1
|
Lu D, Cai K, Zeng Z, Huang J, Ma N, Gao B, Yu S. VEGF loading heparinized hyaluronic acid macroporous hydrogels for enhanced 3D endothelial cell migration and vascularization. BIOMATERIALS ADVANCES 2025; 167:214094. [PMID: 39504586 DOI: 10.1016/j.bioadv.2024.214094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/21/2024] [Accepted: 10/29/2024] [Indexed: 11/08/2024]
Abstract
The formation of robust vascular systems within voluminous scaffolds remains a formidable barrier in the realm of tissue engineering. There is a growing interest in the integration of biomaterial scaffolds with multiple physical and chemical stimuli to augment the process of vascularization. This study aims to investigate the combined impact of macroporous structures and vascular endothelial growth factor (VEGF) on cell migration and vascularization. Heparinized hyaluronic acid (HepHA) macroporous hydrogels with differing pore sizes, composed by methacrylated hyaluronic acid (HAMA) and methacrylated heparin (HepMA), were fabricated by a gelatin microspheres (GMS) template leaching method. After characterization of their physical properties, VEGF was immobilized on the HepHA hydrogels. The in vitro release study indicated that the HepHA hydrogels can provide sustained release of VEGF. Subsequently, cells migration of human umbilical vein endothelial (HUVECs) assessment indicated that HUVECs cultured on VEGF-loaded HepHA hydrogels with larger pores (VEGF@HepHA250) migrated the furthest. Finally, the hydrogels were implanted and evaluated using a dorsal subcutaneous model. The histological analyses conducted in vivo were consistent with the in vitro results, VEGF@HepHA250 hydrogels exhibited the most pronounced vascularization four weeks post-implantation, indicating that hydrogels with expanded pores and an enriched VEGF promoted angiogenesis within the hydrogels. This study sheds light on the synergistic effects of VEGF release on 3D cell migration and vascularization within hydrogels of differing pore sizes, thus providing novel insights into the strategic design and fabrication of tissue-engineered scaffolds that are amenable to vascularization.
Collapse
Affiliation(s)
- Daohuan Lu
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China; National Engineering Research Center for Healthcare Devices, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China; Guangdong Provincial Key Laboratory of Medical Electronic Instruments and Materials, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China
| | - Kehan Cai
- Biomedical Engineering Faculty, The University of Sydney, Sydney, NSW 2008, Australia
| | - Zhiwen Zeng
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China; National Engineering Research Center for Healthcare Devices, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China; Guangdong Provincial Key Laboratory of Medical Electronic Instruments and Materials, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China
| | - Jun Huang
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China; National Engineering Research Center for Healthcare Devices, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China; Guangdong Provincial Key Laboratory of Medical Electronic Instruments and Materials, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China
| | - Nianfang Ma
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China
| | - Botao Gao
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China; National Engineering Research Center for Healthcare Devices, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China; Guangdong Provincial Key Laboratory of Medical Electronic Instruments and Materials, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China.
| | - Shan Yu
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China; National Engineering Research Center for Healthcare Devices, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China; Guangdong Provincial Key Laboratory of Medical Electronic Instruments and Materials, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China.
| |
Collapse
|
2
|
Libby JR, Royce H, Walker SR, Li L. The role of extracellular matrix in angiogenesis: Beyond adhesion and structure. BIOMATERIALS AND BIOSYSTEMS 2024; 15:100097. [PMID: 39129826 PMCID: PMC11315062 DOI: 10.1016/j.bbiosy.2024.100097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/19/2024] [Accepted: 07/06/2024] [Indexed: 08/13/2024] Open
Abstract
While the extracellular matrix (ECM) has long been recognized for its structural contributions, anchoring cells for adhesion, providing mechanical support, and maintaining tissue integrity, recent efforts have elucidated its dynamic, reciprocal, and diverse properties on angiogenesis. The ECM modulates angiogenic signaling and mechanical transduction, influences the extent and degree of receptor activation, controls cellular behaviors, and serves as a reservoir for bioactive macromolecules. Collectively, these factors guide the formation, maturation, and stabilization of a functional vascular network. This review aims to shed light on the versatile roles of the ECM in angiogenesis, transcending its traditional functions as a mere structural material. We will explore its engagement and synergy in signaling modulation, interactions with various angiogenic factors, and highlight its importance in both health and disease. By capturing the essence of the ECM's diverse functionalities, we highlight the significance in the broader context of vascular biology, enabling the design of novel biomaterials to engineer vascularized tissues and their potential therapeutic implications.
Collapse
Affiliation(s)
- Jaxson R. Libby
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Haley Royce
- Department of Chemical Engineering and Bioengineering, University of New Hampshire, Durham, NH, USA
| | - Sarah R. Walker
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Linqing Li
- Department of Chemical Engineering and Bioengineering, University of New Hampshire, Durham, NH, USA
- Department of Chemistry, University of New Hampshire, Durham, NH, USA
| |
Collapse
|
3
|
You J, Li Y, Wang C, Lv H, Zhai S, Liu M, Liu X, Sezhen Q, Zhang L, Zhang Y, Zhou Y. Mild Thermotherapy-Assisted GelMA/HA/MPDA@Roxadustat 3D-Printed Scaffolds with Combined Angiogenesis-Osteogenesis Functions for Bone Regeneration. Adv Healthc Mater 2024; 13:e2400545. [PMID: 38706444 DOI: 10.1002/adhm.202400545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/04/2024] [Indexed: 05/07/2024]
Abstract
Early reconstruction of the vascular network is a prerequisite to the effective treatment of substantial bone defects. Traditional 3D printed tissue engineering scaffolds designed to repair large bone defects do not effectively regenerate the vascular network, and rely only on the porous structure within the scaffold for nutrient transfer and metabolic waste removal. This leads to delayed bone restoration and hence functional recovery. Therefore, strategies for generation scaffolds with the capacity to efficiently regenerate vascularization should be developed. This study loads roxarestat (RD), which can stabilize HIF-1α expression in a normoxic environment, onto the mesopore polydopamine nanoparticles (MPDA@RD) to enhance the reconstruction of vascular network in large bone defects. Subsequently, MPDA@RD is mixed with GelMA/HA hydrogel bioink to fabricate a multifunctional hydrogel scaffold (GHM@RD) through 3D printing. In vitro results show that the GHM@RD scaffolds achieve good angiogenic-osteogenic coupling by activating the PI3K/AKT/HSP90 pathway in BMSCs and the PI3K/AKT/HIF-1α pathway in HUVECs under mild thermotherapy. In vivo experiments reveal that RD and mild hyperthermia synergistically induce early vascularization and bone regeneration of critical bone defects. In conclusion, the designed GHM@RD drug delivery scaffold with mild hyperthermia holds great therapeutic value for future treatment of large bone defects.
Collapse
Affiliation(s)
- Jiaqian You
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin, 130021, China
- School of Stomatology, Jilin University, Changchun, Jilin, 130021, China
| | - Yangyang Li
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin, 130021, China
- School of Stomatology, Jilin University, Changchun, Jilin, 130021, China
| | - Chong Wang
- School of Mechanical Engineering, Dongguan University of Technology, Dongguan, Guangdong, 523808, China
| | - Huixin Lv
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin, 130021, China
- School of Stomatology, Jilin University, Changchun, Jilin, 130021, China
| | - Shaobo Zhai
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin, 130021, China
- School of Stomatology, Jilin University, Changchun, Jilin, 130021, China
| | - Manxuan Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin, 130021, China
- School of Stomatology, Jilin University, Changchun, Jilin, 130021, China
| | - Xiuyu Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin, 130021, China
- School of Stomatology, Jilin University, Changchun, Jilin, 130021, China
| | - Quni Sezhen
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin, 130021, China
- School of Stomatology, Jilin University, Changchun, Jilin, 130021, China
| | - Lu Zhang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin, 130021, China
- School of Stomatology, Jilin University, Changchun, Jilin, 130021, China
| | - Yidi Zhang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin, 130021, China
| | - Yanmin Zhou
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin, 130021, China
| |
Collapse
|
4
|
Shih YT, Cheng KC, Ko YJ, Lin CY, Wang MC, Lee CI, Lee PL, Qi R, Chiu JJ, Hsu SH. 3D-Printed proangiogenic patches of photo-crosslinked gelatin and polyurethane hydrogels laden with vascular cells for treating vascular ischemic diseases. Biomaterials 2024; 309:122600. [PMID: 38718614 DOI: 10.1016/j.biomaterials.2024.122600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 04/19/2024] [Accepted: 04/29/2024] [Indexed: 06/03/2024]
Abstract
Engineering vascularized tissues remains a promising approach for treating ischemic cardiovascular diseases. The availability of 3D-bioprinted vascular grafts that induce therapeutic angiogenesis can help avoid necrosis and excision of ischemic tissues. Here, using a combination of living cells and biodegradable hydrogels, we fabricated 3D-printed biocompatible proangiogenic patches from endothelial cell-laden photo-crosslinked gelatin (EC-PCG) bioink and smooth muscle cell-encapsulated polyurethane (SMC-PU) bioink. Implantation of 3D-bioprinted proangiogenic patches in a mouse model showed that EC-PCG served as an angiogenic capillary bed, whereas patterned SMC-PU increased the density of microvessels. Moreover, the assembled patterns between EC-PCG and SMC-PU induced the geometrically guided generation of microvessels with blood perfusion. In a rodent model of hindlimb ischemia, the vascular patches rescued blood flow to distal tissues, prevented toe/foot necrosis, promoted muscle remodeling, and increased the capillary density, thereby improving the heat-escape behavior of ischemic animals. Thus, our 3D-printed vascular cell-laden bioinks constitute efficient and scalable biomaterials that facilitate the engineering of vascular patches capable of directing therapeutic angiogenesis for treating ischemic vascular diseases.
