1
|
Xue JJ, Miao FP, Fang ST. Alterbutenolide, a new butenolide derivative from a sponge-derived fungus Alternaria alternata I-YLW6-1. Nat Prod Res 2024; 38:2480-2485. [PMID: 36823786 DOI: 10.1080/14786419.2023.2183500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/02/2023] [Accepted: 02/16/2023] [Indexed: 02/25/2023]
Abstract
Alterbutenolide (1), a new butenolide derivative with a long-chain aliphatic acid substitution, together with seven known phenolic compounds i.e. alternariol (2), asperigillol B (3), p-hydroxyphenylacetic acid (4), p-hydroxyphenylethyl alcohol (5), methyl p-hydroxyphenyl acetate (6), 2-(4-hydroxyphenyl)ethyl acetate (7), and 5,6-dihydro-4-methyl-2H-pyran-2-one (8), was isolated from the cultures of a sponge-derived fungus Alternaria alternata I-YLW6-1. The structure of 1 was established on the basis of HR-MS, 1D and 2D NMR, as well as by comparison of the optical rotation data with the literature reported. Compounds 2 and 3 showed significant to moderate inhibitory activities against three harmful microalgae with IC50 values from 3.0 to 36.2 μg/mL, whereas compound 1 only displayed moderate inhibition against Chattonella marina with IC50 value of 34.6 μg/mL. Meanwhile, compounds 3 and 4 showed weak toxicity against brine shrimp larvae with LC50 values >100 μg/mL.
Collapse
Affiliation(s)
- Jun-Juan Xue
- Department of Traditional Chinese Medicine, Shandong College of Traditional Chinese Medicine, Yantai, China
| | - Feng-Ping Miao
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Sheng-Tao Fang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| |
Collapse
|
2
|
Sun Y, Xin J, Xu Y, Wang X, Zhao F, Niu C, Liu S. Research Progress on Sesquiterpene Compounds from Artabotrys Plants of Annonaceae. Molecules 2024; 29:1648. [PMID: 38611927 PMCID: PMC11013193 DOI: 10.3390/molecules29071648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/27/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
Artabotrys, a pivotal genus within the Annonaceae family, is renowned for its extensive biological significance and medicinal potential. The genus's sesquiterpene compounds have attracted considerable interest from the scientific community due to their structural complexity and diverse biological activities. These compounds exhibit a range of biological activities, including antimalarial, antibacterial, anti-inflammatory analgesic, and anti-tumor properties, positioning them as promising candidates for medical applications. This review aims to summarize the current knowledge on the variety, species, and structural characteristics of sesquiterpene compounds isolated from Artabotrys plants. Furthermore, it delves into their pharmacological activities and underlying mechanisms, offering a comprehensive foundation for future research.
Collapse
Affiliation(s)
- Yupei Sun
- School of Pharmacy, Yantai University, Yantai 264005, China; (Y.S.); (Y.X.); (X.W.)
| | - Jianzeng Xin
- School of Life Sciences, Yantai University, Yantai 264005, China;
| | - Yaxi Xu
- School of Pharmacy, Yantai University, Yantai 264005, China; (Y.S.); (Y.X.); (X.W.)
| | - Xuyan Wang
- School of Pharmacy, Yantai University, Yantai 264005, China; (Y.S.); (Y.X.); (X.W.)
| | - Feng Zhao
- School of Pharmacy, Yantai University, Yantai 264005, China; (Y.S.); (Y.X.); (X.W.)
| | - Changshan Niu
- College of Pharmacy, University of Utah, Salt Lake City, UT 84108, USA
| | - Sheng Liu
- School of Pharmacy, Yantai University, Yantai 264005, China; (Y.S.); (Y.X.); (X.W.)
| |
Collapse
|
3
|
Song YP, Ji NY. Chemistry and biology of marine-derived Trichoderma metabolites. NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:14. [PMID: 38302800 PMCID: PMC10834931 DOI: 10.1007/s13659-024-00433-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/17/2024] [Indexed: 02/03/2024]
Abstract
Marine-derived fungi of the genus Trichoderma have been surveyed for pharmaceuticals and agrochemicals since 1993, with various new secondary metabolites being characterized from the strains of marine animal, plant, sediment, and water origin. Chemical structures and biological activities of these metabolites are comprehensively reviewed herein up to the end of 2022 (covering 30 years). More than 70 strains that belong to at least 18 known Trichoderma species have been chemically investigated during this period. As a result, 445 new metabolites, including terpenes, steroids, polyketides, peptides, alkaloids, and others, have been identified, with over a half possessing antimicroalgal, zooplankton-toxic, antibacterial, antifungal, cytotoxic, anti-inflammatory, and other activities. The research is highlighted by the molecular diversity and antimicroalgal potency of terpenes and steroids. In addition, metabolic relevance along with co-culture induction in the production of new compounds is also concluded. Trichoderma strains of marine origin can transform and degrade heterogeneous molecules, but these functions need further exploration.
Collapse
Affiliation(s)
- Yin-Ping Song
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, People's Republic of China
| | - Nai-Yun Ji
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, People's Republic of China.
| |
Collapse
|
4
|
Fernández-Valero AD, Reñé A, Timoneda N, Pou-Solà N, Gordi J, Sampedro N, Garcés E. The succession of epiphytic microalgae conditions fungal community composition: how chytrids respond to blooms of dinoflagellates. ISME COMMUNICATIONS 2023; 3:103. [PMID: 37752353 PMCID: PMC10522651 DOI: 10.1038/s43705-023-00304-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/28/2023]
Abstract
This study aims to investigate the temporal dynamics of the epiphytic protist community on macroalgae, during the summer months, with a specific focus on fungi, and the interactions between zoosporic chytrid parasites and the proliferation of the dinoflagellates. We employed a combination of environmental sequencing techniques, incubation of natural samples, isolation of target organisms and laboratory experiments. Metabarcoding sequencing revealed changes in the dominant members of the epiphytic fungal community. Initially, fungi comprised < 1% of the protist community, mostly accounted for by Basidiomycota and Ascomycota, but with the emergence of Chytridiomycota during the mature phase of the biofilm, the fungal contribution increased to almost 30%. Chytridiomycota became dominant in parallel with an increase in the relative abundance of dinoflagellates in the community. Microscopy observations showed a general presence of chytrids following the peak proliferation of the dinoflagellate Ostreopsis sp., with the parasite, D. arenysensis as the dominant chytrid. The maximum infection prevalence was 2% indicating host-parasite coexistence. To further understand the in-situ prevalence of chytrids, we characterised the dynamics of the host abundance and prevalence of chytrids through co-culture. These laboratory experiments revealed intraspecific variability of D. arenysensis in its interaction with Ostreopsis, exhibiting a range from stable coexistence to the near-extinction of the host population. Moreover, while chytrids preferentially parasitized dinoflagellate cells, one of the strains examined displayed the ability to utilize pollen as a resource to maintain its viability, thus illustrating a facultative parasitic lifestyle. Our findings not only enrich our understanding of the diversity, ecology, and progression of epiphytic microalgal and fungal communities on Mediterranean coastal macroalgae, but they also shed light on the presence of zoosporic parasites in less-explored benthic habitats.
Collapse
Affiliation(s)
- Alan Denis Fernández-Valero
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar (CSIC), Pg. Marítim de la Barceloneta, 37-49, 08003, Barcelona, Catalonia, Spain.
| | - Albert Reñé
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar (CSIC), Pg. Marítim de la Barceloneta, 37-49, 08003, Barcelona, Catalonia, Spain
| | - Natàlia Timoneda
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar (CSIC), Pg. Marítim de la Barceloneta, 37-49, 08003, Barcelona, Catalonia, Spain
| | - Núria Pou-Solà
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar (CSIC), Pg. Marítim de la Barceloneta, 37-49, 08003, Barcelona, Catalonia, Spain
| | - Jordina Gordi
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar (CSIC), Pg. Marítim de la Barceloneta, 37-49, 08003, Barcelona, Catalonia, Spain
| | - Nagore Sampedro
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar (CSIC), Pg. Marítim de la Barceloneta, 37-49, 08003, Barcelona, Catalonia, Spain
| | - Esther Garcés
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar (CSIC), Pg. Marítim de la Barceloneta, 37-49, 08003, Barcelona, Catalonia, Spain
| |
Collapse
|
5
|
Guo Q, Shi L, Wang X, Li D, Yin Z, Zhang J, Ding G, Chen L. Structures and Biological Activities of Secondary Metabolites from the Trichoderma genus (Covering 2018-2022). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13612-13632. [PMID: 37684097 DOI: 10.1021/acs.jafc.3c04540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
Trichoderma, a genus with more than 400 species, has a long history of use as an industrial bioreactor, biofertilizer, and biocontrol agent. It is considered a significant source of secondary metabolites (SMs) that possess unique structural features and a wide range of bioactivities. In recent years, numerous secondary metabolites of Trichoderma, including terpenoids, polyketides, peptides, alkaloids, and steroids, have been identified. Most of these SMs displayed antimicrobial, cytotoxic, and antifungal effects. This review focuses on the structural diversity, biological activities, and structure-activity relationships (SARs) of the SMs isolated from Trichoderma covered from 2018 to 2022. This study provides insights into the exploration and utilization of bioactive compounds from Trichoderma species in the agriculture or pharmaceutical industry.
