1
|
Majumdar S, Pramanik A. Exploring the efficacy of some biologically active compounds as anti-hypertensive drugs: an insightful evaluation through DFT, molecular docking and molecular dynamics simulations. In Silico Pharmacol 2024; 13:4. [PMID: 39726903 PMCID: PMC11668705 DOI: 10.1007/s40203-024-00291-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 12/03/2024] [Indexed: 12/28/2024] Open
Abstract
Among different anti-hypertensive drugs, calcium channel blockers and human angiotensin-converting enzyme (ACE) inhibitors are the two main types. Herein, we took 25 biologically active ligands with potent anti-hypertensive activities and performed molecular docking studies with the human ACE receptor (PDB ID 1O8A) and human leukocyte antigens (HLA) complex, human voltage-dependent calcium channel alpha1 subunit (PDB ID 3LV3). Beforehand, we had performed density functional theory (DFT) studies to find out their structure-property relationships. In-silico ADMET studies were conducted, and we found that all 25 ligands follow Lipinski's Rule of 5, which confirms their oral bioavailability and high gastrointestinal absorption as a drug. Finally, molecular dynamics (MD) simulation studies were performed for the two top-scored drugs for 100 ns which reveal that a strong influence of the ligand (flunarizine) is there over the respective proteins. Supplementary Information The online version contains supplementary material available at 10.1007/s40203-024-00291-4.
Collapse
Affiliation(s)
- Sourav Majumdar
- Department of Chemistry, Sidho-Kanho-Birsha University, Purulia, 723104 India
| | - Anup Pramanik
- Department of Chemistry, Sidho-Kanho-Birsha University, Purulia, 723104 India
| |
Collapse
|
2
|
Naeem N, Sadiq A, Othman GA, Yassin HM, Mughal EU. Exploring heterocyclic scaffolds in carbonic anhydrase inhibition: a decade of structural and therapeutic insights. RSC Adv 2024; 14:35769-35970. [PMID: 39534850 PMCID: PMC11555472 DOI: 10.1039/d4ra06290f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024] Open
Abstract
Heterocyclic compounds represent a prominent class of molecules with diverse pharmacological activities. Among their therapeutic applications, they have gained significant attention as carbonic anhydrase (CA) inhibitors, owing to their potential in the treatment of various diseases such as epilepsy, cancer and glaucoma. CA is a widely distributed zinc metalloenzyme that facilitates the reversible interconversion of carbon dioxide and bicarbonate. This reaction is essential for numerous physiological and pathological processes. In humans, CA exists in sixteen different isoforms, labeled hCA-I to hCA-XV, each distributed across various tissues and organs and involved in crucial physiological functions. Clinically utilized CA inhibitors, such as brinzolamide, dorzolamide and acetazolamide, exhibit poor selectivity, leading to undesirable side effects. A significant challenge in designing effective CA inhibitors is achieving balanced isoform selectivity, prompting the exploration of new chemotypes. This review compiles recent strategies employed by various researchers in developing CAIs across different structural classes, including pyrazoline, quinoline, imidazole, oxadiazole, pyrimidine, coumarin, chalcone, rhodanine, phthalazine, triazole, isatin, and indole. Additionally, the review summarizes structure-activity relationship (SAR) analyses, isoform selectivity evaluations, along with mechanistic and in silico investigations. Insights derived from SAR studies provide crucial directions for the rational design of next-generation heterocyclic CA inhibitors, with improved therapeutic efficacy and reduced side effects. To the best of our knowledge, for the first time, we have comprehensively summarized all known isoforms of CA in relation to various heterocyclic motifs. This review examines the use of different heterocycles as CA inhibitors, drawing on research published over the past 11 years. It offers a valuable resource for early-career researchers, encouraging further exploration of synthetic heterocycles in the development of CA inhibitors.
Collapse
Affiliation(s)
- Nafeesa Naeem
- Department of Chemistry, University of Gujrat Gujrat 50700 Pakistan
| | - Amina Sadiq
- Department of Chemistry, Govt. College Women University Sialkot 51300 Pakistan
| | - Gehan Ahmed Othman
- Biology Department, College of Science, King Khalid University Abha 61421 Saudi Arabia
| | - Habab M Yassin
- Biology Department, College of Science, King Khalid University Abha 61421 Saudi Arabia
| | | |
Collapse
|
3
|
Ahmad S, Abdul Qadir M, Ahmed M, Imran M, Yousaf N, Asari A, Hameed A, Muddassar M. Acetylsalicylic acid-sulfa drugs conjugates as potential urease inhibitors and anti-inflammatory agents: bio-oriented drug synthesis, molecular docking, and dynamics simulation studies. J Biomol Struct Dyn 2024; 42:9373-9387. [PMID: 37643014 DOI: 10.1080/07391102.2023.2252083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 08/18/2023] [Indexed: 08/31/2023]
Abstract
To explore the new mode of action and reduce side effects, making conjugates of existing drugs is becoming an attractive tool in the realm of medicinal chemistry. In this work, we exploited this approach and synthesized new conjugates to assess their activities against the enzymes involved in different pathological conditions. Specifically, we design and synthesized conjugates involving acetylsalicylic acid and sulfa drugs, validating the newly crafted conjugates using techniques like IR, 1HNMR, 13CNMR, and elemental analysis. These conjugates underwent assessment for their ability to inhibit cyclooxygenase-2 (COX-2), urease enzymes, and their anti-inflammatory potential. A competitive mode of urease inhibition was observed for acetylsalicylic acid conjugated with sulfanilamide, sulfacetamide, and sulfadiazine with IC50 of 2.49 ± 0.35 µM, 6.21 ± 0.28 µM, and 6.57 ± 0.44 µM, respectively. Remarkably, the acetylsalicylic acid-sulfamethoxazole conjugate exhibited exceptional anti-inflammatory activity, effectively curtailing induced edema by 83.7%, a result akin to the reference anti-inflammatory drug indomethacin's performance (86.8%). Additionally, it demonstrated comparable COX-2 inhibition (75.8%) to the reference selective COX-2 inhibitor celecoxib that exhibited 77.1% inhibition at 10 µM concentration. To deepen our understanding, we employed molecular docking techniques to predict the binding interactions of competitive inhibitors with COX-2 and urease receptors. Additionally, MD simulations were carried out, confirming the stability of inhibitor-target complexes throughout the simulation period, devoid of significant conformational changes. Collectively, our research underscores the potential of coupling approved medicinal compounds to usher in novel categories of pharmacological agents, holding promise for addressing a wide spectrum of pathological disorders involving COX-2 and urease enzymes.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Saghir Ahmad
- School of Chemistry, University of the Punjab, Lahore, Pakistan
| | | | - Mahmood Ahmed
- Department of Chemistry, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Muhammad Imran
- KAM School of Life Sciences, FC College (A Chartered University) Lahore, Pakistan
| | - Numan Yousaf
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Asnuzilawati Asari
- Faculty of Science and Marine Environment, University Malaysia Terengganu, Terengganu, Malaysia
| | - Abdul Hameed
- Department of Chemistry, University of Sahiwal, Sahiwal, Pakistan
| | - Muhammad Muddassar
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| |
Collapse
|
4
|
Liu C, Premcheska S, Skirtach A, Poelman D, Kaczmarek AM, Van Der Voort P. Ratiometric dual-emitting thermometers based on rhodamine B dye-incorporated (nano) curcumin periodic mesoporous organosilicas for bioapplications. JOURNAL OF MATERIALS CHEMISTRY. C 2024; 12:5836-5848. [PMID: 38680544 PMCID: PMC11044629 DOI: 10.1039/d3tc04416e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/21/2024] [Indexed: 05/01/2024]
Abstract
This study explores the potential of combining periodic mesoporous organosilicas (PMOs) with a fluorescent dye to develop a ratiometric thermometry system with enhanced stability, sensitivity, and biocompatibility. PMOs, ordered porous materials known for their stability and versatility, serve as an ideal platform. Curcumin, a natural polyphenol and fluorescent dye, is incorporated into PMOs to develop curcumin-functionalized PMOs (C-PMO) and curcumin-pyrazole-functionalized PMOs (CP-PMO) via hydrolysis and co-condensation. These PMOs exhibit temperature-dependent fluorescence properties. The next step involves encapsulating rhodamine B (RhB) dye within the PMO pores to create dual-emitting PMO@dye nanocomposites, followed by a lipid bilayer (LB) coating to enhance biocompatibility and dye retention. Remarkably, within the physiological temperature range, C-PMO@RhB@LB and CP-PMO@RhB@LB demonstrate noteworthy maximum relative sensitivity (Sr) values of up to 1.69 and 2.60% K-1, respectively. This approach offers versatile means to create various ratiometric thermometers by incorporating different fluorescent dyes, holding promise for future temperature sensing applications.