Collapse
Affiliation(s)
- Yu-Tsung Shih
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kun-Chih Cheng
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan
| | - Yi-Ju Ko
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Chia-Yu Lin
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Mei-Cun Wang
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Chih-I Lee
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Pei-Ling Lee
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Rong Qi
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China.
| | - Jeng-Jiann Chiu
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan; College of Medical Science and Technology, Taipei Heart Institute, Taipei Medical University, Taipei, Taiwan; Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan.
| | - Shan-Hui Hsu
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan; Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan.
| |
Collapse
|
5
|
Khalid M, Jameel F, Jabri T, Jabbar A, Salim A, Khan I, Shah MR. α-Terpineol loaded, electron beam crosslinked polyvinyl alcohol/tapioca starch hydrogel sheets; fabrication, characterization and evaluation of wound healing potential on a full thickness acid burn wound. RSC Adv 2024; 14:28058-28076. [PMID: 39228757 PMCID: PMC11369888 DOI: 10.1039/d4ra04572f] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 08/15/2024] [Indexed: 09/05/2024] Open
Abstract
The multifaceted challenges in treating full-thickness acid burn wounds including impaired tissue regeneration, increased risk of infection, and the pursuit of functional and aesthetically pleasing outcomes, highlights the need for innovative therapeutic approaches for their treatment. The exceptional biochemical and mechanical properties of hydrogels, particularly their extracellular matrix-like nature and their potential to incorporate functional ingredients positions them as promising materials for wound dressings, offering a potential solution to the complexities of full-thickness burn wound management. The current study has integrated functional ingredients (starch and α-terpineol), known for their angiogenic, fibroblast-adhesive, and anti-inflammatory properties into an α-terpineol loaded, electron beam crosslinked polyvinyl alcohol/tapioca pearl starch hydrogel. The hydrogel was then explored for its efficacy in treating full-thickness acid burns. The hydrogel sheets, fabricated using a 25 kGy electron beam, were characterized for structural and functional properties. Surface morphology, gel fraction, swelling ratio, moisture retention capacity and thermal stability were also evaluated. PVA/tapioca starch hydrogel demonstrated optimal macroporosity, mechanical strength, thermal stability, water retention, and moisturizing ability, making it ideal for the intended application. In vitro skin compatibility analysis of α-terpineol-loaded hydrogel confirmed its biocompatibility, demonstrating 90% fibroblast viability. In vivo sensitivity testing on normal rat skin showed no inflammatory response. Analysis of the full-thickness rat chemical burn wounds treated with the hydrogels demonstrated that α-terpineol (AT) loaded e-beam crosslinked PVA/tapioca starch hydrogels increased the rate of wound closure, promoted re-epithelialization, facilitated collagen deposition, stimulated angiogenesis, and promoted keratin deposition, ultimately leading to healing of both thick dermal and epidermal tissues, as well as partial restoration of skin appendages over a duration of 30 days as confirmed by the histological and immunohistochemistry staining. Collectively, this study indicates that α-terpineol (AT) loaded e-beam crosslinked PVA/tapioca starch hydrogel holds promise as a cost-effective and efficient wound dressing for expediting full thickness acid burn wound healing, thus expanding the practical applications of the natural polymer based sheet hydrogel dressings.
Collapse
Affiliation(s)
- Maria Khalid
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi Karachi 75270 Pakistan
| | - Fatima Jameel
- Dr Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi Karachi 75270 Pakistan
| | - Tooba Jabri
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi Karachi 75270 Pakistan
| | - Abdul Jabbar
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi Karachi 75270 Pakistan
| | - Asmat Salim
- Dr Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi Karachi 75270 Pakistan
| | - Irfan Khan
- Dr Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi Karachi 75270 Pakistan
- Center for Regenerative Medicine and Stem Cell Research, The Aga Khan University Stadium Road, P. O. Box 3500 Karachi 74800 Pakistan
| | - Muhammad Raza Shah
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi Karachi 75270 Pakistan
| |
Collapse
|
6
|
Martins EAG, Deus IA, Gomes MC, Silva AS, Mano JF, Custódio CA. Human Chorionic Membrane-derived Tunable Hydrogels for Vascular Tissue Engineering Strategies. Adv Healthc Mater 2024:e2401510. [PMID: 39101324 DOI: 10.1002/adhm.202401510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/17/2024] [Indexed: 08/06/2024]
Abstract
One of the foremost targets in the advancement of biomaterials to engineer vascularized tissues is not only to replicate the composition of the intended tissue but also to create thicker structures incorporating a vascular network for adequate nutrients and oxygen supply. For the first time, to the best of current knowledge, a clinically relevant biomaterial is developed, demonstrating that hydrogels made from the human decellularized extracellular matrix can exhibit robust mechanical properties (in the kPa range) and angiogenic capabilities simultaneously. These properties enable the culture and organization of human umbilical vein endothelial cells into tubular structures, maintaining their integrity for 14 days in vitro without the need for additional polymers or angiogenesis-related factors. This is achieved by repurposing the placenta chorionic membrane (CM), a medical waste with an exceptional biochemical composition, into a valuable resource for bioengineering purposes. After decellularization, the CM underwent chemical modification with methacryloyl groups, giving rise to methacrylated CM (CMMA). CMMA preserved key proteins, as well as glycosaminoglycans. The resulting hydrogels rapidly photopolymerize and have enhanced strength and customizable mechanical properties. Furthermore, they demonstrate angio-vasculogenic competence in vitro and in vivo, holding significant promise as a humanized platform for the engineering of vascularized tissues.
Collapse
Affiliation(s)
- Elisa A G Martins
- Department of Chemistry, CICECO, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| | - Inês A Deus
- Department of Chemistry, CICECO, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| | - Maria C Gomes
- Department of Chemistry, CICECO, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| | - Ana S Silva
- Department of Chemistry, CICECO, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| | - João F Mano
- Department of Chemistry, CICECO, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| | - Catarina A Custódio
- Department of Chemistry, CICECO, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| |
Collapse
|
7
|
Zhang S, Lee Y, Liu Y, Yu Y, Han I. Stem Cell and Regenerative Therapies for the Treatment of Osteoporotic Vertebral Compression Fractures. Int J Mol Sci 2024; 25:4979. [PMID: 38732198 PMCID: PMC11084822 DOI: 10.3390/ijms25094979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/28/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
Osteoporotic vertebral compression fractures (OVCFs) significantly increase morbidity and mortality, presenting a formidable challenge in healthcare. Traditional interventions such as vertebroplasty and kyphoplasty, despite their widespread use, are limited in addressing the secondary effects of vertebral fractures in adjacent areas and do not facilitate bone regeneration. This review paper explores the emerging domain of regenerative therapies, spotlighting stem cell therapy's transformative potential in OVCF treatment. It thoroughly describes the therapeutic possibilities and mechanisms of action of mesenchymal stem cells against OVCFs, relying on recent clinical trials and preclinical studies for efficacy assessment. Our findings reveal that stem cell therapy, particularly in combination with scaffolding materials, holds substantial promise for bone regeneration, spinal stability improvement, and pain mitigation. This integration of stem cell-based methods with conventional treatments may herald a new era in OVCF management, potentially improving patient outcomes. This review advocates for accelerated research and collaborative efforts to translate laboratory breakthroughs into clinical practice, emphasizing the revolutionary impact of regenerative therapies on OVCF management. In summary, this paper positions stem cell therapy at the forefront of innovation for OVCF treatment, stressing the importance of ongoing research and cross-disciplinary collaboration to unlock its full clinical potential.
Collapse
Affiliation(s)
- Songzi Zhang
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Republic of Korea; (S.Z.); (Y.L.); (Y.Y.)
| | - Yunhwan Lee
- Department of Medicine, School of Medicine, CHA University, Seongnam-si 13496, Republic of Korea;
| | - Yanting Liu
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Republic of Korea; (S.Z.); (Y.L.); (Y.Y.)
| | - Yerin Yu
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Republic of Korea; (S.Z.); (Y.L.); (Y.Y.)
| | - Inbo Han
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Republic of Korea; (S.Z.); (Y.L.); (Y.Y.)
| |
Collapse
|
8
|
Li XY, Yan N, Wu YY, Kong RJ, Qiu ZW, Liu SP, Wu DH, Cheng H. Neuropilin-1-Targeted Nanomedicine for Spatiotemporal Tumor Suppression through Photodynamic Vascular Damage and Antiangiogenesis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:21709-21721. [PMID: 38651381 DOI: 10.1021/acsami.4c03886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Antiangiogenic therapy is an effective way to disrupt nutrient supply and starve tumors, but it is restricted by poor efficacy and negative feedback-induced tumor relapse. In this study, a neuropilin-1 (NRP-1)-targeted nanomedicine (designated as FPPT@Axi) is reported for spatiotemporal tumor suppression by combining photodynamic therapy (PDT) with antiangiogenesis. In brief, FPPT@Axi is prepared by utilizing an NRP-1-targeting chimeric peptide (Fmoc-K(PpIX)-PEG8-TKPRR) to encapsulate the antiangiogenic drug Axitinib (Axi). Importantly, the NRP-1-mediated targeting property enables FPPT@Axi to selectively concentrate at vascular endothelial and breast cancer cells, facilitating the production of reactive oxygen species (ROS) in situ for specific vascular disruption and enhanced cell apoptosis under light stimulation. Moreover, the codelivered Axi can further inhibit vascular endothelial growth factor receptor (VEGFR) to impair the negative feedback of PDT-induced tumor neovascularization. Consequently, FPPT@Axi spatiotemporally restrains the tumor growth through blocking angiogenesis, destroying tumor vessels, and inducing tumor apoptosis. Such an NRP-1-mediated targeting codelivery system sheds light on constructing an appealing candidate with translational potential by using clinically approved PDT and chemotherapy.
