1
|
Salama A, Elsherbiny N, Hetta HF, Safwat MA, Atif HM, Fathalla D, Almanzalawi WS, Almowallad S, Soliman GM. Curcumin-loaded gold nanoparticles with enhanced antibacterial efficacy and wound healing properties in diabetic rats. Int J Pharm 2024; 666:124761. [PMID: 39332460 DOI: 10.1016/j.ijpharm.2024.124761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024]
Abstract
Diabetic wounds pose a significant global health challenge. Although curcumin exhibits promising wound healing and antibacterial properties, its clinical potential is limited by low aqueous solubility, and poor tissue penetration. This study aimed to address these challenges and enhance the wound healing efficacy of curcumin by loading it onto gold nanoparticles (AuNPs). The properties of the AuNPs, including particle size, polydispersity index (PDI), zeta potential, percent drug entrapment efficiency (%EE) and UV-Vis spectra were significantly influenced by the curcumin/gold chloride molar ratio used in the synthesis of AuNPs. The optimal formulation (F2) exhibited the smallest particle size (41.77 ± 6.8 nm), reasonable PDI (0.59 ± 0.17), high %EE (94.43 ± 0.25 %), a moderate zeta potential (-8.44 ± 1.69 mV), and a well-defined surface Plasmon resonance peak at 526 nm. Formulation F2 was incorporated into Pluronic® F127 gel to facilitate its application to the skin. Both curcumin AuNPs solution and gel showed sustained drug release and higher skin permeation parameters compared with the free drug solution. AuNPs significantly enhanced curcumin's antibacterial efficacy by lowering the minimum inhibitory concentrations and enhancing antibacterial biofilm activity against various Gram-positive and Gram-negative bacterial strains. In a diabetic wound rat model, AuNPs-loaded curcumin exhibited superior wound healing attributes compared to the free drug. Specifically, it demonstrated improved wound healing percentage, reduced wound oxidative stress, increased wound collagen deposition, heightened anti-inflammatory effects, and enhanced angiogenesis. These findings underscore the potential of AuNPs as efficacious delivery systems of curcumin for improved wound healing applications.
Collapse
Affiliation(s)
- Ayman Salama
- Department of Pharmaceutics, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Nehal Elsherbiny
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Helal F Hetta
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Mohamed A Safwat
- Department of Pharmaceutics, Faculty of Pharmacy, South Valley University, Qena 83523, Egypt
| | - Huda M Atif
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Mansoura University, Egypt
| | - Dina Fathalla
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Wejdan S Almanzalawi
- PharmD Program, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Sanaa Almowallad
- Department of Biochemistry, Faculty of Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Ghareb M Soliman
- Department of Pharmaceutics, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia.
| |
Collapse
|
2
|
Wei X, Jiang X, Li H. Fundamental characteristics of ultrasonic green formulations using Avena sativa L. extract-mediated gold nanoparticles and electroconductive nanofibers for cardiovascular nursing care. Heliyon 2024; 10:e35018. [PMID: 39170527 PMCID: PMC11336310 DOI: 10.1016/j.heliyon.2024.e35018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/23/2024] Open
Abstract
In the pursuit of novel approaches to address chronic heart failure and enhance cardiovascular nursing care, environmentally sustainable nanomaterials have taken center stage. Recent progress in regenerative medicine has opened doors for the use of biocompatible biomaterials that provide mechanical support to damaged heart tissue and facilitate electrical signaling. This study was dedicated to developing advanced electroconductive nanofibers by incorporating eco-friendly Avena sativa L. extract-mediated gold nanoparticles (AuNPs) into polyaniline to create an intricate cardiac patch. The AuNPs were synthesized through an environmentally friendly chemical process aided by ultrasonic conditions. Comprehensive physicochemical analyses, such as UV-Vis spectroscopy, SEM, TEM, DPPH assay, and XRD, were carried out to characterize the AuNPs. These AuNPs were then blended with a polycaprolactone/gelatin polymeric solution and electrospun to fabricate cardiac patches, which underwent thorough evaluation using various techniques. The resulting cardiac patch demonstrated excellent hemocompatibility, antioxidant properties, and cytocompatibility, offering a promising therapeutic approach for myocardial infarctions and the advancement of cardiovascular nursing care.
Collapse
Affiliation(s)
- Xinfang Wei
- Department of Cardiovascular Medicine CCU, Zhongshan People's Hospital, No. 2 Sunwendong Road, Zhongshan City, Guangdong, 528403, China
| | - Xiaoshan Jiang
- Department of Geriatrics, Qingdao Chengyang District People's Hospital, No. 600, Changcheng Road, Chengyang District, Qingdao, 266109, Shandong Province, China
| | - Hongzan Li
- School of Nursing, Guangdong Medical University, No. 1 Xincheng Road, Songshan Lake Science and Technology Park, Dongguan, Guangdong, 523808, China
| |
Collapse
|
3
|
El-Sapagh SH, El-Zawawy NA, Elshobary ME, Alquraishi M, Zabed HM, Nouh HS. Harnessing the power of Neobacillus niacini AUMC-B524 for silver oxide nanoparticle synthesis: optimization, characterization, and bioactivity exploration. Microb Cell Fact 2024; 23:220. [PMID: 39107838 PMCID: PMC11304630 DOI: 10.1186/s12934-024-02484-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/17/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Biotechnology provides a cost-effective way to produce nanomaterials such as silver oxide nanoparticles (Ag2ONPs), which have emerged as versatile entities with diverse applications. This study investigated the ability of endophytic bacteria to biosynthesize Ag2ONPs. RESULTS A novel endophytic bacterial strain, Neobacillus niacini AUMC-B524, was isolated from Lycium shawii Roem. & Schult leaves and used to synthesize Ag2ONPS extracellularly. Plackett-Burman design and response surface approach was carried out to optimize the biosynthesis of Ag2ONPs (Bio-Ag2ONPs). Comprehensive characterization techniques, including UV-vis spectral analysis, Fourier transform infrared spectroscopy, transmission electron microscopy, X-ray diffraction, dynamic light scattering analysis, Raman microscopy, and energy dispersive X-ray analysis, confirmed the precise composition of the Ag2ONPS. Bio-Ag2ONPs were effective against multidrug-resistant wound pathogens, with minimum inhibitory concentrations (1-25 µg mL-1). Notably, Bio-Ag2ONPs demonstrated no cytotoxic effects on human skin fibroblasts (HSF) in vitro, while effectively suppressing the proliferation of human epidermoid skin carcinoma (A-431) cells, inducing apoptosis and modulating the key apoptotic genes including Bcl-2 associated X protein (Bax), B-cell lymphoma 2 (Bcl-2), Caspase-3 (Cas-3), and guardian of the genome (P53). CONCLUSIONS These findings highlight the therapeutic potential of Bio-Ag2ONPs synthesized by endophytic N. niacini AUMC-B524, underscoring their antibacterial efficacy, anticancer activity, and biocompatibility, paving the way for novel therapeutic strategies.
Collapse
Affiliation(s)
- Shimaa H El-Sapagh
- Department of Botany and Microbiology, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Nessma A El-Zawawy
- Department of Botany and Microbiology, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Mostafa E Elshobary
- Department of Botany and Microbiology, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Mohammed Alquraishi
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, 11421, Riyadh, Saudi Arabia
| | - Hossain M Zabed
- School of Life Sciences, Guangzhou University, Guangzhou, 510006, Guangdong, China
| | - Hoda S Nouh
- Department of Botany and Microbiology, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
4
|
Mohamed EA, El-Zahed MM. Anticandidal applications of selenium nanoparticles biosynthesized with Limosilactobacillus fermentum (OR553490). DISCOVER NANO 2024; 19:115. [PMID: 38980559 PMCID: PMC11233486 DOI: 10.1186/s11671-024-04055-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/12/2024] [Indexed: 07/10/2024]
Abstract
Candida albicans is one of the most dangerous pathogenic fungi in the world, according to the classification of the World Health Organization, due to the continued development of its resistance to currently available anticandidal agents. To overcome this problem, the current work provided a simple, one-step, cost-effective, and safe technique for the biosynthesis of new functionalized anticandidal selenium nanoparticles (Se NPs) against C. albicans ATCC10231 using the cell-free supernatant of Limosilactobacillus fermentum (OR553490) strain. The bacterial strain was isolated from yogurt samples available in supermarkets, in Damietta, Egypt. The mixing ratio of 1:9 v/v% between cell-free bacterial metabolites and sodium selenite (5 mM) for 72 h at 37 °C were the optimum conditions for Se NPs biosynthesis. Ultraviolet-visible spectroscopy (UV-Vis), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), X-ray diffraction (XRD), Zeta analyses, and elemental analysis system (EDS) were used to evaluate the optimized Se NPs. The Se NPs absorption peak appeared at 254 nm. Physicochemical analysis of Se NPs revealed the crystalline-shaped and well-dispersed formation of NPs with an average particle size of 17-30 nm. Se NPs have - 11.8 mV, as seen by the zeta potential graph. FT-IR spectrum displayed bands of symmetric and asymmetric amines at 3279.36 cm-1 and 2928.38 cm-1, aromatic and aliphatic (C-N) at 1393.32 cm-1 and 1237.11.37 cm-1 confirming the presence of proteins as stabilizing and capping agents. Se NPs acted as a superior inhibitor of C. albicans with an inhibition zone of 26 ± 0.03 mm and MIC value of 15 µg/mL compared to one of the traditional anticandidal agent, miconazole, which revealed 18 ± 0.14 mm and 75 µg/mL. The cytotoxicity test shows that Se NPs have a low toxic effect on the normal keratinocyte (IC50 ≈ 41.5 μg/mL). The results indicate that this green synthesis of Se NPs may have a promising potential to provide a new strategy for drug therapy.