Collapse
Affiliation(s)
- Qingfeng Guo
- Henan Comprehensive Utilization of Edible and Medicinal Plant Resources Engineering Technology Research Center, Zhengzhou Key Laboratory of Synthetic Biology of Natural Products, Huanghe Science and Technology College, Zhengzhou 450063, People's Republic of China
| | - Lei Shi
- Henan Comprehensive Utilization of Edible and Medicinal Plant Resources Engineering Technology Research Center, Zhengzhou Key Laboratory of Synthetic Biology of Natural Products, Huanghe Science and Technology College, Zhengzhou 450063, People's Republic of China
| | - Xinyang Wang
- Henan Comprehensive Utilization of Edible and Medicinal Plant Resources Engineering Technology Research Center, Zhengzhou Key Laboratory of Synthetic Biology of Natural Products, Huanghe Science and Technology College, Zhengzhou 450063, People's Republic of China
- Henan University, Kaifeng 475004, People's Republic of China
| | - Dandan Li
- Henan Comprehensive Utilization of Edible and Medicinal Plant Resources Engineering Technology Research Center, Zhengzhou Key Laboratory of Synthetic Biology of Natural Products, Huanghe Science and Technology College, Zhengzhou 450063, People's Republic of China
- Henan University, Kaifeng 475004, People's Republic of China
| | - Zhenhua Yin
- Henan Comprehensive Utilization of Edible and Medicinal Plant Resources Engineering Technology Research Center, Zhengzhou Key Laboratory of Synthetic Biology of Natural Products, Huanghe Science and Technology College, Zhengzhou 450063, People's Republic of China
| | - Juanjuan Zhang
- Henan Comprehensive Utilization of Edible and Medicinal Plant Resources Engineering Technology Research Center, Zhengzhou Key Laboratory of Synthetic Biology of Natural Products, Huanghe Science and Technology College, Zhengzhou 450063, People's Republic of China
| | - Gang Ding
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science and Union Medical College, Beijing 100193, People's Republic of China
| | - Lin Chen
- Henan Comprehensive Utilization of Edible and Medicinal Plant Resources Engineering Technology Research Center, Zhengzhou Key Laboratory of Synthetic Biology of Natural Products, Huanghe Science and Technology College, Zhengzhou 450063, People's Republic of China
| |
Collapse
|
6
|
Rahman M, Borah SM, Borah PK, Bora P, Sarmah BK, Lal MK, Tiwari RK, Kumar R. Deciphering the antimicrobial activity of multifaceted rhizospheric biocontrol agents of solanaceous crops viz., Trichoderma harzianum MC2, and Trichoderma harzianum NBG. FRONTIERS IN PLANT SCIENCE 2023; 14:1141506. [PMID: 36938007 PMCID: PMC10020943 DOI: 10.3389/fpls.2023.1141506] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
The Solanaceae family is generally known to be the third most economically important plant taxon, but also harbors a host of plant pathogens. Diseases like wilt and fruit rot of solanaceous crops cause huge yield losses in the field as well as in storage. In the present study, eight isolates of Trichoderma spp. were obtained from rhizospheric micro-flora of three solanaceous crops: tomato, brinjal, and chili plants, and were subsequently screened for pre-eminent biocontrol activity against three fungal (Fusarium oxysporum f. sp. lycopersicum, Colletotrichum gloeosporioides, and Rhizoctonia solani) and one bacterial (Ralstonia solanacearum) pathogen. Morphological, ITS, and tef1α marker-based molecular identification revealed eight isolates were different strains of Trichoderma. Seven isolates were distinguished as T. harzianum while one was identified as T. asperellum. In vitro antagonistic and biochemical assays indicated significant biocontrol activity governed by all eight isolates. Two fungal isolates, T. harzianum MC2 and T. harzianum NBG were further evaluated to decipher their best biological control activity. Preliminary insights into the secondary metabolic profile of both isolates were retrieved by liquid chromatography-mass spectrometry (LC-MS). Further, a field experiment was conducted with the isolates T. harzianum MC2 and T. harzianum NBG which successfully resulted in suppression of bacterial wilt disease in tomato. Which possibly confer biocontrol properties to the identified isolates. The efficacy of these two strains in suppressing bacterial wilt and promoting plant growth in the tomato crop was also tested in the field. The disease incidence was significantly reduced by 47.50% and yield incremented by 54.49% in plants treated in combination with both the bioagents. The results of scanning electron microscopy were also in consensus with the in planta results. The results altogether prove that T. harzianum MC2 and T. harzianum NBG are promising microbes for their prospective use in agricultural biopesticide formulations.
Collapse
Affiliation(s)
- Mehjebin Rahman
- Department of Plant Pathology, Assam Agricultural University, Jorhat, Assam, India
| | - Sapna Mayuri Borah
- Department of Plant Pathology, Assam Agricultural University, Jorhat, Assam, India
| | - Pradip Kr. Borah
- Department of Plant Pathology, Assam Agricultural University, Jorhat, Assam, India
| | - Popy Bora
- Department of Plant Pathology, Regional Agricultural Research Station, Jorhat, Assam, India
| | - Bidyut Kumar Sarmah
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, India
| | - Milan Kumar Lal
- Department of Plant Protection; Department of Crop Physiology, Biochemistry & Postharvest Technology, ICAR-Central Potato Research Institute, Shimla, India
| | - Rahul Kumar Tiwari
- Department of Plant Protection; Department of Crop Physiology, Biochemistry & Postharvest Technology, ICAR-Central Potato Research Institute, Shimla, India
| | - Ravinder Kumar
- Department of Plant Protection; Department of Crop Physiology, Biochemistry & Postharvest Technology, ICAR-Central Potato Research Institute, Shimla, India
| |
Collapse
|
7
|
Yin XL, Song YP, Liu XH, Ji NY. Cyclopentenone and wickerol derivatives from the marine algicolous fungus Trichoderma atroviride A-YMD-9-4. Nat Prod Res 2023; 37:277-282. [PMID: 34498954 DOI: 10.1080/14786419.2021.1969568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A new cyclopentenone derivative, 4-hydroxyhypocrenone A, and a new naturally-occurring wickerol derivative, 8-acetoxywickerol A, as well as two known compounds, hypocrenone A and wickerol B, were purified from Trichoderma atroviride A-YMD-9-4, an endophytic fungus isolated from the marine red alga Gracilaria verrucosa. The structures and relative configurations of two new isolates were established by a combination of 1 D/2D NMR, IR, and mass spectroscopic methods, and the absolute configuration of 1 was assigned on the basis of ECD data analyzed by quantum chemical calculations. Compounds 1 and 2 exhibited weak inhibition of one or two marine phytoplankton species.
Collapse
Affiliation(s)
- Xiu-Li Yin
- Yantai Institute of Coastal Zone Research, Center for Ocean Mega-Science, Chinese Academy of Sciences, Yantai, People's Republic of China
| | - Yin-Ping Song
- Yantai Institute of Coastal Zone Research, Center for Ocean Mega-Science, Chinese Academy of Sciences, Yantai, People's Republic of China
| | - Xiang-Hong Liu
- Yantai Institute of Coastal Zone Research, Center for Ocean Mega-Science, Chinese Academy of Sciences, Yantai, People's Republic of China
| | - Nai-Yun Ji
- Yantai Institute of Coastal Zone Research, Center for Ocean Mega-Science, Chinese Academy of Sciences, Yantai, People's Republic of China
| |
Collapse
|
8
|
Liang Y, Li D, Zheng Y, Shen Y, Li Q, Wei M, Yang H, Ye S, Chen C, Zhu H, Zhang Y. Virenscarotins A-M, thirteen undescribed carotane sesquiterpenes from the fungus Trichoderma virens. PHYTOCHEMISTRY 2022; 203:113368. [PMID: 35977601 DOI: 10.1016/j.phytochem.2022.113368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
A document investigation on the fungus Trichoderma virens led to the isolation of thirteen undescribed carotane sesquiterpenes and homologous. All structures were elucidated on the basis of NMR and HRESIMS data, and their absolute configurations were assigned by ECD calculation. Especially, virenscarotins A and B were first ramifications forged by aldol condensation of 4-hydroxy-3-isopentenyl-benzaldehyde with two hydroxyl groups in ring A of traditional carotane sesquiterpenes. Ring rearrangement/expansion and oxidative cleavage of normal carotane sesquiterpenes lead to the six-membered ring A of compound virenscarotin C and the ring A cleavage of compound virenscarotin D. All compounds were evaluated for cytotoxic, anti-inflammatory, and seed germination inhibitory activities.