Collapse
Affiliation(s)
- Xin-Yu Li
- School of Biomedical Engineering & Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, P. R. China
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, P. R. China
| | - Ni Yan
- School of Biomedical Engineering & Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, P. R. China
| | - Ye-Yang Wu
- School of Biomedical Engineering & Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, P. R. China
| | - Ren-Jiang Kong
- School of Biomedical Engineering & Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, P. R. China
| | - Zi-Wen Qiu
- School of Biomedical Engineering & Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, P. R. China
| | - Shu-Peng Liu
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, P. R. China
| | - De-Hua Wu
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, P. R. China
| | - Hong Cheng
- School of Biomedical Engineering & Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, P. R. China
| |
Collapse
|
9
|
Sedláková V, Mourcos S, Pupkaitė J, Lunn Y, Visintini S, Guzman-Soto I, Ruel M, Suuronen E, Alarcon EI. Biomaterials for direct cardiac repair-A rapid scoping review 2012-2022. Acta Biomater 2024; 180:61-81. [PMID: 38588997 DOI: 10.1016/j.actbio.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/13/2024] [Accepted: 04/03/2024] [Indexed: 04/10/2024]
Abstract
A plethora of biomaterials for heart repair are being tested worldwide for potential clinical application. These therapeutics aim to enhance the quality of life of patients with heart disease using various methods to improve cardiac function. Despite the myriad of therapeutics tested, only a minority of these studied biomaterials have entered clinical trials. This rapid scoping review aims to analyze literature available from 2012 to 2022 with a focus on clinical trials using biomaterials for direct cardiac repair, i.e., where the intended function of the biomaterial is to enhance the repair of the endocardium, myocardium, epicardium or pericardium. This review included neither biomaterials related to stents and valve repair nor biomaterials serving as vehicles for the delivery of drugs. Surprisingly, the literature search revealed that only 8 different biomaterials mentioned in 23 different studies out of 7038 documents (journal articles, conference abstracts or clinical trial entries) have been tested in clinical trials since 2012. All of these, intended to treat various forms of ischaemic heart disease (heart failure, myocardial infarction), were of natural origin and most used direct injections as their delivery method. This review thus reveals notable gaps between groups of biomaterials tested pre-clinically and clinically. STATEMENT OF SIGNIFICANCE: Rapid scoping review of clinical application of biomaterials for cardiac repair. 7038 documents screened; 23 studies mention 8 different biomaterials only. Biomaterials for repair of endocardium, myocardium, epicardium or pericardium. Only 8 different biomaterials entered clinical trials in the past 10 years. All of the clinically translated biomaterials were of natural origin.
Collapse
Affiliation(s)
- Veronika Sedláková
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 753/5, Brno 625 00, Czechia.
| | - Sophia Mourcos
- BEaTS Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y 4W7, Canada; Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y 4W7, Canada; Department of Biomedical Science, Faculty of Science, University of Ottawa, 150 Louis-Pasteur Private, Ottawa, Ontario K1N 9A7, Canada
| | - Justina Pupkaitė
- BEaTS Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y 4W7, Canada
| | - Yvonne Lunn
- BEaTS Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y 4W7, Canada; Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y 4W7, Canada; Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
| | - Sarah Visintini
- Berkman Library, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y 4W7, Canada
| | - Irene Guzman-Soto
- BEaTS Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y 4W7, Canada
| | - Marc Ruel
- BEaTS Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y 4W7, Canada; Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y 4W7, Canada
| | - Erik Suuronen
- BEaTS Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y 4W7, Canada; Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y 4W7, Canada; Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
| | - Emilio I Alarcon
- BEaTS Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y 4W7, Canada; Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y 4W7, Canada; Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada.
| |
Collapse
|
10
|
Aytekin E, Vurat MT, Elçin AE, Elçin YM. Decellularized Bone Matrix/45S5 Bioactive Glass Biocomposite Hydrogel-Based Constructs with Angiogenic and Osteogenic Properties: Ex Ovo and Ex Vivo Evaluations. Macromol Biosci 2024; 24:e2300295. [PMID: 38102878 DOI: 10.1002/mabi.202300295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 11/22/2023] [Indexed: 12/17/2023]
Abstract
Decellularized extracellular matrix is often used to create an in vivo-like environment that supports cell growth and proliferation, as it reflects the micro/macrostructure and molecular composition of tissues. On the other hand, bioactive glasses (BG) are surface-reactive glass-ceramics that can convert to hydroxyapatite in vivo and promote new bone formation. This study is designed to evaluate the key properties of a novel angiogenic and osteogenic biocomposite graft made of bovine decellularized bone matrix (DBM) hydrogel and 45S5 BG microparticles (10 and 20 wt%) to combine the existing superior properties of both biomaterial classes. Morphological, physicochemical, mechanical, and thermal characterizations of DBM and DBM/BG composite hydrogels are performed. Their in vitro biocompatibility is confirmed by cytotoxicity and hemocompatibility analyses. Ex vivo chick embryo aortic arch and ex ovo chick chorioallantoic membrane (CAM) assays reveal that the present pro-angiogenic property of DBM hydrogels is enhanced by the incorporation of BG. Histochemical stainings (Alcian blue and Alizarin red) and digital image analysis of ossification on hind limbs of embryos used in the CAM model reveal the osteogenic potential of biomaterials. The findings support the notion that the developed DBM/BG composite hydrogel constructs have the potential to be a suitable graft for bone repair.
Collapse
Affiliation(s)
- Ekin Aytekin
- Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Ankara University Faculty of Science, and Ankara University Stem Cell Institute, Ankara, 06100, Turkey
| | - Murat Taner Vurat
- Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Ankara University Faculty of Science, and Ankara University Stem Cell Institute, Ankara, 06100, Turkey
| | - Ayşe Eser Elçin
- Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Ankara University Faculty of Science, and Ankara University Stem Cell Institute, Ankara, 06100, Turkey
| | - Yaşar Murat Elçin
- Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Ankara University Faculty of Science, and Ankara University Stem Cell Institute, Ankara, 06100, Turkey
- Biovalda Health Technologies, Inc., Ankara, 06830, Turkey
| |
Collapse
|
11
|
Nicosia A, Salamone M, Costa S, Ragusa MA, Ghersi G. Mimicking Molecular Pathways in the Design of Smart Hydrogels for the Design of Vascularized Engineered Tissues. Int J Mol Sci 2023; 24:12314. [PMID: 37569691 PMCID: PMC10418696 DOI: 10.3390/ijms241512314] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/21/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Biomaterials are pivotal in supporting and guiding vascularization for therapeutic applications. To design effective, bioactive biomaterials, understanding the cellular and molecular processes involved in angiogenesis and vasculogenesis is crucial. Biomaterial platforms can replicate the interactions between cells, the ECM, and the signaling molecules that trigger blood vessel formation. Hydrogels, with their soft and hydrated properties resembling natural tissues, are widely utilized; particularly synthetic hydrogels, known for their bio-inertness and precise control over cell-material interactions, are utilized. Naturally derived and synthetic hydrogel bases are tailored with specific mechanical properties, controlled for biodegradation, and enhanced for cell adhesion, appropriate biochemical signaling, and architectural features that facilitate the assembly and tubulogenesis of vascular cells. This comprehensive review showcases the latest advancements in hydrogel materials and innovative design modifications aimed at effectively guiding and supporting vascularization processes. Furthermore, by leveraging this knowledge, researchers can advance biomaterial design, which will enable precise support and guidance of vascularization processes and ultimately enhance tissue functionality and therapeutic outcomes.
Collapse
Affiliation(s)
- Aldo Nicosia
- Institute for Biomedical Research and Innovation-National Research Council (IRIB-CNR), Via Ugo la Malfa 153, 90146 Palermo, Italy;
| | - Monica Salamone
- Institute for Biomedical Research and Innovation-National Research Council (IRIB-CNR), Via Ugo la Malfa 153, 90146 Palermo, Italy;
| | - Salvatore Costa
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Italy; (S.C.); (M.A.R.); (G.G.)
| | - Maria Antonietta Ragusa
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Italy; (S.C.); (M.A.R.); (G.G.)
| | - Giulio Ghersi
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Italy; (S.C.); (M.A.R.); (G.G.)
| |
Collapse
|
12
|
Lin X, Yang X, Li P, Xu Z, Zhao L, Mu C, Li D, Ge L. Antibacterial Conductive Collagen-Based Hydrogels for Accelerated Full-Thickness Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2023; 15:22817-22829. [PMID: 37145770 DOI: 10.1021/acsami.2c22932] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Antibacterial conductive hydrogels have been extensively utilized in tissue repair and regeneration on account of their unique electrochemical performances and advantages of anti-pathogenic bacterial infection. Here, multi-functional collagen-based hydrogels (CHLY) with adhesivity, conductivity, and antibacterial and antioxidant activities were developed by introducing cysteine-modified ε-poly(l-lysine) (ε-PL-SH) and in situ-polymerized polypyrrole (PPy) nanoparticles to induce full-thickness wound healing. CHLY hydrogels have a low swelling ratio, good compressive strength, and viscoelasticity due to chemical crosslinking, chelation, physical interaction, and nano-reinforcements in the matrix network of hydrogels. CHLY hydrogels possess excellent tissue adhesion ability, low cytotoxicity, enhanced cell migration ability, and good blood coagulation performance without causing hemolysis. Interestingly, the chemical conjugation of ε-PL-SH in the hydrogel matrix gives hydrogels an inherently robust and broad-spectrum antibacterial activity, while the introduction of PPy endows hydrogels with superior free radical scavenging capacity and good electroactivity. Significantly, CHLY hydrogels have advantages in alleviating persistent inflammatory response as well as promoting angiogenesis, epidermis regeneration, and orderly collagen deposition at the wound sites through their multi-functional synergies, thus effectively accelerating full-thickness wound healing and improving wound healing quality. Overall, our developed multi-functional collagen-based hydrogel dressing demonstrates promising application prospects in the field of tissue engineering to induce skin regeneration.