Collapse
Affiliation(s)
- Esraa Ali Mohamed
- Department of Botany and Microbiology, Faculty of Science, Damietta University, New Damietta, 34517, Egypt
| | - Mohamed Marzouk El-Zahed
- Department of Botany and Microbiology, Faculty of Science, Damietta University, New Damietta, 34517, Egypt.
| |
Collapse
|
5
|
El-Naggar NEA, El-Sawah AA, Elmansy MF, Elmessiry OT, El-Saidy ME, El-Sherbeny MK, Sarhan MT, Elhefnawy AA, Dalal SR. Process optimization for gold nanoparticles biosynthesis by Streptomyces albogriseolus using artificial neural network, characterization and antitumor activities. Sci Rep 2024; 14:4581. [PMID: 38403677 PMCID: PMC10894868 DOI: 10.1038/s41598-024-54698-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/15/2024] [Indexed: 02/27/2024] Open
Abstract
Gold nanoparticles (GNPs) are highly promising in cancer therapy, wound healing, drug delivery, biosensing, and biomedical imaging. Furthermore, GNPs have anti-inflammatory, anti-angiogenic, antioxidants, anti-proliferative and anti-diabetic effects. The present study presents an eco-friendly approach for GNPs biosynthesis using the cell-free supernatant of Streptomyces albogriseolus as a reducing and stabilizing agent. The biosynthesized GNPs have a maximum absorption peak at 540 nm. The TEM images showed that GNPs ranged in size from 5.42 to 13.34 nm and had a spherical shape. GNPs have a negatively charged surface with a Zeta potential of - 24.8 mV. FTIR analysis identified several functional groups including C-H, -OH, C-N, amines and amide groups. The crystalline structure of GNPs was verified by X-ray diffraction and the well-defined and distinct diffraction rings observed by the selected area electron diffraction analysis. To optimize the biosynthesis of GNPs using the cell-free supernatant of S. albogriseolus, 30 experimental runs were conducted using central composite design (CCD). The artificial neural network (ANN) was employed to analyze, validate, and predict GNPs biosynthesis compared to CCD. The maximum experimental yield of GNPs (778.74 μg/mL) was obtained with a cell-free supernatant concentration of 70%, a HAuCl4 concentration of 800 μg/mL, an initial pH of 7, and a 96-h incubation time. The theoretically predicted yields of GNPs by CCD and ANN were 809.89 and 777.32 μg/mL, respectively, which indicates that ANN has stronger prediction potential compared to the CCD. The anticancer activity of GNPs was compared to that of doxorubicin (Dox) in vitro against the HeP-G2 human cancer cell line. The IC50 values of Dox and GNPs-based treatments were 7.26 ± 0.4 and 22.13 ± 1.3 µg/mL, respectively. Interestingly, treatments combining Dox and GNPs together showed an IC50 value of 3.52 ± 0.1 µg/mL, indicating that they targeted cancer cells more efficiently.
Collapse
Affiliation(s)
- Noura El-Ahmady El-Naggar
- Department of Bioprocess Development, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El- Arab City, Alexandria, 21934, Egypt.
| | - Asmaa A El-Sawah
- Botany Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Mohamed F Elmansy
- Biotechnology and its Application Program, Department of Botany, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Omar T Elmessiry
- Biotechnology and its Application Program, Department of Botany, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Mohanad E El-Saidy
- Biotechnology and its Application Program, Department of Botany, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Mostafa K El-Sherbeny
- Biotechnology and its Application Program, Department of Botany, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Mohamed T Sarhan
- Biotechnology and its Application Program, Department of Botany, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Aya Amin Elhefnawy
- Biotechnology and its Application Program, Department of Botany, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Shimaa R Dalal
- Botany Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
6
|
Kerdtoob S, Chanthasena P, Rosyidah A, Limphirat W, Penkhrue W, Ganta P, Srisakvarangkool W, Yasawong M, Nantapong N. Streptomyces monashensis MSK03-mediated synthesis of gold nanoparticles: characterization and antibacterial activity. RSC Adv 2024; 14:4778-4787. [PMID: 38318610 PMCID: PMC10840456 DOI: 10.1039/d3ra07555a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 01/28/2024] [Indexed: 02/07/2024] Open
Abstract
Nanotechnology is a cutting-edge field with diverse applications, particularly in the utilization of gold nanoparticles (AuNPs) due to their stability and biocompatibility. AuNPs serve as pivotal components in medical applications, with a specific emphasis on their significant antibacterial efficacy. This study focuses on synthesizing AuNPs using the cell-free supernatant of Streptomyces monashensis MSK03, isolated from terrestrial soil in Thailand. The biosynthesis process involved utilizing the cell-free supernatant of S. monashensis MSK03 and hydrogen tetrachloroauric acid (HAuCl4) under controlled conditions of 37 °C and 200 rpm agitation. Characterization studies revealed spherical AuNPs with sizes ranging from 7.1 to 40.0 nm (average size: 23.2 ± 10.7 nm), as confirmed by TEM. UV-Vis spectroscopy indicated a localized surface plasmon resonance (LSPR) band at 545 nm, while XRD analysis confirmed a crystalline structure with characteristics of cubic lattice surfaces. The capping molecules on the surface of AuNPs carry a negative charge, indicated by a Zeta potential of -26.35 mV, and FTIR analysis identified functional groups involved in reduction and stabilization. XANES spectra further confirmed the successful reduction of Au3+ to Au0. Moreover, the synthesized AuNPs demonstrated antibacterial activity against drug-resistant strains of Pseudomonas aeruginosa and Acinetobacter baumannii. Interestingly, the AuNPs showed non-toxicity to Vero cell lines. These significant antibacterial properties of the produced nanoparticles mean they hold great promise as new antimicrobial treatments for tackling the increasing issue of antibiotic resistance.
Collapse
Affiliation(s)
- Supavadee Kerdtoob
- School of Preclinical Sciences, Institute of Science, Suranaree University of Technology Nakhon Ratchasima 30000 Thailand
| | - Panjamaphon Chanthasena
- Department of Medical Technology, Faculty of Allied Health Sciences, Nakhonratchasima College Nakhon Ratchasima 30000 Thailand
| | - A'liyatur Rosyidah
- Research Center for Vaccine and Drug, National Research and Innovation Agency (BRIN) Bogor West Java Indonesia
| | - Wanwisa Limphirat
- Synchrotron Light Research Institute 111 University Avenue Nakhon Ratchasima Thailand
| | - Watsana Penkhrue
- School of Preclinical Sciences, Institute of Science, Suranaree University of Technology Nakhon Ratchasima 30000 Thailand
| | - Phongsakorn Ganta
- School of Preclinical Sciences, Institute of Science, Suranaree University of Technology Nakhon Ratchasima 30000 Thailand
| | - Wissarut Srisakvarangkool
- School of Preclinical Sciences, Institute of Science, Suranaree University of Technology Nakhon Ratchasima 30000 Thailand
| | - Montri Yasawong
- Programme on Environmental Toxicology, Chulabhorn Graduate Institute Bangkok 10210 Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI Bangkok 10400 Thailand
| | - Nawarat Nantapong
- School of Preclinical Sciences, Institute of Science, Suranaree University of Technology Nakhon Ratchasima 30000 Thailand
| |
Collapse
|
7
|
Rohilla P, Chhikara A, Dahiya P. Biogenic synthesis of AuNPs using Solanum virginianum L. and their antibacterial, antioxidant and catalytic applications. Indian J Microbiol 2023; 63:562-574. [PMID: 38031596 PMCID: PMC10682358 DOI: 10.1007/s12088-023-01114-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023] Open
Abstract
Biogenic synthesis of nanoparticles is gaining popularity worldwide because of being ecofriendly as well as economical, with minimal production of hazardous by-products. The present study was targeted to determine the antibacterial, free radical scavenging and catalytic activity of gold nanoparticles synthesized from Solanum virginianum L. (Sv-AuNPs). After addition of auric chloride, the color of aqueous plant extract changed from light yellow to purple-red, indicating the formation of nanoparticles. A strong peak at 536 nm affirmed synthesis of Sv-AuNPs, and negative zeta potential (- 30.7) indicated their being wrapped in anions. They exhibited face-centered cubic and crystalline nature as revealed by X-ray diffraction. Elemental composition of Sv-AuNPs was ascertained by energy-dispersive X-ray spectroscopy, and a sharp peak at 2.2 keV confirmed the presence of gold. The shape of Sv-AuNPs synthesized was spherical with size ranging from 29.1 ± 1 nm to 51.2 ± 0.7 nm. Antibacterial potential was evaluated against E. coli, C. violaceum, K. pneumoniae, P. aeruginosa, B. subtilis, M. smegmatis, and S. aureus and was found to be greater than aqueous plant extract. Sv-AuNPs exhibited antioxidant potential comparable to ascorbic acid, demonstrating their vital role in the prevention of reactive oxygen species related diseases. Apart from their pharmaceutical potential, these nanoparticles also exhibited promising catalytic efficacy. They degraded harmful dyes i.e. 4-nitro phenol (4-NP) and congo red (CR) at a very low concentration of 50 µg/ml. This is the first report on the antibacterial, antioxidant, and catalytic properties of Sv-AuNPs and we hope it will lead the way for nanoparticles multifunctionality. Graphical abstract
Collapse
Affiliation(s)
- Preety Rohilla
- Department of Botany, Maharshi Dayanand University, Rohtak, Haryana 124001 India
| | - Ashmita Chhikara
- Department of Botany, Maharshi Dayanand University, Rohtak, Haryana 124001 India
| | - Pushpa Dahiya
- Department of Botany, Maharshi Dayanand University, Rohtak, Haryana 124001 India
| |
Collapse
|
8
|
El-Naggar NEA, Rabei NH, Elmansy MF, Elmessiry OT, El-Sherbeny MK, El-Saidy ME, Sarhan MT, Helal MG. Artificial neural network approach for prediction of AuNPs biosynthesis by Streptomyces flavolimosus, characterization, antitumor potency in-vitro and in-vivo against Ehrlich ascites carcinoma. Sci Rep 2023; 13:12686. [PMID: 37542154 PMCID: PMC10403537 DOI: 10.1038/s41598-023-39177-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 07/20/2023] [Indexed: 08/06/2023] Open
Abstract
Gold nanoparticles (AuNPs) have emerged as promising and versatile nanoparticles for cancer therapy and are widely used in drug and gene delivery, biomedical imaging, diagnosis, and biosensors. The current study describes a biological-based strategy for AuNPs biosynthesis using the cell-free supernatant of Streptomyces flavolimosus. The biosynthesized AuNPs have an absorption peak at 530-535 nm. The TEM images indicate that AuNPs were spherical and ranged in size from 4 to 20 nm. The surface capping molecules of AuNPs are negatively charged, having a Zeta potential of - 10.9 mV. FTIR analysis revealed that the AuNPs surface composition contains a variety of functional groups as -OH, C-H, N-, C=O, NH3+, amine hydrochloride, amide group of proteins, C-C and C-N. The bioprocess variables affecting AuNPs biosynthesis were optimized by using the central composite design (CCD) in order to maximize the AuNPs biosynthesis. The maximum yield of AuNPs (866.29 µg AuNPs/mL) was obtained using temperature (35 °C), incubation period (4 days), HAuCl4 concentration (1000 µg/mL) and initial pH level 6. Comparison was made between the fitness of CCD versus Artificial neural network (ANN) approach based on their prediction and the corresponding experimental results. AuNPs biosynthesis values predicted by ANN exhibit a more reasonable agreement with the experimental result. The anticancer activities of AuNPs were assessed under both in vitro and in vivo conditions. The results revealed a significant inhibitory effect on the proliferation of the MCF-7 and Hela carcinoma cell lines treated with AuNPs with IC50 value of 13.4 ± 0.44 μg/mL and 13.8 ± 0.45 μg/mL for MCF-7 and Hela cells; respectively. Further, AuNPs showed potential inhibitory effect against tumor growth in tumor-bearing mice models. AuNPs significantly reduced the tumor volume, tumor weight, and decreased number of viable tumor cells in EAC bearing mice.
