are closely related to tissue repair, and they secrete anti-inflammatory factors that contribute to lesion repair. However, these cells are easily metabolized in the body with low efficiency. Herein, M2 macrophages were decorated with a metal‒polyphenol network that contains copper ions and epigallocatechin gallate (Cu-EGCG@M2) to increase cell survival and therapeutic potential. Cu-EGCG@M2 synergistically promoted angiogenesis through the inherent angiogenesis effect of M2 macrophages and copper ions. We found that Cu-EGCG@M2 increased in vitro viability and strengthened the in vivo therapeutic effect on the ischemic hindlimbs of mice, which promoted the recovery of blood and muscle regeneration, resulting in superior limb salvage. These therapeutic effects were ascribed to the increased survival rate and therapeutic period of M2 macrophages, as well as the ameliorated microenvironment at the ischemic site. Additionally, Cu-EGCG exhibited antioxidant, anti-inflammatory, and proangiogenic effects. Our findings provide a feasible option for cell-based treatment of CLI.
Collapse
Affiliation(s)
- Jianwei Duan
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, 300192, PR China
| | - Zuoguan Chen
- Department of Vascular Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, PR China
| | - Xiaoyu Liang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, 300192, PR China; Department of Heart Center, The Third Central Hospital of Tianjin, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Nankai University Affiliated Third Center Hospital, Tianjin ECMO Treatment and Training Base, Artificial Cell Engineering Technology Research Center, Tianjin, 300170, PR China
| | - Youlu Chen
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, 300192, PR China
| | - Huiyang Li
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, 300192, PR China
| | - Kaijing Liu
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, 300192, PR China
| | - Liang Gui
- Department of Vascular Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, PR China
| | - Xiaoli Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, 300192, PR China
| | - Yongjun Li
- Department of Vascular Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, PR China.
| | - Jing Yang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, 300192, PR China.
| |
Collapse
|
18
|
Li X, Xing D, Bai Y, Du Y, Lang S, Li K, Xiang J, Liu G, Liu S. Injectable hydrogel with antimicrobial and anti-inflammatory properties for postoperative tumor wound care. Biomed Mater 2024; 19:025028. [PMID: 38290161 DOI: 10.1088/1748-605x/ad2408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/30/2024] [Indexed: 02/01/2024]
Abstract
Clinically, tumor removal surgery leaves irregularly shaped wounds that are susceptible to bacterial infection and further lead to excessive inflammation. Injectable hydrogel dressings with antimicrobial and anti-inflammatory properties have been recognized as an effective strategy to care for postoperative tumor wounds and prevent recurrence in recent years. In this work, we constructed a hydrogel network by ionic bonding interactions between quaternized chitosan (QCS) and epigallocatechin gallate (EGCG)-Zn complexes which were coordinated by EGCG and zinc ions. Because of the synergistic effect of QCS and EGCG-Zn, the hydrogel exhibited outstanding antimicrobial capacity (>99.9% inhibition), which could prevent infections caused byEscherichia coli and Staphylococcus aureus. In addition, the hydrogel was able to inhibit the growth of mice breast cancer cells (56.81% survival rate within 72 h) and reduce inflammation, which was attributed to the sustained release of EGCG. The results showed that the hydrogel was effective in inhibiting tumor recurrence and accelerating wound closure when applied to the postoperative tumor wounds. This study provided a simple and reliable strategy for postoperative tumor wound care using antimicrobial and anti-inflammatory injectable dressings, confirming their great potential in the field of postoperative wound dressings.
Collapse
Affiliation(s)
- Xinyun Li
- Department of Oncology, Dazhou Integrated Traditional Chinese Medicine and Western Medicine Hospital, Dazhou Second People's Hospital, Dazhou, Sichuan 635000, People's Republic of China
| | - Dandan Xing
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Yangjing Bai
- West China School of Nursing, Sichuan University/Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Yangrui Du
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Shiying Lang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Kaijun Li
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Jun Xiang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Gongyan Liu
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Shan Liu
- Department of Endocrinology, Yueyang Central Hospital, Yueyang 414100, People's Republic of China
| |
Collapse
|
19
|
Chen X, He S, Dong Y, Chen M, Xia Z, Cai K, Hu Y. Cobalt-doped layered hydroxide coating on titanium implants promotes vascularization and osteogenesis for accelerated fracture healing. Mater Today Bio 2024; 24:100912. [PMID: 38226010 PMCID: PMC10788619 DOI: 10.1016/j.mtbio.2023.100912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/28/2023] [Accepted: 12/10/2023] [Indexed: 01/17/2024] Open
Abstract
Angiogenesis at the fracture site plays crucial roles in the endogenous osteogenesis process and is a prerequisite for the efficient repair of implant fixed bone defects. To improve the peri-implant vascularization of titanium implant for accelerating defect healing, we developed a Co-doped Mg-Al layered hydroxide coating on the surface of titanium using hydrothermal reaction and then modified the surface with gallic acid (Ti-LDH/GA). Gallic acid coating enabled the sustained release of Co2+ and Mg2+ to the defect site over a month. Ti-LDH/GA treatment profoundly stimulated the angiogenic potential of endothelial cells by upregulating the vascularization regulators such as vascular endothelial growth factor VEGF) and hypoxia-inducible factor-1α (HIF-1α), leading to enhanced osteogenic capability of mesenchymal stem cells (MSCs). These pro-bone healing benefits were attributed to the synergistic effects of Co ions and Mg ions in promoting angiogenesis and new bone formation. These insights collectively suggested the potent pro-osteogenic effect of Ti-LDH/GA through leveraging peri-implant vascularization, offering a new approach for developing biofunctional titanium implants.
Collapse
Affiliation(s)
- Xiaodong Chen
- College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Shuohan He
- College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Yilong Dong
- Department of Orthopaedics, The Third Affiliated Hospital of Wenzhou Medical University (Ruian People's Hospital), Wenzhou 325016, China
| | - Maohua Chen
- College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Zengzilu Xia
- College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Kaiyong Cai
- College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Yan Hu
- College of Bioengineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
20
|
Huo S, Liu S, Liu Q, Xie E, Miao L, Meng X, Xu Z, Zhou C, Liu X, Xu G. Copper-Zinc-Doped Bilayer Bioactive Glasses Loaded Hydrogel with Spatiotemporal Immunomodulation Supports MRSA-Infected Wound Healing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2302674. [PMID: 38037309 PMCID: PMC10837387 DOI: 10.1002/advs.202302674] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/29/2023] [Indexed: 12/02/2023]
Abstract
Developing biomaterials with antimicrobial and wound-healing activities for the treatment of wound infections remains challenging. Macrophages play non-negligible roles in healing infection-related wounds. In this study, a new sequential immunomodulatory approach is proposed to promote effective and rapid wound healing using a novel hybrid hydrogel dressing based on the immune characteristics of bacteria-associated wounds. The hydrogel dressing substrate is derived from a porcine dermal extracellular matrix (PADM) and loaded with a new class of bioactive glass nanoparticles (BGns) doped with copper (Cu) and zinc (Zn) ions (Cu-Zn BGns). This hybrid hydrogel demonstrates a controlled release of Cu2+ and Zn2+ and sequentially regulates the phenotypic transition of macrophages from M1 to M2 by alternately activating nucleotide-binding oligomerization domain (NOD) and inhibiting mitogen-activated protein kinases (MAPK) signaling pathways. Additionally, its dual-temporal bidirectional immunomodulatory function facilitates enhanced antibacterial activity and wound healing. Hence, this novel hydrogel is capable of safely and efficiently accelerating wound healing during infections. As such, the design strategy provides a new direction for exploring novel immunomodulatory biomaterials to address current clinical challenges related to the treatment of wound infections.
Collapse
Affiliation(s)
- Shicheng Huo
- Department of Orthopedic SurgerySpine CenterChangzheng HospitalNavy Medical UniversityShanghai200003China
| | - Shu Liu
- Department of Spine SurgeryChanghai HospitalNavy Military Medical University168 Changhai RoadShanghai200433China
| | - Qianqian Liu
- Department of Medical Record StatisticsSichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduChina
| | - En Xie
- Key Laboratory for Ultrafine Materials of Ministry of EducationEast China University of Science and TechnologyShanghai200237China
| | - Licai Miao
- Department of Orthopedics TraumaShanghai Changhai HospitalNaval Medical UniversityShanghai200433China
| | - Xiangyu Meng
- Department of Orthopedics TraumaShanghai Changhai HospitalNaval Medical UniversityShanghai200433China
| | - Zihao Xu
- Department of Orthopedics TraumaShanghai Changhai HospitalNaval Medical UniversityShanghai200433China
| | - Chun Zhou
- Orthpaedic TraumaDepartment of OrthopedicsRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Xuesong Liu
- Department of UltrasoundRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Guohua Xu
- Department of Orthopedic SurgerySpine CenterChangzheng HospitalNavy Medical UniversityShanghai200003China
| |
Collapse
|
21
|
Zhang B, Wan H, Liu X, Yu T, Yang Y, Dai Y, Han Y, Xu K, Yang L, Wang Y, Zhang X. Engineering Immunomodulatory Stents Using Zinc Ion-Lysozyme Nanoparticle Platform for Vascular Remodeling. ACS NANO 2023; 17:23498-23511. [PMID: 37971533 DOI: 10.1021/acsnano.3c06103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Rapid endothelialization of cardiovascular materials can enhance the vascular remodeling performance. In this work, we developed a strategy for amyloid-like protein-assembly-mediated interfacial engineering to functionalize a biomimetic nanoparticle coating (BMC). Various groups (e.g., hydroxyl and carboxyl) on the BMC are responsible for chelating Zn2+ ions at the stent interface, similar to the glutathione peroxidase-like enzymes found in vivo. This design could reproduce the release of therapeutic nitric oxide gas (NO) and an aligned microenvironment nearly identical with that of natural vessels. In a rabbit abdominal aorta model, BMC-coated stents promoted vascular healing through rapid endothelialization and the inhibition of intimal hyperplasia in the placement sites at 4, 12, and 24 weeks. Additionally, better anticoagulant activity and immunomodulation in the BMC stents were also confirmed, and vascular healing was mainly dependent on cell signaling through the cyclic guanosine monophosphate-protein kinase G (cGMP-PKG) cascade. Overall, a metal-polypeptide-coated stent was developed on the basis of its detailed molecular mechanism of action in vascular remodeling.