Collapse
Affiliation(s)
- Yu Liang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, People's Republic of China
| | - Dongyan Li
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Yuyi Zheng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, People's Republic of China
| | - Yong Shen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, People's Republic of China
| | - Qin Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, People's Republic of China
| | - Mengsha Wei
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, People's Republic of China
| | - Haojie Yang
- Huaxi MR Research Center, Department of Nuclear Medicine, Frontiers Science Center for Diseaserelated Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610000, China
| | - Saiyi Ye
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, People's Republic of China
| | - Chunmei Chen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, People's Republic of China.
| | - Hucheng Zhu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, People's Republic of China.
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, People's Republic of China.
| |
Collapse
|
9
|
Bai B, Liu C, Zhang C, He X, Wang H, Peng W, Zheng C. Trichoderma species from plant and soil: An excellent resource for biosynthesis of terpenoids with versatile bioactivities. J Adv Res 2022:S2090-1232(22)00212-0. [PMID: 36195283 DOI: 10.1016/j.jare.2022.09.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/28/2022] [Accepted: 09/24/2022] [Indexed: 10/06/2022] Open
Abstract
BACKGROUND Trichoderma species are rich source of bioactive secondary metabolites. In the past decades, a series of secondary metabolites were reported from different Trichoderma fungi, among which terpenoids possessing versatile structural diversities and extensive pharmacological activities are one of the particularly important categories. AIM OF REVIEW The review aims to summarize the terpenoids isolated from Trichoderma species regarding their structural diversities, biological activities, and promising biosynthetic potentials. KEY SCIENTIFIC CONCEPTS OF REVIEW So far, a total of 253 terpenoids, including 202 sesquiterpenes, 48 diterpenes, 2 monoterpenes and 1 meroterpenoid, were isolated and identified from Trichoderma species between 1948 and 2022. Pharmacological investigations of Trichoderma terpenoids mainly focused on their antibacterial activities, antifungal activities, inhibitory activities on marine plankton species and cytotoxic activities, indicating that Trichoderma species are important microbial agents for drug discovery and environmentally friendly agrochemicals development. Intriguing chemistry and enzymology involved in the biosynthesis of Trichoderma terpenoids were also presented to facilitate further precise genome mining-guided novel structure discovery. Taken together, the abundance of novel skeletons, bioactivities and biosynthetic potentials presents new opportunities for drug and agrochemicals discovery, genome mining and enzymology exploration from Trichoderma species. The work will provide references for the profound study of terpenoids derived from Trichoderma, and facilitate further studies on Trichoderma species in the areas of chemistry, medicine, agriculture and microbiology.
Collapse
Affiliation(s)
- Bingke Bai
- Faculty of Pharmacy, Naval Medical University, Shanghai 200433, PR China
| | - Chang Liu
- Faculty of Pharmacy, Naval Medical University, Shanghai 200433, PR China
| | - Chengzhong Zhang
- Faculty of Pharmacy, Naval Medical University, Shanghai 200433, PR China
| | - Xuhui He
- Faculty of Pharmacy, Naval Medical University, Shanghai 200433, PR China
| | - Hongrui Wang
- Faculty of Pharmacy, Naval Medical University, Shanghai 200433, PR China
| | - Wei Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, PR China.
| | - Chengjian Zheng
- Faculty of Pharmacy, Naval Medical University, Shanghai 200433, PR China.
| |
Collapse
|
10
|
Silva-Campos M, Callahan DL, Cahill DM. Metabolites derived from fungi and bacteria suppress in vitro growth of Gnomoniopsis smithogilvyi, a major threat to the global chestnut industry. Metabolomics 2022; 18:74. [PMID: 36104635 PMCID: PMC9474450 DOI: 10.1007/s11306-022-01933-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/29/2022] [Indexed: 12/03/2022]
Abstract
INTRODUCTION Chestnut rot caused by the fungus Gnomoniopsis smithogilvyi is a disease present in the world's major chestnut growing regions. The disease is considered a significant threat to the global production of nuts from the sweet chestnut (Castanea sativa). Conventional fungicides provide some control, but little is known about the potential of biological control agents (BCAs) as alternatives to manage the disease. OBJECTIVE Evaluate whether formulated BCAs and their secreted metabolites inhibit the in vitro growth of G. smithogilvyi. METHODS The antifungal potential of BCAs was assessed against the pathogen through an inverted plate assay for volatile compounds (VOCs), a diffusion assay for non-volatile compounds (nVOCs) and in dual culture. Methanolic extracts of nVOCs from the solid medium were further evaluated for their effect on conidia germination and were screened through an LC-MS-based approach for antifungal metabolites. RESULTS Isolates of Trichoderma spp., derived from the BCAs, significantly suppressed the pathogen through the production of VOCs and nVOCs. The BCA from which Bacillus subtilis was isolated was more effective in growth inhibition through the production of nVOCs. The LC-MS based metabolomics on the nVOCs derived from the BCAs showed the presence of several antifungal compounds. CONCLUSION The results show that G. smithogilvyi can be effectively controlled by the BCAs tested and that their use may provide a more ecological alternative for managing chestnut rot. The in vitro analysis should now be expanded to the field to assess the effectiveness of these alternatives for chestnut rot management.
Collapse
Affiliation(s)
- Matias Silva-Campos
- School of Life and Environmental Sciences, Deakin University, Geelong Waurn Ponds Campus, Geelong, VIC 3216 Australia
| | - Damien L. Callahan
- School of Life and Environmental Sciences, Centre for Cellular and Molecular Biology, Deakin University, Burwood Campus, Burwood, VIC 3125 Australia
| | - David M. Cahill
- School of Life and Environmental Sciences, Deakin University, Geelong Waurn Ponds Campus, Geelong, VIC 3216 Australia
| |
Collapse
|
11
|
Amirzakariya BZ, Shakeri A. Bioactive terpenoids derived from plant endophytic fungi: An updated review (2011-2020). PHYTOCHEMISTRY 2022; 197:113130. [PMID: 35183568 DOI: 10.1016/j.phytochem.2022.113130] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 01/17/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Plant endophytes have been considered as novel sources of naturally occurring compounds with various biological activities, including cytotoxic, antimicrobial, anti-inflammatory, anticancer, herbicides, antileishmanial and antioxidant. A variety of specialised products, comprising terpenoids, alkaloids, polyketides, phenolic compounds, coumarins, and quinone derivatives have been reported from various strains. An increasing number of products, especially terpenoids, are being isolated from endophytes. Herein, the isolated new terpenoids from plant endophytic fungi, their hosts, as well as biological activities, from January 2011 until the end of 2020 are reviewed. In this period, 516 terpenoids are classified into monoterpenes (5), sesquiterpenes (299), diterpenes (76), sesterterpens (22), meroterpenes (83), triterpenes (29), and other terpenoids (2), were isolated from different plant endophytic fungi species.
Collapse
Affiliation(s)
| | - Abolfazl Shakeri
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
12
|
Hayasaka A, Hashimoto K, Konno K, Tanaka K, Hashimoto M. Isolation, Identification, and DFT-based Conformational Analysis of Sesquikarahanadienone and its Congeners from Freshwater Dothideomycetes Neohelicascus aquaticus KT4120. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Ayane Hayasaka
- Faculty of Agriculture and Life Science, Hirosaki University, 3-Bunkyo-cho, Hirosaki, 036-8561, Japan
| | - Kazuki Hashimoto
- Faculty of Agriculture and Life Science, Hirosaki University, 3-Bunkyo-cho, Hirosaki, 036-8561, Japan
| | - Katsuhiro Konno
- Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Kazuaki Tanaka
- Faculty of Agriculture and Life Science, Hirosaki University, 3-Bunkyo-cho, Hirosaki, 036-8561, Japan
| | - Masaru Hashimoto
- Faculty of Agriculture and Life Science, Hirosaki University, 3-Bunkyo-cho, Hirosaki, 036-8561, Japan
| |
Collapse
|
13
|
Yang Y, Liu Y, Yu H, Xie Q, Wang B, Jiang S, Su W, Mao Y, Li B, Peng C, Jian Y, Wang W. Sesquiterpenes from Kadsura coccinea attenuate rheumatoid arthritis-related inflammation by inhibiting the NF-κB and JAK2/STAT3 signal pathways. PHYTOCHEMISTRY 2022; 194:113018. [PMID: 34837762 DOI: 10.1016/j.phytochem.2021.113018] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 06/13/2023]
Abstract
The roots of Kadsura coccinea is commonly used in Tujia ethnomedicine, named "heilaohu", having the effect of treating rheumatic arthritis (RA). Chemical investigation on the ethanol extract of heilaohu led to the isolation of one undescribed cuparane sesquiterpenoid, heilaohusesquiterpenoid A, one undescribed carotane sesquiterpenoids, heilaohusesquiterpenoid B, and eighteen sesquiterpene derivatives. Their structures were subsequently determined based on their 1D and 2D-NMR, HR-ESI-MS, and ECD spectroscopic data. Gaultheriadiolide was the most cytotoxic compound against the proliferation of rheumatoid arthritis-fibroblastoid synovial (RA-FLS) cells with an IC50 value of 9.37 μM. In the same line, nine compounds exhibited significant inhibition effects against TNF-α and IL-6 release in the LPS-induced RAW264.7 cells with IC50 values ranging between 1.03 and 10.99 μM. The potential molecular mechanisms of the active compounds against RA were established through pharmacological network analysis based on the initial screening results. Experimental validation showed that gaultheriadiolide suppressed inflammation by inhibiting the NF-kB and JAK2/STAT3 pathways. This study enriches the structural diversity of sesquiterpenes in K. coccinea and lays a foundation for further anti-RA and anti-inflammatory studies.