Collapse
Affiliation(s)
- Noura El-Ahmady El-Naggar
- Department of Bioprocess Development, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, 21934, Alexandria, Egypt.
| | - Nashwa H Rabei
- Department of Bioprocess Development, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, 21934, Alexandria, Egypt
| | - Mohamed F Elmansy
- Biotechnology and Its Application Program, Department of Botany, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Omar T Elmessiry
- Biotechnology and Its Application Program, Department of Botany, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Mostafa K El-Sherbeny
- Biotechnology and Its Application Program, Department of Botany, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Mohanad E El-Saidy
- Biotechnology and Its Application Program, Department of Botany, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Mohamed T Sarhan
- Biotechnology and Its Application Program, Department of Botany, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Manar G Helal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
9
|
Anti-bacterial Effect and Characteristics of Gold Nanoparticles (AuNps) Formed with Vitex negundo Plant Extract. Appl Biochem Biotechnol 2023; 195:1630-1643. [PMID: 36355335 DOI: 10.1007/s12010-022-04217-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2022] [Indexed: 11/11/2022]
Abstract
Our current study reports the anti-bacterial activity of the gold nanoparticles (AuNps) synthesized by the green synthesis method using Vitex negundo plant leaves. The aqueous extract of Vitex negundo plant leaves are acting as the capping and stabilizing agent in the synthesis of AuNps. It is already evident from earlier studies that Vitex negundo is an abundant source of polyphenols, flavonoids, terpenoids, and many other biologically active compounds. The present study reveals the potential of biologically active compounds from the plant in the reduction reaction of chloroauric acid (HAuCl4) into gold nanoparticles. The green synthesis method is adapted instead of the chemical method, which is toxic and more expensive. The gold nanoparticles subjected to characterization with the help of UV-visible spectroscopy, FTIR to determine functional groups, light scattering to estimate size and uniformity, scanning emission microscopy with EDX for accurate size and shape of AuNps, and X-ray diffraction to reveal the crystalline structure. The characteristics of AuNps formed are UV reading at 520 nm, FTIR showing the presence of phenols and alkenes, DLS, SEM, and XRD confirming the spherical shape with the size around 70-90 nm. The anti-bacterial activity of the gold nanoparticles is evaluated against four different species of bacteria, each two gram-positive and gram-negative. The gold nanoparticles formed by Vitex negundo show good anti-bacterial activity against Salmonella typhi and M. luteus bacteria with a zone of inhibition of 6 mm and 2 mm respectively. Furthermore, the cytotoxic activities of the gold nanoparticles are yet to be known to their full extent.
Collapse
|
10
|
Mendes C, Thirupathi A, Corrêa MEAB, Gu Y, Silveira PCL. The Use of Metallic Nanoparticles in Wound Healing: New Perspectives. Int J Mol Sci 2022; 23:15376. [PMID: 36499707 PMCID: PMC9740811 DOI: 10.3390/ijms232315376] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/19/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Chronic wounds represent a challenge for the health area, as they directly impact patients' quality of life and represent a threat to public health and the global economy due to their high cost of treatment. Alternative strategies must be developed for cost-effective and targeted treatment. In this scenario, the emerging field of nanobiotechnology may provide an alternative platform to develop new therapeutic agents for the chronic wound healing process. This manuscript aims to demonstrate that the application of metallic nanoparticles (gold, silver, copper, and zinc oxide) opened a new chapter in the treatment of wounds, as they have different properties such as drug delivery, antimicrobial activity, and healing acceleration. Furthermore, metallic nanoparticles (NPs) produced through green synthesis ensure less toxicity in biological tissues, and greater safety of applicability, other than adding the effects of NPs with those of extracts.
Collapse
Affiliation(s)
- Carolini Mendes
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China
- Laboratory of Experimental Phisiopatology, Program of Postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, Criciúma 88806-000, Brazil
| | - Anand Thirupathi
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China
| | - Maria E A B Corrêa
- Laboratory of Experimental Phisiopatology, Program of Postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, Criciúma 88806-000, Brazil
| | - Yaodong Gu
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China
| | - Paulo C L Silveira
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China
- Laboratory of Experimental Phisiopatology, Program of Postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, Criciúma 88806-000, Brazil
| |
Collapse
|
11
|
Ngernyuang N, Wongwattanakul M, Charusirisawad W, Shao R, Limpaiboon T. Green synthesized apigenin conjugated gold nanoparticles inhibit cholangiocarcinoma cell activity and endothelial cell angiogenesis in vitro. Heliyon 2022; 8:e12028. [PMID: 36506385 PMCID: PMC9732323 DOI: 10.1016/j.heliyon.2022.e12028] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/05/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a rare malignancy of the biliary tract with extremely poor clinical outcomes due to a lack of effective therapies to improve disease management. The emerging green synthesis of gold nanoparticles (AuNPs) has extensively provided their use in biomedical applications. In this study, we developed AuNPs via reducing gold salts with apigenin (4',5,7-trihydroxyflavone). The synthesized apigenin-conjugated AuNPs (api-AuNPs) were physicochemically characterized by various techniques before evaluation their biological and functional inhibition in a CCA cell line, KKU-M055. The mean size of api-AuNPs was 90.34 ± 22.82 nm with zeta potential of -36 ± 0.55. The half-maximal inhibitory concentration (IC50, 0.8 mg/mL) of api-AuNPs on cell proliferation of KKU-M055 was 1.9-fold less than that of an immortalized human cholangiocyte cell line, MMNK1 (IC50, 1.5 mg/mL). Moreover, api-AuNPs induced cell apoptosis via the up-regulation of Bax, Bid, and Caspase 3, and down-regulation of Bcl2, leading to elevated caspase 3/7, 8, 9 activities and reactive oxygen species (ROS) production. The api-AuNPs significantly inhibited the migration of KKU-M055 cells and suppressed the proliferation, migration, and in vitro tube formation of vascular endothelial cells. Collectively, our findings indicate the dual abilities of api-AuNPs that potentially inhibit cancer cell growth and motility as well as endothelial cell-mediated angiogenesis, which may offer a novel therapeutic avenue to treat CCA patients effectively.
Collapse
Affiliation(s)
- Nipaporn Ngernyuang
- Chulabhorn International College of Medicine, Thammasat University, Pathum Thani 12120, Thailand
| | - Molin Wongwattanakul
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Wannit Charusirisawad
- Chulabhorn International College of Medicine, Thammasat University, Pathum Thani 12120, Thailand
| | - Rong Shao
- Development of Pharmacology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Temduang Limpaiboon
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Science, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
12
|
Timoszyk A, Grochowalska R. Mechanism and Antibacterial Activity of Gold Nanoparticles (AuNPs) Functionalized with Natural Compounds from Plants. Pharmaceutics 2022; 14:pharmaceutics14122599. [PMID: 36559093 PMCID: PMC9784296 DOI: 10.3390/pharmaceutics14122599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Recently, the biosynthesis of gold nanoparticles (AuNPs) has been widely studied and described. In the age of bacterial drug resistance, an intensive search for new agents with antibacterial properties or a new form of antibiotics with effective action is necessary. As a result, the antibacterial activity of AuNPs functionalized with natural compounds is being investigated more frequently. AuNPs biosynthesized with plant extract or functionalized with bioactive compounds isolated from plants could be particularly useful for pharmaceutical applications. The biosynthesized AuNPs are stabilized by an envelope, which may consist of flavonoids, phenolic acids, lipids and proteins as well as carbohydrates and vitamins. The composition of the natural coating affects the size, shape and stability of the AuNPs and is also responsible for interactions with the bacterial cell wall. Recently, several mechanisms of AuNP interactions with bacterial cells have been identified. Nevertheless, they are not yet well understood, due to the large diversity of plants and biosynthesized AuNPs. Understanding the antibacterial mechanisms allows for the creation of pharmaceutical formulations in the most useful form. Utilizing AuNPs functionalized with plant compounds as antibacterial agents is still a new concept. However, the unique physicochemical and biological properties of AuNPs emphasises their potential for a broad range of applications in the future.
Collapse
Affiliation(s)
- Anna Timoszyk
- Laboratory of Biophysics, Department of Biotechnology, Faculty of Biological Sciences, University of Zielona Góra, Szafrana 1, 65-516 Zielona Góra, Poland
- Correspondence:
| | - Renata Grochowalska
- Laboratory of Biochemistry and Cell Biology, Department of Biotechnology, Faculty of Biological Sciences, University of Zielona Góra, Szafrana 1, 65-516 Zielona Góra, Poland
| |
Collapse
|
13
|
Ahari H, Fakhrabadipour M, Paidari S, Goksen G, Xu B. Role of AuNPs in Active Food Packaging Improvement: A Review. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27228027. [PMID: 36432128 PMCID: PMC9696957 DOI: 10.3390/molecules27228027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/22/2022]
Abstract
There is a worldwide concern about food loss due to reduced shelf life among food science researchers. Hence, it seems that any techniques contributing to improved food packaging are most welcome in the food sector. It has been demonstrated that the administration of nanotechnology-based techniques such as metal-based nanoparticles can fade away the unresolved obstacles in shortened shelf life and environmental concerns. Along with substantial signs of progress in nanoscience, there is a great interest in the usage of green synthesis-based methods for gold nanoparticles as the most advantageous metals, when compared to conventional chemistry-based methods. Interestingly, those aforementioned methods have significant potential to simplify targeted administration of gold nanoparticles due to a large surface-volume ratio, and diminished biohazards, aimed at increasing stability, and induction of anti-microbial or antioxidant properties. However, it is necessary to consider the hazards of gold nanoparticles including migration for food packaging purposes.