Collapse
Affiliation(s)
- Chunhui Liu
- COMOC - Center for Ordered Materials Organometallics and Catalysis, Department of Chemistry, Ghent University, Ghent University Krijgslaan 281 S3 9000 Ghent Belgium
- Lumilab, Department of Solid State Sciences, Ghent University Krijgslaan 281 S1 9000 Ghent Belgium
- NanoSensing Group, Department of Chemistry, Ghent University Krijgslaan 281 S3 9000 Ghent Belgium
| | - Simona Premcheska
- NanoSensing Group, Department of Chemistry, Ghent University Krijgslaan 281 S3 9000 Ghent Belgium
- Nano-BioTechnology Laboratory, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University Ghent Belgium
| | - Andre Skirtach
- Nano-BioTechnology Laboratory, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University Ghent Belgium
| | - Dirk Poelman
- Lumilab, Department of Solid State Sciences, Ghent University Krijgslaan 281 S1 9000 Ghent Belgium
| | - Anna M Kaczmarek
- NanoSensing Group, Department of Chemistry, Ghent University Krijgslaan 281 S3 9000 Ghent Belgium
| | - Pascal Van Der Voort
- COMOC - Center for Ordered Materials Organometallics and Catalysis, Department of Chemistry, Ghent University, Ghent University Krijgslaan 281 S3 9000 Ghent Belgium
| |
Collapse
|
5
|
Alblewi FF, Alsehli MH, Hritani ZM, Eskandrani A, Alsaedi WH, Alawad MO, Elhenawy AA, Ahmed HY, El-Gaby MSA, Afifi TH, Okasha RM. Synthesis and Characterization of a New Class of Chromene-Azo Sulfonamide Hybrids as Promising Anticancer Candidates with the Exploration of Their EGFR, hCAII, and MMP-2 Inhibitors Based on Molecular Docking Assays. Int J Mol Sci 2023; 24:16716. [PMID: 38069037 PMCID: PMC10706804 DOI: 10.3390/ijms242316716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
In this study, novel selective antitumor compounds were synthesized based on their fundamental pharmacophoric prerequisites associated with EGFR inhibitors. A molecular hybridization approach was employed to design and prepare a range of 4H-chromene-3-carboxylates 7a-g, 8, and 11a-e derivatives, each incorporating a sulfonamide moiety. The structures of these hybrid molecules were verified using comprehensive analytical and spectroscopic techniques. During the assessment of the newly synthesized compounds for their anticancer properties against three tumor cell lines (HepG-2, MCF-7, and HCT-116), compounds 7f and 7g displayed remarkable antitumor activity against all tested cell lines, outperforming the reference drug Cisplatin in terms of efficacy. Consequently, these promising candidates were selected for further investigation of their anti-EGFR, hCAII, and MMP-2 potential, which exhibited remarkable effectiveness against EGFR and MMP2 when compared to Sorafenib. Additionally, docking investigations regarding the EGFR binding site were implemented for the targeted derivatives in order to attain better comprehension with respect to the pattern in which binding mechanics occur between the investigated molecules and the active site, which illustrated a higher binding efficacy in comparison with Sorafenib.
Collapse
Affiliation(s)
- Fawzia F. Alblewi
- Chemistry Department, College of Science, Taibah University, Medina 30002, Saudi Arabia; (F.F.A.); (Z.M.H.); (A.E.); (W.H.A.)
| | - Mosa H. Alsehli
- Chemistry Department, College of Science, Taibah University, Medina 30002, Saudi Arabia; (F.F.A.); (Z.M.H.); (A.E.); (W.H.A.)
| | - Zainab M. Hritani
- Chemistry Department, College of Science, Taibah University, Medina 30002, Saudi Arabia; (F.F.A.); (Z.M.H.); (A.E.); (W.H.A.)
| | - Areej Eskandrani
- Chemistry Department, College of Science, Taibah University, Medina 30002, Saudi Arabia; (F.F.A.); (Z.M.H.); (A.E.); (W.H.A.)
| | - Wael H. Alsaedi
- Chemistry Department, College of Science, Taibah University, Medina 30002, Saudi Arabia; (F.F.A.); (Z.M.H.); (A.E.); (W.H.A.)
| | - Majed O. Alawad
- Center of Excellence for Nanomaterials for Clean Energy Applications, King Abdulaziz City for Science and Technology (KACST), Riyadh 12354, Saudi Arabia;
| | - Ahmed A. Elhenawy
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City 11884, Egypt; (A.A.E.); (M.S.A.E.-G.)