Collapse
Affiliation(s)
- Yupei Yang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.
| | - Yongbei Liu
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.
| | - Huanghe Yu
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.
| | - Qingling Xie
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.
| | - Bin Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.
| | - Sai Jiang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.
| | - Wei Su
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.
| | - Yu Mao
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.
| | - Bin Li
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.
| | - Caiyun Peng
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.
| | - Yuqing Jian
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.
| | - Wei Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.
| |
Collapse
|
14
|
Liang J, Liang W, Chen X, Wang Q. Antibacterial sesquiterpenoids from Solanum lyratum. Nat Prod Res 2021; 36:5863-5867. [PMID: 34963382 DOI: 10.1080/14786419.2021.2019734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Investigation into the chemical diversity of Solanum lyratum led to the discovery of one new sesquiterpenoid, solyraterpenoid A (1), and two known compounds (2 and 3). The structure incorporating absolute configuration of 1 was determined via spectroscopic data, mainly including HRESIMS and NMR, and single-crystal X-ray diffraction analysis. Compound 1 showed significant antibacterial activity against Pseudomonas aeruginosa, Escherichia coli, and Klebsiella pneumoniae with MIC values of 8, 8, and 4 μg/mL, respectively.
Collapse
Affiliation(s)
- Jun Liang
- Department of Pharmacy, Taihe Hospital, Hubei University of Medicine, Shiyan, People's Republic of China
| | - Wenbin Liang
- Department of Pharmacy, Taihe Hospital, Hubei University of Medicine, Shiyan, People's Republic of China
| | - Xintao Chen
- Department of Pharmacy, Taihe Hospital, Hubei University of Medicine, Shiyan, People's Republic of China.,Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Qibin Wang
- Department of Pharmacy, Taihe Hospital, Hubei University of Medicine, Shiyan, People's Republic of China
| |
Collapse
|
15
|
Dai Q, Zhang FL, Feng T. Sesquiterpenoids Specially Produced by Fungi: Structures, Biological Activities, Chemical and Biosynthesis (2015-2020). J Fungi (Basel) 2021; 7:1026. [PMID: 34947008 PMCID: PMC8705726 DOI: 10.3390/jof7121026] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 11/28/2021] [Accepted: 11/28/2021] [Indexed: 12/28/2022] Open
Abstract
Fungi are widely distributed in the terrestrial environment, freshwater, and marine habitat. Only approximately 100,000 of these have been classified although there are about 5.1 million characteristic fungi all over the world. These eukaryotic microbes produce specialized metabolites and participate in a variety of ecological functions, such as quorum detection, chemical defense, allelopathy, and maintenance of symbiosis. Fungi therefore remain an important resource for the screening and discovery of biologically active natural products. Sesquiterpenoids are arguably the richest natural products from plants and micro-organisms. The rearrangement of the 15 high-ductility carbons gave rise to a large number of different skeletons. At the same time, abundant structural variations lead to a diversification of biological activity. This review examines the isolation, structural determination, bioactivities, and synthesis of sesquiterpenoids that were specially produced by fungi over the past five years (2015-2020).
Collapse
Affiliation(s)
| | | | - Tao Feng
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China; (Q.D.); (F.-L.Z.)
| |
Collapse
|
16
|
Zou JX, Song YP, Liu XH, Li XN, Ji NY. Bisabolane, cadinane, and cyclonerane sesquiterpenes from an algicolous strain of Trichoderma asperelloides. Bioorg Chem 2021; 115:105223. [PMID: 34339977 DOI: 10.1016/j.bioorg.2021.105223] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/03/2021] [Accepted: 07/25/2021] [Indexed: 10/20/2022]
Abstract
Ten new bisabolane derivatives, trichobisabolins Q-Z (1-10), one new cadinane derivative, cadin-4-en-11-ol (11), and three new cyclonerane derivatives, cycloner-3-en-7,11-diol (12), isoepicyclonerodiol oxide (13), and norepicyclonerodiol oxide (14), were isolated from the endophytic fungal strain RR-dl-6-11 of Trichoderma asperelloides that was obtained from a marine alga. Their structures along with relative configurations were established mainly by NMR and IR as well as MS techniques, and the absolute configurations of 10 and 11 were assigned by ECD and X-ray diffraction data, respectively. Sesquiterpenes from the fungus T. asperelloides are reported for the first time. It is interesting that half of the bisabolane derivatives are demethylated. Compound 12 represents the first the occurrence of cyclopentenyl-bearing cycloneranes, and 14 seems a cyclopentyl-degrading cyclonerane derivative. Several isolates feature potent inhibition of marine phytoplankton species.
Collapse
Affiliation(s)
- Ji-Xue Zou
- Yantai Institute of Coastal Zone Research, Center for Ocean Mega-Science, Chinese Academy of Sciences, Yantai 264003, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yin-Ping Song
- Yantai Institute of Coastal Zone Research, Center for Ocean Mega-Science, Chinese Academy of Sciences, Yantai 264003, People's Republic of China
| | - Xiang-Hong Liu
- Yantai Institute of Coastal Zone Research, Center for Ocean Mega-Science, Chinese Academy of Sciences, Yantai 264003, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xiao-Nian Li
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Nai-Yun Ji
- Yantai Institute of Coastal Zone Research, Center for Ocean Mega-Science, Chinese Academy of Sciences, Yantai 264003, People's Republic of China.
| |
Collapse
|
17
|
Zhang JL, Tang WL, Huang QR, Li YZ, Wei ML, Jiang LL, Liu C, Yu X, Zhu HW, Chen GZ, Zhang XX. Trichoderma: A Treasure House of Structurally Diverse Secondary Metabolites With Medicinal Importance. Front Microbiol 2021; 12:723828. [PMID: 34367122 PMCID: PMC8342961 DOI: 10.3389/fmicb.2021.723828] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 06/28/2021] [Indexed: 11/27/2022] Open
Abstract
Fungi play an irreplaceable role in drug discovery in the course of human history, as they possess unique abilities to synthesize diverse specialized metabolites with significant medicinal potential. Trichoderma are well-studied filamentous fungi generally observed in nature, which are widely marketed as biocontrol agents. The secondary metabolites produced by Trichoderma have gained extensive attention since they possess attractive chemical structures with remarkable biological activities. A large number of metabolites have been isolated from Trichoderma species in recent years. A previous review by Reino et al. summarized 186 compounds isolated from Trichoderma as well as their biological activities up to 2008. To update the relevant list of reviews of secondary metabolites produced from Trichoderma sp., we provide a comprehensive overview in regard to the newly described metabolites of Trichoderma from the beginning of 2009 to the end of 2020, with emphasis on their chemistry and various bioactivities. A total of 203 compounds with considerable bioactivities are included in this review, which is worth expecting for the discovery of new drug leads and agrochemicals in the foreseeable future. Moreover, new strategies for discovering secondary metabolites of Trichoderma in recent years are also discussed herein.