Collapse
Affiliation(s)
- Xianyu Lin
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Xue Yang
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Panyu Li
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Zhilang Xu
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Lei Zhao
- Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Changdao Mu
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Defu Li
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Liming Ge
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
13
|
Chen J, Zhang D, Wu LP, Zhao M. Current Strategies for Engineered Vascular Grafts and Vascularized Tissue Engineering. Polymers (Basel) 2023; 15:polym15092015. [PMID: 37177162 PMCID: PMC10181238 DOI: 10.3390/polym15092015] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/21/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Blood vessels not only transport oxygen and nutrients to each organ, but also play an important role in the regulation of tissue regeneration. Impaired or occluded vessels can result in ischemia, tissue necrosis, or even life-threatening events. Bioengineered vascular grafts have become a promising alternative treatment for damaged or occlusive vessels. Large-scale tubular grafts, which can match arteries, arterioles, and venules, as well as meso- and microscale vasculature to alleviate ischemia or prevascularized engineered tissues, have been developed. In this review, materials and techniques for engineering tubular scaffolds and vasculature at all levels are discussed. Examples of vascularized tissue engineering in bone, peripheral nerves, and the heart are also provided. Finally, the current challenges are discussed and the perspectives on future developments in biofunctional engineered vessels are delineated.
Collapse
Affiliation(s)
- Jun Chen
- Department of Organ Transplantation, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
- Center for Chemical Biology and Drug Discovery, Laboratory of Computational Biomedicine, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Di Zhang
- Center for Chemical Biology and Drug Discovery, Laboratory of Computational Biomedicine, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Lin-Ping Wu
- Center for Chemical Biology and Drug Discovery, Laboratory of Computational Biomedicine, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Ming Zhao
- Department of Organ Transplantation, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| |
Collapse
|
14
|
Li Y, Zhu J, Zhang X, Li Y, Zhang S, Yang L, Li R, Wan Q, Pei X, Chen J, Wang J. Drug-Delivery Nanoplatform with Synergistic Regulation of Angiogenesis-Osteogenesis Coupling for Promoting Vascularized Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2023; 15:17543-17561. [PMID: 37010447 DOI: 10.1021/acsami.2c23107] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
It has been confirmed that substantial vascularization is an effective strategy to heal large-scale bone defects in the field of bone tissue engineering. The local application of deferoxamine (DFO) is among the most common and effective methods for promoting the formation of blood vessels, although its short half-life in plasma, rapid clearance, and poor biocompatibility limit its therapeutic suitability. Herein, zeolitic imidazolate framework-8 (ZIF-8) was selected as a vehicle to extend the half-life of DFO. In the present study, a nano DFO-loaded ZIF-8 (DFO@ZIF-8) drug delivery system was established to promote angiogenesis-osteogenesis coupling. The nanoparticles were characterized, and their drug loading efficiency was examined to confirm the successful synthesis of nano DFO@ZIF-8. Additionally, due to the sustained release of DFO and Zn2+, DFO@ZIF-8 NPs were able to promote angiogenesis in human umbilical vein endothelial cells (HUVECs) culture and osteogenesis in bone marrow stem cells (BMSCs) in vitro. Furthermore, the DFO@ZIF-8 NPs promoted vascularization by enhancing the expression of type H vessels and a vascular network. The DFO@ZIF-8 NPs promoted bone regeneration in vivo by increasing the expression of OCN and BMP-2. RNA sequencing analysis revealed that the PI3K-AKT-MMP-2/9 and HIF-1α pathways were upregulated by DFO@ZIF-8 NPs in HUVECs, ultimately leading to the formation of new blood vessels. In addition, the mechanism by which DFO@ZIF-8 NPs promoted bone regeneration was potentially related to the synergistic effect of angiogenesis-osteogenesis coupling and Zn2+-mediation of the MAPK pathway. Taken together, DFO@ZIF-8 NPs, which were demonstrated to have low cytotoxicity and excellent coupling of angiogenesis and osteogenesis, represent a promising strategy for the reconstruction of critical-sized bone defects.
Collapse
Affiliation(s)
- Yahong Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chengdu 610041, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Junjin Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chengdu 610041, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xin Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chengdu 610041, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yuanyuan Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chengdu 610041, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Shu Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chengdu 610041, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Linxin Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chengdu 610041, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ruyi Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chengdu 610041, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Qianbing Wan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chengdu 610041, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xibo Pei
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chengdu 610041, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Junyu Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chengdu 610041, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jian Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chengdu 610041, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
15
|
Shi X, Wang X, Shen W, Yue W. Biocompatibility of silk methacrylate/gelatin-methacryloyl composite hydrogel and its feasibility as a vascular tissue engineering scaffold. Biochem Biophys Res Commun 2023; 650:62-72. [PMID: 36773341 DOI: 10.1016/j.bbrc.2023.01.097] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 01/30/2023] [Indexed: 02/01/2023]
Abstract
Silk methacrylate (SilMA) has been studied extensively due to its ability to modify Silk fibroin (SF) by increasing the water solubility and enhancing the mechanical properties of SF hydrogels. However, SilMA hydrogels are generally soft with weak mechanical properties. In order to enhance the mechanical properties of hydrogel scaffolds, we used liquid nitrogen to modify SilMA to obtain a novel N2-SilMA/gelatin-methacryloyl (GelMA) composite hydrogel. N2-SilMA was successfully detected by Fourier transform infrared (FTIR) spectroscopy and 1H nuclear magnetic resonance. Scanning electron microscope showed that the composite hydrogel still had certain arrangement characteristics of SF and dense pores which met the necessary conditions for the cell scaffold. The mechanical tests showed that the mechanical properties of SilMA were greatly enhanced after modification at ultra-low temperature. We evaluated its cytocompatibility and biocompatibility, and the results showed that the composite scaffold promoted the growth of cells. Different types of composite hydrogels were injected into ICR mice and the results showed a stable scaffold structure in vivo, suggesting their ability to promote angiogenesis. In conclusion, the N2-SilMA/GelMA composite hydrogel had better mechanical properties, excellent cytocompatibility, and biological properties compared to the other groups.
Collapse
Affiliation(s)
- Xinyu Shi
- College of Animal Science and Technology·College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Xiaoyu Wang
- College of Animal Science and Technology·College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Wei Shen
- College of Animal Science and Technology·College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Wanfu Yue
- College of Animal Science and Technology·College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, China.
| |
Collapse
|
16
|
Wang T, Liu K, Wang J, Xiang G, Hu X, Bai H, Lei W, Tao TH, Feng Y. Spatiotemporal Regulation of Injectable Heterogeneous Silk Gel Scaffolds for Accelerating Guided Vertebral Repair. Adv Healthc Mater 2023; 12:e2202210. [PMID: 36465008 DOI: 10.1002/adhm.202202210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/27/2022] [Indexed: 12/12/2022]
Abstract
Osteoporotic vertebral fracture is jeopardizing the health of the aged population around the world, while the hypoxia microenvironment and oxidative damage of bone defect make it difficult to perform effective tissue regeneration. The balance of oxidative stress and the coupling of vessel and bone ingrowth are critical for bone regeneration. In this study, an injectable heterogeneous silk gel scaffold which can spatiotemporally and sustainedly release bone mesenchymal stem cell-derived small extracellular vesicles, HIF-1α pathway activator, and inhibitor is developed for bone repair and vertebral reinforcement. The initial enhancement of HIF-1α upregulates the expression of VEGF to promote angiogenesis, and the balance of reactive oxygen species level is regulated to effectively eliminate oxidative damage and abnormal microenvironment. The subsequent inhibition of HIF-1α avoids the overexpression of VEGF and vascular overgrowth. Meanwhile, complex macroporous structures and suitable mechanical support can be obtained within the silk gel scaffolds, which will promote in situ bone regeneration. These findings provide a new clinical translation strategy for osteoporotic vertebral augmentation on basis of hypoxia microenvironment improvement.
Collapse
Affiliation(s)
- Tianji Wang
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Keyin Liu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Jing Wang
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Geng Xiang
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Xiaofan Hu
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Hao Bai
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Wei Lei
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Tiger H Tao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.,School of Physical Science and Technology, ShanghaiTech University, Shanghai, 200031, China.,Institute of Brain-Intelligence Technology, Zhangjiang Laboratory, Shanghai, 200031, China.,Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai, 200031, China
| | - Yafei Feng
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| |
Collapse
|
17
|
Tu J, Zeng Y, An R, Sun J, Wen H. Engineered nanovesicles from stromal vascular fraction promote angiogenesis and adipogenesis inside decellularized adipose tissue through encapsulating growth factors. Sci Rep 2023; 13:750. [PMID: 36639385 PMCID: PMC9839776 DOI: 10.1038/s41598-022-27176-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 12/27/2022] [Indexed: 01/15/2023] Open
Abstract
Acellular matrix is a commonly used biomaterial in the field of biomedical engineering and revascularization is the key process to affect the effect of acellular matrix on tissue regeneration. The application of bioactive factors related to angiogenesis has been popular in the regulation of revascularization, but the immune system clearance, uncontrollable systemic reactions, and other factors make this method face challenges. Recent reports showed that engineered cells into nanovesicles can reorganize cell membranes and encapsulate cellular active factors, extending the in vitro preservation of cytokines. However, the problems of exogenous biological contamination and tumorigenicity restricted the clinical transformation and wide application of this method. Here, we for the first time engineer stromal vascular fraction (SVF) which is extracted from fat into nanovesicles (SVF-EVs) for angiogenesis in the acellular matrix. SVF-EVs not only promote the migration of vascular endothelial cells in vitro, but also facilitate the lipogenic differentiation of mesenchymal stem cells. In vivo, SVF-EVs enhanced the retention of decellularized adipose tissue after transplanting to the subcutaneous area of nude mice. Immunofluorescence staining further showed that SVF-EVs promoted the formation of vascular networks with large lumen diameter in the grafted acellular matrix, accompanied by adipocyte regeneration peripherally. These findings reveal that SVF-EVs can be a viable method for accelerating revascularization in acellular matrix, and this process of squeezing tissue into nanovesicles shows the potential for rapid clinical transformation.