Collapse
Affiliation(s)
- Hamed Ahari
- Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran
- Correspondence: (H.A.); (B.X.)
| | - Mostafa Fakhrabadipour
- Department of Food Science and Technology, Qeshm Branch, Islamic Azad University, Qeshm 7953163135, Iran
| | - Saeed Paidari
- Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, Mersin 33100, Turkey
| | - Baojun Xu
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai 519087, China
- Correspondence: (H.A.); (B.X.)
| |
Collapse
|
14
|
Biogenic Gold Nanoparticles: Current Applications and Future Prospects. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02304-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
15
|
Sindhu R, Sindhu S, Dagar MW, Nagoria S. Gold Nanoparticles as Antimicrobial Agents: A Mini-Review. INTERNATIONAL JOURNAL OF NANOSCIENCE 2022. [DOI: 10.1142/s0219581x22300024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Metal nanoparticles, such as gold nanoparticles, have abundant unusual chemical and physical properties owing to the effects of their quantum size and their large surface area, in comparison with other metal atoms. Gold nanoparticles (AuNPs), in particular, are becoming increasingly popular due to their biocompatibility, multifunctional and aqueous solubility. Many scientific reports described the important antimicrobial properties possessed by the gold nanoparticles. Therefore, the present mini-review summarizes an overview of gold nanoparticles as broad spectrum antimicrobial agents for biomedical applications.
Collapse
Affiliation(s)
| | - Suchita Sindhu
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar 125001, Haryana, India
| | - Mukhan Wati Dagar
- Department of Chemistry, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| | - Savita Nagoria
- Department of Chemistry, Government College, Hisar 125001, Haryana, India
| |
Collapse
|
16
|
Photocatalytic Degradation of Eriochrome Black T Dye by ZnO Nanoparticles Using Multivariate Factorial, Kinetics and Isotherm Models. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02293-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
Nanomaterials-Based Combinatorial Therapy as a Strategy to Combat Antibiotic Resistance. Antibiotics (Basel) 2022; 11:antibiotics11060794. [PMID: 35740200 PMCID: PMC9220075 DOI: 10.3390/antibiotics11060794] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 01/10/2023] Open
Abstract
Since the discovery of antibiotics, humanity has been able to cope with the battle against bacterial infections. However, the inappropriate use of antibiotics, the lack of innovation in therapeutic agents, and other factors have allowed the emergence of new bacterial strains resistant to multiple antibiotic treatments, causing a crisis in the health sector. Furthermore, the World Health Organization has listed a series of pathogens (ESKAPE group) that have acquired new and varied resistance to different antibiotics families. Therefore, the scientific community has prioritized designing and developing novel treatments to combat these ESKAPE pathogens and other emergent multidrug-resistant bacteria. One of the solutions is the use of combinatorial therapies. Combinatorial therapies seek to enhance the effects of individual treatments at lower doses, bringing the advantage of being, in most cases, much less harmful to patients. Among the new developments in combinatorial therapies, nanomaterials have gained significant interest. Some of the most promising nanotherapeutics include polymers, inorganic nanoparticles, and antimicrobial peptides due to their bactericidal and nanocarrier properties. Therefore, this review focuses on discussing the state-of-the-art of the most significant advances and concludes with a perspective on the future developments of nanotherapeutic combinatorial treatments that target bacterial infections.
Collapse
|
18
|
Dalavi PA, V. AJ, Thomas S, Prabhu A, Anil S, Seong GH, Venkatesan J. Microwave-Assisted Biosynthesized Gold Nanoparticles Using Saussurea obvallata: Biocompatibility and Antioxidant Activity Assessment. BIONANOSCIENCE 2022. [DOI: 10.1007/s12668-022-00994-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
19
|
Luzala MM, Muanga CK, Kyana J, Safari JB, Zola EN, Mbusa GV, Nuapia YB, Liesse JMI, Nkanga CI, Krause RWM, Balčiūnaitienė A, Memvanga PB. A Critical Review of the Antimicrobial and Antibiofilm Activities of Green-Synthesized Plant-Based Metallic Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1841. [PMID: 35683697 PMCID: PMC9182092 DOI: 10.3390/nano12111841] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/03/2022] [Accepted: 04/05/2022] [Indexed: 02/01/2023]
Abstract
Metallic nanoparticles (MNPs) produced by green synthesis using plant extracts have attracted huge interest in the scientific community due to their excellent antibacterial, antifungal and antibiofilm activities. To evaluate these pharmacological properties, several methods or protocols have been successfully developed and implemented. Although these protocols were mostly inspired by the guidelines from national and international regulatory bodies, they suffer from a glaring absence of standardization of the experimental conditions. This situation leads to a lack of reproducibility and comparability of data from different study settings. To minimize these problems, guidelines for the antimicrobial and antibiofilm evaluation of MNPs should be developed by specialists in the field. Being aware of the immensity of the workload and the efforts required to achieve this, we set out to undertake a meticulous literature review of different experimental protocols and laboratory conditions used for the antimicrobial and antibiofilm evaluation of MNPs that could be used as a basis for future guidelines. This review also brings together all the discrepancies resulting from the different experimental designs and emphasizes their impact on the biological activities as well as their interpretation. Finally, the paper proposes a general overview that requires extensive experimental investigations to set the stage for the future development of effective antimicrobial MNPs using green synthesis.
Collapse
Affiliation(s)
- Miryam M. Luzala
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo; (M.M.L.); (C.K.M.); (E.N.Z.); (C.I.N.)
| | - Claude K. Muanga
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo; (M.M.L.); (C.K.M.); (E.N.Z.); (C.I.N.)
| | - Joseph Kyana
- Department of Pharmacy, Faculty of Medecine and Pharmacy, University of Kisangani, Kisangani XI B.P. 2012, Democratic Republic of the Congo;
| | - Justin B. Safari
- Department of Pharmacy, Faculty of Pharmaceutical Sciences and Public Health, Official University of Bukavu, Bukavu B.P. 570, Democratic Republic of the Congo;
- Department of Chemistry, Faculty of Science, Rhodes University, P.O. Box 94, Makhana 6140, South Africa
| | - Eunice N. Zola
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo; (M.M.L.); (C.K.M.); (E.N.Z.); (C.I.N.)
| | - Grégoire V. Mbusa
- Centre Universitaire de Référence de Surveillance de la Résistance aux Antimicrobiens (CURS-RAM), Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo; (G.V.M.); (J.-M.I.L.)
- Laboratory of Experimental and Pharmaceutical Microbiology, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo
| | - Yannick B. Nuapia
- Laboratory of Toxicology, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo;
| | - Jean-Marie I. Liesse
- Centre Universitaire de Référence de Surveillance de la Résistance aux Antimicrobiens (CURS-RAM), Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo; (G.V.M.); (J.-M.I.L.)
- Laboratory of Experimental and Pharmaceutical Microbiology, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo
| | - Christian I. Nkanga
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo; (M.M.L.); (C.K.M.); (E.N.Z.); (C.I.N.)
| | - Rui W. M. Krause
- Department of Chemistry, Faculty of Science, Rhodes University, P.O. Box 94, Makhana 6140, South Africa
- Center for Chemico- and Bio-Medicinal Research (CCBR), Faculty of Science, Rhodes University, P.O. Box 94, Makhana 6140, South Africa
| | - Aistė Balčiūnaitienė
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, 54333 Babtai, Lithuania;
| | - Patrick B. Memvanga
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo; (M.M.L.); (C.K.M.); (E.N.Z.); (C.I.N.)
- Department of Pharmacy, Faculty of Medecine and Pharmacy, University of Kisangani, Kisangani XI B.P. 2012, Democratic Republic of the Congo;
- Department of Pharmacy, Faculty of Pharmaceutical Sciences and Public Health, Official University of Bukavu, Bukavu B.P. 570, Democratic Republic of the Congo;
- Centre de Recherche et d’Innovation Technologique en Environnement et en Sciences de la Santé (CRITESS), University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo
| |
Collapse
|
20
|
Methods for Green Synthesis of Metallic Nanoparticles Using Plant Extracts and their Biological Applications - A Review. JOURNAL OF BIOMIMETICS BIOMATERIALS AND BIOMEDICAL ENGINEERING 2022. [DOI: 10.4028/p-8bf786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nanotechnology, a fast-developing branch of science, is gaining extensive popularity among researchers simply because of the multitude of applications it can offer. In recent years, biological synthesis has been widely used instead of physical and chemical synthesis methods, which often produce toxic products. These synthesis methods are now being commonly adapted to discover new applications of nanoparticles synthesized using plant extracts. In this review, we elucidate the various ways by which nanoparticles can be biologically synthesized. We further discuss the applications of these nanoparticles.
Collapse
|
21
|
Biogenic synthesis of gold nanoparticles mediated by Spondias dulcis (Anacardiaceae) peel extract and its cytotoxic activity in human breast cancer cell. Toxicol Rep 2022; 9:1092-1098. [DOI: 10.1016/j.toxrep.2022.04.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/26/2022] [Accepted: 04/30/2022] [Indexed: 11/18/2022] Open
|
22
|
Krishnaraj C, Young GM, Yun SI. In vitro embryotoxicity and mode of antibacterial mechanistic study of gold and copper nanoparticles synthesized from Angelica keiskei (Miq.) Koidz. leaves extract. Saudi J Biol Sci 2022; 29:2552-2563. [PMID: 35531254 PMCID: PMC9072899 DOI: 10.1016/j.sjbs.2021.12.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 11/24/2022] Open
Abstract
The present study demonstrated the in vitro embryotoxicity assessment of gold nanoparticles (AuNPs) and copper nanoparticles (CuNPs) prepared from the leaves extract of Angelica keiskei (Miq.) Koidz. and addressed their mode of antibacterial mechanisms. Both AuNPs and CuNPs were rapidly synthesized and the formations were observed within 1 h and 24 h, respectively. Further the morphological images of the nanoparticles were confirmed through transmission electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM). The high-resolution X-ray diffraction (HR-XRD) analysis of the biosynthesized AuNPs and CuNPs were matched with joint committee on powder diffraction standards (JCPDS) file no of 04-0784 and 89-5899, respectively. A strong prominent Au and Cu signals were observed through energy dispersive spectroscopy (EDS) analysis. Fourier transform infrared spectroscopy (FT-IR) analysis confirmed the responsible phytochemicals for the synthesis of AuNPs and CuNPs. In order to assess the toxic effects of AuNPs and CuNPs, bactericidal activity was performed against few of the test pathogens in which the effective inhibition was observed against Gram-negative bacteria than the Gram-positive bacteria. The mode of action and interaction of nanoparticles were performed on the bacterial pathogens and the results concluded that the interaction of nanoparticles initially initiated on the surface of the cell wall adherence followed by ruptured the cells and caused the cell death. In addition to the antibacterial activity, in vitro embryotoxicity studies were performed against zebrafish embryos and the results confirmed that 200 µg/ml concentration of AuNPs showed the embryotoxicity, whereas 2 µg/ml of CuNPs resulted the embryotoxicity. Furthermore, the morphological anomalies of zebrafish embryos revealed the toxic nature of the synthesized nanoparticles.