- Chemistry Department, Faculty of Science and Art, AlBaha University, Al Bahah 65731, Saudi Arabia
| | - Hanaa Y. Ahmed
- The Regional Center for Mycology and Biotechnology, Al-Azhar University, Nasr City 11884, Egypt;
| | - Mohamed S. A. El-Gaby
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City 11884, Egypt; (A.A.E.); (M.S.A.E.-G.)
| | - Tarek H. Afifi
- Chemistry Department, College of Science, Taibah University, Medina 30002, Saudi Arabia; (F.F.A.); (Z.M.H.); (A.E.); (W.H.A.)
| | - Rawda M. Okasha
- Chemistry Department, College of Science, Taibah University, Medina 30002, Saudi Arabia; (F.F.A.); (Z.M.H.); (A.E.); (W.H.A.)
| |
Collapse
|
6
|
Ahmad S, Abdul Qadir M, Ahmed M, Imran M, Yousaf N, Wani TA, Zargar S, Ali I, Muddassar M. Exploring the potential of propanamide-sulfonamide based drug conjugates as dual inhibitors of urease and cyclooxygenase-2: biological and their in silico studies. Front Chem 2023; 11:1206380. [PMID: 37601915 PMCID: PMC10434765 DOI: 10.3389/fchem.2023.1206380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 07/25/2023] [Indexed: 08/22/2023] Open
Abstract
Derivative synthesis has been a crucial method for altering the effects of already-approved medications, especially to lessen adverse effects and enhance results. Making use of this multi-target approach, a series of naproxen-sulfa drug conjugates was designed and synthesized. The newly designed conjugates were confirmed by spectroscopic techniques like IR, 1HNMR, 13CNMR, and elemental analysis. The conjugates were screened for anti-inflammatory, urease, and cyclooxygenase-2 (COX-2) inhibition. Naproxen conjugated with sulfanilamide, sulfathiazole, and sulfaguanidine was found potent and showed a competitive mode of urease inhibition, with IC50 (µM) values 6.69 ± 0.11, 5.82 ± 0.28, 5.06 ± 0.29, respectively. When compared to other screened conjugates, the naproxen-sulfamethoxazole conjugation showed better anti-inflammatory action by inhibiting induced edema by 82.8%, which is comparable to the medication indomethacin (86.8% inhibition). Whereas it exhibited 75.4% inhibition of COX-2 at 10 µM concentration which is comparable with the reference drug (celecoxib, 77.1% inhibition). Moreover, the binding modes of competitive inhibitors with the urease and COX-2 receptor were predicted through molecular docking studies and their stability analysis through MD simulations showed that these compounds made stable complexes with the respective targets and there were no conformational changes that occurred during simulation. The obtained results showed that the conjugates of approved therapeutic molecules may lead to the development of novel types of pharmacological agents in the treatment of several pathological disorders where urease and COX-2 enzymes are involved.
Collapse
Affiliation(s)
- Saghir Ahmad
- School of Chemistry, University of the Punjab, Lahore, Pakistan
- Department of Microbiology, Immunology and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA, United States
| | | | - Mahmood Ahmed
- Department of Chemistry, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Muhammad Imran
- KAM School of Life Sciences, FC College (A Chartered University), Lahore, Pakistan
| | - Numan Yousaf
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Tanveer A. Wani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Seema Zargar
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ijaz Ali
- Center for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, Kuwait City, Kuwait
| | - Muhammad Muddassar
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| |
Collapse
|
7
|
Kanwal Q, Ahmed M, Hamza M, Ahmad M, Atiq-Ur-Rehman, Yousaf N, Javaid A, Anwar A, Khan IH, Muddassar M. Curcumin nanoparticles: physicochemical fabrication, characterization, antioxidant, enzyme inhibition, molecular docking and simulation studies. RSC Adv 2023; 13:22268-22280. [PMID: 37492507 PMCID: PMC10363772 DOI: 10.1039/d3ra01432k] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 07/17/2023] [Indexed: 07/27/2023] Open
Abstract
Curcumin is an extensively studied natural compound due to its extensive biological applications. However, there are some drawbacks linked to this compound such as poor absorption, low water-solubility, quick systemic elimination, fast metabolism, poor pharmacokinetics, low bioavailability, low penetration targeting efficacy and low stability. To overcome these drawbacks, curcumin is encapsulated in nano-carriers. In the current studies, we synthesized nanoparticles of curcumin without using nanocarriers by different methods such as nano-suspension (Cur-NSM), sonication (Cur-SM) and anti-solvent precipitation (Cur-ASP) to enhance the solubility of curcumin in water. The prepared nanoparticles were characterized by FTIR, SEM and XRD analysis. These curcumin nanoparticles were screened for their solubilities in water, DPPH scavenging, amylase, α-glucosidase and β-glucosidase enzymatic activities. The particle size of nano-curcumin was found to be in the 47.4-98.7 nm range. The reduction in particle size of curcumin dramatically increases its solubility in water to 79.2 μg mL-1, whereas the solubility of curcumin is just 0.98 μg mL-1. Cur-ASP showed the highest free radical scavenging potential (48.84 ± 0.98%) which was comparable with standard BHT (50.48 ± 1.11%) at 75.0 μg mL-1. As well, Cur-ASP showed the highest inhibition of α-amylase (68.67 ± 1.02%), α-glucosidase (58.30 ± 0.52%), and β-glucosidase (64.80 ± 0.43%) at 100 μg mL-1 which is comparable with standard drug acarbose. The greater surface area of nanoparticles exposes the various groups of curcumin for blocking the binding sites of enzymes. This strategy may be helpful in designing curcumin as a potent therapeutic agent against diabetes mellitus. Further, the molecular interactions of curcumin with α-amylase, α-glucosidase, β-glucosidase, and polyphenol oxidase were assessed by analyzing the plausible binding modes of curcumin in the binding pocket of each receptor. The best binding mode of curcumin was used to make complexes with the target proteins and their stability was confirmed by 50 ns MD simulation.
Collapse
Affiliation(s)
- Qudsia Kanwal
- Department of Chemistry, The University of Lahore Lahore Pakistan
| | - Mahmood Ahmed
- Department of Chemistry, Division of Science and Technology, University of Education, College Road Lahore Pakistan
| | - Muhammad Hamza
- Department of Chemistry, The University of Lahore Lahore Pakistan
- Additive Manufacturing Institute, Shenzhen University China
| | - Muhammad Ahmad
- Department of Chemistry, Division of Science and Technology, University of Education, College Road Lahore Pakistan
| | - Atiq-Ur-Rehman
- Department of Pharmacy, The University of Lahore Lahore Pakistan
| | - Numan Yousaf
- Department of Biosciences, COMSATS University Islamabad Islamabad Pakistan
| | - Arshad Javaid
- Institute of Agricultural Sciences, University of the Punjab Lahore Pakistan
| | - Aneela Anwar
- Basic Sciences and Humanity, University of Engineering and Technology, Kala Shah Kaku Campus Lahore Pakistan
| | - Iqra Haider Khan
- Institute of Agricultural Sciences, University of the Punjab Lahore Pakistan
| | - Muhammad Muddassar
- Department of Biosciences, COMSATS University Islamabad Islamabad Pakistan
| |
Collapse
|
8
|
Ahmad S, Abdul Qadir M, Ahmed M, Imran M, Yousaf N, Wani TA, Zargar S, Ali I, Muddassar M. New Acetamide-Sulfonamide-Containing Scaffolds: Antiurease Activity Screening, Structure-Activity Relationship, Kinetics Mechanism, Molecular Docking, and MD Simulation Studies. Molecules 2023; 28:5389. [PMID: 37513261 PMCID: PMC10386649 DOI: 10.3390/molecules28145389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/26/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
The development of novel scaffolds that can increase the effectiveness, safety, and convenience of medication therapy using drug conjugates is a promising strategy. As a result, drug conjugates are an active area of research and development in medicinal chemistry. This research demonstrates acetamide-sulfonamide scaffold preparation after conjugation of ibuprofen and flurbiprofen with sulfa drugs, and these scaffolds were then screened for urease inhibition. The newly designed conjugates were confirmed by spectroscopic techniques such as IR, 1HNMR, 13CNMR, and elemental analysis. Ibuprofen conjugated with sulfathiazole, flurbiprofen conjugated with sulfadiazine, and sulfamethoxazole were found to be potent and demonstrated a competitive mode of urease inhibition, with IC50 (µM) values of 9.95 ± 0.14, 16.74 ± 0.23, and 13.39 ± 0.11, respectively, and urease inhibition of 90.6, 84.1, and 86.1% respectively. Ibuprofen conjugated with sulfanilamide, sulfamerazine, and sulfacetamide, whereas flurbiprofen conjugated with sulfamerazine, and sulfacetamide exhibited a mixed mode of urease inhibition. Moreover, through molecular docking experiments, the urease receptor-binding mechanisms of competitive inhibitors were anticipated, and stability analysis through MD simulations showed that these compounds made stable complexes with the respective targets and that no conformational changes occurred during the simulation. The findings demonstrate that conjugates of approved therapeutic molecules may result in the development of novel classes of pharmacological agents for the treatment of various pathological conditions involving the urease enzyme.