Collapse
Affiliation(s)
- Jian-Long Zhang
- School of Life Sciences, Ludong University, Yantai, China
- Shandong Provincial Key Laboratory of Quality Safty Monitoring and Risk Assessment for Animal Products, Jinan, China
- Shandong Aquaculture Environmental Control Engineering Laboratory, Yantai, China
| | - Wen-Li Tang
- Shandong Provincial Key Laboratory of Quality Safty Monitoring and Risk Assessment for Animal Products, Jinan, China
| | - Qing-Rong Huang
- School of Life Sciences, Ludong University, Yantai, China
- Yantai Key Laboratory of Animal Pathogenetic Microbiology and Immunology, Yantai, China
| | - You-Zhi Li
- Shandong Provincial Key Laboratory of Quality Safty Monitoring and Risk Assessment for Animal Products, Jinan, China
| | - Mao-Lian Wei
- Shandong Provincial Key Laboratory of Quality Safty Monitoring and Risk Assessment for Animal Products, Jinan, China
| | - Lin-Lin Jiang
- School of Life Sciences, Ludong University, Yantai, China
- Shandong Provincial Key Laboratory of Quality Safty Monitoring and Risk Assessment for Animal Products, Jinan, China
- Shandong Aquaculture Environmental Control Engineering Laboratory, Yantai, China
- Yantai Research Institute for Replacing Old Growth Drivers with New Ones, Yantai, China
| | - Chong Liu
- School of Life Sciences, Ludong University, Yantai, China
| | - Xin Yu
- School of Life Sciences, Ludong University, Yantai, China
- Shandong Provincial Key Laboratory of Quality Safty Monitoring and Risk Assessment for Animal Products, Jinan, China
- Yantai Key Laboratory of Animal Pathogenetic Microbiology and Immunology, Yantai, China
| | - Hong-Wei Zhu
- School of Life Sciences, Ludong University, Yantai, China
- Shandong Provincial Key Laboratory of Quality Safty Monitoring and Risk Assessment for Animal Products, Jinan, China
- Shandong Aquaculture Environmental Control Engineering Laboratory, Yantai, China
- Yantai Research Institute for Replacing Old Growth Drivers with New Ones, Yantai, China
| | - Guo-Zhong Chen
- School of Life Sciences, Ludong University, Yantai, China
- Shandong Aquaculture Environmental Control Engineering Laboratory, Yantai, China
- Yantai Key Laboratory of Animal Pathogenetic Microbiology and Immunology, Yantai, China
| | - Xing-Xiao Zhang
- School of Life Sciences, Ludong University, Yantai, China
- Shandong Aquaculture Environmental Control Engineering Laboratory, Yantai, China
- Yantai Key Laboratory of Animal Pathogenetic Microbiology and Immunology, Yantai, China
| |
Collapse
|
18
|
Shi ZZ, Liu XH, Song YP, Yin XL, Ji NY. Sesquiterpenoids and a steroid from the algicolous Trichoderma brevicompactum. Fitoterapia 2021; 153:104983. [PMID: 34197902 DOI: 10.1016/j.fitote.2021.104983] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 11/17/2022]
Abstract
Six new sesquiterpenoids including three bisabolane derivatives, trichobisabolins O1, O2, and P (1-3), two nerolidol derivatives, trichonerolins A and B (4 and 5), one acorane, trichoacorin A (6), along with one new steroid, isoergokonin B (7), were isolated from the culture of Trichoderma brevicompactum A-DL-9-2 obtained from the inner tissue of the red alga Chondria tenuissima. Their structures and relative configurations were assigned by interpretation of 1D/2D NMR and MS data. As acyclic sesquiterpenoids, compounds 4 and 5 were discovered from Trichoderma for the first time. Compounds 1-7 were evaluated for the inhibition of some marine-derived organisms, in which, 3 and 4/5 exhibited potent inhibition against Amphidinium carterae and Chattonella marina with IC50 of 1.8 μg/mL and 1.2 μg/mL, respectively. In addition, compound 7 could inhibit the growth of Pseudoalteromonas citrea with an MIC value of 64 μg/mL.
Collapse
Affiliation(s)
- Zhen-Zhen Shi
- Yantai Institute of Coastal Zone Research, Center for Ocean Mega-Science, Chinese Academy of Sciences, Yantai 264003, People's Republic of China
| | - Xiang-Hong Liu
- Yantai Institute of Coastal Zone Research, Center for Ocean Mega-Science, Chinese Academy of Sciences, Yantai 264003, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yin-Ping Song
- Yantai Institute of Coastal Zone Research, Center for Ocean Mega-Science, Chinese Academy of Sciences, Yantai 264003, People's Republic of China
| | - Xiu-Li Yin
- Yantai Institute of Coastal Zone Research, Center for Ocean Mega-Science, Chinese Academy of Sciences, Yantai 264003, People's Republic of China
| | - Nai-Yun Ji
- Yantai Institute of Coastal Zone Research, Center for Ocean Mega-Science, Chinese Academy of Sciences, Yantai 264003, People's Republic of China.
| |
Collapse
|
19
|
Abstract
This review covers the literature published between January and December in 2018 for marine natural products (MNPs), with 717 citations (706 for the period January to December 2018) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1554 in 469 papers for 2018), together with the relevant biological activities, source organisms and country of origin. Reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. The proportion of MNPs assigned absolute configuration over the last decade is also surveyed.
Collapse
Affiliation(s)
- Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia. and Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Rohan A Davis
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia and School of Environment and Science, Griffith University, Brisbane, Australia
| | - Robert A Keyzers
- Centre for Biodiscovery, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Michèle R Prinsep
- Chemistry, School of Science, University of Waikato, Hamilton, New Zealand
| |
Collapse
|
20
|
Shi XS, Song YP, Meng LH, Yang SQ, Wang DJ, Zhou XW, Ji NY, Wang BG, Li XM. Isolation and Characterization of Antibacterial Carotane Sesquiterpenes from Artemisia argyi Associated Endophytic Trichoderma virens QA-8. Antibiotics (Basel) 2021; 10:antibiotics10020213. [PMID: 33672705 PMCID: PMC7924333 DOI: 10.3390/antibiotics10020213] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/13/2021] [Accepted: 02/17/2021] [Indexed: 01/30/2023] Open
Abstract
Carotane sesquiterpenes are commonly found in plants but are infrequently reported in the fungal kingdom. Chemical investigation of Trichoderma virens QA-8, an endophytic fungus associated with the inner root tissue of the grown medicinal herb Artemisia argyi H. Lév. and Vaniot, resulted in the isolation and characterization of five new carotane sesquiterpenes trichocarotins I-M (1-5), which have diverse substitution patterns, and seven known related analogues (6-12). The structures of these compounds were established on the basis of a detailed interpretation of their NMR and mass spectroscopic data, and the structures including the relative and absolute configurations of compounds 1-3, 5, 9, and 10 were confirmed by X-ray crystallographic analysis. In the antibacterial assays, all isolates exhibited potent activity against Escherichia coli EMBLC-1, with MIC values ranging from 0.5 to 32 µg/mL, while 7β-hydroxy CAF-603 (7) strongly inhibited Micrococcus luteus QDIO-3 (MIC = 0.5 µg/mL). Structure-activity relationships of these compounds were discussed. The results from this study demonstrate that the endophytic fungus T. virens QA-8 from the planted medicinal herb A. argyi is a rich source of antibacterial carotane sesquiterpenes, and some of them might be interesting for further study to be developed as novel antibacterial agents.
Collapse
Affiliation(s)
- Xiao-Shan Shi
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, and Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Nanhai Road 7, Qingdao 266071, China; (X.-S.S.); (L.-H.M.); (S.-Q.Y.)
| | - Yin-Ping Song
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; (Y.-P.S.); (N.-Y.J.)
| | - Ling-Hong Meng
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, and Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Nanhai Road 7, Qingdao 266071, China; (X.-S.S.); (L.-H.M.); (S.-Q.Y.)
| | - Sui-Qun Yang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, and Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Nanhai Road 7, Qingdao 266071, China; (X.-S.S.); (L.-H.M.); (S.-Q.Y.)
| | - Dun-Jia Wang
- College of Chemistry and Chemical Engineering, Hubei Normal University, Cihu Road 11, Huangshi 435002, China; (D.-J.W.); (X.-W.Z.)
| | - Xing-Wang Zhou
- College of Chemistry and Chemical Engineering, Hubei Normal University, Cihu Road 11, Huangshi 435002, China; (D.-J.W.); (X.-W.Z.)
| | - Nai-Yun Ji
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; (Y.-P.S.); (N.-Y.J.)
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, China
| | - Bin-Gui Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, and Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Nanhai Road 7, Qingdao 266071, China; (X.-S.S.); (L.-H.M.); (S.-Q.Y.)
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, China
- Correspondence: (B.-G.W.); (X.-M.L.)
| | - Xiao-Ming Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, and Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Nanhai Road 7, Qingdao 266071, China; (X.-S.S.); (L.-H.M.); (S.-Q.Y.)
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, China
- Correspondence: (B.-G.W.); (X.-M.L.)
| |
Collapse
|
21
|
Shi ZZ, Liu XH, Li XN, Ji NY. Antifungal and Antimicroalgal Trichothecene Sesquiterpenes from the Marine Algicolous Fungus Trichoderma brevicompactum A-DL-9-2. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:15440-15448. [PMID: 33332117 DOI: 10.1021/acs.jafc.0c05586] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Eight new trichothecene derivatives, trichodermarins G-N (1-8), and two new cuparene derivatives, trichocuparins A (9) and B (10), as well as six known trichothecenes (11-16) were isolated from the fungal strain Trichoderma brevicompactum A-DL-9-2 obtained from the inner tissue of the marine red alga Chondria tenuissima. The structures and relative configurations of 1-10 were assigned by NMR and MS data, and the absolute configurations of 1, 2, and 9 were established by X-ray diffraction. Compound 8 features an aminosugar unit bond to the trichothecene framework for the first time, while 9 and 10 represent the first occurrence of cuparene sesquiterpenes in Trichoderma. All the isolates were assayed for growth inhibition of five phytopathogenic fungi (Botrytis cinerea, Cochliobolus miyabeanus, Fusarium oxysporum f. sp. cucumerium, Fusarium oxysporum f. sp. niveum, and Phomopsis asparagi) and four marine phytoplankton species (Amphidinium carterae, Heterocapsa circularisquama, Heterosigma akashiwo, and Prorocentrum donghaiense). Several of them exhibited significant inhibitory activities against the fungi and phytoplankton tested of which trichodermin (12) showed the highest antifungal and antimicroalgal activities with MIC and IC50 values being 4.0 and 0.82 μg/mL, respectively.