Collapse
Affiliation(s)
- Chandran Krishnaraj
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea.,Department of Agricultural Convergence Technology, College of Agriculture and Life Science, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Glenn M Young
- Department of Food Science and Technology, University of California, Davis, CA 95616, USA
| | - Soon-Il Yun
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea.,Department of Agricultural Convergence Technology, College of Agriculture and Life Science, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
23
|
Muddapur UM, Alshehri S, Ghoneim MM, Mahnashi MH, Alshahrani MA, Khan AA, Iqubal SMS, Bahafi A, More SS, Shaikh IA, Mannasaheb BA, Othman N, Maqbul MS, Ahmad MZ. Plant-Based Synthesis of Gold Nanoparticles and Theranostic Applications: A Review. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27041391. [PMID: 35209180 PMCID: PMC8875495 DOI: 10.3390/molecules27041391] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 02/07/2023]
Abstract
Bionanotechnology is a branch of science that has revolutionized modern science and technology. Nanomaterials, especially noble metals, have attracted researchers due to their size and application in different branches of sciences that benefit humanity. Metal nanoparticles can be synthesized using green methods, which are good for the environment, economically viable, and facilitate synthesis. Due to their size and form, gold nanoparticles have become significant. Plant materials are of particular interest in the synthesis and manufacture of theranostic gold nanoparticles (NPs), which have been generated using various materials. On the other hand, chemically produced nanoparticles have several drawbacks in terms of cost, toxicity, and effectiveness. A plant-mediated integration of metallic nanoparticles has been developed in the field of nanotechnology to overcome the drawbacks of traditional synthesis, such as physical and synthetic strategies. Nanomaterials′ tunable features make them sophisticated tools in the biomedical platform, especially for developing new diagnostics and therapeutics for malignancy, neurodegenerative, and other chronic disorders. Therefore, this review outlines the theranostic approach, the different plant materials utilized in theranostic applications, and future directions based on current breakthroughs in these fields.
Collapse
Affiliation(s)
- Uday M. Muddapur
- Department of Biotechnology, KLE Technological University, Hubbali 580031, India
- Correspondence: (U.M.M.); (S.M.S.I.)
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Dariyah 13713, Saudi Arabia; (M.M.G.); (B.A.M.)
| | - Mater H. Mahnashi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran 66462, Saudi Arabia;
| | - Mohammed Abdulrahman Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran 66462, Saudi Arabia;
| | - Aejaz Abdullatif Khan
- Department of General Science, Ibn Sina National College for Medical Studies, Al Mahajar Street, P.O. Box 31906, Jeddah 21418, Saudi Arabia;
| | - S. M. Shakeel Iqubal
- Department of General Science, Ibn Sina National College for Medical Studies, Al Mahajar Street, P.O. Box 31906, Jeddah 21418, Saudi Arabia;
- Correspondence: (U.M.M.); (S.M.S.I.)
| | - Amal Bahafi
- Department of Pharmaceutical Chemistry, Ibn Sina National College for Medical Studies, Al Mahajar Street, P.O. Box 31906, Jeddah 21418, Saudi Arabia;
| | - Sunil S. More
- School of Basic and Applied Sciences, Dayananda Sagar University, Bangalore 560078, Karnataka, India;
| | - Ibrahim Ahmed Shaikh
- Department of Pharmacology, College of Pharmacy, Najran University, Najran 66462, Saudi Arabia;
| | | | - Noordin Othman
- Clinical and Hospital Pharmacy Department, College of Pharmacy, Taibah University, Al-Madinah Al-Munawwarah 41311, Saudi Arabia;
- Department of Clinical Pharmacy, School of Pharmacy, Management and Science University, University Drive, Off Persiaran Olahraga, Shah Alam 40100, Selangor, Malaysia
| | - Muazzam Sheriff Maqbul
- Department of Microbiology and Immunology, Ibn Sina National College for Medical Studies, Jeddah 21418, Saudi Arabia;
| | - Mohammad Zaki Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 66462, Saudi Arabia;
| |
Collapse
|
24
|
Hutchinson N, Wu Y, Wang Y, Kanungo M, DeBruine A, Kroll E, Gilmore D, Eckrose Z, Gaston S, Matel P, Kaltchev M, Nickel AM, Kumpaty S, Hua X, Zhang W. Green Synthesis of Gold Nanoparticles Using Upland Cress and Their Biochemical Characterization and Assessment. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 12:28. [PMID: 35009978 PMCID: PMC8746345 DOI: 10.3390/nano12010028] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/17/2021] [Accepted: 12/19/2021] [Indexed: 01/25/2023]
Abstract
This research focuses on the plant-mediated green synthesis process to produce gold nanoparticles (Au NPs) using upland cress (Barbarea verna), as various biomolecules within the upland cress act as both reducing and capping agents. The synthesized gold nanoparticles were thoroughly characterized using UV-vis spectroscopy, surface charge (zeta potential) analysis, scanning electron microscopy-energy-dispersive X-ray spectroscopy (SEM-EDX), atomic force microscopy (AFM), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), and X-ray diffraction (XRD). The results indicated the synthesized Au NPs are spherical and well-dispersed with an average diameter ~11 nm and a characteristic absorbance peak at ~529 nm. EDX results showed an 11.13% gold content. Colloidal Au NP stability was confirmed with a zeta potential (ζ) value of -36.8 mV. X-ray diffraction analysis verified the production of crystalline face-centered cubic gold. Moreover, the antimicrobial activity of the Au NPs was evaluated using Gram-negative Escherichiacoli and Gram-positive Bacillus megaterium. Results demonstrated concentration-dependent antimicrobial properties. Lastly, applications of the Au NPs in catalysis and biomedicine were evaluated. The catalytic activity of Au NPs was demonstrated through the conversion of 4-nitrophenol to 4-aminophenol which followed first-order kinetics. Cellular uptake and cytotoxicity were evaluated using both BMSCs (stem) and HeLa (cancer) cells and the results were cell type dependent. The synthesized Au NPs show great potential for various applications such as catalysis, pharmaceutics, and biomedicine.
Collapse
Affiliation(s)
- Noah Hutchinson
- Department of Biomedical Engineering, Milwaukee School of Engineering, Milwaukee, WI 53202, USA;
| | - Yuelin Wu
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China;
| | - Yale Wang
- Department of Mechanical Engineering, University of Milwaukee, Milwaukee, WI 53211, USA;
| | - Muskan Kanungo
- Department of Physics and Chemistry, Milwaukee School of Engineering, Milwaukee, WI 53202, USA; (M.K.); (A.D.); (E.K.); (D.G.); (Z.E.); (S.G.); (P.M.); (M.K.); (A.-M.N.)
- Biomolecular Engineering Program, Milwaukee School of Engineering, Milwaukee, WI 53202, USA
| | - Anna DeBruine
- Department of Physics and Chemistry, Milwaukee School of Engineering, Milwaukee, WI 53202, USA; (M.K.); (A.D.); (E.K.); (D.G.); (Z.E.); (S.G.); (P.M.); (M.K.); (A.-M.N.)
- Biomolecular Engineering Program, Milwaukee School of Engineering, Milwaukee, WI 53202, USA
| | - Emma Kroll
- Department of Physics and Chemistry, Milwaukee School of Engineering, Milwaukee, WI 53202, USA; (M.K.); (A.D.); (E.K.); (D.G.); (Z.E.); (S.G.); (P.M.); (M.K.); (A.-M.N.)
- Biomolecular Engineering Program, Milwaukee School of Engineering, Milwaukee, WI 53202, USA
| | - De’Jorra Gilmore
- Department of Physics and Chemistry, Milwaukee School of Engineering, Milwaukee, WI 53202, USA; (M.K.); (A.D.); (E.K.); (D.G.); (Z.E.); (S.G.); (P.M.); (M.K.); (A.-M.N.)
- Biomolecular Engineering Program, Milwaukee School of Engineering, Milwaukee, WI 53202, USA
| | - Zachary Eckrose
- Department of Physics and Chemistry, Milwaukee School of Engineering, Milwaukee, WI 53202, USA; (M.K.); (A.D.); (E.K.); (D.G.); (Z.E.); (S.G.); (P.M.); (M.K.); (A.-M.N.)
- Biomolecular Engineering Program, Milwaukee School of Engineering, Milwaukee, WI 53202, USA
| | - Stephanie Gaston
- Department of Physics and Chemistry, Milwaukee School of Engineering, Milwaukee, WI 53202, USA; (M.K.); (A.D.); (E.K.); (D.G.); (Z.E.); (S.G.); (P.M.); (M.K.); (A.-M.N.)
- Biomolecular Engineering Program, Milwaukee School of Engineering, Milwaukee, WI 53202, USA
| | - Phoebe Matel
- Department of Physics and Chemistry, Milwaukee School of Engineering, Milwaukee, WI 53202, USA; (M.K.); (A.D.); (E.K.); (D.G.); (Z.E.); (S.G.); (P.M.); (M.K.); (A.-M.N.)
- Biomolecular Engineering Program, Milwaukee School of Engineering, Milwaukee, WI 53202, USA
| | - Matey Kaltchev
- Department of Physics and Chemistry, Milwaukee School of Engineering, Milwaukee, WI 53202, USA; (M.K.); (A.D.); (E.K.); (D.G.); (Z.E.); (S.G.); (P.M.); (M.K.); (A.-M.N.)
- Biomolecular Engineering Program, Milwaukee School of Engineering, Milwaukee, WI 53202, USA
| | - Anne-Marie Nickel
- Department of Physics and Chemistry, Milwaukee School of Engineering, Milwaukee, WI 53202, USA; (M.K.); (A.D.); (E.K.); (D.G.); (Z.E.); (S.G.); (P.M.); (M.K.); (A.-M.N.)
| | - Subha Kumpaty
- Department of Mechanical Engineering, Milwaukee School of Engineering, Milwaukee, WI 53202, USA;
| | - Xiaolin Hua
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China;
| | - Wujie Zhang
- Department of Physics and Chemistry, Milwaukee School of Engineering, Milwaukee, WI 53202, USA; (M.K.); (A.D.); (E.K.); (D.G.); (Z.E.); (S.G.); (P.M.); (M.K.); (A.-M.N.)
- Biomolecular Engineering Program, Milwaukee School of Engineering, Milwaukee, WI 53202, USA
| |
Collapse
|
25
|
Mikhailova EO. Gold Nanoparticles: Biosynthesis and Potential of Biomedical Application. J Funct Biomater 2021; 12:70. [PMID: 34940549 PMCID: PMC8708476 DOI: 10.3390/jfb12040070] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/20/2021] [Accepted: 11/30/2021] [Indexed: 12/19/2022] Open
Abstract
Gold nanoparticles (AuNPs) are extremely promising objects for solving a wide range of biomedical problems. The gold nanoparticles production by biological method ("green synthesis") is eco-friendly and allows minimization of the amount of harmful chemical and toxic byproducts. This review is devoted to the AuNPs biosynthesis peculiarities using various living organisms (bacteria, fungi, algae, and plants). The participation of various biomolecules in the AuNPs synthesis and the influence of size, shapes, and capping agents on the functionalities are described. The proposed action mechanisms on target cells are highlighted. The biological activities of "green" AuNPs (antimicrobial, anticancer, antiviral, etc.) and the possibilities of their further biomedical application are also discussed.