Collapse
Affiliation(s)
- Saghir Ahmad
- School of Chemistry, University of the Punjab, Lahore 54590, Pakistan
- Department of Microbiology, Immunology and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA 22904, USA
| | | | - Mahmood Ahmed
- Department of Chemistry, Division of Science and Technology, University of Education, College Road, Lahore 54770, Pakistan
| | - Muhammad Imran
- Kauser Abdulla Malik School of Life Sciences, Forman Christian College (A Chartered University), Lahore 54600, Pakistan
| | - Numan Yousaf
- Department of Biosciences, COMSATS University Islamabad, Park Road, Islamabad 45550, Pakistan
| | - Tanveer A Wani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Seema Zargar
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 222452, Riyadh 11451, Saudi Arabia
| | - Ijaz Ali
- Center for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, Mubarak Al-Abdullah 32093, Kuwait
| | - Muhammad Muddassar
- Department of Biosciences, COMSATS University Islamabad, Park Road, Islamabad 45550, Pakistan
| |
Collapse
|
9
|
Wang X, Hu Q, Tang H, Pan X. Isoxazole/Isoxazoline Skeleton in the Structural Modification of Natural Products: A Review. Pharmaceuticals (Basel) 2023; 16:228. [PMID: 37259376 PMCID: PMC9964809 DOI: 10.3390/ph16020228] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 03/09/2024] Open
Abstract
Isoxazoles and isoxazolines are five-membered heterocyclic molecules containing nitrogen and oxygen. Isoxazole and isoxazoline are the most popular heterocyclic compounds for developing novel drug candidates. Over 80 molecules with a broad range of bioactivities, including antitumor, antibacterial, anti-inflammatory, antidiabetic, cardiovascular, and other activities, were reviewed. A review of recent studies on the use of isoxazoles and isoxazolines moiety derivative activities for natural products is presented here, focusing on the parameters that affect the bioactivity of these compounds.
Collapse
Affiliation(s)
| | | | | | - Xinhui Pan
- Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmaceutical Sciences, Shihezi University, Shihezi 832002, China
| |
Collapse
|
10
|
Rezazadeh-Jabalbarezi F, Ranjbar-Karimi R, Atabaki F, Mohammadiannejad K. Site-selective nucleophilic substitution reactions of 2,4,5,6-tetrachloropyrimidine with sulfonamides: Synthesis of novel trichloropyrimidine-arylsulfonamide hybrid derivatives. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.133909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
11
|
Bahmani A, Najafi Z, Chehardoli G. Curcumin-Derived Heterocycles as Anticancer Agents. A Systematic Review. ORG PREP PROCED INT 2022. [DOI: 10.1080/00304948.2022.2094659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Asrin Bahmani
- Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Zahra Najafi
- Department of Medicinal Chemistry, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Gholamabbas Chehardoli
- Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
12
|
Atloo T, Mohammadkhani R, Mohammadi A, Zaboli KA, Kaboli S, Rahimi H, Nosrati H, Danafar H. The Bovine Serum Albumin Coated Copper Oxide Nanoparticle for Curcumin Delivery in Biological Environment: In-vitro Drug Release. JOURNAL OF POLYMERS AND THE ENVIRONMENT 2022; 30:3203-3208. [DOI: 10.1007/s10924-022-02401-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/09/2022] [Indexed: 01/04/2025]
|
13
|
Nosrati H, Seidi F, Hosseinmirzaei A, Mousazadeh N, Mohammadi A, Ghaffarlou M, Danafar H, Conde J, Sharafi A. Prodrug Polymeric Nanoconjugates Encapsulating Gold Nanoparticles for Enhanced X-Ray Radiation Therapy in Breast Cancer. Adv Healthc Mater 2022; 11:e2102321. [PMID: 34800003 DOI: 10.1002/adhm.202102321] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Indexed: 12/13/2022]
Abstract
An optimal radiosensitizer with improved tumor retention has an important effect on tumor radiation therapy. Herein, gold nanoparticles (Au NPs) and drug-containing, mPEG-conjugated CUR (mPEG-CUR), self-assembled NPs (mPEG-CUR@Au) are developed and evaluated as a drug carrier and radiosensitizer in a breast cancer mice model. As a result, cancer therapy efficacy is improved significantly by applying all-in-one NPs to achieve synchronous chemoradiotherapy, as evidenced by studies evaluating cell viability, proliferation, and ROS production. In vivo anticancer experiments show that the mPEG-CUR@Au system improves the radiation sensitivity of 4T1 mammary carcinoma and completely abrogates breast cancer.
Collapse
Affiliation(s)
- Hamed Nosrati
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, 210037, China
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Farzad Seidi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, 210037, China
| | - Ali Hosseinmirzaei
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Navid Mousazadeh
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Ali Mohammadi
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | | | - Hossein Danafar
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - João Conde
- NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, 1150-082, Portugal
- Centre for Toxicogenomics and Human Health (ToxOmics), Genetics, Oncology and Human Toxicology, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, 1150-082, Portugal
| | - Ali Sharafi
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
14
|
Nosrati H, Attari E, Abhari F, Barsbay M, Ghaffarlou M, Mousazadeh N, Vaezi R, Kavetskyy T, Rezaeejam H, Webster TJ, Johari B, Danafar H. Complete ablation of tumors using synchronous chemoradiation with bimetallic theranostic nanoparticles. Bioact Mater 2022; 7:74-84. [PMID: 34466718 PMCID: PMC8379424 DOI: 10.1016/j.bioactmat.2021.05.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 04/28/2021] [Accepted: 05/10/2021] [Indexed: 12/27/2022] Open
Abstract
Synchronous chemotherapy and radiotherapy, termed chemoradiation therapy, is now an important standard regime for synergistic cancer treatment. For such treatment, nanoparticles can serve as improved carriers of chemotherapeutics into tumors and as better radiosensitizers for localized radiotherapy. Herein, we designed a Schottky-type theranostic heterostructure, Bi2S3-Au, with deep level defects (DLDs) in Bi2S3 as a nano-radiosensitizer and CT imaging contrast agent which can generate reactive free radicals to initiate DNA damage within tumor cells under X-ray irradiation. Methotrexate (MTX) was conjugated onto the Bi2S3-Au nanoparticles as a chemotherapeutic agent showing enzymatic stimuli-responsive release behavior. The designed hybrid system also contained curcumin (CUR), which cannot only serve as a nutritional supplement for chemotherapy, but also can play an important role in the radioprotection of normal cells. Impressively, this combined one-dose chemoradiation therapeutic injection of co-drug loaded bimetallic multifunctional theranostic nanoparticles with a one-time clinical X-ray irradiation, completely eradicated tumors in mice after approximately 20 days after irradiation showing extremely effective anticancer efficacy which should be further studied for numerous anti-cancer applications.