Collapse
Affiliation(s)
- Bo Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
| | - Huining Wan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
| | - Xiyu Liu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
| | - Tao Yu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
| | - Yuan Yang
- Sichuan Xingtai Pule Medical Technology Co Ltd, Chengdu, Sichuan 610045, China
| | - Yan Dai
- Sichuan Xingtai Pule Medical Technology Co Ltd, Chengdu, Sichuan 610045, China
| | - Yaling Han
- Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Wenhua Road 83, Shenyang 110016, China
| | - Kai Xu
- Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Wenhua Road 83, Shenyang 110016, China
| | - Li Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
| |
Collapse
|
22
|
Feng K, Ruan Y, Zhang X, Wu X, Liu Z, Sun X. Photothermal-Ionic-Pharmacotherapy of Myocardial Infarction with Enhanced Angiogenesis and Antiapoptosis. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 38031235 DOI: 10.1021/acsami.3c14109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Promoting angiogenesis is an effective therapeutic strategy to repair damaged hearts after myocardial infarction (MI). Copper ions and mild heat (41-42 °C) have been shown to promote angiogenesis, but their efficacy in MI is unknown. Here, a multicomponent hydrogel (EDR@PHCuS HG) is developed by encapsulating edaravone (EDR, a free radical scavenger) loaded porous hollow copper sulfide nanoparticles (PHCuS NPs) in a hyaluronic acid hydrogel (HG). Exposed to 808 nm near-infrared (NIR) light irradiation, the EDR@PHCuS HG exhibits controlled copper-ion release and mild photothermal effect to synergistically promote angiogenesis. In addition, released EDR inhibits cardiomyocyte apoptosis to further repair hearts. In the mouse model of MI, treatment with the EDR@PHCuS HG under an 808 nm laser significantly recovers the cardiac function and inhibits ventricular remodeling. This platform elucidates the cardioprotective effects of copper ions and mild heat and will provide a highly efficient treatment for MI.
Collapse
Affiliation(s)
- Kai Feng
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Yiling Ruan
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Xinmiao Zhang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaojing Wu
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Zixuan Liu
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaolian Sun
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
23
|
Zhang C, Liu K, He Y, Chang R, Guan F, Yao M. A multifunctional hydrogel dressing with high tensile and adhesive strength for infected skin wound healing in joint regions. J Mater Chem B 2023; 11:11135-11149. [PMID: 37964663 DOI: 10.1039/d3tb01384g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Most hydrogel dressings are designed for skin wounds in flat areas, and few are focused on the joint skin regions which undergo frequent movement. The mismatch of mechanical properties and poor fit between a hydrogel dressing and a wound in joint skin results in hydrogel shedding, bacterial infection and delayed healing. Therefore, it is of great significance to design and prepare a multifunctional hydrogel with high tensile and tissue-adhesive strength as well as other therapeutic effects for the treatment of joint skin wounds. In this work, a multifunctional hydrogel was reasonably prepared by simply mixing polyvinyl alcohol (PVA), borax, tannic acid (TA) and iron(III) chloride in certain proportions, which was further used to treat the skin wounds at the joint of the hind limb. Acting as the physical crosslinkers, borax and TA dynamically bond with PVA and provide the resulting hydrogel with strong tensile, fast shape-adaptive and self-healing properties. The photothermal bacteriostatic activity of the hydrogel is attributed to the formation of a metallic polyphenol network (MPN) between ferric ions and TA. In addition, the hydrogel exhibits high levels of adhesion, hemostatic performance, antioxidant abilities, and biocompatibility, and shows great potential to promote joint skin wound healing.
Collapse
Affiliation(s)
- Chen Zhang
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, P. R. China.
| | - Kaiyue Liu
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, P. R. China.
| | - Yuanmeng He
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, P. R. China.
| | - Rong Chang
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, P. R. China.
| | - Fangxia Guan
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, P. R. China.
| | - Minghao Yao
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, P. R. China.
| |
Collapse
|
24
|
Hong X, Tian G, Zhu Y, Ren T. Exogeneous metal ions as therapeutic agents in cardiovascular disease and their delivery strategies. Regen Biomater 2023; 11:rbad103. [PMID: 38173776 PMCID: PMC10761210 DOI: 10.1093/rb/rbad103] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/26/2023] [Accepted: 11/11/2023] [Indexed: 01/05/2024] Open
Abstract
Metal ions participate in many metabolic processes in the human body, and their homeostasis is crucial for life. In cardiovascular diseases (CVDs), the equilibriums of metal ions are frequently interrupted, which are related to a variety of disturbances of physiological processes leading to abnormal cardiac functions. Exogenous supplement of metal ions has the potential to work as therapeutic strategies for the treatment of CVDs. Compared with other therapeutic drugs, metal ions possess broad availability, good stability and safety and diverse drug delivery strategies. The delivery strategies of metal ions are important to exert their therapeutic effects and reduce the potential toxic side effects for cardiovascular applications, which are also receiving increasing attention. Controllable local delivery strategies for metal ions based on various biomaterials are constantly being designed. In this review, we comprehensively summarized the positive roles of metal ions in the treatment of CVDs from three aspects: protecting cells from oxidative stress, inducing angiogenesis, and adjusting the functions of ion channels. In addition, we introduced the transferability of metal ions in vascular reconstruction and cardiac tissue repair, as well as the currently available engineered strategies for the precise delivery of metal ions, such as integrated with nanoparticles, hydrogels and scaffolds.
Collapse
Affiliation(s)
- Xiaoqian Hong
- Department of Cardiology of the Second Affiliated Hospital and State Key Laboratory of Transvascular Implantation Devices, Cardiovascular Key Laboratory of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Geer Tian
- Department of Cardiology of the Second Affiliated Hospital and State Key Laboratory of Transvascular Implantation Devices, Cardiovascular Key Laboratory of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310009, China
- Binjiang Institute of Zhejiang University, Hangzhou 310053, China
| | - Yang Zhu
- Binjiang Institute of Zhejiang University, Hangzhou 310053, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Tanchen Ren
- Department of Cardiology of the Second Affiliated Hospital and State Key Laboratory of Transvascular Implantation Devices, Cardiovascular Key Laboratory of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310009, China
| |
Collapse
|
25
|
Zhou H, Qian Q, Chen Q, Chen T, Wu C, Chen L, Zhang Z, Wu O, Jin Y, Wang X, Guo Z, Sun J, Zhang J, Shen S, Wang X, Jones M, Khan MA, Makvandi P, Zhou Y, Wu A. Enhanced Mitochondrial Targeting and Inhibition of Pyroptosis with Multifunctional Metallopolyphenol Nanoparticles in Intervertebral Disc Degeneration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2308167. [PMID: 37953455 DOI: 10.1002/smll.202308167] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/29/2023] [Indexed: 11/14/2023]
Abstract
Intervertebral disc degeneration (IVDD) is a significant contributor to low back pain, characterized by excessive reactive oxygen species generation and inflammation-induced pyroptosis. Unfortunately, there are currently no specific molecules or materials available to effectively delay IVDD. This study develops a multifunctional full name of PG@Cu nanoparticle network (PG@Cu). A designed pentapeptide, bonded on PG@Cu nanoparticles via a Schiff base bond, imparts multifunctionality to the metal polyphenol particles (PG@Cu-FP). PG@Cu-FP exhibits enhanced escape from lysosomal capture, enabling efficient targeting of mitochondria to scavenge excess reactive oxygen species. The scavenging activity against reactive oxygen species originates from the polyphenol-based structures within the nanoparticles. Furthermore, Pyroptosis is effectively blocked by inhibiting Gasdermin mediated pore formation and membrane rupture. PG@Cu-FP successfully reduces the activation of the nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 inflammasome by inhibiting Gasdermin protein family (Gasdermin D, GSDMD) oligomerization, leading to reduced expression of Nod-like receptors. This multifaceted approach demonstrates higher efficiency in inhibiting Pyroptosis. Experimental results confirm that PG@Cu-FP preserves disc height, retains water content, and preserves tissue structure. These findings highlight the potential of PG@Cu-FP in improving IVDD and provide novel insights for future research in IVDD treatments.
Collapse
Affiliation(s)
- Hao Zhou
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Qiuping Qian
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
| | - Qizhu Chen
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Tao Chen
- Department of Orthopaedics, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education Tongji Hospital, Tongji University School of Medicine, School of Life Science and Technology, Tongji University, Shanghai, 200065, China
| | - Chenyu Wu
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Linjie Chen
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Zhiguang Zhang
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Ouqiang Wu
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Yuxin Jin
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Xinzhou Wang
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Zhenyu Guo
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Jing Sun
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Jun Zhang
- Zhejiang Provincial People's Hospital Bijie Hospital, Bijie, Guizhou, 551700, China
| | - Shuying Shen
- Department of Orthopaedics, Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Xiangyang Wang
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Morgan Jones
- Spine Unit, The Royal Orthopaedic Hospital, Bristol Road South, Northfield, Birmingham, B31 2AP, United Kingdom
| | - Moonis Ali Khan
- Chemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Pooyan Makvandi
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang, 324000, China
| | - Yunlong Zhou
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
| | - Aimin Wu
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| |
Collapse
|
26
|
Wang D, Xing J, Zhang Y, Guo Z, Deng S, Guan Z, He B, Ma R, Leng X, Dong K, Dong Y. Metal-Phenolic Networks for Chronic Wounds Therapy. Int J Nanomedicine 2023; 18:6425-6448. [PMID: 38026522 PMCID: PMC10640828 DOI: 10.2147/ijn.s434535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Chronic wounds are recalcitrant complications of a variety of diseases, with pathologic features including bacterial infection, persistent inflammation, and proliferation of reactive oxygen species (ROS) levels in the wound microenvironment. Currently, the use of antimicrobial drugs, debridement, hyperbaric oxygen therapy, and other methods in clinical for chronic wound treatment is prone to problems such as bacterial resistance, wound expansion, and even exacerbation. In recent years, researchers have proposed many novel materials for the treatment of chronic wounds targeting the disease characteristics, among which metal-phenolic networks (MPNs) are supramolecular network structures that utilize multivalent metal ions and natural polyphenols complexed through ligand bonds. They have a flexible and versatile combination of structural forms and a variety of formations (nanoparticles, coatings, hydrogels, etc.) that can be constructed. Functionally, MPNs combine the chemocatalytic and bactericidal properties of metal ions as well as the anti-inflammatory and antioxidant properties of polyphenol compounds. Together with the excellent properties of rapid synthesis and negligible cytotoxicity, MPNs have attracted researchers' great attention in biomedical fields such as anti-tumor, anti-bacterial, and anti-inflammatory. This paper will focus on the composition of MPNs, the mechanisms of MPNs for the treatment of chronic wounds, and the application of MPNs in novel chronic wound therapies.