Collapse
Affiliation(s)
- Ekaterina O Mikhailova
- Institute of Innovation Management, Kazan National Research Technological University, K. Marx Street 68, 420015 Kazan, Russia
| |
Collapse
|
26
|
Dash SS, Sen IK, Dash SK. A review on the plant extract mediated green syntheses of gold nanoparticles and its anti-microbial, anti-cancer and catalytic applications. INTERNATIONAL NANO LETTERS 2021. [DOI: 10.1007/s40089-021-00358-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
27
|
An overview of the phytosynthesis of various metal nanoparticles. 3 Biotech 2021; 11:478. [PMID: 34790502 DOI: 10.1007/s13205-021-03014-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 09/29/2021] [Indexed: 10/20/2022] Open
Abstract
Nanotechnology is an emerging branch of science wherein various valuable molecules with altered properties can be synthesized and utilized for numerous technological applications. Nowadays, nanotechnology is the preferred tool for the agriculture, food, and medicine industries. However, consistent accumulation of toxic by-products during the synthesis of nanoparticles from the established physical and chemical methods imposes an unprecedented danger to the environment and human well-being. The biological route for the synthesis of nanoparticles offers a potential option over the conventional chemical synthesis process due to the involvement of non-toxic and environmentally friendly materials, such as plants, fungi, bacteria, etc. Phytosynthesis, a type of biological synthesis, utilizes various combinations of secondary metabolites from different plant parts (whole plant, leaves, fruit peel, root, bark, seeds, and stem) for non-toxic and environmentally friendly nanoparticles fabrication. Non-toxic and environmentally friendly secondary metabolites derived from plants are the sources of reducing and capping agents during the biosynthesis of nanoparticles which proceeds in a controlled manner with desired characteristics. Phytosynthesis of nanoparticles is also a simple, economic, durable, and reproducible process. The present article is a comprehensive depiction of the synthesis of different metal nanoparticles from diverse plant species.
Collapse
|
28
|
The exploitation of rice husk biomass for the bio-inspired synthesis of gold nanoparticles as a multifunctional material for various biological and photocatalytic applications. Bioprocess Biosyst Eng 2021; 45:61-74. [PMID: 34559304 DOI: 10.1007/s00449-021-02639-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 09/10/2021] [Indexed: 02/08/2023]
Abstract
We report an efficient and facile approach to biosynthesis of gold nanoparticles (AuNPs) using the extract of an agro-waste rice husk generated from rice production. The biosynthesized NPs produced were characterized by UV-Visible absorption, TEM, XRD, EDX, and FTIR methods. The impact of temperature and pH on the stability of the synthesized AuNPs was also studied. The TEM imaging revealed the formation of monodispersed spherical NPs with an average size of ~ 15 nm. The absorption spectrum of AuNPs demonstrated the formation of Surface Plasmon Resonance (SPR) peak at 530 nm. The XRD pattern suggested the formation of face-centered cubic (FCC) lattice structure of AuNPs. The FTIR analysis displayed characteristic peaks related to various phytochemicals in the plant extract responsible for reducing and stabilizing NPs. In addition, AuNPs showed thermal stability when subjected to various temperature scales. The AuNPs exhibited an efficiency against the pathogenic bacteria Staphylococcus aureus and pathogenic fungi Candida albicans. The AuNPs 18.5% DPPH free scavenging activity, indicating the antioxidant potential for AuNPs. In addition, the AuNPs showed anticancer activity against the colorectal adenocarcinoma carcinoma cell line. Furthermore, AuNPs displayed significant enhancement in photocatalytic degradation of Methylene Blue and 4-Nitrophenol dyes. The results obtained reveal the possible usage of AuNPs produced using rice husk in several biomedical applications.
Collapse
|
29
|
Green synthesis of silver nanoformulation of Scindapsus officinalis as potent anticancer and predicted anticovid alternative: Exploration via experimental and computational methods. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
30
|
Dyeing of cotton fabric materials with biogenic gold nanoparticles. Sci Rep 2021; 11:13249. [PMID: 34168222 PMCID: PMC8225869 DOI: 10.1038/s41598-021-92662-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 05/25/2021] [Indexed: 11/08/2022] Open
Abstract
The present work aimed at synthesizing gold nanoparticles in a biological method employing fruit peel waste dumped in the environment. The peels of Garcinia mangostana (Mangostan), were collected from the nearby tourist spot during the season. The collected fruit peels were washed, dried, powder and extracted by using boiling water and acetone. The precipitated extract was dried and powdered for further use. The dried and powdered peel extract was added to the gold solution and boiled to 80 °C and the color change is observed. The color change indicates the completion of the synthesis of gold nanoparticles. The effect of pH, gold ion concentration, peel extract powder concentration, and the temperature was tested by varying the parameters. The biosynthesized nanoparticles were characterized using the UV–Vis spectrophotometer to identify the surface plasmon resonance peaks corresponding to gold nanoparticles. The bio-moieties responsible for the synthesis of gold nanoparticles were identified using the Fourier Transform Infra-Red Spectroscopy. The crystalline nature was detected by using an X-Ray Diffractometer. Atomic Force Microscope viewed the 3D surface image of the gold nanoparticle. The shape and morphology of the nanoparticle were identified by using a Field Emission Scanning Electron Microscope. The active compounds for gold nanoparticle synthesis were identified using Gas Chromatography-Mass Spectrometry. The gold nanoparticle was synthesized in various colors and used for dyeing cotton fabrics. The dyed cotton materials were exposed to various stress conditions to determine the color fastening.
Collapse
|
31
|
Martínez-Higuera A, Rodríguez-Beas C, Villalobos-Noriega JMA, Arizmendi-Grijalva A, Ochoa-Sánchez C, Larios-Rodríguez E, Martínez-Soto JM, Rodríguez-León E, Ibarra-Zazueta C, Mora-Monroy R, Borbón-Nuñez HA, García-Galaz A, Candia-Plata MDC, López-Soto LF, Iñiguez-Palomares R. Hydrogel with silver nanoparticles synthesized by Mimosa tenuiflora for second-degree burns treatment. Sci Rep 2021; 11:11312. [PMID: 34050228 PMCID: PMC8163746 DOI: 10.1038/s41598-021-90763-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 05/07/2021] [Indexed: 02/04/2023] Open
Abstract
In this work we use Mimosa tenuiflora (MtE) extracts as reducing agents to synthesize silver nanoparticles (AgMt NPs) which were characterized by DPPH and Total Polyphenols Assays, UV-visible, X-ray diffractometer (XRD), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS) and Thermogravimetric analysis (TGA). AgMt NPs possess average sizes of 21 nm and fcc crystalline structure, it was also confirmed that the MtE is present in the AgMt NPs even after the cleaning protocol applied. Subsequently, carbopol hydrogels were made and the MtE and the synthesized AgMt NPs were dispersed in different gels (MtE-G and AgMt NPs-G, respectively) at 100 µg/g concentration. The gels were characterized by UV-Vis, IR, and rheology. Antimicrobial tests were performed using Staphylococcus aureus and Escherichia coli. Burn wound healing was evaluated in a second-degree burn injury on a Wistar rats model for 14 days and additional skin biopsies were examined with histopathological analysis. Gel with commercial silver nanoparticles (Ag NPs) was prepared and employed as a control on the biological assays. Hydrogel system containing silver nanoparticles synthesized with Mimosa tenuiflora (AgMt NPs-G) is a promising therapeutic strategy for burn wound healing, this due to bactericidal and anti-inflammatory effects, which promotes a more effective recovery (in percentage terms) by damaged area.
Collapse
Affiliation(s)
- Aaron Martínez-Higuera
- Department of Physics, Nanotechnology Graduate Program, University of Sonora, Rosales and Transversal, 83000, Hermosillo, Sonora, Mexico
| | - César Rodríguez-Beas
- Department of Physics, Nanotechnology Graduate Program, University of Sonora, Rosales and Transversal, 83000, Hermosillo, Sonora, Mexico
| | | | - Abraham Arizmendi-Grijalva
- Department of Physics, Nanotechnology Graduate Program, University of Sonora, Rosales and Transversal, 83000, Hermosillo, Sonora, Mexico
| | - Carlos Ochoa-Sánchez
- Department of Physics, Nanotechnology Graduate Program, University of Sonora, Rosales and Transversal, 83000, Hermosillo, Sonora, Mexico
| | - Eduardo Larios-Rodríguez
- Department of Chemical and Metallurgical Engineering, University of Sonora, Rosales and Transversal, 83000, Hermosillo, Sonora, Mexico
| | - Juan Manuel Martínez-Soto
- Department of Medicine and Health Science, University of Sonora, Rosales and Transversal, 83000, Hermosillo, Sonora, Mexico
| | - Ericka Rodríguez-León
- Department of Physics, Nanotechnology Graduate Program, University of Sonora, Rosales and Transversal, 83000, Hermosillo, Sonora, Mexico
| | - Cristina Ibarra-Zazueta
- Department of Agriculture and Livestock, University of Sonora, Road to Kino Bay km 20.5, Hermosillo, Sonora, Mexico
| | - Roberto Mora-Monroy
- Department of Physic Researching, University of Sonora, Rosales and Transversal, 83000, Hermosillo, Sonora, Mexico
| | - Hugo Alejandro Borbón-Nuñez
- CONACYT-Centro de Nanociencias Y Nanotecnología, UNAM, Km 107 Carretera Tijuana-Ensenada s/n, 22800, Ensenada, B.C. C.P, Mexico
| | - Alfonso García-Galaz
- Food Science Coordination, Research Center in Food & Development (CIAD), Road Gustavo Enrique Astiazarán Rosas, No. 46, Col. La Victoria, 83304, Hermosillo, Sonora, Mexico
| | - María Del Carmen Candia-Plata
- Department of Medicine and Health Science, University of Sonora, Rosales and Transversal, 83000, Hermosillo, Sonora, Mexico
| | - Luis Fernando López-Soto
- Department of Medicine and Health Science, University of Sonora, Rosales and Transversal, 83000, Hermosillo, Sonora, Mexico
| | - Ramón Iñiguez-Palomares
- Department of Physics, Nanotechnology Graduate Program, University of Sonora, Rosales and Transversal, 83000, Hermosillo, Sonora, Mexico.