Collapse
Affiliation(s)
- Hamed Nosrati
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Joint Ukraine-Azerbaijan International Research and Education Center of Nanobiotechnology and Functional Nanosystems, Drohobych, Ukraine, Baku, Azerbaijan
| | - Elahe Attari
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Fatemeh Abhari
- Department of Radiology, School of Paramedical Sciences, Zanjan University of Medical Sciences, Zanjan, 45139- 56184, Iran
| | - Murat Barsbay
- Hacettepe University, Department of Chemistry, Beytepe, Ankara, 06800, Turkey
| | | | - Navid Mousazadeh
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, 45139- 56184, Iran
| | - Rasoul Vaezi
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Taras Kavetskyy
- Joint Ukraine-Azerbaijan International Research and Education Center of Nanobiotechnology and Functional Nanosystems, Drohobych, Ukraine, Baku, Azerbaijan
- Department of Surface Engineering, The John Paul II Catholic University of Lublin, 20-950, Lublin, Poland
- Drohobych Ivan Franko State Pedagogical University, 82100, Drohobych, Ukraine
| | - Hamed Rezaeejam
- Department of Radiology, School of Paramedical Sciences, Zanjan University of Medical Sciences, Zanjan, 45139- 56184, Iran
| | - Thomas J. Webster
- Department of Chemical Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA, 02115, United States
| | - Behrooz Johari
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, 45139- 56184, Iran
| | - Hossein Danafar
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Joint Ukraine-Azerbaijan International Research and Education Center of Nanobiotechnology and Functional Nanosystems, Drohobych, Ukraine, Baku, Azerbaijan
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
15
|
Molecular modeling piloted analysis for semicarbazone derivative of curcumin as a potent Abl-kinase inhibitor targeting colon cancer. 3 Biotech 2021; 11:506. [PMID: 34840927 PMCID: PMC8606278 DOI: 10.1007/s13205-021-03051-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 10/31/2021] [Indexed: 11/17/2022] Open
Abstract
The human Abl kinases comprise a family of proteins that are known to be key stimulus drivers in the signaling pathways modulating cell growth, cell survival, cell adhesion, and apoptosis. Recent collative studies have indicated the role of activation of Abl and Abl-related genes in solid tumors; further terming the Abl kinases as molecular switches which promote proliferation, tumorigenesis, and metastasis. The up-regulated Abl-kinase expression in colorectal cancer (CRC) and the role of Abl tyrosine kinase activity in the Matrigel invasion of CRC cells have cemented its significance in CRC advancement. Therefore, the requisite of identifying small molecules which serve as Abl selective inhibitors and designing anti-Abl therapies, particularly for CRC tumors, has driven this study. Curcumin has been touted as an effective inhibitor of cancer cells; however, it is limited by its physicochemical inadequacies. Hence, we have studied the behavior of heterocyclic derivatives of curcumin via computational tools such as pharmacophore-based virtual screening, molecular docking, free-energy binding, and ADME profiling. The most actively docked molecule, 3,5-bis(4-hydroxy-3-methylstyryl)-1H-pyrazole-1-carboxamide, was comparatively evaluated against Curcumin via molecular dynamics simulation using Desmond, Schrödinger. The study exhibited the improved stability of the derivative as compared to Curcumin in the tested protein pocket and displayed the interaction bonds with the contacted key amino acids. To further establish the claim, the derivatives were synthesized via the mechanism of cyclization of Curcumin and screened in vitro using SRB assay against human CRC cell line, HCT 116. The active derivative indicated an IC50 value of 5.85 µM, which was sevenfold lower as compared to Curcumin’s IC50 of 35.40 µM. Hence, the results base the potential role of the curcumin derivative in modulating Abl-kinase activity and in turn may have potential therapeutic value as a lead for CRC therapy.
Collapse
|
16
|
Asad M, Arshad MN, Asiri AM, Khan SA, Rehan M, Oves M. Synthesis, Characterization, Molecular Docking and Antimicrobial Activity of Novel Spiropyrrolidine Derivatives. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2021.1936083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Mohammad Asad
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Muhammad Nadeem Arshad
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdullah M. Asiri
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Salman A. Khan
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Physical Sciences Section, School of Sciences, Maulana Azad National Urdu University, Hyderabad, Telangana, India
| | - Mohd Rehan
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad Oves
- Center of Excellence in Environmental Studies, King Abdul-Aziz University, Jeddah, Saudi Arabia
| |
Collapse
|
17
|
Sethiya A, Agarwal DK, Agarwal S. Current Trends in Drug Delivery System of Curcumin and its Therapeutic Applications. Mini Rev Med Chem 2021; 20:1190-1232. [PMID: 32348221 DOI: 10.2174/1389557520666200429103647] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/30/2020] [Accepted: 04/09/2020] [Indexed: 02/07/2023]
Abstract
Curcumin is a poly phenolic compound extracted from turmeric. Over the past years, it has acquired significant interest among researchers due to its numerous pharmacological activities like anti- cancer, anti-alzheimer, anti-diabetic, anti-bacterial, anti-inflammatory and so on. However, the clinical use of curcumin is still obstructed due to tremendously poor bioavailability, rapid metabolism, lower gastrointestinal absorption, and low permeability through cell that makes its pharmacology thrilling. These issues have led to enormous surge of investigation to develop curcumin nano formulations which can overcome these restrictive causes. The scientists all across the universe are working on designing several drug delivery systems viz. liposomes, micelles, magnetic nano carriers, etc. for curcumin and its composites which not only improve its physiochemical properties but also enhanced its therapeutic applications. The review aims to systematically examine the treasure of information about the medicinal use of curcumin. This article delivers a general idea of the current study piloted to overwhelm the complications with the bioavailability of curcumin which have exhibited an enhanced biological activity than curcumin. This article explains the latest and detailed study of curcumin and its conjugates, its phytochemistry and biological perspectives and also proved curcumin as an efficient drug candidate for the treatment of numerous diseases. Recent advancements and futuristic viewpoints are also deliberated, which shall help researchers and foster commercial translations of improved nanosized curcumin combination for the treatment of various diseases.