Collapse
Affiliation(s)
- Danyang Wang
- Department of Pharmacy, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Jianfeng Xing
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Ying Zhang
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Ziyang Guo
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Shujing Deng
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Zelin Guan
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Binyang He
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Ruirui Ma
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Xue Leng
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Kai Dong
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Yalin Dong
- Department of Pharmacy, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| |
Collapse
|
27
|
Feng C, Chen B, Fan R, Zou B, Han B, Guo G. Polyphenol-Based Nanosystems for Next-Generation Cancer Therapy: Multifunctionality, Design, and Challenges. Macromol Biosci 2023; 23:e2300167. [PMID: 37266916 DOI: 10.1002/mabi.202300167] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/15/2023] [Indexed: 06/03/2023]
Abstract
With the continuous updating of cancer treatment methods and the rapid development of precision medicine in recent years, there are higher demands for advanced and versatile drug delivery systems. Scientists are committed to create greener and more effective nanomedicines where the carrier is no longer limited to a single function of drug delivery. Polyphenols, which can act as both active ingredients and fundamental building blocks, are being explored as potential multifunctional carriers that are efficient and safe for design purposes. Due to their intrinsic anticancer activity, phenolic compounds have shown surprising expressiveness in ablation of tumor cells, overcoming cancer multidrug resistance (MDR), and enhancing immunotherapeutic efficacy. This review provides an overview of recent advances in the design, synthesis, and application of versatile polyphenol-based nanosystems for cancer therapy in various modes. Moreover, the merits of polyphenols and the challenges for their clinical translation are also discussed, and it is pointed out that the novel polyphenol delivery system requires further optimization and validation.
Collapse
Affiliation(s)
- Chenqian Feng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bo Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Rangrang Fan
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bingwen Zou
- Department of Thoracic Oncology and Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bo Han
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, 832002, China
| | - Gang Guo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
28
|
Li Q, Song H, Li S, Hu P, Zhang C, Zhang J, Feng Z, Kong D, Wang W, Huang P. Macrophage metabolism reprogramming EGCG-Cu coordination capsules delivered in polyzwitterionic hydrogel for burn wound healing and regeneration. Bioact Mater 2023; 29:251-264. [PMID: 37533477 PMCID: PMC10391721 DOI: 10.1016/j.bioactmat.2023.07.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/30/2023] [Accepted: 07/13/2023] [Indexed: 08/04/2023] Open
Abstract
Excessive reactive oxygen species (ROS) at severe burn injury sites may promote metabolic reprogramming of macrophages to induce a deteriorative and uncontrolled inflammation cycle, leading to delayed wound healing and regeneration. Here, a novel bioactive, anti-fouling, flexible polyzwitterionic hydrogel encapsulated with epigallocatechin gallate (EGCG)-copper (Cu) capsules (termed as EGCG-Cu@CBgel) is engineered for burn wound management, which is dedicated to synergistically exerting ROS-scavenging, immune metabolic regulation and pro-angiogenic effects. EGCG-Cu@CBgel can scavenge ROS to normalize intracellular redox homeostasis, effectively relieving oxidative damages and blocking proinflammatory signal transduction. Importantly, EGCG-Cu can inhibit the activity of hexokinase and phosphofructokinase, alleviate accumulation of pyruvate and convert it to acetyl coenzyme A (CoA), whereby inhibits glycolysis and normalizes tricarboxylic acid (TCA) cycle. Additionally, metabolic reprogramming of macrophages by EGCG-Cu downregulates M1-type polarization and the expression of proinflammatory cytokines both in vitro and in vivo. Meanwhile, copper ions (Cu2+) released from the hydrogel facilitate angiogenesis. EGCG-Cu@CBgel significantly accelerates the healing of severe burn wound via promoting wound closure, weakening tissue-damaging inflammatory responses and enhancing the remodeling of pathological structure. Overall, this study demonstrates the great potential of bioactive hydrogel dressing in treating burn wounds without unnecessary secondary damage to newly formed skin, and highlights the importance of immunometabolism modulation in tissue repair and regeneration.
Collapse
Affiliation(s)
- Qinghua Li
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Huijuan Song
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Shuangyang Li
- Department of Polymer Science and Engineering, Key Laboratory of Systems Bioengineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Pengbo Hu
- Emergency Department of Binzhou Medical University Hospital, Binzhou, Shandong Province, 256600, China
| | - Chuangnian Zhang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Ju Zhang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Zujian Feng
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Deling Kong
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Weiwei Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Pingsheng Huang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| |
Collapse
|
29
|
Kang D, Wang W, Li Y, Ma Y, Huang Y, Wang J. Biological Macromolecule Hydrogel Based on Recombinant Type I Collagen/Chitosan Scaffold to Accelerate Full-Thickness Healing of Skin Wounds. Polymers (Basel) 2023; 15:3919. [PMID: 37835967 PMCID: PMC10575414 DOI: 10.3390/polym15193919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/21/2023] [Accepted: 09/24/2023] [Indexed: 10/15/2023] Open
Abstract
The development of biological macromolecule hydrogel dressings with fatigue resistance, sufficient mechanical strength, and versatility in clinical treatment is critical for accelerating full-thickness healing of skin wounds. Therefore, in this study, multifunctional, biological macromolecule hydrogels based on a recombinant type I collagen/chitosan scaffold incorporated with a metal-polyphenol structure were fabricated to accelerate wound healing. The resulting biological macromolecule hydrogel possesses sufficient mechanical strength, fatigue resistance, and healing properties, including antibacterial, antioxygenic, self-healing, vascularization, hemostatic, and adhesive abilities. Chitosan and recombinant type I collagen formed the scaffold network, which was the first covalent crosslinking network of the hydrogel. The second physical crosslinking network comprised the coordination of a metal-polyphenol structure, i.e., Cu2+ with the catechol group of dopamine methacrylamide (DMA) and stacking of DMA benzene rings. Double-crosslinked networks are interspersed and intertwined in the hydrogel to reduce the mechanical strength and increase its fatigue resistance, making it more suitable for clinical applications. Moreover, the biological macromolecule hydrogel can continuously release Cu2+, which provides strong antibacterial and vascularization properties. An in vivo full-thickness skin defect model confirmed that multifunctional, biological macromolecule hydrogels based on a recombinant type I collagen/chitosan scaffold incorporated with a metal-polyphenol structure can facilitate the formation of granulation tissue and collagen deposition for a short period to promote wound healing. This study highlights that this biological macromolecule hydrogel is a promising acute wound-healing dressing for biomedical applications.
Collapse
Affiliation(s)
- Duo Kang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (D.K.); (W.W.); (Y.L.); (Y.M.)
| | - Wenhai Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (D.K.); (W.W.); (Y.L.); (Y.M.)
| | - Yanmei Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (D.K.); (W.W.); (Y.L.); (Y.M.)
| | - Yi Ma
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (D.K.); (W.W.); (Y.L.); (Y.M.)
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, China
| | - Yadong Huang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China;
| | - Jufang Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (D.K.); (W.W.); (Y.L.); (Y.M.)
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
30
|
Zhang A, Liu K, Liang X, Li H, Fu X, Zhu N, Li F, Yang J. Metal-phenolic capsules with ROS scavenging reshape the oxidative microenvironment of atherosclerosis. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 53:102700. [PMID: 37544347 DOI: 10.1016/j.nano.2023.102700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/13/2023] [Accepted: 07/16/2023] [Indexed: 08/08/2023]
Abstract
Arterial injury makes the tissue in a state of high oxidative stress. At the same time, abnormal lipid metabolism can further lead to bleeding and thrombosis. Therefore, the anti-inflammatory and anti-oxidant polyphenol, EGCG was organically complexed with Fe3+ to form a metal-phenolic framework carrier. And the antihyperlipidemic drug, atorvastatin (ATV) was loaded into the carrier to enhance the bioavailability, and simultaneously alleviate the oxidative stress of the inflammatory site and abnormal lipid metabolism. The results confirmed that the obtained material EGCG-Fe-ATV had good biocompatibility and biosafety effect. In addition, EGCG-Fe-ATV showed outstanding anti-inflammatory, anti-oxidant and lipid-lowering properties. These therapeutic outcomes of EGCG-Fe-ATV were achieved by reducing systemic and local oxidative stress and inflammation, alleviating inflammatory cell infiltration in plaques, and modulating lipid synthesis and transferase to alter cholesterol transport. In conclusion, the combination of metal-phenolic capsules with ATV provides a new strategy for reshaping the oxidative microenvironment of atherosclerosis.