| |
Collapse
|
32
|
Al-Zaqri N, Muthuvel A, Jothibas M, Alsalme A, Alharthi FA, Mohana V. Biosynthesis of zirconium oxide nanoparticles using Wrightia tinctoria leaf extract: Characterization, photocatalytic degradation and antibacterial activities. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108507] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
33
|
Irfan M, Moniruzzaman M, Ahmad T, Samsudin MFR, Bashir F, Butt MT, Ashraf H. Identifying the role of process conditions for synthesis of stable gold nanoparticles and insight detail of reaction mechanism. INORG NANO-MET CHEM 2021. [DOI: 10.1080/24701556.2021.1897614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Muhammad Irfan
- Centre for Environmental Protection Studies, Pakistan Council of Scientific and Industrial Research (PCSIR) Laboratories Complex, Lahore, Pakistan
| | - Muhammad Moniruzzaman
- Chemical Engineering Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak, Malaysia
- Centre of Researches in Ionic liquids, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak, Malaysia
| | - Tausif Ahmad
- Chemical Engineering Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak, Malaysia
| | | | - Farzana Bashir
- Centre for Environmental Protection Studies, Pakistan Council of Scientific and Industrial Research (PCSIR) Laboratories Complex, Lahore, Pakistan
| | - Muhammad Tahir Butt
- Centre for Environmental Protection Studies, Pakistan Council of Scientific and Industrial Research (PCSIR) Laboratories Complex, Lahore, Pakistan
| | - Hafsa Ashraf
- Institute of Environmental Engineering and Research, University of Engineering and Technology, Lahore, Pakistan
| |
Collapse
|
34
|
Cucci LM, Trapani G, Hansson Ö, La Mendola D, Satriano C. Gold Nanoparticles Functionalized with Angiogenin for Wound Care Application. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:201. [PMID: 33466813 PMCID: PMC7830515 DOI: 10.3390/nano11010201] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/05/2021] [Accepted: 01/11/2021] [Indexed: 12/16/2022]
Abstract
In this work, we aimed to develop a hybrid theranostic nano-formulation based on gold nanoparticles (AuNP)-having a known anti-angiogenic character-and the angiogenin (ANG), in order to tune the angiogenesis-related phases involved in the multifaceted process of the wound healing. To this purpose, spherical were surface "decorated" with three variants of the protein, namely, the recombinant (rANG), the wild-type, physiologically present in the human plasma (wtANG) and a new mutant with a cysteine substitution of the serine at the residue 28 (S28CANG). The hybrid biointerface between AuNP and ANG was scrutinized by a multi-technique approach based on dynamic light scattering, spectroscopic (UV-visible, circular dichroism) and microscopic (atomic force and laser scanning confocal) techniques. The analyses of optical features of plasmonic gold nanoparticles allowed for discrimination of different adsorption modes-i.e.; predominant physisorption and/or chemisorption-triggered by the ANG primary sequence. Biophysical experiments with supported lipid bilayers (SLB), an artificial model of cell membrane, were performed by means of quartz crystal microbalance with dissipation monitoring acoustic sensing technique. Cellular experiments on human umbilical vein endothelial cells (HUVEC), in the absence or presence of copper-another co-player of angiogenesis-were carried out to assay the nanotoxicity of the hybrid protein-gold nanoassemblies as well as their effect on cell migration and tubulogenesis. Results pointed to the promising potential of these nanoplatforms, especially the new hybrid Au-S28CANG obtained with the covalent grafting of the mutant on the gold surface, for the modulation of angiogenesis processes in wound care.
Collapse
Affiliation(s)
- Lorena Maria Cucci
- Laboratory of Hybrid NanoBioInterfaces (NHBIL), Department of Chemical Sciences, University of Catania, 95125 Catania, Italy;
| | - Giuseppe Trapani
- Scuola Superiore di Catania, University of Catania, 95123 Catania, Italy;
| | - Örjan Hansson
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-40530 Göteborg, Sweden;
| | | | - Cristina Satriano
- Laboratory of Hybrid NanoBioInterfaces (NHBIL), Department of Chemical Sciences, University of Catania, 95125 Catania, Italy;
| |
Collapse
|
35
|
Attenuation of hepatic and breast cancer cells by Polygonatum verticillatum embedded silver nanoparticles. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101863] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
36
|
El-Borady OM, Ayat MS, Shabrawy MA, Millet P. Green synthesis of gold nanoparticles using Parsley leaves extract and their applications as an alternative catalytic, antioxidant, anticancer, and antibacterial agents. ADV POWDER TECHNOL 2020. [DOI: 10.1016/j.apt.2020.09.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
37
|
Fan J, Cheng Y, Sun M. Functionalized Gold Nanoparticles: Synthesis, Properties and Biomedical Applications. CHEM REC 2020; 20:1474-1504. [DOI: 10.1002/tcr.202000087] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/27/2020] [Accepted: 08/31/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Jianuo Fan
- School of Mathematics and Physics Beijing Advanced Innovation Center for Materials Genome Engineering Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science University of Science and Technology Beijing Beijing 100083 P. R. China
| | - Yuqing Cheng
- School of Mathematics and Physics Beijing Advanced Innovation Center for Materials Genome Engineering Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science University of Science and Technology Beijing Beijing 100083 P. R. China
| | - Mengtao Sun
- School of Mathematics and Physics Beijing Advanced Innovation Center for Materials Genome Engineering Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science University of Science and Technology Beijing Beijing 100083 P. R. China
| |
Collapse
|
38
|
Castillo-Henríquez L, Alfaro-Aguilar K, Ugalde-Álvarez J, Vega-Fernández L, Montes de Oca-Vásquez G, Vega-Baudrit JR. Green Synthesis of Gold and Silver Nanoparticles from Plant Extracts and Their Possible Applications as Antimicrobial Agents in the Agricultural Area. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1763. [PMID: 32906575 PMCID: PMC7558319 DOI: 10.3390/nano10091763] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/18/2020] [Accepted: 08/26/2020] [Indexed: 11/17/2022]
Abstract
Currently, metal nanoparticles have varied uses for different medical, pharmaceutical, and agricultural applications. Nanobiotechnology, combined with green chemistry, has great potential for the development of novel and necessary products that benefit human health, environment, and industries. Green chemistry has an important role due to its contribution to unconventional synthesis methods of gold and silver nanoparticles from plant extracts, which have exhibited antimicrobial potential, among other outstanding properties. Biodiversity-rich countries need to collect and convert knowledge from biological resources into processes, compounds, methods, and tools, which need to be achieved along with sustainable use and exploitation of biological diversity. Therefore, this paper describes the relevant reported green synthesis of gold and silver nanoparticles from plant extracts and their capacity as antimicrobial agents within the agricultural field for fighting against bacterial and fungal pathogens that can cause plant, waterborne, and foodborne diseases. Moreover, this work makes a brief review of nanoparticles' contribution to water treatment and the development of "environmentally-friendly" nanofertilizers, nanopesticides, and nanoherbicides, as well as presenting the harmful effects of nanoparticles accumulation in plants and soils.
Collapse
Affiliation(s)
- Luis Castillo-Henríquez
- National Laboratory of Nanotechnology (LANOTEC), National Center for High Technology (CeNAT), San José 1174-1200, Costa Rica; (L.C.-H.); (J.U.-Á.); (G.M.d.O.-V.)
| | - Karla Alfaro-Aguilar
- Chemistry School, National University of Costa Rica, Heredia 86-3000, Costa Rica; (K.A.-A.); (L.V.-F.)
| | - Jeisson Ugalde-Álvarez
- National Laboratory of Nanotechnology (LANOTEC), National Center for High Technology (CeNAT), San José 1174-1200, Costa Rica; (L.C.-H.); (J.U.-Á.); (G.M.d.O.-V.)
| | - Laura Vega-Fernández
- Chemistry School, National University of Costa Rica, Heredia 86-3000, Costa Rica; (K.A.-A.); (L.V.-F.)
| | - Gabriela Montes de Oca-Vásquez
- National Laboratory of Nanotechnology (LANOTEC), National Center for High Technology (CeNAT), San José 1174-1200, Costa Rica; (L.C.-H.); (J.U.-Á.); (G.M.d.O.-V.)
| | - José Roberto Vega-Baudrit
- National Laboratory of Nanotechnology (LANOTEC), National Center for High Technology (CeNAT), San José 1174-1200, Costa Rica; (L.C.-H.); (J.U.-Á.); (G.M.d.O.-V.)
- Chemistry School, National University of Costa Rica, Heredia 86-3000, Costa Rica; (K.A.-A.); (L.V.-F.)
| |
Collapse
|
39
|
Muthuvel A, Jothibas M, Mohana V, Manoharan C. Green synthesis of cerium oxide nanoparticles using Calotropis procera flower extract and their photocatalytic degradation and antibacterial activity. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.108086] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
40
|
Enhanced catalytic and antibacterial efficiency of biosynthesized Convolvulus fruticosus extract capped gold nanoparticles (CFE@AuNPs). JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 209:111949. [DOI: 10.1016/j.jphotobiol.2020.111949] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 06/02/2020] [Accepted: 06/29/2020] [Indexed: 02/08/2023]
|
41
|
Synthesis of copper oxide nanoparticles by chemical and biogenic methods: photocatalytic degradation and in vitro antioxidant activity. ACTA ACUST UNITED AC 2020. [DOI: 10.1007/s41204-020-00078-w] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
42
|
Muthuvel A, Jothibas M, Manoharan C, Jayakumar SJ. Synthesis of CeO2-NPs by chemical and biological methods and their photocatalytic, antibacterial and in vitro antioxidant activity. RESEARCH ON CHEMICAL INTERMEDIATES 2020. [DOI: 10.1007/s11164-020-04115-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
43
|
Vijilvani C, Bindhu M, Frincy F, AlSalhi MS, Sabitha S, Saravanakumar K, Devanesan S, Umadevi M, Aljaafreh MJ, Atif M. Antimicrobial and catalytic activities of biosynthesized gold, silver and palladium nanoparticles from Solanum nigurum leaves. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 202:111713. [DOI: 10.1016/j.jphotobiol.2019.111713] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/08/2019] [Accepted: 11/14/2019] [Indexed: 11/26/2022]
|
44
|
Rodríguez-León E, Rodríguez-Vázquez BE, Martínez-Higuera A, Rodríguez-Beas C, Larios-Rodríguez E, Navarro RE, López-Esparza R, Iñiguez-Palomares RA. Synthesis of Gold Nanoparticles Using Mimosa tenuiflora Extract, Assessments of Cytotoxicity, Cellular Uptake, and Catalysis. NANOSCALE RESEARCH LETTERS 2019; 14:334. [PMID: 31654146 PMCID: PMC6814701 DOI: 10.1186/s11671-019-3158-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 09/23/2019] [Indexed: 05/10/2023]
Abstract
Synthesis of gold nanoparticles (AuNPs) with plant extracts has gained great interest in the field of biomedicine due to its wide variety of health applications. In the present work, AuNPs were synthesized with Mimosa tenuiflora (Mt) bark extract at different metallic precursor concentrations. Mt extract was obtained by mixing the tree bark in ethanol-water. The antioxidant capacity of extract was evaluated using 2,2-diphenyl-1-picrylhydrazyl and total polyphenol assay. AuNPs were characterized by transmission electron microscopy, X-ray diffraction, UV-Vis and Fourier transform infrared spectroscopy, and X-ray photoelectron spectrometry for functional group determination onto their surface. AuMt (colloids formed by AuNPs and molecules of Mt) exhibit multiple shapes with sizes between 20 and 200 nm. AuMt were tested on methylene blue degradation in homogeneous catalysis adding sodium borohydride. The smallest NPs (AuMt1) have a degradation coefficient of 0.008/s and reach 50% degradation in 190s. Cell viability and cytotoxicity were evaluated in human umbilical vein endothelial cells (HUVEC), and a moderate cytotoxic effect at 24 and 48 h was found. However, toxicity does not behave in a dose-dependent manner. Cellular internalization of AuMt on HUVEC cells was analyzed by confocal laser scanning microscopy. For AuMt1, it can be observed that the material is dispersed into the cytoplasm, while in AuMt2, the material is concentrated in the nuclear periphery.