Collapse
Affiliation(s)
- Ayushi Sethiya
- Department of Chemistry, Synthetic Organic Chemistry Laboratory, MLS University, Udaipur, 313001, India
| | | | - Shikha Agarwal
- Department of Chemistry, Synthetic Organic Chemistry Laboratory, MLS University, Udaipur, 313001, India
| |
Collapse
|
18
|
Dhumad AM, Jassem AM, Alharis RA, Almashal FA. Design, cytotoxic effects on breast cancer cell line (MDA-MB 231), and molecular docking of some maleimide-benzenesulfonamide derivatives. J INDIAN CHEM SOC 2021. [DOI: 10.1016/j.jics.2021.100055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
19
|
Rodrigues FC, Kumar NA, Thakur G. The potency of heterocyclic curcumin analogues: An evidence-based review. Pharmacol Res 2021; 166:105489. [PMID: 33588007 DOI: 10.1016/j.phrs.2021.105489] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/07/2021] [Accepted: 02/09/2021] [Indexed: 12/29/2022]
Abstract
Curcumin, a potent phytochemical, has been a significant lead compound and has been extensively investigated for its multiple bioactivities. Owing to its natural origin, non-toxic, safe, and pleiotropic behavior, it has been extensively explored. However, several limitations such as its poor stability, bioavailability, and fast metabolism prove to be a constraint to achieve its full therapeutic potential. Many approaches have been adopted to improve its profile, amongst which, structural modifications have indicated promising results. Its symmetric structure and simple chemistry have prompted organic and medicinal chemists to manipulate its arrangement and study its implications on the corresponding activity. One such recurring and favorable modification is at the diketo moiety with the aim to achieve isoxazole and pyrazole analogues of curcumin. A modification at this site is not only simple to achieve, but also has indicated a superior activity consistently. This review is a comprehensive and wide-ranged report of the different methods adopted to achieve several cyclized curcumin analogues along with the improvement in the efficacy of the corresponding activities observed.
Collapse
Affiliation(s)
- Fiona C Rodrigues
- Department of Biomedical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576 104, India
| | - Nv Anil Kumar
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576 104, India
| | - Goutam Thakur
- Department of Biomedical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576 104, India.
| |
Collapse
|
20
|
Kumar A, Kumar V, Kumari K, Jain P, Kaushik NK, Singh P. Promising iron(II) complexes of curcumins: designing, density functional theory, and molecular docking. J PHYS ORG CHEM 2021. [DOI: 10.1002/poc.4196] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Ajay Kumar
- Department of Chemistry Indian Institute of Technology New Delhi India
| | - Vinod Kumar
- SCNS Jawaharlal Nehru University Delhi India
| | - Kamlesh Kumari
- Department of Zoology, Deen Dayal Upadhyaya College University of Delhi New Delhi India
| | - Pallavi Jain
- Department of Chemistry, Faculty of Engineering and Technology SRM Institute of Science and Technology Ghaziabad UP India
| | - Nagendra Kumar Kaushik
- Department of Electrical & Biological Physics, Plasma Bioscience Research Center Kwangwoon University Seoul South Korea
| | - Prashant Singh
- Department of Chemistry, Atma Ram Sanatan Dharma College University of Delhi Delhi India
| |
Collapse
|
21
|
Arshad MN, Hussain MM, Asiri AM, Khalid M, Braga AA, Rahman MM. A potent synthesis and supramolecular synthon hierarchy percipience of (E)-Nʹ-(Napthalen-1-yl-methylene)-benzenesulfonohydrazide and 1-Napthaldehyde: A combined experimental and DFT studies. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128797] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Masaret GS. Synthesis, Docking and Antihypertensive Activity of Pyridone Derivatives. ChemistrySelect 2020. [DOI: 10.1002/slct.202003959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ghada S. Masaret
- Chemistry Department Faculty of Science Umm Al-Qura University Makkah 21955 Saudi Arabia
| |
Collapse
|
23
|
Shahzad S, Qadir MA, Ahmed M, Ahmad S, Khan MJ, Gulzar A, Muddassar M. Folic acid-sulfonamide conjugates as antibacterial agents: design, synthesis and molecular docking studies. RSC Adv 2020; 10:42983-42992. [PMID: 35514930 PMCID: PMC9058261 DOI: 10.1039/d0ra09051d] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 11/09/2020] [Indexed: 01/02/2023] Open
Abstract
Dihydrofolate reductase (DHFR) inhibitors, as antibacterial agents, contain pyrimidine, pteridine, and azine moieties among many other scaffolds. Folic acid (FA), with a pteridine ring and amine group, was used as our focus scaffold, which was then conjugated with sulfonamides to develop new conjugates. The novel synthesized conjugates were characterized using infrared spectroscopy, and 1H and 13C nuclear magnetic resonance (NMR) spectral studies and consequently screened for antimicrobial activities against bacterial strains with ampicillin as a positive control. Compound DS2 has the highest zone of inhibition (36.6 mm) with a percentage activity index (%AI) value of 122.8% against S. aureus and a minimum inhibitory concentration (MIC) of 15.63 μg mL-1. DHFR enzyme inhibition was also evaluated using the synthesized conjugates through in vitro studies, and inhibition assays revealed that compound DS2 exhibited a 75.4 ± 0.12% (mean ± standard error of the mean (SEM)) inhibition, which is comparable with the standard DHFR inhibitor trimethoprim (74.6 ± 0.09%). The compounds attached to the unsubstituted aryl moiety of the sulfonamides revealed better inhibition against the bacterial strains as compared to the methyl substituted aryl sulfonamides. Molecular docking studies of the novel synthesized conjugates were also performed on the DHFR enzyme to identify the plausible binding modes to explore the binding mechanisms of these conjugates.