Collapse
Affiliation(s)
- Aiai Zhang
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China; The First Affiliated Hospital of Hebei North university, No.12, Changqing Road, Qiaoxi District, Zhangjiakou City, Hebei 075061, China
| | - Kaijing Liu
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Xiaoyu Liang
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Huiyang Li
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Xue Fu
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Ni Zhu
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Fangjiang Li
- The First Affiliated Hospital of Hebei North university, No.12, Changqing Road, Qiaoxi District, Zhangjiakou City, Hebei 075061, China
| | - Jing Yang
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China; Tianjin Medical Health Research Institute, Tianjin 300192, China.
| |
Collapse
|
31
|
Hu Y, Xiong Y, Zhu Y, Zhou F, Liu X, Chen S, Li Z, Qi S, Chen L. Copper-Epigallocatechin Gallate Enhances Therapeutic Effects of 3D-Printed Dermal Scaffolds in Mitigating Diabetic Wound Scarring. ACS APPLIED MATERIALS & INTERFACES 2023; 15:38230-38246. [PMID: 37535406 PMCID: PMC10436249 DOI: 10.1021/acsami.3c04733] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/10/2023] [Indexed: 08/04/2023]
Abstract
Morbid dermal templates, microangiopathy, and abnormal inflammation are the three most critical reasons for the scarred healing and the high recurrence rate of diabetic wounds. In this present study, a combination of a methacrylated decellularized extracellular matrix (ECMMA, aka EM)-based hydrogel system loaded with copper-epigallocatechin gallate (Cu-EGCG) capsules is proposed to fabricate bio-printed dermal scaffolds for diabetic wound treatment. Copper ions act as a bioactive element for promoting angiogenesis, and EGCG can inhibit inflammation on the wound site. In addition to the above activities, EM/Cu-EGCG (E/C) dermal scaffolds can also provide optimized templates and nutrient exchange space for guiding the orderly deposition and remodeling of ECM. In vitro experiments have shown that the E/C hydrogel can promote angiogenesis and inhibit the polarization of macrophages to the M1 pro-inflammatory phenotype. In the full-thickness skin defect model of diabetic rats, the E/C dermal scaffold combined with split-thickness skin graft transplantation can alleviate pathological scarring via promoting angiogenesis and driving macrophage polarization to the anti-inflammatory M2 phenotype. These may be attributed to the scaffold-actuated expression of angiogenesis-related genes in the HIF-1α/vascular endothelial growth factor pathway and decreased expression of inflammation-related genes in the TNF-α/NF-κB/MMP9 pathway. The results of this study show that the E/C dermal scaffold could serve as a promising artificial dermal analogue for solving the problems of delayed wound healing and reulceration of diabetic wounds.
Collapse
Affiliation(s)
- Yanke Hu
- Department
of Burn, Wound Repair & Reconstruction, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
- Guangdong
Provincial Engineering Technology Research Center of Burn and Wound
Accurate Diagnosis and Treatment Key Technology and Series of Products, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
- Institute
of Precision Medicine, The First Affiliated
Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Yahui Xiong
- Department
of Burn, Wound Repair & Reconstruction, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
- Guangdong
Provincial Engineering Technology Research Center of Burn and Wound
Accurate Diagnosis and Treatment Key Technology and Series of Products, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
- Institute
of Precision Medicine, The First Affiliated
Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Yongkang Zhu
- Department
of Burn, Wound Repair & Reconstruction, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
- Guangdong
Provincial Engineering Technology Research Center of Burn and Wound
Accurate Diagnosis and Treatment Key Technology and Series of Products, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
- Institute
of Precision Medicine, The First Affiliated
Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Fei Zhou
- Department
of Burn, Wound Repair & Reconstruction, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
- Guangdong
Provincial Engineering Technology Research Center of Burn and Wound
Accurate Diagnosis and Treatment Key Technology and Series of Products, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
- Institute
of Precision Medicine, The First Affiliated
Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Xiaogang Liu
- Department
of Burn, Wound Repair & Reconstruction, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
- Guangdong
Provincial Engineering Technology Research Center of Burn and Wound
Accurate Diagnosis and Treatment Key Technology and Series of Products, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
- Institute
of Precision Medicine, The First Affiliated
Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Shuying Chen
- Department
of Burn, Wound Repair & Reconstruction, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
- Guangdong
Provincial Engineering Technology Research Center of Burn and Wound
Accurate Diagnosis and Treatment Key Technology and Series of Products, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
- Institute
of Precision Medicine, The First Affiliated
Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Zhanpeng Li
- Department
of Burn, Wound Repair & Reconstruction, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
- Guangdong
Provincial Engineering Technology Research Center of Burn and Wound
Accurate Diagnosis and Treatment Key Technology and Series of Products, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
- Institute
of Precision Medicine, The First Affiliated
Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Shaohai Qi
- Department
of Burn, Wound Repair & Reconstruction, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
- Guangdong
Provincial Engineering Technology Research Center of Burn and Wound
Accurate Diagnosis and Treatment Key Technology and Series of Products, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
- Institute
of Precision Medicine, The First Affiliated
Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Lei Chen
- Department
of Burn, Wound Repair & Reconstruction, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
- Guangdong
Provincial Engineering Technology Research Center of Burn and Wound
Accurate Diagnosis and Treatment Key Technology and Series of Products, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
- Institute
of Precision Medicine, The First Affiliated
Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| |
Collapse
|
32
|
Dai D, Wang J, Xie H, Zhang C. An epigallocatechin gallate-amorphous calcium phosphate nanocomposite for caries prevention and demineralized enamel restoration. Mater Today Bio 2023; 21:100715. [PMID: 37545565 PMCID: PMC10401283 DOI: 10.1016/j.mtbio.2023.100715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 08/08/2023] Open
Abstract
Biomineralization with amorphous calcium phosphate (ACP) is a highly effective strategy for caries prevention and defect restoration. The identification and interruption of cariogenic biofilm formation during remineralization remains a challenge in current practice. In this study, an epigallocatechin gallate (EGCG)-ACP functional nanocomposite was developed to prevent and restore demineralization by integrating the antibacterial property of EGCG and the remineralization effect of ACP. The synthesized EGCG-ACP showed good biocompatibility with L-929 cells and human gingival fibroblasts. Under neutral conditions, the sustained release of ACP from EGCG-ACP restored the microstructure and mechanical properties of demineralized enamel. Under acidic conditions, protonated EGCG released from EGCG-ACP exerted a strong antibacterial effect, and the ACP release rate doubled within 4 h, resulting in the prevention of demineralization in the presence of cariogenic bacteria. The pH-responsive features of EGCG-ACP to promote the protonation of EGCG and ACP release facilitated its performance in remineralization effect to overcome the difficulty of restoring demineralized enamel in a cariogenic acidic environment, which was evidenced by the in vivo experiment carried out in a rat oral cariogenic environment. The results of this study indicate the potential of EGCG-ACP for the prevention of enamel demineralization and provide a theoretical basis its application in populations with high caries risk.
Collapse
|
33
|
Song X, Zheng Z, Ouyang S, Chen H, Sun M, Lin P, Chen Y, You Y, Hao W, Tao J, Zhao P. Biomimetic Epigallocatechin Gallate-Cerium Assemblies for the Treatment of Rheumatoid Arthritis. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37399544 DOI: 10.1021/acsami.3c02768] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Rheumatoid arthritis (RA) is an autoimmune and inflammatory disease that is so far incurable with long-term health risks. The high doses and frequent administration for the available RA drug always lead to adverse side effects. Aiming at the obstacles to achieving effective RA treatment, we prepared macrophage cell membrane-camouflaged nanoparticles (M-EC), which were assembled from epigallocatechin gallate (EGCG) and cerium(IV) ions. Due to its geometrical similarity to the active metal sites of a natural antioxidant enzyme, the EC possessed a high scavenge efficiency to various types of reactive oxygen species (ROS) and reactive nitrogen species (RNS). The macrophage cell membrane assisted M-EC in escaping from the immune system, being uptaken by inflammatory cells, and specifically binding IL-1β. After tail vein injection to the collagen-induced arthritis (CIA) mouse model, the M-EC accumulated at inflamed joints and effectively repaired the bone erosion and cartilage damage of rheumatoid arthritis by relieving synovial inflammation and cartilage erosion. It is expected that the M-EC can not only pave a new way for designing metal-phenolic networks with better biological activity but also provide a more biocompatible therapeutic strategy for effective treatment of RA.
Collapse
Affiliation(s)
- Xiangfei Song
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhiyuan Zheng
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Sixue Ouyang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Huiting Chen
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Mingyan Sun
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Peiru Lin
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yuying Chen
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yuanyuan You
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Wenwen Hao
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Jia Tao
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Peng Zhao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
34
|
Zhao J, Fu J, Jia F, Li J, Yu B, Huang Y, Ren K, Ji J, Fu G. Precise Regulation of Inflammation and Oxidative Stress by ROS‐Responsive Prodrug Coated Balloon for Preventing Vascular Restenosis. ADVANCED FUNCTIONAL MATERIALS 2023; 33. [DOI: 10.1002/adfm.202213993] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Indexed: 09/09/2024]
Abstract
AbstractVascular restenosis after balloon dilation is largely caused by the over‐proliferation of smooth muscle cells, which is triggered and exacerbated by local excessive inflammation and oxidative stress. The excessive inflammatory and oxidative stress cause tissue/cell damage, hamper endothelial functions, and worsen intimal hyperplasia and restenosis. A high level of reactive oxygen species (ROS) overproduction is regarded as the main culprit. Therefore, efficiently inhibiting ROS over‐production or weightily depleting them is of great significance. Herein, a “ROS‐responsive/scavenging prodrug” is introduced into balloon coating for the treatment of vascular restenosis. A reversible phenylboronic ester‐bearing caffeic acid (CA) macromolecular prodrug (PBC) is designed for the controlled and on‐demand dual‐drug release triggered by the local high ROS level; the released CA and 4‐hydroxybenzyl alcohol exhibit efficient antioxidant and anti‐inflammatory effects by scavenging ROS, thereby regulating vascular microenvironment and protecting endothelium functions. To accelerate endothelium regeneration, pro‐endothelial microRNA‐126 is further introduced. The ROS‐responsive/scavenging prodrug/miRNA balloon coating efficiently prevents intimal hyperplasia, alleviates local inflammation, and improves endothelium healing in a rat abdominal aorta restenosis model, which may provide applicative perspectives for next‐generation drug‐coated balloons and other cardiovascular diseases treatment.