Collapse
Affiliation(s)
- Zhen-Zhen Shi
- Yantai Institute of Coastal Zone Research, Center for Ocean Mega-Science, Chinese Academy of Sciences, Yantai 264003, People's Republic of China
| | - Xiang-Hong Liu
- Yantai Institute of Coastal Zone Research, Center for Ocean Mega-Science, Chinese Academy of Sciences, Yantai 264003, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xiao-Nian Li
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Nai-Yun Ji
- Yantai Institute of Coastal Zone Research, Center for Ocean Mega-Science, Chinese Academy of Sciences, Yantai 264003, People's Republic of China
| |
Collapse
|
22
|
Structurally diverse polyketides and phenylspirodrimanes from the soft coral-associated fungus Stachybotrys chartarum SCSIO41201. J Antibiot (Tokyo) 2020; 74:190-198. [PMID: 33318621 DOI: 10.1038/s41429-020-00386-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/15/2020] [Accepted: 10/19/2020] [Indexed: 11/08/2022]
Abstract
Four undescribed polyketide derivatives, named arthproliferins A-D (1-4), and one undescribed phenylspirodrimane derivative, named arthproliferin E (7), along with 11 known metabolites (5, 6, 8-16) were isolated from the soft coral-associated fungus Stachybotrys chartarum SCSIO41201. Their structures were determined through spectroscopic methods, X-ray crystallography, and ECD analysis. Compounds 1 and 3-15 were evaluated for their cytotoxic, and antibacterial activities. Among them, compounds 1 and 15 displayed moderate inhibitory activity against methicillin-resistant Staphylococcus aureus ATCC 29213 with an MIC value of 78 and 39 µg/mL, respectively. Furthermore, compound 15 displayed strong cytotoxic activities against the tested cell line with IC50 values less than 39 nM.
Collapse
|
23
|
Separation and configurational assignment of stereoisomeric phenalenones from the marine mangrove-derived fungus Penicillium herquei MA-370. Bioorg Chem 2020; 106:104477. [PMID: 33279250 DOI: 10.1016/j.bioorg.2020.104477] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/11/2020] [Accepted: 11/13/2020] [Indexed: 12/20/2022]
Abstract
Eight phenalenone derivatives, including four new compounds, aceneoherqueinones A and B (1 and 2), (+)-aceatrovenetinone A (3a), and (+)-aceatrovenetinone B (3d), along with four known congeners, (-)-aceatrovenetinone A (3b), (-)-aceatrovenetinone B (3c), (-)-scleroderolide (4a), and (+)-scleroderolide (4b), were characterized from the marine mangrove-derived fungus Penicillium herquei MA-370. Among them, compounds 1 and 2 are rare phenalenone derivatives featuring cyclic ether unit between C-5 and C-2'. All of these compounds were subjected to chiral HPLC analysis, and the unstable stereoisomers 3a-3d, containing configurationally labile chirality centers, were characterized by online HPLC-ECD measurements supported with TDDFT-ECD calculations. The structures of these compounds were elucidated by detailed analysis of their NMR and mass spectroscopic data, and the absolute configuration of compound 1 was confirmed by X-ray diffraction analysis, while those of compounds 2 and 3a-3d were determined by TDDFT-ECD calculations of their ECD spectra. All of the isolated compounds were tested for the inhibitory activity against angiotensin-I-converting enzyme (ACE), and compounds 1 and 2 displayed activity with IC50 values 3.10 and 11.28 μM, respectively. The intermolecular interaction and potential binding sites of 1 and 2 with ACE were elaborated by molecular docking, showing that compound 1 bound well with ACE via hydrogen interactions with residues Ala261, Gln618, Trp621, and Asn624, while compound 2 interacted with residues Asp358 and Tyr360.
Collapse
|
24
|
Xu K, Zhou Q, Li XQ, Luo T, Yuan XL, Zhang ZF, Zhang P. Cadinane- and drimane-type sesquiterpenoids produced by Paecilomyces sp. TE-540, an endophyte from Nicotiana tabacum L., are acetylcholinesterase inhibitors. Bioorg Chem 2020; 104:104252. [PMID: 32911187 DOI: 10.1016/j.bioorg.2020.104252] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 12/22/2022]
Abstract
Sesquiterpenoids with diverse skeleton types are regarded as potential lead compounds in pharmacological and other applications. Herein, we report the discovery of two new cadinane-type sesquiterpenoids, paecilacadinol A (1) and B (2); two new drimane-type sesquiterpenoids, ustusol D (3) and ustusol E (4); and six known analogs (5-10) from the endophytic fungus Paecilomyces sp. TE-540, enriching the structural diversity of naturally occurring sesquiterpenoids. Their planar structures were determined on the basis of detailed interpretation of 1D and 2D NMR spectroscopy and HRESIMS data, while their stereochemical structures were established by X-ray crystallographic analyses for 1 and 3-8 and theoretical calculations for 2. Notably, compounds 1 and 2 represent novel examples of cadinane-type sesquiterpenoids with ether bonds formed by intramolecular dehydration. Compounds 5 and 6 showed moderate activities against acetylcholinesterase (AChE), with IC50 values of 43.02 ± 6.01 and 35.97 ± 2.12 μM, respectively. Docking analysis predicted that 5 bound well in the catalytic pocket of AChE via hydrophobic interactions with Trp84, Gly117, Ser122, and Tyr121 residues, while 6 was located with Asp72 and Ser122 residues.
Collapse
Affiliation(s)
- Kuo Xu
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Qi Zhou
- Hubei University of Chinese Medicine, Wuhan 430070, China
| | - Xiu-Qi Li
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Tian Luo
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Xiao-Long Yuan
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Zhong-Feng Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Peng Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| |
Collapse
|
25
|
Song YP, Shi XS, Wang BG, Ji NY. Cadinane and carotane derivatives from the marine algicolous fungus Trichoderma virens RR-dl-6-8. Fitoterapia 2020; 146:104715. [PMID: 32861754 DOI: 10.1016/j.fitote.2020.104715] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/21/2020] [Accepted: 08/22/2020] [Indexed: 11/27/2022]
Abstract
Eight cadinane derivatives, trichocadinins H - N (1-7) and methylhydroheptelidate (8), and two carotane derivatives, 14-O-methyltrichocarotin G (9) and 14-O-methyl CAF-603 (10), including eight new ones (1-6, 9, and 10), were isolated from the culture of Trichoderma virens RR-dl-6-8 obtained from the organohalogen-enriched marine red alga Rhodomela confervoides. Their structures and relative configurations were established by analysis of NMR and mass spectroscopic data, and the absolute configurations were assigned on the basis of ECD curves, highlighted by the ECD diversity of carboxylic acid derivatives. Among the isolates, 1 with a halogen atom and 8, a new naturally occurring compound, are 2,3-seco-cadinane sesquiterpenes, and the epimeric 2 and 3 feature a 2-nor-cadinane skeleton. A commercially-sourced compound with the same planar structure as that of 7 has been reported in a patent, but its configuration was not given. Compounds 1-10 exhibited growth inhibition of some marine phytoplankton species.
Collapse
Affiliation(s)
- Yin-Ping Song
- Yantai Institute of Coastal Zone Research, Center for Ocean Mega-Science, Chinese Academy of Sciences, Yantai 264003, China
| | - Xiao-Shan Shi
- Laboratory of Marine Biology and Biotechnology of the Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Experimental Marine Biology at the Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Bin-Gui Wang
- Laboratory of Marine Biology and Biotechnology of the Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Experimental Marine Biology at the Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Nai-Yun Ji
- Yantai Institute of Coastal Zone Research, Center for Ocean Mega-Science, Chinese Academy of Sciences, Yantai 264003, China.
| |
Collapse
|
26
|
Jiang M, Wu Z, Guo H, Liu L, Chen S. A Review of Terpenes from Marine-Derived Fungi: 2015-2019. Mar Drugs 2020; 18:E321. [PMID: 32570903 PMCID: PMC7345631 DOI: 10.3390/md18060321] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/16/2020] [Accepted: 06/16/2020] [Indexed: 12/16/2022] Open
Abstract
Marine-derived fungi are a significant source of pharmacologically active metabolites with interesting structural properties, especially terpenoids with biological and chemical diversity. In the past five years, there has been a tremendous increase in the rate of new terpenoids from marine-derived fungi being discovered. In this updated review, we examine the chemical structures and bioactive properties of new terpenes from marine-derived fungi, and the biodiversity of these fungi from 2015 to 2019. A total of 140 research papers describing 471 new terpenoids of six groups (monoterpenes, sesquiterpenes, diterpenes, sesterterpenes, triterpenes, and meroterpenes) from 133 marine fungal strains belonging to 34 genera were included. Among them, sesquiterpenes, meroterpenes, and diterpenes comprise the largest proportions of terpenes, and the fungi genera of Penicillium, Aspergillus, and Trichoderma are the dominant producers of terpenoids. The majority of the marine-derived fungi are isolated from live marine matter: marine animals and aquatic plants (including mangrove plants and algae). Moreover, many terpenoids display various bioactivities, including cytotoxicity, antibacterial activity, lethal toxicity, anti-inflammatory activity, enzyme inhibitor activity, etc. In our opinion, the chemical diversity and biological activities of these novel terpenoids will provide medical and chemical researchers with a plenty variety of promising lead compounds for the development of marine drugs.