Collapse
Affiliation(s)
- Shabnam Shahzad
- Institute of Chemistry, University of the Punjab Lahore-54590 Pakistan
| | | | - Mahmood Ahmed
- Renacon Pharma Limited Lahore-54600 Pakistan .,Division of Science and Technology, University of Education Lahore Pakistan
| | - Saghir Ahmad
- Institute of Chemistry, University of the Punjab Lahore-54590 Pakistan
| | - Muhammad Jadoon Khan
- Department of Biosciences, COMSATS University Islamabad Park Road Islamabad Pakistan
| | - Asad Gulzar
- Division of Science and Technology, University of Education Lahore Pakistan
| | - Muhammad Muddassar
- Department of Biosciences, COMSATS University Islamabad Park Road Islamabad Pakistan
| |
Collapse
|
24
|
Shirinzadeh H, Dilek E. Synthesis, characterization and biological activity evaluation of novel naphthalenylmethylen hydrazine derivatives as carbonic anhydrase inhibitors. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128657] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
25
|
Nosrati H, Danafar H, Rezaeejam H, Gholipour N, Rahimi-Nasrabadi M. Evaluation radioprotective effect of curcumin conjugated albumin nanoparticles. Bioorg Chem 2020; 100:103891. [PMID: 32422388 DOI: 10.1016/j.bioorg.2020.103891] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 03/31/2020] [Accepted: 04/26/2020] [Indexed: 11/25/2022]
Abstract
In this research, curcumin (CUR) conjugated albumin based nanoparticles (BSA-CUR) were designed for improvement and evaluation radioprotective effect of CUR. In this way, we have prepared BSA-CUR by covalently binding the CUR with BSA. Next, this synthesized prodrug was evaluated for physical and chemical properties by Fourier-transform infrared (FTIR), Dynamic light scattering (DLS), Transmission electron microscopy (TEM), Ultraviolet-visible (UV/Vis), and Differential scanning calorimetry (DSC) analysis. Furthermore, the chemical stability of designed prodrug was appraised. The result shows that the size of nanoparticles is 174.4 nm with a polydispersity index (PdI) of 0.191. The nanoparticles have a high loading capacity and show sustained release behavior. Loading of CUR to BSA not only could increase the chemical stability of CUR, but also could improve radioprotection efficacy of it's against X-Ray irradiation. The HHF-2 cells show 107% viability in the presence of BSA-CUR at a concentration of 50 µg/mL, whereas non-treated cells show 46% viability, under X-Ray irradiation. Also in vivo study results show that, four out of five mice have died when the mice irradiated by X-Ray and no received any treatment. Although, for a group that treated with BSA-CUR and also irradiated by X-Ray, median survival and survival rate was higher than CUR treated and control mice, and only two out of five mice have died. The result of this study proved that BSA-CUR can be used as a proficient vehicle for improving the potential radioprotective effect of CUR.
Collapse
Affiliation(s)
- Hamed Nosrati
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran; Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hossein Danafar
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hamed Rezaeejam
- Department of Radiology, School of Paramedical and Health, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Nazila Gholipour
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran; Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mehdi Rahimi-Nasrabadi
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran; Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
26
|
Istrefi Q, Türkeş C, Arslan M, Demir Y, Nixha AR, Beydemir Ş, Küfrevioğlu Öİ. Sulfonamides incorporating keteneN,S‐acetal bioisosteres as potent carbonic anhydrase and acetylcholinesterase inhibitors. Arch Pharm (Weinheim) 2020; 353:e1900383. [DOI: 10.1002/ardp.201900383] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/28/2020] [Accepted: 03/17/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Qëndresa Istrefi
- Department of Chemistry, Faculty of Mathematical and Natural SciencesUniversity of Prishtina Prishtina, Republic of Kosovo
| | - Cüneyt Türkeş
- Department of Biochemistry, Faculty of PharmacyErzincan Binali Yıldırım University Erzincan Turkey
| | - Mustafa Arslan
- Department of Chemistry, Faculty of Arts and SciencesSakarya University Sakarya Turkey
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High SchoolArdahan University Ardahan Turkey
| | - Arleta R. Nixha
- Department of Chemistry, Faculty of Mathematical and Natural SciencesUniversity of Prishtina Prishtina, Republic of Kosovo
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of PharmacyAnadolu University Eskişehir Turkey
| | - Ömer İ. Küfrevioğlu
- Department of Chemistry, Faculty of SciencesAtatürk University Erzurum Turkey
| |
Collapse
|
27
|
Taslimi P, Türkan F, Cetin A, Burhan H, Karaman M, Bildirici I, Gulçin İ, Şen F. Pyrazole[3,4-d]pyridazine derivatives: Molecular docking and explore of acetylcholinesterase and carbonic anhydrase enzymes inhibitors as anticholinergics potentials. Bioorg Chem 2019; 92:103213. [DOI: 10.1016/j.bioorg.2019.103213] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 08/16/2019] [Accepted: 08/20/2019] [Indexed: 12/19/2022]
|
28
|
Mermer A, Demirbas N, Cakmak U, Colak A, Demirbas A, Alagumuthu M, Arumugam S. Discovery of Novel Sulfonamide‐Based 5‐Arylidenerhodanines as Effective Carbonic Anhydrase (II) Inhibitors: Microwave‐Assisted and Ultrasound‐Assisted One‐Pot Four‐Component Synthesis, Molecular Docking, and Anti‐CA II Screening Studies. J Heterocycl Chem 2019. [DOI: 10.1002/jhet.3635] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Arif Mermer
- Department of ChemistryKaradeniz Technical University Trabzon Turkey
| | - Neslihan Demirbas
- Department of ChemistryKaradeniz Technical University Trabzon Turkey
| | - Ummuhan Cakmak
- Department of ChemistryKaradeniz Technical University Trabzon Turkey
| | - Ahmet Colak
- Department of ChemistryKaradeniz Technical University Trabzon Turkey
| | - Ahmet Demirbas
- Department of ChemistryKaradeniz Technical University Trabzon Turkey
| | | | - Sivakumar Arumugam
- Department of Biotechnology, School of Bio‐Science and TechnologyVIT Vellore India
| |
Collapse
|
29
|
Serbian I, Schwarzenberger P, Loesche A, Hoenke S, Al-Harrasi A, Csuk R. Ureidobenzenesulfonamides as efficient inhibitors of carbonic anhydrase II. Bioorg Chem 2019; 91:103123. [PMID: 31336306 DOI: 10.1016/j.bioorg.2019.103123] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 07/04/2019] [Accepted: 07/11/2019] [Indexed: 01/13/2023]
Abstract
Sulfonamides represent an important class of drugs because of their inhibitory effect on carbonic anhydrases (CAs). We therefore synthesized several ureidobenzenesulfonamides and evaluated their bCA II inhibition for their potential use as anti-glaucoma gents. Since these compounds must not show cytotoxic effects, their cytotoxic potential against several human tumor cell lines and non-malignant fibroblasts was investigated. Several fluorophenyl substituted sulfonamides were efficient inhibitors of bCA II. Only one benzylphenyl substituted sulfonamide, however, showed a remarkable selectivity for HT29 colorectal carcinoma cells while being significantly less cytotoxic to non-malignant fibroblasts.
Collapse
Affiliation(s)
- Immo Serbian
- Martin-Luther-University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany
| | - Philipp Schwarzenberger
- Martin-Luther-University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany
| | - Anne Loesche
- Martin-Luther-University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany
| | - Sophie Hoenke
- Martin-Luther-University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany
| | - Ahmed Al-Harrasi
- University of Nizwa, Chair of Oman's Medicinal Plants and Marine Natural Products, PO Box 33, Birkat Al-Mauz, Nizwa, Oman
| | - René Csuk
- Martin-Luther-University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany.