Collapse
Affiliation(s)
- Jing Zhao
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province Department of Cardiology Sir Run Run Shaw Hospital Zhejiang University Hangzhou 310016 China
| | - Jia‐yin Fu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province Department of Cardiology Sir Run Run Shaw Hospital Zhejiang University Hangzhou 310016 China
| | - Fan Jia
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province Department of Cardiology Sir Run Run Shaw Hospital Zhejiang University Hangzhou 310016 China
| | - Jian Li
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province Department of Cardiology Sir Run Run Shaw Hospital Zhejiang University Hangzhou 310016 China
| | - Bo Yu
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Yue Huang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Ke‐feng Ren
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province Department of Cardiology Sir Run Run Shaw Hospital Zhejiang University Hangzhou 310016 China
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Jian Ji
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province Department of Cardiology Sir Run Run Shaw Hospital Zhejiang University Hangzhou 310016 China
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Guo‐sheng Fu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province Department of Cardiology Sir Run Run Shaw Hospital Zhejiang University Hangzhou 310016 China
| |
Collapse
|
35
|
Xu D, Zhu W, Ding C, Mei J, Zhou J, Cheng T, Guo G, Zhang X. Self-Homeostasis Immunoregulatory Strategy for Implant-Related Infections through Remodeling Redox Balance. ACS NANO 2023; 17:4574-4590. [PMID: 36811805 DOI: 10.1021/acsnano.2c10660] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Implant-related infections (IRIs) are catastrophic complications after orthopedic surgery. Excess reactive oxygen species (ROS) accumulated in IRIs create a redox-imbalanced microenvironment around the implant, which severely limits the curing of IRIs by inducing biofilm formation and immune disorders. However, current therapeutic strategies commonly eliminate infection utilizing the explosive generation of ROS, which exacerbates the redox imbalance, aggravating immune disorders and promoting infection chronicity. Herein, a self-homeostasis immunoregulatory strategy based on a luteolin (Lut)-loaded copper (Cu2+)-doped hollow mesoporous organosilica nanoparticle system (Lut@Cu-HN) is designed to cure IRIs by remodeling the redox balance. In the acidic infection environment, Lut@Cu-HN is continuously degraded to release Lut and Cu2+. As both an antibacterial and immunomodulatory agent, Cu2+ kills bacteria directly and promotes macrophage pro-inflammatory phenotype polarization to activate the antibacterial immune response. Simultaneously, Lut scavenges excessive ROS to prevent the Cu2+-exacerbated redox imbalance from impairing macrophage activity and function, thus reducing Cu2+ immunotoxicity. The synergistic effect of Lut and Cu2+ confers excellent antibacterial and immunomodulatory properties to Lut@Cu-HN. As demonstrated in vitro and in vivo, Lut@Cu-HN self-regulates immune homeostasis through redox balance remodeling, ultimately facilitating IRI eradication and tissue regeneration.
Collapse
Affiliation(s)
- Dongdong Xu
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200233, People's Republic of China
| | - Wanbo Zhu
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200233, People's Republic of China
- Department of Orthopedics, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui 230001, People's Republic of China
| | - Cheng Ding
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200233, People's Republic of China
| | - Jiawei Mei
- Department of Orthopedics, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui 230001, People's Republic of China
| | - Jun Zhou
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200233, People's Republic of China
| | - Tao Cheng
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200233, People's Republic of China
| | - Geyong Guo
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200233, People's Republic of China
| | - Xianlong Zhang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200233, People's Republic of China
| |
Collapse
|
36
|
Liu K, Liu L, Guo H, Xu R, Liang X, Chen Y, Li H, Fu X, Wang X, Chen H, Li Y, Yang J. Redox Modulatory Cu(II)-Baicalein Microflowers Prepared in One Step Effectively Promote Therapeutic Angiogenesis in Diabetic Mice. Adv Healthc Mater 2023; 12:e2202010. [PMID: 36416442 DOI: 10.1002/adhm.202202010] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/01/2022] [Indexed: 11/24/2022]
Abstract
Reactive oxygen species (ROS) have been implicated in multiple cellular processes, and an imbalance in redox homeostasis gives rise to diseases, therefore, reestablishing redox homeostasis is a way to cure. Here, copper-based metal-organic networks (Cu-MON) are generated by one-step reaction using anti-inflammatory and antioxidant baicalein as organic ligand and pro-angiogenic copper as metal ions. Phosphate buffered saline is required for triggering Cu-MON formation, and baicalein regulates the morphology and particle size of Cu-MON. Cu-MON are composed of Cu-baicalein complexes (82.08 wt%) and Cu3 (PO4 )2 ·3H2 O (17.92 wt%), thus exhibit a variable catalase-like activity against different H2 O2 levels due to the reversible change between Cu2+ /Cu1+ /Cu0 species. Intramuscular injection of Cu-MON significantly increases blood flow of ischemic limb in diabetic mice, enhances the relative activities of redox-related enzymes in ischemic muscle, thus effectively ameliorating the oxidative damage. Taken together, through moderate and dynamic "precise homeostasis regulation of cells," Cu-MON can be an efficient therapeutic strategy for peripheral arterial disease with diabetic complications.
Collapse
Affiliation(s)
- Kaijing Liu
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Limei Liu
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Haoyang Guo
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China.,School of Pharmacy & Pharmaceutical Science, University of California Irvine, 209 Steinahus Hall, Irvine, CA, 92697-3958, USA
| | - Rong Xu
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Xiaoyu Liang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Youlu Chen
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Huiyang Li
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Xue Fu
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Xiaoli Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China.,Tianjin Institutes of Health Science, Chinese Academy of Medical Science and Peking Union College, Tianjin, China
| | - Houzao Chen
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Yongjun Li
- Department of Vascular Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, P. R. China
| | - Jing Yang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China.,Tianjin Institutes of Health Science, Chinese Academy of Medical Science and Peking Union College, Tianjin, China
| |
Collapse
|
37
|
Wan J, Yang J, Lei W, Xiao Z, Zhou P, Zheng S, Zhu P. Anti-Oxidative, Anti-Apoptotic, and M2 Polarized DSPC Liposome Nanoparticles for Selective Treatment of Atherosclerosis. Int J Nanomedicine 2023; 18:579-594. [PMID: 36756051 PMCID: PMC9901454 DOI: 10.2147/ijn.s384675] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 01/14/2023] [Indexed: 02/04/2023] Open
Abstract
Purpose Oxidative stress is one of the main pathogenic factors of atherosclerosis. However, no antioxidants have brought positive effects on the treatment of atherosclerosis. To selectively treat atherosclerosis, various means such as antioxidation, anti-apoptosis, and M2 polarization are used. The ultimate goal is that multiple regulatory pathways can help to treat atherosclerosis. Patients and Methods In this study, Simvastatin (SIM) as a model drug, EGCG as an antioxidant agent, and distearyl phosphatidylcholine (DSPC) as major carriers were used to make liposome nanoparticles (SE-LNPs). The cytotoxicity, phagocytosis, antioxidant, and anti-apoptotic properties of nanoparticles were tested in vitro. ApoE-/- atherosclerotic mice were treated with nanoparticles. The changes of aortic Oil red staining, blood lipid, HE, and Masson sections of the aortic root were observed. Results SE-LNPs exhibited a sustained release profile, potentially enabling the accumulation of the majority amount of drugs at the atherosclerotic plaque. The phagocytosis effect was stronger in RAW. The anti-oxidative and anti-apoptotic effects of the formulation were verified in vitro. SE-LNPs promoted the polarization of M2 macrophages. The therapeutic effect of SE-LNPs was assessed in the ApoE-/- mice model of atherosclerosis. SE-LNPs reduced reactive oxygen species and lipids in vivo. The results of Oil red staining, blood lipid, HE, and Masson sections of the aortic root showed the recovery of the focus. Conclusion Studies have shown that SE-LNPs could resist oxidation, and apoptosis, promote M2 polarization, and reduce blood lipids and lesions, which is a reliable and selective treatment for atherosclerosis.
Collapse
Affiliation(s)
- Jun Wan
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Jie Yang
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Wenrui Lei
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Zezhou Xiao
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Pengyu Zhou
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Shaoyi Zheng
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Peng Zhu
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| |
Collapse
|
38
|
Liu N, Zhu S, Deng Y, Xie M, Zhao M, Sun T, Yu C, Zhong Y, Guo R, Cheng K, Chang D, Zhu P. Construction of multifunctional hydrogel with metal-polyphenol capsules for infected full-thickness skin wound healing. Bioact Mater 2022; 24:69-80. [PMID: 36582352 PMCID: PMC9772805 DOI: 10.1016/j.bioactmat.2022.12.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/09/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Damaged skin cannot prevent harmful bacteria from invading tissues, causing infected wounds or even severe tissue damage. In this study, we developed a controlled-release antibacterial composite hydrogel system that can promote wound angiogenesis and inhibit inflammation by sustained releasing Cu-Epigallocatechin-3-gallate (Cu-EGCG) nano-capsules. The prepared SilMA/HAMA/Cu-EGCG hydrogel showed an obvious inhibitory effect on Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). It could also promote the proliferation and migration of L929 fibroblasts. In vivo full-thickness infected wound healing experiments confirmed the angiogenesis and inflammation regulating effect. Accelerate collagen deposition and wound healing speed were also observed in the SilMA/HAMA/Cu-EGCG hydrogel treated group. The findings of this study show the great potential of this controlled-release antibacterial composite hydrogel in the application of chronic wound healing.