Collapse
Affiliation(s)
- Minghua Jiang
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China; (M.J.); (Z.W.); (H.G.); (L.L.)
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510006, China
| | - Zhenger Wu
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China; (M.J.); (Z.W.); (H.G.); (L.L.)
| | - Heng Guo
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China; (M.J.); (Z.W.); (H.G.); (L.L.)
| | - Lan Liu
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China; (M.J.); (Z.W.); (H.G.); (L.L.)
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510006, China
- Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China
| | - Senhua Chen
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China; (M.J.); (Z.W.); (H.G.); (L.L.)
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510006, China
- Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China
| |
Collapse
|
27
|
Ben Ali W, Chaduli D, Navarro D, Lechat C, Turbé-Doan A, Bertrand E, Faulds CB, Sciara G, Lesage-Meessen L, Record E, Mechichi T. Screening of five marine-derived fungal strains for their potential to produce oxidases with laccase activities suitable for biotechnological applications. BMC Biotechnol 2020; 20:27. [PMID: 32398071 PMCID: PMC7218534 DOI: 10.1186/s12896-020-00617-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 04/27/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Environmental pollution is one of the major problems that the world is facing today. Several approaches have been taken, from physical and chemical methods to biotechnological strategies (e.g. the use of oxidoreductases). Oxidative enzymes from microorganisms offer eco-friendly, cost-effective processes amenable to biotechnological applications, such as in industrial dye decolorization. The aim of this study was to screen marine-derived fungal strains isolated from three coastal areas in Tunisia to identify laccase-like activities, and to produce and characterize active cell-free supernatants of interest for dye decolorization. RESULTS Following the screening of 20 fungal strains isolated from the harbors of Sfax and Monastir (Tunisia), five strains were identified that displayed laccase-like activities. Molecular-based taxonomic approaches identified these strains as belonging to the species Trichoderma asperellum, Stemphylium lucomagnoense and Aspergillus nidulans. Among these five isolates, one T. asperellum strain (T. asperellum 1) gave the highest level of secreted oxidative activities, and so was chosen for further studies. Optimization of the growth medium for liquid cultures was first undertaken to improve the level of laccase-like activity in culture supernatants. Finally, the culture supernatant of T. asperellum 1 decolorized different synthetic dyes belonging to diverse dye families, in the presence or absence of 1-hydroxybenzotriazole (HBT) as a mediator. CONCLUSIONS The optimal growth conditions to produce laccase-like active cell-free supernatants from T. asperellum 1 were 1.8 mM CuSO4 as an inducer, 1% NaCl to mimic a seawater environment and 3% sucrose as a carbon source. The culture supernatant of T. asperellum 1 effectively decolorized different synthetic dyes belonging to diverse chemical classes, and the presence of HBT as a mediator improved the decolorization process.
Collapse
Affiliation(s)
- Wissal Ben Ali
- Ecole Nationale d'Ingénieurs de Sfax, Laboratoire de Biochimie et de Génie enzymatique des lipases, Université de Sfax, Sfax, Tunisie. .,Biodiversité et Biotechnologie Fongiques, Aix-Marseille Université, INRA UMR1163, Marseille, France.
| | - Delphine Chaduli
- Biodiversité et Biotechnologie Fongiques, Aix-Marseille Université, INRA UMR1163, Marseille, France.,INRA, Aix-Marseille Université, UMR1163, CIRM-CF, Marseille, France
| | - David Navarro
- Biodiversité et Biotechnologie Fongiques, Aix-Marseille Université, INRA UMR1163, Marseille, France.,INRA, Aix-Marseille Université, UMR1163, CIRM-CF, Marseille, France
| | - Christian Lechat
- Ascofrance, 64 route de Chizé, F-79360, Villiers-en-Bois, France
| | - Annick Turbé-Doan
- Biodiversité et Biotechnologie Fongiques, Aix-Marseille Université, INRA UMR1163, Marseille, France
| | - Emmanuel Bertrand
- Biodiversité et Biotechnologie Fongiques, Aix-Marseille Université, INRA UMR1163, Marseille, France
| | - Craig B Faulds
- Biodiversité et Biotechnologie Fongiques, Aix-Marseille Université, INRA UMR1163, Marseille, France
| | - Giuliano Sciara
- Biodiversité et Biotechnologie Fongiques, Aix-Marseille Université, INRA UMR1163, Marseille, France
| | - Laurence Lesage-Meessen
- Biodiversité et Biotechnologie Fongiques, Aix-Marseille Université, INRA UMR1163, Marseille, France
| | - Eric Record
- Biodiversité et Biotechnologie Fongiques, Aix-Marseille Université, INRA UMR1163, Marseille, France
| | - Tahar Mechichi
- Ecole Nationale d'Ingénieurs de Sfax, Laboratoire de Biochimie et de Génie enzymatique des lipases, Université de Sfax, Sfax, Tunisie
| |
Collapse
|
28
|
Du FY, Ju GL, Xiao L, Zhou YM, Wu X. Sesquiterpenes and Cyclodepsipeptides from Marine-Derived Fungus Trichoderma longibrachiatum and Their Antagonistic Activities against Soil-borne Pathogens. Mar Drugs 2020; 18:md18030165. [PMID: 32188169 PMCID: PMC7142749 DOI: 10.3390/md18030165] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/05/2020] [Accepted: 03/11/2020] [Indexed: 01/25/2023] Open
Abstract
Soil-borne pathogens, including phytopathogenic fungi and root-knot nematodes, could synergistically invade vegetable roots and result in serious economic losses. The genus of Trichoderma has been proven to be a promising reservoir of biocontrol agents in agriculture. In this study, the search for antagonistic metabolites from a marine-derived fungus, Trichoderma longibrachiatum, obtained two structural series of sesquiterpenes 1-6 and cyclodepsipeptides 7-9. Notably, the novel 1 was a rare norsesquiterpene characterized by an unprecedented tricyclic-6/5/5-[4.3.1.01,6]-decane skeleton. Their structures were elucidated by extensive spectroscopic analyses, while the absolute configuration of novel 1 was determined by the comparison of experimental and calculated ECD spectra. The novel 1 and known 2 and 3 showed significant antifungal activities against Colletotrichum lagrnarium with MIC values of 8, 16, and 16 μg/mL respectively, even better than those of the commonly used synthetic fungicide carbendazim with 32 μg/mL. They also exhibited antifungal potential against carbendazim-resistant Botrytis cinerea. Cyclodepsipeptides 7-9 showed moderate nematicidal activities against the southern root-knot nematode (Meloidogyne incognita). This study constitutes the first report on the antagonistic effects of metabolites from T. Longibrachiatum against soil-borne pathogens, also highlighting the integrated antagonistic potential of marine-derived T. Longibrachiatum as a biocontrol agent.
Collapse
Affiliation(s)
- Feng-Yu Du
- College of Chemistry and Pharmacy, Qingdao Agricultural University, Qingdao 266109, China; (F.-Y.D.); (G.-L.J.); (L.X.)
- Shandong Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao 266109, China
| | - Guang-Lin Ju
- College of Chemistry and Pharmacy, Qingdao Agricultural University, Qingdao 266109, China; (F.-Y.D.); (G.-L.J.); (L.X.)
| | - Lin Xiao
- College of Chemistry and Pharmacy, Qingdao Agricultural University, Qingdao 266109, China; (F.-Y.D.); (G.-L.J.); (L.X.)
| | - Yuan-Ming Zhou
- Analytical and Testing Center, Qingdao Agricultural University, Qingdao 266109, China;
| | - Xia Wu
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
- Correspondence:
| |
Collapse
|
29
|
Sesquiterpenoids from the aerial parts of Conyza japonica and their inhibitory activity against nitric oxide production. Fitoterapia 2020; 142:104473. [PMID: 31923432 DOI: 10.1016/j.fitote.2020.104473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/06/2020] [Accepted: 01/06/2020] [Indexed: 11/21/2022]
Abstract
Four new sesquiterpenoids, conyterpenols A - D (1-4), along with nineteen known analogues (5-23) were isolated from the aerial parts of Conyza japonica. The structures of 1-4 were determined through spectroscopic analysis, while their absolute configurations were determined by comparison of calculated and experimental electronic circular dichroism (ECD) spectra. Conyterpenol D (4) was a new type of sesquiterpenoid with a seven-membered lactone ring. Compounds 1-23 were evaluated for their inhibitory activity against LPS-induced nitric oxide production in RAW264.7 macrophages and cytotoxicity against human hepatoma cell line (HepG2) and human breast adenocarcinoma cell line (MCF-7). Compounds 3, 4, and 12 displayed moderate inhibition against NO production with IC50 values in the range of 26.4-33.6 μM. And all compounds showed no obvious cytotoxicity against these two cancer cell lines at 100 μM.