Collapse
Affiliation(s)
- Jun Tu
- Department of Plastic, Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Yuyang Zeng
- Department of Dermatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ran An
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaming Sun
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huicai Wen
- Department of Plastic, Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China.
| |
Collapse
|
18
|
Chavez T, Gerecht S. Engineering of the microenvironment to accelerate vascular regeneration. Trends Mol Med 2023; 29:35-47. [PMID: 36371337 PMCID: PMC9742290 DOI: 10.1016/j.molmed.2022.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 11/11/2022]
Abstract
Blood vessels are crucial for tissue development, functionality, and homeostasis and are typically a determinant in the progression of healing and regeneration. The tissue microenvironment provides physicochemical cues that affect cellular function, and the study of the microenvironment can be accelerated by the engineering of approaches capable of mimicking various aspects of the microenvironment. In this review, we introduce the major components of the vascular niche and focus on the roles of oxygen and the extracellular matrix (ECM). We demonstrate how vascular engineering approaches enhance our understanding of the microenvironment's impact on the vasculature towards vascular regeneration and describe the current limitations and future directions towards clinical utilization.
Collapse
Affiliation(s)
- Taylor Chavez
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Sharon Gerecht
- Department of Biomedical Engineering, Duke University, Durham, NC, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
19
|
Chen Z, Du W, Lv Y. Zonally Stratified Decalcified Bone Scaffold with Different Stiffness Modified by Fibrinogen for Osteochondral Regeneration of Knee Joint Defect. ACS Biomater Sci Eng 2022; 8:5257-5272. [PMID: 36335510 DOI: 10.1021/acsbiomaterials.2c00813] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Articular cartilage is generally known to be a complex tissue with multiple layers. Each layer has different composition, structure, and mechanical properties, making regeneration after knee joint defects a troubling clinical problem. A novel integrated stratified decalcified bone matrix (SDBM) scaffold with different stiffness to mimic the mechanical properties of articular cartilage is presented herein. This SDBM scaffold was modified using fibrinogen (Fg) (Fg + SDBM) to enhance its vascularization ability and improve its repair efficiency for osteochondral defects of knee joints. A Fg + SDBM scaffold with different elastic modulus in each layer (high-stiffness DBM (HDBM) layer, 174.208 ± 44.330 MPa (Fg + HDBM); medium-stiffness DBM (MDBM) layer, 21.214 ± 6.922 MPa (Fg + MDBM); and low-stiffness DBM (LDBM) layer, 0.678 ± 0.269 MPa (Fg + LDBM)) was constructed by controlling the stratified decalcification time with layered embedding paraffin (0, 3, and 5 days). The low- and medium-stiffness layers of the Fg + SDBM scaffold remarkably promoted the cartilage differentiation of bone marrow mesenchymal stem cells in vitro. Subcutaneous transplantation and rabbit knee joint osteochondral defect repair experiments revealed that the low- and medium-stiffness layers of the Fg + SDBM scaffold exhibited wonderful cartilage capacity, whereas the high-stiffness layer of Fg + SDBM scaffold exhibited good osteogenesis ability. Furthermore, this scaffold could promote blood vessel formation in subchondral bone area. This study presents a feasible strategy for osteochondral regeneration of defective knee joints, which is of great clinical value for tissue repair.
Collapse
Affiliation(s)
- Zhenyin Chen
- Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, Chongqing 400044, P. R. China
| | - Wenjiang Du
- Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, Chongqing 400044, P. R. China
| | - Yonggang Lv
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, P. R. China
| |
Collapse
|
20
|
Liu C, Hayat U, Raza A, Jia CW, Wang JY. Zein-based injectable biomaterial and angiogenic activity through peptides produced by enzymatic degradation. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
21
|
Bui L, Edwards S, Hall E, Alderfer L, Round K, Owen M, Sainaghi P, Zhang S, Nallathamby PD, Haneline LS, Hanjaya-Putra D. Engineering bioactive nanoparticles to rejuvenate vascular progenitor cells. Commun Biol 2022; 5:635. [PMID: 35768543 PMCID: PMC9243106 DOI: 10.1038/s42003-022-03578-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 06/08/2022] [Indexed: 11/29/2022] Open
Abstract
Fetal exposure to gestational diabetes mellitus (GDM) predisposes children to future health complications including type-2 diabetes mellitus, hypertension, and cardiovascular disease. A key mechanism by which these complications occur is through stress-induced dysfunction of endothelial progenitor cells (EPCs), including endothelial colony-forming cells (ECFCs). Although several approaches have been previously explored to restore endothelial function, their widespread adoption remains tampered by systemic side effects of adjuvant drugs and unintended immune response of gene therapies. Here, we report a strategy to rejuvenate circulating vascular progenitor cells by conjugation of drug-loaded liposomal nanoparticles directly to the surface of GDM-exposed ECFCs (GDM-ECFCs). Bioactive nanoparticles can be robustly conjugated to the surface of ECFCs without altering cell viability and key progenitor phenotypes. Moreover, controlled delivery of therapeutic drugs to GDM-ECFCs is able to normalize transgelin (TAGLN) expression and improve cell migration, which is a critical key step in establishing functional vascular networks. More importantly, sustained pseudo-autocrine stimulation with bioactive nanoparticles is able to improve in vitro and in vivo vasculogenesis of GDM-ECFCs. Collectively, these findings highlight a simple, yet promising strategy to rejuvenate GDM-ECFCs and improve their therapeutic potential. Promising results from this study warrant future investigations on the prospect of the proposed strategy to improve dysfunctional vascular progenitor cells in the context of other chronic diseases, which has broad implications for addressing various cardiovascular complications, as well as advancing tissue repair and regenerative medicine. Drug-loaded liposomal nanoparticles conjugated to endothelial colony-forming cells can improve the vasculogenic potential of vascular progenitor cells exposed to gestational diabetes mellitus.
Collapse
Affiliation(s)
- Loan Bui
- Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Shanique Edwards
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Riley Hospital for Children at Indiana University Health, Indianapolis, IN, 46202, USA
| | - Eva Hall
- Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Laura Alderfer
- Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Kellen Round
- Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Madeline Owen
- Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Pietro Sainaghi
- Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Siyuan Zhang
- Department of Biological Science, University of Notre Dame, Notre Dame, IN, 46556, USA.,Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Prakash D Nallathamby
- Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Laura S Haneline
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Riley Hospital for Children at Indiana University Health, Indianapolis, IN, 46202, USA.,Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Donny Hanjaya-Putra
- Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, 46556, USA. .,Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, 46556, USA. .,Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA. .,Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN, 46556, USA.
| |
Collapse
|
22
|
A hierarchical vascularized engineered bone inspired by intramembranous ossification for mandibular regeneration. Int J Oral Sci 2022; 14:31. [PMID: 35732648 PMCID: PMC9217949 DOI: 10.1038/s41368-022-00179-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/22/2022] [Accepted: 04/24/2022] [Indexed: 11/22/2022] Open
Abstract
Mandibular defects caused by injuries, tumors, and infections are common and can severely affect mandibular function and the patient’s appearance. However, mandible reconstruction with a mandibular bionic structure remains challenging. Inspired by the process of intramembranous ossification in mandibular development, a hierarchical vascularized engineered bone consisting of angiogenesis and osteogenesis modules has been produced. Moreover, the hierarchical vascular network and bone structure generated by these hierarchical vascularized engineered bone modules match the particular anatomical structure of the mandible. The ultra-tough polyion complex has been used as the basic scaffold for hierarchical vascularized engineered bone for ensuring better reconstruction of mandible function. According to the results of in vivo experiments, the bone regenerated using hierarchical vascularized engineered bone is similar to the natural mandibular bone in terms of morphology and genomics. The sonic hedgehog signaling pathway is specifically activated in hierarchical vascularized engineered bone, indicating that the new bone in hierarchical vascularized engineered bone underwent a process of intramembranous ossification identical to that of mandible development. Thus, hierarchical vascularized engineered bone has a high potential for clinical application in mandibular defect reconstruction. Moreover, the concept based on developmental processes and bionic structures provides an effective strategy for tissue regeneration.
Collapse
|
23
|
Wang H, Li Q, Jiang Y, Wang X. Functional Hydrogels with Chondroitin Sulfate Release Properties Regulate the Angiogenesis Behaviors of Endothelial Cells. Gels 2022; 8:gels8050261. [PMID: 35621559 PMCID: PMC9141759 DOI: 10.3390/gels8050261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 01/04/2023] Open
Abstract
Functional hydrogels with properties that mimic the structure of extracellular matrix (ECM) and regulate cell behaviors have drawn much attention in biomedical applications. Herein, gelatin-based hydrogels were designed and loaded with chondroitin sulfate (CS) to endow biological regulation on the angiogenesis behaviors of endothelial cells (ECs). Manufactured hydrogels containing various amounts of CS were characterized via methods including mechanical tests, cytocompatibility, hemolysis, and angiogenesis assays. The results showed that the prepared hydrogels exhibited excellent mechanical stability, cytocompatibility, and hemocompatibility. Additionally, the angiogenesis behaviors of ECs were obviously promoted. However, excessive loading of CS would weaken the effect due to a higher proportion of occupation on the cell membrane. In conclusion, this investigation highlights the great potential of these hydrogels in treating ischemic diseases and accelerating tissue regeneration in terms of regulating the angiogenesis process via CS release.