Collapse
Affiliation(s)
- Nanbo Liu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510100, China,Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou, Guangdong, 510100, China
| | - Shuoji Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510100, China,University of Tokyo, Tokyo, 113-8666, Japan,Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou, Guangdong, 510100, China
| | - Yuzhi Deng
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510100, China,Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, China,Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou, Guangdong, 510100, China
| | - Ming Xie
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510100, China,Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou, Guangdong, 510100, China
| | - Mingyi Zhao
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510100, China,Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou, Guangdong, 510100, China
| | - Tucheng Sun
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510100, China,Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou, Guangdong, 510100, China
| | - Changjiang Yu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510100, China,Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou, Guangdong, 510100, China
| | - Ying Zhong
- Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, China
| | - Rui Guo
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Centre for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China,Corresponding author.
| | - Keluo Cheng
- Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, China,Corresponding author.
| | - Dehua Chang
- University of Tokyo Hospital Department of Cell Therapy in Regenerative Medicine, Tokyo, 113-8666, Japan,Corresponding author.
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510100, China,Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, China,Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou, Guangdong, 510100, China,Corresponding author. Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510100, China.
| |
Collapse
|
39
|
Wang H, Wang D, Yu J, Zhang Y, Zhou Y. Applications of metal-phenolic networks in nanomedicine: a review. Biomater Sci 2022; 10:5786-5808. [PMID: 36047491 DOI: 10.1039/d2bm00969b] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
The exploration of nanomaterials is beneficial for the development of nanomedicine and human medical treatment. Metal-phenolic networks (MPNs) have been introduced as a nanoplatform for versatile functional hybrid nanomaterials and have attracted extensive attention due to their simple preparation, excellent properties and promising medical application prospects. This review presents an overview of recent synthesis methods for MPNs, their unique biomedical properties and the research progress in their application in disease detection and treatment. First, the synthesis methods of MPNs are summarised, and then the advantages and applicability of each assembly method are emphasised. The various functions exhibited by MPNs in biomedical applications are then introduced. Finally, the latest research progress in MPN-based nanoplatforms in the biomedical field is discussed, and their future research and application are investigated.
Collapse
Affiliation(s)
- Hanchi Wang
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, China. .,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Dongyang Wang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Jize Yu
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, China. .,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Yidi Zhang
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, China. .,State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Yanmin Zhou
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, China. .,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, China
| |
Collapse
|
40
|
Zhang B, Qin Y, Yang L, Wan H, Yuan L, Wang Y. An organic selenium and VEGF-conjugated bioinspired coating promotes vascular healing. Biomaterials 2022; 287:121654. [PMID: 35842980 DOI: 10.1016/j.biomaterials.2022.121654] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 06/24/2022] [Indexed: 11/02/2022]
Abstract
The introduction of drug-eluting stents (DESs) have yield a significant reduction in the incidence of re-stenosis, however, challenges remain including incomplete healing of the endothelium, inflammatory response and thrombogenesis at the site of vascular wall injury. Here, we developed a novel stent with polyphenol-polyamine surface combining the biological functions of nitric oxide gas and VEGF, selectively promoting the proliferation and migration of endothelial cells while suppressing smooth muscle cells. Compared with bare PLLA stents and traditional DESs, the functionalized stents enhanced vascular healing through remarkable inhibiting intimal hyperplasia and occurrence of thrombosis, accelerating the in-situ endothelium repair. Moreover, it showed a down-regulation of injury vascular inflammation response and reduction of the vessel wall injury in New Zealand Rabbits after 1- and 3-month implantation.
Collapse
Affiliation(s)
- Bo Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wang Jiang Road, Chengdu, 610065, China
| | - Yumei Qin
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wang Jiang Road, Chengdu, 610065, China
| | - Li Yang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wang Jiang Road, Chengdu, 610065, China
| | - Huining Wan
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wang Jiang Road, Chengdu, 610065, China
| | - Lu Yuan
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands; Oncode Institute, Utrecht, Netherlands
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wang Jiang Road, Chengdu, 610065, China.
| |
Collapse
|
41
|
Tang Q, Yi Y, Chen Y, Zhuang Z, Wang F, Zhang L, Wei S, Zhang Y, Wang Y, Liu L, Liu Q, Jiang C. A green and highly efficient method to deliver hydrophilic polyphenols of Salvia miltiorrhiza and Carthamus tinctorius for enhanced anti-atherosclerotic effect via metal-phenolic network. Colloids Surf B Biointerfaces 2022; 215:112511. [PMID: 35483256 DOI: 10.1016/j.colsurfb.2022.112511] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/05/2022] [Accepted: 04/17/2022] [Indexed: 10/18/2022]
Abstract
Salvia miltiorrhiza and Carthamus tinctorius are traditional Chinese medicines that have been widely used for the treatment of cardiovascular disease. Salvianic acid A (SAA), salvianic acid B (SAB), protocatechuic aldehyde (PCA) and hydroxysafflor yellow A (HSYA) are the major hydrophilic polyphenols of Salvia miltiorrhiza and Carthamus tinctorius, all of which have been documented as active compounds for the prevention and treatment of atherosclerosis (AS). However, high aqueous solubility, low permeability and poor stability properties of the four hydrophilic polyphenols might influence their bioavailability and thus hinder their clinical potential. In this work, we introduced a green and highly efficient method for the efficient delivery of the four hydrophilic components via metal-phenolic network. The four coordination polymers of SAA, SAB, PCA and HSYA were successfully fabricated, and confirmed by UV-vis, FTIR, XPS, ICP-MS and dynamic light scattering analysis. We found all of them displayed potent antioxidant activity, good biocompatibility and stability. Impressively, the four coordination polymers showed remarkably enhanced anti-atherosclerotic effect compared with free drugs. Collectively, metal-phenolic network-based coordination polymer might show great potential for safe and efficient delivery of the hydrophilic polyphenols of Salvia miltiorrhiza and Carthamus tinctorius for anti-atherosclerotic therapy.
Collapse
Affiliation(s)
- Qingfa Tang
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou Avenue North 1838, Guangzhou 510515, PR China
| | - Yankui Yi
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou Avenue North 1838, Guangzhou 510515, PR China
| | - Yao Chen
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou Avenue North 1838, Guangzhou 510515, PR China
| | - Ziming Zhuang
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou Avenue North 1838, Guangzhou 510515, PR China
| | - Feng Wang
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou Avenue North 1838, Guangzhou 510515, PR China
| | - Lu Zhang
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou Avenue North 1838, Guangzhou 510515, PR China
| | - Shenkun Wei
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou Avenue North 1838, Guangzhou 510515, PR China
| | - Yusheng Zhang
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou Avenue North 1838, Guangzhou 510515, PR China
| | - Yueqiusha Wang
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou Avenue North 1838, Guangzhou 510515, PR China
| | - Li Liu
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou Avenue North 1838, Guangzhou 510515, PR China
| | - Qiang Liu
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou Avenue North 1838, Guangzhou 510515, PR China.
| | - Cuiping Jiang
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou Avenue North 1838, Guangzhou 510515, PR China; Zhujiang Hospital, Southern Medical University, 253 Gongye Middle Avenue, Haizhu District, Guangzhou, 510280, Guangdong, China.
| |
Collapse
|
42
|
Kong J, Deng Y. Pirfenidone alleviates vascular intima injury caused by hyperhomocysteinemia. Rev Port Cardiol 2022; 41:813-819. [DOI: 10.1016/j.repc.2021.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/15/2021] [Accepted: 12/18/2021] [Indexed: 10/17/2022] Open
|
43
|
Hou R, Lu T, Gao W, Shen J, Yu Z, Li D, Zhang R, Zheng Y, Cai X. Prussian Blue Nanozyme Promotes the Survival Rate of Skin Flaps by Maintaining a Normal Microenvironment. ACS NANO 2022; 16:9559-9571. [PMID: 35549154 DOI: 10.1021/acsnano.2c02832] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Ischemia-reperfusion (I/R) injury leads to a low success rate of skin flap transplantation in reconstruction surgery, thus requiring development of new treatments. Necroptosis and apoptosis pathways, along with overexpression of reactive oxygen species and pro-inflammatory factors in skin flap transplantation, are deemed as potential therapeutic targets. This study provides a paradigm for nanozyme-mediated microenvironment maintenance to improve the survival rate of the transplanted skin flap. Prussian blue nanozyme (PBzyme) with multiple intrinsic biological activities was constructed and selected for this proof-of-concept study. The prepared PBzyme shows anti-inflammatory, antiapoptotic, antinecroptotic, and antioxidant activities in both in vitro and in vivo models of I/R injured skin flaps. The multiple inhibitory effects of PBzyme maintained a normal microenvironment and thus significantly promoted the survival rate of the I/R injured skin flap (from 37.21 ± 8.205% to 79.61 ± 7.5%). Of note, PBzyme regulated the expression of the characteristic signal molecules of necroptosis, including Rip 1, Rip 3, and pMLKL, indicating that PBzyme may be a therapeutic agent for necroptosis-related diseases. This study shows great prospects for clinical application of PBzyme in the treatment of skin flaps via local administration.