Collapse
|
30
|
|
31
|
Shi XS, Meng LH, Li XM, Li X, Wang DJ, Li HL, Zhou XW, Wang BG. Trichocadinins B-G: Antimicrobial Cadinane Sesquiterpenes from Trichoderma virens QA-8, an Endophytic Fungus Obtained from the Medicinal Plant Artemisia argyi. JOURNAL OF NATURAL PRODUCTS 2019; 82:2470-2476. [PMID: 31418264 DOI: 10.1021/acs.jnatprod.9b00139] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Trichocadinins B-G (1-6), six new cadinane-type sesquiterpene derivatives, each with C-14 carboxyl functionality, were isolated from the culture extract of Trichoderma virens QA-8, an endophytic fungus obtained from the fresh inner tissue of the medicinal plant Artemisia argyi. Their structures were elucidated by interpretation of the NMR spectroscopic and mass spectrometric data. The structures and absolute configurations of compounds 1 and 3 were confirmed by X-ray crystallographic analysis. Compounds 1-3 showed antibacterial and antifungal activity.
Collapse
Affiliation(s)
- Xiao-Shan Shi
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology , Chinese Academy of Sciences, and Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology , Nanhai Road 7 , Qingdao 266071 , People's Republic of China
- College of Chemistry and Chemical Engineering , Hubei Normal University , Cihu Road 11 , Huangshi 435002 , People's Republic of China
- University of Chinese Academy of Sciences , Yuquan Road 19A , Beijing 100049 , People's Republic of China
| | - Ling-Hong Meng
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology , Chinese Academy of Sciences, and Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology , Nanhai Road 7 , Qingdao 266071 , People's Republic of China
- Center for Ocean Mega-Science , Chinese Academy of Sciences , Nanhai Road 7 , Qingdao 266071 , People's Republic of China
| | - Xiao-Ming Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology , Chinese Academy of Sciences, and Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology , Nanhai Road 7 , Qingdao 266071 , People's Republic of China
- Center for Ocean Mega-Science , Chinese Academy of Sciences , Nanhai Road 7 , Qingdao 266071 , People's Republic of China
| | - Xin Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology , Chinese Academy of Sciences, and Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology , Nanhai Road 7 , Qingdao 266071 , People's Republic of China
- Center for Ocean Mega-Science , Chinese Academy of Sciences , Nanhai Road 7 , Qingdao 266071 , People's Republic of China
| | - Dun-Jia Wang
- College of Chemistry and Chemical Engineering , Hubei Normal University , Cihu Road 11 , Huangshi 435002 , People's Republic of China
| | - Hong-Lei Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology , Chinese Academy of Sciences, and Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology , Nanhai Road 7 , Qingdao 266071 , People's Republic of China
- Center for Ocean Mega-Science , Chinese Academy of Sciences , Nanhai Road 7 , Qingdao 266071 , People's Republic of China
| | - Xing-Wang Zhou
- College of Chemistry and Chemical Engineering , Hubei Normal University , Cihu Road 11 , Huangshi 435002 , People's Republic of China
| | - Bin-Gui Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology , Chinese Academy of Sciences, and Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology , Nanhai Road 7 , Qingdao 266071 , People's Republic of China
- Center for Ocean Mega-Science , Chinese Academy of Sciences , Nanhai Road 7 , Qingdao 266071 , People's Republic of China
| |
Collapse
|
32
|
Isolation and characterization of three pairs of indolediketopiperazine enantiomers containing infrequent N-methoxy substitution from the marine algal-derived endophytic fungus Acrostalagmus luteoalbus TK-43. Bioorg Chem 2019; 90:103030. [DOI: 10.1016/j.bioorg.2019.103030] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/26/2019] [Accepted: 06/02/2019] [Indexed: 12/31/2022]
|
33
|
Sun W, Wu W, Liu X, Zaleta-Pinet DA, Clark BR. Bioactive Compounds Isolated from Marine-Derived Microbes in China: 2009-2018. Mar Drugs 2019; 17:E339. [PMID: 31174259 PMCID: PMC6628246 DOI: 10.3390/md17060339] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 05/27/2019] [Accepted: 05/28/2019] [Indexed: 11/16/2022] Open
Abstract
This review outlines the research that was carried out regarding the isolation of bioactive compounds from marine-derived bacteria and fungi by China-based research groups from 2009-2018, with 897 publications being surveyed. Endophytic organisms featured heavily, with endophytes from mangroves, marine invertebrates, and marine algae making up more than 60% of the microbial strains investigated. There was also a strong focus on fungi as a source of active compounds, with 80% of publications focusing on this area. The rapid increase in the number of publications in the field is perhaps most notable, which have increased more than sevenfold over the past decade, and suggests that China-based researchers will play a major role in marine microbial natural products drug discovery in years to come.
Collapse
Affiliation(s)
- Weiwei Sun
- School of Pharmaceutical Science and Technology, Health Science Platform, Tianjin University, 92 Weijin Road, Tianjin 300072, China.
| | - Wenhui Wu
- School of Pharmaceutical Science and Technology, Health Science Platform, Tianjin University, 92 Weijin Road, Tianjin 300072, China.
| | - Xueling Liu
- School of Pharmaceutical Science and Technology, Health Science Platform, Tianjin University, 92 Weijin Road, Tianjin 300072, China.
| | - Diana A Zaleta-Pinet
- School of Pharmaceutical Science and Technology, Health Science Platform, Tianjin University, 92 Weijin Road, Tianjin 300072, China.
| | - Benjamin R Clark
- School of Pharmaceutical Science and Technology, Health Science Platform, Tianjin University, 92 Weijin Road, Tianjin 300072, China.
| |
Collapse
|
34
|
Song YP, Miao FP, Liu XH, Yin XL, Ji NY. Seven chromanoid norbisabolane derivatives from the marine-alga-endophytic fungus Trichoderma asperellum A-YMD-9-2. Fitoterapia 2019; 135:107-113. [PMID: 31048011 DOI: 10.1016/j.fitote.2019.04.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/25/2019] [Accepted: 04/27/2019] [Indexed: 12/15/2022]
Abstract
An examination of the endophytic fungus Trichoderma asperellum A-YMD-9-2 obtained from the marine red alga Gracilaria verrucosa led to the isolation of seven new chromanoid norbisabolane derivatives, trichobisabolins I-L (1-4) and trichaspsides C-E (5-7). Their structures and relative configurations were established on the basis of spectroscopic techniques, mainly including 1D/2D NMR and MS, and the absolute configuration of 1 was assigned by X-ray crystallographic analysis using Cu Kα radiation. All of these isolates feature a 1,9-epoxy ring system, and 5-7 represent the second occurrence of norbisabolane aminoglycosides. Compounds 1-7 exhibited potent inhibition of several marine phytoplankton species.
Collapse
Affiliation(s)
- Yin-Ping Song
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feng-Ping Miao
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Xiang-Hong Liu
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiu-Li Yin
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Nai-Yun Ji
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| |
Collapse
|
35
|
Song YP, Miao FP, Liu XH, Yin XL, Ji NY. Cyclonerane Derivatives from the Algicolous Endophytic Fungus Trichoderma asperellum A-YMD-9-2. Mar Drugs 2019; 17:md17050252. [PMID: 31035351 PMCID: PMC6562392 DOI: 10.3390/md17050252] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 04/23/2019] [Accepted: 04/26/2019] [Indexed: 11/23/2022] Open
Abstract
Seven previously unreported cyclonerane derivatives, namely, 3,7,11-trihydroxycycloneran-10-one, cycloneran-3,7,10,11-tetraol, cycloneran-3,7,11-triol, 11,12,15-trinorcycloneran-3,7,10-triol, 7,10S-epoxycycloneran-3,15-diol, 7,10R-epoxycycloneran-3,15-diol, and (10Z)-15-acetoxy-10-cycloneren-3,7-diol, were isolated in addition to the known (10Z)-cyclonerotriol, (10E)-cyclonerotriol, catenioblin C, and chokol E from the culture of Trichoderma asperellum A-YMD-9-2, an endophytic fungus obtained from the marine red alga Gracilaria verrucosa. The structures of previously unreported compounds were established by spectroscopic techniques, including 1D/2D NMR, MS, and IR. The isolation of these new cyclonerane derivatives greatly adds to the structural diversity of unusual cyclonerane sesquiterpenes, and several isolates exhibit potent inhibition against some marine phytoplankton species.
Collapse
Affiliation(s)
- Yin-Ping Song
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China.
| | - Feng-Ping Miao
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China.
| | - Xiang-Hong Liu
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China.
| | - Xiu-Li Yin
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China.
| | - Nai-Yun Ji
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
36
|
Shi ZZ, Miao FP, Fang ST, Yin XL, Ji NY. Trichobisabolins A-H, eight new bisabolane derivatives from the marine-alga-epiphytic fungus Trichoderma asperellum Y6–2. Fitoterapia 2019; 134:372-377. [DOI: 10.1016/j.fitote.2019.03.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/11/2019] [Accepted: 03/13/2019] [Indexed: 01/19/2023]
|