Collapse
Affiliation(s)
- Ericka Rodríguez-León
- Physics Department, University of Sonora, Rosales and Transversal, 83000 Hermosillo, Sonora Mexico
| | - Blanca E. Rodríguez-Vázquez
- Polymer and Material Department, University of Sonora, Rosales and Transversal, 83000 Hermosillo, Sonora Mexico
| | - Aarón Martínez-Higuera
- Physics Department, University of Sonora, Rosales and Transversal, 83000 Hermosillo, Sonora Mexico
| | - César Rodríguez-Beas
- Physics Department, University of Sonora, Rosales and Transversal, 83000 Hermosillo, Sonora Mexico
| | - Eduardo Larios-Rodríguez
- Chemical Engineering and Metallurgy Department, University of Sonora, Rosales and Transversal, 83000 Hermosillo, Sonora Mexico
| | - Rosa E. Navarro
- Polymer and Material Department, University of Sonora, Rosales and Transversal, 83000 Hermosillo, Sonora Mexico
| | - Ricardo López-Esparza
- Physics Department, University of Sonora, Rosales and Transversal, 83000 Hermosillo, Sonora Mexico
| | | |
Collapse
|
45
|
Green synthesis of gold nanoclusters using seed aqueous extract of Cichorium intybus L. and their characterization. SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-019-1035-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
46
|
Yuan CG, Huo C, Gui B, Cao WP. Green synthesis of gold nanoparticles using Citrus maxima peel extract and their catalytic/antibacterial activities. IET Nanobiotechnol 2019; 11:523-530. [PMID: 28745284 DOI: 10.1049/iet-nbt.2016.0183] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The peel of Citrus maxima (C. maxima) is the primary byproducts during the process of fruit or juice in food industries, and it was always considered as biomass waste for further treatments. In this study, the authors reported a simple and eco-friendly method to synthesise gold nanoparticles (AuNPs) using C. maxima peel extract as reducing and capping agents. The synthesised AuNPs were characterised by UV-visible spectrum, X-ray diffraction (XRD), transmission electron microscope (TEM) and Fourier-transform infrared spectroscopy (FTIR). The UV-visible spectrum of the AuNPs colloid showed a characteristic peak at 540 nm. The peaks of XRD analysis at (2θ) 38.30°, 44.28°, 64.62°, 77.57° and 81.75° were assigned to (111), (200), (220), (311) and (222) planes of the face-centered cubic (fcc) lattice of gold. The TEM images showed that AuNPs were nearly spherical in shape with the size of 8-25 nm. The FTIR spectrum revealed that some bioactive compounds capped the surface of synthesised AuNPs. The biosynthesised AuNPs performed strong catalytic activity in degradation of 4-nitrophenol to 4-aminophenol and good antibacterial activity against both gram negative (Escherichia coli) and gram positive (Staphylococcus aureus) bacterium. The synthesis procedure was proved simple, cost effective and environment friendly.
Collapse
Affiliation(s)
- Chun-Gang Yuan
- School of Environmental Science & Engineering, North China Electric Power University, Baoding 071000, People's Republic of China.
| | - Can Huo
- School of Environmental Science & Engineering, North China Electric Power University, Baoding 071000, People's Republic of China
| | - Bing Gui
- School of Environmental Science & Engineering, North China Electric Power University, Baoding 071000, People's Republic of China
| | - Wei-Ping Cao
- Institute of Plant Protection, Hebei Academy of Agricultural and Forestry Sciences, Baoding 071000, People's Republic of China
| |
Collapse
|
47
|
Lin L, Yang W, Wei X, Wang Y, Zhang L, Zhang Y, Zhang Z, Zhao Y, Zhao M. Enhancement of Solasodine Extracted from Fruits of Solanum nigrum L. by Microwave-Assisted Aqueous Two-Phase Extraction and Analysis by High-Performance Liquid Chromatography. Molecules 2019; 24:molecules24122294. [PMID: 31234274 PMCID: PMC6631816 DOI: 10.3390/molecules24122294] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 02/02/2023] Open
Abstract
Background: Solasodine is a major bioactive ingredient in Solanum nigrum L. that has strong pharmacological characteristics. Therefore, the development of a simple and effective extraction method for obtaining solasodine is highly important. This study aims to provide a rapid and effective method for extracting solasodine from Solanum nigrum L. by microwave-assisted aqueous two-phase extraction (MAATPE). Methods: First, the high-performance liquid chromatography (HPLC) conditions were established for the detection of solasodine. Then, the aqueous two-phase system (ATPS) compositions were examined. On the basis of the results of single-factor experiments, for a better yield, response surface methodology (RSM) was used to optimize influential factors including the extraction temperature, extraction time and liquid-to-solid ratio. Results: The maximum extraction yield of 7.11 ± 0.08 mg/g was obtained at 44 °C, an extraction time of 15 min, and a liquid-to-solid ratio of 42:1 mL/g in the ATPS consisting of EtOH solvent, (NH4)2SO4, and water (28:16:56, w/w/w). The extraction yield of the alkaloid obtained using this method was markedly higher than those of microwave-assisted extraction (MAE) and ultrasonic-assisted extraction (UAE). Conclusions: In this work, solasodine was extracted by MAATPE for the first time and a high yield was obtained. MAATPE is a simple, rapid, and green technique for extraction from medical plants. Thus, the present study will enable the development of a feasible extraction method of active alkaloids from Solanum nigrum L.
Collapse
Affiliation(s)
- Li Lin
- College of Science, Sichuan Agricultural University, Yaan 625014, China.
| | - Wen Yang
- College of Science, Sichuan Agricultural University, Yaan 625014, China.
| | - Xing Wei
- College of Science, Sichuan Agricultural University, Yaan 625014, China.
| | - Yi Wang
- College of Science, Sichuan Agricultural University, Yaan 625014, China.
| | - Li Zhang
- College of Science, Sichuan Agricultural University, Yaan 625014, China.
| | - Yunsong Zhang
- College of Science, Sichuan Agricultural University, Yaan 625014, China.
| | - Zhiming Zhang
- Maize research institute, Sichuan Agricultural University, Chengdu 611130, China.
| | - Ying Zhao
- College of Science, Sichuan Agricultural University, Yaan 625014, China.
| | - Maojun Zhao
- College of Science, Sichuan Agricultural University, Yaan 625014, China.
| |
Collapse
|
48
|
Bakur A, Niu Y, Kuang H, Chen Q. Synthesis of gold nanoparticles derived from mannosylerythritol lipid and evaluation of their bioactivities. AMB Express 2019; 9:62. [PMID: 31065818 PMCID: PMC6505018 DOI: 10.1186/s13568-019-0785-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 04/25/2019] [Indexed: 02/07/2023] Open
Abstract
In this study, we introduce a simple and green method for synthesis of gold nanoparticles (AuNPs) using microbial glycolipid mannosylerythritol lipid (MEL) produced from Ustilago maydis CGMCC 5.203 and to evaluate their biomedical activities. MEL was found 10.3 g/L using sunflower oil. The formation of MEL-AuNPs was verified using UV–visible spectrum, XRD, TEM, FTIR, SEM, and EDX. In the biomedical examinations, MEL-AuNPs demonstrated potential cytotoxicity against HepG2 cells, and IC50 values were found to be 100 and 75 µg/mL for 24 h and 48 h of exposure, respectively, which indicates its good performance against cancer cells. The IC50 value of MEL-AuNPs was found to be 115 and 124 µg/mL for DPPH and ABTS scavenging activities, respectively. The biosynthesized MEL-AuNPs significantly inhibited cell growth of pathogenic Gram-positive and Gram-negative bacteria. These findings indicated that MEL plays a crucial role in the rapid biofabrication method of metallic NPs possessed the potential of biomedical activities.
Collapse
|
49
|
Pu S, Li J, Sun L, Zhong L, Ma Q. An in vitro comparison of the antioxidant activities of chitosan and green synthesized gold nanoparticles. Carbohydr Polym 2019; 211:161-172. [DOI: 10.1016/j.carbpol.2019.02.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/06/2018] [Accepted: 02/01/2019] [Indexed: 12/24/2022]
|
50
|
Green gold nanoparticles from plant-derived materials: an overview of the reaction synthesis types, conditions, and applications. REV CHEM ENG 2019. [DOI: 10.1515/revce-2018-0051] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Abstract
Many studies have examined metallic nanoparticles (NPs) produced according to the principles of green chemistry. Gold NPs have drawn much more attention than other metallic NPs in recent years. Moreover, among all gold NP synthesis studies, using plant-derived molecules is one of the commonly used reductants in studies on NP synthesis because of its convenience in terms of shape, size control advantage, and nontoxic specifications. The present review focused on studies of the synthesis of gold NP types, including single gold atom NPs, alloyed AU NPs, and core-shell Au NPs as well as their conditions and applications. The effect of those structures on application fields such as catalysis, antifungal action, antibacterial activities, sensors and so on are also summarized. Furthermore, the morphology and synthesis conditions of the primer and secondary NP were discussed. In addition to synthesis methods, characterization methods were analyzed in the context of the considerable diversity of the reducing agents used. As the reducing agents used in most studies, polyphenols and proteins usually play an active role. Finally, the challenges and drawbacks in plant-derived agent usage for the preparation of Au NPs at various industries were also discussed.
Collapse
|