Collapse
Affiliation(s)
- Haonan Wang
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China; (H.W.); (X.W.)
| | - Qian Li
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China; (H.W.); (X.W.)
- Correspondence: (Q.L.); or (Y.J.)
| | - Yongchao Jiang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
- Correspondence: (Q.L.); or (Y.J.)
| | - Xiaofeng Wang
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China; (H.W.); (X.W.)
| |
Collapse
|
24
|
He C, Dai M, Zhou X, Long J, Tian W, Yu M. Comparison of two cell-free therapeutics derived from adipose tissue: small extracellular vesicles versus conditioned medium. Stem Cell Res Ther 2022; 13:86. [PMID: 35241142 PMCID: PMC8895642 DOI: 10.1186/s13287-022-02757-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/26/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Cell-free therapy has been inspired as a promising approach to overcome the limitations of traditional stem cell therapy. However, the therapeutic effect between extracellular vesicles and conditioned medium with the same source had not been compared. Our previous studies have shown that both the conditioned medium of adipose tissue (adipose tissue extract, ATE) and its further purification product small extracellular vesicles (sEV-AT) contributed to adipose tissue regeneration. In this study, we aimed to compare the ATE and sEV-AT in composition, inductivity on cells and de novo adipose regenerative potential. METHODS The characteristics of sEV-AT and ATE were compared through protein and particle yield, particle size distribution and composition. The inductivity of sEV-AT and ATE on cells were compared through co-culture of sEV-AT or ATE with ASC, HUVEC and RAW264.7 in vitro. The capacity of promoting de novo adipogenesis was compared by implanting the silicone tube containing sEV-AT or ATE subcutaneously in vivo. RESULTS More particles and concentrated particle size distribution were detected in sEV-AT. In turn, more soluble factors and multiple peaks in particle size distribution were detected in ATE. In 1662 common proteins of sEV-AT and ATE, there were 984 (59.2%) proteins enriched twice more in sEV-AT than in ATE. With the prerequisite of equivalent protein concentration, sEV-AT outperformed ATE in promoting proliferation, migration and regeneration potential of cells those contributing adipose tissue regeneration in vitro. Furthermore, sEV-AT expedited the de novo adipose tissue regeneration and angiogenesis at the early stage than ATE in vivo, but sEV-AT and ATE group formed similar neoadipose tissue and new vessels at week 12. CONCLUSIONS Our results provided a direct comparison between EV and conditioned medium as cell-free therapeutic strategy. Both sEV and ATE had specific biological signature to facilitate tissue repair. Considering the convenience of extraction and acceptable effect, ATE represented a feasible product of cell-free therapy, providing another option for different situations in clinical application. Furthermore, the complex contents of both sEV-AT and ATE should be studied comprehensively to avoid possible negative effects and to ensure sufficient safety for clinical applications.
Collapse
Affiliation(s)
- Chuan He
- State Key Laboratory of Oral Disease and National Clinical Research Center for Oral Diseases and National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu, China.,Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China School of Stomatology, Sichuan University, Chengdu, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Minjia Dai
- State Key Laboratory of Oral Disease and National Clinical Research Center for Oral Diseases and National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu, China.,Department of Stomatology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaojie Zhou
- State Key Laboratory of Oral Disease and National Clinical Research Center for Oral Diseases and National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu, China.,Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China School of Stomatology, Sichuan University, Chengdu, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jie Long
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Weidong Tian
- State Key Laboratory of Oral Disease and National Clinical Research Center for Oral Diseases and National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu, China.,Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China School of Stomatology, Sichuan University, Chengdu, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mei Yu
- State Key Laboratory of Oral Disease and National Clinical Research Center for Oral Diseases and National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu, China. .,Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China School of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
25
|
Lu D, Zeng Z, Geng Z, Guo C, Pei D, Zhang J, Yu S. Macroporous methacrylated hyaluronic acid hydrogel with different pore sizes for in vitro and in vivo evaluation of vascularization. Biomed Mater 2022; 17. [PMID: 34996058 DOI: 10.1088/1748-605x/ac494b] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/07/2022] [Indexed: 11/11/2022]
Abstract
Vascularization of thick hydrogel scaffolds is still a big challenge, because the submicron- or nano-sized pores seriously restrict endothelial cells adhesion, proliferation and migration. Therefore, porous hydrogels have been fabricated as a kind of promising hydrous scaffolds for enhancing vascularization during tissue repairing. In order to investigate the effects of pore size on vascularization, macroporous methacrylated hyaluronic acid (HAMA) hydrogels with different pore sizes were fabricated by a gelatin microspheres (GMS) template method. After leaching out GMS templates, uniform and highly interconnected macropores were formed in hydrogels, which provided an ideal physical microenvironment to induce human umbilical vein endothelial cells (HUVECs) migration and tissue vascularization. In vitro results revealed that macroporous hydrogels facilitated cells proliferation and migration compared with non-macroporous hydrogels. Hydrogels with middle pore size of 200-250 μm (HAMA250 hydrogels) supported the best cell proliferation and furthest 3D migration of HUVECs. The influences of pore sizes on vascularization were then evaluated with subcutaneous embedding. In vivo results illustrated that HAMA250 hydrogels exhibited optimum vascularization behavior. Highest number of newly formed blood vessels and expression of CD31 could be found in HAMA250 hydrogels rather than in other hydrogels. In summary, our results concluded that the best pore size for endothelial cells migration and tissue vascularization was 200-250 μm. This research provides a new insight into the engineering vascularized tissues and may find utility in designing regenerative biomaterial scaffolds.
Collapse
Affiliation(s)
- Daohuan Lu
- Institute of Medicine and Health, Guangdong Academy of Sciences, No. 1307, Guangzhou Avenue, Tianhe District, guangzhou, 51000, CHINA
| | - Zhiwen Zeng
- Institute of Medicine and Health, Guangdong Academy of Sciences, No. 1307, Guangzhou Avenue, Tianhe District, Guangzhou, guangzhou, 51000, CHINA
| | - Zhijie Geng
- Institute of Medicine and Health, Guangdong Academy of Sciences, No. 1307, Guangzhou Avenue, Tianhe District, guangzhou, 51000, CHINA
| | - Cuiping Guo
- Institute of Medicine and Health, Guangdong Academy of Sciences, , guangzhou, 51000, CHINA
| | - Dating Pei
- Institute of Medicine and Health, Guangdong Academy of Sciences, No. 1307, Guangzhou Avenue, Tianhe District, guangzhou, 51000, CHINA
| | - Jin Zhang
- Institute of Medicine and Health, Guangdong Academy of Sciences, No. 1307, Guangzhou Avenue, Tianhe District, guangzhou, 51000, CHINA
| | - Shan Yu
- Institute of Medicine and Health, Guangdong Academy of Sciences, No. 1307, Guangzhou Avenue, Tianhe District, guangzhou, 51000, CHINA
| |
Collapse
|
26
|
Fan L, Xiao C, Guan P, Zou Y, Wen H, Liu C, Luo Y, Tan G, Wang Q, Li Y, Yu P, Zhou L, Ning C. Extracellular Matrix-Based Conductive Interpenetrating Network Hydrogels with Enhanced Neurovascular Regeneration Properties for Diabetic Wounds Repair. Adv Healthc Mater 2022; 11:e2101556. [PMID: 34648694 DOI: 10.1002/adhm.202101556] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/07/2021] [Indexed: 12/30/2022]
Abstract
The critical effects that impair diabetic wound healing are characterized by poor vascularization and severe peripheral neuropathy. Current management strategies for diabetic wound healing are unsatisfactory, due to the paucity of neurovascular regeneration at the wound site. Importantly, conductivity in skin tissue is reported to be essential for modulating myriad biological processes especially vascular and nerve regeneration. Herein, an extracellular matrix (ECM)-based conductive dressing is synthesized from an interpenetrating polymer network hydrogel composed of gelatin methacryloyl, oxidized chondroitin sulfate (OCS), and OCS-polypyrrole conductive nanoparticles that can promote diabetic wound repairing by enhancing local neurovascular regeneration. The conductive hydrogels combine the advantageous features of water-swollen hydrogels with conductive polymers (CPs) to provide tissue-matching electrical conductivity and mechanical properties for neurovascular regeneration. In vitro and in vivo studies show that the conductive hydrogel can promote neurovascular regeneration by increasing intracellular Ca2+ concentration, which subsequently promotes phosphorylation of proteins in the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) and mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) pathways. Furthermore, the conductive hydrogel stimulates full-thickness diabetic wound repair on day 14 by promoting local neurovascular regeneration and collagen deposition. These findings corroborate that the ECM-based conductive interpenetrating network hydrogel dressing significantly promotes wound repairing due to its neurovascular regeneration properties, suggesting that they are suitable candidates for diabetic wound repair.