Collapse
Affiliation(s)
- Rui Hou
- Department of Plastic and Reconstructive Surgery, The Ninth People'S Hospital Affiliated To Shanghai Jiao Tong University School Of medicine, Shanghai, 200011, People's Republic of China
| | - Tianxiang Lu
- Department of Obstetrics and Gynecology, Xijing Hospital Affiliated to the Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Wei Gao
- Department of Ultrasound in Medicine, The Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, 200233, People's Republic of China
| | - Jian Shen
- Department of Ultrasound in Medicine, The Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, 200233, People's Republic of China
| | - Zheyuan Yu
- Department of Plastic and Reconstructive Surgery, The Ninth People'S Hospital Affiliated To Shanghai Jiao Tong University School Of medicine, Shanghai, 200011, People's Republic of China
| | - Datao Li
- Department of Plastic and Reconstructive Surgery, The Ninth People'S Hospital Affiliated To Shanghai Jiao Tong University School Of medicine, Shanghai, 200011, People's Republic of China
| | - Ruhong Zhang
- Department of Plastic and Reconstructive Surgery, The Ninth People'S Hospital Affiliated To Shanghai Jiao Tong University School Of medicine, Shanghai, 200011, People's Republic of China
| | - Yuanyi Zheng
- Department of Ultrasound in Medicine, The Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, 200233, People's Republic of China
- Shanghai Institute of Ultrasound Medicine, The Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, 200233, People's Republic of China
| | - Xiaojun Cai
- Department of Ultrasound in Medicine, The Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, 200233, People's Republic of China
- Shanghai Institute of Ultrasound Medicine, The Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, 200233, People's Republic of China
| |
Collapse
|
44
|
Han J, Luo L, Marcelina O, Kasim V, Wu S. Therapeutic angiogenesis-based strategy for peripheral artery disease. Theranostics 2022; 12:5015-5033. [PMID: 35836800 PMCID: PMC9274744 DOI: 10.7150/thno.74785] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/14/2022] [Indexed: 01/12/2023] Open
Abstract
Peripheral artery disease (PAD) poses a great challenge to society, with a growing prevalence in the upcoming years. Patients in the severe stages of PAD are prone to amputation and death, leading to poor quality of life and a great socioeconomic burden. Furthermore, PAD is one of the major complications of diabetic patients, who have higher risk to develop critical limb ischemia, the most severe manifestation of PAD, and thus have a poor prognosis. Hence, there is an urgent need to develop an effective therapeutic strategy to treat this disease. Therapeutic angiogenesis has raised concerns for more than two decades as a potential strategy for treating PAD, especially in patients without option for surgery-based therapies. Since the discovery of gene-based therapy for therapeutic angiogenesis, several approaches have been developed, including cell-, protein-, and small molecule drug-based therapeutic strategies, some of which have progressed into the clinical trial phase. Despite its promising potential, efforts are still needed to improve the efficacy of this strategy, reduce its cost, and promote its worldwide application. In this review, we highlight the current progress of therapeutic angiogenesis and the issues that need to be overcome prior to its clinical application.
Collapse
Affiliation(s)
- Jingxuan Han
- The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.,State and Local Joint Engineering Laboratory for Vascular Implants, Chongqing 400044, China
| | - Lailiu Luo
- The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.,State and Local Joint Engineering Laboratory for Vascular Implants, Chongqing 400044, China
| | - Olivia Marcelina
- The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.,State and Local Joint Engineering Laboratory for Vascular Implants, Chongqing 400044, China
| | - Vivi Kasim
- The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.,State and Local Joint Engineering Laboratory for Vascular Implants, Chongqing 400044, China.,The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China.,✉ Corresponding authors: Vivi Kasim, College of Bioengineering, Chongqing University, Chongqing, China; Phone: +86-23-65112672, Fax: +86-23-65111802, ; Shourong Wu, College of Bioengineering, Chongqing University, Chongqing, China; Phone: +86-23-65111632, Fax: +86-23-65111802,
| | - Shourong Wu
- The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.,State and Local Joint Engineering Laboratory for Vascular Implants, Chongqing 400044, China.,The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China.,✉ Corresponding authors: Vivi Kasim, College of Bioengineering, Chongqing University, Chongqing, China; Phone: +86-23-65112672, Fax: +86-23-65111802, ; Shourong Wu, College of Bioengineering, Chongqing University, Chongqing, China; Phone: +86-23-65111632, Fax: +86-23-65111802,
| |
Collapse
|
45
|
Chen Y, Gu J, Liu Y, Xu K, Song J, Wang X, Yu D, Wu H. Epigallocatechin gallate-loaded tetrahedral DNA nanostructures as a novel inner ear drug delivery system. NANOSCALE 2022; 14:8000-8011. [PMID: 35587814 DOI: 10.1039/d1nr07921b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The study of drug delivery systems to the inner ear is a crucial but challenging field. The sensory organ (in the inner ear) is protected by the petrous bone labyrinth and the membranous labyrinth, both of which need to be overcome during the drug delivery process. The requirements for such a delivery system include small size, appropriate flexibility and biodegradability. DNA nanostructures, biomaterials that can arrange multiple functional components with nanometer precision, exhibit characteristics that are compatible with the requirements for inner ear drug delivery. Herein, we report the development of a novel inner ear drug delivery system based on epigallocatechin gallate (EGCG)-loaded tetrahedral DNA nanostructures (TDNs, EGCG@TDNs). The TDNs self-assembled via base-pairing of four single-stranded DNA constructs and EGCG was loaded into the TDNs through non-covalent interactions. Cy5-labeled TDNs (Cy5-TDNs) were significantly internalized by the House Ear Institute-Organ of Corti 1 cell line, and this endocytosis was energy-, clathrin-, and micropinocytosis-dependent. Cy5-TDNs penetrated the round window membrane (RWM) rapidly in vivo. Local application of EGCG@TDNs onto the RWM of guinea pigs in a single dose continuously released EGCG over 4 hours. Drug concentrations in the perilymph were significantly elevated compared with the administration of free EGCG at the same dose. EGCG@TDNs were found to have favorable biocompatibility and strongly affected the RSL3-induced down-regulation of GPX4 and the generation of reactive oxygen species, on the basis of 2',7'-dichlorodihydrofluorescein diacetate staining. JC-1 staining suggested that EGCG@TDNs successfully reversed the decrease in mitochondrial membrane potential induced by RSL-3 in vitro and rescued cells from apoptosis, as demonstrated by the analysis of Annexin V-FITC/PI staining. Further functional studies showed that a locally administered single-dose of EGCG@TDNs effectively preserved spiral ganglion cells in C57/BL6 mice after noise-induced hearing loss. Hearing loss at 5.6 and 8 kHz frequencies was significantly attenuated when compared with the control EGCG formulation. Histological analyses indicated that the administration of TDNs and EGCG@TDNs did not induce local inflammatory responses. These favorable histological and functional effects resulting from the delivery of EGCG by TDNs through a local intratympanic injection suggest potential for therapeutic benefit in clinical applications.
Collapse
Affiliation(s)
- Yuming Chen
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China.
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases(14DZ2260300), Shanghai 200011, People's Republic of China
| | - Jiayi Gu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China.
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases(14DZ2260300), Shanghai 200011, People's Republic of China
| | - Yan Liu
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
- Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences; The Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, People's Republic of China
| | - Ke Xu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China.
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases(14DZ2260300), Shanghai 200011, People's Republic of China
| | - Jie Song
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
- Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences; The Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, People's Republic of China
| | - Xueling Wang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China.
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases(14DZ2260300), Shanghai 200011, People's Republic of China
| | - Dehong Yu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China.
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases(14DZ2260300), Shanghai 200011, People's Republic of China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Hao Wu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China.
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases(14DZ2260300), Shanghai 200011, People's Republic of China
| |
Collapse
|
46
|
Geng H, Zhong QZ, Li J, Lin Z, Cui J, Caruso F, Hao J. Metal Ion-Directed Functional Metal-Phenolic Materials. Chem Rev 2022; 122:11432-11473. [PMID: 35537069 DOI: 10.1021/acs.chemrev.1c01042] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Metal ions are ubiquitous in nature and play significant roles in assembling functional materials in fields spanning chemistry, biology, and materials science. Metal-phenolic materials are assembled from phenolic components in the presence of metal ions through the formation of metal-organic complexes. Alkali, alkali-earth, transition, and noble metal ions as well as metalloids interacting with phenolic building blocks have been widely exploited to generate diverse hybrid materials. Despite extensive studies on the synthesis of metal-phenolic materials, a comprehensive summary of how metal ions guide the assembly of phenolic compounds is lacking. A fundamental understanding of the roles of metal ions in metal-phenolic materials engineering will facilitate the assembly of materials with specific and functional properties. In this review, we focus on the diversity and function of metal ions in metal-phenolic material engineering and emerging applications. Specifically, we discuss the range of underlying interactions, including (i) cation-π, (ii) coordination, (iii) redox, and (iv) dynamic covalent interactions, and highlight the wide range of material properties resulting from these interactions. Applications (e.g., biological, catalytic, and environmental) and perspectives of metal-phenolic materials are also highlighted.
Collapse
Affiliation(s)
- Huimin Geng
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, and the State Key Laboratory of Microbial Technology, Shandong University, Jinan, Shandong 250100, China
| | - Qi-Zhi Zhong
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, and the State Key Laboratory of Microbial Technology, Shandong University, Jinan, Shandong 250100, China.,Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jianhua Li
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Zhixing Lin
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jiwei Cui
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, and the State Key Laboratory of Microbial Technology, Shandong University, Jinan, Shandong 250100, China
| | - Frank Caruso
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, and the State Key Laboratory of Microbial Technology, Shandong University, Jinan, Shandong 250100, China
| |
Collapse
|
47
|
Zhang B, Qin Y, Yang L, Wu Y, Chen N, Li M, Li Y, Wan H, Fu D, Luo R, Yuan L, Wang Y. A Polyphenol-Network-Mediated Coating Modulates Inflammation and Vascular Healing on Vascular Stents. ACS NANO 2022; 16:6585-6597. [PMID: 35301848 DOI: 10.1021/acsnano.2c00642] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Localized drug delivery from drug-eluting stents (DESs) to target sites provides therapeutic efficacy with minimal systemic toxicity. However, DESs failure may cause thrombosis, delay arterial healing, and impede re-endothelialization. Bivalirudin (BVLD) and nitric oxide (NO) promote arterial healing. Nevertheless, it is difficult to combine hydrophilic signal molecules with hydrophobic antiproliferative drugs while maintaining their bioactivity. Here, we fabricated a micro- to nanoscale network assembly consisting of copper ion and epigallocatechin gallate (EGCG) via π-π interactions, metal coordination, and oxidative polymerization. The network incorporated rapamycin and immobilized BVLD by the thiol-ene "click" reaction and provided sustained rapamycin and NO release. Unlike rapamycin-eluting stents, those coated with the EGCG-Cu-rapamycin-BVLD complex favored competitive endothelial cell (EC) growth over that of smooth muscle cells, exhibited long-term antithrombotic efficacy, and attenuated the negative impact of rapamycin on the EC. In vivo stent implantation demonstrated that the coating promoted endothelial regeneration and hindered restenosis. Therefore, the polyphenol-network-mediated surface chemistry can be an effective strategy for the engineering of multifunctional surfaces.