| |
Collapse
|
30
|
Saghafi T, Taheri RA, Parkkila S, Emameh RZ. Phytochemicals as Modulators of Long Non-Coding RNAs and Inhibitors of Cancer-Related Carbonic Anhydrases. Int J Mol Sci 2019; 20:E2939. [PMID: 31208095 PMCID: PMC6627131 DOI: 10.3390/ijms20122939] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 05/29/2019] [Accepted: 05/30/2019] [Indexed: 01/17/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are classified as a group of transcripts which regulate various biological processes, such as RNA processing, epigenetic control, and signaling pathways. According to recent studies, lncRNAs are dysregulated in cancer and play an important role in cancer incidence and spreading. There is also an association between lncRNAs and the overexpression of some tumor-associated proteins, including carbonic anhydrases II, IX, and XII (CA II, CA IX, and CA XII). Therefore, not only CA inhibition, but also lncRNA modulation, could represent an attractive strategy for cancer prevention and therapy. Experimental studies have suggested that herbal compounds regulate the expression of many lncRNAs involved in cancer, such as HOTAIR (HOX transcript antisense RNA), H19, MALAT1 (metastasis-associated lung adenocarcinoma transcript 1), PCGEM1 (Prostate cancer gene expression marker 1), PVT1, etc. These plant-derived drugs or phytochemicals include resveratrol, curcumin, genistein, quercetin, epigallocatechin-3-galate, camptothcin, and 3,3'-diindolylmethane. More comprehensive information about lncRNA modulation via phytochemicals would be helpful for the administration of new herbal derivatives in cancer therapy. In this review, we describe the state-of-the-art and potential of phytochemicals as modulators of lncRNAs in different types of cancers.
Collapse
Affiliation(s)
- Tayebeh Saghafi
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), 14965/161, Tehran, Iran.
| | - Ramezan Ali Taheri
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, P.O.Box 14965/161 Tehran, Iran.
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University, FI-33520 Tampere, Finland.
- Fimlab Laboratories Ltd. and Tampere University Hospital, FI-33520 Tampere, Finland.
| | - Reza Zolfaghari Emameh
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), 14965/161, Tehran, Iran.
| |
Collapse
|
31
|
Katouah HA, Gaffer HE. Synthesis and Docking Study of Pyrimidine Derivatives Scaffold for Anti‐Hypertension Application. ChemistrySelect 2019. [DOI: 10.1002/slct.201900799] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Hanadi A. Katouah
- Department of ChemistryFaculty of Applied ScienceUmm Al-Qura University Makkah 21955 Saudi Arabia
| | | |
Collapse
|
32
|
Synthesis of 1,2,4-triazole-5-on derivatives and determination of carbonic anhydrase II isoenzyme inhibition effects. Bioorg Chem 2019; 83:170-179. [DOI: 10.1016/j.bioorg.2018.10.042] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/19/2018] [Accepted: 10/22/2018] [Indexed: 01/04/2023]
|
33
|
Synthesis, biological evaluation and molecular docking of novel pyrazole derivatives as potent carbonic anhydrase and acetylcholinesterase inhibitors. Bioorg Chem 2019; 86:420-427. [PMID: 30769267 DOI: 10.1016/j.bioorg.2019.02.013] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/02/2019] [Accepted: 02/04/2019] [Indexed: 11/22/2022]
Abstract
A series of substituted pyrazole compounds (1-8 and 9a, b) were synthesized and their structure was characterized by IR, NMR, and Mass analysis. These obtained novel pyrazole derivatives (1-8 and 9a, b) were emerged as effective inhibitors of the cytosolic carbonic anhydrase I and II isoforms (hCA I and II) and acetylcholinesterase (AChE) enzymes with Ki values in the range of 1.03 ± 0.23-22.65 ± 5.36 µM for hCA I, 1.82 ± 0.30-27.94 ± 4.74 µM for hCA II, and 48.94 ± 9.63-116.05 ± 14.95 µM for AChE, respectively. Docking studies were performed for the most active compounds, 2 and 5, and binding mode between the compounds and the receptors were determined.
Collapse
|
34
|
Mermer A, Demirbas N, Colak A, Demir EA, Kulabas N, Demirbas A. One‐pot, Four‐Component Green Synthesis, Carbonic Anhydrase II Inhibition and Docking Studies of 5‐Arylidenerhodanines. ChemistrySelect 2018. [DOI: 10.1002/slct.201802677] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Arif Mermer
- Karadeniz Technical UniversityDepartment of Chemistry 61080 Trabzon TURKEY
| | - Neslihan Demirbas
- Karadeniz Technical UniversityDepartment of Chemistry 61080 Trabzon TURKEY
| | - Ahmet Colak
- Karadeniz Technical UniversityDepartment of Chemistry 61080 Trabzon TURKEY
| | | | - Necla Kulabas
- Department of Pharmaceutical ChemistryFaculty of PharmacyMarmara University Haydarpaşa 34668 İstanbul TURKEY
| | - Ahmet Demirbas
- Karadeniz Technical UniversityDepartment of Chemistry 61080 Trabzon TURKEY
| |
Collapse
|
35
|
Pawełczyk A, Sowa-Kasprzak K, Olender D, Zaprutko L. Microwave (MW), Ultrasound (US) and Combined Synergic MW-US Strategies for Rapid Functionalization of Pharmaceutical Use Phenols. Molecules 2018; 23:E2360. [PMID: 30223575 PMCID: PMC6225243 DOI: 10.3390/molecules23092360] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/10/2018] [Accepted: 09/13/2018] [Indexed: 11/16/2022] Open
Abstract
Increasingly stringent regulations aimed at protection of the natural environment have stimulated the search for new synthetic methodologies in organic and medicinal chemistry having no or minimum harmful effect. An interesting approach is the use of alternative activation factors, microwaves (MW) or ultrasounds (US) and also their cross-combination, which has been tested in the fast and efficient creation of new structures. At present, an easy and green hybrid strategy ("Lego" chemistry) is generally recommended for the design of new substances from different chemistry building blocks. Often, selected biologically active components with specific chemical reactivities are integrated by a suitably designed homo- or heterodifunctional linker that modifies the functionality of the starting structure, allowing easy covalent linkage to another molecule. In this study, a fast introduction of heterodifunctional halogenoacidic linker to selected mono-, di- and triphenolic active substances, allowing their functionalization, was investigated. Nucleophilic substitution reaction was chosen to produce final ethers with the reactive carboxylic group from phenols. The functionalization was performed using various green factors initiating and supporting the chemical reactions (MW, US, MW-US). The benefits of the three green supporting methods and different conditions of reactions were analyzed and compared with the results of the reaction performed by conventional methods.
Collapse
Affiliation(s)
- Anna Pawełczyk
- Department of Organic Chemistry, Pharmaceutical Faculty, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznań, Poland.
| | - Katarzyna Sowa-Kasprzak
- Department of Organic Chemistry, Pharmaceutical Faculty, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznań, Poland.
| | - Dorota Olender
- Department of Organic Chemistry, Pharmaceutical Faculty, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznań, Poland.
| | - Lucjusz Zaprutko
- Department of Organic Chemistry, Pharmaceutical Faculty, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznań, Poland.
| |
Collapse
|
36
|
Alim Z. 1H-indazole molecules reduced the activity of human erythrocytes carbonic anhydrase I and II isoenzymes. J Biochem Mol Toxicol 2018; 32:e22194. [DOI: 10.1002/jbt.22194] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 05/16/2018] [Accepted: 06/25/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Zuhal Alim
- Department of Chemistry, Faculty of Science and Arts; Kırşehir Ahi Evran University; Kırşehir 40100 Turkey
| |
Collapse
|