Collapse
Affiliation(s)
- Lei Fan
- School of Materials Science and Engineering and National Engineering Research Center for Tissue Restoration and Reconstruction South China University of Technology Guangzhou 510641 China
| | - Cairong Xiao
- School of Materials Science and Engineering and National Engineering Research Center for Tissue Restoration and Reconstruction South China University of Technology Guangzhou 510641 China
| | - Pengfei Guan
- Department of Orthopaedics The Third Affiliated Hospital of Southern Medical University Guangzhou 510515 China
| | - Yan Zou
- Department of Radiology The Third Affiliated Hospital of Sun Yat‐Sen University Guangzhou 510630 China
| | - Huiquan Wen
- Department of Radiology The Third Affiliated Hospital of Sun Yat‐Sen University Guangzhou 510630 China
| | - Can Liu
- Department of Spine Surgery The First Hospital of Zhejiang University Hangzhou 310003 China
| | - Yian Luo
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 China
| | - Guoxin Tan
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 China
| | - Qiyou Wang
- Department of Orthopaedics The Third Affiliated Hospital of Southern Medical University Guangzhou 510515 China
| | - Yangfan Li
- School of Materials Science and Engineering and National Engineering Research Center for Tissue Restoration and Reconstruction South China University of Technology Guangzhou 510641 China
| | - Peng Yu
- School of Materials Science and Engineering and National Engineering Research Center for Tissue Restoration and Reconstruction South China University of Technology Guangzhou 510641 China
| | - Lei Zhou
- School of Materials Science and Engineering and National Engineering Research Center for Tissue Restoration and Reconstruction South China University of Technology Guangzhou 510641 China
| | - Chengyun Ning
- School of Materials Science and Engineering and National Engineering Research Center for Tissue Restoration and Reconstruction South China University of Technology Guangzhou 510641 China
| |
Collapse
|
27
|
Ngo MT, Barnhouse VR, Gilchrist AE, Mahadik BP, Hunter CJ, Hensold JN, Petrikas N, Harley BAC. Hydrogels Containing Gradients in Vascular Density Reveal Dose-Dependent Role of Angiocrine Cues on Stem Cell Behavior. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2101541. [PMID: 35558090 PMCID: PMC9090181 DOI: 10.1002/adfm.202101541] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Indexed: 05/05/2023]
Abstract
Biomaterials that replicate patterns of microenvironmental signals from the stem cell niche offer the potential to refine platforms to regulate stem cell behavior. While significant emphasis has been placed on understanding the effects of biophysical and biochemical cues on stem cell fate, vascular-derived or angiocrine cues offer an important alternative signaling axis for biomaterial-based stem cell platforms. Elucidating dose-dependent relationships between angiocrine cues and stem cell fate are largely intractable in animal models and 2D cell cultures. In this study, microfluidic mixing devices are leveraged to generate 3D hydrogels containing lateral gradients in vascular density alongside murine hematopoietic stem cells (HSCs). Regional differences in vascular density can be generated via embossed gradients in cell, matrix, or growth factor density. HSCs co-cultured alongside vascular gradients reveal spatial patterns of HSC phenotype in response to angiocrine signals. Notably, decreased Akt signaling in high vessel density regions led to increased expansion of lineage-positive hematopoietic cells. This approach offers a combinatorial tool to rapidly screen a continuum of microenvironments with varying vascular, biophysical, and biochemical cues to reveal the influence of local angiocrine signals on HSC fate.
Collapse
Affiliation(s)
- Mai T Ngo
- Dept. Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Victoria R Barnhouse
- Dept. Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Aidan E Gilchrist
- Dept. Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Bhushan P Mahadik
- Dept. Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Christine J Hunter
- Dept. Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Joy N Hensold
- Dept. Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Nathan Petrikas
- Dept. Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Brendan A C Harley
- Dept. Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Dept. Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Dept. Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
28
|
Neves ER, Harley BAC, Pedron S. Microphysiological systems to study tumor-stroma interactions in brain cancer. Brain Res Bull 2021; 174:220-229. [PMID: 34166771 PMCID: PMC8324563 DOI: 10.1016/j.brainresbull.2021.06.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/17/2021] [Accepted: 06/15/2021] [Indexed: 12/15/2022]
Abstract
Brain tumors still lack effective treatments, and the mechanisms of tumor progression and therapeutic resistance are unclear. Multiple parameters affect cancer prognosis (e.g., type and grade, age, location, size, and genetic mutations) and election of suitable treatments is based on preclinical models and clinical data. However, most candidate drugs fail in human trials due to inefficacy. Cell lines and tissue culture plates do not provide physiologically relevant environments, and animal models are not able to adequately mimic characteristics of disease in humans. Therefore, increasing technological advances are focusing on in vitro and computational modeling to increase the throughput and predicting capabilities of preclinical systems. The extensive use of these therapeutic agents requires a more profound understanding of the tumor-stroma interactions, including neural tissue, extracellular matrix, blood-brain barrier, astrocytes and microglia. Microphysiological brain tumor models offer physiologically relevant vascularized 'minitumors' that can help deciphering disease mechanisms, accelerating the drug discovery and predicting patient's response to anticancer treatments. This article reviews progress in tumor-on-a-chip platforms that are designed to comprehend the particular roles of stromal cells in the brain tumor microenvironment.
Collapse
Affiliation(s)
- Edward R Neves
- Department of Chemical and Biomolecular Engineering, Carl R Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Brendan A C Harley
- Department of Chemical and Biomolecular Engineering, Carl R Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Sara Pedron
- Department of Chemical and Biomolecular Engineering, Carl R Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
29
|
Khoobchandani M, Khan A, Katti KK, Thipe VC, Al-Yasiri AY, MohanDoss DKD, Nicholl MB, Lugão AB, Hans CP, Katti KV. Green nanotechnology of MGF-AuNPs for immunomodulatory intervention in prostate cancer therapy. Sci Rep 2021; 11:16797. [PMID: 34408231 PMCID: PMC8373987 DOI: 10.1038/s41598-021-96224-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 08/05/2021] [Indexed: 02/07/2023] Open
Abstract
Men with castration-resistant prostate cancer (CRPC) face poor prognosis and increased risk of treatment-incurred adverse effects resulting in one of the highest mortalities among patient population globally. Immune cells act as double-edged sword depending on the tumor microenvironment, which leads to increased infiltration of pro-tumor (M2) macrophages. Development of new immunomodulatory therapeutic agents capable of targeting the tumor microenvironment, and hence orchestrating the transformation of pro-tumor M2 macrophages to anti-tumor M1, would substantially improve treatment outcomes of CRPC patients. We report, herein, Mangiferin functionalized gold nanoparticulate agent (MGF-AuNPs) and its immunomodulatory characteristics in treating prostate cancer. We provide evidence of immunomodulatory intervention of MGF-AuNPs in prostate cancers through observations of enhanced levels of anti-tumor cytokines (IL-12 and TNF-α) with concomitant reductions in the levels of pro-tumor cytokines (IL-10 and IL-6). In the MGF-AuNPs treated groups, IL-12 was elevated to ten-fold while TNF-α was elevated to about 50-fold, while IL-10 and IL-6 were reduced by two-fold. Ability of MGF-AuNPs to target splenic macrophages is invoked via targeting of NF-kB signaling pathway. Finally, therapeutic efficacy of MGF-AuNPs, in treating prostate cancer in vivo in tumor bearing mice, is described taking into consideration various immunomodulatory interventions triggered by this green nanotechnology-based nanomedicine agent.
Collapse
Affiliation(s)
- Menka Khoobchandani
- Department of Radiology, Institute of Green Nanotechnology, University of Missouri, Columbia, MO, 65212, USA
- Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park Ave, St. Louis, MO, 63108, USA
| | - Aslam Khan
- Department of Biochemistry, University of Missouri, Columbia, MO, 65212, USA
| | - Kavita K Katti
- Department of Radiology, Institute of Green Nanotechnology, University of Missouri, Columbia, MO, 65212, USA
| | - Velaphi C Thipe
- Laboratório de Ecotoxicologia, Centro de Química e Meio Ambiente, Instituto de Pesquisas Energéticas e Nucleares (IPEN), Comissão Nacional de Energia Nuclear, IPEN/CNEN-SP, Butantã, São Paulo, SP, Brasil
| | - Amal Y Al-Yasiri
- Nuclear Science and Engineering Institute (NSEI), University of Missouri, Columbia, MO, 65211, USA
- College of Dentistry, University of Baghdad, Baghdad, Iraq
| | - Darsha K D MohanDoss
- Dhanvantari Nano Ayushadi Pvt Ltd, No. 8/34, Neelakanta Mehta Street, T. Nagar, Chennai, 600017, India
| | | | - Ademar B Lugão
- Laboratório de Ecotoxicologia, Centro de Química e Meio Ambiente, Instituto de Pesquisas Energéticas e Nucleares (IPEN), Comissão Nacional de Energia Nuclear, IPEN/CNEN-SP, Butantã, São Paulo, SP, Brasil
| | - Chetan P Hans
- Department of Medicine-Cardiology, University of Missouri, Columbia, MO, 65212, USA
| | - Kattesh V Katti
- Department of Radiology, Institute of Green Nanotechnology, University of Missouri, Columbia, MO, 65212, USA.
- Department of Physics, University of Missouri, Columbia, MO, 65212, USA.
- University of Missouri Research Reactor (MURR), University of Missouri, Columbia, MO, 65212, USA.
| |
Collapse
|
30
|
Dewey MJ, Kolliopoulos V, Ngo MT, Harley BAC. Glycosaminoglycan content of a mineralized collagen scaffold promotes mesenchymal stem cell secretion of factors to modulate angiogenesis and monocyte differentiation. MATERIALIA 2021; 18:101149. [PMID: 34368658 PMCID: PMC8336934 DOI: 10.1016/j.mtla.2021.101149] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Effective design of biomaterials to aid regenerative repair of craniomaxillofacial (CMF) bone defects requires approaches that modulate the complex interplay between exogenously added progenitor cells and cells in the wound microenvironment, such as osteoblasts, osteoclasts, endothelial cells, and immune cells. We are exploring the role of the glycosaminoglycan (GAG) content in a class of mineralized collagen scaffolds recently shown to promote osteogenesis and healing of craniofacial bone defects. We previously showed that incorporating chondroitin-6-sulfate or heparin improved mineral deposition by seeded human mesenchymal stem cells (hMSCs). Here, we examine the effect of varying scaffold GAG content on hMSC behavior, and their ability to modulate osteoclastogenesis, vasculogenesis, and the immune response. We report the role of hMSC-conditioned media produced in scaffolds containing chondroitin-6-sulfate (CS6), chondroitin-4-sulfate (CS4), or heparin (Heparin) GAGs on endothelial tube formation and monocyte differentiation. Notably, endogenous production by hMSCs within Heparin scaffolds most significantly inhibits osteoclastogenesis via secreted osteoprotegerin (OPG), while the secretome generated by CS6 scaffolds reduced pro-inflammatory immune response and increased endothelial tube formation. All conditioned media down-regulated many pro- and anti-inflammatory cytokines, such as IL6, IL-1β, and CCL18 and CCL17 respectively. Together, these findings demonstrate that modifying mineralized collagen scaffold GAG content can both directly (hMSC activity) and indirectly (production of secreted factors) influence overall osteogenic potential and mineral biosynthesis as well as angiogenic potential and monocyte differentiation towards osteoclastic and macrophage lineages. Scaffold GAG content is therefore a powerful stimulus to modulate reciprocal signaling between multiple cell populations within the bone healing microenvironment.