Collapse
Affiliation(s)
- Bo Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, China
| | - Yumei Qin
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, China
| | - Li Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, China
| | - Ye Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, China
| | - Nuoya Chen
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, China
| | - Mingyu Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, China
| | - Yanyan Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, China
| | - Huining Wan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, China
| | - Daihua Fu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, China
| | - Rifang Luo
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, China
| | - Lu Yuan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
48
|
Wu J, Wang Z, Xu S, Fu Y, Gao Y, Wu Z, Yu Y, Yuan Y, Zhou L, Li P. Analysis of the role and mechanism of EGCG in septic cardiomyopathy based on network pharmacology. PeerJ 2022; 10:e12994. [PMID: 35287352 PMCID: PMC8917800 DOI: 10.7717/peerj.12994] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 02/02/2022] [Indexed: 01/11/2023] Open
Abstract
Background Septic cardiomyopathy (SC) is a common complication of sepsis that leads to an increase in mortality. The pathogenesis of septic cardiomyopathy is unclear, and there is currently no effective treatment. EGCG (epigallocatechin gallate) is a polyphenol that has anti-inflammatory, antiapoptotic, and antioxidative stress effects. However, the role of EGCG in septic cardiomyopathy is unknown. Methods Network pharmacology was used to predict the potential targets and molecular mechanisms of EGCG in the treatment of septic cardiomyopathy, including the construction and analysis of protein-protein interaction (PPI) network, gene ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and molecular docking. The mouse model of septic cardiomyopathy was established after intraperitoneal injection of LPS (lipopolysaccharide). The myocardial protective effect of EGCG on septic mice is observed by cardiac ultrasound and HE staining. RT-PCR is used to verify the expression level of the EGCG target in the septic cardiomyopathy mouse model. Results A total of 128 anti-SC potential targets of EGCGareselected for analysis. The GO enrichment analysis and KEGG pathway analysis results indicated that the anti-SC targets of EGCG mainly participate in inflammatory and apoptosis processes. Molecular docking results suggest that EGCG has a high affinity for the crystal structure of six targets (IL-6 (interleukin-6), TNF (tumor necrosis factor), Caspase3, MAPK3 (Mitogen-activated protein kinase 3), AKT1, and VEGFA (vascular endothelial growth factor)), and the experimental verification result showed levated expression of these 6 hub targets in the LPS group, but there is an obvious decrease in expression in the LPS + EGCG group. The functional and morphological changes found by echocardiography and HE staining show that EGCG can effectively improve the cardiac function that is reduced by LPS. Conclusion Our results reveal that EGCG may be a potentially effective drug to improve septic cardiomyopathy. The potential mechanism by which EGCG improves myocardial injury in septic cardiomyopathy is through anti-inflammatory and anti-apoptotic effects. The anti-inflammatory and anti-apoptotic effects of EGCG occur not only through direct binding to six target proteins (IL-6,TNF-α, Caspase3, MAPK3, AKT1, and VEGFA) but also by reducing their expression.
Collapse
Affiliation(s)
- Ji Wu
- Department of Cardiovascular, The Second Affiliated Hospital of Nanchang University, Nan Chang, China
| | - Zhenhua Wang
- Department of Cardiovascular, The Second Affiliated Hospital of Nanchang University, Nan Chang, China
| | - Shanling Xu
- Department of Cardiovascular, Medicine, Fuzhou First People’s Hospital, Fu Zhou, China
| | - Yang Fu
- Department of Cardiovascular, The Second Affiliated Hospital of Nanchang University, Nan Chang, China
| | - Yi Gao
- Department of Cardiovascular, The Second Affiliated Hospital of Nanchang University, Nan Chang, China
| | - Zuxiang Wu
- Department of Cardiovascular, The Second Affiliated Hospital of Nanchang University, Nan Chang, China
| | - Yun Yu
- Department of Cardiovascular, The Second Affiliated Hospital of Nanchang University, Nan Chang, China
| | - Yougen Yuan
- Department of Cardiovascular, The Three Affiliated Hospital of Nanchang University, Nan Chang, China
| | - Lin Zhou
- Department of Cardiovascular, The Three Affiliated Hospital of Nanchang University, Nan Chang, China
| | - Ping Li
- Department of Cardiovascular, The Second Affiliated Hospital of Nanchang University, Nan Chang, China
| |
Collapse
|
49
|
Peng L, Yang X, Wang S, Chan YK, Chen Y, Yang Z, Mao Y, Li L, Yang W, Deng Y. Bimetal metal-organic framework domino micro-reactor for synergistic antibacterial starvation/chemodynamic therapy and robust wound healing. NANOSCALE 2022; 14:2052-2064. [PMID: 35076646 DOI: 10.1039/d1nr07611f] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Antibacterial chemodynamic therapy (aCDT) has captured considerable attention in the treatment of pathogen-induced infections due to its potential to inactivate bacteria through germicidal reactive oxygen species (ROS). However, the lifespan of ROS generated by CDT is too short to achieve the efficacy of complete sterilization; thus, residual bacteria inevitably reproduce and cause super-infections. To address this concern, we devise an innovative bimetal, metal-organic framework (BMOF) domino micro-reactor (BMOF-DMR), consisting of Cu/Zn-rich BMOF and glucose oxidase (GOx), via electrostatic self-assembly. GOx catalyzes conversion of glucose into H2O2, and the Cu2+ ions then convert H2O2 into ˙OH to kill bacteria, thereby showing a domino effect. Accordingly, the BMOF-DMR not only blocks the nutrient/energy supply for bacteria, but also triggers a Fenton(-like) reaction and glutathione (GSH) depletion in a self-generating H2O2 microenvironment, all leading to high-efficiency bactericidal performance through synergistic starvation/chemodynamic therapy. Remarkably, in vitro and in vivo assessments demonstrate that the BMOF-DMR has superior cytocompatibility and exhibits robust ability to accelerate infectious full-thickness cutaneous regeneration through eradicating bacteria, promoting epithelialization of the wound beds and facilitating angiogenesis from the antibacterial activity and delivery of bimetal elements. The advantage of this antibacterial platform is that it suppresses bacterial metabolism by blocking the energy supply, which might prevent secondary infections from residual bacteria. As envisaged, the use of such a micro-reactor with starvation/chemodynamic therapy is a promising approach for combating bacterial skin wounds.
Collapse
Affiliation(s)
- Liming Peng
- College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | - Xuyang Yang
- Department of Gastrointestinal Surgery, Frontiers Science Centre for Disease-related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Song Wang
- Department of Spine Surgery, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Yau Kei Chan
- Department of Ophthalmology, The University of Hong Kong, Hong Kong, China
| | - Yong Chen
- College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | - Zhaopu Yang
- College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | - Yurong Mao
- College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | - Limei Li
- Science and Technology Achievement Incubation Centre, Kunming Medical University, Kunming 650500, China
| | - Weizhong Yang
- College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | - Yi Deng
- College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China. .,State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.,Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
50
|
Gao B, Wang X, Wang M, You K, Ahmed Suleiman GS, Ren XK, Guo J, Xia S, Zhang W, Feng Y. Superlow Dosage of Intrinsically Bioactive Zinc Metal-Organic Frameworks to Modulate Endothelial Cell Morphogenesis and Significantly Rescue Ischemic Disease. ACS NANO 2022; 16:1395-1408. [PMID: 35006685 DOI: 10.1021/acsnano.1c09427] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Despite long-term efforts for ischemia therapy, proangiogenic drugs hardly satisfy therapy/safety/cost/mass production multiple evaluations and meanwhile with a desire to minimize dosages, thereby clinical applications have been severely hampered. Recently, metal ion-based therapy has emerged as an effective strategy. Herein, intrinsically bioactive Zn metal-organic frameworks (MOFs) were explored by bridging the dual superiorities of proangiogenic Zn2+ and facile/cost-effective/scalable MOFs. Zn-MOFs could enhance the morphogenesis of vascular endothelial cells (ECs) via the PI3K/Akt/eNOS pathway. However, high dosage is inevitable and Zn-MOFs suffer from insolubility and low stability, which lead to the bioaccumulation of Zn-MOFs and seriously potential toxicity risks. To alleviate this, it is required to decrease the dosage, but this can be entrapped into the dosage/therapy/safety contradiction and disappointing therapy effect. To address these challenges, the bioavailability of Zn-MOFs is urgent to improve for the minimization of dosage and significant therapy/safety. The mitochondrial respiratory chain is Zn2+ active, which inspired us to codecorate EC-targeted and mitochondria-localizing-sequence peptides onto Zn-MOF surfaces. Interestingly, after codecoration, a 100-fold reduced dosage acquired equally powerful vascularization, and the superlow dosage significantly rescued ischemia (4.4 μg kg-1, about one order of magnitude lower than the published minimal value). Additionally, no obvious muscle injury was found after treatment. Potential toxicity risks were alleviated, benefiting from the superlow dosage. This advanced drug simultaneously satisfied comprehensive evaluations and dosage minimization. This work utilizes engineering thought to rationally design "all-around" bioactive MOFs and is expected to be applied for ischemia treatment.
Collapse
Affiliation(s)
- Bin Gao
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China
| | - Xiaoyu Wang
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China
| | - Meiyu Wang
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China
| | - Kexin You
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China
| | - Gasim Sebit Ahmed Suleiman
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China
| | - Xiang-Kui Ren
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin 300072, China
| | - Jintang Guo
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin 300072, China
| | - Shihai Xia
- Department of Hepatopancreatobiliary and Splenic Medicine, Affiliated Hospital, Logistics University of People's Armed Police Force, 220 Chenglin Road, Tianjin 300162, China
| | - Wencheng Zhang
- Department of Physiology and Pathophysiology, Logistics University of Chinese People's Armed Police Force, Tianjin 300309, China
| | - Yakai Feng
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| |
Collapse
|