Collapse
Affiliation(s)
- Marley J Dewey
- Dept. of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Vasiliki Kolliopoulos
- Dept. of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Mai T Ngo
- Dept. of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Brendan A C Harley
- Dept. of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Dept. of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| |
Collapse
|
31
|
Polo-Montalvo A, Casarrubios L, Serrano MC, Sanvicente A, Feito MJ, Arcos D, Portolés MT. Effective Actions of Ion Release from Mesoporous Bioactive Glass and Macrophage Mediators on the Differentiation of Osteoprogenitor and Endothelial Progenitor Cells. Pharmaceutics 2021; 13:1152. [PMID: 34452110 PMCID: PMC8399963 DOI: 10.3390/pharmaceutics13081152] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/19/2021] [Accepted: 07/23/2021] [Indexed: 12/28/2022] Open
Abstract
Due to their specific mesoporous structure and large surface area, mesoporous bioactive glasses (MBGs) possess both drug-delivery ability and effective ionic release to promote bone regeneration by stimulating osteogenesis and angiogenesis. Macrophages secrete mediators that can affect both processes, depending on their phenotype. In this work, the action of ion release from MBG-75S, with a molar composition of 75SiO2-20CaO-5P2O5, on osteogenesis and angiogenesis and the modulatory role of macrophages have been assessed in vitro with MC3T3-E1 pre-osteoblasts and endothelial progenitor cells (EPCs) in monoculture and in coculture with RAW 264.7 macrophages. Ca2+, phosphorous, and silicon ions released from MBG-75S were measured in the culture medium during both differentiation processes. Alkaline phosphatase activity and matrix mineralization were quantified as the key markers of osteogenic differentiation in MC3T3-E1 cells. The expression of CD31, CD34, VEGFR2, eNOS, and vWF was evaluated to characterize the EPC differentiation into mature endothelial cells. Other cellular parameters analyzed included the cell size and complexity, intracellular calcium, and intracellular content of the reactive oxygen species. The results obtained indicate that the ions released by MBG-75S promote osteogenesis and angiogenesis in vitro, evidencing a macrophage inhibitory role in these processes and demonstrating the high potential of MBG-75S for the preparation of implants for bone regeneration.
Collapse
Affiliation(s)
- Alberto Polo-Montalvo
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain; (A.P.-M.); (L.C.); (A.S.); (M.J.F.)
| | - Laura Casarrubios
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain; (A.P.-M.); (L.C.); (A.S.); (M.J.F.)
| | - María Concepción Serrano
- Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain;
| | - Adrián Sanvicente
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain; (A.P.-M.); (L.C.); (A.S.); (M.J.F.)
| | - María José Feito
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain; (A.P.-M.); (L.C.); (A.S.); (M.J.F.)
| | - Daniel Arcos
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, 28040 Madrid, Spain
| | - María Teresa Portolés
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain; (A.P.-M.); (L.C.); (A.S.); (M.J.F.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, 28040 Madrid, Spain
| |
Collapse
|
32
|
Effects of Ipriflavone-Loaded Mesoporous Nanospheres on the Differentiation of Endothelial Progenitor Cells and Their Modulation by Macrophages. NANOMATERIALS 2021; 11:nano11051102. [PMID: 33923311 PMCID: PMC8145259 DOI: 10.3390/nano11051102] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/16/2021] [Accepted: 04/21/2021] [Indexed: 12/16/2022]
Abstract
Angiogenic biomaterials are designed to promote vascularization and tissue regeneration. Nanoparticles of bioactive materials loaded with drugs represent an interesting strategy to stimulate osteogenesis and angiogenesis and to inhibit bone resorption. In this work, porcine endothelial progenitor cells (EPCs), essential for blood vessel formation, were isolated and characterized to evaluate the in vitro effects of unloaded (NanoMBGs) and ipriflavone-loaded nanospheres (NanoMBG-IPs), which were designed to prevent osteoporosis. The expression of vascular endothelial growth factor receptor 2 (VEGFR2) was studied in EPCs under different culture conditions: (a) treatment with NanoMBGs or NanoMBG-IPs, (b) culture with media from basal, M1, and M2 macrophages previously treated with NanoMBGs or NanoMBG-IPs, (c) coculture with macrophages in the presence of NanoMBGs or NanoMBG-IPs, and (d) coculture with M2d angiogenic macrophages. The endocytic mechanisms for nanosphere incorporation by EPCs were identified using six different endocytosis inhibitors. The results evidence the great potential of these nanomaterials to enhance VEGFR2 expression and angiogenesis, after intracellular incorporation by EPCs through clathrin-dependent endocytosis, phagocytosis, and caveolae-mediated uptake. The treatment of EPCs with basal, M1, and M2 macrophage culture media and EPC/macrophage coculture studies also confirmed the angiogenic effect of these nanospheres on EPCs, even in the presence of phagocytic cells.
Collapse
|
33
|
Zhu G, Zhang T, Chen M, Yao K, Huang X, Zhang B, Li Y, Liu J, Wang Y, Zhao Z. Bone physiological microenvironment and healing mechanism: Basis for future bone-tissue engineering scaffolds. Bioact Mater 2021; 6:4110-4140. [PMID: 33997497 PMCID: PMC8091181 DOI: 10.1016/j.bioactmat.2021.03.043] [Citation(s) in RCA: 174] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/19/2021] [Accepted: 03/28/2021] [Indexed: 02/06/2023] Open
Abstract
Bone-tissue defects affect millions of people worldwide. Despite being common treatment approaches, autologous and allogeneic bone grafting have not achieved the ideal therapeutic effect. This has prompted researchers to explore novel bone-regeneration methods. In recent decades, the development of bone tissue engineering (BTE) scaffolds has been leading the forefront of this field. As researchers have provided deep insights into bone physiology and the bone-healing mechanism, various biomimicking and bioinspired BTE scaffolds have been reported. Now it is necessary to review the progress of natural bone physiology and bone healing mechanism, which will provide more valuable enlightenments for researchers in this field. This work details the physiological microenvironment of the natural bone tissue, bone-healing process, and various biomolecules involved therein. Next, according to the bone physiological microenvironment and the delivery of bioactive factors based on the bone-healing mechanism, it elaborates the biomimetic design of a scaffold, highlighting the designing of BTE scaffolds according to bone biology and providing the rationale for designing next-generation BTE scaffolds that conform to natural bone healing and regeneration.
Collapse
Affiliation(s)
- Guanyin Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Tianxu Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Miao Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Ke Yao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Xinqi Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Bo Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Yazhen Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Jun Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610041, PR China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| |
Collapse
|
34
|
Wu L, Gao S, Zhao T, Tian K, Zheng T, Zhang X, Xiao L, Ding Z, Lu Q, Kaplan DL. Pressure-driven spreadable deferoxamine-laden hydrogels for vascularized skin flaps. Biomater Sci 2021; 9:3162-3170. [PMID: 33881061 PMCID: PMC8096535 DOI: 10.1039/d1bm00053e] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The development of hydrogels that support vascularization to improve the survival of skin flaps, yet establishing homogeneous angiogenic niches without compromising the ease of use in surgical settings remains a challenge. Here, pressure-driven spreadable hydrogels were developed utilizing beta-sheet rich silk nanofiber materials. These silk nanofiber-based hydrogels exhibited excellent spreading under mild pressure to form a thin coating to cover all the regions of the skin flaps. Deferoxamine (DFO) was loaded onto the silk nanofibers to support vascularization and these DFO-laden hydrogels were implanted under skin flaps in rats to fill the interface between the wound bed and the flap using the applied pressure. The thickness of the spread hydrogels was below 200 μm, minimizing the physical barrier effects from the hydrogels. The distribution of the hydrogels provided homogeneous angiogenic stimulation, accelerating rapid blood vessel network formation and significantly improving the survival of the skin flaps. The hydrogels also modulated the immune reactions, further facilitating the regeneration of the skin flaps. Considering the homogeneous distribution at the wound sites, improved vascularization, reduced barrier effects and low inflammation, these hydrogels appear to be promising candidates for use in tissue repair where a high blood supply is in demand. The pressure-driven spreading properties should simplify the use of the hydrogels in surgical settings to facilitate clinical translation.
Collapse
Affiliation(s)
- Lijun Wu
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People's Republic of China. and Department of Plastic and Cosmetic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou 215004, P. R. China
| | - Suyue Gao
- Department of Plastic and Cosmetic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou 215004, P. R. China and Department of Dermatology and Cosmetic Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215002, Jiangsu, China
| | - Tianlan Zhao
- Department of Plastic and Cosmetic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou 215004, P. R. China
| | - Kai Tian
- Department of Plastic and Cosmetic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou 215004, P. R. China
| | - Tingyu Zheng
- Department of Plastic and Cosmetic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou 215004, P. R. China
| | - Xiaoyi Zhang
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People's Republic of China.
| | - Liying Xiao
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People's Republic of China.
| | - Zhaozhao Ding
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People's Republic of China.
| | - Qiang Lu
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People's Republic of China.
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, USA
| |
Collapse
|